FLORA IMPACT ASSESSMENT STUDY FOR THE PROPOSED DEVELOPMENT OF A CRUSHER PLANT ON PORTION 233 OF THE FARM KAFFERSKRAAL 342 JQ, RUSTENBURG LOCAL MUNICIPALITY, NORTH-WEST PROVINCE

SustainDev Services PO Box 23355 Halfway House 0181 Tel 011 805 3180 Fax 011 805 3180

November 2017

DOCUMENT CONTROL

Client:	Bobolele Consulting (Pty) Ltd on behalf of Makwase		
	Projects (Pty) Ltd		
Report Name:	Vegetation Impact Assessment for the Proposed		
	Development of Makwase Crusher Plant		
Report Type:	Vegetation Assessment Report		
Version:	1.1		
Compiled by:	Ms. Relebogile Mkhabela (Pr.Sci.Nat.)		
Peer Reviewed by:	Dr Thabiso Mokotjomela (Pr.Sci.Nat.)		

EXECUTIVE SUMMARY

Makwase Projects (Pty) Ltd is proposing the development of a crusher plant on Portion 233 of the farm Kafferskraal 342 JQ, Rustenburg Local Municipality, North West Province. As part of the Basic Assessment process, SustainDev Services (Pty) Ltd was tasked to undertake a biophysical assessment of the project area proposed site in order to determine the biophysical sensitivity of the site which will be affected by the contemplated Makwase Crusher Plant operations more especially the vegetation component of the local habitat.

The terms of reference was interpreted as follows:

- Report on and map the vegetation groups/units found on the project area. Describe the conservation importance and function of the vegetation within the landscape.
- Provide a map indicating potential habitat along the proposed site for species that are of conservation concern, as well as the inferred vegetation sensitivity thereof.
- List all plant species of conservation concern that are likely to occur on the site.
- Assess the impact that the proposed development could have on the vegetation on the site and provide recommendations to limit or negate these perceived impacts.

The assessment entailed both the desktop research, and the fieldwork in which transect vegetation survey and vegetation classification methods were applied to discern the current ecological integrity of the site.

- During a desktop literature review, a list of local plant species that could potentially occur in the area were documented.
- The desktop study was reinforced by a field vegetation surveys on random transects to determine vegetation classes based on observed habitat transformation, and documented presence/absence of previously reported species using digital photographic methods.
- The site visits were undertaken in April 2017 and again in September 2017. The data collected using the described combination of approaches was analysed and used for reporting.

The study site is situated within the Savanna Biome of South Africa and specifically within the Central Bushveld Bioregion of which comprises several subsidiary vegetation types providing distinguished habitat features of the site as per this assessment:

- Scattered open bushveld
- Habitat transformed
- Wetland habitat

The site is situated within the Marikana Thornveld vegetation type which is nationally listed as a vulnerable ecosystem since the remaining natural habitat is only about 50% of its original extent.

The proposed Makwase Crusher Plant will be located on the heavily transformed vegetation that is of little conservation value and therefore, suitable to the proposed development. Provided that mitigation measures as set out in this report are implemented as a minimum, no objection to the development is raised from a vegetation perspective.

Contents

EXECUTIVE SUMMARY
INTRODUCTION
Terms of reference6
Methodology6
BACKGROUND TO THE STUDY SITE7
Locality7
Climate: Temperatures and Precipitation8
2.3 Landscape and Hydrology8
2.4 Soil and Land Capability8
2.5 Overview of Historic Vegetation9
LEGAL FRAMEWORK
RESULTS OF THE FIELD ASSESSMENT11
IMPACT ASSESSMENT AND MITIGATION20
Impacts Statement
Risk Assessment of Impacts20
CONCLUSION
REFERENCES

INTRODUCTION

Makwase Projects (Pty) Ltd is proposing the development of a crusher plant on Portion 233 of the farm Kafferskraal 342 JQ, Rustenburg Local Municipality, North West Province. As part of the Basic Assessment process, EcoAgent cc was tasked to undertake a biophysical assessment of the proposed site in order to determine which site will be affected by the contemplated Makwase Crusher Plant operations more especially the vegetation component of the local habitat.

Terms of reference

The terms of reference was interpreted as follows:

- Report on the vegetation groups/units found around the project area. Describe the conservation importance and function of the vegetation within the landscape.
- List plants of conservation concern and national protected trees that are likely to occur around the project area.
- Provide a map indicating potential habitat along the proposed sites for species that are of conservation concern, as well as the inferred vegetation sensitivity on the project area.
- Assess the impact that the proposed development could have on the vegetation on the project area and provide recommendations to limit or negate these perceived impacts.

Methodology

The assessment entailed both the desktop research, and the fieldwork in which transect vegetation survey and vegetation classification methods were applied to discern the current ecological integrity of the site. During a desktop literature review, a list of local plant species were documented and then followed the short-listing of plant species of conservation concern that could potentially occur in the area. The desktop study was reinforced by a field vegetation surveys on random transects to determine vegetation classes based on observed habitat transformation, and documented presence/absence of previously reported species using digital photographic methods. Species identification and conservation status of the vegetation were conducted used the keys presented in Mucina and Rutherford 2006; Driver *et al.* 2011. The site visits were undertaken in April 2017 and again in September 2017. The data collected using the described combination of approaches was analysed and used for reporting.

BACKGROUND TO THE STUDY SITE

Locality

The proposed project site is located on Portion 233 of the farm Kafferskraal 342 JQ. within the Rustenburg Local Municipality and the Bojanala Platinum District Municipality of the North West Province. The site is situated north of the N4 Highway adjacent to the Buffelpoort/Marikana off-ramp, south of Tharisa mine (Figure 1).

Figure 1: Locality of the Project Area marked in yellow line

Climate: Temperatures and Precipitation

The site falls within Highveld climatic conditions, with hot and wet summers; cold and dry winters (Figure 2). On average, winds blow from the north-west (mainly during the day time) and south east (mainly at night) however seasonal differences are observed. Wind speeds hardly reach speeds higher than 5m/s. Wind direction, speed and atmospheric conditions influence the area of impact and the extent to which pollution can occur. The highest concentrations for low level releases would occur during weak wind speeds and stable (night-time) atmospheric conditions.

Figure 2: Average temperatures and precipitation of the site based on the past 30 years of hourly historical weather data (source:

https://www.meteoblue.com/en/weather/forecast/modelclimate/)

2.3 Landscape and Hydrology

The site lies on a relatively flat plain with a gentle slope down towards the north. The area has an elevation of approximately 1206 meters above sea level (m.a.s.l.). The natural topography surrounding the project area has been changed by mining activities to the north and N4 highway to the south. The perennial drainage line runs through the project area.

2.4 Soil and Land Capability

Most of the area is underlain by mafic intrusive rocks of the Rustenburg Layered Suit of the Bushveld Igneous Complex. The rocks include gabbor, norite pyroxene and anorthosite. The soils comprise mainly vertic melanic clays (Mucina & Rutherford, 2006). As per the national

soils descriptions, the study area consist of strongly structured, cracking soils which is mainly dark coloured and dominated by swelling clays.

The project area is located within an intermediate suitability for arable agriculture where climate permits. The land use in the area is a mixture of farming, low density residential and mining.

2.5 Overview of Historic Vegetation

The study site is situated within the Savanna Biome of South Africa and in specific within the Central Bushveld Bioregion. The Savanna biome is the largest biome in southern Africa, occupying over one-third of the surface area of the country (Mucina & Rutherford, 2006). It is characterised by a grassy ground layer and a distinct upper layer of woody plants. Where this upper layer is near the ground the vegetation may be referred to as Shrubveld, where it is dense, as Woodland, and the intermediate stages are commonly known as Bushveld (Mucina & Rutherford, 2006).

Summer rainfalls (see Figure 2), coupled with winter wildfire and regular grazing ensures that the grass layer remains dominant. In addition, the lack of sufficient rainfall prevents the tree canopy from dominating. However, in areas where grazing intensity is high, and wildfire frequencies low, the woody vegetation layer could become increasingly dominant. The Central Bushveld Bioregion (a bioregion is a vegetation organisation level between that of vegetation type and biome) comprises several vegetation types. The proposed site is within the Marikana Thornveld vegetation type. This vegetation type extends from Rustenburg area in the west, through Marikana and Brits to the Pretoria area in the east. Marikana Thornveld vegetation is greatly transformed with up to 50% being transformed by mining, cultivation and urban expansion and are classified as being Vulnerable (Mucina & Rutherford, 2006).

LEGAL FRAMEWORK

National Guidelines

The National Environmental Management: Biodiversity Act (Act 10 of 2004) (NEMBA) provides for listing of threatened or protected ecosystems. Threatened ecosystems are listed in order to reduce the rate of ecosystem and species extinction by preventing further degradation and loss of structure, function and composition of threatened ecosystems. The purpose of listing protected ecosystems is primarily to conserve sites of exceptionally high conservation value. Although the project area falls within the Marikana Thornveld vegetation type which is classified as vulnerable, the Marikana Thornveld ecosystem is divided into 'original extent' and 'remaining extent' by the National List of Threatened Terrestrial Ecosystems for South Africa (2011). According to the National list, the site does not fall within the 'remaining extent' of the Marikana Thornveld ecosystem.

Provincial Guidelines

The North-West Province published a biodiversity conservation assessment report in 2009, which includes a list of Critical Biodiversity Areas. These areas are terrestrial and aquatic features that are critical for retaining biodiversity and supporting continued ecosystem functioning and services. According to the 2009 list, the project area is located within a terrestrial Critical Biodiversity Area 2. In addition, an aquatic Critical Biodiversity Area 1 runs along the western boundary of the site.

RESULTS OF THE FIELD ASSESSMENT

The following vegetation/habitat zones were mapped within the project area:

- Scattered open bushveld;
- Habitat transformed; and
- wetland habitat.

Scattered Open Woodland/Scattered Open Bushveld

This vegetation assemblage is generally associated with the deep vertic clays or gabbros. It is a short microphyllous woodland with a well-developed graminoid (grass) layer that is interspersed by distinctive bush clumps comprising of many wood species. This habitat unit occurs in less disturbed areas. Table 1 provides a general description and list of commonly occurring species within the scattered open woodlands/open bushveld.

Status	Natural	Natural & grazed				
Conservation	Modera	Moderate in its own right; however because the habitat falls within a terrestrial CBA,				
Priority	the rem	the remaining bushveld may be considered important in order to reach provincial				
	conserv	ation targets.				
Soil	Deep v	ertic clay				
Rockiness	1%					
Commonly Oce	curring N	lative Plant Species – L	Indisturbed Areas			
Scientific Nam	е	Common Name	Scientific Name	Common Name		
Acacia caffra		Common Hook-thorn	Hypoxis	Star-flower		
	hemerocallidea					
Acacia karroo	Sweet Thorn Hypoxis rigidula Silver-leaved Star-flo					
Acacia nilotica	a Scented Pod Ipomoea bachycolpos -					
Acacia robusta	Splendid Thorn Ipomoea ommaneyi Beespatat					
Acacia tortilis su	subsp. Umbrella Thorn Ischaemum afrum Turf Grass					
heteracantha						
Aloe greathead	ii	-	Jacaranda mimosifolia	Jacaranda		
Aristida bipartita	Aristida bipartita Rolling Grass Kohautia virgata -			-		
Aristida congesta Spreading Three-awn Lantana camara		Lantana camara	Lantana			
subsp.barbicollis						
Arauajia sericiife	uajia sericiifera White moth vine Lantana rugosa Wild Grassland Lantan					
Asclepias emine	inens Large Turret Flower Ledebouria revoluta -					
Asparagus laric	inus	Cluster-leaved	Lippia javanica	Lemon Bush		
Bidens bipinnat	a* Spanish Black-jack <i>Melia azedarach</i> Seringa					

Table 1. Biophysical Description – Undisturbed Areas

Bidens pilosa	Common Black-jack	Melinis repens	Natal grass
Bothriochloa insculpta	Pinhole Grass	Monsonia angustifolia	Pink Monsonia
Celtis africana	White Stinkwood	Nidorella resedifolia -	-
Ceratothea triloba	Wild foxglove	Ocimum angustifolium	-
Chamasyce	Smooth Creeping	Olea europaea subsp.	Wild Olive
inaequilatera		africana	
Chamasyce sp.	Creeping Milkweed	Oxalis obliquifolia	Oblique-leaved Sorrel
Dicanthium annulatum	Marvel grass	Panicum maximum	Guinea Grass
Clematis brachiata	Traveller's Joy	Panicum schinzii	Buffalograss
Commelina africana	Yellow Commelina	Pappea capensis	Jacket-plum
Convolvulus sagittatus	-	Paspalum dilatatum	Dallis grass
Corchorus cf. confuses	-	Pogonnarthia	Herringbone Grass
		squarrosa	
Crabbea hirsuta	Prickle Head	Rhus lancea	Karee tree
Crinum macowanii	River Lily	Rhus leptodictya	Mountain Karee
Cucumis hirsutus	Wild Cucumber	Rhus pyroides var.	Common Current
		pyroides	
Cynodon dactylon	-	Rhynchosia caribaea	-
Cyphostemma	Felted Tree Grape	Salvia reflexa	Mintweed
sandersonii			
Dicrostachys cinerea	Sickle-bush	Salvia repens	Kruipsalie
Digitaria eriantha	Common Finger	Scabiosa columbaria	Wild Scabiosa
	Grass		
Diospyros lycioides	Bluebush	Sclerocarya birrea	Marula tree
subsp. guerkei		subsp	
		caffra	
Dipcadi viride	-	Setaria nigrirostris	-
Ehretia rigida subsp.	Puzzle Bush	Sida rhombifolia	-
rigida			
Elionurus muticus	Wire Grass	Solanum pandiruforme	Poison Apple
Eragrostis chloromelas	Curly Leaf	Sorghum versicolor	Black-seed Sorghum
Eragrostis curvula	Weeping Love Grass	Tagetes minuta	Khaki-weed
Eragrostis	Lehmann Love Grass	Tarchonanthus	Wild Camphor Bush
lehmanniana		camphoratus	
Eragrostis rigidior	Curly Leaf	Tephrosia sp.	-
Euclea crispa subsp.	Blue Guarrie	Themeda triandra	Red Grass
crispa			
Euphorbia ingens	Naboom	Thesium sp.	-
Felicia muricata	-	Tragus berteronianus	Carrot-seed Grass

Fingerhuthia africana	Blousoetgras, Borseltjiegras,	Vernonia oligocephala	-
	Haargras		
Galinsoga parviflora*	Gallant Soldier	Urochloa	-
		mosambicensis	
Gladiolus	-	Zinnia peruviana	Redstar Zinnia
antholyzoides			
Gladiolus crassifolius	Thick-leaved	Ziziphus mucronata	Buffalo Thorn
	Gladiolus		
Grewia flava	Raisin	Gymnosporia buxifolia	Common Spike-thorn
Heteropogon contortus	Spear Grass	Hibiscus trionum	Bladder Hibiscus
Hypoxis rigidula	-	Homeria pallida	Yellow Tulip
Hyparrhenia hirta	Common Thatching	Hyperthelia dissoluta	Yellow Thatching Grass

Transformed areas

Typical of old agricultural lands and disturbed areas, this assemblage is in close proximity to human settlement areas. It is a pioneer grassland, with the forb layer represented by many agrestal weed species. Table 2 provides a general description and list of commonly occurring species within the transformed cultivated land and built up areas.

Status	Transformed and cultivated			
Conservation Priority	Low			
Soil	Deep vertic clay			
Rockiness	0%			
Commonly Occurring Nat	tive Plant Species – Transf	ormed Areas		
Scientific Name	Common Name Scientific Name Common Name			
Argemone mexicana	Yellow Mexican Poppy	Heteropogon contortus	Steekgrass	
Aristida bipartite	Rolling Grass	Hibiscus trionum	Bladder Hibiscus	
Aristida congesta subsp.	Spreading Three-awn	Hyparrhenia hirta	Common	
barbicollis			Thatching	
Aristida congesta	Tassel three-awn	Hyperthelia dissolute	Yellow Thatching	
subsp.congesta				
Bidens bipinnata	Spanish Black-jack	Ischarmum afrum	Turfgrass	
Bidens pilosa	Common Black-jack	Melinis repens	Natal Red Top	
Bothriochloa insculpta	Pinhole Grass	Nicotiana glauca	Wild Tobacco	
Cenchrus ciliaris	Foxtail Buffalo Grass	Nidorella resedifolia	-	
Chamasyce inaequilatera	Smooth Creeping	Panicum schinzii	Sweet Grass	
	Milkweed			

Chamasyce sp.	Creeping Milkweed	Pennisetum setaceum	Fountain Grass
Cleome monophylla	-	Pentarrhinum	-
		insipidum	
Conyza albida	Tall Fleabane	Pogonarthria	Herringbone
		squarrosa	Grass
Conyza bonariensis	Horseweed	Salvia reflexa	Mintweed
		Mintweed	
Cynodon dactylon	Couch Grass	Schkuhria pinnata	Dwarf Marigold
Datura ferox	Thorn-apple	Senecio	Starvation Senecio
		consanguineus	
Datura stramonium	Common Thorn Apple	Sesamum triphyllum	Wild Sesame
Dichanthium annulatum	Vlei Finger Grass	Sesbania bispinosa	Spiny Sesbania
Dicrostachys cinerea	Sickle-bush	Sida rhombifolia	-
Digitaria eriantha	Common Finger Grass	Solanum panduriforme	Bitter Apple
Enneapogon cenchroides	Nine-awned Grass	Sorghum cf.	Johnson Grass
		halepense	
Eragrostis curvula	Weeping Love Grass	Sorghum versicolor	Black-seed
Eragrostis lehmanniana	Lehmann Love Grass	Tagetes minuta	Khaki-weed
Eragrostis chloromelas	Blue Love Grass	Themeda triandra	Red oat grass
Euphorbia geniculata	Wild Pointsettia	Tragus berteronianus	Carrot-seed Grass
Felicia muricta	Bloubossie	Urochloa	Bushveld Signal
		mosambicensis	
Gladiolus sp.	Gladiolus	Vernonia oligocephala	-
Gomphocarpus fruticosus	Milkweed	Xanthium strumarium	Large cocklebur
Grewia flava	Brandybush	Zinnia peruviana	Redstar Zinnia

Wetlands: River Systems and Associated Riparian Vegetation

The wetland units are associated with the drainage lines within the project area. Table 3 provides a general description and list of commonly occurring species along river systems and associated vegetation unit.

Status		Natural	
Conservation Priority		High	
Soil		Hydromorphic	
Rockiness		0-50%	
Commonly Occurring Na	ative Plant Species – Wetla	ands	
Scientific Name Common Name		Scientific Name	Common Name
Acacia karroo Sweet Thorn		Melia azedarach	Seringa

Table 3. Biophysical Description – Watercourses

Acacia robusta	Thorn	Morus alba	White Mulberry
Agrostis lachnantha	Bent Grass	Panicum schinzii	Sweet Grass
Andropogon schirensis	Rumiya	Paspalum urvillei	Vasey Grass
Bidens bipinnata	Spanish Black-jack	Persicaria lapathifolia	Spotted Knotweed
Bidens pilosa	Common Black-jack	Persicaria serrulata	Snake Root
Bothriochloa bladhii	Purple Plume Grass	Phragmites australis	Common Reed
Bothriochloa insculpta	Pinhole Grass	Polygala hottentotta	-
Carissa bispinosa	Num-num	Populus x canescens	-
Celtis africana	White Stinkwood	Ranunculus multifidis	Common Buttercup
Clematis brachiata	Traveller's Joy	Rhus lancea	Karee
Combretum	River Bushwillow	Rhus pyroides var	
erythrophyllum			
Cynoglossum cf.	Hound's Tongue	Rumex crispus	Curly Dock
hirsutum			
Cynodon dactylon	Couch Grass	Salvia repens	Kruipsalie
		Kruipsalie	
Cyperus cf. longus	-	Schoenoplectus cf.	-
Dichanthium	Finger Grass	Schkuhria pinnata	Bitterbos
annulatum			
Eragrostis plana	Tough Love Grass	Searsia lancea	-
Eragrostis curvula	Weeping Love Grass	Searsia pyroides	-
Eragrostis	Lehmann Love Grass	Sesbania bispinosa	-
lehmanniana			
Eucalyptus sp	Gum	Setaria nigrirostris	-
Heteropogon contortus	Spear Grass	Solanum	Slender Potato
		seaforthianum	
Hyparrhania dregeana	Blue Thatching Grass	Sporobolus africanus	Ratstail Dropseed
Hyparrhenia hirta	Common Thatching	Tagetes minuta	Khaki-weed
Hyperthelia dissoluta	Yellow Thatching	Themeda triandra	Grass
	Grass		
Imperata cylindrica	Blady Grass	Tiphonia rotundifolia	Red Sunflower
Jacaranda mimosifolia	Jacaranda	Typha capensis	Bulrush
Jamesbrittenia	-	Verbena bonariensis	Tall Verbena
aurantiaca			
Juncus effusus	-	Veronica	-
		anagallisaquatica	
Lantana camara	Lantana	Zinnia peruviana	Redstar Zinnia
Ledebouria revoluta	-	Ziziphus mucronata	Thorn

Ecologically Sensitive Habitats at the Project Area

A biodiversity sensitivity map (Figure 3) was developed by Bobolele Consulting. Salient points regarding these sensitive areas are summarized below:

- All wetland areas, including the Sterkstroom River classified as Aquatic CBA 1, are regarded as having increased ecological sensitivity due to the contribution of these features to faunal migratory connectivity, wetland eco services provision and the unique habitat provided for fauna and flora. Taking the condition of each group of wetlands into account it was determined that the Sterkstroom River is of high ecological sensitivity.
- The transformed habitat unit has low ecological sensitivity.
- The scattered habitat Bushveld unit has been less impacted than the transformed habitat unit and still hosts a reasonably high level of biodiversity and suitable habitat for fauna and flora. These areas are however fragmented and have been impacted by edge effects from adjacent mining and agriculture.

Figure 3: A biodiversity sensitivity map

Red Data Listed Floral and Protected Tree Species

SAS (2014) sourced Red Data species lists from the Pretoria Computer Information Systems (PRECIS) for the relevant map grid references (2527CB, 2527DA and 2527DC). SAS then determined the probability of occurrence of these Red Data species by considering habitat suitability within the project area. This assessment found that there is a low probability of any of these species occurring within the project area as outlined in the table 4 below.

Scientific Name	Probability of occurrence	Motivation
Frithia pulchra	13%	No suitable habitat
llex mitis	33%	No suitable habitat
Stenostelma	40%	If present, this species will be located within the
umbelliferrum		wetland habitat
Prunus Africana	20%	No suitable habitat

Table 4. Probability of Red Data Floral Species Occurring Within the Project Area

Exotic Plant Species

Scattered alien and invasive plant species occur throughout the project area. A list of many of the plant species is provided in Table 5 below.

Species Name	Common Name	Growth Form	Category
Amaranthus spinosa	Thorny pigweed	Forb	-
Araujia sericifera	Moth catcher	Shrub	Category 1
Argemone Mexicana	Yellow Mexican Poppy	Forb	Category 1
Bidens pilosa	Common Blackjack	Forb	Weed
Datura ferox	Large Thorn Apple	Forb	Category 1
Datura stramonium	mon Thorn Apple	Forb	Category 1
Brachiaria eruciformis	Sweet Signal Grass	Grass	Weed
Eucalyptus	Red river gum	Tree	Category 2
camaldulensis			
Euphorbia geniculate	Wild Pointsettia	Succulent	Weed
Galinsoga parviflora	Gallant Soldier	Forb	Weed
Gomphrena celosiodes	Prostrate globe	Shrub	Weed
	amaranth		
Grevellia robusta	Australian silky oak	Tree	Category 3
Hibiscus trionum	Bladder Hibiscus	Forb	Weed
Jacaranda mimosifolia	Jacaranda	Tree	Category 3
Lantana camara	Common Lantana	Shrub	Category 1
Lepidium bonariense	Pepperweed	Forb	Weed
Melia azedarach	Syringa	Tree	Category 3
Morus alba	White Mulberry	Tree	Category
Nicotiana glauca	Wild Tobacco	Shrub	Category 1
Oxalis obliquifolia	Oblique - leaved Sorrel	Forb	Weed
Paspalum urvillei	Vasey Grass	Grass	Weed
Pennisetum setaceum	Fountain Grass	Grass	Category 1
Persicaria lapathifolia	Spotted Knotweed	Forb	Weed
Persicaria serrulata	Knotweed	Forb	Weed
Physalis angulate	Wild gooseberry	Shrub	Weed
Populus x canescens	Grey Poplar	Tree	Category 2
Pseudognaphallum	Cudweed	Forb	Weed
luteo - album			
Phytolacca dioica	Belhambra	Tree	Category 3
Rumex crispus	Curly Dock	Forb	Weed
Salvia reflexa	Mintweed	Forb	Weed
Schkuhria pinnata	Dwarf Marigold	Forb	Weed

Table 5. Exotic/Alien Plant Species Recorded at the Site

Sesbania bispinosa	Spiny sessbania	Shrub	Weed
Sida rhombifolia	Arrowleaf Sida	Forb	Weed
Solanum	Slender Potato	Forb	Weed
seaforthianum	Creeper		
Sorghum halepense	Aleppo Grass	Grass	Category 2
Tacoma stans	Yellow bells	Tree	Category 1
Tagetes minuta	Khaki Weed	Forb	Weed
Tipuana tipu	Tipu tree	Tree	Category 3
Verbena bonariensis	Tall Verbena	Forb	Weed
Veronica anagallis -	Water Speedwell	Forb	Weed
aquatica			
Xanthium strumarium	Large cocklebur	Shrub	Category 1
Zinnia peruviana	Redstar Zinnia	Forb	Weed

IMPACT ASSESSMENT AND MITIGATION

Mankind depends on the natural environment for a large number of ecological services provided for by ecosystems, ecological processes and plant species in general. However, any development activities in natural systems will impact on the surrounding natural environment and usually in a negative way. In order to limit or negate these impacts, the source, extent, duration and intensity of the possible impacts needs to be identified. Once the significance of the impacts is understood, the development could both adequately plan for and mitigate these impacts to a best practise and acceptable level. However, if the impacts are significant, especially in already threatened ecosystems and vegetation units, and no adequate mitigation measures could reduce or avert these impacts, then the development should not be allowed to proceed.

"The mitigation hierarchy is inherently proactive. It illustrates the steps that should be followed to firstly avoid, then minimize, then repair or restore, and finally compensate for or offset the negative effects of any development on biodiversity" (SANBI, 2012). Therefore in areas of high conservation importance, avoidance of the impacts should be considered first. Within the studied area, much of the assumed area to be impacted is of medium to low concern, except for the moist grasslands associated with wetlands/drainage lines areas. Mitigation measures to limit impacts and conserve the ecological function of these areas should thus be included in the Environmental Management Programme (EMPr). From the perspective of minimizing impacts on biodiversity and ecosystem services, on-going rehabilitation and monitoring of the indigenous vegetation during construction offers significant benefits over rehabilitation only after completion of construction (SANBI, 2012). This approach effectively reduces the time during which negative impacts endure and any associated risks.

Impacts Statement

The proposed site location will be on mostly transformed habitat that is of no conservation value. However, minor impacts may be extended to undisturbed and wetland areas. Existing dirt roads can be utilised to limit impacts, while transformed areas could be utilised as construction camps and storage areas.

Risk Assessment of Impacts

The risk associated with the possible impacts were assessed based on the risk rating template below and the result of the main impacts are presented below.

Step 1: Determine the PROBABILITY of the impact by calculating the average between the Frequency of the Aspect, the Availability of a

pathway to the receptor and the availability of the receptor

FREQUENCY OF ASPECT/UNWANTED	Score	AVAILABILITY OF PATHWAY FROM THE SOURCE TO	Score	AVAILABILITY OF RECEPTOR	Score
EVENT		THE RECEPTOR			
Never known to have happened, but may	1	A pathway to allow for the impact to occur is never	1	The receptor is never available	1
happen		available			
Known to happen in industry	2	A pathway to allow for the impact to occur is almost never	2	The receptor is almost never available	2
		available			
< once a year	3	A pathway to allow for the impact to occur is sometimes	3	The receptor is sometimes available	3
		available			
Once per year to up to once per month	4	A pathway to allow for the impact to occur is almost always	4	The receptor is almost always	4
		available		available	
Once a month - Continuous	5	A pathway to allow for the impact to occur is always	5	The receptor is always available	5
		available			

Step 2: Determine the MAGNITUDE of the impact by calculating the average of the factors above.

SOURCE											
Duration	Score	Extent	Score	Volume /	Score	Toxicity /	Score	Reversibility	Score	Sensitivity of	Score
of impact				Quantity /		Destruction				environmental	
				Intensity		Effect				component	
Lasting	1	Effect limited	1	Very small	1	Non toxic (e.g.	1	Bio-physical and/or	1	Current environmental	1
days to a		to the site.		quantities /		water) / Very low		social functions		component(s) are largely	
month		(metres);		volumes /		potential to create		and/or processes		disturbed from the natural	
				intensity (e.g.		damage or		will remain naltered.		state. Receptor of low	
				< 50L or <		destruction to the				significance / sensitivity	
				1Ha)		environment					

	Lasting 1	2	Effect limited	2	Small	2	Slightly toxic /	2	Bio-physical and/or	2	Current environmental	2
	month to 1		to the activity		quantities /		Harmful (e.g.		social functions		component(s) are	
	year		and its		volumes /		diluted brine) /		and/or processes		moderately disturbed	
			immediate		intensity (e.g.		Low potential to		might be negligibly		from the natural state.	
			surroundings		50L to 210L or		create damage or		altered or enhanced		No environmentally	
			. (tens of		1Ha to 5Ha)		destruction to the		/ Still reversible		sensitive components.	
			metres)				environment					
ľ	Lasting 1 –	3	Impacts on	3	Moderate	3	Moderately toxic	3	Bio-physical and/or	3	Current environmental	3
	5 years		extended		quantities /		(e.g. slimes)		social functions		component(s) are a mix	
			area beyond		volumes /		Potential to create		and/or processes		of disturbed and	
			site		intensity (e.g.		damage or		might be notably			
			boundary		> 210		destruction to the		altered or enhanced			
			(hundreds of		L < 5000L or 5		environment		/ Partially reversible			
			metres)		– 8Ha)							
ľ	Lasting 5	4	Impact on	4	Very large	4	Toxic (e.g. diesel	4	Bio-physical and/or	4	Current environmental	4
	years to		local scale /		quantities /		& Sodium		social functions		component(s) are in a	
	years to Life of		local scale / adjacent		quantities / volumes /		& Sodium Hydroxide)		social functions and/or processes		component(s) are in a natural state.	
	years to Life of Organisati		local scale / adjacent sites (km's)		quantities / volumes / intensity (e.g.		& Sodium Hydroxide)		social functions and/or processes might be		component(s) are in a natural state. Environmentally sensitive	
	years to Life of Organisati on		local scale / adjacent sites (km's)		quantities / volumes / intensity (e.g. 5000 L – 10		& Sodium Hydroxide)		social functions and/or processes might be considerably altered		component(s) are in a natural state. Environmentally sensitive environment / receptor	
	years to Life of Organisati on		local scale / adjacent sites (km's)		quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha–		& Sodium Hydroxide)		social functions and/or processes might be considerably altered or enhanced /		component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species /	
	years to Life of Organisati on		local scale / adjacent sites (km's)		quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha)		& Sodium Hydroxide)		social functions and/or processes might be considerably altered or enhanced / potentially		component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.).	
	years to Life of Organisati on		local scale / adjacent sites (km's)		quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha)		& Sodium Hydroxide)		social functions and/or processes might be considerably altered or enhanced / potentially irreversible		component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.).	
-	years to Life of Organisati on Beyond	5	local scale / adjacent sites (km's) Extends	5	quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha) Very large	5	& Sodium Hydroxide) Highly toxic (e.g.	5	social functions and/or processes might be considerably altered or enhanced / potentially irreversible Bio-physical and/or	5	component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.). Current environmental	5
	years to Life of Organisati on Beyond life of	5	local scale / adjacent sites (km's) Extends widely	5	quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha) Very large quantities /	5	& Sodium Hydroxide) Highly toxic (e.g. arsenic or TCE)	5	social functions and/or processes might be considerably altered or enhanced / potentially irreversible Bio-physical and/or social functions	5	component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.). Current environmental component(s) are in a	5
-	years to Life of Organisati on Beyond life of Organisati	5	local scale / adjacent sites (km's) Extends widely (nationally or	5	quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha) Very large quantities / volumes /	5	& Sodium Hydroxide) Highly toxic (e.g. arsenic or TCE)	5	social functions and/or processes might be considerably altered or enhanced / potentially irreversible Bio-physical and/or social functions and/or processes	5	component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.). Current environmental component(s) are in a pristine natural state.	5
	years to Life of Organisati on Beyond life of Organisati on /	5	local scale / adjacent sites (km's) Extends widely (nationally or globally)	5	quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha) Very large quantities / volumes / intensity (e.g.	5	& Sodium Hydroxide) Highly toxic (e.g. arsenic or TCE)	5	social functions and/or processes might be considerably altered or enhanced / potentially irreversible Bio-physical and/or social functions and/or processes might be	5	component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.). Current environmental component(s) are in a pristine natural state. Highly Sensitive area	5
	years to Life of Organisati on Beyond life of Organisati on / Permanent	5	local scale / adjacent sites (km's) Extends widely (nationally or globally)	5	quantities / volumes / intensity (e.g. 5000 L – 10 000L or 8Ha– 12Ha) Very large quantities / volumes / intensity (e.g. > 10 000 L or	5	& Sodium Hydroxide) Highly toxic (e.g. arsenic or TCE)	5	social functions and/or processes might be considerably altered or enhanced / potentially irreversible Bio-physical and/or social functions and/or processes might be severely/substantiall	5	component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.). Current environmental component(s) are in a pristine natural state. Highly Sensitive area	5
	years to Life of Organisati on Beyond life of Organisati on / Permanent impacts	5	local scale / adjacent sites (km's) Extends widely (nationally or globally)	5	quantities / volumes / intensity (e.g. 5000 L - 10 000L or 8Ha- 12Ha) Very large quantities / volumes / intensity (e.g. > 10 000 L or > 12Ha)	5	& Sodium Hydroxide) Highly toxic (e.g. arsenic or TCE)	5	social functions and/or processes might be considerably altered or enhanced / potentially irreversible Bio-physical and/or social functions and/or processes might be severely/substantiall y altered or	5	component(s) are in a natural state. Environmentally sensitive environment / receptor (endangered species / habitats etc.). Current environmental component(s) are in a pristine natural state. Highly Sensitive area	5

				enhanced /		
				Irreversible		

Step 3: Determine the SEVERITY of the impact by plotting the averages that were obtained above for Probability and Magnitude in the table below.

ENVIRONMENTAL IMPAC	T RATING / PRIORITY				
	MAGNITUDE				
PROBABILITY	1	2	3	4	5
	Minor	Low	Medium	High	Major
5	Low	Medium	High	High	High
Almost Certain					
4	Low	Medium	High	High	High
Likely					
3	Low	Medium	Medium	High	High
Possible					
2	Low	Low	Medium	Medium	High
Unlikely					
1	Low	Low	Low	Medium	Medium
Rare					

Risk Assessment – Disturbance / impacts on vegetation within and around watercourses, loss of stabilising vegetation and function

thereof

Environmental impact, extent, duration, significance and degree to which impact will cause irreplaceable loss	Ris (mi	sk rat befor tigati	ing e on)	Environmental objective	Degree to which impact can be reversed and the supporting mitigatory action plan	Timeframe	Responsibility	Ris (aft miti	k ra er gatio	n)
	Probabilit	Magnitud	Severity					Probabilit	Magnitud	Severity
ENVIRONMENTAL COMPONENT: Flora										
ACTIVITY: Destruction of the vegetation w	ithin a	and ir	ו prox	imity to the waterco	urses will impact on its hydrological function. During	operational phase	of the development,	pollu	ted w	ater
or sediment reaching the watercourse could	ld hav	/e det	rimen	tal effects on the ve	getation and hydrology.					
PROJECT PHASE APPLICABILITY: Con	struc	tion	and C	Operation						
Impact description: Polluted water or	5	3.	Н	Prevent/limit	Degree to which impact can be reversed:	Commence	ECO/All	3	2.	Μ
sediment reaching the watercourse		5		damage to	Reversible with human intervention, if immediate	during Planning	contractors and		8	
during construction and operation will				watercourse	action is taken. If degradation is allowed to	phase	workers			
have detrimental effects on the				vegetation	proceed, the impact may become irreversible.		/Management			
vegetation and hydrology of the				during						
watercourse.				construction and	Mitigation:					
The downstream Removal of vegetation				operation	Construction:					
and subsequent soil erosion could lead					-Project engineers should compile a method					
to increased sedimentation and turbidity,					statement, outlining the construction					
which could then reduce water storage					methodologies. The required mitigation					
capacity, smother vegetation, and					measures to avoid the impacts on the					
decrease oxygen concentration.					watercourse should be contained within the					
The lack of natural vegetation in and					method statement. The method statement must					
around the watercourses could					be approved by the ECO and be available on					

drastically reduce water holding capacity	site for reference purposes.		
and the subsequent loss of the	-Make use of existing roads and tracks where		
ecological function of the vegetation as	feasible, rather than creating new routes through		
catchment to the watercourse. In	watercourses.		
addition, pollutants could reach the	-Runoff from roads must be managed to avoid		
watercourse and deteriorate the water	erosion and pollution problems.		
quality which could impact on the	-Remove only the vegetation where essential for		
surrounding and downstream vegetation.	construction and do not allow any disturbance to		
	the adjoining natural vegetation cover.		
Extent of impact: Local	-Protect all areas susceptible to erosion and		
	ensure that there is no undue soil erosion		
Duration of impact: Lasting during	resultant from activities within and adjacent to		
construction phase and a possibility of	the construction camp and work areas.		
extending into the operational phase and	-Prevent polluted water from reaching the		
for the duration thereof	watercourses.		
	-An ecologically sound, storm water		
	management plan must be implemented during		
	construction and ensure that the stormwater		
	management of the completed development is		
	adequate to prevent deterioration of the		
	watercourse.		
	-Do not allow stormwater to be canalised.		
	-Prevent contamination of rainwater on the site.		
	-Place and maintain erosion control barriers as		
	appropriate to prevent sedimentation into the		
	watercourse and moist grasslands.		
	-Trucks and equipment should only be washed		
	in dedicated areas and the dirty water is not		
	allowed to discharge into the watercourse or		

surrounding natural vegetation.	
Operational phase	
-Place and maintain erosion control barriers as	
appropriate to prevent sedimentation.	
-Ensure that the vegetation disturbed during	
construction is rehabilitated with the plant	
species that naturally occur and monitor	
rehabilitation for at least three years after	
construction is complete. If monitoring observed	
failed rehabilitation or erosion, corrective action	
should be taken immediately to determine the	
cause and correct the problem.	
-Do not disturb soil or vegetation in	
watercourses unnecessary during operation.	
Ensure that maintenance work does not take	
place haphazardly, but according to a fixed plan.	

Risk Assessment – removal or destruction of plants of conservation concern

Environmental impact, extent, duration,	Ris	k ra	ting	Environmental	Degree to which impact can be reversed	Timeframe	Responsibil	Risk	rating
significance and degree to which	(be	fore		objective	and the supporting mitigatory action plan		ity	(after	
impact will cause irreplaceable loss	miti	igatio	on)					mitig	ation)
		0							0
	bility	tude	ity					bility	tude itv
	oba	agni	ever					oba	aani ever
	5	ŝ	Š					Ъ	Ξő
ENVIRONMENTAL COMPONENT: Flora									
ACTIVITY: Possible destruction of plants of	conse	ervati	on co	ncern due to constru	uction activity where these plants potentially occu	ur (potentially wa	atercourses). Ma	aintenai	nce and
edge effects in the operational phase, could	tramp	ole on	these	e plants if they are p	present				
PROJECT PHASE APPLICABILITY: Const	ructi	on ar	nd op	eration					
Impact description: Although no threatened	3	2	М	Avoid impact on	Mitigation:	Construction	Planners a	nd 2	2 L
or protected plant species were recorded				suitable habitat	Construction phase:	Phase	management		
at the time of the site visits, watercourses				for threatened/	-Construction activities must be restricted to				
in particular provide suitable habitat. Edge				protected	previously disturbed and transformed areas				
effects or pollution may impact on this				species	as planned and avoid the suitable habitat of				
suitable habitat of the threatened species.					these species.				
					-If any bulbous species are unearthed by				
Extent of impact: Local					construction, these should be identified by an				
					ecologist. If the species are found to be of				
Duration of impact. Lasting during					conservation concern, the North West				
construction phase and a possibility of					Department of Rural, Environmental and				
extending into the operational phase and					Agricultural Development should be				
for the duration thereof					consulted for a permit to either replant the				
					species or relocate them to suitable habitat.				

	Operational Phase:		
	-Maintenance to the crusher plant or		
	associated activities may not trample natural		
	and must be restricted to the previously		
	disturbed footprint of construction		

Risk Assessment – Exposure of the soil to erosion and soil compaction, subsequent sedimentation of proximate watercourses

Environmental	Ris	k ra	ting	Environmental	Degree to which impact can be reversed and the	Timeframe	Responsibility	Ris	sk
impact, extent,	(be	fore		objective	supporting mitigatory action plan			rat	ing
duration,	mit	igatio	n)					(af	ter
significance and								mi	tigatio
degree to which								n)	
impact will cause									
irreplaceable loss									
	oility	nde	≥					oility	ty ude
	obat	agnit	veri					obat	anit
	P_2	Ma	Se					Pc	Se
ENVIRONMENTAL CO	OMPC	DNEN	T: Flo	bra					
ACTIVITY: The remova	al of s	surfac	e veg	etation and movem	ent of heavy machinery could result in soil compaction and erosion	ו.			
PROJECT PHASE AP	PLIC	ABILI	TY: C	Construction and C	Operational				
Impact description:	3	2	М	Prevent soil	Degree to which impact can be reversed: Reversible with	Commence at	ECO / A	JI 2	2 L
The removal of				erosion and soil	human intervention, if immediate action is taken. If degradation	Construction	contractors ar	d	
surface vegetation				compaction	is allowed to proceed, the impact may become irreversible	Phase	workers		
will expose the soils,							/Management		
which in rainy events					Mitigation:				

could wash down into			-Protect all areas susceptible to erosion (especially stockpiled		
watercourses,			soils and materials such as sand and tar) and ensure that		
causing			there is no undue soil erosion resultant from activities within		
sedimentation. In			and adjacent to the construction camp and work areas.		
addition, indigenous			-Do not allow erosion to develop on a large scale before taking		
vegetation			action.		
communities are			Make use of existing roads and tracks where feasible, rather		
unlikely to colonise			than creating new routes through grassland areas.		
eroded soils			-Retain vegetation and soil in position for as long as possible,		
successfully. The			removing it immediately ahead of construction / earthworks in		
movement of heavy			that area (DWAF, 2005).		
machinery could			-Remove only the vegetation where essential for construction		
result in soil			and do not allow any disturbance to the adjoining natural		
compaction that will			vegetation cover.		
modify habitats,			- Colonisation of the disturbed areas by plants species from		
destroy vegetation			the surrounding natural vegetation must be monitored to		
and inhibit re-			ensure that vegetation cover is sufficient within one growing		
vegetation. Soil			season. If not, then the areas need to be rehabilitated with a		
compaction as a			grass seed mix containing species that naturally occur within		
result of vehicles and			the study area.		
traffic, could lead to a			-Vehicles may not veer from the dedicated roads.		
decrease of water			-Once construction is complete, obsolete roads should be		
infiltration and an			obliterated by breaking the surface crust and erecting earth		
increase of water			embankments to prevent erosion, while the natural species		
runoff.			composition should be re-established.		
			-It is advised that environmental audits be undertaken by an		
Extent of impact:			independent party during this construction period, especially in		
Local			sensitive areas.		

Duration of impact:				
Lasting during				
construction phase				
and a possibility of				
extending into the				
operational phase				
and for the duration				
thereof				

Risk Assessment – Spread of Alien Invasive Plant Species

Environmental	Risk rating (before mitig	gation)		Environmental	Degree to which	impact can b	e Timeframe	Respons	Risk	rating	
impact, extent,				objective	reversed and	the supportin	g	ibility	(after		
duration, significance					mitigatory action pla	an			mitigation)		
and degree to which											
impact will cause											
irreplaceable loss	pility	apn	₽						oility	Z ≥	
	obat	agnit	veri						obat	veri	
	P C	Ma	Se						Pro	Se	
ENVIRONMENTAL CON	PONENT: Flora						·			·	
ACTIVITY: The seed of	alien invasive plant speci	es that	occur	on and in the vici	inity of the construction	n areas could spre	ad into the disturbe	ed soil. Also,	the const	ruction	
vehicles and equipment	were likely used on various	s other	sites a	nd could introduce	e alien invasive plant se	eds or indigenous	plants not belongin	g to this vege	etation unit	to the	
construction site.											
PROJECT PHASE	Construction	Х									
APPLICABILITY	Operation										
	Decommissioning										
	Decommissioning										
Impact description:	3	2.5	M	Remove alien	Degree to which	impact can b	e Commence	ECO /	2 2	L	
Spread of alien				invasive plant	reversed:		prior to	All			

Environmental	Risk rating (before mitigation)			Environmental	Degree to which impact can be	Timeframe	Respons	Risk	ra	ting
impact, extent, ol				objective	reversed and the supporting		ibility	(after		
duration, significance					mitigatory action plan			mitig	ation))
and degree to which										
impact will cause	~	۵.						>	a)	
irreplaceable loss		itude	ity					bility	itude	ity
	roba	lagn	evel					roba	lagn	evei
invocivo plant	<u>д</u>	2	S	anagiaa from	Powersible with human intervention	Construction	contract	Δ.	2	S
				species from	Reversible with human intervention,	Construction	contract			
species from the				the site and	If immediate action is taken. If	Phase	ors and			
transformed site to				immediate	degradation is allowed to proceed,		workers			
the natural				surrounds	the impact may become irreversible		/Manag			
vegetation, which				and monitor			ement			
will result in the				re-emergence	Mitigation:					
deterioration of the					• Alien invasive species that were					
remaining natural					identified within the study area					
vegetation.					should be removed prior to					
					construction. By removing these					
Extent of impact:					species, the spread of seeds will					
Local					be prevented into disturbed soils					
					which could thus have a positive					
Duration of impact.					impact on the surrounding					
Lasting during					natural vegetation.					
construction phase										
					• All alien seedlings and saplings					
					must be removed as they					

Environmental	Risk rating (before mitig	gation)		Environmental	Degree to which impact can be	Timeframe	Respons	Risk	ra	ting
impact, extent,				objective	reversed and the supporting		ibility	(after		
duration, significance					mitigatory action plan			mitigation)		
and degree to which										
impact will cause		0						~	0	
irreplaceable loss	billity	tude	ity					bility	tude	τζ
	oba	agni	ever					oba	agni	sver
	Pr	Ŵ	Š					۲ ۲	Ξ̈́	ഗ്
					become evident for the duration					
					of construction.					
					• Manual / mechanical removal is					
					preferred to chemical control.					
					• All construction vehicles and					
					equipment, as well as					
					construction material should be					
					free of soil and plant material.					
					Therefore, all equipment and					
					vehicles should be thoroughly					
					cleaned prior to access on to the					
					study area.					

CONCLUSION

The project area falls within the Marikana Thornveld which is an important vegetation type that requires careful consideration when developing projects. The project area includes a terrestrial Critical Biodiversity Area 2 (CBA2) and Aquatic CBA 1 that runs along the western boundary (North West Department of Agriculture, Conservation, Environment and Rural Development, 2009).

The proposed and preferred site comprised transformed vegetation that is of little conservation value and therefore suitable to the proposed development. Provided that mitigation measures as set out in this report are implemented as a minimum, no objection to preferred site are raised from a vegetation perspective.

REFERENCES

Government Gazette No 32689, (2009): Draft National List of Threatened Ecosystems in terms of the National Environmental Management Act, 2004 (Act 10 of 2004). Department of Environmental Affairs Notice 1477 of 2009 in Government Gazette No 32689, 6 November 2009.

SANBI, (2009): Plants of Southern Africa. POSA version 3. June 2009. http://posa.sanbi.org. (Accessed September 2015).

North West Department of Agriculture, Conservation, Environment and Rural Development, (2009). North West Provincial Biodiversity. Conservation Assessment Technical Report, Version 1.2., March 2009. North West Department of Agriculture, Conservation, Environment and Rural Development, Mmabatho.

Scientific Aquatic Services, (2014): Floral, Faunal and Wetland Ecological Assessment as Part of the Environmental Authorisation Process for the Proposed Tharisa North Eastern Waste Rock Dump (wrd), North West Province. June 2014.

Scientific Aquatic Services, (2013): Faunal, Floral, Wetland and Aquatic Assessment As Part of the Environmental Assessment and Authorisation Process for the Proposed Tharisa Mine Development Project, North West Province. Prepared for SLR Consulting (Africa) (Pty) Ltd. November 2013.