DNV·GL

Choje Windfarm Preliminary Geotechnical Investigation

WIND RELIC

Document No.: PP224951-PE-R-02-A

Date: 02 October 2019

IMPORTANT NOTICE AND DISCLAIMER

- 1. This document is intended for the sole use of the Customer as detailed on the front page of this document to whom the document is addressed and who has entered into a written agreement with the DNV GL entity issuing this document ("DNV GL"). To the extent permitted by law, neither DNV GL nor any group company (the "Group") assumes any responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Customer), and no company in the Group other than DNV GL shall be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by DNV GL, the Group or any of its or their servants, subcontractors or agents. This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.
- This document is protected by copyright and may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated or referred to in this document and/or in DNV GL's written agreement with the Customer. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of DNV GL. A Document Classification permitting the Customer to redistribute this document shall not thereby imply that DNV GL has any liability to any recipient other than the Customer.
- 3. This document has been produced from information relating to dates and periods referred to in this document. This document does not imply that any information is not subject to change. Except and to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, DNV GL shall not be responsible in any way in connection with erroneous information or data provided to it by the Customer or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.
- 4. Any wind or energy forecasts estimates or predictions are subject to factors not all of which are within the scope of the probability and uncertainties contained or referred to in this document and nothing in this document quarantees any particular energy output, including factors such as wind speed or irradiance.

KEY TO DOCUMENT CLASSIFICATION

For disclosure only to named individuals within the Strictly Confidential

Customer's organization.

For disclosure only to individuals directly concerned with

the subject matter of the document within the Customer's

organization.

Commercial in Confidence Not to be disclosed outside the Customer's organization.

Not to be disclosed to non-DNV GL staff DNV GL only

Distribution for information only at the discretion of the

Customer (subject to the above Important Notice and Customer's Discretion Disclaimer and the terms of DNV GL's written agreement

with the Customer).

Available for information only to the general public (subject Published

to the above Important Notice and Disclaimer).

Private and Confidential

Project name: Choje Wind Farm DNV GL - Energy Report title: Preliminary Geotechnical Investigation Renewable Advisory Customer: Wind Relic, 15th Floor, Metife Centre Thomas Road, Walmer, Port Elizabeth, South Africa 7 Walter Sisulu Avenue, Contact person: Mr Bill Emslie, Mr Hylton Newcombe Foreshore, Cape Town, South Date of issue: 2 October 2019 Africa PP224951 Project No.: PP224951-PE-R-02-A Document No.: Issue: Α Status: **DRAFT** Task and objective: Preliminary Geotechnical Investigation for the proposed Choje Windfarm, Eastern Cape, South Africa Prepared by: Verified by: Approved by: R Fyvie D Rimmer G van der Toorn Principal Engineer Senior Engineer Country Manager ☐ Strictly Confidential Keywords: ☐ Private and Confidential ☐ Commercial in Confidence ☐ DNV GL only □ Customer's Discretion ☐ Published © 2017 DNVGL Entity All rights reserved. Reference to part of this report which may lead to misinterpretation is not permissible. 2 October 2019 Α DRAFT R. Fyvie D. Rimmer G van der Toorn

Table of contents

EXECUTIVE SUMMARYVI	Ι
1 INTRODUCTION	1
1.1 Terms of Reference	1
1.2 Technical Investigation Standards	1
2 LOCAL AND REGIONAL GEOLOGY, SEISMICITY AND TOPOGRAPHY	2
3 INVESTIGATION METHODOLOGY	2
3.1 Boreholes	4
3.2 Trial Pits	
3.3 Dynamic Cone Penetrometer (DCP) Tests	6
4 TESTING POSITIONS AND ROUTE EXCAVATABILITY	7
4.1 Soft excavation	
4.2 Intermediate excavation	
4.3 Hard rock excavation	
4.4 Boulder excavation Class A.	
4.5 Boulder excavation Class B.	9
5 GEOTECHNICAL RESULTS	9
5.1 Ground Profile	9
5.2 Laboratory Test Results	5
6 GEOTECHNICAL SITE ASSESSMENT AND RECOMMENDATIONS	2
6.1 Turbine Foundations	3
6.2 Crane Platforms and Access Roads24	4
6.3 Slope Stability	5
6.4 Site Structures	5
6.5 Excavatability	6
6.6 Use of on-site materials2	6
6.7 Site Drainage	7
6.8 Further Studies Required	8
7 CONCLUSION2	9
8 REFERENCES	O
Table of figures	
Figure 1: Borehole and trial pit layout plan	7 2

Table of tables

Table 5-1: Borehole Simplified Results	. 10
Table 5-1: Borehole Simplified Results Table 5-2: Trial Pit Horizon Summary Table	14
Table 5-3: Atterberg Limits and Particle Size Test Results	17
Table 5-4: Soil Density and Strength Test Results Summary	18
Table 5-5: UCS Strength Test Results	. 19
Table 5-6: Point Load Test Results	. 20
Table 5-6: Point Load Test Results Table 5-7: Soil corrosivity tests results	. 21
Table 5-8: Groundwater chemistry tests results	. 22
Table 6-1: Borehole excavatability estimations	26
Table of plates Plate 1: Rotary core drilling at borehole position E64	5 6
Table of charts	
Chart 6-1: DCP Penetration Results	16

APPENDICES

Appendix A: Borehole and Trial Pit Orientation Plans

Appendix B: Borehole Logs

Appendix C: Trial Pit Profiles

Appendix D: Laboratory Test Results

List of abbreviations

Abbreviation	Meaning
ACI	American Concrete Institute
AISC	American Institute of Steel Construction
ASTM	American Society for Testing and Materials
BS	British Standard
CBR	California Bearing Pressure
CPT	Cone Penetration Test
CSW	Continuous Surface Wave
DCP	Dynamic Cone Penetrometer
DPSH	Dynamic Penetrometer Super Heavy
DNV	Det Norske Veritas
DNV GL	DNVGL Entity
IBC	International Building Council
IEC	International Electrotechnical Commission
LS	Linear Shrinkage
MASW	Multi-Channel Analysis of Surface Waves
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PI	Plasticity Index
RQD	Rock Quality Designation
SANS	South African National Standard
SPT	Standard Penetration Test
TLB	Tractor-Loader-Backhoe
WTG	Wind Turbine Generator

EXECUTIVE SUMMARY

DNV GL has conducted a preliminary geotechnical investigation for the proposed Choje Wind Farm. This report follows from the Choje Wind Farm Desktop Report, which provides the background geological information and site description for the project. The preliminary geotechnical investigation (first phase) consisted of nine rotary core boreholes, drilled from surface to a depth of 30m. Boreholes were supplemented by additional trial pit excavation at borehole positions, as well as at the proposed Eastern Block substation and Western Block 400MTS. Trial pits and boreholes were sampled where appropriate and samples submitted for a suite of laboratory-based geotechnical testing. All logs and test results are contained within this report. The study was conducted as an initial early-stage investigation into the variability of sub-surface conditions that may be expected to be encountered across the site. It is intended to be followed by further Preliminary Geotechnical Investigations, as well as then the detailed geotechnical investigation prior to final foundation design.

The results of the preliminary geotechnical investigation indicate that generally hard rock conditions prevail close to surface across the majority (approximately 70%) of the site. The underlying strata consists of sandstone, siltstone, mudstone and tillite. Excavation for founding will necessitate the use of localized blasting or hard excavation to reach anticipated founding depth. In the remaining 30% of ground conditions, very soft rock, deep sands and weathered pedogenic calcrete were encountered. These would require soil improvement methods through an adapted foundation design, the potential shifting of turbine locations to areas of better founding, or the cancellation of turbines located at complex founding sites.

DNV GL has provided recommendations for further geotechnical testing and investigations required at the Choje Windfarm site during supplementary phases of ground investigation.

1 INTRODUCTION

DNV GL South Africa was appointed to conduct early-stage geotechnical investigations at a site in the Eastern Cape, South Africa, in support of the proposed Choje Wind farm development. The project proceeded with a site visit undertaken by DNV GL and Wind Relic (the "Customer"), culminating in the production of PP225941-ZACT-R-01-A Choje Wind Farm Desktop Geotechnical Report in February 2019. The Choje Wind Farm Desktop Geotechnical Report should be read in conjunction with this report for the project background and supporting geological information.

The Choje Wind Farm project will consist of an estimated 3000MW of onshore wind turbines, divided into an Eastern and Western block, located between Grahamstown and Somerset East, Eastern Cape, South Africa. The project is intended to be developed in multiple phases, with initially approximately 550MW in the Eastern Block, and 1250MW in the West. These may be divided into 6 sub-windfarms, of approximately 200-250MW size. Current layout iterations are being conducted by DNV GL, modeled on a series of differing turbine sizes in the 4 – 6MW range. Provisional layouts have been utilised in selecting the drilling and testing positions for this preliminary geotechnical survey. It is conceivable that the positions may shift with further refinement, however this is not a significant concern as the preliminary geotechnical study is not intended to supply point-specific geotechnical data, but rather an initial insight into potential geologies that may be encountered on the site.

The study involved the drilling of 9 HQ-sized rotary core boreholes at proposed turbine positions, 26 trial pits and 26 in-situ Dynamic Cone Penetrator (DCP) tests at turbine locations, crane platforms and substation positions. Selected disturbed samples were retrieved from testing positions for laboratory analysis.

The ground conditions described in this report refer specifically to those encountered in the excavated trial pits and drilled boreholes. It is therefore quite possible that differing conditions may be encountered elsewhere on the sites during construction. There is no warranty that the information is totally representative of the whole investigation area.

1.1 Terms of Reference

DNV GL has been appointed by Wind Relic (the "Customer") to conduct a number of development-phase activities in support of the establishment of the proposed Choje Wind Farm. This includes the preliminary geotechnical investigation report, conducted by DNV GL South Africa in terms of accepted proposal and signed SFA #L2C177021_SA_P_01-A_V1. Subcontractors utilised in support of the production of this report include *Outeniqua Geotechnical Laboratories* of George (geotechnical testing and field support), *ControLab Materials Testing Laboratory* of East London (rock sample testing) and *JG Afrika Engineers* of Durban (geohydrology).

1.2 Technical Investigation Standards

- The geotechnical investigation was performed according to best practice as directed by the following Standards:
- SANRAL, (2010). Standard Specification for Subsurface Investigation;

- Committee of State Road Authorities, (1993). Standard Specification for Subsurface Investigations;
- SABS 1200D (1988). Standardized Specification for Civil Engineering Construction;
- Jennings, J.E., Brink, A.B.A. and Williams, A.A.B. (1973). *Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa*. Transactions of the South African Institution of Civil Engineers, Vol. 15;
- Proceedings of the Symposium on Exploration for Rock Engineering (1976). A Guide to Core Logging for Rock Engineering. Core Logging Committee of the South Africa Section of The Association of Engineering Geologists.

2 LOCAL AND REGIONAL GEOLOGY, SEISMICITY AND TOPOGRAPHY

Readers are referred to the previous issued DNV GL report for this project, PP225941-ZACT-R-01-A Choje Wind Farm Desktop Geotechnical Report dated 21 February 2019, for comment on previous geotechnical work in the area, local and regional geological environment, seismicity, a description of the topographical conditions, comment on construction materials, and Geotechnical Founding Classes of the Choje Windfarm site.

3 INVESTIGATION METHODOLOGY

The field investigation entailed:

- (i) The drilling of nine (9) HQ3-sized boreholes at predetermined WTG foundation positions utilising rotary core drilling methods. Boreholes were drilled vertically, to depths of 30m each;
- (ii) The machine excavation of trial pits at predetermined positions at each of the 9 selected turbine positions. One trial pit was excavated within the foundation footprint, and a second trial pit excavated approximately 50 70m away at the potential crane platform position;
- (iii) The retrieval of selected disturbed subsoil samples and groundwater samples for laboratory analyses;
- (iv) The establishment of *in situ* density conditions, where possible, adjacent to excavated trial pits through Dynamic Cone Penetrometer (DCP) testing.
- (v) Disturbed samples were retrieved from boreholes and trial pits and submitted to a South African SANAS-Accredited Civil Engineering laboratory (*Outeniqua Geotechnical Laboratories*) in accordance with South African National Standards (SANS) test methods (TMH1 and SANS3001), British Standards (BS) or the American Society for Testing and Materials (ASTM) standards as applicable.

Figure 1 overleaf provides illustrates the positions of all borehole and trial pit investigation points on the site.

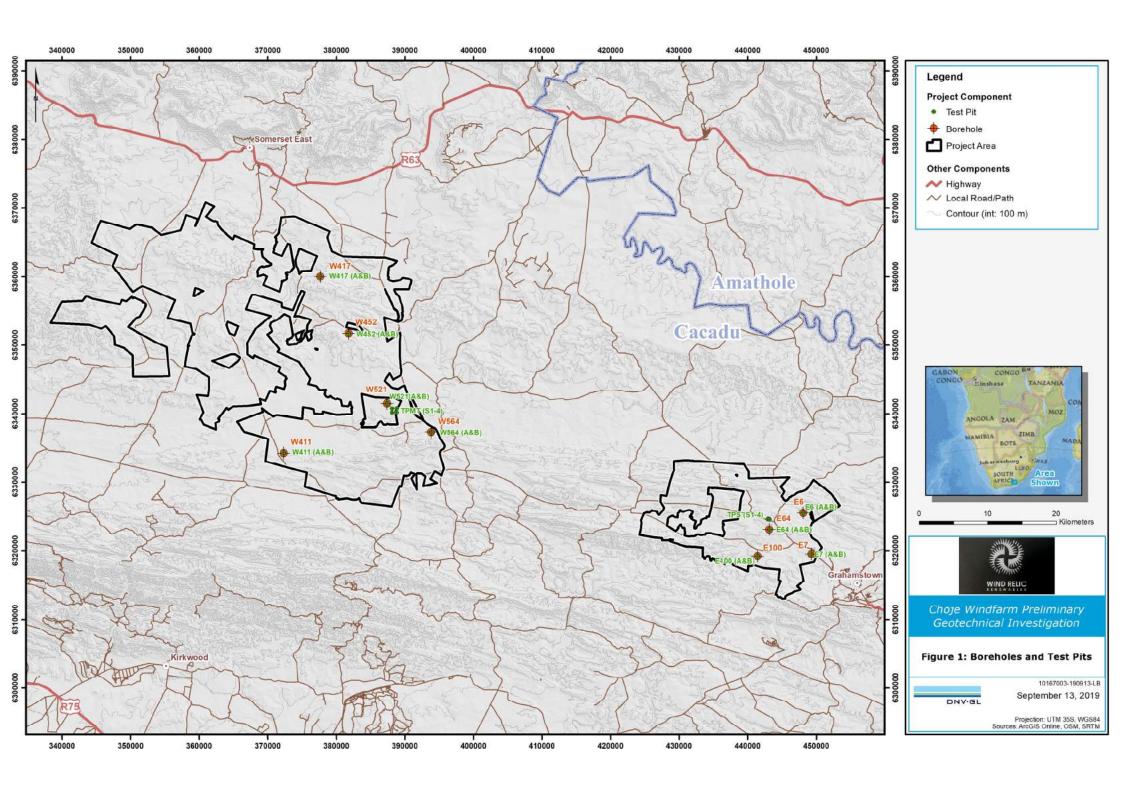


Table 3.1 indicates the various investigation methods employed on site. Additional in-situ forms of testing not yet deployed during the preliminary study are still reflected in the table headings for indicative planning for the detailed geotechnical investigation.

Table 3.1: Investigation Methods

Turbine Position	Borehole	Standard Penetration Test	Electrical Resistivity	Thermal Resistivity	Standpipe Installed	CSW	DCP	MASW	Trial Pit
E6	Х	Х					X2		X2
E7	Х	Х					X2		X2
E64	Х	Х					X2		X2
E100	Х	Х					X2		X2
*SS-E Block							X4		X4
*400 MTS-W							X4		V4
Block	X	Х			Х		X2		X4
W411 W417	X	X			X		X2		X2 X2
W452	Х	Х			Х		X2		X2
W521	Х	Х			Х		X2		X2
W564	X	Х			Х		X2		X2

^{*} Substation position

3.1 Boreholes

Nine (9) boreholes were drilled at predetermined WTG positions utilising rotary core drilling methods, on a HQ3 drill-string size by the drilling Contractor *EarthTech Geotechnical Services*. Sampling during the exploration was performed using Standard Penetration Test (SPT) where possible, although SPTs widely refused across the site owing to dense residual soils and weathered rock. Split spoon tube sampling was also attempted, however geological conditions did not cater for any successfully being retrieved. The positions of all WTG boreholes are illustrated in Figure 1. The soil conditions and rock strata described using standard methods and terminology outlined by *Jennings et al.* (1973) and the *Core Logging Committee of South Africa* (1976). Borehole logs and photographic plates are included in Annexure B.

Representative soil samples were subjected to laboratory testing, including Particle Size, Atterberg Limits, hydrometer, Moisture Content, whereas representative rock core samples were subjected to Point Load Strength Index and Unconfined Compressive Strength (UCS) tests. Fifty-millimeter standpipes were installed in all boreholes after completion of the drilling and core extraction. Boreholes were flushed after a minimum of three-day period (in order for the drilling fluid *Easimix* to degrade) and then sampled on the recharged groundwater. Groundwater samples were collected from several boreholes for pH and electrical conductivity

(EC) tests to determine the corrosivity (acidity and salinity) of groundwater against buried structures and services.

Plate 1: Rotary core drilling at borehole position E64

3.2 Trial Pits

Twenty-six (26) trial pits were machine excavated at predetermined positions by means of a Tractor-Loader-Backhoe (TLB). The co-ordinate positions of all trial pits are illustrated in the logs attached in Annexure C.

One (1) trial pit, at each of the WTG founding positions was excavated to a depth of 3.00m or refusal, whichever came first. In addition, one (1) trial pit, was excavated approximately 50-70m away at each of the potential crane platform positions. Four (4) trial pits were also excavated as the proposed Eastern Block substation position, to a depth of 3.00m each or refusal, whichever came first. Another four (4) trial pits were additionally excavated at the proposed 400 MTS position on the Western Block.

All trial pits were profiled by and the soil conditions described using standard methods and terminology outlined by Jennings et al. (1973) Representative soil samples retrieved from trial pits were subjected to Modified AASHTO moisture/density, California Bearing Ratio (CBR), Foundation Indicator, Moisture Content, Relative Density and Thermal Resistivity. Representative samples of various soil types were collected for pH and electrical conductivity (EC) to determine the potential aggressiveness (corrosivity) of the soil towards buried structures and underground electrical services.

Plate 2: Trial pit excavation at W417 position (photo credit: Outeniqua Geotechnical Laboratory)

3.3 Dynamic Cone Penetrometer (DCP) Tests

DCP tests were conducted adjacent to trial pit at the turbine locations and substation positions. Tests were conducted from the current surface level to depths of 2m or refusal, which ever come first.

An aspect of DCP testing that must always be noted is the climatic condition on the day the tests are undertaken, as precipitation events may adjust the shaft frictional indices and affect results. DCP testing was conducted under *dry conditions* during the Choje Preliminary Study, with no recent rainfall having been recorded in the area. Soil moisture content values were therefore low.

The results of DCP tests are provided in accompaniment to the trial pit logs in Appendix C of this report.

4 TESTING POSITIONS AND ROUTE EXCAVATABILITY

Figure 2 below provides an indication of the borehole and trial pit orientation relationship at WTG E100 position. The remaining 8 borehole/trial pit orientation plots (**Figures 3-10**) are presented in Appendix A.

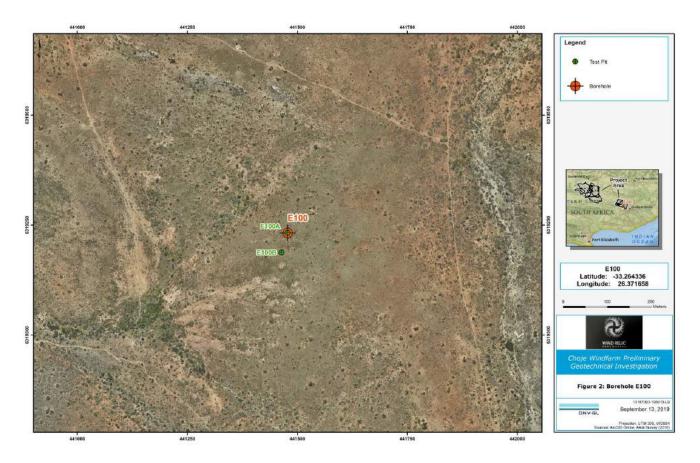


Figure 2: Borehole E100 position plan

Excavatability considerations for the turbine positions and access road routes are described in terms of SABS 1200 D (1988). Excavatability indicates the ease at which *in-situ* material is removed and what excavation methods should be utilised. Excavation classes are provided based upon the ease at which material can be removed by mechanised plant of varying power classes.

4.1 Soft excavation

Soft excavation, other than in restricted excavation, shall be excavation in material that can be efficiently removed or loaded, without prior ripping, by any of the following plant:

 a bulldozer of mass (including mass of ripper if fitter) approximately 22t and flywheel power approximately 145 kW, or

- ii) a tractor-scraper unit of total mass approximately 28t and flywheel power approximately 245 kW, pushed during loading by a bulldozer equivalent to that specified in (b) (1) below, or
- iii) (iii) a track type front-end loader of mass approximately 22t and flywheel power approximately 145 kW

In the case of restricted excavation, soft excavation shall be excavation in material that can be efficiently removed by a back-acting excavator of flywheel power approximately 0.1- kW per millimeter of tined-bucket width, without the use of pneumatic tools such as paving breakers.

4.2 Intermediate excavation

Intermediate excavation, other than in restricted excavation, shall be excavation (excluding soft excavation) in material that can be efficiently ripped by a bulldozer of mass approximately 35t, fitted with a single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220 kW.

In the case of restricted excavation, intermediate excavation shall be excavation (excluding soft excavation) in material that requires a back-acting excavator of flywheel power exceeding 0,10 kW per millimeter of tined-bucket width or the use of pneumatic tools before removal by equipment equivalent to that specified in above.

4.3 Hard rock excavation

Hard rock excavation, other than in restricted excavation, shall be excavation (excluding boulder excavation) in material that cannot, before removal, be efficiently ripped by a bulldozer equivalent to that specified in above. It must be noted that such excavation generally includes material such as formations of unweathered rock that can be removed only after blasting.

In the case of restricted excavation, hard rock excavation shall be excavation in material (excluding boulder excavation) that cannot be efficiently removed without blasting or without wedging and splitting.

For the purposes of isolated hard rock excavation, this may also include the use of an excavator-mounted rock hammer (rock pecker).

4.4 Boulder excavation Class A.

Boulder excavation Class A shall be excavation in material containing more than 40% by volume of boulders of size in the range 0,03-20 m³, in a matrix of soft material or smaller boulders. Excavation of solid boulders or lumps of size exceeding 20 m³ will be classed as hard rock excavation.

Excavation of fissured or fractured rock will not be classed as boulder excavation but as hard rock or intermediate excavation, according to the nature of the material.

4.5 Boulder excavation Class B.

Boulder excavation Class B shall be excavation of boulders only, which are in a material containing 40% or less by volume of boulders of size in the range of 0,03-20 m³, in a matrix of soft material or smaller boulders, and which require individual drilling and blasting in order to be loaded by a track type front-end loader or back-acting excavator, as the case may be, as specified in (a) above. The excavation of the rest of the material will be classed as soft or intermediate excavation, according to the nature of the material.

Estimation percentages of excavation classes for the existing access roads on the site are based upon a 1.0m deep roadbed excavation, and reflected below:

	Excavation Class (SABS 1200D)	Estimated Percentage (%)
а	Soft excavation	65
b	Intermediate excavation	15
С	Hard excavation	10
d	Boulder excavation Class A	5
е	Boulder excavation Class B	5

It must be noted that the excavation percentages stated above are estimates generated from point-source information in the form of trial pits placed at potential turbine positions and sub-station sites. No guarantee can be provided for variations in excavatability conditions in between trial pit locations.

5 GEOTECHNICAL RESULTS

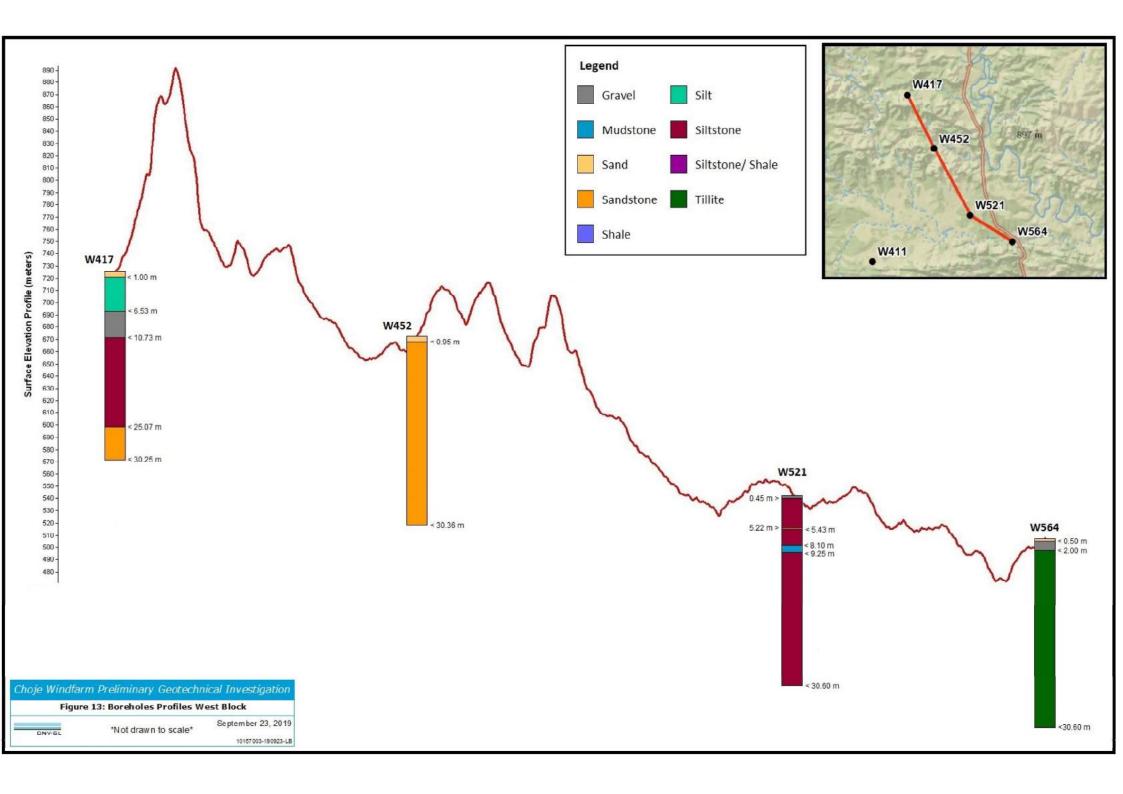
5.1 Ground Profile

The results of the field studies at the Choje windfarm site allow a general picture of the regional soil and rock conditions to be compiled. The significant size of the project means that the geological terrain varies markedly across the site area, with individual turbine positions sited in deep soils and hard rock alike. General themes for the broad area, however, are consistent and may be informed upon to guide the initial preliminary design of WTG foundations, access roads and structures. Table 5.1 provides a summary of the most significant information gathered from the nine boreholes drilled on the Eastern and Western Blocks.

The local rock types observed in the boreholes consisted of sedimentary rock types sandstone, siltstone, mudstone and shale, as well as a large amount of glacial tillite. The near-surface part of the rock profile demonstrated high to moderate weathering and a tendency for high to moderate fracturing. Rock hardness varies according to rock type, with sandstone and tillite typically being medium to very hard and the argillaceous rocks being very soft to medium hard.

Significant variation in the hardness of the tillite was observed between boreholes (compare logs from E7 and E64), associated with the degree of weathering the tillite has been subjected to under the influence of groundwater. Significant core loss was recorded in a number of the boreholes at shallow founding depth of

2-4m (e.g. E6, W411, W417 – See Appendix B). Core loss in calcareous soils is unsurprising (W417), as fines wash out during the drilling process, however core loss in rock is largely due to the highly fractured, highly weathered and soft nature of shallow rock at these positions.


Table 5-1: Borehole Simplified Results

Borehole No.	Description	Soil Cover Depth	SPTs	Rock Condition	Medium Hard Rock Depth	Groundwater Depth
E6	Dense gravelly silty SAND, overlying light brown SILTSTONE rock	2.89m	1.45m (R) 2.80m (R) 5.55m (R)	Highly weathered, highly fractured, very soft rock. Significant core loss above 6m.	Below 6m	8.81m
E7	Medium dense gravelly SILT, overlying light brown to grey TILLITE rock	0.75m	1.50m (R)	Highly weathered, very highly to moderately fractured very soft to soft rock,	Below 15.7m	None
E64	Medium dense GRAVEL with COBBLES, overlying dark olive TILLITE rock	0.62m	-	Moderately weathered, very highly to moderately fractured, hard rock	Below 0.62m	22.11m
E100	Medium dense silty GRAVEL, overlying red- orange to black SHALE	1.67m	-	Highly weathered, highly to very highly fractured, very soft rock	Soft rock below 16.6m	16.85m
W411	Dense silty gravelly SAND, overlying dark grey TILLITE	1.58m	1.55m (R)	Highly weathered, highly to very highly fractured, soft to medium hard rock. Core loss above 8m.	Below 4.5m	26.27m
W417	Dense gravelly CALCAREOUS SILT with COBBLES, overlying dark olive SILTSTONE	10.73m	2.20m (R) 3.80m (R)	Highly weathered, very highly to moderately fractured, soft rock. Significant core loss above 11m.	Below 18.7m	23.83m
W452	Dense gravelly silty SAND, overlying dark olive to grey SANDSTONE	0.95m	-	Moderately to slightly weathered, highly to slightly fractured, medium hard to hard rock	Below 0.95m	16.54m
W521	Medium dense clayey GRAVEL, overlying dark grey SILTSTONE	0.45m	-	Highly weathered, very highly fractured, soft to medium hard rock	Below 1.5m	26.05m
W564	Medium dense silty sandy GRAVEL with sporadic BOULDERS, overlying dark olive TILLITE	2.00m	-	Highly to moderately weathered, very highly fractured, soft to medium hard rock	Below 6.8m	19.20m

R = Refusal of SPT in excessively dense substrate / cobbles

The measured orientation of bedding planes varies between horizontal to $\sim 45^{\circ}$ (compare E100 to W521). Dominant joint orientation varies from subvertical to $\sim 45^{\circ}$. Joints tend to be narrow to wide, rough to slightly rough, and stained with minimal clay infill, indicating a partial opening of the joint structures. Drawing a correlation for continuity between strata is problematic across such marked distances as between boreholes at Choje WF, as demonstrated by the illustrative cross-section depicted in Figures 13 and 14 overleaf, showing the Western and Eastern block borehole sections respectively. The variation in rock type

and condition is a function to the inclined nature of regional strata in the area, which dips away from the horizontal. It is also a function of the depositional history of the sedimentary strata, showing repeating cycles of sandstone and mudstone with then regional metamorphism altering to shale and quartzitic sandstones. The glacial actions and deposition of tillite equally have affected this strata distribution. Lastly, the variation is a function of localized topography and ensuing chemical alteration at each borehole position.

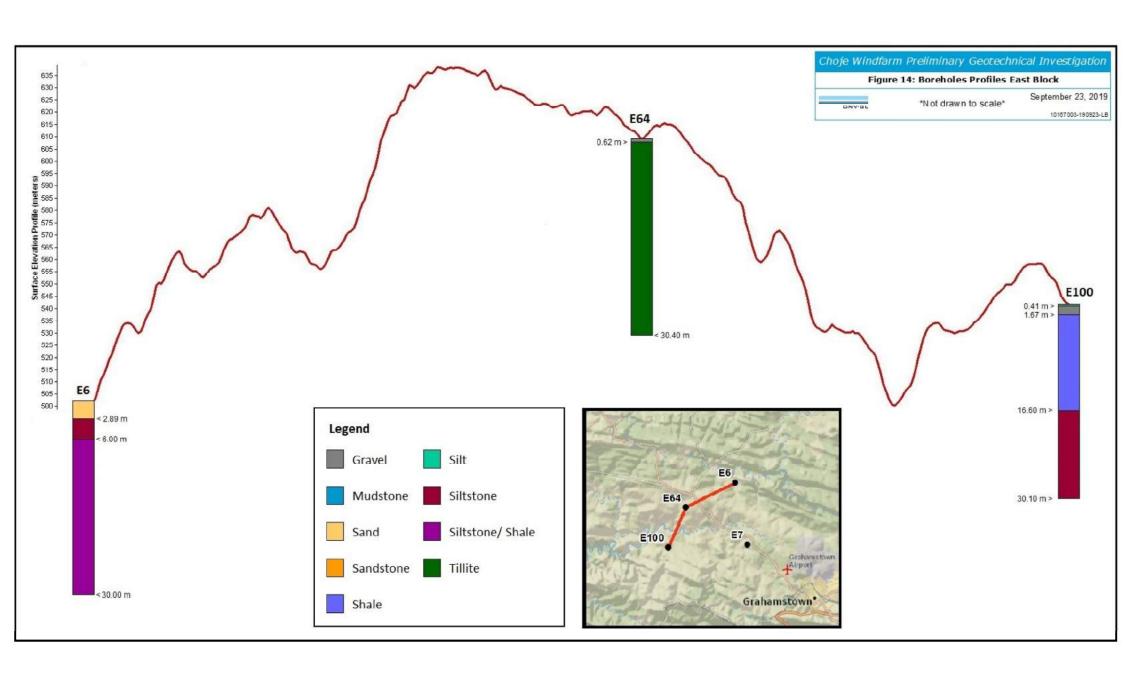


Table 5.2 provides a summary of the soil cover depths and pedogenic variations recorded across the twenty-six excavated trial pits.

Table 5-2: Trial Pit Horizon Summary Table

Trial Pit No.	Imported (fill) soil (mm)	Transported soil (mm)	Residual soil (mm)	Rock/Hardpan (mm)	Total depth of test pit (mm)	Refusal?
E6A	-	2100	-	100	2200	Yes
E6B	-	1750	-	-	1750	Yes
E7A	-	200	300	100	600	Yes
E7B	-	300	500	200	1000	Yes
E64A	-	200	200	150	550	Yes
E64B	-	150	250	200	600	Yes
E100A	-	300	800	400	1500	Yes
E100B	-	400	1100	400	1900	Yes
SS1	-	-	100	200	300	Yes
SS2	=	-	300	100	400	Yes
SS3	-	80	170	150	400	Yes
SS4	-	200	250	150	600	Yes
MTS1	-	200	300	200	700	Yes
MTS2	-	2900	-	-	2900	No
MTS3	-	-	400	350	750	Yes
MTS4	=	600	-	250	850	Yes
W411A	-	1700	-	500	2200	Yes
W411B	-	2300	-	-	2300	Yes
W417A	-	2800	-	-	2800	No
W417B	-	2900	-	-	2900	No
W452A	-	1300	-	50	1350	Yes
W452B	-	350	150	50	550	Yes
W521A	-	150	200	100	450	Yes
W521B	-	100	250	150	500	Yes
W564A	-	350	-	600	950	Yes
W564B	-	350	-	350	700	Yes

As may be noted, the majority of trial pits excavated across the site presented early refusal of the TLB at depths shallower than the anticipated 3.0m below existing ground level. This is symptomatic of the density of the colluvial, alluvial and residual soils across the site, enhanced by the dry conditions and frequency of cobbles and calcification (magnesium and ferric ion deposition as calcrete) in the profile.

The soil profile observed in shallow test pits on the site is quite variable in terms of particle sizes, but is typically dominated by coarse, granular soils with a significant amount of silt-sized fines (i.e. silty gravelly sand and silty sandy gravel). The soil cover recorded in test pits is generally thin (<2m), with localised thick accumulations of transported alluvium occurring along or adjacent to natural drainage lines, most notably at WTG W417 where soil cover extends to a depth of 10.7m. Localised, but significantly thick deposits of high-

level terrace gravel were encountered at the 400MTS substation (refer to soil profile MTS2, Appendix C).

Results of the DCP testing illustrated a picture of generally competent soil conditions for lightly loaded structures at shallow depths across the site. DCPs mostly refused within 1.0m of surface, with many refusing within the upper 0.5m. Refusal was broadly due to dense soil conditions, as well as the presence of cobbles in the profile, which are widespread throughout the transported and residual soils on the Choje site. Pedogenic accumulation of ions and the ensuing calcification of the profile is also widespread in arid conditions such as these, and further "weakly cements" the soil profile, leading to increased density and resistance to the DCP probe.

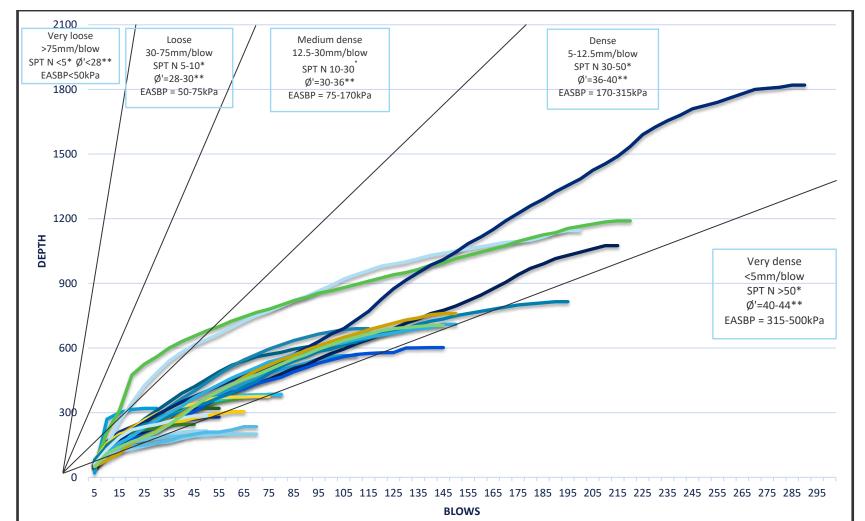
The results of all DCPs are plotted in Chart 5.1 and demonstrate the general trend of "dense" soil types across the site.

5.2 Laboratory Test Results

Laboratory test results herewith presented are as retrieved from borehole soil and cores, trial pits and groundwater standpipes. All samples may be classified as *disturbed* samples, as Shelby tube sampling within boreholes was unsuccessful due to high soil density.

5.2.1 Grading and Atterberg Limits

Representative soil samples were collected from test pits and borehole core for grading, Atterberg limits and moisture content tests (foundation indicator) to determine the index properties of the insitu soils and classify the soil types according to the Universal Soil Classification (USC) system. The results of the tests are shown in Table 5.3.


The lab results indicate that the soils are dominated by silty sands and silty gravels, with low clay content (generally <10% clay) and low to medium plasticity of fines (PI max 28, but PI of whole sample <15). Potential expansivity according to the Van der Merwe method (Van der Merwe, 1964) is low in all test samples.

5.2.2 Soil Density and Strength Tests

Representative soil samples were collected for modified AASHTO density, CBR and indicator tests to determine the compaction/strength relationship and potential as natural construction material for use in earthworks and road pavements. The results of the tests are summarised in Table 5.4.

The test results indicate sporadic sources of potentially useful natural materials (G5-G7 quality in terms of the TRH14 classification system) for earthworks and road-building purposes, but the several of the tests indicate moderate plasticity and low CBR values, the combined effect of which reduces the quality of the materials to G9 or G10. The tests also indicate that the *in-situ* soils tend to be slippery in wet conditions and dusty in dry conditions, with corrugations becoming a maintenance problem. Plasticity and grading are important in the selection of suitable materials for gravel wearing course on access roads.

Recommendations for material usage are given in the following section of this report.

Chart 6-1: DCP Penetration Results

*after Brink et al (1982)

** after Peck *et al* (1974)

Table 5-3: Atterberg Limits and Particle Size Test Results

	Sample	Atte	rberg L	imits	Pä	article A	nalysis ((%)			USC
TP No	Depth (mm)	PI	LL	LS	Clay	Silt	Sand	Gravel	MC*	PE**	***
	(IIIII)				TEST F	PITS					
E6A	400-2100	5	19	2.5	8	42	49	1	7	Low	CL- ML
E6B	800-1750	7	21	3.5	9	28	46	17	5.2	Low	SM- SC
E7A	200-500	15	36	7.5	3	24	21	52	9.4	Low	GC
E7B	300-800	20	46	10	3	14	13	70	7	Low	GC
E64A	200-400	17	35	8.5	5	32	16	47	8.4	Low	GC
E64B	150-400	16	34	8	4	30	13	53	7.7	Low	GC
E100A	300-1100	20	45	10	7	13	13	67	8.9	Low	GC
E100B	400-1500	19	39	9.5	4	11	15	70	6.8	Low	GC
SS1	0-100	5	20	2.5	2	12	17	69	4	Low	GM- GC
SS2	0-300	11	26	5.5	3	18	20	59	6	Low	GC
SS3	80-250	8	25	4	2	14	12	72	4.2	Low	GC
SS4	200-450	20	39	10	3	26	19	52	10.4	Low	GC
MTS1	200-500	13	35	6.5	1	20	15	64	12.9	Low	GC
MTS2	900-2900	SP	SP	0.5	0	4	46	50	3.9	Low	GP
MTS3	0-400	12	31	6	1	7	15	77	7.8	Low	GC
MTS4	250-600	NP	NP	0	1	10	29	60	9.1	Low	GM
W411A	750-1700	28	56	14	1	12	27	60	13.4	Low	GC
W411B	450-1500	19	44	9.5	1	13	31	55	11.7	Low	GC
W417A	1300-2800	17	40	8.5	1	22	52	25	11.6	Low	SC
W417B	800-2900	15	31	7.5	6	49	31	14	10.7	Low	CL
W452A	500-1800	17	39	9	2	21	42	35	12.5	Low	GC
W452B	350-500	21	38	10.5	3	23	33	41	9.7	Low	GC
W521A	150-350	17	37	8.5	1	7	9	83	6.8	Low	GP- GC
W521B	100-350	8	28	4	1	8	16	75	9.1	Low	GP- GC
W564A	350-950	9	31	4.5	1	6	21	72	10.9	Low	GP- GC
W564B	350-700	4	27	2	1 BOREH	12 OLES	35	52	8.6	Low	GM
E6	500-1500	11	25	5.5	6	49	42	3	12.2	Low	CL
E6	2100-3000	7	22	3.5	2	15	18	65	4.2	Low	GM- GC
E7	500-840	11	25	5.5	9	20	41	30	2	Low	SC
E100	1100-1680	19	44	9.5	6	14	11	69	3.3	Low	GC
W411	550-1500	24	52	12	6	16	31	47	11.9	Low	GC
W417	2180-2980	13	41	6.5	2	19	33	46	10.8	Low	GM
W417	3580-5080	18	42	9	2	26	37	35	26.4	Low	GC

W452	500-950	19	32	9.5	8	46	25	21	6	Low	CL
W564	500-1000	12	51	6	1	7	11	81	5 4	Low	GP-
WJOT	300 1000	12	31	U	1	,	11	01	3.4	LOW	GM

^{*} Insitu Moisture Content ** Potential Expansiveness *** Unified Soil Classification

Table 5-4: Soil Density and Strength Test Results Summary

	Sample			CBR at		Swell	PI		MDD/	TRH14	
TP No	Depth (mm)	100 %	98%	95%	93%	90%	(%)	(%)	GM	омс	Class
E6A	400-2100	20	17	12	9	4	1.33	5	0.59	2006/9.5	G10
E6B	800-1750	17	15	11	8	4	0.94	11	0.77	2026/9.1	G10
E7A	200-500	60	52	40	32	20	0.33	16	2.38	1974/8.9	G9
E7B	300-800	20	18	15	13	10	0.65	19	2.41	2014/12.0	G10
E64A	200-400	20	18	15	13	10	0.28	13	2.61	2056/9.4	G8
E64B	150-400	15	15	14	13	12	0.06	13	2.23	2040/10.0	G8
E100A	300-1100	12	10	8	6	4	0.33	20	2.31	2012/12.1	G10
E100B	400-1500	17	16	14	13	11	1.14	19	2.70	2102/11	G10
SS1	0-100	82	69	49	36	16	0.08	5	2.55	2106/7.8	G5
SS2	0-300	33	29	24	20	14	0.01	7	2.66	2108/8.4	G7
SS3	80-250	33	29	23	19	13	0.17	11	2.44	2130/7.9	G7
SS4	200-450	40	35	26	20	12	0.32	13	2.29	1860/12.5	G8
MTS1	200-500	37	34	30	27	23	0.07	16	2.38	1850/14.3	G8
MTS2	400-900	62	51	34	23	6	0.00	8	2.39	1626/17.3	G7
MTS3	0-400	37	32	24	19	11	0.08	15	2.50	1976/10.7	G9
MTS4	250-600	109	89	57	37	5	0.02	SP	2.43	1612/18.1	G5
W411A	750-1700	51	42	30	21	9	0.81	29	2.00	1598/18.8	G10
W411B	450-1500	23	21	17	15	11	0.33	23	2.14	1762/15.9	G10
W417A	700-1300	16	13	9	7	3	0.06	12	1.82	1766/16.6	G10
W417B	800-2900	33	27	18	12	4	0.20	12	0.98	1766/14.4	G10
W452A	500-1800	55	45	31	21	6	0.08	13	1.94	1832/14.5	G10
W452B	350-500	5	4	3	2	1	1.06	19	2.02	1872/11.7	G10
W521A	150-350	64	54	39	29	14	0.08	18	2.64	1900/12.5	G9
W521B	100-350	62	53	40	31	18	0.18	14	2.61	1896/12.4	G8
W564A	350-950	74	65	52	43	29	0.00	SP	2.59	1730/19.6	G5
W564B	350-700	70	57	39	27	9	0.02	5	1.90	1786/14.8	G6

5.2.3 Rock Strength Tests

Selected samples of intact rock core were collected from foundation influence zones (2 – 4m below existing ground level) in boreholes for Uniaxial Compressive Strength (UCS) tests to determine rock strength and estimate bearing capacity for turbine foundations. The results of the tests are summarised in Table 4.

The tests indicate low UCS values for the weakly cemented calcrete soil at W417 (2.9MPa). The highly

weathered tillite at E7 also displayed relatively low UCS values (9.2MPa) as expected, when compared to the harder, moderately weathered tillite from E64 (50-63MPa). The sandstone from W452 displayed very high UCS values (70-106MPa).

In general, the tests indicate the highly variable strength of the different rock types, with some potentially low UCS values which will have to be factored in to the final foundation design. All tested rock showed, however, UCS values in excess of 2MPa.

Table 5-5: UCS Strength Test Results

BH No	Depth (m)	Strength (MPa)	Failure Type
E7	2.78-3.12	9.2	Shattered
E7	3.17-3.45	29.2	Sheared
E64	1.60-1.87	63.8	Sheared
E64	2.31-2.58	50.0	Shattered
W411	4.93-5.05	14.1	Sheared
W411	7.80-7.93	43.0	Sheared
W417	6.64-6.76	2.9	Shattered
W417	7.43-7.57	2.9	Shattered
W417	10.73-10.93	41.4	Sheared
W452	2.46-2.65	70.8	Shattered
W452	2.65-2.85	106.7	Shattered
W521	2.27-2.46	13.2	Shattered
W521	2.71-2.95	9.6	Shattered
W564	4.96-5.10	27.7	Shattered
W564	6.60-6.72	78.6	Shattered

Selected samples of fragmented rock core were also collected from similar foundation influence zones in borehole cores and subjected to point load strength index (PLT) tests to estimate rock strength and estimate bearing capacity for turbine foundations. The results of the tests are summarised in Table 5.6.

Several of the samples were recorded by the laboratory as fracturing as the test commenced and returned no meaningful results, but several other samples produced results ranging from $I_s=0.2$ to 9.1, which roughly correlates to UCS of 4-180MPa. Again, the tests indicate the soft nature of some of the rocks, specifically the shale from E6 and E100 and weathered tillite from E7, and the relatively hard tillite from E64 and W411 and sandstone from W452.

Table 5-6: Point Load Test Results

BH Number	Depth (m)	Point Load (kN)	Point Load strength index I _s	
E6	6.57-6.66	0	0.00	
E6	6.57-6.66	0	0.00	
E6	7.13-7.22	0	0.00	
E6	8.00-8.18	0	0.00	
E6	8.34-8.46	0	0.00	
E7	1.50-1.61	0	0.00	
E7	1.61-1.69	0	0.00	
E7	2.62-2.70	1	0.29	
E64	0.87-1.06	16	4.30	
E64	2.62-2.68	2	0.50	
E64	3.59-3.70	13	3.28	
E100	1.71-1.79	0	0.00	
E100	2.00-2.07	0	0.00	
E100	10.32-10.42	0	0.00	
W411	1.79-1.89	0	0.00	
W411	4.65-4.83	12	3.02	
W411	4.83-4.88	10	2.52	
W417	5.16-5.30	0	0.00	
W417	5.30-5.45	0	0.00	
W417	5.69-5.79	1	0.27	
W417	9.67-9.76	0	0.00	
W417	11.30-11.40	6	1.51	
W452	2.00-2.08	1	0.27	
W452	2.08-2.23	34	9.14	
W452	3.92-4.02	17	4.57	
W521	2.00-2.15	1	0.25	
W521	2.54-2.64	5	1.26	
W521	2.95-3.11	0	0.00	
W564	2.12-2.24	3	0.76	
W564	2.97-3.07	0	0.00	
W564	3.07-3.17	12	3.02	

5.2.4 Soil and Groundwater Chemistry Results

Representative samples of various soil types were collected for pH and electrical conductivity (EC) to determine the potential aggressiveness (corrosivity) of the soil towards buried structures and underground electrical services. The results of the tests are summarised in Table 5.7.

Table 5-7: Soil corrosivity tests results

TP No	Sample Depth(mm)	pН	EC μS/m
E6A	400-2100	8.09	846
E6B	300-800	7.37	475
E7A	200-500	7.23	287
E7B	300-800	7.39	219
E64A	200-400	6.07	201
E64B	150-400	6.11	213
E100A	300-1100	8.60	361
E100B	400-1500	7.25	463
SS1	0-100	6.20	187
SS2	0-300	6.08	185
SS3	80-250	6.37	212
SS4	200-450	6.61	223
MTS1	200-500	7.48	209
MTS2	400-900	7.58	224
MTS3	0-400	7.67	129
MTS4	250-600	7.97	202
W411A	750-1700	7.70	302
W411B	450-1500	7.55	1685
W417A	1300-2800	7.01	206
W417B	800-2900	7.62	864
W452A	500-1300	8.10	229
W452B	350-500	8.10	272
W521A	150-350	8.26	360
W521B	100-350	7.60	225
W564A	350-900	7.98	250
W564B	350-700	8.00	241

The tests indicate slightly elevated pH levels (alkaline conditions) with sporadic moderate conductivity in some tests, indicating potentially corrosive conditions towards buried metals. The exception being at position WTG E64 and in the vicinity of the Eastern Block proposed substation site, where slightly acidic soils were encountered.

In addition to the soil tests, groundwater samples were also collected from installed standpipes in several boreholes for pH and Electrical Conductivity (EC) tests to determine the corrosivity (acidity and salinity) of groundwater against buried structures and services. This was conducted even though the depth to the groundwater table currently exceeds 8m below natural ground level and would have little effect of foundations, as testing occurred during winter. Seasonal fluctuations of the groundwater table may still result in an upwards movement of the resting groundwater level and proximity to foundations after rainfall events. The results of the tests are summarised in Table 5.8 overleaf.

Table 5-8: Groundwater chemistry tests results

BH No	Depth of water table (m)	рН	EC mS/m
E6	8.81	7.2	101
E7	-	=	-
E64	22.11	6.9	106
E100	16.85	7.3	101
W411	26.27	*	*
W417	23.83	*	*
W452	16.54	8.7	48
W521	26.05	*	*
W564	19.20	8.1	223

The test results indicate slightly elevated pH levels (alkaline) in some samples combined with brackish/slightly saline groundwater quality. The results indicate fairly high dissolved salts (mainly Cl⁻), with TDS estimated at 6.7xEC (mS/m). Brackish water can be highly corrosive towards exposed metallic structures and steel reinforcement, requiring adequate concrete cover or polymeric coating.

BS EN1008 does not recommend such water for use in the making of steel-reinforced concrete, nor direct exposure of groundwater towards concrete structures as it registers as being slightly corrosive (chemical environment classified as XA1 in terms of BS EN 206-1). COTO (2018) specifies the maximum EC of water for use in general earthworks and layerworks compaction is 150mS/m. This needs to be accounted for in the final foundation and site structural design.

6 GEOTECHNICAL SITE ASSESSMENT AND RECOMMENDATIONS

The assessment of ground conditions for the establishment of a utility-scale wind farm is a complex and detailed undertaking. The dynamic nature of a turbine necessitates review of a wide variety of geotechnical aspects, including bearing capacity, seismic influences, gapping, overturning, settlement, subgrade reactions, excavatability and buoyancy. Whilst these aspects are taken in to consideration during the Preliminary Geotechnical Study, the early stage of the sequencing of the study does not allow for detailed geotechnical design parameters to yet be isolated for each turbine position. The positions will also in all likelihood, shift somewhat as final layout alterations ensue. The focus of this study is therefore not to provide design calculations for effective foundations, but rather to present the results of the geotechnical information retrieved to date and the general foundation considerations that will apply to the site development.

The Choje site is generally located in a stable geological environment, without the presence of dolomitic risk of sinkholes, active fault lines or notable seismicity. The near-surface rock conditions over much of the site will allow for shifts of turbine positions to made where they lie in localised poor founding. This will

necessitate a detailed geotechnical study to be conducted in order to clearly isolate the most economical founding positions as early as possible.

6.1 Turbine Foundations

As has been discussed in earlier sections of this report, the rockhead contact lies at a relatively shallow depth across most of the site. Wind turbine positions are naturally selected in elevated terrain, and thus these are usually in areas of rock outcrop near to surface. With the wide area selected for the Choje project, however, it is inevitable that some positions will be positioned in floodplains and side slopes, with deeper soil cover. Readers are referred to PP225941-ZACT-R-01-A Choje Wind Farm Desktop Report for a description of the prevailing founding classes on the Choje site.

Review of the 9 borehole profiles indicate the majority as providing bearing on suitable rock types close to surface. Whilst no final selection of turbine model has been made for the Choje site at the time of drafting of this report, and therefore no foundation loadings are available, it may be assumed that a bearing capacity of at least 300kPa will be required, but probably higher than this for the high hub height turbines under contention. "Very soft rock" varies in bearing capacity from 200-400kPa, with a Factor of Safety, whilst "soft rock" may range from 400-950kPa. These values are, however, highly variable and dependent upon structural elements prevailing at the site – very soft rock may still provide sufficient bearing for the turbine, provided the base is designed with a footing broad enough to suit.

The RQD readings for some of the positions with shallow rock still show low values of rock quality in the 3m-below-ground-level range (see W411 and W564). This may be ascribed to the high degree of fracturing of notably the tillite and shales. This is a factor to account for, however may also be factored into a suitable design as there will be confining pressure on the in-situ material below the foundation from the surrounding country rock. Therefore, even though the rock is highly fractured, it could potentially still provide adequate founding. The exception may be in areas of high groundwater table, where a fractured substrate could allow for hydraulic "pumping" under the dynamic load fluctuations of the turbine. This could serve to degrade the foundation base. The deep groundwater table in the area, however, suggests this would be unlikely.

For founding at positions of shallow rock head contact, a standard shallow gravity foundation is predicted as being suitable. Embedment depth would be at least 3m it is anticipated, which will require hard excavation at a number of the positions, either through the use of an excavator-fitted rock pecker, or through directional blasting. Footing design in rock should account for the impermeable nature of the substrate and make allowance for buoyancy.

Boreholes E6 and W417 demonstrated ground conditions that are less favourable and would therefore call for an adapted design. E6 displayed sandy cover to just under 3m and then highly to completely weathered, very soft rock with almost total core loss to 6.0m, associated with its position in a non-perennial drainage line and the resultant alluvial deposition. W417 showed highly weather calcareous silt (poorly formed calcrete) in excess of 10m depth, which is problematic from a weak cementation of grains and potential collapsibility point of view. It is also indicative of "pseudo-karst" features prevailing in the area, where calcrete formation may allow for the presence of small voids in the profile. It such positions the turn=bines should potentially be relocated to nearby sites of more favourable founding. Where relocation is not possible, the foundation design will need to be adapted to suit, as well as the in-situ bed preparation prior to the casting of the base. Ground improvement techniques may here be considered, such as dynamic compaction.

The foundation should be over-excavated, and an improved engineered soil raft be constructed. The soil raft should make use of a minimum of G5 – G3 aggregate quality imported material, deposited in maximum of 200mm layers and compacted from 95% to 98% MDD, above which the gravity footing may be commenced. The depth of the improved soil raft will be a function of the final WTG footing size, and its ensuing pressure bulb's zone of influence.

The position E100 demonstrated very soft rock and RQD readings of "0" for much of its upper extent. Where potentially compressible substrate is located 3-5m below surface, engineered soil rafts are usually considered. It is therefore deemed to be a borderline position, which may or may not require an adapted design with improved soil raft. Dynamic compaction would be deemed unsuitable at this position. Further investigatory techniques, such as the dynamic probing super-heavy and geophysics utilised during the detailed geotechnical investigation, would assist in developing the design for this position further.

An alternative solution for turbines located in deep soil cover may also involve piling. The merits of piling at each position are dependent upon the shear friction that may be expected from the surrounding substrate, and the depth to a competent terminating horizon.

For gravity foundations on slopes, the distance between the edge of the foundation and the slope face (measured horizontally at the foundation level) should ideally be not less than 1x the diameter of the foundation. Furthermore, turbine foundations should ideally not be located on slopes which exceed 18°.

Turbine positions located within the 1:100-year floodline should be relocated wherever possible to higher ground. The Somerset-East area is well-known for the potential occurrences of flash-flooding, which may cause significant erosional forces and foundation undermining, should it reach turbine positions.

6.2 Crane Platforms and Access Roads

Trial pits excavated at turbine positions were used to estimate the material properties and depth of cover, whilst DCP testing was conducted in order to inform on soil densities in the area. The results show a dense soil cover generally across the area, widely inculcated with calcrete deposition to varying degrees. Cobbles and boulders are frequent in the upper profile. Clay percentages are mostly low, with heave not anticipated to be a developmental concern. Most DCPs refused close to surface, on dense soils or cobbles. Crane pads are therefore judged to be constructed in the standard manner. Development of the crane platform should proceed with the topsoil being retrieved to a depth of 300mm or hard rock, and stockpiled for later landscaping use. A mixture of soil and rock material excavated from road box cuts and lay down areas may then be used for bulk filling on platforms (cut to fill platforms), provided it meets the minimum specifications (recommended minimum G9 for bulk fill on platforms, compacted to 93% MDD, rockfill, compacted to 8 roller passes). Layers of imported G5 material should then comprise the upper layers, placed in 200mm

The site topography will exert a significant control over the access road layout. Consideration should be given to existing access roads and stream crossings to minimise impacts of earthworks on the site.

Allowance should be made for hard excavations in road box cuts and lay down areas on sloping terrain. Bulk fill materials should be adequately benched into the *in-situ* sloping ground to prevent sliding of the wedge of fill material. The maximum safe slope of permanent road fill embankments is 1v:2h. Pipe or box culverts will

increments and compacted to 95% MDD at OMC.

be required to cross dry riverbeds and streams, and this will require environmental consideration. Adequate camber and side drains should be accommodated in the design of internal access roads to ensure accessibility during peak rainfall events. Access road design widths for blade transport is usually 4.5-6m, as designed by the project pavement engineer. Subsoil drains along roads are not envisaged but may be considered along major access routes.

6.3 Slope Stability

The site topography is characterised by hilly terrain with some steep slopes. The steep hills and ridges are typically underlain by shallow, relatively stable rock formation and global stability problems are unusual. Local stability problems may be encountered adjacent to natural drainage lines where soil cover is typically thicker and stream embankments may be eroded and undermined during peak flood events.

No cuttings were investigated as part of this initial geotechnical study. Any proposed access road cuts in excess of 5m should be drilled as part of the detailed study in order to review the stability and inform on the most appropriate angle of inclination. The Cape and Karoo sediments in the area are relatively horizontal in dip in the low-lying areas, however this changes to near-verticle dipping angles close to ridegelines. Tillite is highly variable in not only composition and weathering, but dip angle as well and should be treated with caution when designing cuttings.

Small portions of the site are also crossed by Jurassic-age dolerite dykes. These form longitudinal ridges that are very resistant to weathering and erosion, as a result of dolerite's high strength and durability. Aggressive blasting may be required to remove unweathered dolerite where access roads are aligned through a ridge.

6.4 Site Structures

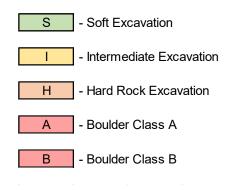
The proposed position of the substation in the Eastern Block showed shallow rock conditions, with no trial pit progressing deeper that 0.6m below current ground level. All samples showed silt, sand and gravel, with low activity values bar a single sample from trial pit SS4 between 0.2-0.45m depth which showed a linear shrinkage value of 10. LS values in excess of 8 may be prone to moisture-related shrinkage and lead to cracking of overhead structures. Owing to the shallow depth to rock however, this is not viewed as a significant concern. Structures should proceed on standard strip footings, placed upon medium hard rock at 0.4-0.6m.

The proposed position of the 400MTS in the Western Block showed variability of soil cover. Most trial pits refused at a shallow depth of 0.7m, however one pit proceeded to 2.9m depth without refusing. This may indicate that the three other pits refused on boulders in the profile, and actual rockhead depth is in excess of 3m, or alternatively that the 2.9m pit was positioned over a cavity or rock contact depression. It is recommended that additional pits are excavated at this position prior to foundation design.

All vegetation must be cleared from the areas over which any structures are to be constructed. Furthermore, the upper 200 mm of topsoil must be removed and stockpiled for later use in landscaping / rehabilitation. Cavities remaining in the soil profile must be refilled with a suitable cement-like fill material and recompacted to a similar density as the surrounding soils.

6.5 Excavatability

Section 4 of this report detailed excavatability conditions that may be expected along the access road routes and provided guidelines for excavation classes. Earthworks and excavations at the turbine positions themselves are likely to encounter bedrock and/or boulders which require special consideration in terms of excavatability. Hard excavations, requiring blasting or wedging and splitting are likely to be encountered at depths beyond 1m in many parts of this site.


Table 6.1 overleaf reflects the estimated excavation conditions that may be expected at the nine drilled turbine positions and is based upon the SABS 1200D (1988) excavation classes. Maximum expected founding depth of 5m has been assumed, with conditions divided into reaches of 0-1m, 1-3m and 3-5m depths.

PREDICTED EXCAVABILITY CONDITIONS Depth (m) Position 3.0 - 5.0m 0.0 - 1.0m 1.0 - 3.0m Ι S S WTG E6 S н н WTG E7 S н н WTG E64 Н S I-H WTG E100 н S S-H WTG W411 S S S WTG W417 S н н WTG W452

н

A-H

Table 6-1: Borehole excavatability estimations

Challenging rocky outcrops presenting obstacles to access roads and level platforms may be expected where positions are located on slopes. Neat excavations are generally not expected possible for many of the Choje positions, with a significant amount of overbreak anticipated along trenches.

н

н

Maximum slope angles for temporary excavations for turbine foundations and cable trenches are 1v:0.5h in rock and 1v:1h in soil. Temporary lateral support measures may be required where deep excavations are anticipated.

6.6 Use of on-site materials

S-I

S

WTG W521

WTG W564

Preliminary laboratory testing has shown that multiple sources of good construction material persist across the site, particularly where hard rock is located close to surface. As such positions a single or multi-stage crusher may be deployed to service a few nearby turbine positions and be calibrated to produce selected and subbase grade materials.

Several borrow pits are located across the Choje site, most of which are developed by the Department of Roads & Transport. These BPs are currently the source of a separate licencing study being undertaken, however indicate a good availability of G5-G7 grade natural gravels.

Potential may also exist for good quality concrete and bedding sand in alluvial courses on the site, such as near to position E6. These should be explored in greater detailed by way of trial pits and channel sampling during further studies.

Caution should be extended to the use of Karoo mudrock on the site. Such strata, identifiable by their purple and olive-green varietals, appear moderately weathered and medium hard upon excavation, however rapidly degrade in the presence of exposure to air and the absorption of water vapour into the clay particle interlays of the rock. This results in particle expansion and degradation of the material to a completely weathered state in a few weeks. Should mudstone be utilised on access roads at Choje, it is suggested to be added as a binder material to a coarser particle mix. Alternatively, the material may be excavated and emplaced into the road prism and then quickly covered by successive pavement layers, before degradation takes place.

Naturally occurring hardpan calcrete is also widely occurring across the site, although wasn't specifically targeted or sampled during the course of this study. Calcrete in its well-formed state often occurs as an upper crustal surface phenomenon, and therefore is unlikely to be deposited in thicknesses deeper than 1-2m, however is widespread and may yield quality in the G5-G7 range. Where it has been further weathered, it may develop a higher PI and then could also be used as a binder material to hard-crushed aggregate.

The use of hard rock as concrete aggregate is yet to be explored at the Choje site. A commercial quarry located in the Western Block (*Irhafu Middleton Quarry*) currently provides multiple grades of good quality dolerite, which will serve as an acceptable concrete aggregate. For development of the projects in the Eastern Block the economic viability of transport from this commercial quarry to the site will need to be assessed. Should it prove too costly, then a new aggregate source in the Eastern Block should be developed. Initial reconnaissance indicates that potential hard sandstone is available, as well as possibly unweathered tillite. Both sources would require drilling and sampling. The testing of tillite would need to include thin-section analysis for deleterious minerals, as clast inclusions sometimes have the propensity for alteration to clay-minerals with time.

6.7 Site Drainage

The Choje site is cross by a great number of non-perennial drainage lines, as well as permanent river bodies. As mentioned previously, the site is arid with a low rainfall - 683mm per annuum recorded for Grahamstown (Climate-Data.org, 2019). The site is also traversed by the Department of Water Affairs administered irrigation canal.

Drainage lines are subject to rapid flash-flooding and erosion after heavy precipitation events. Caution must therefore be assumed in the stream protection of stream routes around working areas on the site, as well as turbines bases and crane platforms. The use of gabions and reno mattresses is advised for anti-erosional measures.

The groundwater table was measured in all boreholes and found to lie beyond the current depth of influence of turbine foundations. Quarterly inspections of the groundwater table in boreholes will be conducted over the next 12 months as an ongoing monitoring programme. This report may also be read in conjunction with

the DNV GL subcontracting geohydrologist's report "Desktop Groundwater Feasibility Assessment for Choje Windfarm Projects, Eastern Cape", and referenced 005020R01.

6.8 Further Studies Required

This report represents the findings of a preliminary geotechnical study, performed to obtain initial ground data on the site as a whole. Prior to finalisation of design, a detailed geotechnical study will need to be performed. As a minimum, this should include the following:

- Rotary core drilling of each proposed foundation position to a depth not less than 1.5B, where B = diameter of the proposed WTG foundation footing. Sampling and logging of all trial pits according to South African standards by a professional engineering geologist;
- Excavation of trial pits for bulk material sampling at each turbine position, as well as nearby crane
 platform positions. Sampling and logging of all trial pits according to South African standards by a
 Professional Engineering Geologist;
- Excavation of trial pits for bulk material sampling along access road routes. Trial pit frequency of a
 minimum of 1km intervals, staggered on alternating sides of the centreline, is advised. Sampling
 and logging of all trial pits according to South African standards by a Professional Engineering
 Geologist;
- Retrieval of samples of rock core, disturbed and undisturbed soil and water samples for laboratory analysis. Advanced geotechnical testing;
- Evaluation of subsurface density conditions through the use of DCP and DPSH testing at turbine, road access and structural positions as directed;
- Retrieval of p- and s-wave ground propagation data through the use of CSW and MASW geophysics
 tests. It is advised to utilise both forms of testing on the site, as CSW may provide better
 information in the near-surface environment, however MASW will be more effective in the harder
 rock and deeper penetration of the Karoo and Cape formations;
- In-situ electrical resistivity testing at substation positions and selected turbines;
- In-situ thermal resistivity testing at selected positions along primary cable routes;
- Further material sources reconnaissance studies as required for hard rock aggregate in the Eastern Block;
- Production of a detailed geotechnical investigation report for each sub-windfarm site detailing all required geotechnical parameters for effective WTG foundation design, as well as cable routes, access roads
- Confirmation of geotechnical conditions expected at each turbine location by a professional engineering geologist or geotechnical engineer during construction. Inspections to be performed after excavation of turbine bases, prior to foundation casting to identify any soft spots, unexpected structural variations or groundwater fissures.

7 CONCLUSION

DNV GL has conducted a preliminary geotechnical investigation for the proposed development of a cluster of utility-scale wind farms between Grahamstown and Somerset East, Eastern Cape. The site was investigated by rotary core drilling, trial pitting, in-situ density testing as well as laboratory soil and groundwater testing.

The site has been found to be favourable for the development of wind turbine generators and associated civil roads and structures. Colluvium, alluvium, residual soils, mudstone, siltstone, tillite and sandstone characterised the trial pit profiles and borehole logs across the investigation site. Comment on the excavatability of the material has been provided for the proposed access roads and turbine positions. It is envisaged that hard excavation techniques will predominantly be required across the site due to the shallow depth to rock encountered, but that in an estimated 30% of positions softer ground conditions may prevail.

A required bearing capacity and founding depth was not provided for the site, as turbine selection is still ongoing. It is estimated, however, that a bearing capacity of approximately 300 kPa is available at a depth of 2-3 m across most of the site, except at a lesser number of weathered positions where an adapted foundation design will be required in the form of ground improvement and engineered soil rafts.

Buoyancy conditions may occur at positions in hard rock after heavy rainfall events, where surface drainage has not been adequately designed to prevent water ingress to the foundation excavation. In other positions, however, the deep water table would negate the threat of buoyancy.

Assessment of the rotational stiffness is dependent on the stiffness limits placed on the design by the turbine manufacturer. These have not yet been assessed for the site or a specific turbine model.

The extent of the investigations undertaken is deemed adequate, within the time and budget constraints, to present an overview of the geotechnical conditions across the investigation site.

It must be borne in mind that the overall interpretation of geotechnical conditions is based upon point information derived from the respective test positions and that conditions intermediate to these have been inferred by interpolation, extrapolation and professional judgement. The interpretation of the geotechnical conditions is based on information available at the time of drafting this report by DNV GL South Africa and it's partners.

8 REFERENCES

American Society for Testing Materials (ASTM). 1999. Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation.

Brandt, M. 2011. Seismic Hazard in South Africa. Report for the Council for Geoscience, Pretoria.

Brink, A.B.A. & Bruin, R.M.H. Eds. 1990. *Guidelines for Soil and Rock Logging in South Africa*. 2nd Impression 2008 ed.: Proceedings, Geoterminology Workshop organised by AEG, SAICE and SAIEG.

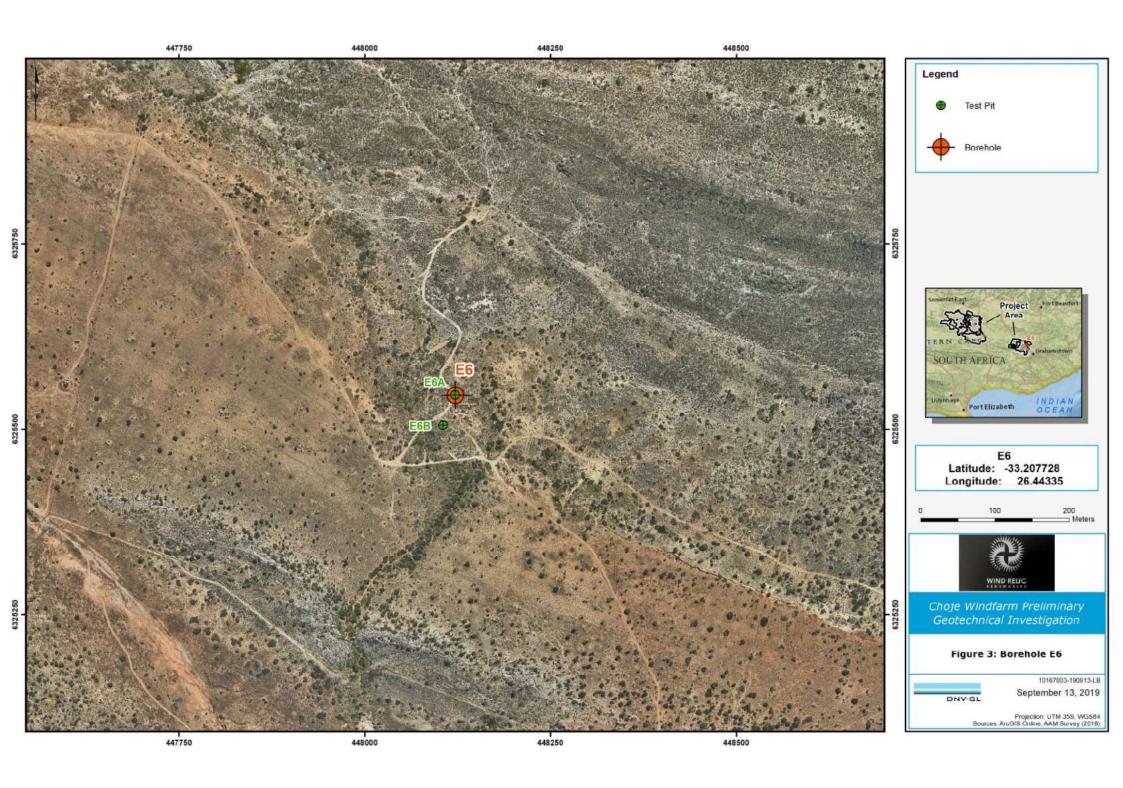
British Standards Institution. 1990. *British Standard methods of test for soils for civil engineering purposes*. Milton Keynes [England]: British Standards Institution.

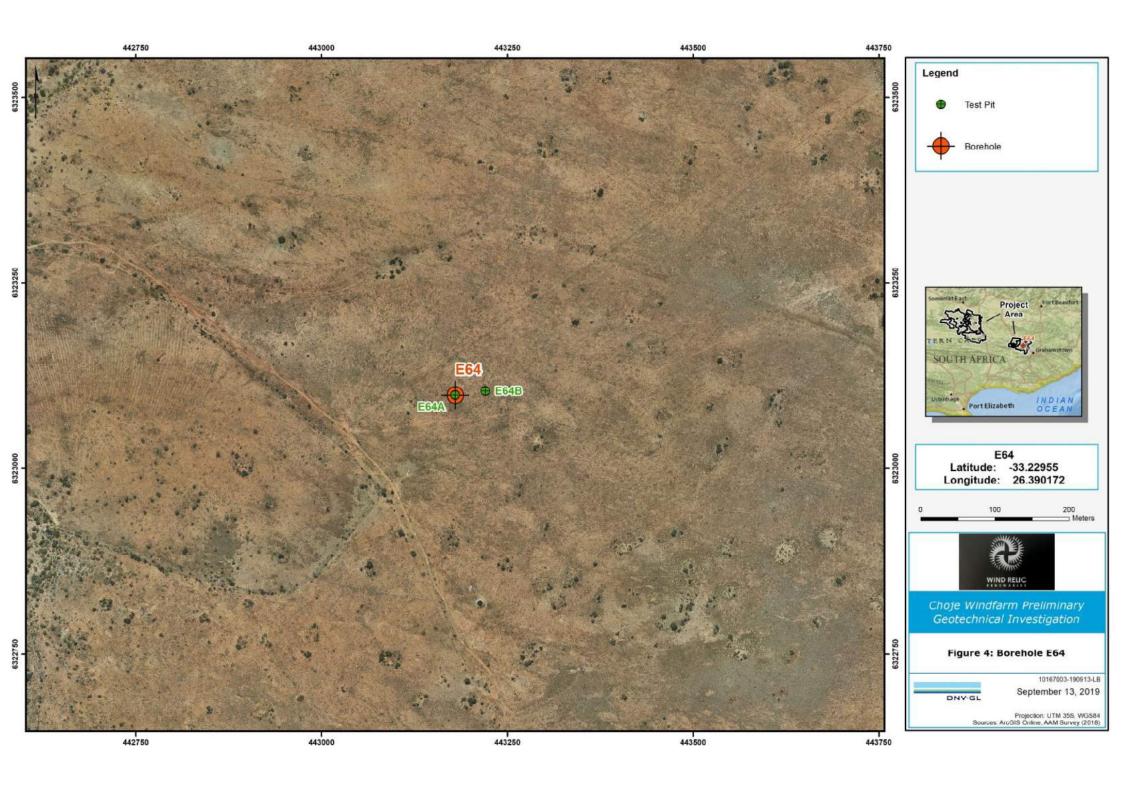
Chief Director of the Geological Survey. 1992. Seismic Hazard Map of Southern Africa. 1:6000000. Pretoria: Government Printer.

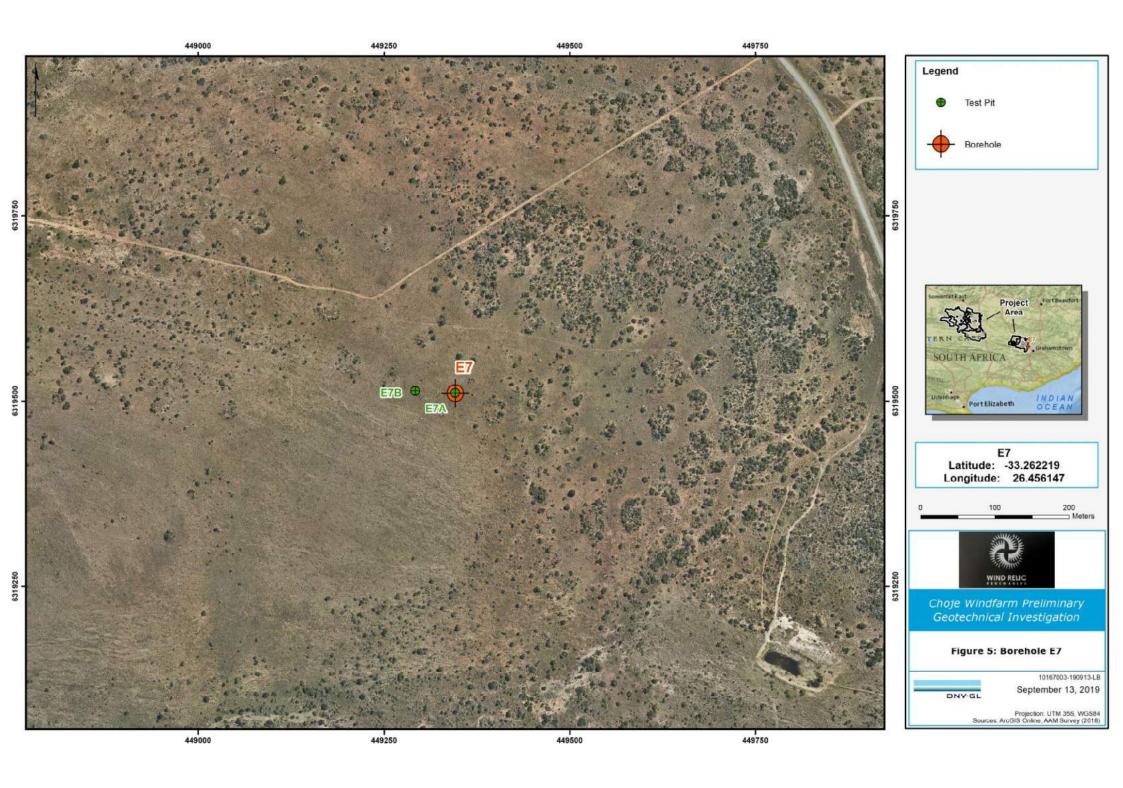
Climate-Data, (2019). *Grahamstown Rainfall*. https://en.climate-data.org/africa/south-africa/eastern-cape/grahamstown-638/#climate-graph

Committee of State Road Authorities, National Institute for Transport and Road Research (CSIR). 1985. Guidelines for road construction materials (TRH14). Pretoria: Dept of Transport.

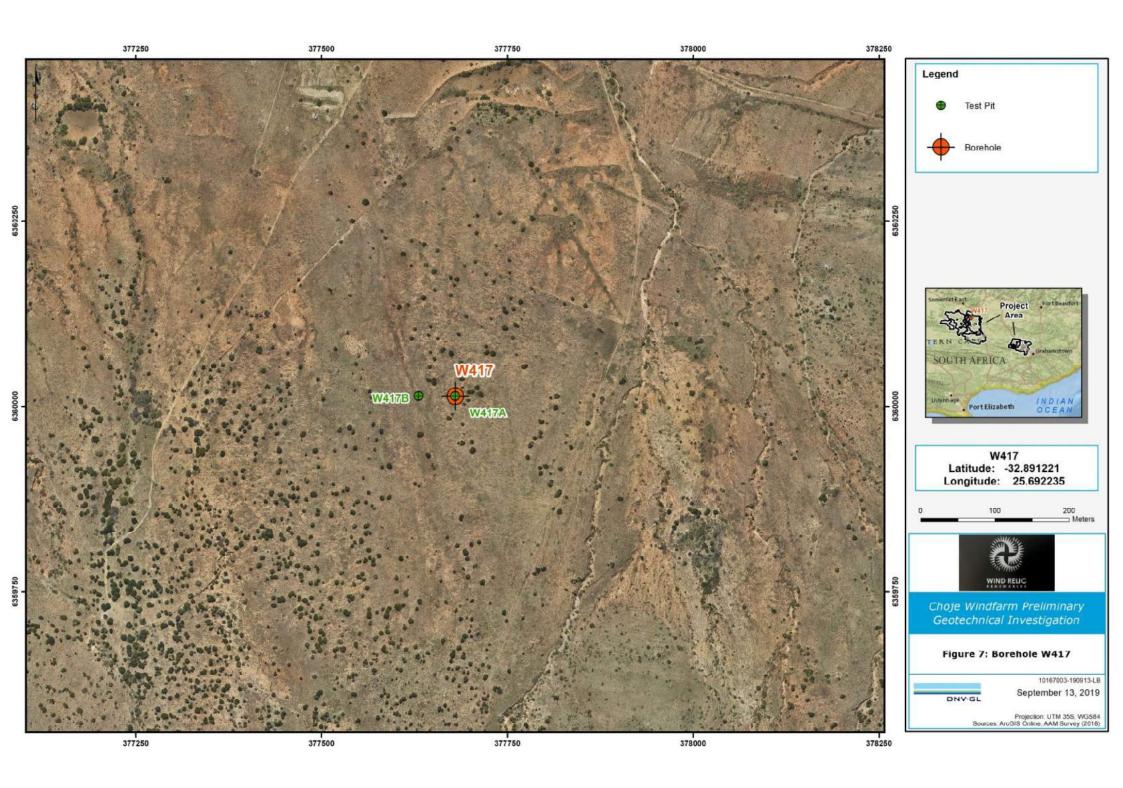
Committee of State Road Authorities, National Institute for Transport and Road Research (CSIR). 1986. *Technical Methods for Highways (TMH1).* Pretoria: Department of Transport.

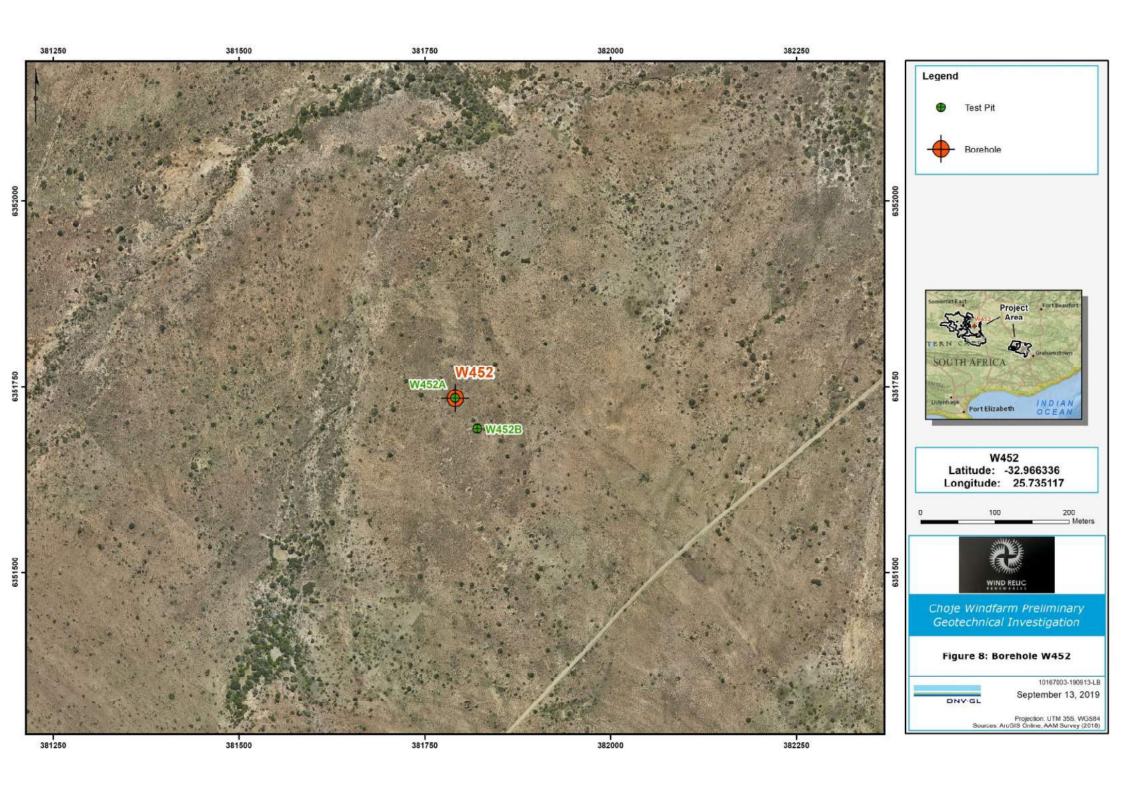

Committee of Transport Officials COTO (2018 - Draft). Standard Specifications for Road and Bridge Works (Draft). South African National Roads Agency SOC Limited, Pretoria.

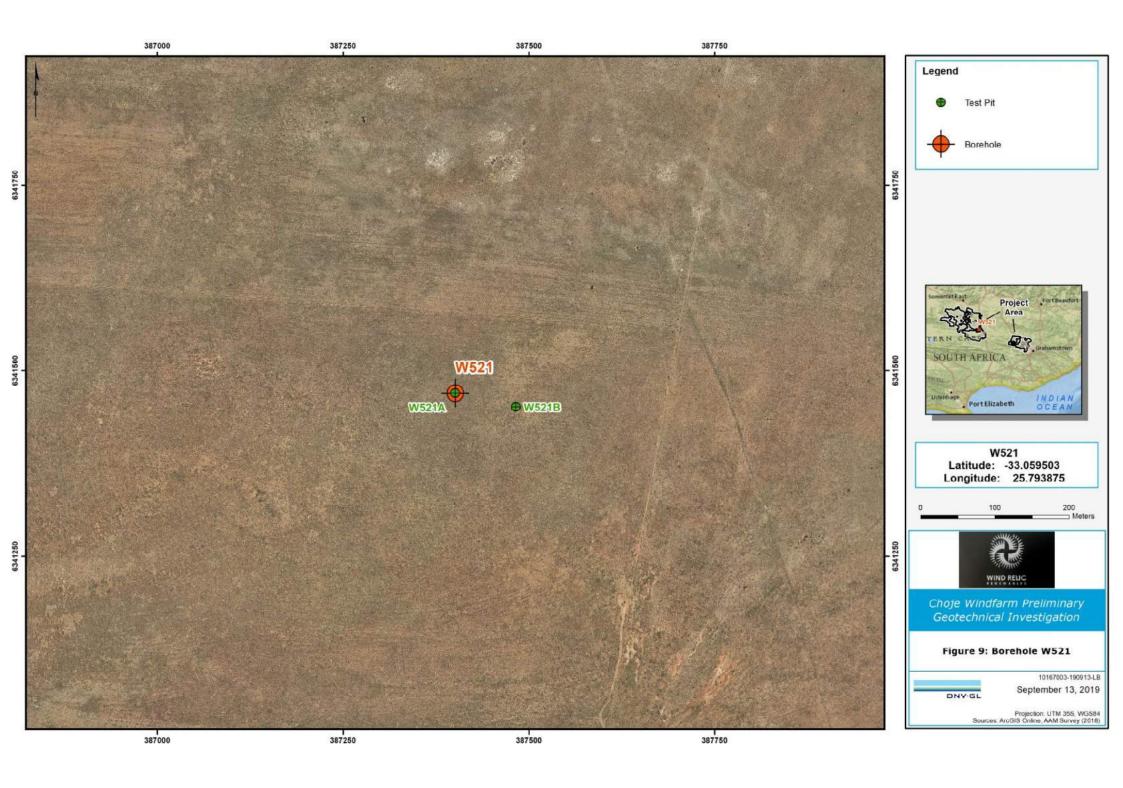

Outeniqua Geotechnical Laboratories (2019). Preliminary Geotechnical Report: Proposed Choje Wind Energy Facility in the Eastern Cape Province of South Africa, Rev 0.

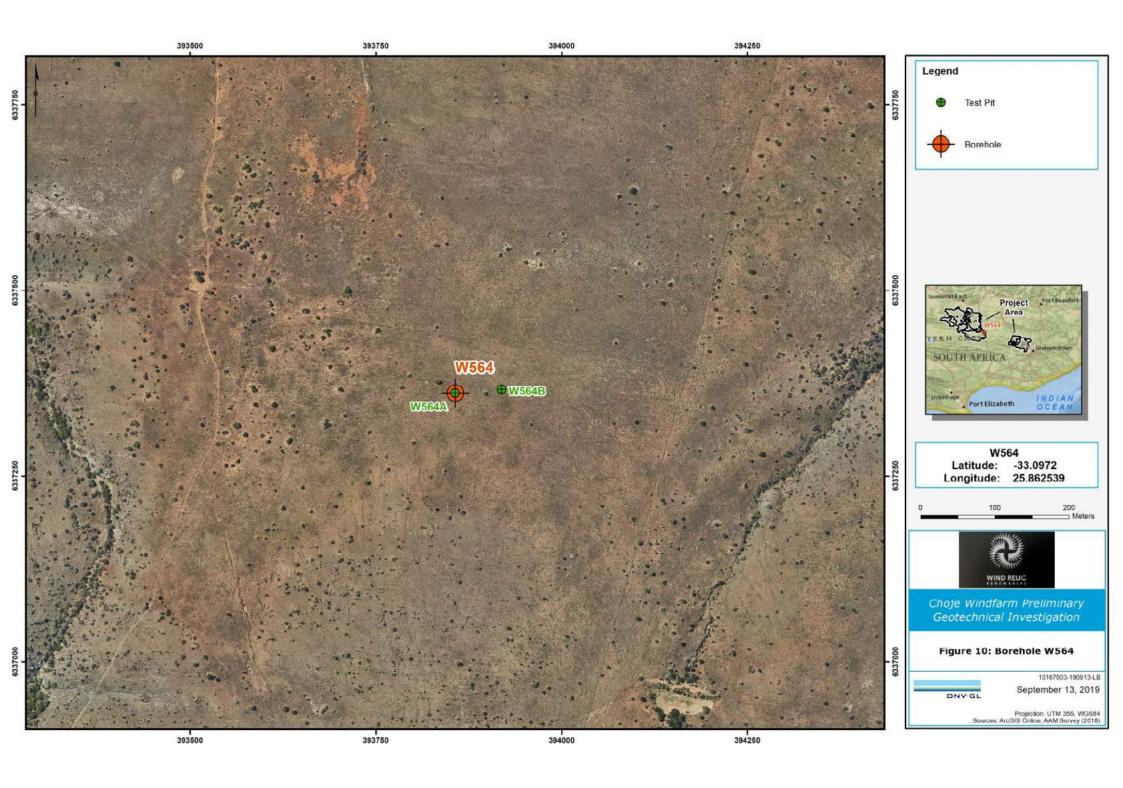

South African Bureau of Standards (SABS). 1982. SABS 1200. Standardised Specifications for Civil Engineering Construction. Government Printer. Pretoria.

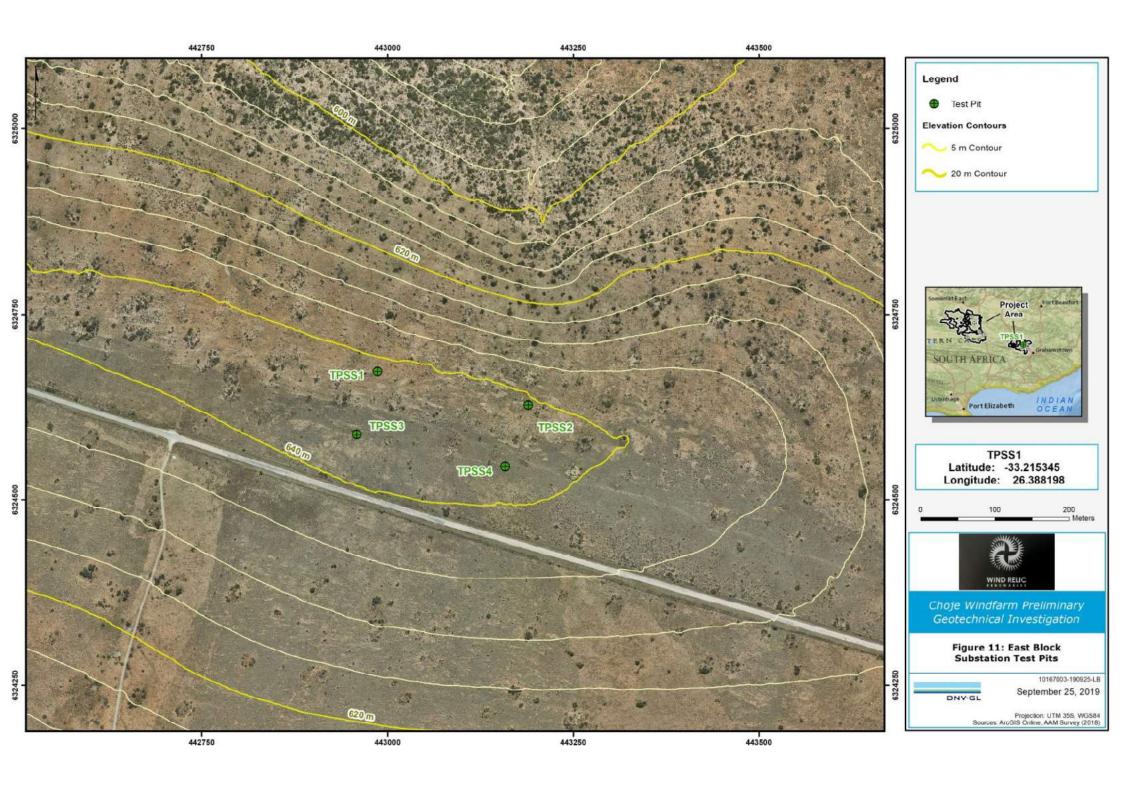
Van der Merwe, D.H. 1964. *The prediction of heave from the plasticity index and the percentage clay fraction of soils.* Civil Engineer in South Africa. 6(6): 103-106.

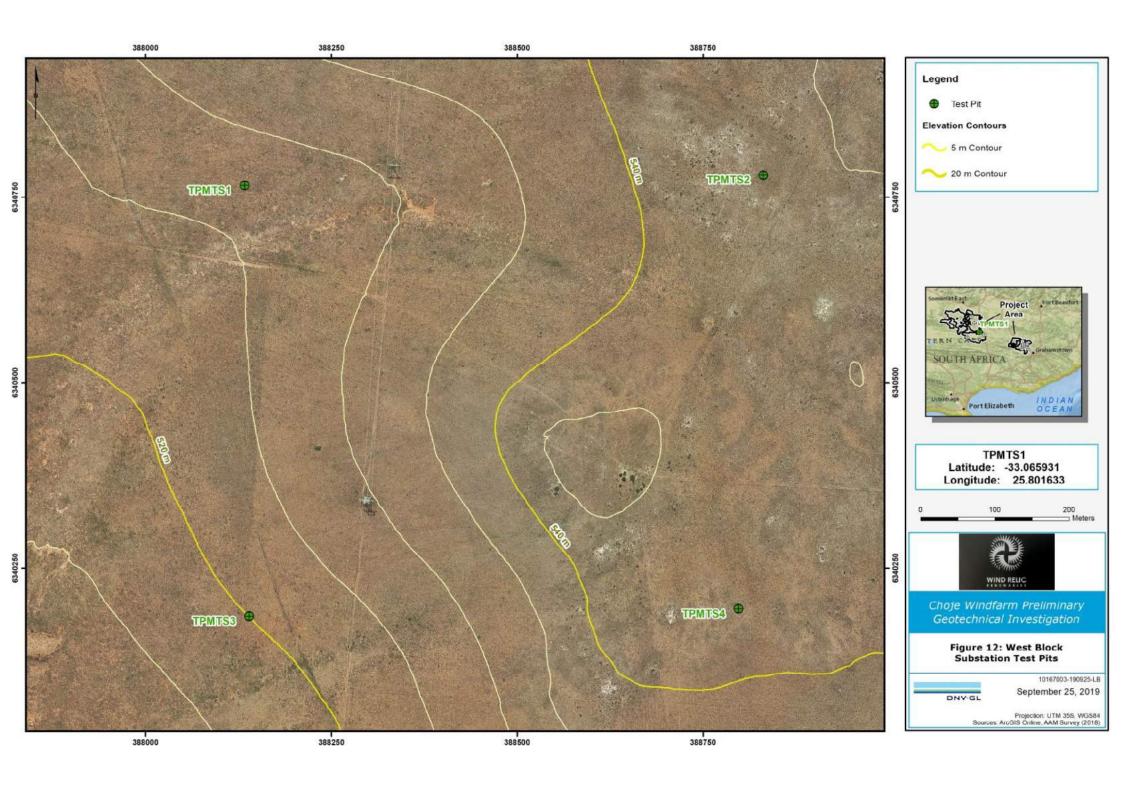

APPENDIX A - BOREHOLE & TRIAL PIT ORIENTATION PLANS

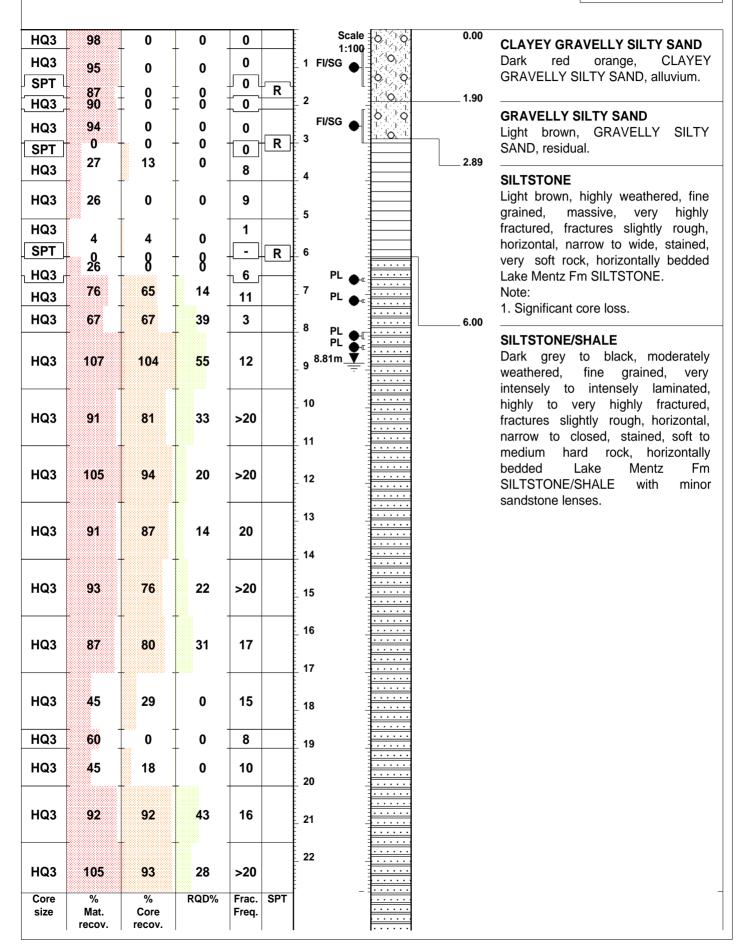








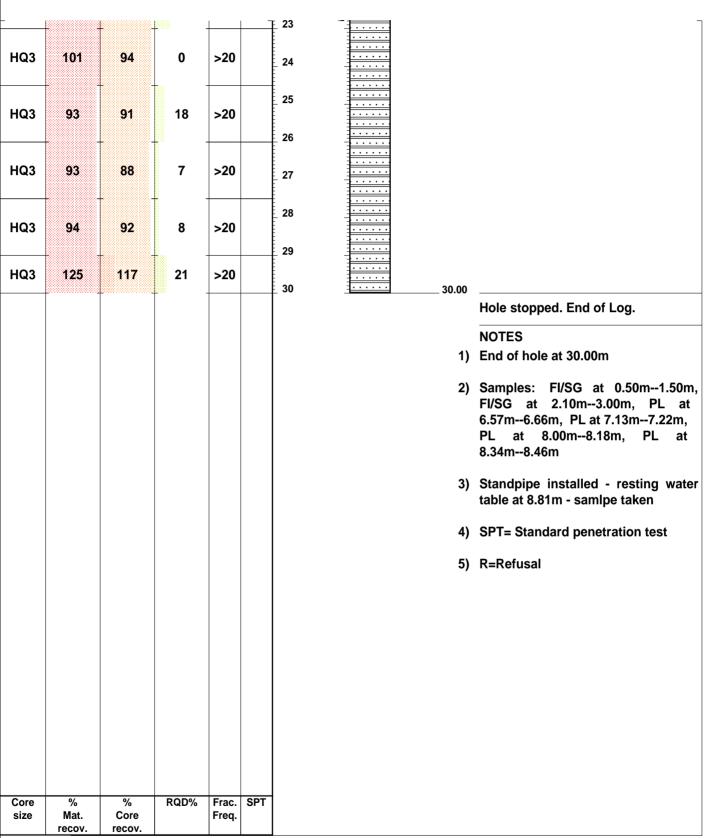




APPENDIX B - BOREHOLE LOGS

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E6 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E6 Sheet 2 of 2

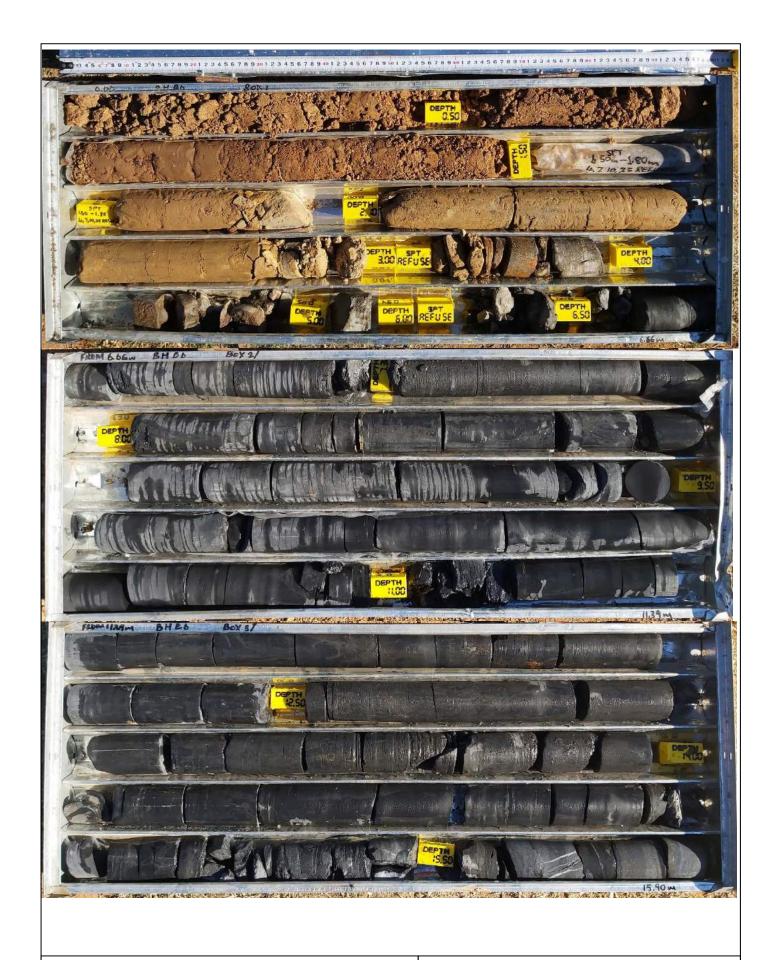
JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE :

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY: S Gallant
SETUP FILE: SANRAL.SET


INCLINATION: -90°

DATE DRILLED: May 2019 DATE LOGGED: July 2019

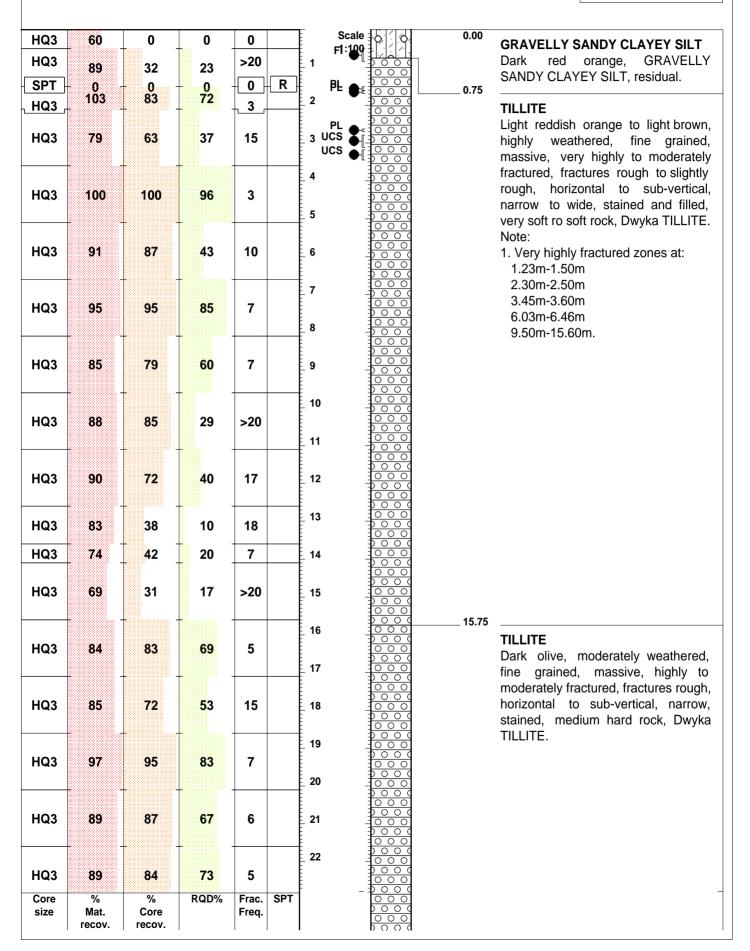
DATE: 29/08/2019 16:53 TEXT: C\dot7000\network\E6.txt **ELEVATION:**

X-COORD: X3675924 Y-COORD: 27 Y0051899

HOLE No: E6

CLIENT: DNV GL/WIND RELIC

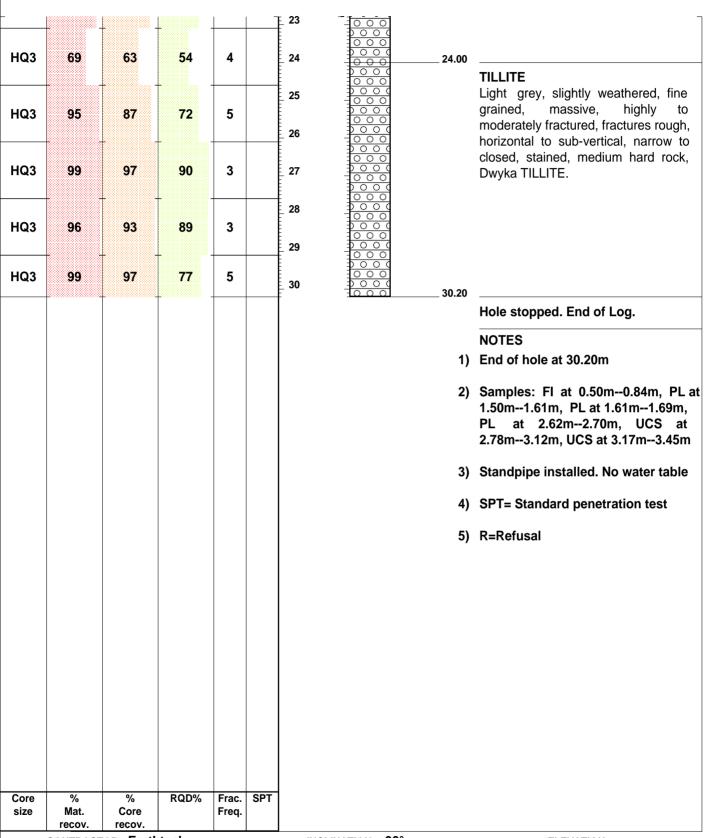
BOREHOLE NO: BH E6 SHEET 1/2


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E6 SHEET 2/2

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E7 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E7 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY: Aubrey

LOGGED BY: I Paton

TYPE SET BY: S Gallant

SETUP FILE: SANRAL.SET

INCLINATION: -90°

DATE DRILLED: June 2019 **DATE LOGGED: July 2019**

DATE: 29/08/2019 16:54 TEXT: C\dot7000\network\E7.txt **ELEVATION:**

X-COORD: X3681962 Y-COORD: 27 Y0050674

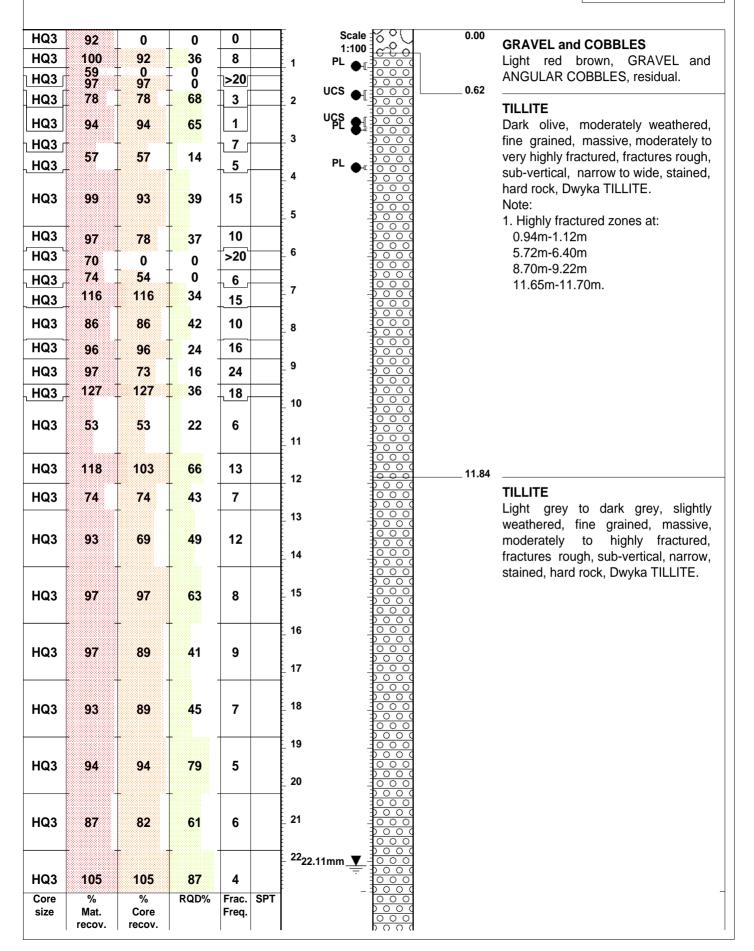
HOLE No: E7

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E7 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

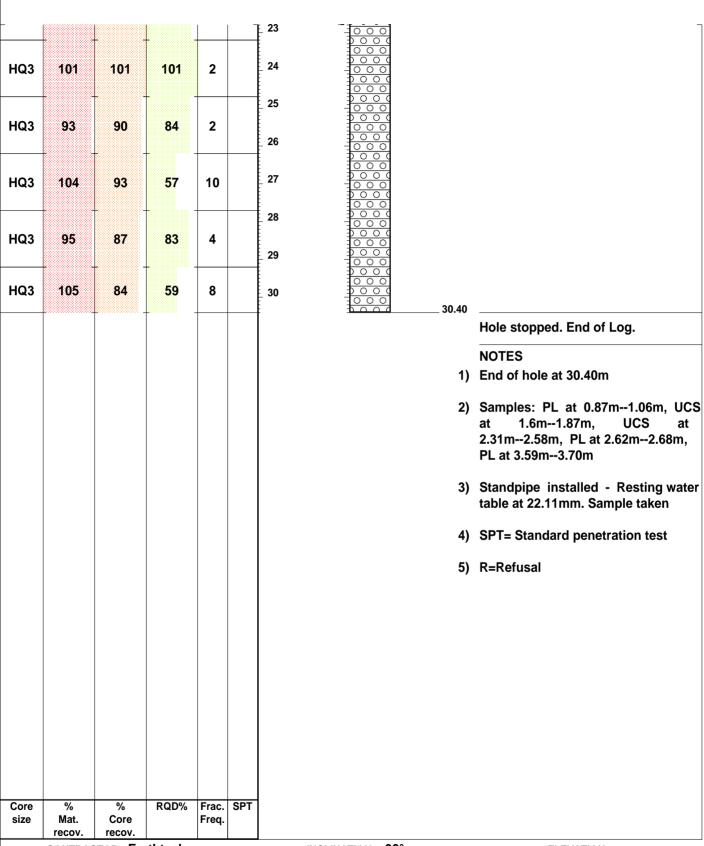
BOREHOLE NO: BH E7 SHEET 2/3


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E7 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E64 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E64 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY : Aubrey

LOGGED BY : I Paton

TYPE SET BY: S Gallant SETUP FILE: SANRAL.SET INCLINATION: -90°

DATE DRILLED : May 2019

DATE LOGGED : July 2019

DATE: 29/08/2019 16:54 TEXT: C\dot7000\network\E64.txt **ELEVATION:**

X-COORD : X3678372 Y-COORD : 27 Y0056843

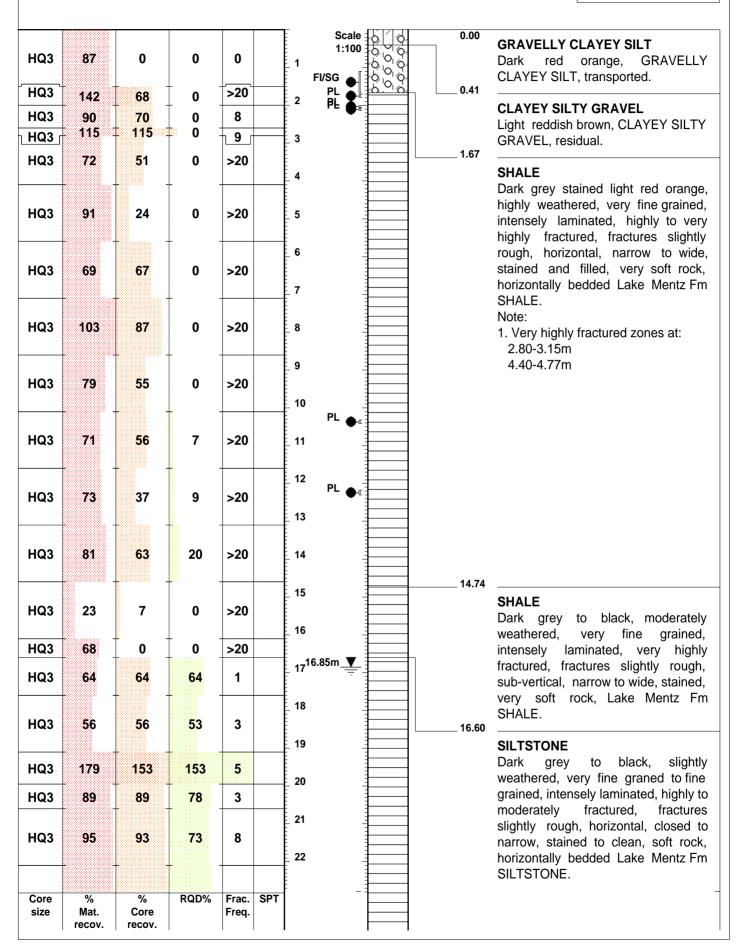
HOLE No: E64

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E64 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

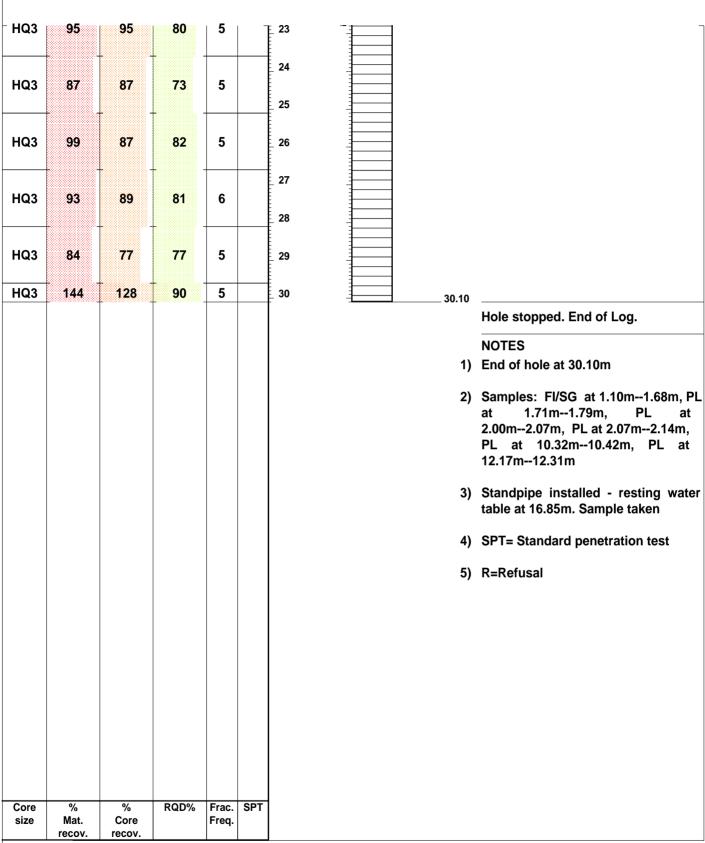
BOREHOLE NO: BH E64 SHEET 2/3


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E64 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E100 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E100 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE :

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY: S Gallant SETUP FILE: SANRAL.SET INCLINATION: -90°

DATE DRILLED : June 2019 DATE LOGGED : July 2019

DATE: 29/08/2019 16:54 TEXT: C\dot7000\network\E100.txt **ELEVATION:**

X-COORD : X3682241 Y-COORD : 27 Y0058545

HOLE No: E100

CLIENT: DNV GL/WIND RELIC

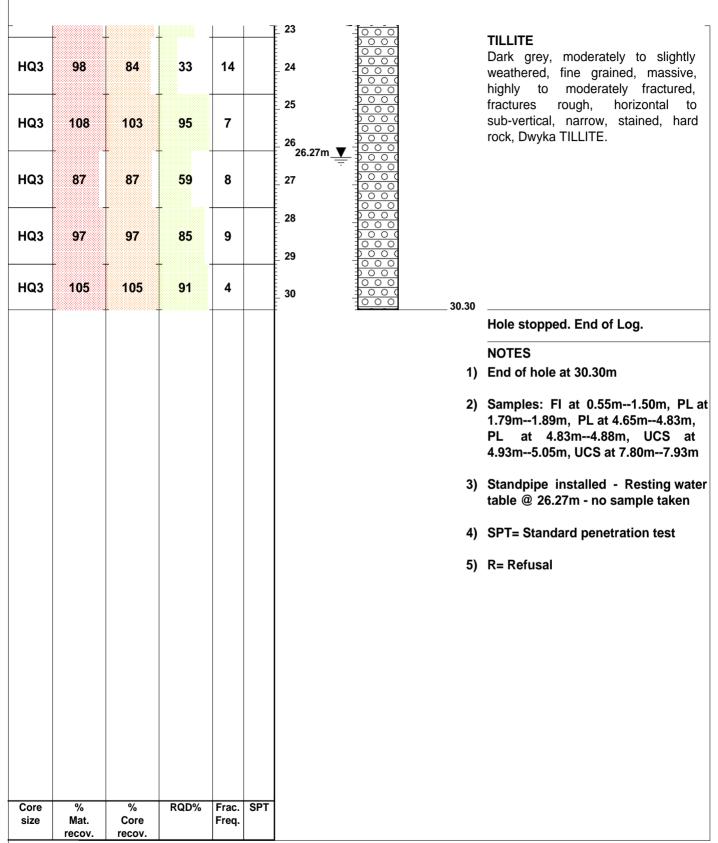
BOREHOLE NO: BH E100 SHEET 1/2


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E100 SHEET 2/2

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W411 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W411 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY: S Gallant SETUP FILE: SANRAL.SET INCLINATION: -90°

DATE DRILLED : July 2019 DATE LOGGED : July 2019

DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\W411.txt

ELEVATION:

X-COORD : X3666540 Y-COORD : 25 Y-058935

HOLE No: W411

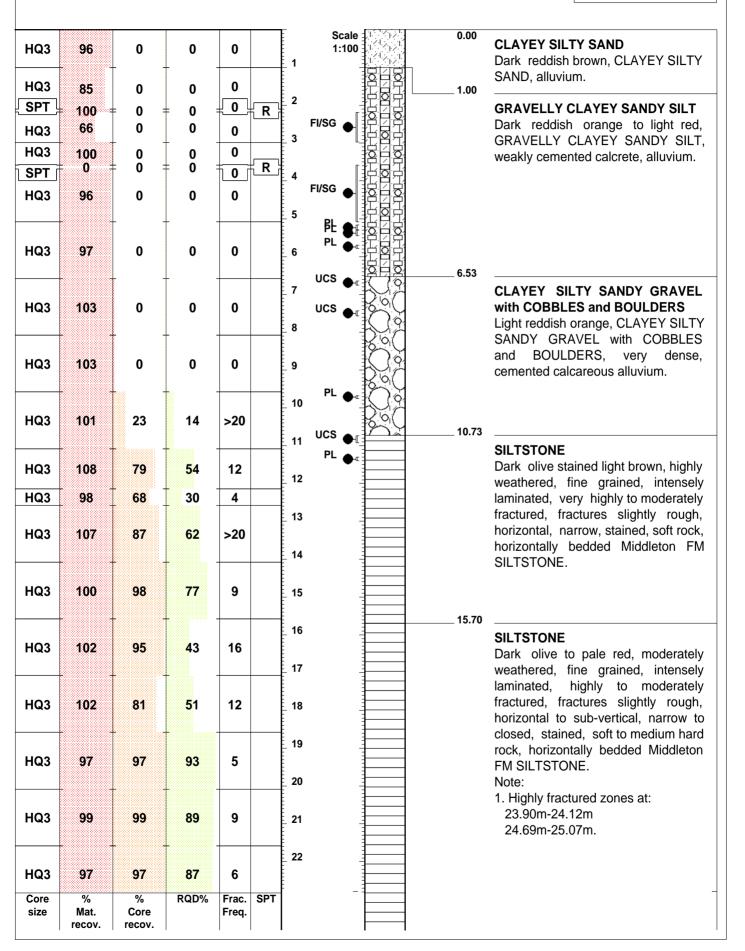
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W411 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W411 SHEET 2/3

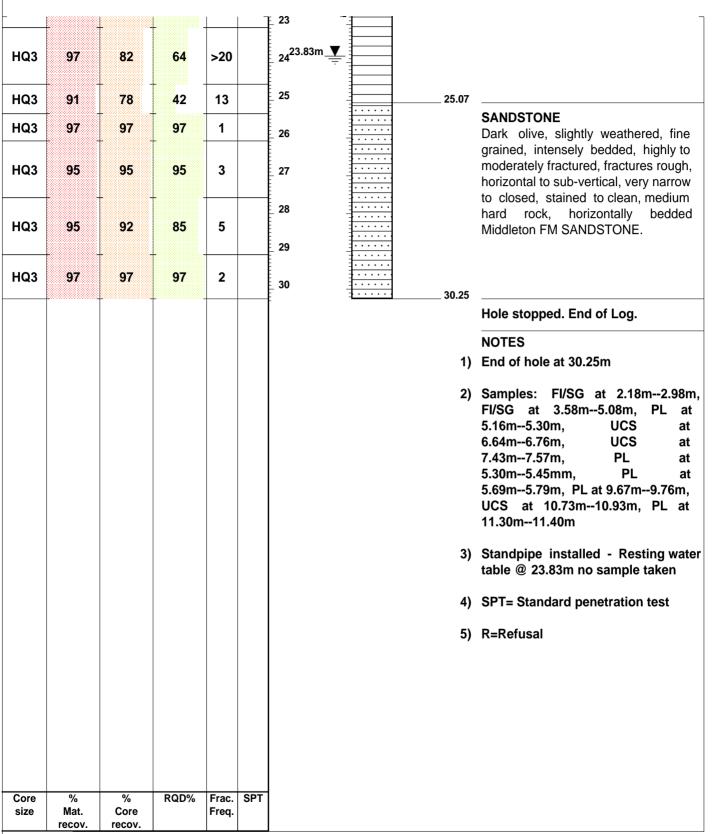
CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W411 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W417 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W417 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR : Earthtech

MACHINE:

DRILLED BY : Andries LOGGED BY : I Paton

TYPE SET BY : S Gallant

SETUP FILE : SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\W417.txt

ELEVATION:

X-COORD : X3640897 Y-COORD : 25 Y-064772

HOLE No: W417

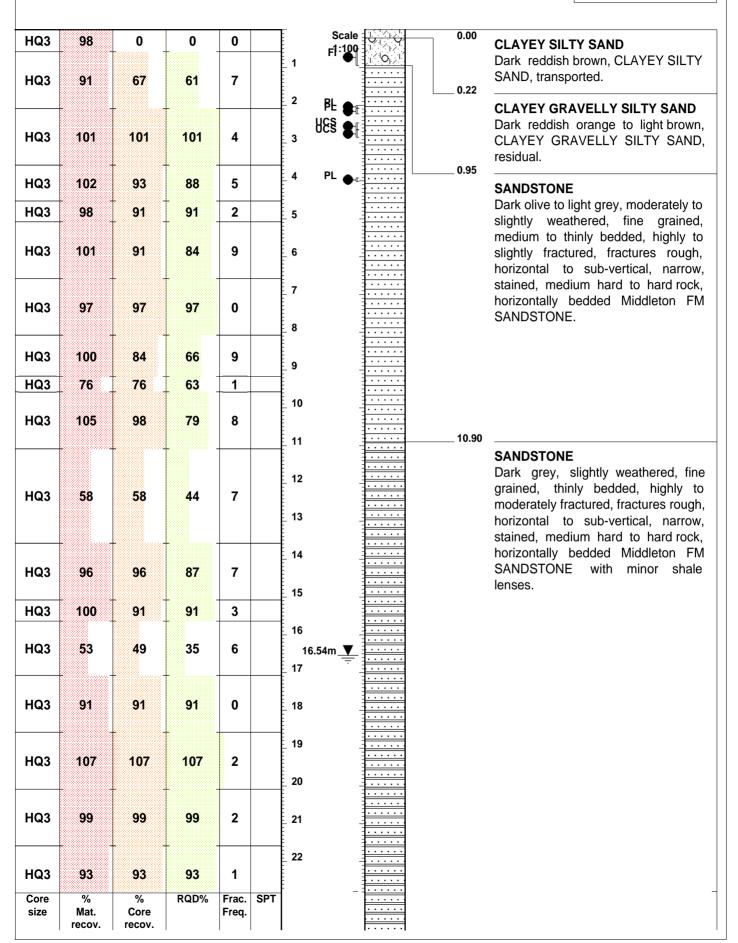
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W417 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W417 SHEET 2/3

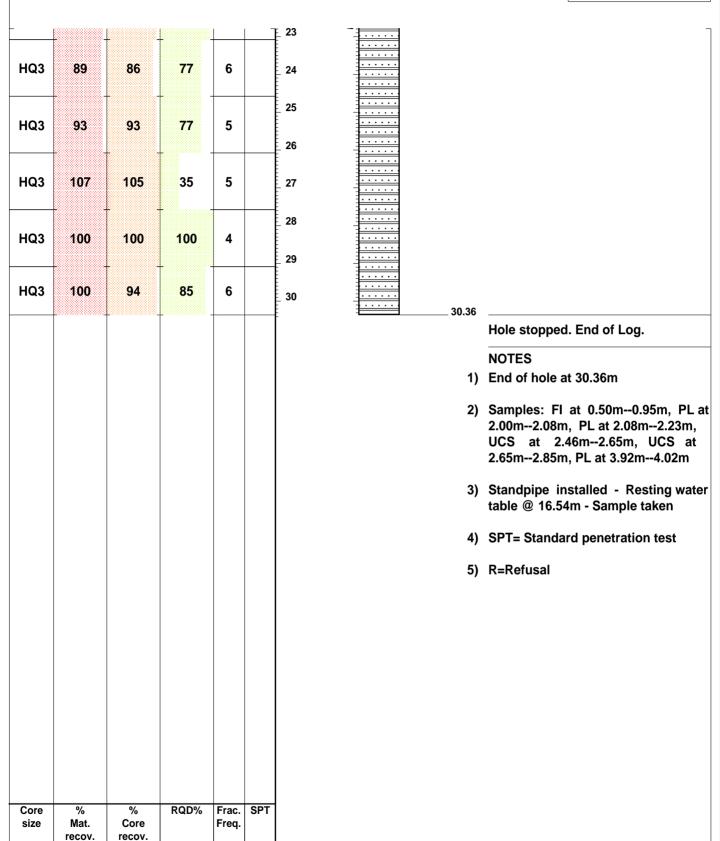
CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W417 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W452 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W452 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

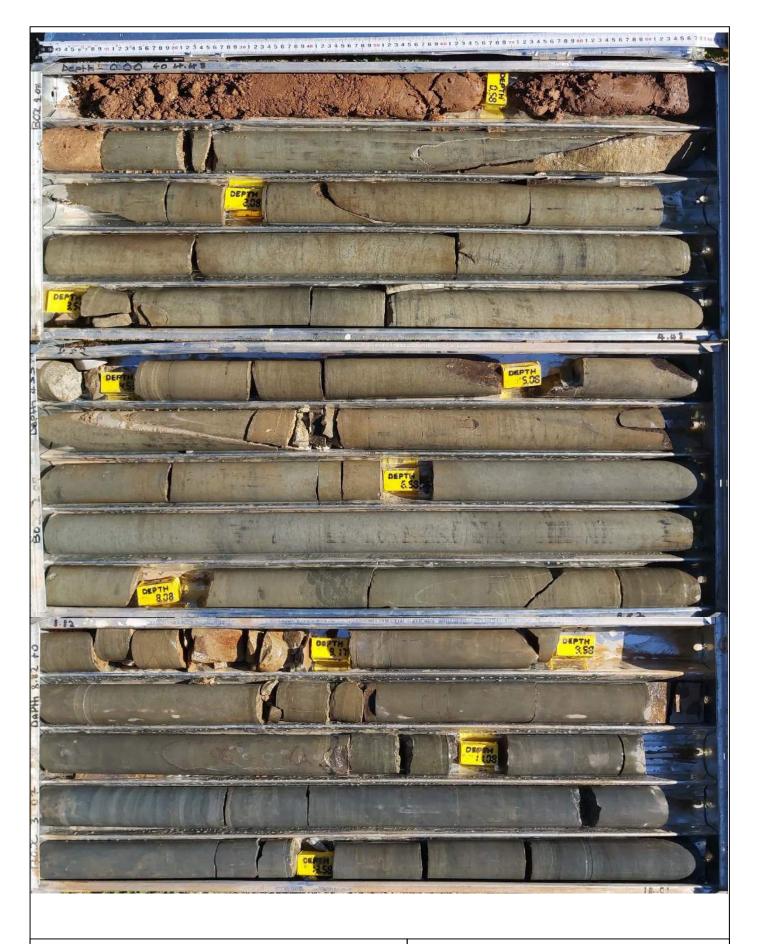
MACHINE:

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY : S Gallant SETUP FILE : SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019


DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\W452.txt

ELEVATION:

X-COORD : X3649254 Y-COORD : 25 Y-068726

HOLE No: W452

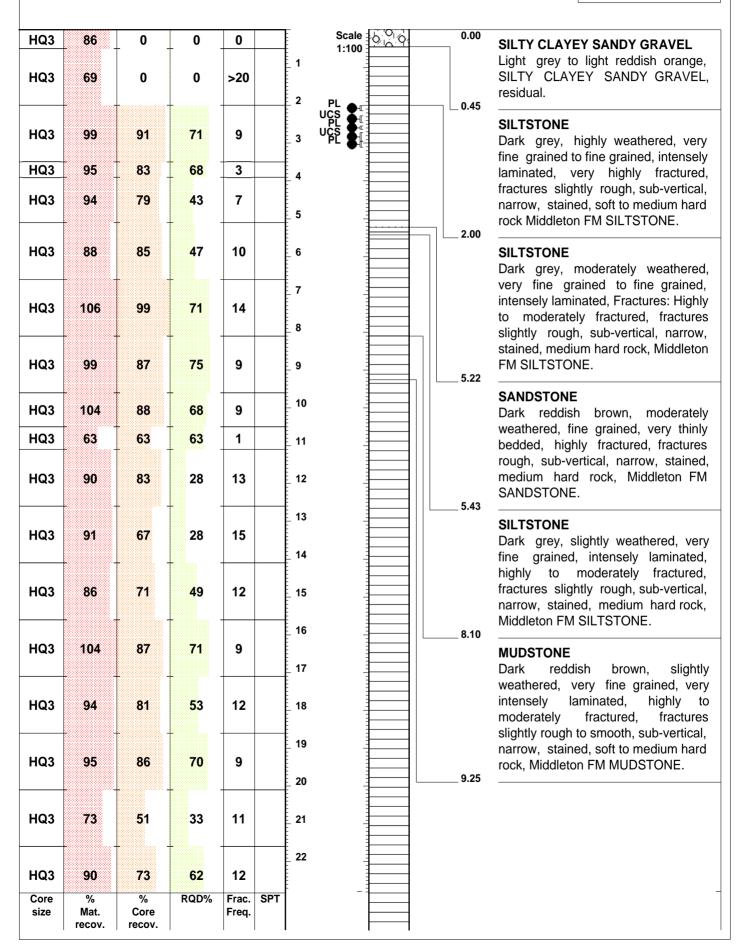
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W452 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W452 SHEET 2/3

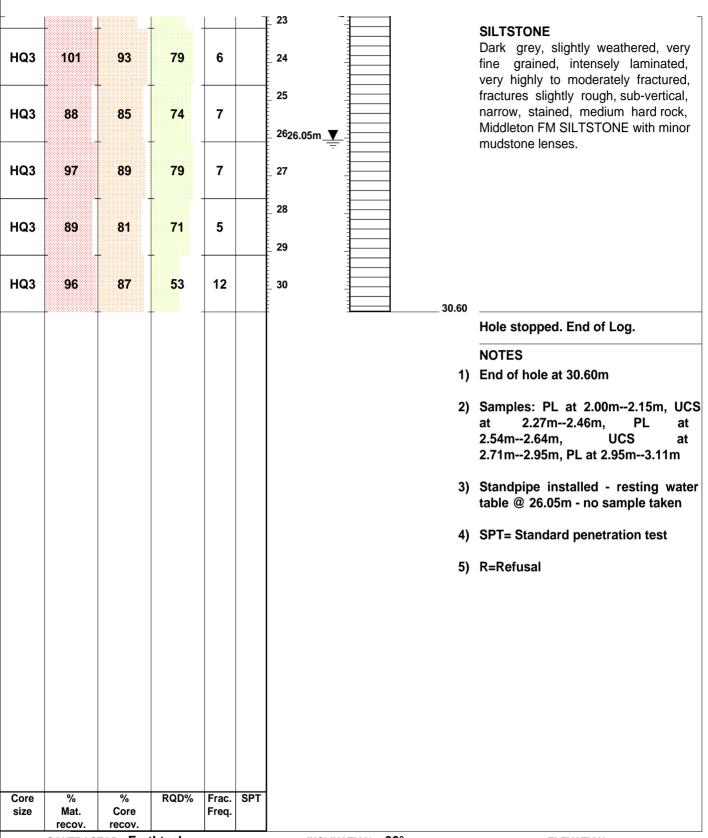
CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W452 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W521 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W521 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY : S Gallant SETUP FILE : SANRAL.SET INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019


DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\W521.txt

ELEVATION:

X-COORD : X3659627 Y-COORD : 25 Y-074141

HOLE No: W521

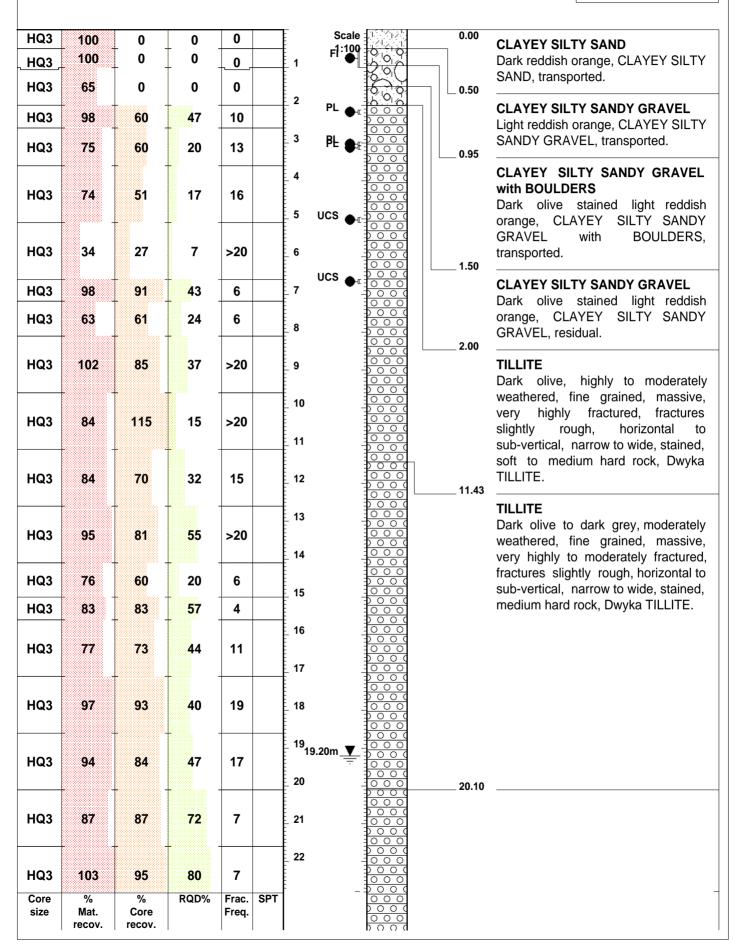
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W521 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W521 SHEET 2/3

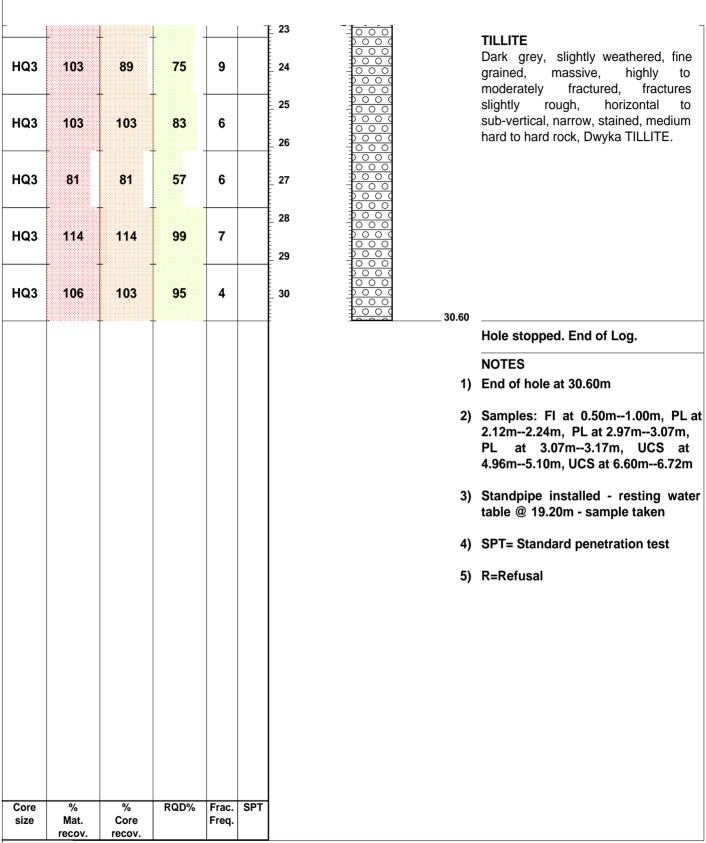
CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W521 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W564 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W564 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY: S Gallant SETUP FILE: SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

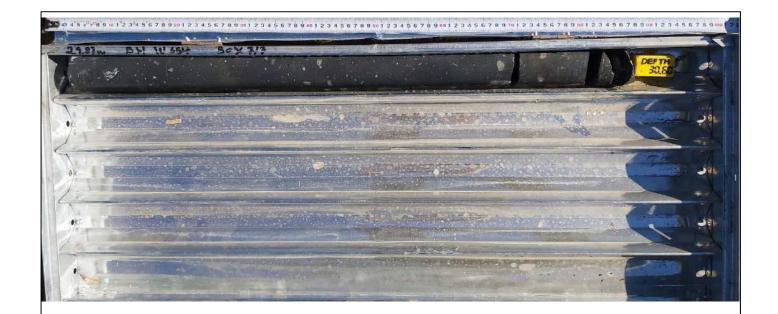
DATE: 29/08/2019 16:55

TEXT : C\dot7000\network\W564.txt

ELEVATION:

X-COORD: X3663859 Y-COORD: 25 Y-080520

HOLE No: W564


CLIENT: DNV GL/WIND RELIC

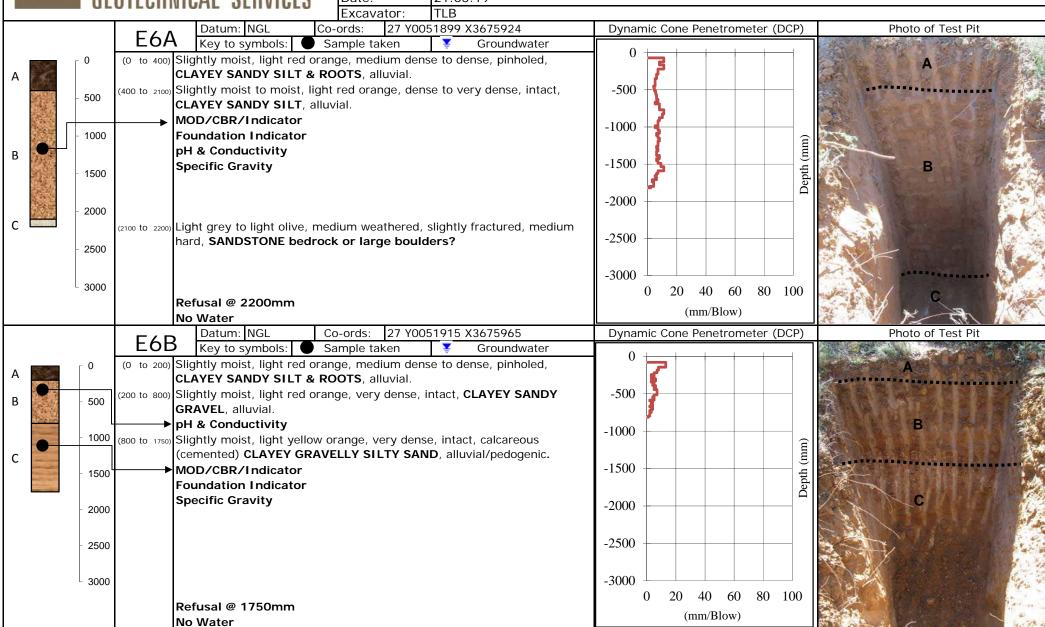
BOREHOLE NO: BH W564 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W564 SHEET 2/3

CLIENT: DNV GL/WIND RELIC

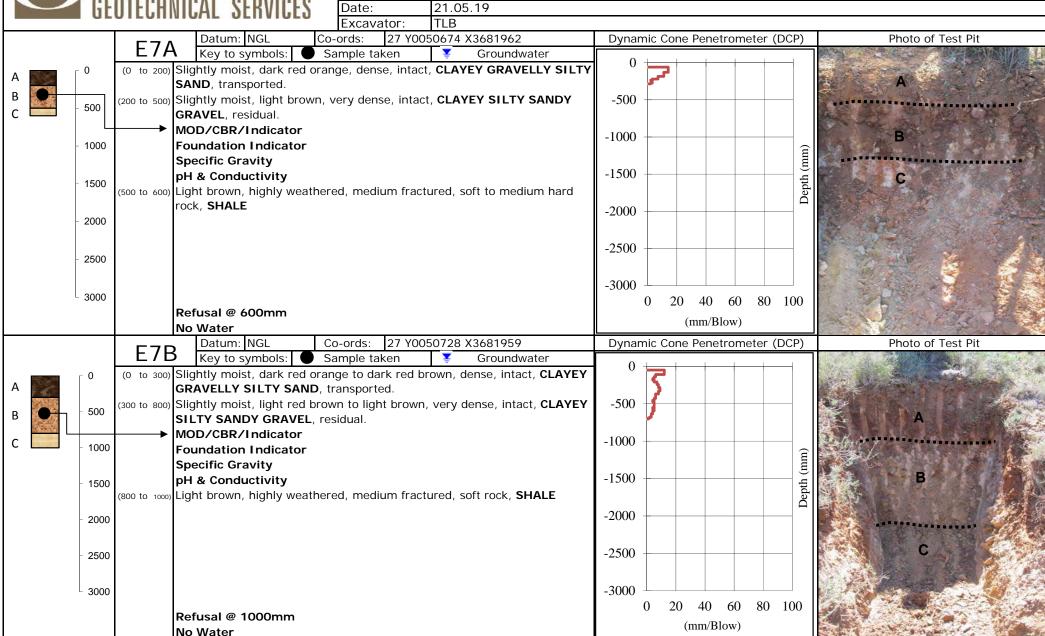
BOREHOLE NO: BH W564 SHEET 3/3

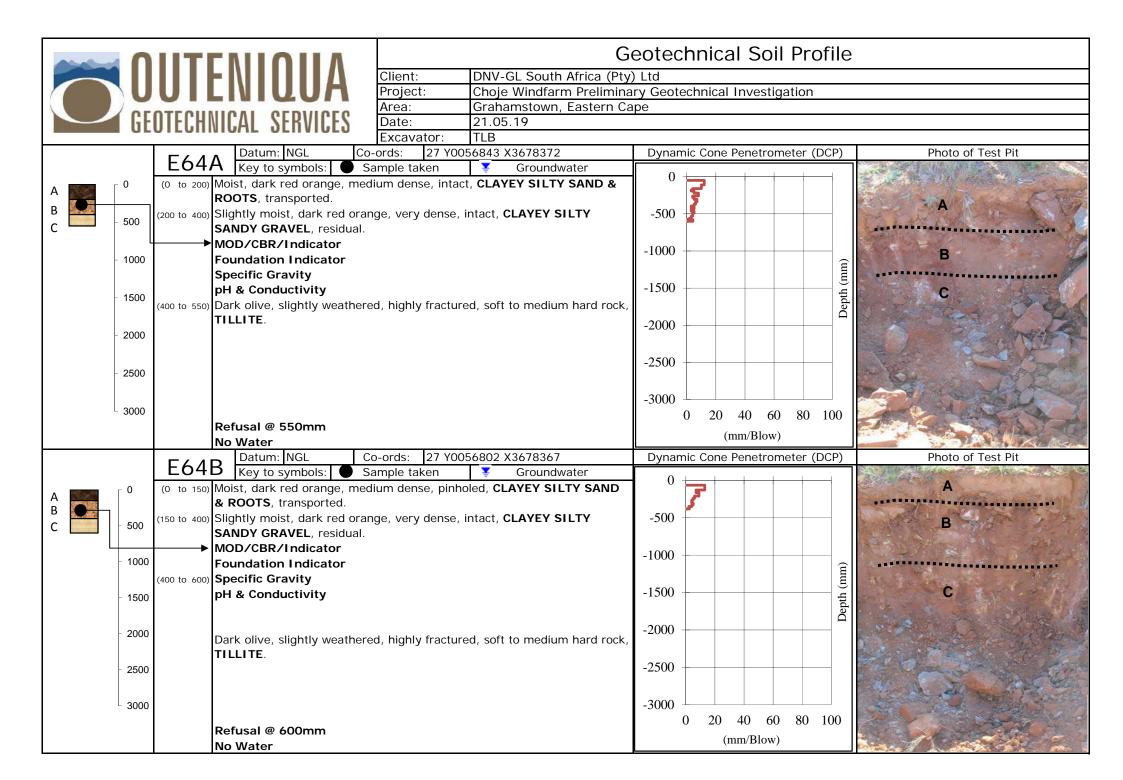

APPENDIX C – TRIAL PIT & DCP LOGS

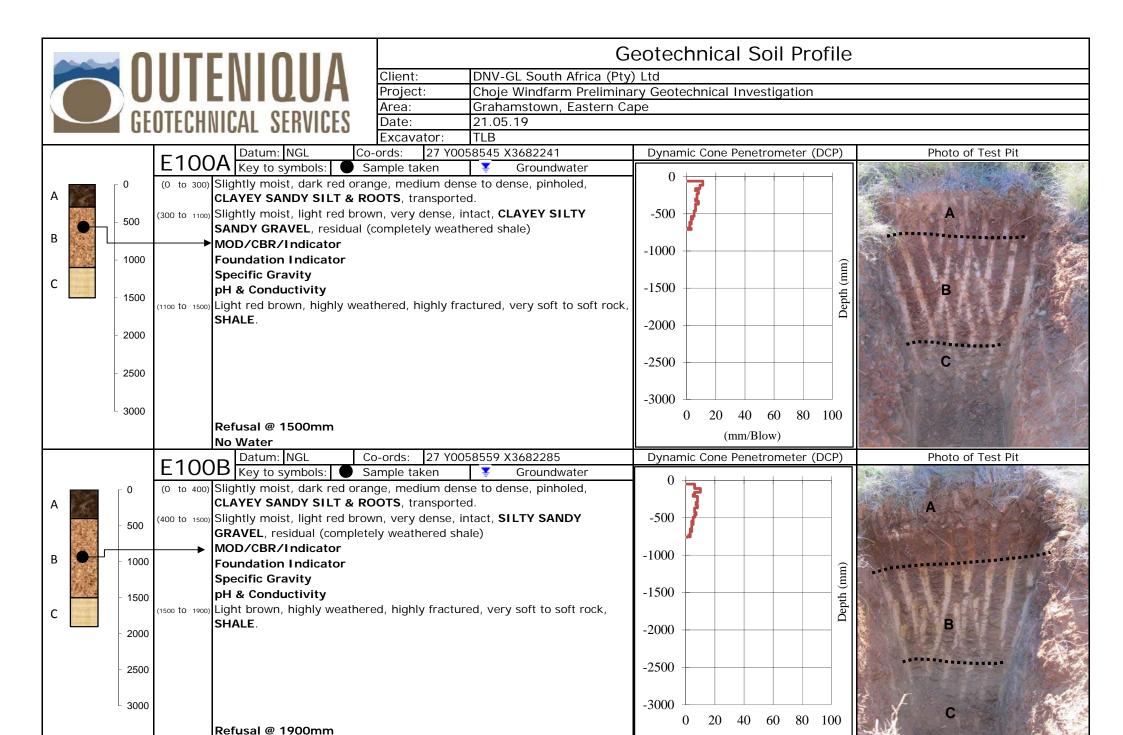
Geotechnical Soil Profile

Client:	DNV-GL South Africa (Pty) Ltd
Project:	Choje Windfarm Preliminary Geotechnical Investigation
Area:	Grahamstown, Eastern Cape

Date: 21.05.19

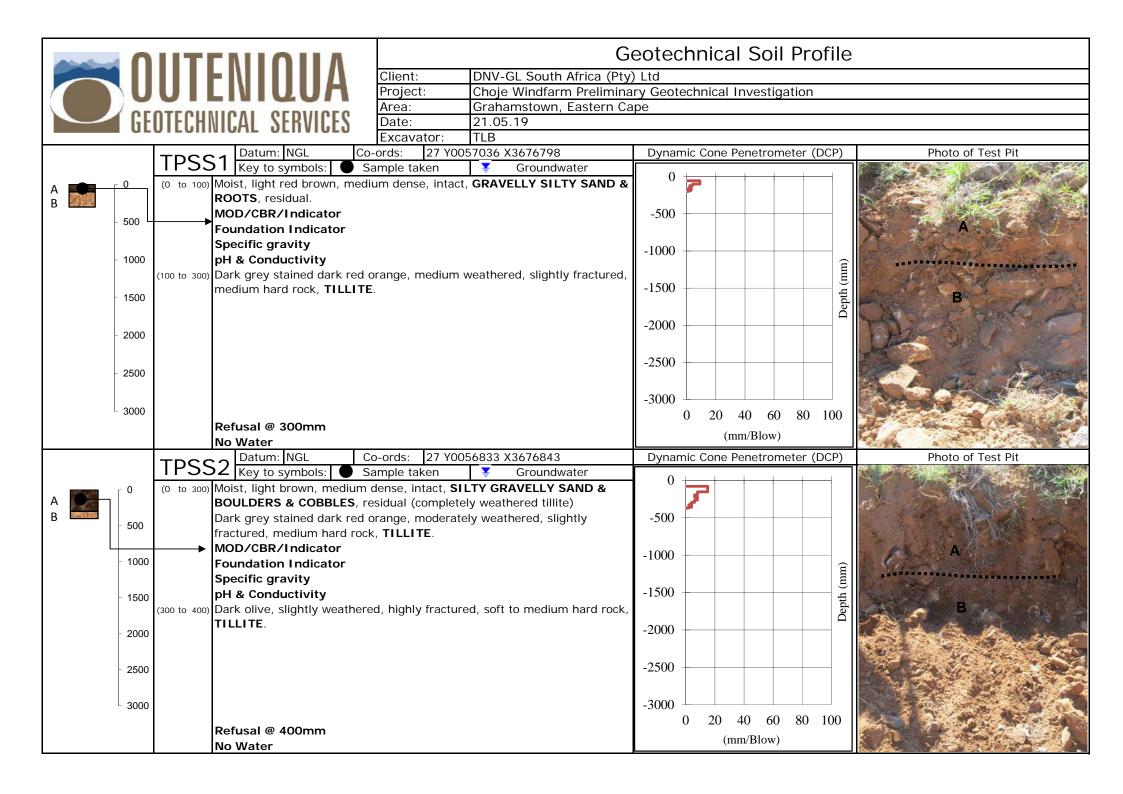


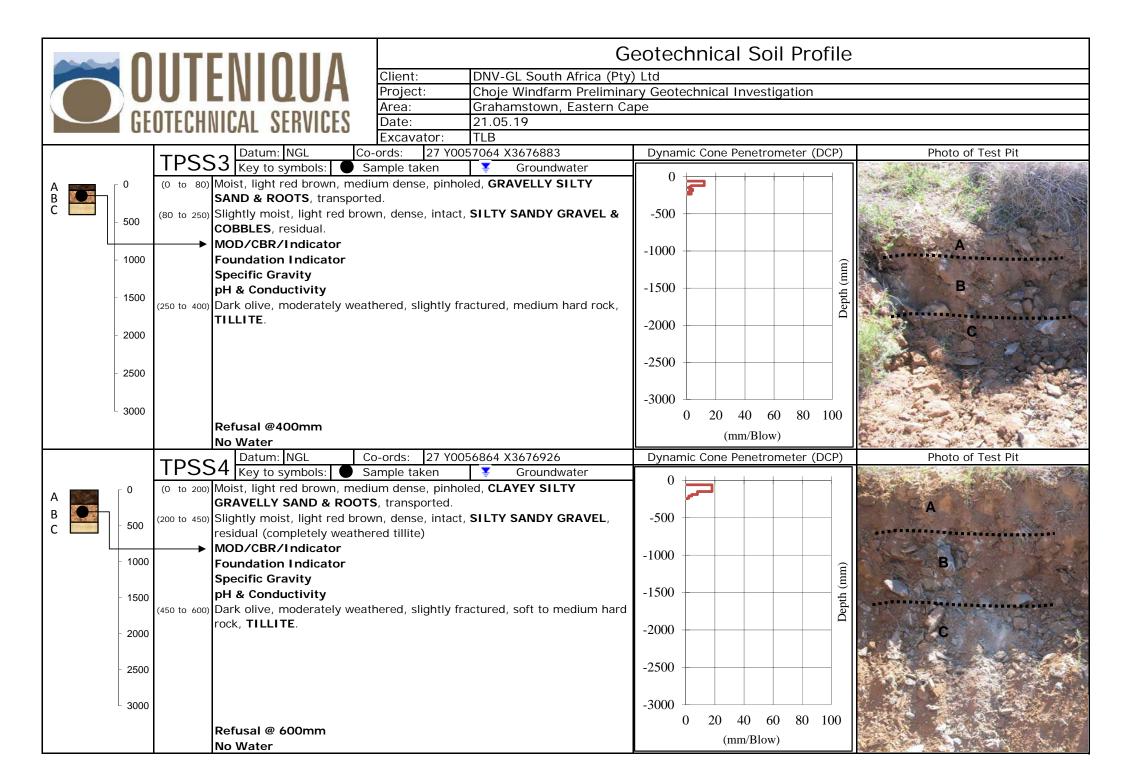


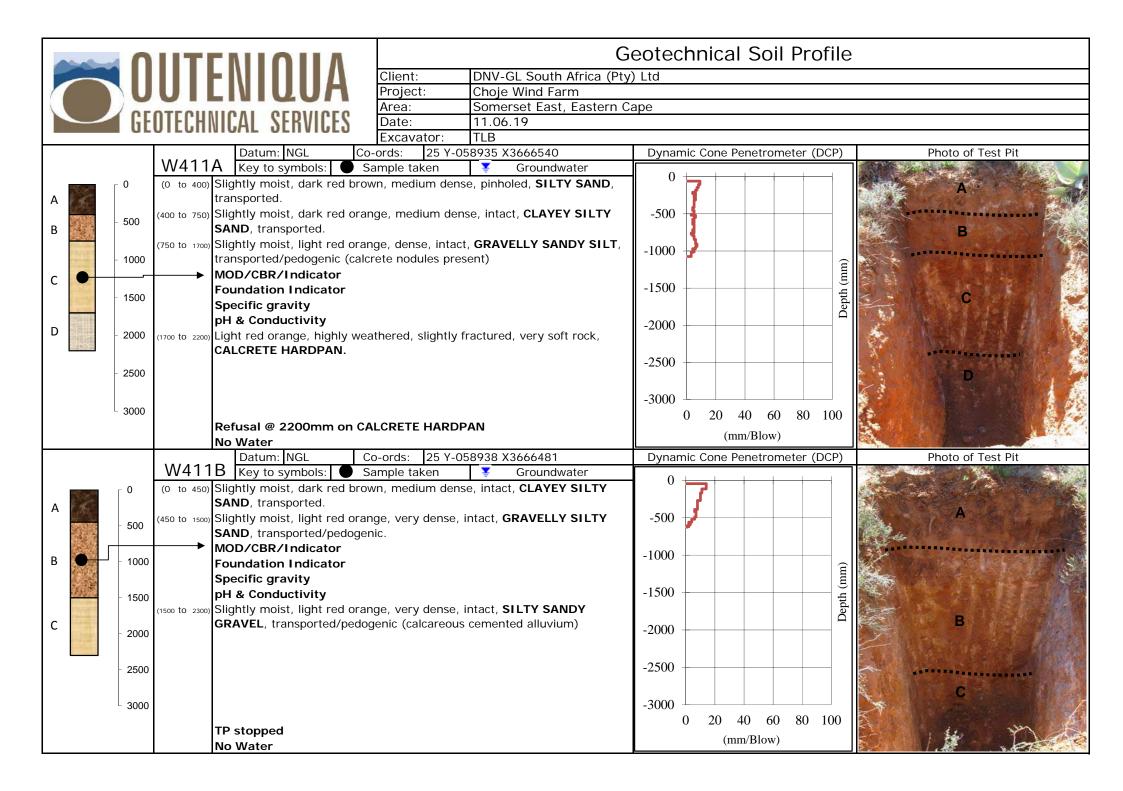

Geotechnical Soil Profile

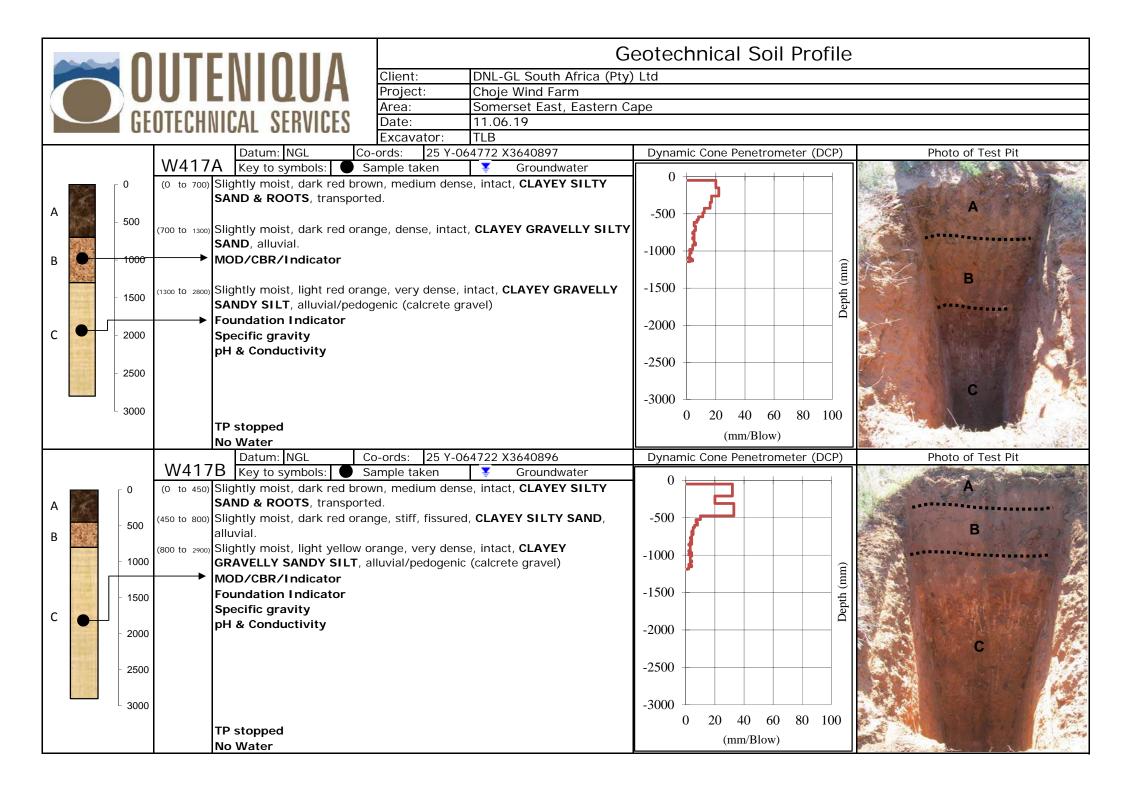
Client:	DNV-GL South Africa (Pty) Ltd	
Project:	Choje Windfarm Preliminary Geotechnical Investigation	

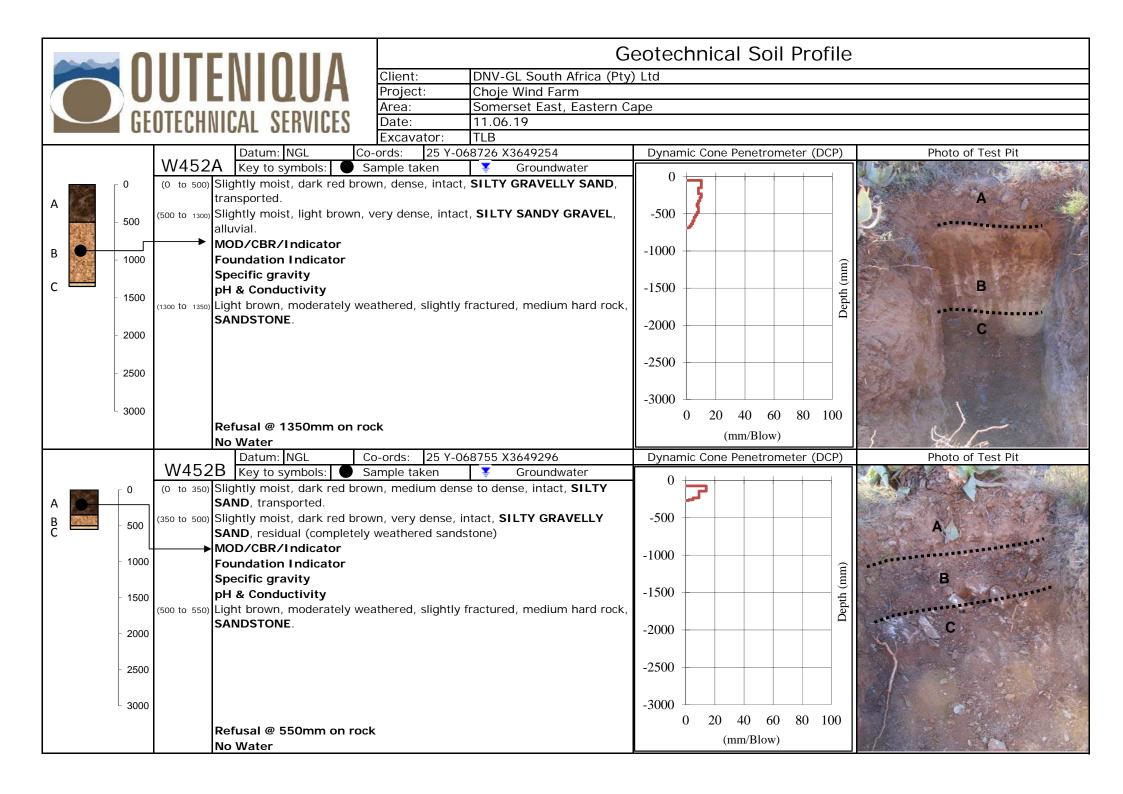
Area: Grahamstown, Eastern Cape

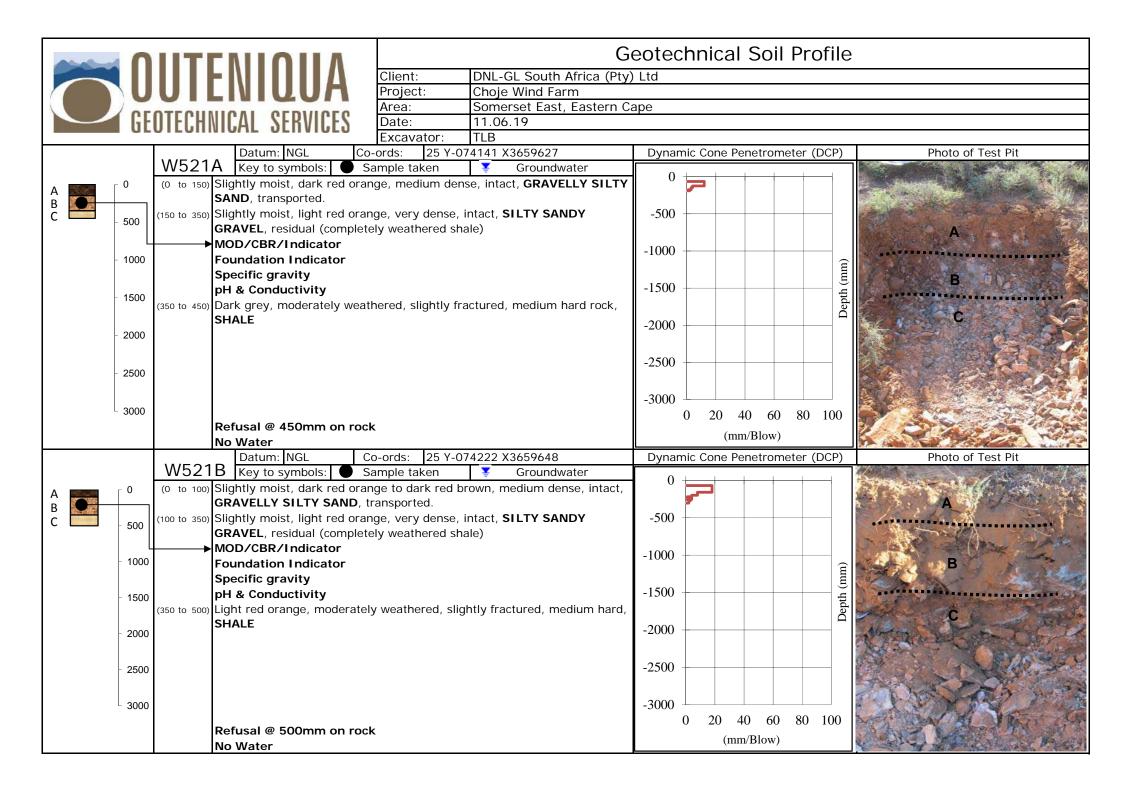


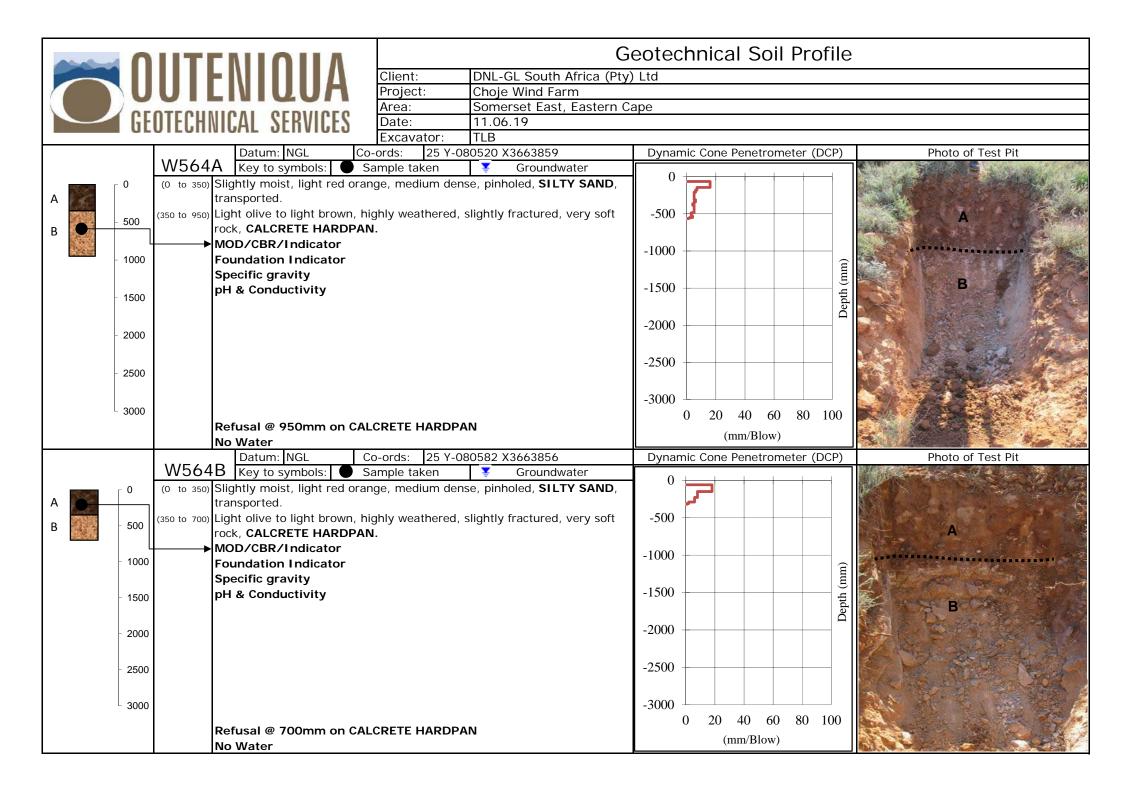


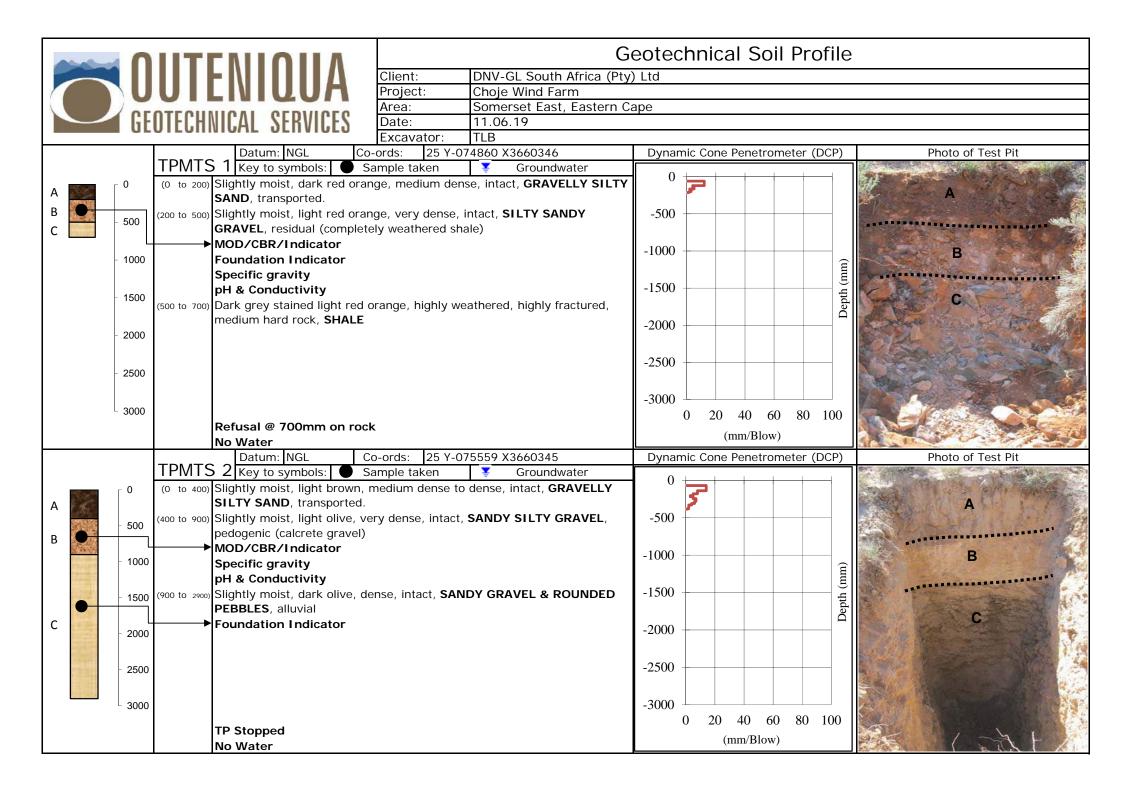


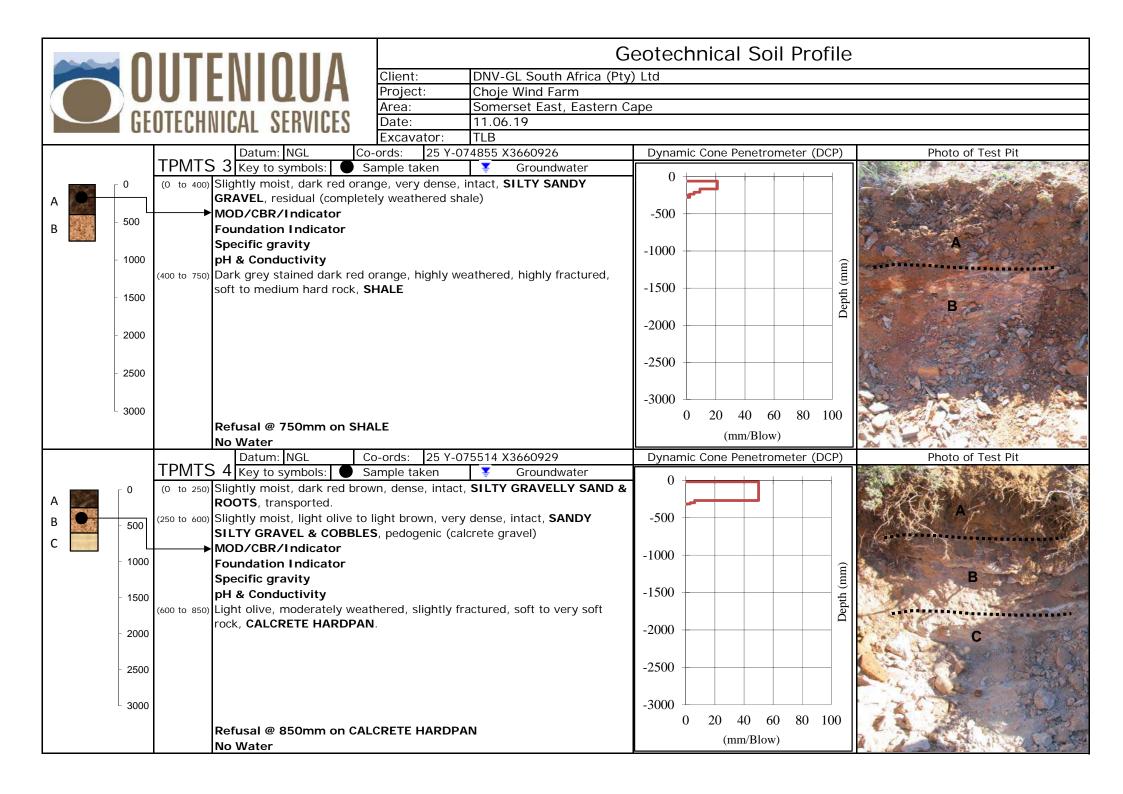

No Water


(mm/Blow)

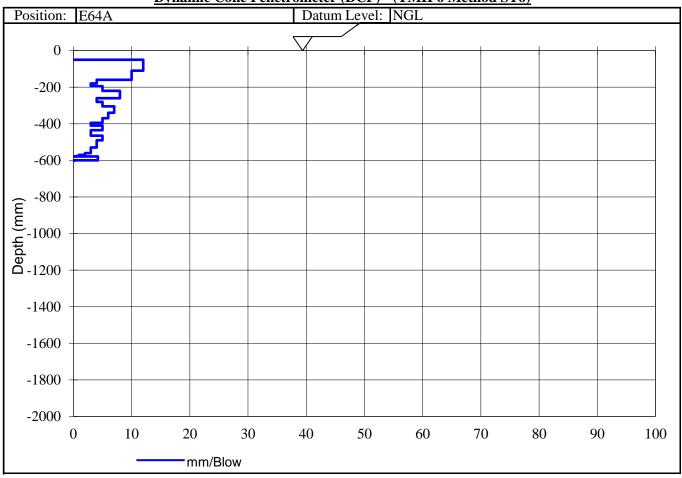








Outeniqua Geotechnical Services cc.


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer:	15th Floor, Metlife Building	Date Received:	28.02.19
	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	1 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

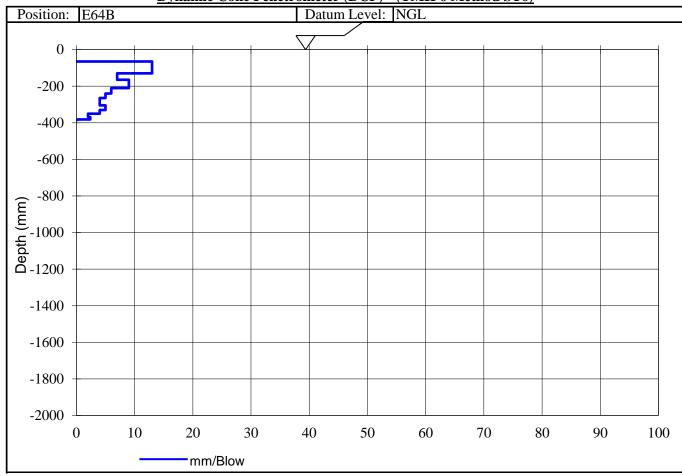
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Outeniqua Geotechnical Services cc.


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer:	15th Floor, Metlife Building	Date Received:	28.02.19
	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	2 of 12

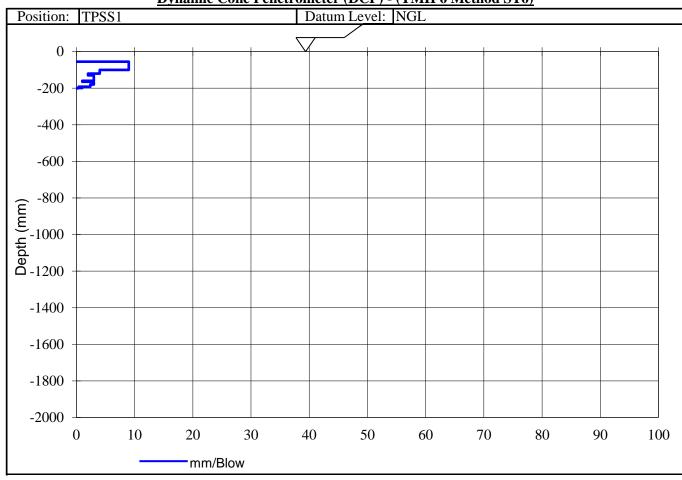
TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

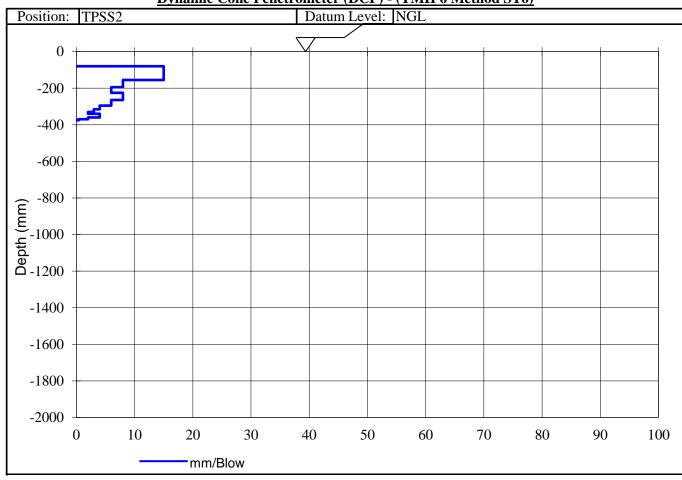
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	3 of 12

TEST REPORT - (TMH 6 Method ST6) **Dynamic Cone Penetrometer (DCP)**

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

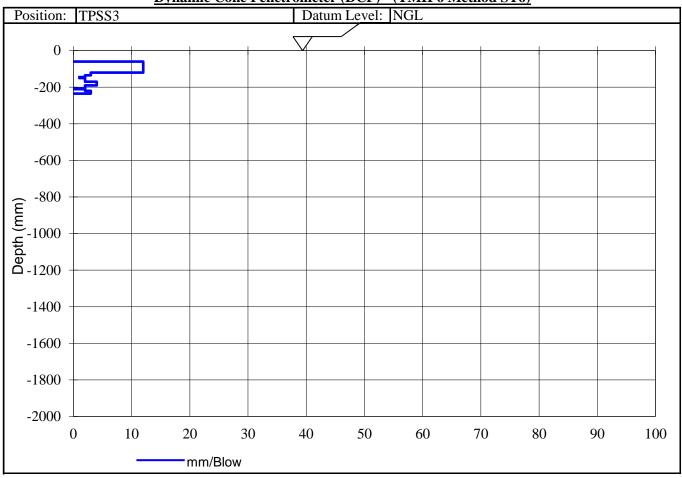
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported :	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	4 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	5 of 12

TEST REPORT - (TMH 6 Method ST6) **Dynamic Cone Penetrometer (DCP)**

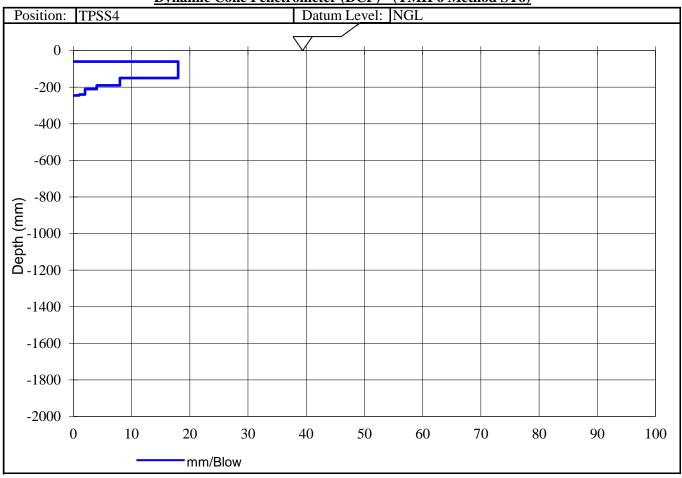
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported :	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	6 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

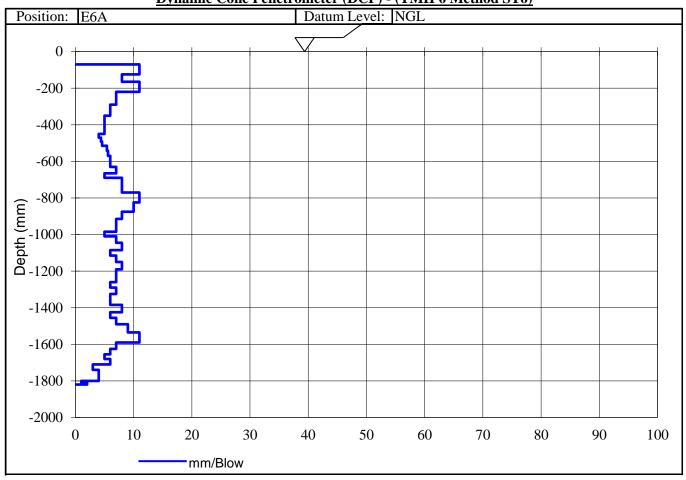
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	7 of 12

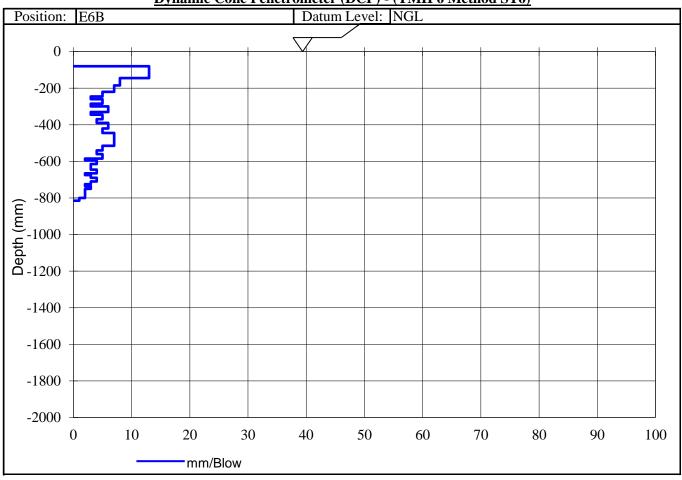
TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

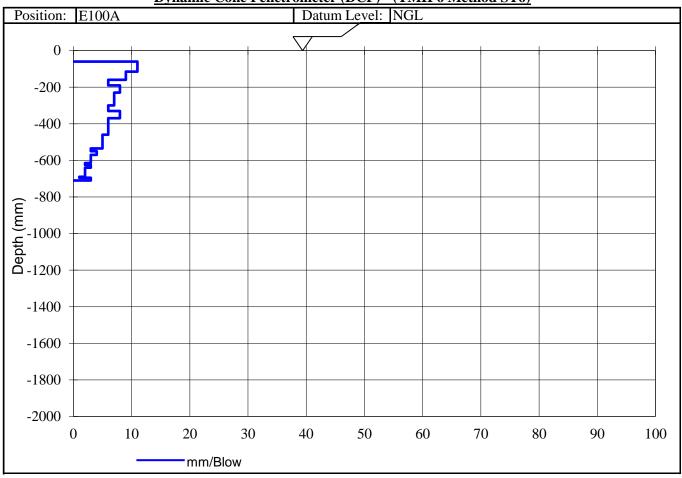
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	8 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

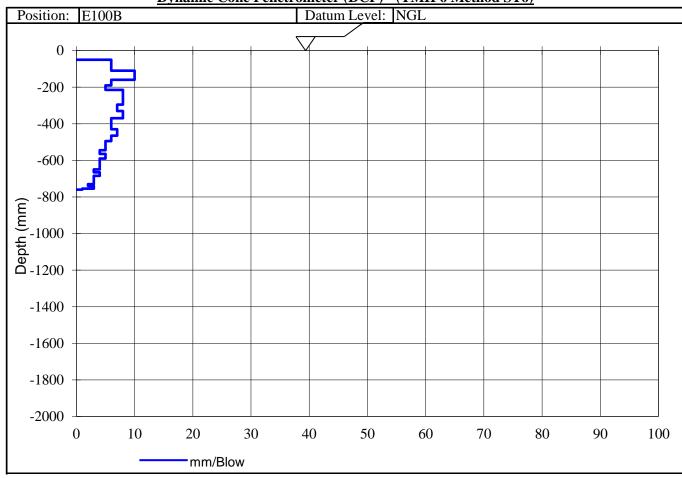
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	9 of 12

TEST REPORT - (TMH 6 Method ST6) **Dynamic Cone Penetrometer (DCP)**

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	10 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

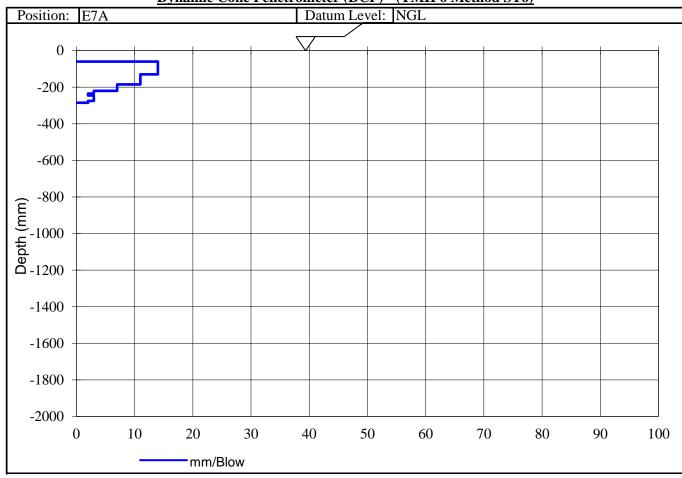
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

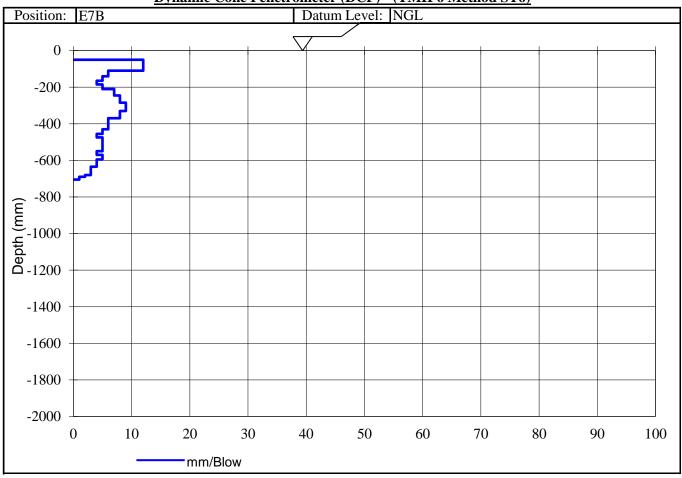
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported :	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	11 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer:	15th Floor, Metlife Building	Date Received:	28.02.19
	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages :	12 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

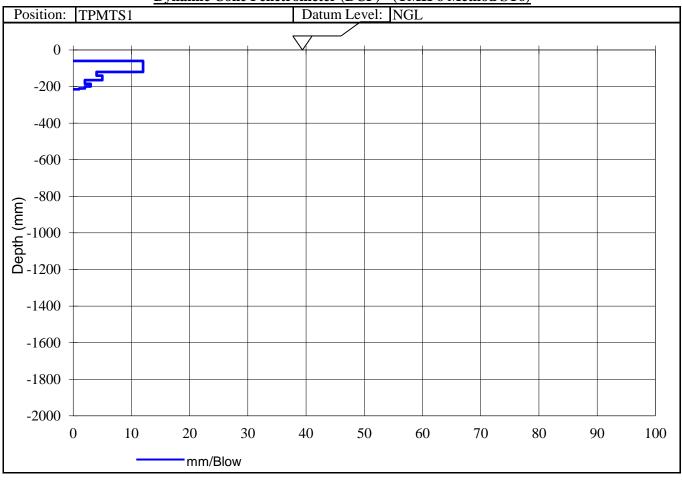
therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customore	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Evvie	No. of Pages:	1 of 14

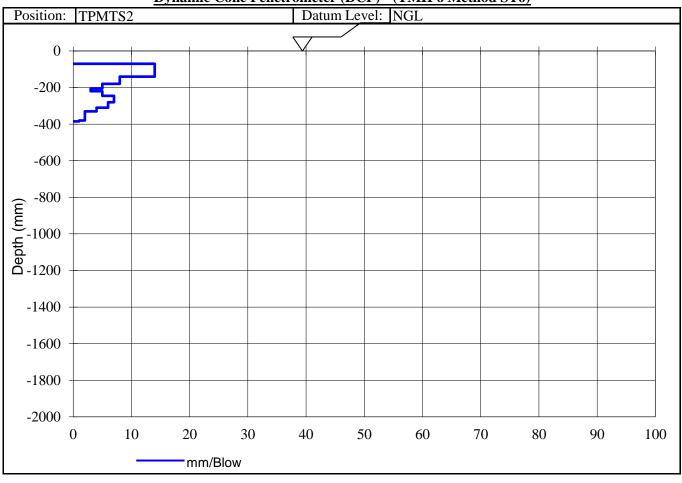
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	2 of 14

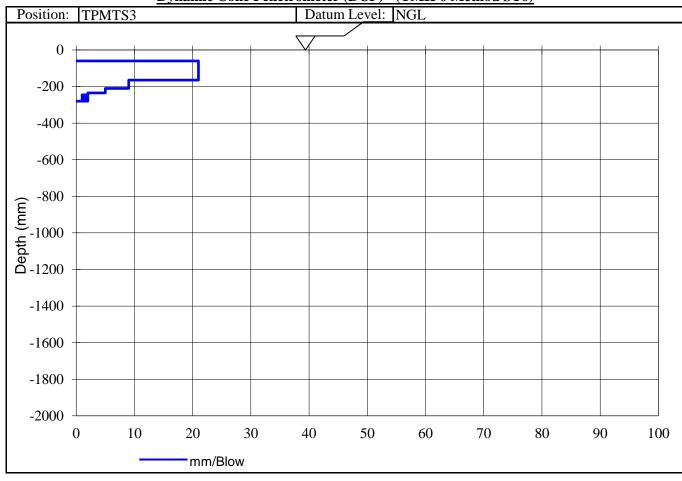
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customore	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	3 of 14

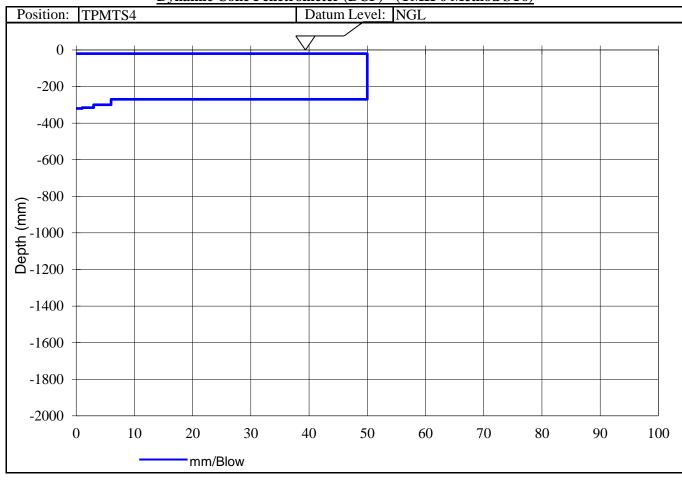
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Evvie	No. of Pages:	4 of 14

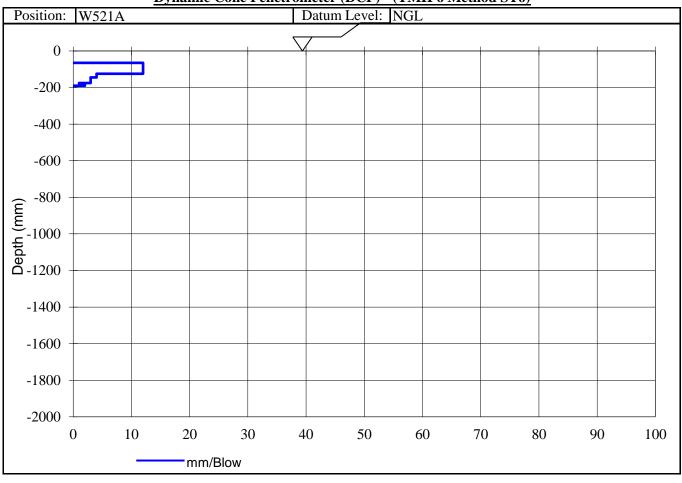
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customore	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Eyvie	No. of Pages:	5 of 14

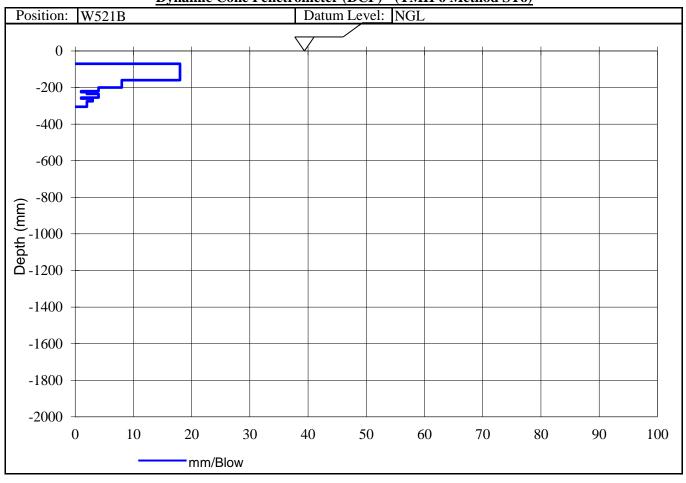
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Cyataman	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	6 of 14

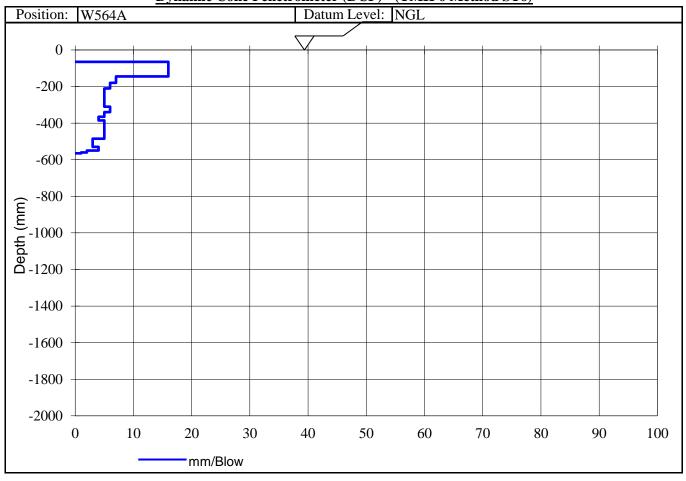
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	7 of 14

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

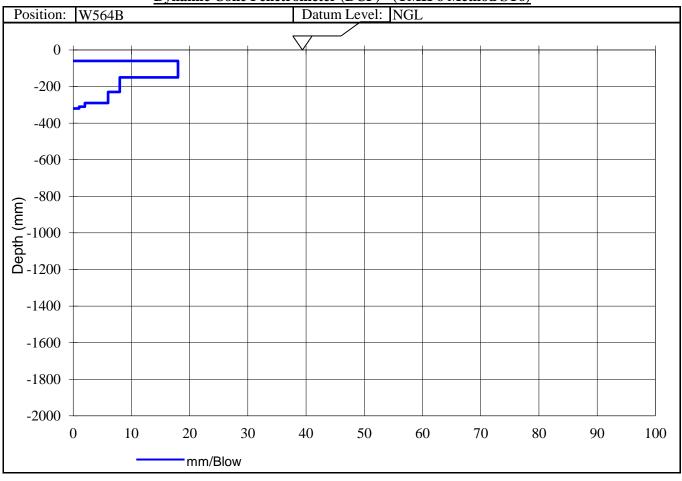
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customan	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported :	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Evvie	No. of Pages:	8 of 14

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

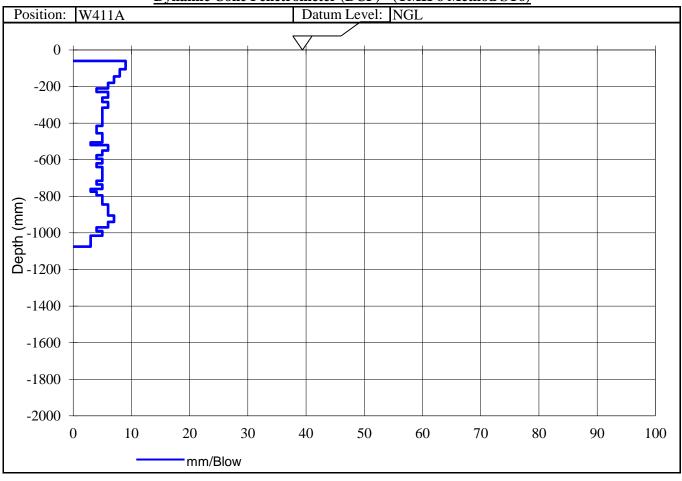
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customan	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	9 of 14

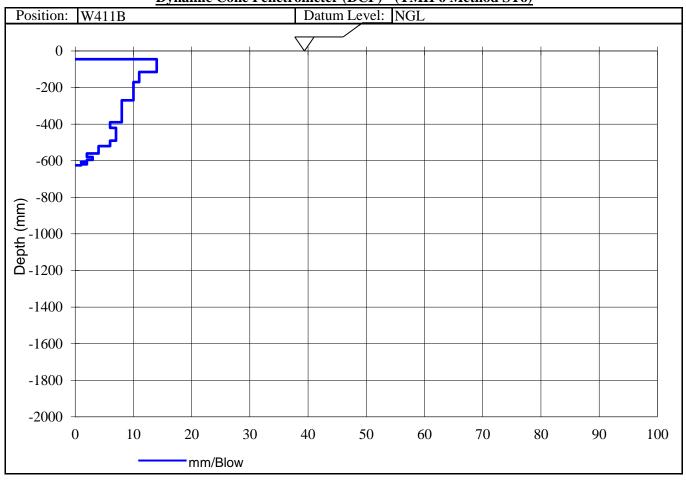
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customore	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Evvie	No. of Pages:	10 of 14

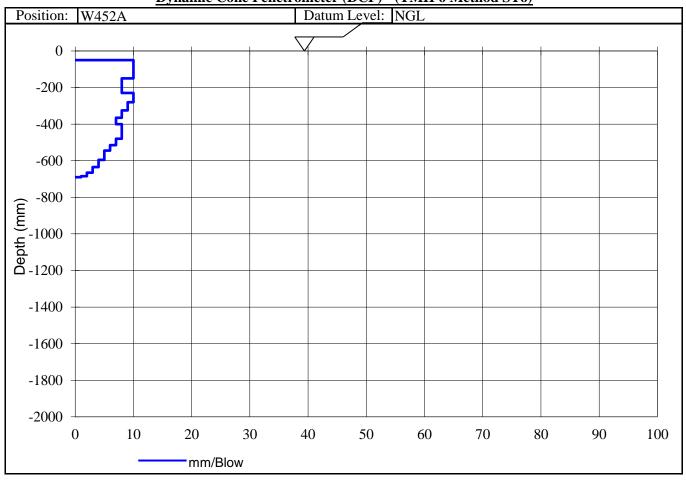
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customore	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	11 of 14

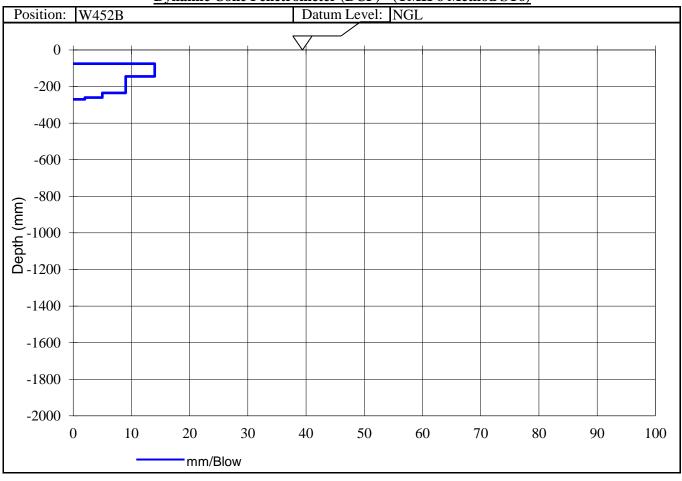
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customan	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	12. of 14

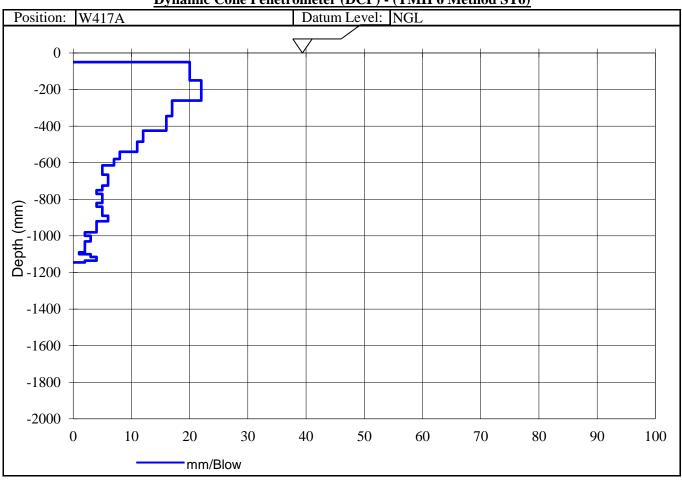
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention ·	Richard Fyvie	No. of Pages:	13 of 14

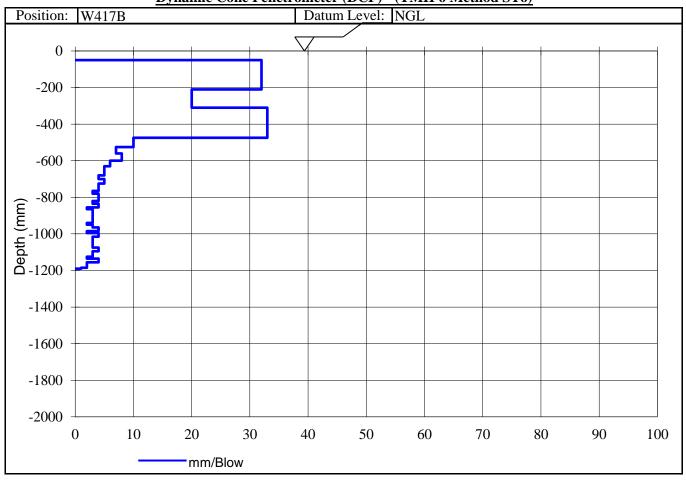
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Evvie	No. of Pages:	14 of 14

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

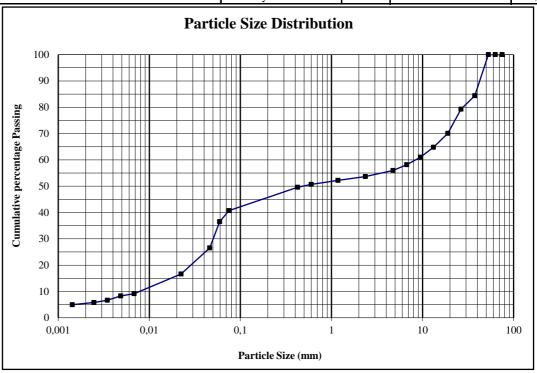
While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

APPENDIX D - LABORATORY TEST RESULTS				

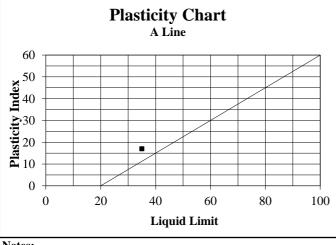
Registration No. 2009/230653/23

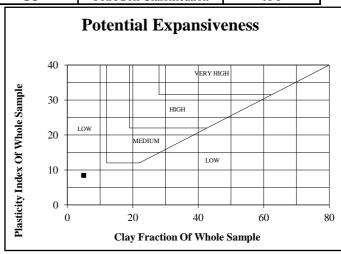
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	1/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Reddish Orange - Clayey Silty Sandy Gravel	Sample Number:		13130	
Position:	E 64A	Liquid Limit	35	Linear Shrinkage	8,5
Depth:	200-400	Plasticity Index	17	Insitu M/C%	8,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	84
26,5	79
19,0	70
13,2	65
9,5	61
6,7	58
4,75	56
2,36	54
1,18	52
0,600	51
0,425	50
0,075	41
0,0591	37
0,0462	27
0,0223	17
0,0068	9
0,0049	8
0,0035	7
0,0025	6
0,0014	5

% Clay	5	9	% Silt	32	% Sand	16	%	Gravel	47
Unified Soil Classification		tion	G	С	PRA Soil C	lassificatio	on	A	-6

Notes:

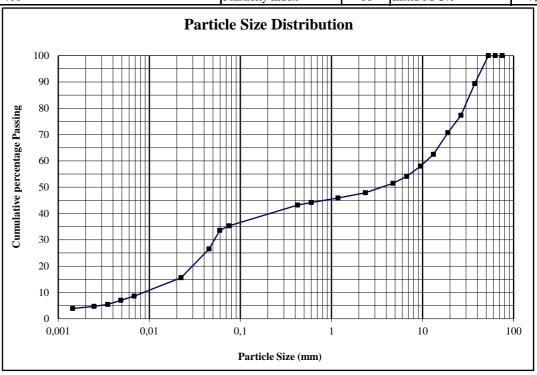
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

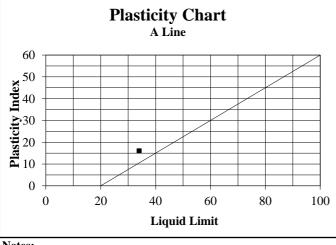
Registration No. 2009/230653/23

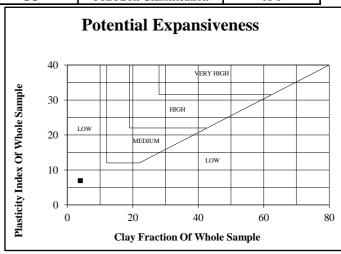
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	2/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Reddish Orange - Clayey Silty Sandy Gravel	Sample Number:		13132	
Position:	E 64B	Liquid Limit	34	Linear Shrinkage	8
Depth:	150-400	Plasticity Index	16	Insitu M/C%	7,7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	89
26,5	77
19,0	71
13,2	63
9,5	58
6,7	54
4,75	52
2,36	48
1,18	46
0,600	44
0,425	43
0,075	35
0,0595	34
0,0453	27
0,0223	16
0,0068	9
0,0049	7
0,0035	5
0,0025	5
0,0014	4

% Clay	4	Ç	% Silt	30	% Sand	13	%	Gravel	53
Unified Soil				С	PRA Soil C	lassificatio	on	A	-6

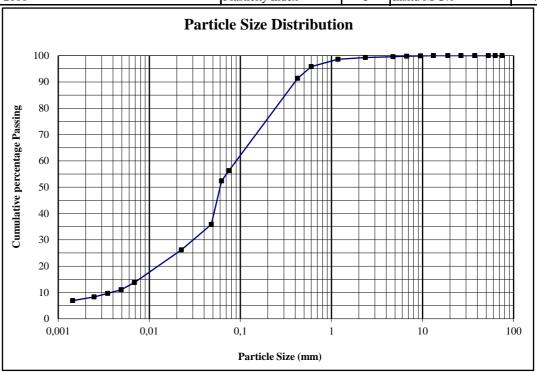
Notes:

· Specimens delivered to Outeniqua Lab in good order.

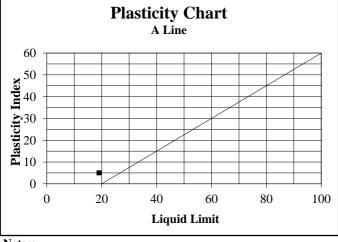
- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

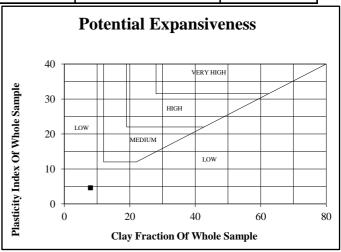
Outeniqua Lab EC cc. Materials Testing Laboratory Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536


Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	3/12


TEST REPORT FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Clayey Sandy Silt	Sample Number:		13134	
Position:	E 6A	Liquid Limit	19	Linear Shrinkage	2,5
Depth:	400-2100	Plasticity Index	5	Insitu M/C%	7

Deptn:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	100
9,5	100
6,7	100
4,75	100
2,36	99
1,18	99
0,600	96
0,425	91
0,075	56
0,0623	52
0,0480	36
0,0225	26
0,0069	14
0,0049	11
0,0035	10
0,0025	8
0,0014	7

% Clay	8	(% Silt	42	% Sand	49	%	Gravel	1
Unified Soil Classification		ion	CL-	ML	PRA Soil C	lassification	on	A	-4

Notes:

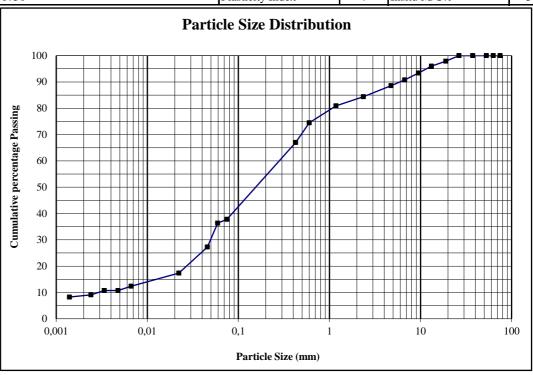
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

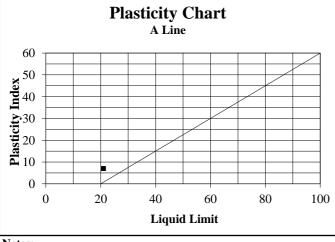
Registration No. 2009/230653/23

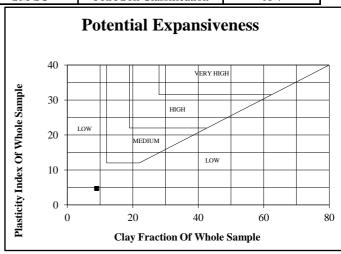
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	4/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Yellowish Orange - Clayey Gravelly Silty Sand	Sample Number:		13136	
Position:	E 6B	Liquid Limit	21	Linear Shrinkage	3,5
Depth:	800-1750	Plasticity Index	7	Insitu M/C%	5,2

Depth:		8
Sieve Size(mm)	% Passing	I
75,0	100	
63,0	100	
53,0	100	
37,5	100	
26,5	100	
19,0	98	
13,2	96	
9,5	93	
6,7	91	
4,75	89	
2,36	84	
1,18	81	
0,600	75	
0,425	67	
0,075	38	
0,0591	36	
0,0458	27	
0,0223	17	
0,0066	12	
0,0048	11	
0,0034	11	
0,0024	9	
0,0014	8	

% Clay	9	(% Silt	28	% Sand	46	%	Gravel	17
Unified Soil	Unified Soil Classification S		SM	-SC	PRA Soil C	lassificatio	on	A	-4

Notes:

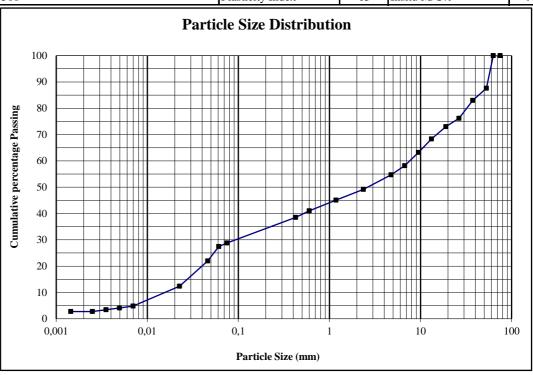
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

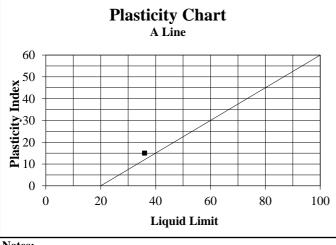
Registration No. 2009/230653/23

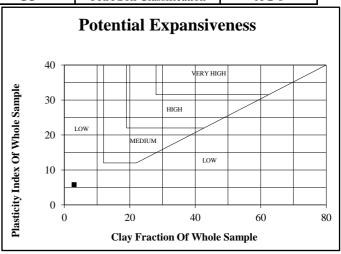
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	5/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Brown - Clayey Silty Sandy Gravel	Sample Number:	13138		
Position:	E 7A	Liquid Limit	36	Linear Shrinkage	7,5
Depth:	200-500	Plasticity Index	15	Insitu M/C%	9,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	88
37,5	83
26,5	76
19,0	73
13,2	68
9,5	63
6,7	58
4,75	55
2,36	49
1,18	45
0,600	41
0,425	39
0,075	29
0,0610	27
0,0462	22
0,0226	12
0,0070	5
0,0049	4
0,0035	3
0,0025	3
0,0014	3

% Clay	3	Ç	% Silt	24	% Sand	21	%	Gravel	52
Unified Soil Classification			С	PRA Soil C	lassificatio	on	A-:	2-6	

Notes:

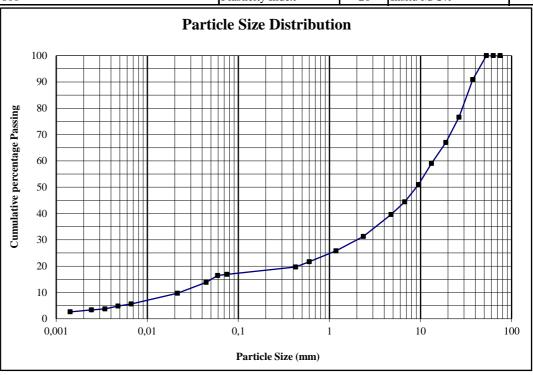
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

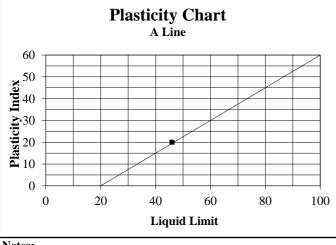
Registration No. 2009/230653/23

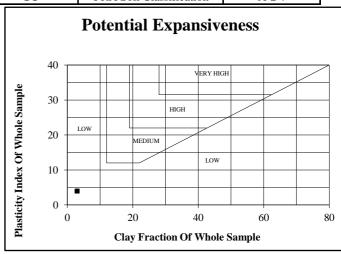
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	6/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown to Light Brown - Clayey Silty Sandy Gravel	Sample Number:		13140	
Position:	E 7B	Liquid Limit	46	Linear Shrinkage	10
Depth:	300-800	Plasticity Index	20	Insitu M/C%	7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	91
26,5	77
19,0	67
13,2	59
9,5	51
6,7	44
4,75	40
2,36	31
1,18	26
0,600	22
0,425	20
0,075	17
0,0591	16
0,0443	14
0,0215	10
0,0066	6
0,0048	5
0,0034	4
0,0024	3
0,0014	3

% Clay	3	% Silt		14	% Sand	13	%	Gravel	70
Unified Soil				С	PRA Soil C	lassificatio	on	A-:	2-7

Notes:

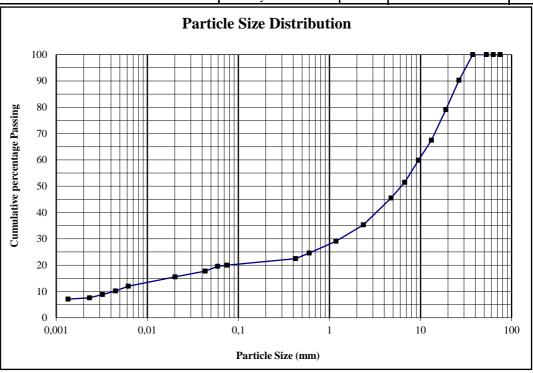
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

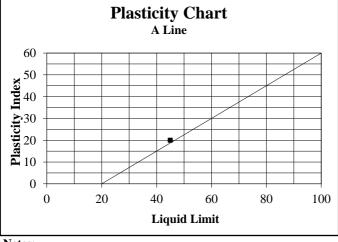
Registration No. 2009/230653/23

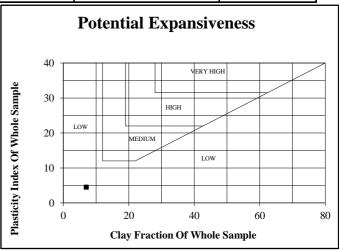
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	7/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Clayey Silty Sandy Gravel	Sample Number:		13142	
Position:	E 100A	Liquid Limit	45	Linear Shrinkage	10
Depth:	300-1100	Plasticity Index	20	Insitu M/C%	8,9

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	90
19,0	79
13,2	68
9,5	60
6,7	52
4,75	46
2,36	35
1,18	29
0,600	25
0,425	23
0,075	20
0,0591	20
0,0432	18
0,0202	16
0,0062	12
0,0045	10
0,0032	9
0,0023	8
0,0014	7

% Clay	7	% Silt		13	% Sand	13	%	Gravel	67
Unified Soil				С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

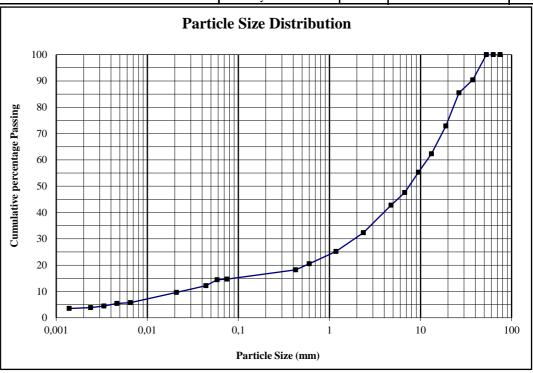
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

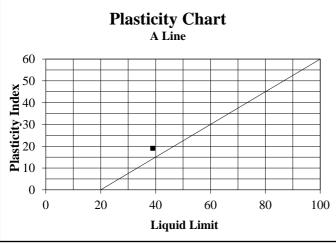
Registration No. 2009/230653/23

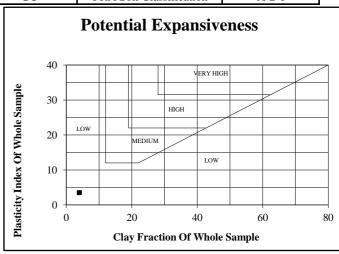
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	8/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Sandy Gravel	Sample Number:		13144	
Position:	E 100B	Liquid Limit	39	Linear Shrinkage	9,5
Depth:	400-1500	Plasticity Index	19	Insitu M/C%	6,8

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	90
26,5	86
19,0	73
13,2	62
9,5	55
6,7	48
4,75	43
2,36	32
1,18	25
0,600	21
0,425	18
0,075	15
0,0585	14
0,0440	12
0,0209	10
0,0065	6
0,0046	5
0,0033	4
0,0024	4
0,0014	4

% Clay	4	(% Silt	11	% Sand	15	%	Gravel	70
Unified Soil	Classificat	ion		C	PRA Soil C	lassificatio	on	A-	2-6

Notes:

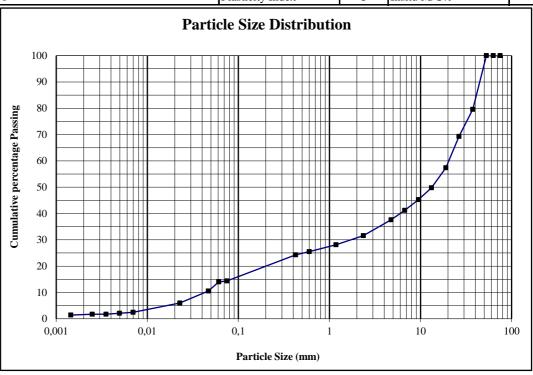
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

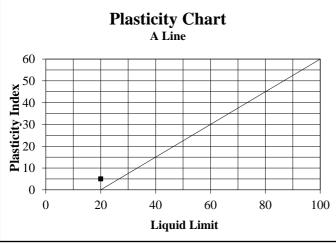
Outeniqua Lab EC cc. Materials Testing Laboratory Registration No. 2009/230653/23

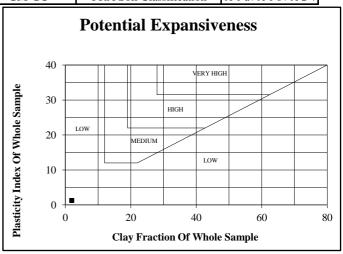
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	9/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Gravelly Silty Sand	Sample Number:			
Position:	TP SS1	Liquid Limit	20	Linear Shrinkage	2,5
Depth:	0-100	Plasticity Index	5	Insitu M/C%	4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	80
26,5	69
19,0	57
13,2	50
9,5	45
6,7	41
4,75	38
2,36	32
1,18	28
0,600	26
0,425	24
0,075	14
0,0610	14
0,0468	11
0,0228	6
0,0070	2
0,0049	2 2
0,0035	
0,0025	2
0,0014	1

	% Clay	2		% Silt	12	% Sand	17	%	Gravel	69
ĺ	Unified Soil	Classificat	tion	GM	-GC	PRA Soil C	lassification	on	A-1-a / A-	1-b / A-2-4

Notes:

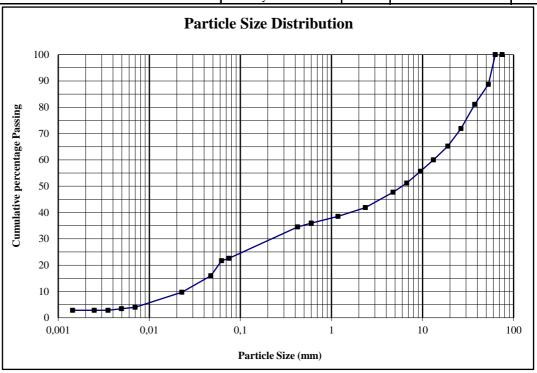
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

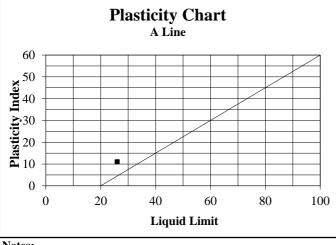
Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	10/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)

Material Description:	Light Reddish Brown - Silty Gravelly Sand with Boulders & Cobbles	Sample Number:	13148			
Position:	TP SS2	Liquid Limit	26	Linear Shrinkage	5,5	
Depth:	0-300	Plasticity Index	11	Insitu M/C%	6	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	89
37,5	81
26,5	72
19,0	65
13,2	60
9,5	56
6,7	51
4,75	48
2,36	42
1,18	39
0,600	36
0,425	35
0,075	23
0,0623	22
0,0474	16
0,0228	10
0,0070	4
0,0049	3
0,0035	3
0,0025	3
0,0014	3

% Clay	3	Ç	% Silt	18	% Sand	20	%	Gravel	59
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

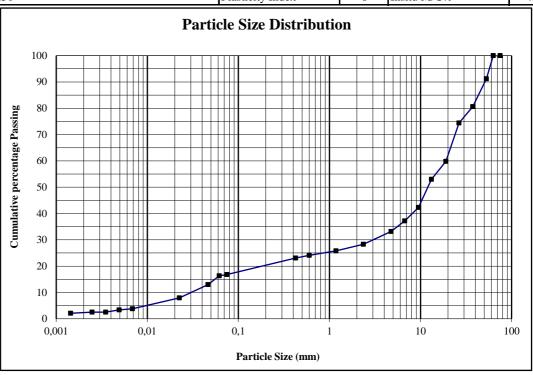
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

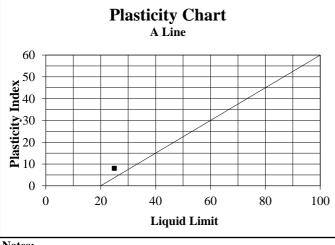
Outeniqua Lab EC cc. Materials Testing Laboratory Registration No. 2009/230653/23

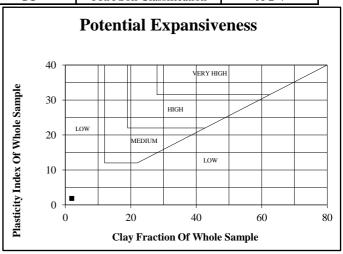
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported :	26/06/19
	6570	Req. Number:	439/19
Attention :	Iain Paton	No. of Pages:	11/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Sandy Gravel with Cobbles	Sample Number:	13150		
Position:	TP SS3	Liquid Limit	25	Linear Shrinkage	4
Depth:	80-250	Plasticity Index	8	Insitu M/C%	4,2

Depth:		ľ
Sieve Size(mm)	% Passing	Ī
75,0	100	1
63,0	100	1
53,0	91	1
37,5	81	
26,5	74	l
19,0	60	
13,2	53	
9,5	42	l
6,7	37	
4,75	33	l
2,36	28	
1,18	26	l
0,600	24	l
0,425	23	l
0,075	17	l
0,0617	16	l
0,0464	13	l
0,0225	8	
0,0069	4	l
0,0049	3	l
0,0035	3 3 3 2	l
0,0025	3	l
0,0014	2	I

% Clay	2	(% Silt	14	% Sand	12	%	Gravel	72
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-:	2-4

Notes:

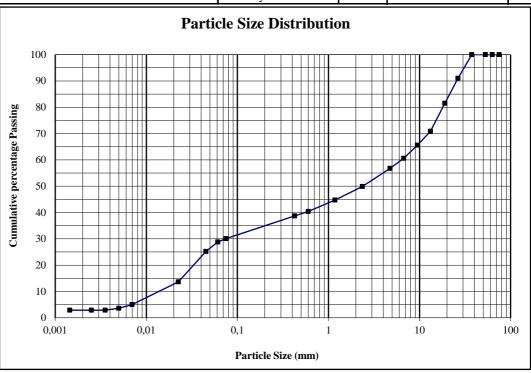
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

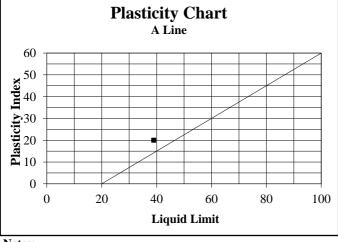
Registration No. 2009/230653/23

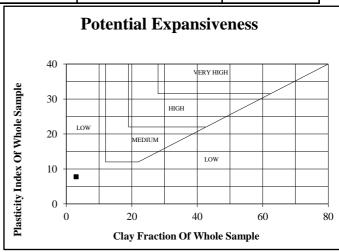
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	12/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Sandy Gravel	Sample Number:	13152			
Position:	TP SS4	Liquid Limit	39	Linear Shrinkage	10	
Depth:	200-450	Plasticity Index	20	Insitu M/C%	10,4	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	91
19,0	82
13,2	71
9,5	66
6,7	61
4,75	57
2,36	50
1,18	45
0,600	40
0,425	39
0,075	30
0,0610	29
0,0451	25
0,0225	14
0,0070	5
0,0050	4
0,0035	3
0,0025	3
0,0014	3

% Clay	3	% Silt		26	% Sand	19	%	Gravel	52
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

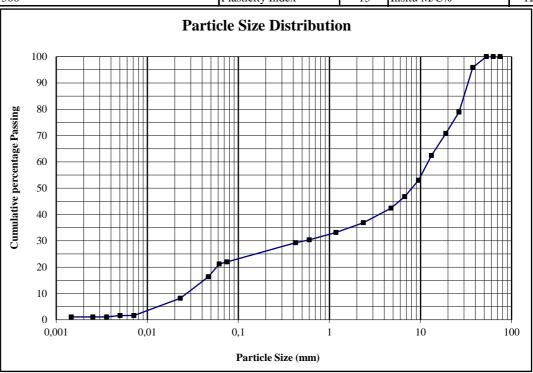
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

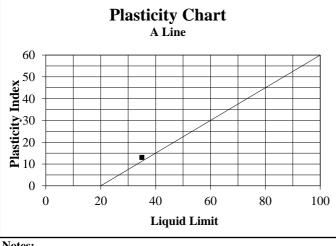
Registration No. 2009/230653/23

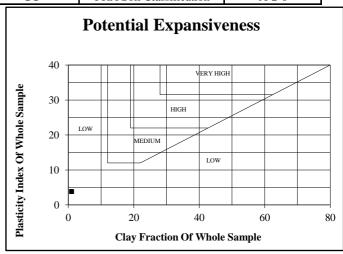
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	1/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Silty Sandy Gravel	Sample Number:	13253			
Position:	TP MTS 1	Liquid Limit	35	Linear Shrinkage	6,5	
Depth:	200-500	Plasticity Index	13	Insitu M/C%	12,9	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	96
26,5	79
19,0	71
13,2	62
9,5	53
6,7	47
4,75	42
2,36	37
1,18	33
0,600	30
0,425	29
0,075	22
0,0617	21
0,0468	16
0,0230	8
0,0071	2
0,0050	2
0,0036	1
0,0025	1
0,0015	1

% Clay	1	% Silt		20	% Sand	15	%	Gravel	64
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

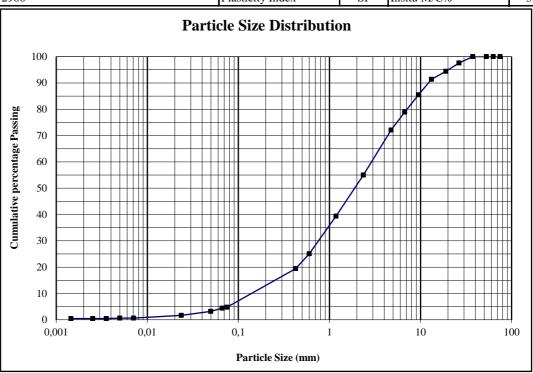
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

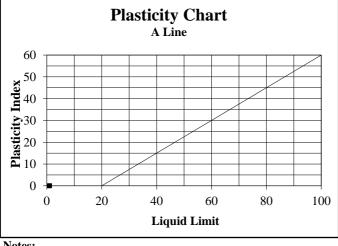
Registration No. 2009/230653/23

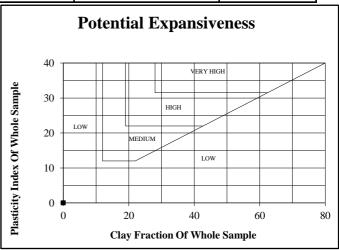
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	2/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description: Dark Olive - Sandy Gravel Sample Number		Sample Number:		13255		
Position:	TP MTS 2	Liquid Limit	SP	Linear Shrinkage	0,5	
Depth:	900-2900	Plasticity Index	SP	Insitu M/C%	3,9	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	98
19,0	94
13,2	91
9,5	86
6,7	79
4,75	72
2,36	55
1,18	39
0,600	25
0,425	19
0,075	5
0,0665	4
0,0498	3
0,0236	2
0,0071	1
0,0050	1
0,0036	0
0,0025	0
0,0015	0

% Clay	0	(% Silt	4	% Sand	46	%	Gravel	50
Unified Soil	Classifica	tion	G	iΡ	PRA Soil C	lassification	on	A-1-a / A-	1-b / A-2-4

Notes:

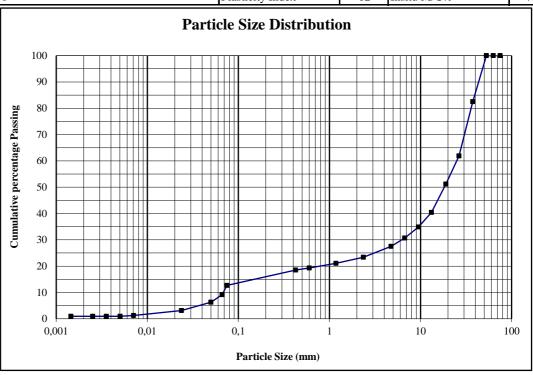
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

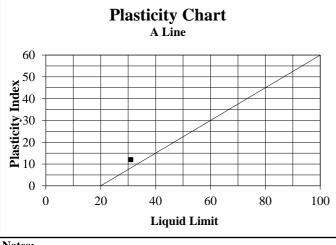
Registration No. 2009/230653/23

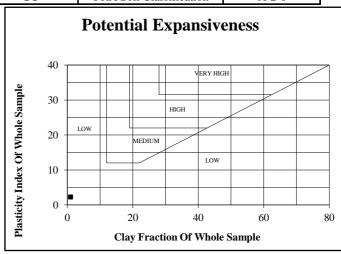
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	3/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Reddish Orange - Silty Sandy Gravel	nge - Silty Sandy Gravel Sample Number:			
Position:	TP MTS 3	Liquid Limit	31	Linear Shrinkage	6
Depth:	0-400	Plasticity Index	12	Insitu M/C%	7,8

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	83
26,5	62
19,0	51
13,2	40
9,5	35
6,7	31
4,75	28
2,36	23
1,18	21
0,600	19
0,425	19
0,075	13
0,0665	9
0,0500	6
0,0238	3
0,0071	1
0,0050	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	Ç	% Silt	7	% Sand	15	%	Gravel	77
Unified Soil	Classificat	ion		C	PRA Soil C	lassificatio	on	A-	2-6

Notes:

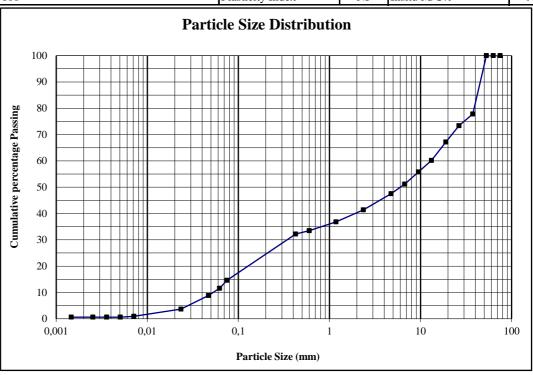
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

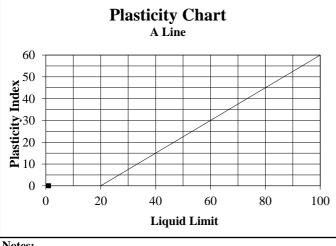
Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customar	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	4/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)

Material Description:	Light Olive to Light Brown - Sandy Silty Gravel with Cobbles	Sample Number:	13259		
Position:	TP MTS 4	Liquid Limit	NP	Linear Shrinkage	0
Depth:	250-600	Plasticity Index	NP	Insitu M/C%	9,1

Deptn:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	78
26,5	73
19,0	67
13,2	60
9,5	56
6,7	51
4,75	48
2,36	41
1,18	37
0,600	34
0,425	32
0,075	15
0,0623	12
0,0470	9
0,0234	4
0,0071	1
0,0051	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	% Silt	10	% Sand	29	%	Gravel	60
Unified Soil	Classificat	tion C	iΜ	PRA Soil C	lassification	on	A-1-b	/ A-2-4

Notes:

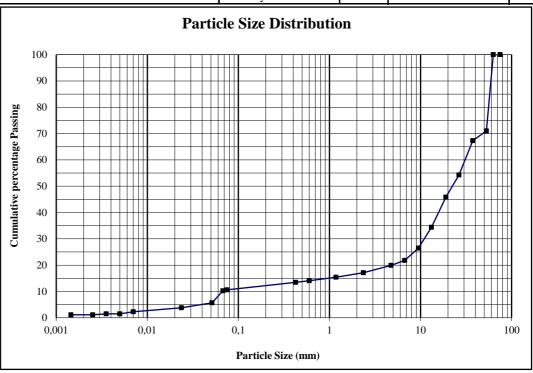
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

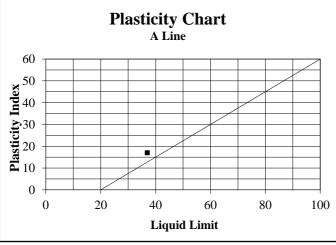
Registration No. 2009/230653/23

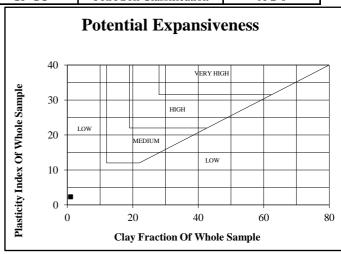
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	5/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Silty Sandy Gravel	Sample Number:	13261			
Position:	W 521A	Liquid Limit	37	Linear Shrinkage	8,5	
Depth:	150-350	Plasticity Index	17	Insitu M/C%	6,8	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	71
37,5	67
26,5	54
19,0	46
13,2	34
9,5	27
6,7	22
4,75	20
2,36	17
1,18	15
0,600	14
0,425	14
0,075	11
0,0676	10
0,0515	6
0,0238	4
0,0070	2
0,0050	2
0,0035	2
0,0025	1
0,0015	1

% Clay	1	Ç	% Silt	7	% Sand	9	%	Gravel	83
Unified Soil	Classificat	ion	GP-	·GC	PRA Soil C	lassificatio	on	A-	2-6

Notes:

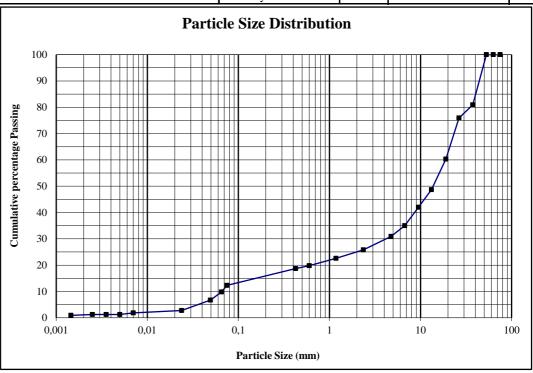
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

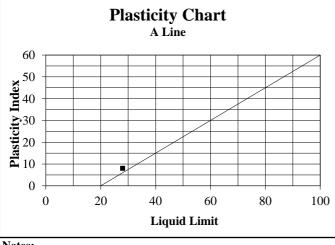
Registration No. 2009/230653/23

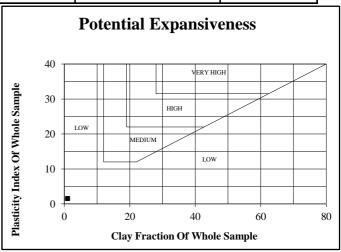
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	6/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Silty Sandy Gravel	Sample Number:	13263			
Position:	W 521B	Liquid Limit	28	Linear Shrinkage	4	
Depth:	100-350	Plasticity Index	8	Insitu M/C%	9,1	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	81
26,5	76
19,0	60
13,2	49
9,5	42
6,7	35
4,75	31
2,36	26
1,18	23
0,600	20
0,425	19
0,075	12
0,0653	10
0,0494	7
0,0238	3
0,0070	2
0,0050	1
0,0035	1
0,0025	1
0,0015	1

% Clay	1	Ç	% Silt	8	% Sand	16	%	Gravel	75
Unified Soil	Classificat	ion	GP-	-GC	PRA Soil C	lassificatio	on	A-:	2-4

Notes:

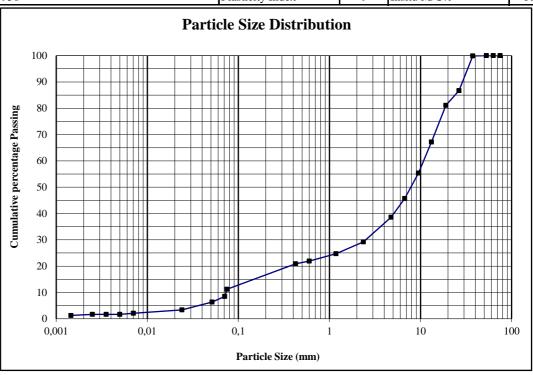
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

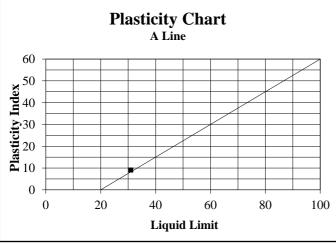
Registration No. 2009/230653/23

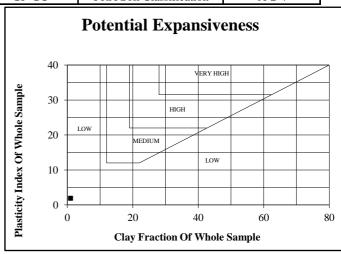
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	7/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Olive to Light Brown - Calcrete	Sample Number:	13265			
Position:	W 564A	Liquid Limit	31	Linear Shrinkage	4,5	
Depth:	350-950	Plasticity Index	9	Insitu M/C%	10,9	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	87
19,0	81
13,2	67
9,5	55
6,7	46
4,75	39
2,36	29
1,18	25
0,600	22
0,425	21
0,075	11
0,0707	8
0,0515	6
0,0240	3
0,0070	2
0,0050	2
0,0035	2
0,0025	2
0,0015	1

% Clay	1	Ç	% Silt	6	% Sand	21	%	Gravel	72
Unified Soil	Classificat	ion	GP-	-GC	PRA Soil C	lassificatio	on	A-	2-4

Notes:

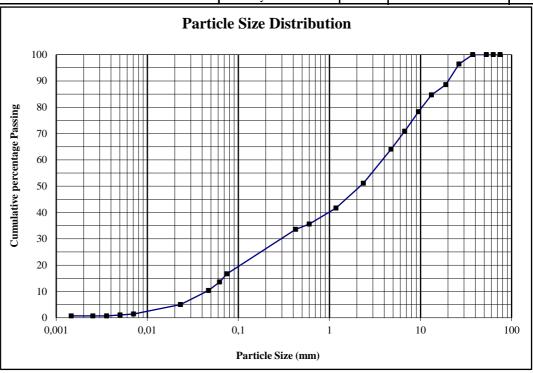
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

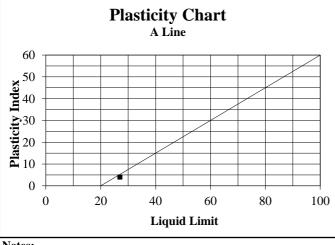
Registration No. 2009/230653/23

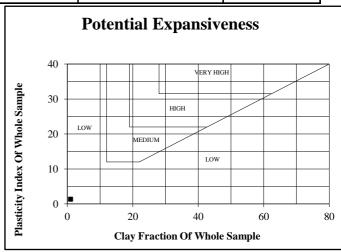
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	8/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Olive to Light Brown - Calcrete	Sample Number:	13267			
Position:	W 564B	Liquid Limit	27	Linear Shrinkage	2	
Depth:	350-700	Plasticity Index	4	Insitu M/C%	8,6	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	96
19,0	89
13,2	85
9,5	78
6,7	71
4,75	64
2,36	51
1,18	42
0,600	36
0,425	34
0,075	17
0,0623	14
0,0470	10
0,0232	5
0,0071	1
0,0050	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	9	% Silt	12	% Sand	35	%	Gravel	52
Unified Soil	Classificat	tion	G	M	PRA Soil C	lassificatio	on	A-1-b	/ A-2-4

Notes:

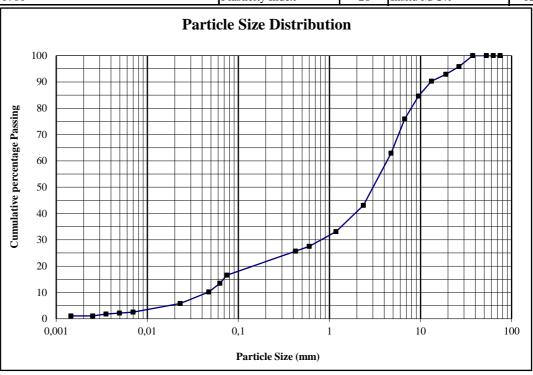
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

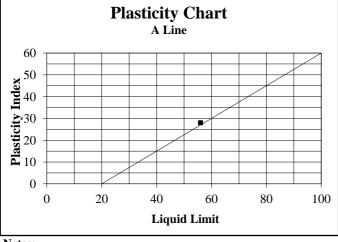
Registration No. 2009/230653/23

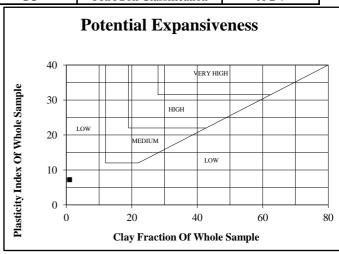
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	9/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Gravelly Sandy Silt	Sample Number:		13269	
Position:	W 411A	Liquid Limit	56	Linear Shrinkage	14
Depth:	750-1700	Plasticity Index	28	Insitu M/C%	13,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	96
19,0	93
13,2	90
9,5	85
6,7	76
4,75	63
2,36	43
1,18	33
0,600	28
0,425	26
0,075	17
0,0626	13
0,0474	10
0,0229	6
0,0070	3
0,0049	2
0,0035	2
0,0025	1
0,0015	1

% Clay	1	9	% Silt	12	% Sand	27	%	Gravel	60
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

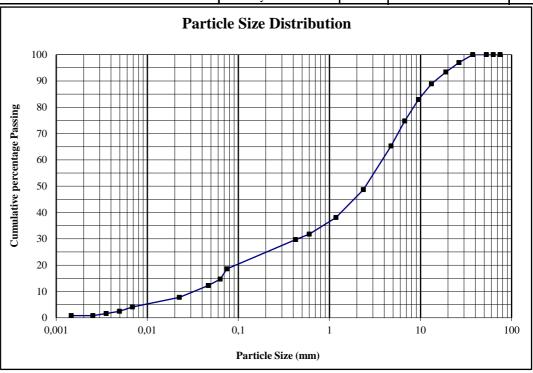
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

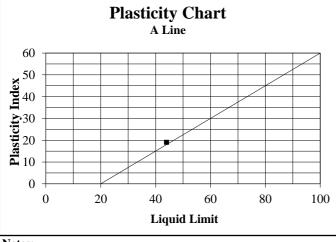
Registration No. 2009/230653/23

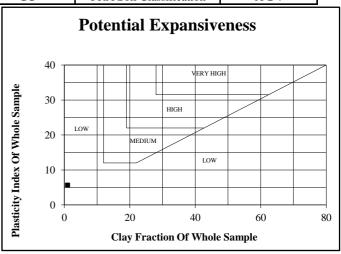
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customar	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	10/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Material Description: Light Reddish Orange - Gravelly Silty Sand Sample Number:				
Position:	W 411B	Liquid Limit	44	Linear Shrinkage	9,5
Depth:	450-1500	Plasticity Index	19	Insitu M/C%	11,7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	97
19,0	93
13,2	89
9,5	83
6,7	75
4,75	65
2,36	49
1,18	38
0,600	32
0,425	30
0,075	19
0,0632	15
0,0468	12
0,0225	8
0,0069	4
0,0049	2
0,0035	2
0,0025	1
0,0015	1

% Clay	1	% Silt	13	% Sand	31	%	Gravel	55
Unified Soil	Classificat	ion (ЭC	PRA Soil C	lassificatio	on	A-:	2-7

Notes:

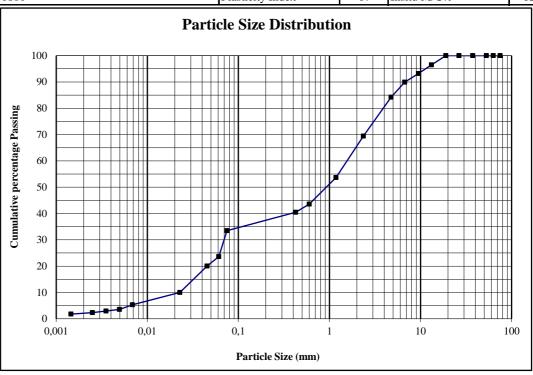
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

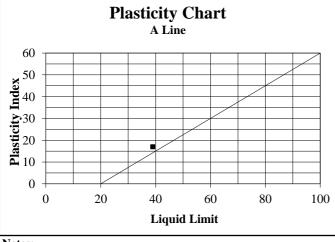
Registration No. 2009/230653/23

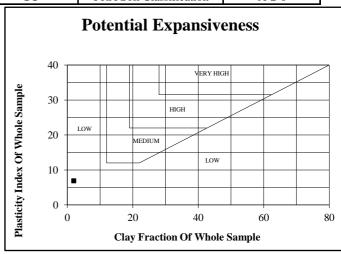
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	11/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Brown - Silty Sandy Gravel	Sample Number:	13273		
Position:	W 452A	Liquid Limit	39	Linear Shrinkage	9
Depth:	500-1800	Plasticity Index	17	Insitu M/C%	12,5

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	97
9,5	93
6,7	90
4,75	84
2,36	69
1,18	54
0,600	44
0,425	41
0,075	34
0,0610	24
0,0453	20
0,0228	10
0,0069	5
0,0049	4
0,0035	3
0,0025	2
0,0015	2

% Clay	2	ç	% Silt	21	% Sand	42	%	Gravel	35
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-:	2-6

Notes:

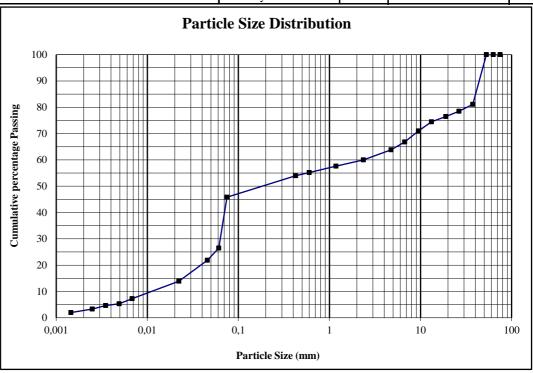
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

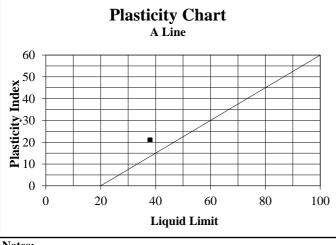
Registration No. 2009/230653/23

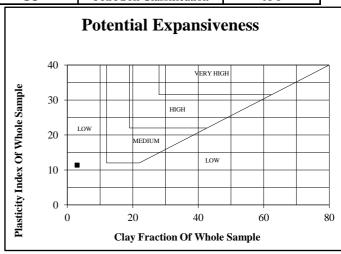
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	12/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description: Dark Reddish Brown - Silty Gravelly Sand Sample Number:				13275	
Position:	W 452B	Liquid Limit	38	Linear Shrinkage	10,5
Depth:	350-500	Plasticity Index	21	Insitu M/C%	9,7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	81
26,5	79
19,0	77
13,2	75
9,5	71
6,7	67
4,75	64
2,36	60
1,18	58
0,600	55
0,425	54
0,075	46
0,0610	26
0,0458	22
0,0223	14
0,0068	7
0,0049	5
0,0035	5
0,0025	3
0,0015	2

% Clay	3	% Silt	23	% Sand	33	%	Gravel	41
Unified Soil	Classificat	ion	GC	PRA Soil C	lassificatio	on	A	-6

Notes:

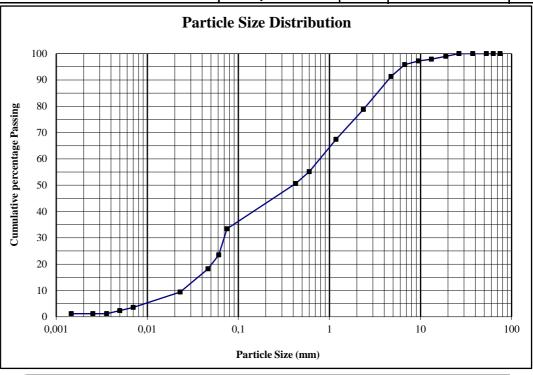
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

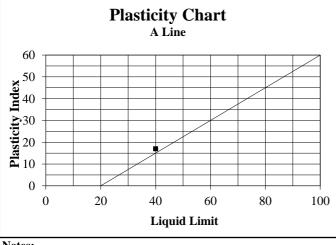
Registration No. 2009/230653/23

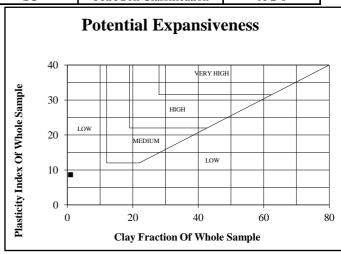
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	13/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Qrange - Clayey Gravelly Sandy Silt	Sample Number:	13277		
Position:	W 417A	Liquid Limit	40	Linear Shrinkage	8,5
Depth:	1300-2800	Plasticity Index	17	Insitu M/C%	11,6

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	99
13,2	98
9,5	97
6,7	96
4,75	91
2,36	79
1,18	67
0,600	55
0,425	51
0,075	33
0,0610	24
0,0464	18
0,0229	9
0,0070	4
0,0050	2
0,0036	1
0,0025	1
0,0015	1

% Clay	1	%	Silt	22	% Sand	52	%	Gravel	25
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

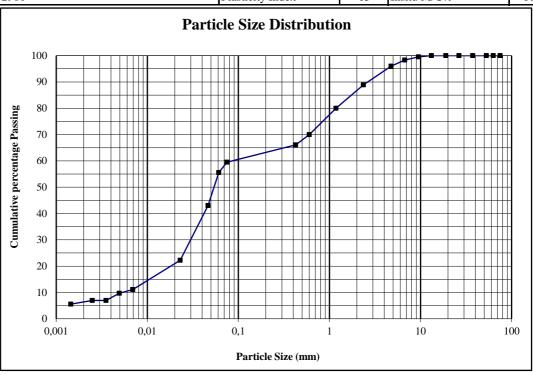
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

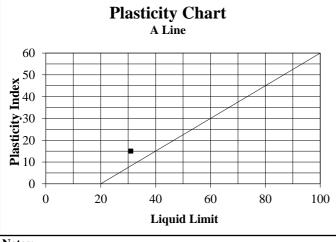
Registration No. 2009/230653/23

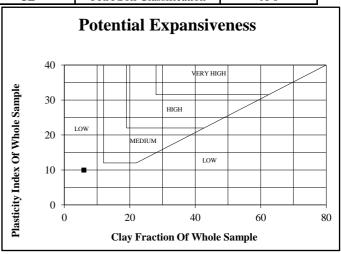
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	14/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Yellowish Orange - Clayey Gravelly Sandy Silt	Sample Number:	13279		
Position:	W 417B	Liquid Limit	31	Linear Shrinkage	7,5
Depth:	800-2900	Plasticity Index	15	Insitu M/C%	10,7

Deptn:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	100
9,5	100
6,7	98
4,75	96
2,36	89
1,18	80
0,600	70
0,425	66
0,075	60
0,0610	56
0,0464	43
0,0229	22
0,0069	11
0,0049	10
0,0035	7
0,0025	7
0,0014	6

% Clay	6	(% Silt	49	% Sand	31	%	Gravel	14
Unified Soil	Classificat	ion	С	L	PRA Soil C	lassificatio	on	A	-6

Notes:

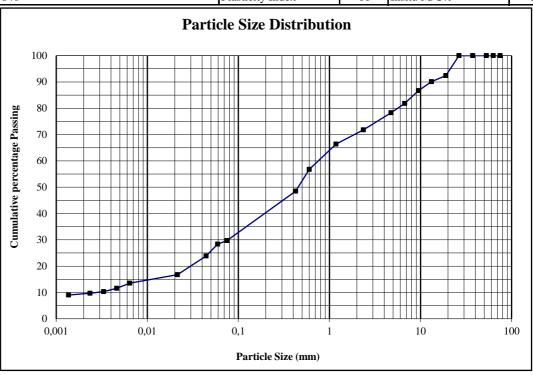
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Registration No. 2009/230653/23

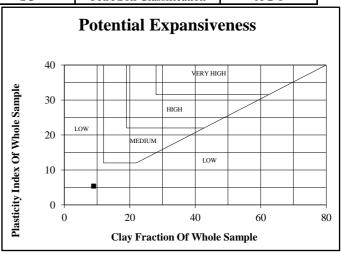
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	1/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Red Orange - Gravelly Sandy Clayey Silt	Sample Number:	ple Number: 13486		
Position:	BH - E 7A	Liquid Limit	25	Linear Shrinkage	5,5
Depth:	500-840	Plasticity Index	11	Insitu M/C%	2

Deptn:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	92
13,2	90
9,5	87
6,7	82
4,75	78
2,36	72
1,18	66
0,600	57
0,425	49
0,075	30
0,0591	28
0,0443	24
0,0215	17
0,0064	14
0,0046	12
0,0033	10
0,0024	10
0,0014	9

% Clay	9	Ç	% Silt	20	% Sand	41	%	Gravel	30
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

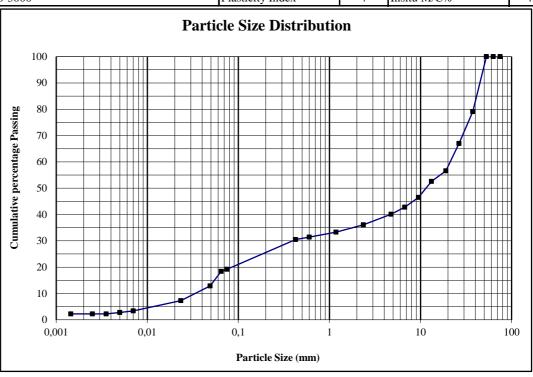
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

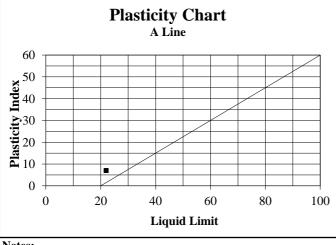
Registration No. 2009/230653/23

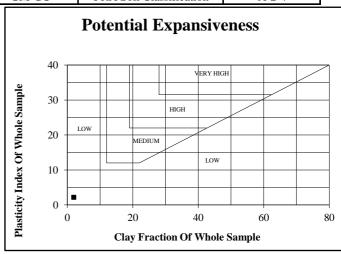
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	2/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description: Light Brown - Gravelly Silty Sand Sample Number:				13487			
Position:	BH - E 6C	Liquid Limit	22	Linear Shrinkage	3,5		
Depth:	2100-3000	Plasticity Index	7	Insitu M/C%	4,2		

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	79
26,5	67
19,0	57
13,2	53
9,5	47
6,7	43
4,75	40
2,36	36
1,18	33
0,600	31
0,425	31
0,075	19
0,0647	18
0,0490	13
0,0234	7
0,0070	3
0,0050	
0,0035	3 2 2 2
0,0025	2
0,0014	2

% Clay	2	(% Silt	15	% Sand	18	%	Gravel	65
Unified Soil	Classificat	ion	GM	-GC	PRA Soil C	lassificatio	on	A-	2-4

Notes:

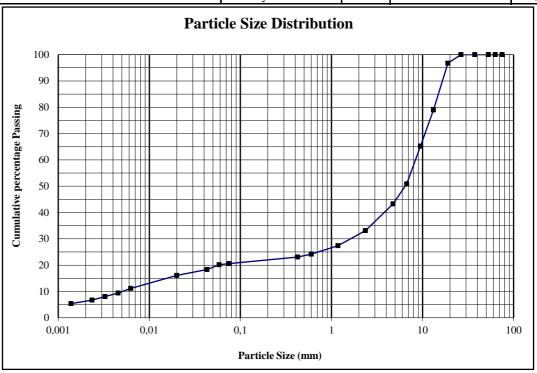
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

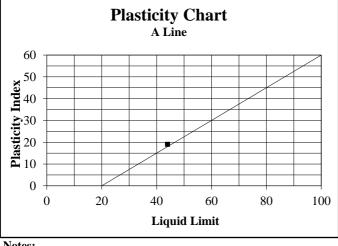
Registration No. 2009/230653/23

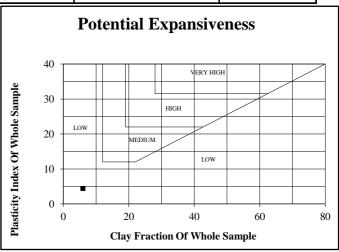
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	3/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description: Light Red Brown - Clayey Sandy Gravel Sample Number:				13488			
Position:	BH - E 100A	Liquid Limit	44	Linear Shrinkage	9,5		
Depth:	1100-1680	Plasticity Index	19	Insitu M/C%	3,3		

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	97
13,2	79
9,5	65
6,7	51
4,75	43
2,36	33
1,18	27
0,600	24
0,425	23
0,075	21
0,0585	20
0,0429	18
0,0200	16
0,0062	11
0,0045	9
0,0033	8
0,0024	7
0,0014	5

% Clay	6	(% Silt	14	% Sand	11	%	Gravel	69
Unified Soil	Classificat	ion		С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

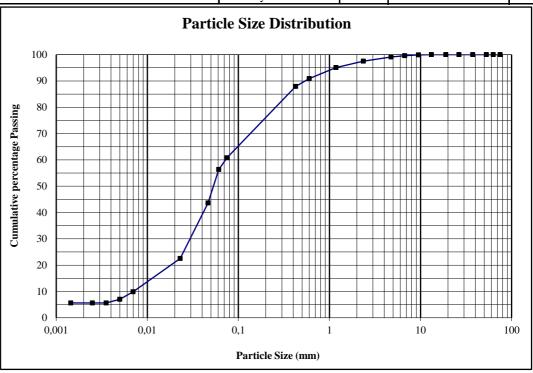
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

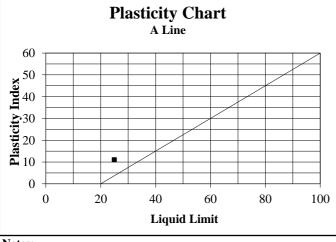
Registration No. 2009/230653/23

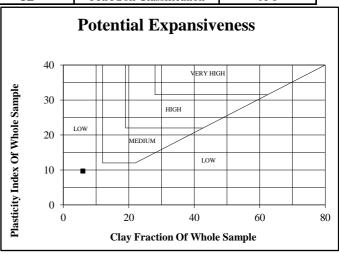
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customar	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	4/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Red Orange - Clayey Gravelly Silty Sand	Sample Number:			
Position:	BH - E 6A	Liquid Limit	25	Linear Shrinkage	5,5
Depth:	500-1500	Plasticity Index	11	Insitu M/C%	12,2

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	100
9,5	100
6,7	100
4,75	99
2,36	98
1,18	95
0,600	91
0,425	88
0,075	61
0,0610	56
0,0464	44
0,0229	23
0,0070	10
0,0050	7
0,0035	6
0,0025	6
0,0014	6

% Clay	6	ç	% Silt	49	% Sand	42	%	Gravel	3
Unified Soil	Classificat	tion	C	L	PRA Soil C	lassificatio	on	A	-6

Notes:

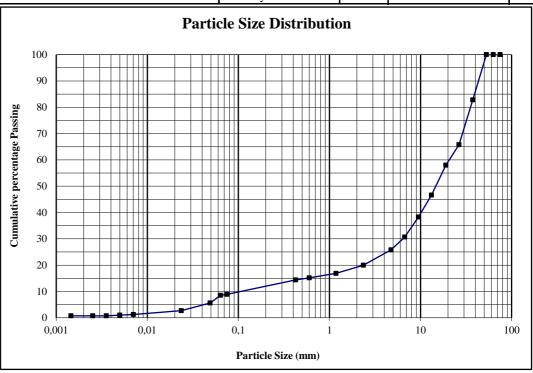
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

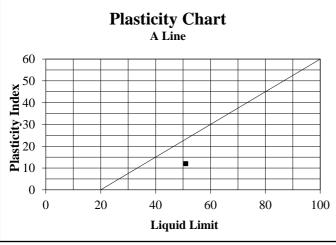
Registration No. 2009/230653/23

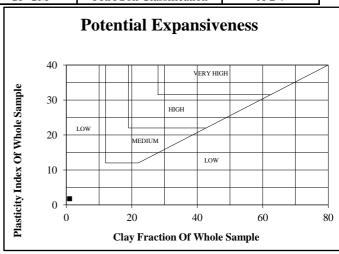
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	5/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Red Orange - Clayey Silty Sandy Gravel	Sample Number:	13490			
Position:	BH - W 564A	Liquid Limit	51	Linear Shrinkage	6	
Depth:	500-1000	Plasticity Index	12	Insitu M/C%	5,4	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	83
26,5	66
19,0	58
13,2	47
9,5	38
6,7	31
4,75	26
2,36	20
1,18	17
0,600	15
0,425	14
0,075	9
0,0638	9
0,0490	6
0,0236	3
0,0070	1
0,0050	1
0,0036	1
0,0025	1
0.0015	1

% Clay	1	(% Silt	7	% Sand	11	%	Gravel	81
Unified Soil	Classificat	tion	GP-	GM	PRA Soil C	lassificatio	n	A-	2-7

Notes:

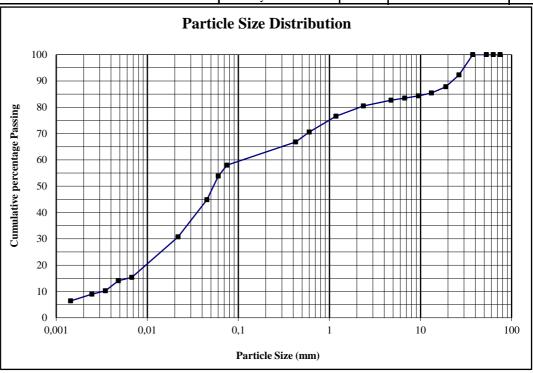
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

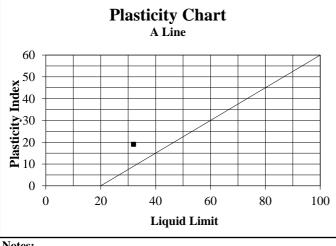
Registration No. 2009/230653/23

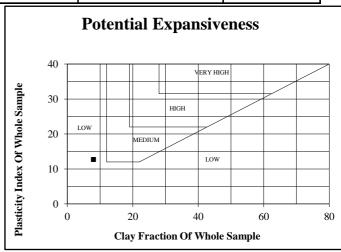
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	6/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Dark Red Orange-Light Red Brown - Clayey Gravelly Silty Sand	Sample Number: 13491			
Position:	BH - W 452F	Liquid Limit	32	Linear Shrinkage	9,5
Depth:	500-950	Plasticity Index	19	Insitu M/C%	6

Depth:					
Sieve Size(mm)	% Passing				
75,0	100				
63,0	100				
53,0	100				
37,5	100				
26,5	92				
19,0	88				
13,2	85				
9,5	84				
6,7	84				
4,75	83				
2,36	81				
1,18	77				
0,600	71				
0,425	67				
0,075	58				
0,0601	54				
0,0451	45				
0,0218	31				
0,0068	15				
0,0048	14				
0,0035	10				
0,0025	9				
0,0014	6				

% Clay	8	Ç	% Silt	46	% Sand	25	%	Gravel	21
Unified Soil	Classificat	ion	C	L	PRA Soil C	lassificatio	on	A	-6

Notes:

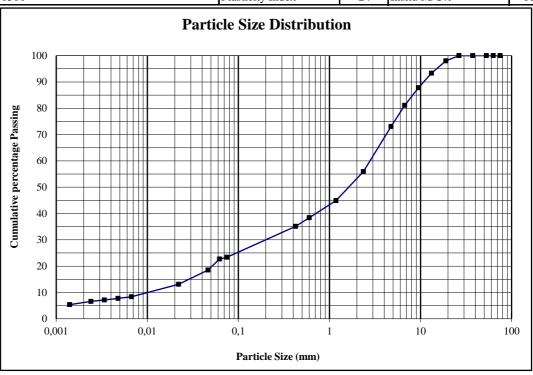
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

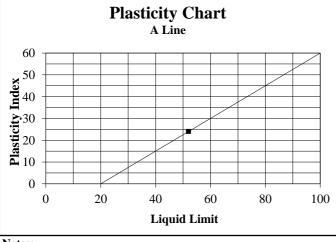
Registration No. 2009/230653/23

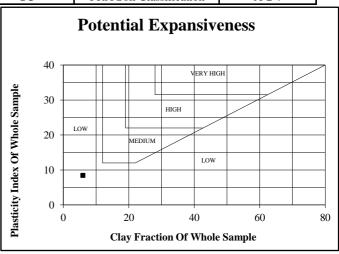
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	7/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Grey Stained Light Red Orange - Silty Gravelly Sand	Sample Number:			
Position:	BH - W 411A	Liquid Limit	52	Linear Shrinkage	12
Depth:	550-1500	Plasticity Index	24	Insitu M/C%	11,9

Depth:					
Sieve Size(mm)	% Passing				
75,0	100				
63,0	100				
53,0	100				
37,5	100				
26,5	100				
19,0	98				
13,2	93				
9,5	88				
6,7	81				
4,75	73				
2,36	56				
1,18	45				
0,600	38				
0,425	35				
0,075	23				
0,0623	23				
0,0464	19				
0,0221	13				
0,0067	8				
0,0048	8				
0,0034	7				
0,0024	7				
0,0014	5				

% Clay	6	ç	% Silt	16	% Sand	31	%	Gravel	47
Unified Soil Classification		tion	G	С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

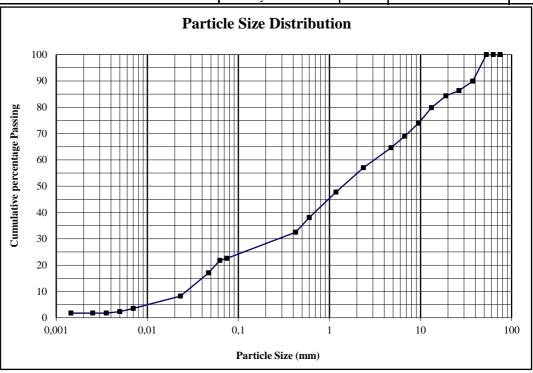
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

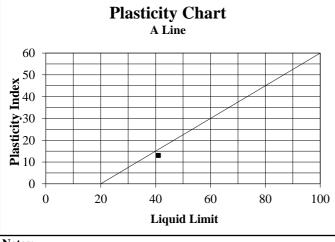
Registration No. 2009/230653/23

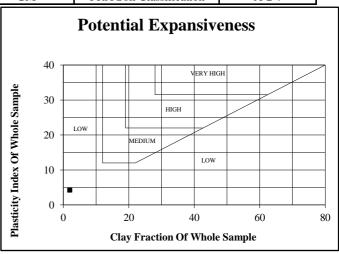
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
Customer.	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	8/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:		13493			
Position:	BH - W 417A	Liquid Limit	41	Linear Shrinkage	6,5
Depth:	2180-2980	Plasticity Index	13	Insitu M/C%	10,8

Depth:					
Sieve Size(mm)	% Passing				
75,0	100				
63,0	100				
53,0	100				
37,5	90				
26,5	86				
19,0	84				
13,2	80				
9,5	74				
6,7	69				
4,75	65				
2,36	57				
1,18	48				
0,600	38				
0,425	33				
0,075	23				
0,0626	22				
0,0470	17				
0,0232	8				
0,0070	4				
0,0050	2				
0,0036	2				
0,0025	2				
0,0015	2				

% Clay	2	Ç	% Silt	19	% Sand	33	%	Gravel	46
Unified Soil Classification		ion	G	M	PRA Soil C	lassificatio	on	A-	2-7

Notes:

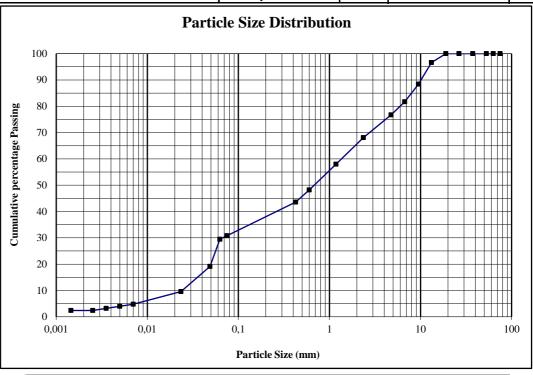
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Registration No. 2009/230653/23

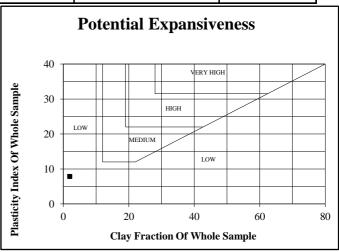
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	9/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Dark Red Orange to Light Grey - Gravelly Clayey Sandy Silt	Sample Number: 13494			
Position:	BH - W 417C	Liquid Limit	42	Linear Shrinkage	9
Depth:	3580-5080	Plasticity Index	18	Insitu M/C%	26,4

Depth:		ŀ
Sieve Size(mm)	% Passing	Ī
75,0	100	1
63,0	100	١
53,0	100	1
37,5	100	1
26,5	100	l
19,0	100	1
13,2	97	
9,5	88	l
6,7	82	l
4,75	77	l
2,36	68	l
1,18	58	l
0,600	48	l
0,425	44	l
0,075	31	
0,0626	29	l
0,0488	19	l
0,0234	10	l
0,0070	5	l
0,0050	4	
0,0035	3 2 2	
0,0025	2	
0,0015	2	ı

% Clay	2	% Silt	26	% Sand	37	%	Gravel	35
Unified Soil Classification		ion (ЭC	PRA Soil C	lassificatio	on	A-:	2-7

Notes:

· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customor	Po Box 964	Date Received:	23/05/19
Customer :	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	1/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI	A BEARING I		(I IV	<u>1H 1 Metnoa A</u>	$\mathbf{I}(\mathbf{a}), \mathbf{A}\mathbf{Z}$,AJ,	
		Material Ir						13129
	ple Position (SV)	E 64A	Spec.	uc	E 64B	Spec.	uc	Sieve Analysis
	th (mm)	200-400	G8 -	Opinion	150-400	G8 -	Opinion	100
Sam	ple No	13129	TRH 14	Ор	13131	TRH 14	Ор	90
S	5 Source	Test	Pit		Test F			80 D70 Uiss 60 E4 40
ria]	Colour	Dark Reddis	h Orange		Dark Reddish Orange			8 50 S
Materials	Source Colour Soil Type Classification	Clayey Silty S		el	Clayey Silty Sa	Clayey Silty Sandy Gravel		9 40 9 30 12 20
Σ	Classification	Unkno			Unkno			930 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	48			100			
ad	53.0 mm	41			65			CBR Chart
Percentage Passing	37.5 mm	29			50			1.50,0
Pas	26.5 mm	28			47			3
ge	19.0 mm	26			41			CB ³ (%)
nta	13.2 mm	22			37			Ö
ce	4.75 mm	17			32			
Pe	2.00 mm	16			30			1,0 90 92 94 96 98 100 102
	0.425 mm	13			27			Compaction (%)
	0.075 mm	10,1			19,8			13131
			Mortar &	c Cor				
Grad	ling Modulus	2,61			2,23			Sieve Analysis
	rse Sand <2.0 >0.425	15,3			8,4			90
	ed. <0.250 >0.150	20,4			25,2			B0 80 70 11 11 11 11 11 11 11 11 11 11 11 11 11
S	ilt <0.075	64,3			66,4			Buisse 60 9 40 9
Liqu	iid Limit (%)	33			30			90 40 91 30
	ticity Index (%)	13			13			20
	ear Shrinkage (%)	6,5			6,5			0,0 0,1 1,0 10,0 100,0
		CBI	R / Density	Rela	tionship	<u> </u>		Sieve Size
	Max Dry Density (kg/m ³)	2056			2040			
Q	Opt Moisture Content (%)	9,4			10,0			CBR Chart
MOD	Mould Moisture Con. (%)	9,4			10,0			100,0
	@100% Mod AASHTO	99,7			100,3			3
	Swell (%)	0,28	≤1.5	√	0,06	≤1.5	✓	CBB(%)
æ	100% NRB	95,9			96,1			l ö
NRB	Swell (%)	0,43			0,08			
Proc	100% Proctor	92,0			91,4			1,0 90 92 94 96 98 100 102
Pr	Swell (%)	0,55			0,09			Compaction (%)
	@ 100% Mod AASHTO	20			15			13129 13131
~	@ 98% Mod AASHTO	18			15			
CBF	@ 95% Mod AASHTO	15			14			Wearing Course Graph
	@ 93% Mod AASHTO	13			13			500,0 - \$\frac{2}{6}\$\frac{2}{6}\$\frac{1}{
	@ 90% Mod AASHTO	10	≥10	*	12	≥10	*	500.0 Slippery 350.0 Slippery 400.0 Slippery 500.0 (May to Dusty)
I	nsitu Moisture Content (%)	N/A			N/A			350,0 - 300,0 - 250,0 - Erodible (May to Dusty)
		S	oil Classifi	icatio	n			Control Cont
	TRH 14	G8			G8			₩ 50.0 - Danie 10
	PRA System	A-2-6			A-2-6			0,0 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
	Unified System	GP-GC			GC			Grading Coefficient (Gc)
G	rimens delivered to Outenia							7

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customar	Po Box 964	Date Received:	23/05/19
Customer :	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	2/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORN			(11)	IH I Metnoa A	11(a),A2	,713,	
Com	nla Dagition (CV)	Material I		ı	E 6D	Cnag	-	13133
	ple Position (SV)	E 6A	Spec.	Opinion	E 6B	Spec.	Opinion	Sieve Analysis
	th (mm)	400-2100	G10 -	pin	800-1750	G10 -	pin	100
	ple No	13133	TRH 14	0	13135	TRH 14	0	80
Materials	Source Colour Soil Type Classification	Test			Test			© 70 © 60 © 50 © 40
eris	Colour	Light Reddi			Light Yellowish Orange		8 50 6 40	
Iat	Soil Type	Clayey Sa	andy Silt		Clayey Gravell	y Silty San	d	9 30 5 30
2	☐ Classification	Unkn	own		Unkno	own		930 920 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			222.01
ŝ	53.0 mm	100			100			CBR Chart
ssir	37.5 mm	100			100			
Pas	26.5 mm	100			100			(%)
ge	19.0 mm	100			100			100 100 100 100 100 100 100 100 100 100
nta	13.2 mm	99			98			o l
Percentage Passing	4.75 mm	97			95			
Pe	2.00 mm	97			93			1,0 85 90 95 100 105
	0.425 mm	89			81			Compaction (%)
	0.075 mm	55,7			49,8			13135
			il Mortar &	& Con				
Grad	ding Modulus	0,59			0,77			Sieve Analysis
	rse Sand <2.0 >0.425	8,3			12,5			90
	ed. <0.250 >0.150	34,1			33,6			<u>P</u> 80
S	ilt <0.075	57,6			53,8			20 Pass ing
	nid Limit (%)	20			26			9 40 12 30
	ticity Index (%)	5			11			5 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	ear Shrinkage (%)	2,5			5,5			
	2 \ /	,	R / Density	Rela	,			0,0 0,1 1,0 10,0 100,0 Sieve Size
	Max Dry Density (kg/m ³)	2006	T		2026			
Q	Opt Moisture Content (%)	9,5			9,1			CBR Chart
MOD	Mould Moisture Con. (%)	9,2			9,3			100,0
	@100% Mod AASHTO	99,7			99,4			
	Swell (%)	1,33	≤1.5	√	0,94	≤1.5	✓	CB) (%)
8	100% NRB	94,0			94,2			a a
NRB	Swell (%)	1,34			1,26			
[]	100% Proctor	88,5			90,0			1,0
Proc	Swell (%)	1,43			1,50			85 90 95 100 Compaction (%)
F	@ 100% Mod AASHTO	20			17			
	@ 98% Mod AASHTO	17			15			
BR	@ 95% Mod AASHTO	12			11	†		Wearing Course Graph
C	@ 93% Mod AASHTO	9			8	1		550,0 500,0 350,0 - Slippery
	@ 90% Mod AASHTO	4	≥3	*	4	≥3	*	#50,0 - Shippery
T	nsitu Moisture Content (%)	N/A		\vdash	N/A	 	H	350,0 - Good (May be Dusty)
	Soil Classification						250,0 - Frodible Ravels	
	TRH 14	G10			G10			参50,0 - Good
	PRA System	A-4	+		A-6	1		0,0 + 1 1 1 1 1 1 1 1 1 1 1
	Unified System	CL-ML	1		SC	1		0 4 8 12 16 20 24 28 32 36 40 44 48
	oimona delizared to Outonia	•			50	-		Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth : PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project :	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer:	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	3/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI			(11)	MH 1 Method A	1(a),A2	,AJ,	
		Material Ir						13137
	ple Position (SV)	E 7A	Spec.	on	E 7B	Spec.	uo	Sieve Analysis
	th (mm)	200-500	G9 -	Opinion	300-800	G10 -	Opinion	100
Sam	ple No	13137	TRH 14	Oľ	13139	TRH 14	Oľ	90 80
ls	Source Colour Soil Type Classification	Test			Test F			80 B 70 Uiss 60 S 40
Materials	Colour	Light B	rown		Light Reddish Brown to Light Brown		8 50 8 50 4 40	
[ate	뎘 Soil Type	Clayey Silty Sandy Gravel		:1	Clayey Silty Sa	ndy Grave	el	9 40 12 30
\geq	Classification	Unkno	own		Unkno	wn		930 820 910 910
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			
50 Ed	53.0 mm	86			100			CBR Chart
Percentage Passing	37.5 mm	76			62			
Pa	26.5 mm	69			58			8
ige	19.0 mm	62			51			160
inta	13.2 mm	52			46			0
rce	4.75 mm	34			32			
Pe	2.00 mm	27			25			1,0 84 86 88 90 92 94 96 98
	0.425 mm	20			19			Compaction (%)
	0.075 mm	15,9			15,0			13139
	Soil Mortar & Constants							
	ling Modulus	2,38			2,41			Sieve Analysis
Coa	rse Sand <2.0 >0.425	24,2			24,9			90 80
M	ed. <0.250 >0.150	15,8			14,9			50 70
	ilt <0.075	60,0			60,2			<u>a</u> 50
	iid Limit (%)	37			42			140 de
	ticity Index (%)	16			19			5 20 6 10
Line	ar Shrinkage (%)	8,0			9,5			0,0 0,1 1,0 10,0 100,0
			R / Density	Rel				Sieve Size
	Max Dry Density (kg/m ³)	1974			2014			
) O	Opt Moisture Content (%)	8,9			12,0			CBR Chart
MOD	Mould Moisture Con. (%)	8,8			12,0			
	@100% Mod AASHTO	97,2			98,5			(%)
	Swell (%)	0,33	≤1.5	✓	0,65	≤1.5	✓	CBM (%)
NRB	100% NRB	91,1	1		94,6			0
Z	Swell (%)	0,78	1		0,95			
Proc	100% Proctor	86,5			87,7			1,0 1 100
Pr	Swell (%)	1,09	1		1,14			Compaction (%)
	@ 100% Mod AASHTO	60	1		20			15157
R	@ 98% Mod AASHTO	52	1		18			
CB]	@ 95% Mod AASHTO	40	1		15			Wearing Course Graph
ľ	@ 93% Mod AASHTO	32			13			500,0 - \$350,0 - Slippery
	@ 90% Mod AASHTO	20	≥7	✓	10	≥3	✓	300,0 - 350,0 -
Iı	Insitu Moisture Content (%) N/A N/A						\$00,0 - Good (May be Dusty)	
			oil Classifi	cati		T		500.0 Slippery Sli
	TRH 14	G9	1		G10			
	PRA System	A-2-6			A-2-7			0,0 1 10 10 10 10 10 10 10 10 10 10 10 10
	Unified System	GC			GC			Grading Coefficient (Gc)
								The state of the s

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	4/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI			(1 10	IH I Metnod A	11(a),A2	,713,	
C	1 D ::: (CM)	Material I			E 100D	G		13141
	ple Position (SV)	E 100A	Spec.	Opinion	E 100B	Spec.	Opinion	Sieve Analysis
	th (mm)	300-1100	G10 -	pini	400-1500	G10 -	pini	100
Sam	ple No	13141	TRH 14	Ō	13143	TRH 14	Ō	
lls	Source Colour Soil Type Classification	Test			Test 1			80 570 uis 60 se 50 4 40
eria	Colour	Light Redd			Light Reddish Brown			80 50 0 40
Materials	Soil Type	Clayey Silty S	Sandy Grave	el	Silty Sandy	y Gravel		95 30 100 100 100 100 100 100 100 100 100 1
2	△ Classification	Unkn	own		Unkno	own		930 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			66			Sieve Size
	63.0 mm	100			55			222.01
50	53.0 mm	100			49			CBR Chart
ssir	37.5 mm	92			46			
Pas	26.5 mm	87			43			8
ge	19.0 mm	79			38			CBR (%)
nta	13.2 mm	65			33			°
Percentage Passing	4.75 mm	42			20			
Pe	2.00 mm	31			14			1,0 88 90 92 94 96 98 100
	0.425 mm	21			9			Compaction (%)
	0.075 mm	17,1			6,7			13143
			il Mortar &	& Cor	stants			
Grad	ding Modulus	2,31			2,70			Sieve Analysis
	rse Sand <2.0 >0.425	30,4			37,8			90 80
M	ed. <0.250 >0.150	13,7			15,4			<u>e</u> 70
S	ilt <0.075	55,9			46,9			20 Pass ing
Liqu	ıid Limit (%)	47			37			9 40 13 30
	ticity Index (%)	20			19			5 20 10
	ear Shrinkage (%)	10,0			9,5			0,0 0,1 1,0 10,0 100,0
		СВ	R / Density	Rela	tionship			Sieve Size
	Max Dry Density (kg/m ³)	2012	1		2102			
Q	Opt Moisture Content (%)	12,1			11,0			CBR Chart
MOD	Mould Moisture Con. (%)	11,8			10,8			100,0
	@100% Mod AASHTO	98,2			97,9			
	Swell (%)	0,33	≤1.5	√	1,14	≤1.5	✓	CB) (%)
B	100% NRB	94,0			93,0			8
NRB	Swell (%)	0,78			1,34			
[]	100% Proctor	89,4			88,5			1,0
Proc	Swell (%)	1,09			1,54			85 90 95 100 Compaction (%)
<u> </u>	@ 100% Mod AASHTO	12			17			
٠	@ 98% Mod AASHTO	10			16			
BR	@ 95% Mod AASHTO	8	1		14			Wearing Course Graph
C	@ 93% Mod AASHTO	6			13			550,0 500,0 350,0 - Slippery
	@ 90% Mod AASHTO	4	≥3	*	11	≥3	√	#50,0 - #200,0 - #550,0 -
I	nsitu Moisture Content (%)	N/A			N/A			350,0 - Good (May be Dusty)
	Soil Classification						250,0 - Erodible Ravels	
	TRH 14	G10			G10			数50,0
	PRA System	A-2-7			A-2-6			0,0 + 1 1 1 1 1 1 1 1 1 1 1
	Unified System	GC			GW-GC			0 4 8 12 16 20 24 28 32 36 40 44 48
	oimong delivered to Outonice		,		2 33			Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or

for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	5/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	<u>CITEII GIRI (I</u>			(11	AH 1 Metnod A	11(u),112	<u>,,, 1.0 ,,,</u>	
C	unla Dagitian (CV)	Material Inc		1	TD CC2	C	-	13145
	nple Position (SV)	TP SS1	Spec.	Opinion	TP SS2	Spec.	Opinion	Sieve Analysis
	th (mm)	0-100	G5 -	pin	0-300	G7 -	pin	100
	ple No	13145	TRH 14	0	13147	TRH 14	0	
Materials	Source Colour Soil Type Classification	Test P			Test 1			80 D70 Uis 60 R 50
erië	Colour	Light Reddisl			Light Reddish Brown			8 50 4 40
Tate	Soil Type	Gravelly Sil	ty Sand		Silty Gravelly Sand with	h Boulders, C	obbles	6 30 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 9 30 9 9 9 9
~	☐ Classification	Unknov	wn		Unkno	wn		9 30 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			54			222.01
ಹ	53.0 mm	56			42			CBR Chart
ssir	37.5 mm	51			34			
Pas	26.5 mm	41			31			3
ge	19.0 mm	35			27			CBB (%)
Percentage Passing	13.2 mm	32			24	1		o l
rce	4.75 mm	25			18	1		
Pe	2.00 mm	20			15			1,0 88 90 92 94 96 98 100
	0.425 mm	16			12			Compaction (%)
	0.075 mm	9,4			7,1			13147
	1		Mortar &	k Co				
Grad	ding Modulus	2,55	≥1.5	√	2,66	≥0.75	✓	Sieve Analysis
	rse Sand <2.0 >0.425	20,0			19,7			90
	led. <0.250 >0.150	33,0			32,0			<u>5</u> 80 70
S	ilt <0.075	47,0			48,3			70 Paccentage Passing 40 Passing
	aid Limit (%)	19	≤30	✓	24			9 40 DB 30
	ticity Index (%)	5	≤10	√	7	≤12	✓	9 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	ear Shrinkage (%)	2,5	≤5	✓	3,5			
	2 ()	,	/ Density	Rela	,			0,0 0,1 1,0 10,0 100,0 Sieve Size
	Max Dry Density (kg/m ³)	2106	·		2108			
Q	Opt Moisture Content (%)	7,8			8,4			CBR Chart
MOD	Mould Moisture Con. (%)	7,7			8,3			100,0
	@100% Mod AASHTO	98,1			98,8			
	Swell (%)	0,05	≤0.5	✓	0,01	≤1.5	✓	CB⅓ (%)
B	100% NRB	93,5			95,3			B B
NRB	Swell (%)	0,08			0,03			
	100% Proctor	89,9			88,8			1,0
Proc	Swell (%)	0,13			0,06			85 90 95 100 Compaction (%)
┢▔	@ 100% Mod AASHTO	82			33			
l	@ 98% Mod AASHTO	69			29		\vdash	• 1 1
BR	@ 95% Mod AASHTO	49	≥45	✓	24	1	\vdash	Wearing Course Graph
S	@ 93% Mod AASHTO	36			20	≥15	✓	550,0 500,0 - 3,50,0 - Slippery
	@ 90% Mod AASHTO	16			14	1 -10	\vdash	#50,0 - Slippery #50,0 - \$50,0 - Good
T	nsitu Moisture Content (%)	N/A			N/A	1	\vdash	350,0 - Good (May be Dusty)
	Soil Classification						300,0 Good (May be Dusty) 250,0 Frodible (May be Dusty) 300,0 Materials 300,0 Good (May be Dusty) 300,0 Ravels 300,0 Good (May be Dusty) 300,0 Good	
	TRH 14	G5			G7	1	\vdash	50,0 - Good Go
	PRA System	A-1-a / A-1-b / A-2-4			A-2-4	+	\vdash	0,0 +
	Unified System	GP-GM.GC			GW-GC		\vdash	0 4 8 12 16 20 24 28 32 36 40 44 48
<u> </u>	simona delivered to Outonia				377-00	1		Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth : PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	6/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CHEITORIV			(111/	IH I Metnoa A	11(a),A2	,713,	
C	nla Dagition (CV)	Material I		, I	TD CC4	C		13149
	ple Position (SV)	TP SS3	Spec.	Opinion	TP SS4	Spec.	Opinion	Sieve Analysis
	th (mm)	80-250	G7 -	pin -	200-450 13151	G8 -	hin	90
	ple No	13149	TRH 14	0		TRH 14	0	80
Materials	Source Colour Soil Type Classification	Test				Test Pit		<u> </u>
erië	Colour	Light Redd			Light Reddish Brown			\$ 50 \$ 50 \$ 40
Iat	Soil Type	Silty Sandy Grave	-	obles	Silty Sand			1436 30 30 30 30 30 30 30 30 30 30 30 30 30
		Unkn	own		Unkno	own		9 30 E 20 10 10 100 100 100 100 100 100 100 10
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			CBR Chart
<u>8</u>	53.0 mm	66			86			100,0
ssi	37.5 mm	54			80			
Pa	26.5 mm	47			66			(%)
ıge	19.0 mm	42			61			180
Percentage Passing	13.2 mm	37			55			
rce	4.75 mm	26			39			
Pe	2.00 mm	22			30			1,0 88 90 92 94 96 98 100
	0.425 mm	19			23			Compaction (%)
	0.075 mm	14,2			18,4			13151
		So	il Mortar &	c Con	stants			
Grac	ling Modulus	2,44	≥0.75	✓	2,29			Sieve Analysis
Coar	rse Sand <2.0 >0.425	14,7			25,1			90 80
M	ed. <0.250 >0.150	21,9			14,2			is 60
S	ilt <0.075	63,4			60,7			<u>6</u> 50
Liqu	nid Limit (%)	29			34			20 40 e de
Plas	ticity Index (%)	11	≤12	✓	13			5 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Line	ar Shrinkage (%)	4,5			6,5			0,0 0,1 1,0 10,0 100,0
		CB	R / Density	Rela	tionship			Sieve Size
	Max Dry Density (kg/m³)	2130			1860			
Ö	Opt Moisture Content (%)	7,9			12,5			CBR Chart
MOD	Mould Moisture Con. (%)	7,7			12,4			100,0
	@100% Mod AASHTO	99,3			99,6			3
	Swell (%)	0,17	≤1.5	✓	0,32	≤1.5	✓	CB₩ (%)
æ	100% NRB	95,5			94,5			8
NRB	Swell (%)	0,43			0,63			
Proc	100% Proctor	90,1			89,6			1,0 1 100 105
Pr	Swell (%)	0,78			0,80			Compaction (%)
	@ 100% Mod AASHTO	33			40			13149 13131
~	@ 98% Mod AASHTO	29			35			
BR	@ 95% Mod AASHTO	23			26			Wearing Course Graph
ן כ	@ 93% Mod AASHTO	19	≥15	✓	20			500,0 - 500,0 - 950,0 - Slippery
	@ 90% Mod AASHTO	13			12	≥10	*	300,0 - 350,0 -
Iı	nsitu Moisture Content (%)	N/A			N/A			\$00,0 - Good (May be Dusty)
	Soil Classification							500,0 Slippery Sli
	TRH 14	G7			G8			3 00,0 - 3 00,
	PRA System	A-2-6			A-2-6			0,0 taveis and corregates
	Unified System	GC			GC			0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
	nimona dalizanad ta Outania		_			•		

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	1/7

TEST REPORT

	<u>CALIFORNI</u>	<u>A BEARING R</u>	<u> ATIO -</u>	(TN	<u> 1H 1 Method A</u>	1(a),A2	<u>,A3,</u>	<u>A4,A5,A7,A8)</u>
		Material In	dicators					13252
Sam	pple Position (SV)	TP MTS 1	Spec.	u	TP MTS 2	Spec.	n	0
Dep	oth (mm)	200-500	G8 -	inic	400-900	G7 -	Opinion	Sieve Analysis
Sam	ple No	13252	TRH 14	Opinion	13254	TRH 14	Op	
S	5 Source	Test I	Pit		Test I	Pit		90 80 5070 4760
Materials	Colour	Light Reddis			Light C	live		8 50 So
ateı	Soil Type	Silty Sandy	_		Sandy Silty			90 40 90 30 91 30
Ž	Source Colour Soil Type Classification	Unkno			Unkno			10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)	CHRIO	WII		Clikilo	W 11		9 30 20 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
IVIAA	75.0 mm	100			100			0,0 0,1 1,0 10,0 100,0 Sieve Size
	63.0 mm	85			100			
50	53.0 mm	58			74			CBR Chart
iii	37.5 mm	55			64			100,0
ass	26.5 mm	51			58			
e P	19.0 mm	45	1		56			1000
Percentage Passing	13.2 mm	43	-		51			100
cen	4.75 mm	31			41			
ere	2.00 mm	26			33			1,0
1 "		26			20			90 92 94 96 98 100 102 Compaction (%)
	0.425 mm							
	0.075 mm	15,4	M	. C.	8,6			13254
C	dia - Madalaa		Mortar &	& Col		>0.75		Sieve Analysis
	ding Modulus	2,38			2,39	≥0.75	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100
	rse Sand <2.0 >0.425	18,8			38,7			80
	led. <0.250 >0.150	21,9			35,1			ii 70 60
	Silt <0.075	59,2			26,2			Percentage
	uid Limit (%)	38			32	-10		9 30 9 20
	sticity Index (%)	16			8	≤12	✓	8 10 d
Line	ear Shrinkage (%)	8,0	/ D 4	D.1.	4,0			0,0 0,1 1,0 10,0 100,0
	M D Dit (1/3)		l / Density	Keia		1		Sieve Size
	Max Dry Density (kg/m³)	1850			1626			CBR Chart
MOD	Opt Moisture Content (%)	14,3			17,3			100,0
M	Mould Moisture Con. (%)	14,3	-		17,3	<u> </u>		
	@100% Mod AASHTO	100,9	/1 5		100,4	/1.5	✓	(%)
	Swell (%)	0,07	≤1.5	✓	0,00	≤1.5	Y	(%) (18) (18) (18) (18) (18) (18) (18) (18
NRB	100% NRB	96,3	-		94,9			
Z	Swell (%)	0,11	-		0,03			1,0
Proc	100% Proctor	91,8	-		90,3			85 90 95 100 105
P	Swell (%)	0,14			0,05			Compaction (%)
	@ 100% Mod AASHTO	37	1		62			13232
~	@ 98% Mod AASHTO	34	1		51	ļ		Wearing Course Granh
CB	@ 95% Mod AASHTO	30	1		34			Wearing Course Graph
1	@ 93% Mod AASHTO	27	. 10		23	≥15	√	300,0 \$50,0 \$50,0 \$55,0 \$55,0 \$00,0 \$00,0 \$100,
<u>_</u>	@ 90% Mod AASHTO	23	≥10	✓	6	ļ		350,0 - Good (May be Dusty)
	nsitu Moisture Content (%)	N/A	11.01.10	<u> </u>	N/A			800,0 - (May be Dusty) 250,0 - Erodible (May be Dusty) 300,0 - Materials Ravels
	mpii i i		oil Classifi	catio		1		Control Cont
-	TRH 14	G8	1		G7			50,0 - Ravels and Corrugates
	PRA System	A-2-6			A-2-4			0,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Unified System	GC			GP-GM			Grading Coefficient (Gc)
	aimone delivered to Outonia							

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	2/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(11)	AH 1 Method A	1(a),AZ	,AJ,	
		Material Iı						13256
	ple Position (SV)	TP MTS 3	Spec.	u.	TP MTS 4	Spec.	uc	Sieve Analysis
	th (mm)	0-400	G9 -	Opinion	250-600	G5 -	Opinion	100
Sam	ple No	13256	TRH 14	Op	13258	TRH 14	Ор	90
S	5 Source	Test	Pit		Test P	it		80 60 80 80 80 80 80 80 80 80 80 80 80 80 80
ria	E Colour	Dark Re	eddish		Light Olive to Light Brown		88 50	
Materials	Source Colour Soil Type Classification	Silty Sand	y Gravel		Sandy Silty Gravel	with Cob	bles	95 40 95 30 12 20
Σ	Classification	Unkno	own		Unknov	wn		930 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			66			Sieve Size
	63.0 mm	70			58			
ф	53.0 mm	62			58			CBR Chart
sin	37.5 mm	47			56			1.50,0
Pas	26.5 mm	43			49			(9)
ge	19.0 mm	36			45			CB ³ (%)
nta	13.2 mm	33			41			Ö
Percentage Passing	4.75 mm	25			32			
Pe	2.00 mm	21			27			1,0 90 92 94 96 98 100
	0.425 mm	17			21			Compaction (%)
	0.075 mm	12,0			8,6			13258
			l Mortar &	c Co				
Grad	ding Modulus	2,50			2,43	≥1.5	√	Sieve Analysis
	rse Sand <2.0 >0.425	18,9			20,7			90
	ed. <0.250 >0.150	24,5			47,4			B0 80 70
S	ilt <0.075	56,6			31,9			8 60 50
Liqu	iid Limit (%)	31			SP	≤30	✓	20 La Company (1) A Company (1
	ticity Index (%)	15			SP	≤10	√	5 20 10
	ear Shrinkage (%)	7,5			0,5	≤5	√	0,0 0,1 1,0 10,0 100,0
		CBl	R / Density	Rela	ationship			Sieve Size
	Max Dry Density (kg/m ³)	1976			1612			
Q	Opt Moisture Content (%)	10,7			18,1			CBR Chart
MOD	Mould Moisture Con. (%)	10,7			18,1			1000,0
~	@100% Mod AASHTO	98,3			100,3			100.0
	Swell (%)	0,08	≤1.5	✓	0,02	≤0.5	√	180,0 W 80 P0,0
NRB	100% NRB	94,3			93,2			90,0
Ź	Swell (%)	0,13			0,04			
Proc	100% Proctor	90,9			90,1			1,0 10 105
Pr	Swell (%)	0,39			0,10			Compaction (%)
	@ 100% Mod AASHTO	37			109			13230
2	@ 98% Mod AASHTO	32			89			
CBI	@ 95% Mod AASHTO	24			57	≥45	√	Wearing Course Graph
	@ 93% Mod AASHTO	19			37			500,0 - \$150,0 - Slippery
	@ 90% Mod AASHTO	11	≥7	✓	5			300,0 - 350,0 -
I	nsitu Moisture Content (%)	N/A			N/A			300,0 - Good (May be Dusty)
	<u> </u>		oil Classifi	icatio				500,0 500,0 500,0 500,0 500,0 500,0 500,0 500,0 600,0
	TRH 14	G9			G5			₩ 50,0 - Box's - Communication
	PRA System	A-2-6			A-1-a / A-1-b / A-2-4			0,0 Ravels am Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
	Unified System	GP-GC			#DIV/0!			Grading Coefficient (Gc)
	•				· · · · · · · · · · · · · · · · · · ·			

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or

for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	3/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(1)	AH 1 Method A	$1(\mathbf{a}), \mathbf{A}\mathbf{Z}$,A3,	
		Material Iı						13260
	ple Position (SV)	W5 21A	Spec.	uc	W5 21B	Spec.	uc	Sieve Analysis
	th (mm)	150-350	G9 -	Opinion	100-350	G8 -	Opinion	100
Sam	ple No	13260	TRH 14	Ор	13262	TRH 14	Ор	90
S	5 Source	Test	Pit		Test I	Pit		80 570 198 60 84 40
ria	E Colour	Light Reddi	sh Orange		Light Reddish Orange			88 50
Materials	Source Colour Soil Type Classification	Silty Sand	y Gravel		Silty Sandy	Gravel		9 40 0 30 1 20 9 40
Σ	Classification	Unkno	own		Unkno	wn		930 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			69			
ф	53.0 mm	73			57			CBR Chart
sin	37.5 mm	61			52			1.50,0
Pas	26.5 mm	53			46			9
ge	19.0 mm	42			39			CB#(%)
nta	13.2 mm	34			33			Ö
Percentage Passing	4.75 mm	21			23			
Pe	2.00 mm	16			18			1,0 90 92 94 96 98 100
	0.425 mm	12			13			Compaction (%)
	0.075 mm	8,0			8,6			13262
			l Mortar &	c Co				
Grad	ding Modulus	2,64			2,61			Sieve Analysis
	rse Sand <2.0 >0.425	26,8			27,3			90
	ed. <0.250 >0.150	24,4			23,9			B0 80 70 11 11 11 11 11 11 11 11 11 11 11 11 11
S	ilt <0.075	48,8			48,9			70
Liqu	iid Limit (%)	38			31			9 40 9 30
	ticity Index (%)	18			14			5 20 10 10
	ear Shrinkage (%)	9,0			7,0			0,0 0,1 1,0 10,0 100,0
		CBI	R / Density	Rela	ationship			Sieve Size
	Max Dry Density (kg/m ³)	1900			1896			
Ö	Opt Moisture Content (%)	12,5			12,4			CBR Chart
MOD	Mould Moisture Con. (%)	12,5			12,3			100,0
_	@100% Mod AASHTO	98,7			99,9			3
	Swell (%)	0,08	≤1.5	√	0,18	≤1.5	√	CBB(%)
æ	100% NRB	94,5			94,0			8
NRB	Swell (%)	0,13			0,76			
Proc	100% Proctor	90,6			88,5			1,0 1 105
Pr	Swell (%)	0,17			0,78			Compaction (%)
	@ 100% Mod AASHTO	64			62			13200
~	@ 98% Mod AASHTO	54			53			
CBF	@ 95% Mod AASHTO	39			40			Wearing Course Graph
	@ 93% Mod AASHTO	29			31			500,0 - \$\frac{2}{6}\$\frac{2}{6}\$\frac{1}{
	@ 90% Mod AASHTO	14	≥7	✓	18	≥10	√	3400,0 - 350,0 -
I	nsitu Moisture Content (%)	N/A			N/A			\$30,0 - Good (May be Dusty)
		S	oil Classifi	icatio	on			500,0 Silippery 300,0 Good (May be Dusty) 500,0 Good (May be Dusty) 500,0 Good (May be Dusty) 600,0 Good (May be Dusty) 600,0 Good (May be Dusty) 600,0 Good (Ravels and Corrugates)
	TRH 14	G9			G8			
	PRA System	A-2-6			A-2-6			0,0 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
	Unified System	GP-GC			GW-GC			Grading Coefficient (Gc)
					•			7

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	4/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(IIV	IH 1 Method A	1(a),A2.	,AJ,	
		Material In						13264
	ple Position (SV)	W5 64A	Spec.	uc	W5 64B	Spec.	uc	Sieve Analysis
	th (mm)	350-950	G5 -	Opinion	350-700	G6 -	Opinion	100
Sam	ple No	13264	TRH 14	Ор	13266	TRH 14	Op	90
S	5 Source	Test P	it		Test P	it		90 80 Du 70 us 60 e 50 d 44
Materials	Source Colour Soil Type Classification	Light Olive to L	ight Brow	n	Light Olive to Light Brown			
ateı	Soil Type	Calcre	_		Calcre	-		9 40 9 30 1 20
Σ̈́	Classification	Unkno			Unkno			9 10
Mox	x. Stone size in hole (mm)	Clikilo	WII		Clikilo	WII		9 30 20 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
IVIa	75.0 mm	100			100			0,0 0,1 1,0 10,0 100,0 Sieve Size
	63.0 mm	100			100			
		77			93			CBR Chart
ing	53.0 mm							100,0
ass	37.5 mm	72			90			
e P	26.5 mm	57			88			(%) (%) (CB) (%)
age	19.0 mm	53			82			
Percentage Passing	13.2 mm	46			76			
erc	4.75 mm	27			62			1,0
Ь	2.00 mm	19			51			88 90 92 94 96 98 100 102
	0.425 mm	14			39			Compaction (%)
	0.075 mm	7,8			21,1			13266
			Mortar &	_				Sieve Analysis
	ding Modulus	2,59	≥1.5	✓	1,90	≥1.2	✓	100
	rse Sand <2.0 >0.425	27,3			23,3			90 80
	ed. <0.250 >0.150	32,5			35,0			Su 70
	ilt <0.075	40,2			41,7			<u>a</u> 50
Liqu	ıid Limit (%)	SP	≤30	✓	27			ep 40
Plas	ticity Index (%)	SP	≤10	✓	5	≤12	✓	5 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Line	ear Shrinkage (%)	0,5	≤5	✓	2,5			0,0 0,1 1,0 10,0 100,0
		CBR	/ Density	Rela	tionship			Sieve Size
	Max Dry Density (kg/m ³)	1730			1786			
Q	Opt Moisture Content (%)	19,6			14,8			CBR Chart
MOD	Mould Moisture Con. (%)	19,6			14,7			100,0
	@100% Mod AASHTO	100,9			99,6			
	Swell (%)	0,00	≤0.5	✓	0,02	≤1.0	✓	CBB(%)
9	100% NRB	95,8			96,5			8
NRB	Swell (%)	0,00			0,05			
2	100% Proctor	90,1			91,0			1,0 90 92 94 96 98 100 102
Proc	Swell (%)	0,00			0,06			90 92 94 96 98 100 102 Compaction (%)
	@ 100% Mod AASHTO	74			70			13204
	@ 98% Mod AASHTO	65			57			
BR	@ 95% Mod AASHTO	52	≥45	✓	39			Wearing Course Graph
CB	@ 93% Mod AASHTO	43			27	≥25	*	550,0 500,0 - Slipper
	@ 90% Mod AASHTO	29			9	_23	'	第50,0 - Slippery 第00,0 -
T	nsitu Moisture Content (%)	N/A			N/A			\$50,0 - Good (May be Dusty)
	more more content (/0)		ı oil Classifi	catio				250,0 - Erodible
	TRH 14	, Ciassiii	Cull	G6			- B 50,0 - Good Good Good Good Good Good Good Go	
	PRA System	G5 A-1-a / A-1-b / A-2-4			A-1-b / A-2-4			50,0 Ravels and Corrugates
	Unified System	GP-GM			GM			0 4 8 12 16 20 24 28 32 36 40 44 48
	Omned System	OI -OM	<u> </u>		GIVI			Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	5/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

_	<u>eren orivi</u>			(11)	IH I Metnod A	11(a)9/12/	,713,	
Com	unla Dagition (CV)	Material I			W 411D	Cnos		13268
	th (mm)	W 411A	Spec.	Opinion	W 411B	Spec.	Opinion	Sieve Analysis
	th (mm)	750-1700	G10 -	pin	450-1500	G10 -	pin	100
	ple No	13268	TRH 14	0	13270	TRH 14	0	
ıls	Source Colour Soil Type Classification	Test			Test Pit			80 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80
eris	Colour	Light Reddi			Light Reddish Orange			8 50 6 40
Materials	Soil Type	Gravelly S	andy Silt		Gravelly Si	ilty Sand		9 40 85 30
~	△ Classification	Unkn	own		Unkno	own		9 30 20 20 20 20 20 20 20 20 20 20 20 20 20
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			222.01
ಹ	53.0 mm	100			100			CBR Chart
ssir	37.5 mm	100			100			
Pas	26.5 mm	98			89			3
ge	19.0 mm	97			84			CBB(%)
nta	13.2 mm	95			77			0
Percentage Passing	4.75 mm	73			56			
Pe	2.00 mm	49			41			1,0 88 90 92 94 96 98 100 102
	0.425 mm	33			30			Compaction (%)
	0.075 mm	19,0			15,5			13270
			il Mortar &	c Cor				
Gra	ding Modulus	2,00			2,14			Sieve Analysis
	rse Sand <2.0 >0.425	33,7			25,4			90
	ed. <0.250 >0.150	27,6			36,3			<u>p</u> 80
S	ilt <0.075	38,8			38,3			8 60 50
	uid Limit (%)	61			48			Parcentage Passing
	ticity Index (%)	29			23			5 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	ear Shrinkage (%)	14,5			11,5			
	2 \		R / Density	Rela				0,0 0,1 1,0 10,0 100,0 Sieve Size
	Max Dry Density (kg/m ³)	1598	Ī		1762			<u> </u>
Q	Opt Moisture Content (%)	18,8			15,9			CBR Chart
MOD	Mould Moisture Con. (%)	18,8			15,9			100,0
_	@100% Mod AASHTO	99,6			100,0			
	Swell (%)	0,81	≤1.5	✓	0,33	≤1.5	✓	CB)
В	100% NRB	95,3			94,9			THE STATE OF THE S
NRB	Swell (%)	0,94			0,30			
	100% Proctor	90,3			89,2			1,0
Proc	Swell (%)	0,98			0,63			85 90 95 100 105 Compaction (%)
┢▔	@ 100% Mod AASHTO	51			23			
	@ 98% Mod AASHTO	42			21			
BR	@ 95% Mod AASHTO	30			17			Wearing Course Graph
C	@ 93% Mod AASHTO	21			15			550,0 500,0 350,0 - Slippery
	@ 90% Mod AASHTO	9	≥3	√	11	≥3	✓	#50,0 - 30,00 - 35,00
T	nsitu Moisture Content (%)	N/A			N/A			350,0 - Good (May be Dusty)
Ħ -	Soil Classification					250,0 - Erodible Ravels		
	TRH 14	G10			G10			350,0 - Good G
	PRA System	A-2-7	+		A-2-7			0,0 + 1 1 1 1 1 1 1 1 1 1 1
	Unified System	GM	1		GC			0 4 8 12 16 20 24 28 32 36 40 44 48
<u> </u>	oimong delivered to Outonia				30	1		Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	6/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(1N)	<u> 1H 1 Method A</u>	1(a),A2	,AJ,	
		Material Iı			_			13272
	pple Position (SV)	W 452A	Spec.	uc	W 452B	Spec.	uc	Sieve Analysis
	th (mm)	500-1800	G10 -	Opinion	350-500	G10 -	Opinion	100
Sam	ple No	13272	TRH 14	OF	13274	TRH 14	OF	90
S	5 Source	Test	Pit		Test P	it		80 570 uis 60 se 4 40
ria	E. Colour	Light B	rown		Dark Reddsish Brown			
Materials	Source Colour Soil Type Classification	Silty Sand	y Gravel		Silty Gravel	ly Sand		D 40 B 30
Σ	Classification	Unkno	own		Unkno	wn		930 2010 2010 2010
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			
ф	53.0 mm	100			100			CBR Chart
sin	37.5 mm	100			49			1.50,0
Pas	26.5 mm	97			49			9
ge	19.0 mm	95			49			CB ³ (%)
Percentage Passing	13.2 mm	91			48			Ö
rce	4.75 mm	67			42			
Pe	2.00 mm	48			38			1,0 90 92 94 96 98 100
	0.425 mm	33			32			Compaction (%)
	0.075 mm	24,9			27,8			13274
	1		l Mortar &	c Co		l		
Grad	ding Modulus	1,94	1		2,02			Sieve Analysis
	rse Sand <2.0 >0.425	32,0			14,6			90
	led. <0.250 >0.150	16,4			11,9			<u>5</u> 70
S	silt <0.075	51,7			73,5			% 60 60 50
Liqu	uid Limit (%)	29			36			Buisse 60 40 40 40 40 40 40 40 40 40 40 40 40 40
	ticity Index (%)	13			19			20
	ear Shrinkage (%)	6,5			9,5			0,0 0,1 1,0 10,0 100,0
			R / Density	Rela	ationship			Sieve Size
	Max Dry Density (kg/m ³)	1832	T		1872			
Q	Opt Moisture Content (%)	14,5			11,7			CBR Chart
MOD	Mould Moisture Con. (%)	14,4			11,8			10,0
	@100% Mod AASHTO	99,4			100,2			
	Swell (%)	0,08	≤1.5	✓	1,06	≤1.5	√	CBR (%)
æ	100% NRB	96,5			94,1			8
NRB	Swell (%)	0,08			1,24			
Proc	100% Proctor	90,7			91,8			1,0 90 92 94 96 98 100 102
Pr	Swell (%)	0,09			1,55			Compaction (%)
	@ 100% Mod AASHTO	55			5			132/2
~	@ 98% Mod AASHTO	45			4			
CBF	@ 95% Mod AASHTO	31			3			Wearing Course Graph
	@ 93% Mod AASHTO	21			2			500,0 - \$\text{3}\footnote{5}0,0 - Slippery
	@ 90% Mod AASHTO	6	≥3	*	1	≥3	*	500.0 Slippery 350.0 Slippery 400.0 Good \$50.0 Good 800.0 (May be Dusty)
I	nsitu Moisture Content (%)	N/A			N/A			300,0 - Good (May be Dusty)
	Soil Classification							900,0 - Materials - Ravels - Ravels
	TRH 14	G10			G10			₩ 50,0 -
	PRA System	A-2-6			A-2-6			0,0 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
	Unified System	GC			GC			Grading Coefficient (Gc)
		•						7

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Outeniqua Lab EC cc. Materials Testing Laboratory

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth : PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	7/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

Sample Position (SV) W 417A Spec. Source Test Pit Test Pit Light Yellowish Orange Classification Unknown U		<u>enem on vi</u>			(11.14)	IH I Metnod A	11(u),112	71J ₉ 7	
Dopth (mm)	С	1 D ::: (GV)			1 1	W 417D	G		13276
Source Test Pit Dark Reddish Orange Clayey Gravelly Sithy Yellowish Orange Clayey Gravelly Sandy Sitt Unknown Un				_	ion			ion	Sieve Analysis
Source Test Pit Dark Reddish Orange Clayey Gravelly Sithy Yellowish Orange Clayey Gravelly Sandy Sitt Unknown Un					pini			pini	
Classification Clas					O			O	80
Classification Clas	rls	Source							ig 60
Max. Stone size in hole (mm) 75,0 mm	rria	Ed Colour				e e			8 50 40
Max. Stone size in hole (mm) 75,0 mm	Tate	Soil Type	Clayey Gravel	ly Silty San	ıd	Clayey Gravell	y Sandy Si	lt	9 30 9 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30
75.0 mm	2	Classification	Unkno	own		Unkno	own		6 20 10
Coarse Sand <2.0 > 0.425 24.1 29.5 2.00 mm 1.00	Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
Sol mm		75.0 mm	100			100			Sieve Size
Sol		63.0 mm	100			100			
0.425 mm	50	53.0 mm	100			100			
0.425 mm	ssin	37.5 mm	100			100			
0.425 mm	Pas	26.5 mm	58			100			3
0.425 mm	ge								1960
0.425 mm	nta								Ö
0.425 mm	ce								
0.425 mm 39 63	Peı					89			
Soil Mortar & Constants Soil Mortar & Constants									
Soil Mortar & Constants 1,82									13278
Coarse Sand		0.073 11111		l Mortar &	& Cor				13270
Coarse Sand	Grad	ling Modulus					Ī		
Med. <0.250 > 0.150 20.4 14.8 14.8			· ·						90
Max Dry Density (kg/m³) 1766 17			,						20 80 70 Final Property of the
Max Dry Density (kg/m³) 1766 17			,						8 60 50
Max Dry Density (kg/m³) 1766 17									9 40 5 30
Max Dry Density (kg/m³) 1766 17									5 20 20
Max Dry Density (kg/m³) 1766 1									
Max Dry Density (kg/m³) 1766 1766 1766		g. (,,,)		R / Density	Rela	,		-	
Opt Moisture Content (%) 16,6 14,4 Mould Moisture Con. (%) 16,6 14,3 @ 100% Mod AASHTO 99,7 100,5 Swell (%) 0,06 ≤1.5 ✓ 0,20 ≤1.5 ✓ 100% NRB 95,9 96,3 96,3 96,3 96,3 Swell (%) 0,14 0,25 0,25 <td></td> <td>Max Dry Density (kg/m³)</td> <td></td> <td>1 2 0115103</td> <td></td> <td></td> <td>Ī</td> <td></td> <td></td>		Max Dry Density (kg/m ³)		1 2 0115103			Ī		
Mould Moisture Con. (%)	Q								
@ 100% Mod AASHTO 99,7 100,5 Swell (%) 0,06 ≤1.5 ✓ 0,20 ≤1.5 ✓ B 100% NRB 95,9 96,3 ✓ 96,3 ✓ ✓ 100% Proctor 89,6 91,2 ✓ 90 95 100 105 ✓ Compaction (%) 0.28 0,59 ✓ 0.00% Mod AASHTO 13 27 ✓ 0.00% Mod AASHTO 9 18 ✓ 13270 13270 13270 13270 13270 100 105 105 100% Mod AASHTO 100% Mod AASHTO 9 18 13270 13270 13270 100% Mod AASHTO 100% Mod Mod AASHTO 100% Mod Mod AASHTO 100% Mod	10								100,0
Swell (%)	≥						1		•
No			· · · · · · · · · · · · · · · · · · ·	<1.5	/		<1.5	_	8
100% Proctor 89,6 91,2 100% Proctor 89,6 91,2 100% Proctor 90 95 100 105	8		,	21.5			=1.5		BS BS
100% Proctor 89,6 91,2 100% Proctor 89,6 91,2 100% Proctor 90 95 100 105	K								
## 100% Mod AASHTO	ြာ		, ,						
## 100% Mod AASHTO	\r_0								
## @ 98% Mod AASHTO	-								Ħ
## @ 95% Mod AASHTO							1		13270
Solid Classification Solid Classification	3R						1		Wearing Course Graph
@ 90% Mod AASHTO 3 ≥3 * 4 ≥3 * 300.0 800.0 905.0									550,0
PRA System A-2-6 A-6 0,0 4 8 12 16 20 24 28 32 36 40 44 48 Unified System CC SC				>2	*		>3	*	G i50,0 - Slippery
PRA System A-2-6 A-6 0,0 4 8 12 16 20 24 28 32 36 40 44 48 Unified System CC SC	т.			_ ∠ა	1			11	\$50,0 - Good 800,0 - (May be Dunch)
PRA System A-2-6 A-6 0,0 4 8 12 16 20 24 28 32 36 40 44 48 Unified System CC SC	msitu woisture Content (%) N/A			loil Clossif	icatio		1		250,0 - Fodible (way be busty) 900,0 - Materials Ravels
PRA System A-2-6 A-6 0,0 4 8 12 16 20 24 28 32 36 40 44 48 Unified System CC SC		TDU 14		T Classii	icati0		1		第50,0 - Good Good
Unified System CC SC SC							+		50,0 - Ravels and Corrugates
OHITIEU SYSTEIII GC SCARIO Grading Coefficient (Gc)							1	-	
Specimens delivered to Outenique I ship good order	<u> </u>	•				SC			Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

L Malgraff (Member) For Outeniqua Lab EC cc. Technical Signatory

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

Outeniqua Geotechnical Services CLIENT:

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-06-25

KNYSNA

DATE TESTED: 2019-07-10

6570

DATE REPORTED: 2019-07-11

TEST REPORT NO: 95584

ATT:

Mr | Paton

pH & CONDUCTIVITY

SAMPLE NO.	TEST POSITION & DEPTH (mm)	pH a	Conductivity (µS/m) (Micro Siemens / m)		
3803	E64A - (200 - 400)	6.07	201		
3804	E64B - (150 - 400)	6.11	213		
3805	TPSS1 - (0 - 100)	6.20	187		
3806	TPSS2 - (0 - 300)	6.08	185		
3807	TPSS3 - (80 - 250)	6.37	212		
3808	TPSS4 - (200 - 450)	6.61	223		
3809	E6A - (400 - 2100)	8.09	846		
3810	E6B (300 - 800)	7.37	475		
3841	E100A - (300 - 1100)	8.60	्र 361		
3812	E100B - (400 - 1500)	7.25	463		
3813	E7A - (200-500)	7.23	287		
3814	E7B ⊹ (300 - 800)	7.39	219		
3815	TPMTS1 - (200 - 500)	7.48	209		

The above test results are pertinent to the samples received and tested only. While the tests are carried out according to the recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Laboratory Manager:

<u>J</u>_Atterbury

Page 1 of 2

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-06-25

KNYSNA

DATE TESTED: 2019-07-10

6570

DATE REPORTED: 2019-07-11

TEST REPORT NO: 95584

ATT:

Mr i Paton

PH & CONDUCTIVITY

SAMPLE NO.	TEST POSITION & DEPTH (mm)	рн	Conductivity (µS/m) (Micro Siemens / m)
3816	் TPMTS2 - (400 - 900)	7.58	224
3817	TPMTS3 - (0 - 400)	7.67	129
3818	TPMTS4 - (250 - 600)	7.96	202
3819	W521A - (150 - 350)	8.26	360
3820	W521B - (100 - 350)	7.60	225
ै 3821	W564A - (350 - 950)	7.98	250
3822	W564B - (350 - 700)	8.00	241
3823	W411A ⁻ (750 - 1700)	7.70	302
3824	W411B - (450 - 1500)	7.55	1685
3825	W452A - (500 - 1300)	8.10	229
3826	W452B - (350 - 500)	8.10	272
3827	W417A - (1300 - 2800)	7.01	206
3828	W417B - (800 - 2900)	7.62	864

The above test results are pertinent to the samples received and tested only. While the tests are carried out according to the recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Laboratory Manage

J Atjerbury

Page 2 of 2

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

TO308 ISO/IEC 17025:2005 Accredited Laboratov

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mihatha, Queenstown, Lusaka - Zambia

PROJECT: CLIENT:

Outeniqua Geotechnical Services

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-07-25

KNYSNA

DATE TESTED:

2019-08-08

6570

DATE REPORTED:

2019-08-12

Mr I Paton

TEST REPORT NO.:

96046 O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	144	4354	4358	4387	4388	4408	
POSITION	1.00 1.00	W417	W417	E6	E6 (***	E100	A
DEPTH (m)		2.18 - 2.98	3.58 - 5.08	0.50 - 1.50	2.10 - 3.00	1.10 - 1.68	
DESCRIPTION:	4/4 ¹⁷	Gravelly	Gravelly	√ °cly	Gravelly	cly sty ∴	:
		cly sdy	cly sdy	gravelly	∷ stys	gravel	
		st	st	sty s			

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001; AG1

yste.	் 50.0 mm			. 8 ° °	Ÿ	N.:	
Walio	37.5 mm		".	Not	1.74.75 2.75		
	28.0 mm	7				N.	<u>~</u>
	20.0 mm 🧋 💮		:	T.	er Ur		•
	14,0 mm 🔆			*	3 ³		
APERTURE	10.0 mm	V**		51		# 54 g 167	
껉	7.1 mm				a)		
를 를 다.	5.0 mm 🚕	·		12.5 (A) 24.5 (A)	\ \254		- :
Ď.	2.0 mm		Ç.	Berrago .	ÇÎ ^N		* 18 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ű,	21.0 mm		74. 14	a seguina de la companya de la compa			1.
SIEVE	0. 800 mm 🔆	S. C.					
	0.425 mm	Ž.		*		Ø.	
	0.300 mm	:					
	∑0.150 mm 💲			140	¥.	ing Tr	
	0.075 mm						į, ė́s
(Alexandre		*MAT	ERIAL CHARACTE	RISTICS	, el M		

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5	Nag A			942	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Apparent Density	SANS 3001 AG20/21	2687	2683	& 2679 ,	2697	2616	0 0 1 m 10 1
Loose Bulk Density	TMH1 B9	(*		Ser Ser		100 B 1	
Compacted Bulk Density	TMH1 B9 🛒			×.5**			
Ave Least Dimension (ALD)	SANS 3001 AG2			1.00			
Flakiness Index	SANS 3001 AG4	50		Net .			N. C.
Sand Equivalent	SANS 3001 AG5	, N.C.		Samuel A Sam			

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	N			. S		
10 % FACT DRY (KN) SANS 3001 AG10	`& :				igh , Gr	
10 % FACT WET (KN) SANS 3001 AG10			13 18 18 18		(A.)	
Wet Dry:Relationship (%)	 9		,4 ,57 °			\.
		7	42	7 17 1		2.0

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory

Page 1 of 1

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mihatha, Queenstown, Lusaka - Zambia

				7.7
^	LIENT	Orifenious Gentechnical Services	DDA IECT:	CHO IE WIND EXDM

DATE RECEIVED: P O Box 964 2019-06-25

KNYSNA DATE TESTED: 2019-07-10 DATE REPORTED: 2019-07-30

TEST REPORT NO.: Mr I Paton 95584 O/N:

AGGREGATE ANALYSIS TEST REPORT SAMPLE NO: 3803 3804 3805 E64B POSITION E64A TPSS1 DEPTH mm 200 - 400 150 - 400 0 - 100 DESCRIPTION: cly sty Gravelly cly sty sdy gravel sdy gravel sty s SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001; AG1 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm SIEVE APERTURE 10.0 mm 7.1 mm '5.0 mm 2.0 mm 1.0 mm 0.600 mm 0.425 mm³ 0.300 mm 0.150 mm 0.075 mm MATERIAL CHARACTERISTICS

****	55.5	200700-7	- tone of many		36.5		and Sailt
Finess Modulus	SANS 3001 PR5	_ */*	£.	The state of the s		4.	No.
Apparent Density	SANS 3001 AG20/21	2636	2610	2636	6484 h		
Loose Buik Density	TMH1 B9				N. C.	12	
Compacted Bulk Density	TMH1 B9 🕝	Para Carlo		24		. 7.P	
Ave Least Dimension (ALD) SANS 3001 AG2), Š			
Flakiness Index	SANS 3001 AG4						
Sand Equivalent	SANS 3001 AG5		d s	No.			N.P
\$ 1750W.	114 12	No.	STRENGTH TEST	TG TOOLS	74. X		Net Comment

* 7	e de la companya della companya della companya de la companya della companya dell		SIKENGIH IEST	5 ×	25,254	 .
A.C.V. (%)	SANS 3001 AG10		71 / 1	N.	si Lik	
10 % FACT DRY (K	(N) SANS 3001 AG10	4				
10 % FACT WET (.M	(N) SANS 3001 AG10 💢	A SA				
Wet Dry Relations	hip (%)					
6" N2 "						

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory: J'Atterbury

Page 1 of 9

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 19 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER READCH DEFICES: Cape Town, Kokefad, Johannechurg, Mithatha, Chiqunetown, Lucaka, Zambia

	() () () () () () () () () ()	annal ataoenocount, mananta De	HP+1 P-1 C-1
CLIENT:	Outenious Geotechnical Services	PRO IECT:	CHO IE WIND ENDM

P O Box 964 **DATE RECEIVED:** 2019-06-25

KNYSNA DATE TESTED: 2019-07-10

DATE REPORTED: 6570 2019-07-30

TEST REPORT NÓ,: 🥒 Mr I Paton 95584 AGGREGATE ANALYSIS TEST REPORT SAMPLE NO: 3806 3807 3808 POSITION TPSS2 TPSS3 TPSS4 DEPTH mm 0 - 30080 - 250 200 - 450 DESCRIPTION: sty gravelly sty sdy sty s sand & gravel & gravel Boulders & Cobbles Cobbles SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm APERTURE 10.0 mm 7.1 mm 5.0 mm SIEVE, 2.0 mm 1.0 mm 0.600 mm 0.425 mm 0.300 mm Φĸ, 0.150 mm 0.075 mm MATERIAL CHARACTERISTICS Finess Modulus SANS 3001 PR5 Apparent Density ି 2642 2667 2657 SANS 3001 AG20/21 **TMH1 B9** Loose Bulk Density TMH1 B9 Compacted Bulk Density **SANS 3001 AG2** Ave Least Dimension (ALD) SANS 3001 AG4 Flakiness Index **SANS 3001 AG5** Sand Equivalent STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	W.	- A - A - A - A - A - A - A - A - A - A	12/3/	
10 % FACT DRY (KN) SANS 3001 AG10				
10 % FACT WET (KN) SANS 3001 AG10	- - 		K	
Wet Dry Relationship (%)				

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

J Atterbury

STR008

Page 2 of 9

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

TO308 ISO/IEC 17025:2005 Accredited Eabardory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambia

PROJECT: Outeniqua Geotechnical Services CHOJE WIND FARM

> P O Box 964 DATE RECEIVED: 2019-06-25 KNYSNA **DATE TESTED:** 2019-07-10

> DATE REPORTED: 6570 2019-07-30

TEST REPORT NO.: Mr i Paton 95584 O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:		3809	3810	3811		11.4	
POSITION		E6A	E6B	E100A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		42.5
DEPTH mm	14. P	400 - 2100	800 - 1750	300 - 1100			
DESCRIPTION:		cly sdy	cly	cly sty		5-4.	s tu Ss
i de la companya de l		st	gravelly	୍ଦ sdy		Ų.	
, Avo			sty s	Gravel	. P.	, 2°	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

, ,,,,	50.0 mm					of oper or	
	37.5 mm 🐰 🐃	\$ \$		Topol Con.			4 (C)
	28.0 mm						X
	20.0 mm 👭			Y.	-A		6
	14.0 mm 🖓	Ng ³³		** <	4	5 7 8 8	
R ₂	10,0 mm	Ar E		, s.	4		
APERTURE	₹7.1 mm						
APE چ	5.0 mm	4.5			7.44 7.44		
<u> </u>	2.0 mm			Carena	2.49 2.426		4.37
SIEVE	₹ 1.0 mm	27		No Alexander	W _S **		<u> </u>
	0.600 mm 🔆						,
	0.425 mm			Ŕ	4 4	97. 97.0 97.0 199.	
	0.300 mm	*					
	0.150 mm						
C.	0.075 mm	2					
Canal Canal		"MATT	ERIAL CHARACTE	RISTICS	A ³⁷		1 4 pm

MATERIAL CHARACTERISTICS

42, 21,856.	ş %	vi .		e. 1999	6. 0		24 Y
Finess Modulus	SANS 3001 PR5				* 900°	15.5°	() ()
Apparent Density	SANS 3001 AG20/21	2665	2666	²⁶⁶⁷	37		
Loose Bulk Density	TMH1 B9	Į.		*	işte ^{r. T}		
Compacted Bulk Density	тмн1 вэ 🞺					W.C.	
Ave Least Dimension (ALD)	SANS 3001 AG2			, e			
Flakiness Index	SANS 3001 AG4	*\^		Nes ^d Nesed			469
Sand Equivalent	SANS 3001 AG5	N 28					**************************************

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	10		**************************************	186	- V.	
10 % FACT DRY (KN) SANS 3001 AG10	w.			<i>a</i>	13 Mg (*)	
10 % FACT WET (KN) SANS 3001 AG10					200	
Wet Dry:Relationship (%)	5.	-	20		Ž	::.

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

> Technical Signatory: Atterbury

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 943 726 7859, Fax: 943 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

Outeniqua Geotechnical Services

PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

Mr | Paton

DATE TESTED:

2019-07-10

6570

DATE REPORTED:

2019-07-30

TEST REPORT NO.:

95584

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:		3812	3813	3814		A. A. C.	
POSITION	3 N 8 N	E100B 🔡	E7A	E7B	S		
DEPTH mm	A.	400 - 1500	200 - 500	300 - 800			, "te"
DESCRIPTION:	SUPPLY TO	sty sdy	cly sty	clý sty	1/27	(ā i
\$4 ⁶	S. Carlotte	Gravel	sdy	sdy	A Train	Ą.	
2,347			Gravel	Gravel	-c	A. P.	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

50.0 mm					\$**	
26. No. 10. No	Ş		, 1575.			
28.0 mm	275					
20.0 mm	10 ²⁵ (2)			e ja		
1.4.0 mm (*)	A. 100		\$* \$			
5 10.0 mm	*:		, S.A.	To the state of th		
10.0 mm 77.1 mm 5.0 mm						
다 전 등 5.0 mm	<u>.</u>		<u> </u>	Ţ,	``	3.
ய்∞் 2.0 mm ்	(4) A		Para Sagara			4.7
2.0 mm 1.0 mm 0.600 mm	(A) (A)	·	% 42	49		N
0.600 mm	A COLOR			<u>j</u> o		
0.425 mm	有		*	S.A.	. Ø	
0.300 mm	?				1.40	
0.075 mm	, ê			<u> </u>		L
		RIAL CHARACTI	RISTICS			

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5			No series			4.5 4.
Apparent Density	SANS 3001 AG20/21	2742	2783	2633		1 m	
Loose Bulk Density	TMH1 89			, S1,	gr ²	7.79	
Compacted Bulk Density	TMH1 89 🛫 🤇					4	
Ave Least Dimension (ALD)	SANS 3001 AG2					Maria	
Flakiness Index	SANS 3001 AG4			\$97 27	The second		S
Sand Equivalent	SÁNS 3001 AG5						14.7 15.

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	[4]] 28.		;. L	(李)	100 m	
10 % FACT DRY (KN) SANS 3001 AG10			Ş	ÿ.	14 P. 4	
10 % FACT WET (KN) SANS 3001 AG10						
Wet Dry Relationship (%)	\$	+				%

The above test results are perfinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

J Atterbury

Page 4 of 9

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mihatha, Queenstown, Lusaka - Zambia

Outeniqua Geotechnical Services

PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

6570

DATE TESTED:

2019-07-10

DATE REPORTED:

2019-07-30

Mr I Paton

TEST REPORT NO.:

95584

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3815	3816	3817		4-3	
POSITION	147	TPMTS1	TPMTS2	TPMTS3			
DEPTH mm		200 - 500	400 - 900	0 - 400	g s of		4.7
DESCRIPTION:		sty sdy	sty sdy	sty sdy	47		
		Gravel	Gravel	Gravel		.3	
		/A			Telegraphic Control of the Control o		

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

منزي	50.0 mm		a di		V.	
:.:	37 C mm		100	Ş.		4/9
	26 			w.SX		
	20.0 mm ൂ പ			egen Garage		S
	14.0 mm	<u>, 18</u>		26.7 T	100 mg	
N.	10.0 mm	v.	, W.	den.		
APERTURE	7.1 mm					
APE	5.0 mm 🔑 🥇		3.9	42	- <u> </u>	Sa .
⊕	2.0 mm					
) (E)	2 1.0 mm					
SIEVE	0.600 mm®			15°	4)**	·
	0.425 mm	A	*	er e	- Ay 19	
	0.300 mm					
	%"					
Contr.	0.075 mm	المتحار				, ôs
\$ Marie	a	MATERIAL C	HARACTERISTICS	, j		5.7°

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5			1 / A	649.,	%:	
Apparent Density	SANS 3001 AG20/21	2754	2608	∜ 2611		Q.	
Loose Bulk Density	TMH1 B9	(g)) (i) pag	ge ²	1 () () () () () ()	
Compacted Bulk Density	TMH1 B9 🍦 🎺 🖰 ʻ				·		
Ave Least Dimension (ALD)	SANS 3001 AG2			3.65			
Flakiness Index	SANS 3001 AG4	200			1		620
Sand Equivalent	SANS 3001 AG5	4.7	·				

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	**************************************	887		, and the second	
10 % FACT DRY (KN) SANS 3001 AG10	o.	ا المارات	\$ ¹	4.60	
10 % FACT WET (KN) 5ANS 3001 AG10		AKO7.			
Wet Dry Relationship (%)	* *		(Ÿ	2

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

J Atterbury

Page 5 of 9

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY .

IO308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambla

CLIENT.	Outeriidaa Georechnicai Se	SIVICES		IEC II	CHOJE WIND FARM		
,	P O Box 964		DATE RECE	74 AV	2019-06-25	in Mark Santa	
A. 1991.	KNYSNA	j.	DATE TES	STED:	2019-07-10		, Ó
(6570		DATE REPOR	RTED:	2019-07-30		
ATT :	Mr I Paton	T	EST REPORT	NO.:	95584	O/N:	
	AGGRE	GATE A	NALYS	IS TEST	REPOR	? T	
SAMPLE NO	D:	3818	3819	3820			
POSITION	Take Historia	TPMTS4	` W521A	W521B		:.	(3)
DEPTH mm		250 - 600	150 - 350	100 - 350	A.2		140
DESCRIPTI	ON:	sty sdy	sty sdy	sty sdy	- 1.	50V	43).
\$4f.		Gravel &	Gravel	Gravel	A. S.	S.	
		⊬ Cobbles				4. W	
	0.277	E ANALYSIS % P	ASSING SIEVES	: Method SANS	8001: AG1		
e e	, (50.0 mm			O	[.	New York	
i Ostoria	37.5 mm	43	ang. mi	App A	,		42
7	28.0 mm				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
W	28.0 mm 20.0 mm	A50		N. W.		.đ	1800
1 440 mm //		**\		D.	200.1 6.1		
APERTURE	10.0 mm	<u> </u>				495	
꼾	7:1 mm			4 M			
AP.	5.0 mm		·	2.4	<.	*. *	
SIEVE	2.0 mm	(A)	(18 ⁴)	A Commence			
E S	71.0 mm	190	·····	N. A.			2
	0.600 mm ු ් ි			V	,1\Q	47	N/ -
	0.425 mm	<i>0</i>), "			Aut.	. 17	
	0.300 mm	*** -		4.5			
	0.150 mm			ni in		***	
<u>-</u>	2 0.075 mm			4,3		** *	13.4 22.50.50
	VA/VIIII		RIAL CHARACT	ERISTICS	T shorter		100
Finess Mod	ulus SANS 3001 PR5		·. ·. · · · · · · · · · · · · · · · · ·		200	. 163	
Apparent D		2593	2555	2663	79 ₂₅₇		
Loose Bulk		<i>.</i> ?				(24) 1, 2/2	
	Bulk Density TMH1 B9						
	Dimension (ALD) SANS 3001 AG2		re.	100	ļ	i. Alpa	
Flakiness li	1900 a	\$	75, 87	Mary Comment		,	
Sand Equiv	alent SANS 3001 AG5			V THE			
			STRENGTH YES	ST S	484 	3	
A.C.V. (%		N		`	2		
10 % FACT	DRY (KN) SANS 3001 AG10	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				4. (3)	1

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be

liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controllab.

Page 6 of 9

10 % FACT DRY (KN)

10 % FACT WET (KN) Wet Dry Relationship (%)

SANS 3001 AG10.

Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mihatha, Queenstown, Lusaka - Zambia

CLIENT: PROJECT: **Outeniqua Geotechnical Services**

P O Box 964

DATE RECEIVED:

CHOJE WIND FARM

2019-06-25

KNYSNA

Mr I Paton

DATE TESTED:

2019-07-10

6570

2019-07-30

DATE REPORTED: **TEST REPORT NO.:**

95584

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3821	3822	3823	·	Agy.	
POSITION		W564A	W564B	W411A			∜÷
DEPTH mm a.	12.54.55 12.55	350 - 950	350 - 700	750 - 1700	-		, di
DESCRIPTION:	4 1 10	Calcrete	Calcrete	Gravelly	761		
	Musik Se	Hardpan	Hardpan	sdy st		ļ.	
A.	· · · · · · ·	. P-		N 49	at .	1.2	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

e.	50.0 mm					Áp.	
8,2	37.5 mm	ં		947			Q
	ි 28.0 mm 🗸 💍	Ryst Ste			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- N
	20.0 mm _{3.} %	450 A. C.		\$1.00 \$1.00		250	÷.
	14.0,mm	191		: 5.	JAN J	**************************************	
E	10.0 mm	er P			[a.e.		
APERTURE	7.1 mm			2.55 2.55			
APE	5.0 mm 💢	S.			<u>(4</u> 7)	*	9
ė.	2.0 mm	27/20		Resignation of the Contract of	S.		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
SIEVE	1.0 mm	25			19 ³⁷		N
, , , , , , , , , , , , , , , , , , ,	0.600 നന	8		N. S. Carlo	J\$. S. J.	
	0.425 mm	70		***	er Er	<i>⇔</i> "	
	0:300 mm			, Ǡ ?			
	0.150 mm			Mark Control			
(a)	0.075 mm			37 N	<u> </u>		. 3
(Special Control		MATE	RIAL CHARACTI	RISTICS	A Prince		. 32

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5	200 T		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¥#**	a**.	i N
Apparent Density	SANS 3001 AG20/21	2637	2558	© 2 6 54		- X	
Loose Bulk Density	TMH1 B9	7		n ng pangl	 1	170	
Compacted Bulk Density	тмн1 вэ ्र				•	24 A.	
Ave Least Dimension (ALD)	SANS 3001 AG2			(2)			
Flakiness Index	SANS 3001 AG4			Ngg/	A.A.A.		N.O
Sand Equivalent	SANS 3001 AG5	100		75.725.5 2.725.5	4,52		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10		74.5		4.55 (1.55)	
10 % FACT DRY (KN) SANS 3001 AG10	÷.	,S		46	
10 % FACT WET (KN) SANS 3001 AG10		- 1 The Control of th		\$ \\\ \$ \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
Wet Dry Relationship (%)	14. 24.		.7		

The above test results are pertinent to the samples tested only. White the tests are carried out according to recognized standards Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior conse

Technical Signatory:

Page 7 of 9

ATT:

ControLab South Africa (Pty) Ltd

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

Outeniqua Geotechnical Services

PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

Mr I Paton

DATE TESTED:

6570

2019-07-10

DATE REPORTED:

2019-07-30

TEST REPORT NO.:

95584 O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	14	3824	3825	3826		74. 2.7	
POSITION	i A	W411B	W452A	W452B			÷
DEPTH mm	es a	450 - 1500	500 - 1300	350 - 500	1, ³		
DESCRIPTION:	45	Gravelly	sty sdy	sty	113 F	٠.	e. G
		sty s	Gravel	Gravelly	. (A)	<u> </u>	
		94 8		sand	·		

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

	50.0 mm					New York	
Alexander .	37.5 mm	w.5		the fit	<u> </u>		- 144. - 1787
	28.0 mm						Addi Da
	20.0 mm				i je i Vojeka	29%	
	14.0 mm :	<u> </u>		Sp:	Ž.		
APERTURE	10.0 mm				ř.	1. 12. 1 1. 12. 1	
F.	7.1 mm	•		<i>.</i>			
APE (5.0 mm				94	7.	A,
_ É.∞	2.0 mm	. O	•	Response.			45 Med
SIEVE	1.0 mm				1/2/2		
	0.600 mm \				.70	- 1.7°	1
	0.425 mm	4 11:		Ť		** &	
	0.300 mm	/ ·		_49			
<	0.075 mm	į ė		25.0 cm			j.
		MATE	RIAL CHARACTE	ERISTICS			C. C

MATERIAL CHARACTERISTICS

V. 1997	7 '91	'7'		17 10/202	5 75		. 31
Finess Modulus	SANS 3001 PR5			18/14	68.7	, 2 <u>/</u>	\$ 1
Apparent Density	ANS 3001 AG20/21	2492	2613	2752	39	1/2	
Loose Bulk Density	TMH1 B9	<i>\$</i> ∞			awi [*]	, 15.7 L. 15.7	
Compacted Bulk Density	TMH1 B9						
Ave Least Dimension (ALD)	SANS 3001 AG2					N/A	
Flakiness Index	SANS 3001 AG4) S			N.		2. E. S.
Sand Equivalent	SANS 3001 AG5	1,34		The State of the S	20		1. No.

STRENGTH TEST'S

. W. 3

A.C.V. (%) SANS 3001 AG10	A Comment of the Comm	 9	: [A		
10 % FACT DRY (KN) SANS 3001 AG10	1 15 A	<u>.</u>	\$1		
10 % FACT WET (KN) SANS 3001 AG10					
Wet Dry Relationship (%)	4,		100	5.	N.

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consont of Controlab.

Technical Signatory:

Page 8 of 9

www.

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P.O. Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambia

CLIENT:	Outeniqua.	Geotechnical Services

PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

KNYSNA

DATE TESTED:

2019-06-25

2019-07-10

DATE REPORTED:

2019-07-30

Mr I Paton.

TEST REPORT NO.:

95584

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	10 m	3827	3828	N 1		ity.	
POSITION		W417A	W417B	4,3			is in
DEPTH mm	A Part of the second	1300 - 2800	800 - 2900	Service Contraction	100		4
DESCRIPTION:	W (cly	cly	1	. 14 L		
		Gravelly	Gravelly	- X7	37.7	, i	
	No.	🥬 sdy st	sdy st		V 45	4. ^H	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

,,,	50.0 mm		:	and the second			
ia Para	37.5 mm	¥.	ė.	Section 1985			\$1.5°
*	沙 28.0 mm						
	20.0 mm				ad Spirit	33 [%]	
	14.0 mm	- X.* 		:70	1. The state of th	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
APERTURE	10.0 mm	4. 2.		98 98 84	Ŷ.s	48.8	
꿆	7.1 mm			A. A. C.			
ु 🛱	5.0 mm			<u> </u>	157	i i	S _e
SIEVE,	2.0 mm	, <u>(1)</u>			*\.\ \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\		4,97 No. 27
<u></u>	1.0 mm				(A)T		<u></u>
	0.600 mm 🎺						
	0.425 mm	<i>⊘</i> ₄		۵	See A T		
	0.300 mm	<i>'</i>		the state of the s			
	0.150 mm						
<u></u>	0.075 mm						y 200
(Mary	Man Alle	MATI	ERIAL CHARACTI	ERISTICS			1977

MATERIAL CHARACTERISTICS

20 10000	6. 7.			62 256.1	; ,		and the second s
Finess Modulus	SANS 3001 PR5	- (The state of the s	Sign "	, ite	
Apparent Density	SANS 3001 AG20/21	2674	2684	V.		Š	
Locse Bulk Density	TMH1 B9	St.		ς 2 ⁴	ej in	p. Or	
Compacted Bulk Density	TMH1 B9 🍇		•			257	
Ave Least Dimension (ALD)	SANS 3001 AG2			14 W		a de la companya de	
Flakiness Index	SANS 3001 AG4	\$(5)			N.		<u> </u>
Sand Equivalent	SANS 3001 AG5	377			75. SA		14.

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	, 3.		19.7	- 197 	
10 % FACT DRY (KN) SANS 3001 AG10	S) (1 1 - 원망	N _g s*	, (,) () () () () () () () () (
10 % FACT WET (KN) SANS 3001 AG10		4/2		<u> </u>	
Wet Dry Relationship {%}	Ş	- 630	/ %	\$. V	(v _{i)}
	2 Am C		7 '		200 T

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consequences.

Technical Signatory

Atterbury

Page 9 of 9

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Koksted, Johannesburg, Mithalha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-07-25

KNYSNA

DATE TESTED: 2019-08-13

6570

ATT:

DATE REPORTED: 2019-08-15

Mr I Paton

REF NO.: 96046

ROCK UCS CORE STRENGTH TEST - ASTM D 2938

			CORE	TEST DAT	A ·			
SAMPLE NO.:	POSITION	TOTAL LENGTH OF CORE SUBMITTED (mm)	LENGTH OF CORE AFTER TRIMMING (mm)	CORE DIAMETER (mm)	DENSITY (Kg/m³)	STRENGTH UCS (MPa)	COMMENTS	
4362	W417 @ 5.30 - 5.45m	<u></u> 154	(11777)		SAMI	PLE BROKE	N BEFORE TEST - PLI DONE	
4365	W417 @ 10.73 - 10.93m	210	123	63	2712	41.4	FAILURE TYPE - SHEARED	
4370	W411 @ 4.93 - 5.05m	123	110	63	2514	14.1	FÄILURE TYPE - SHEARED	
4371	W411 @ 7.80 - 7.93m	142	5 f 116	63.	2666	43.0	FAILURE TYPE - SHEARED	
4374	W452 @ 2,46 - 2,65m	192	128	61	2614	70.8	FAILURE TYPE - SHATTERED	
4375	W452 @ 2.65 - 2.85m	210	126	61	2675	106.7	FAILURE TYPE - SHATTERED	
4378	W521 @ 2.27 - 2.46m	203	122	62	2671	13.2	FAILURE TYPE - SHATTERED	
4380 - į	∝ W521 @ 2.71 - 2.95m	220	126	63	2668	9.6	FAILURE TYPE - SHATTERED	
4385	W564 @ 4.96 - 5.10m	150	129	61	₍ 2618	27.7	FAILURE TYPE - SHATTERED	
4386	W564 @ 6.60 - 6.72m	120	<u>.</u> 3 110	63	²⁷¹⁵	78.6	FAILURE TYPE - SHATTERED	
4396	E6 @ 8.00 - 8.18m	138		\$ 7 to	SAMPLE BROKEN BEFORE TEST - PLI DONE			
4397	E6 @ 8.34 - 8.46m	124		Š.	SAMPLE BROKEN BEFORE TEST - PLI DONE			
4401	E7 @ 2.78 - 3.12m	300	120	61	2124	9.2	FAILURE TYPE - SHATTERED	
4402	© E7 @ 3.17 - 3.45m	298	124	63	2271	29.2	FAILURE TYPE - SHEARED	
4404	E64 @ 1.60 - 1.87m	280	12 2	63	2645	63.8	FÄILURE TYPE - SHEARED	
4405	E64 @ 2.31 - 2.58m	290	124	63	2677	50.0	FAILURE TYPE - SHATTERED	
4412	E100 @ 10.32 - 10.42m	110 ू 🦠	:	변경되는 최	್ಯಾ SAM	PLE BROKE	N BEFORE TEST - PLI DONE	
4413	E100 @ 12.17 - 12.31m	120	SAMPLI	E BROKĘN	NINTO SMALL PIECES BEFORE TEST - NO TEST DONE			
4359	W417 @ 5.16 - 5.30m	140		(¢.	SAMPLE BROKEN BEFORE TEST - PLI DONE			
4360	W417 @ 6.64 - 6.76m	ຼິ້ 150	105	63	1995	2.9	FAILURE TYPE - SHATTERED	
4361	W417 @ 7.43 - 7.57m	130	104	63	2344	2.9	FAILURE TYPE - SHATTERED	
			A.		7 Nat 1		1/4	

NOTE 1: S/NO.: 4359, 4360, 4361 - CORES TOO HARD FOR TRIAXIAL (CD) - UCS DONE INSTEAD NOTE 2/S/NO.: 4362, 4396, 4397, 4412, 4359 - CORES BROKEN BEFORE TEST - PLI DONE INSTEAD

S.		Ţ	 % -7			
	S. O.			Š		
					1	6.~
, Ç	. 7. 1	1				i Y

The above test results are pertinent to the samples received and lesied only

While the tests are carried out according to recognized standards Comrol ab shall not be liable for errongous testing or reporting thereof.

This report may not be reproduced except in full without prior consent of Control ab

Remarks

Page 1 of 2

Technical Signatory:

J Atterbury TR005

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-07-25

KNYSNA

DATE TESTED: 2019-08-13

6570

DATE REPORTED: 2019-08-15

ATT: Mr I Paton **REF NO.: 96046**

DE	TERN	/INA	TION	OF P	OINT L	OAD I	NDICES	- ISRM:	RTH	325-89
SAMPLE NO.	TEST POSITION	DEPTH FROM (m)	DEPTH TO (m)	TEST TYPE	HEIGHT D (mm)	WIDTH W (mm)	Min Xsect Area A = W*D	EQUIV CORE DIA De= D²	POINT LOAD P (kN)	P LOAD STRENGTH
::::	i.		•	× .	•	:				*** ***
4363	W417	5.69	5.79	2.6 ⁷ 2.	61	160	9760	3721	1	€ 0.27
4364	W417	9.67	9.76	, , ·	63	106	6678	3969	0	0.00
4366	W417	11.30	11.40		63	111	6993	3969	6 ,	./ 1.51
4367	W411	1.79	1.89		63	100	6300	3969	0	0.00
4368	W411	4.65	4.83		.,63	204	12852	3969	:-12	3.02 5
4369	W411	4.83	4.88		63	80 🗇	<u>5</u> 040	3969	10	2.52
4372	W452	2,00	2.08	Jing Windi	61	79	48 19	3721	1	0.27
4373	W452	2.08	2.23		61	196	√11956	3721	34	9.14
4376	W452	3.92	4.02		61	168	10248	ੂ ੰ 3721	17	(b) 4.57
4377 ₉ `	W521	2.00	2.15		63	175	11025	3969	1, 3	0.25
4379	W521	2.54	2.64		63	100	6300	3969	5	1.26
4381	W521	2.95	3.11	:	63	182	11466	3969	् 0	0.00
4382	W564	2.12	2.24		63	111 🦎	°-6993	3969 S	3	0.76
4383	W564	2.97	3.07	1 1. 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	63	115	7245	3969	0	0 .0 0
4384	W564	3.07	3.17	ABTON D	63	122	7686	3969	12	∛ 3.02
4389A	∞′ E 6	6.57	6.66	Diam	63	75	4725	of 39 69	0	्र _क 0.00
4389B	E6	6.57	6.66		63	68	4284	3969	0, <	0.00
4391	E6	7.13	₹7.22		63	88	5544	3969	0	0.00
4398	E7	1.50	1.61		્રે ે59	147	8673	3481	0	0.00್ನ
4399	E7 🦏	1.61	1.69	(A)	″ 61	70	4270	3721	0	0,00
4400	E 7	2.62	2.70		59	115	<i>.</i> ∌6785	3481	1	__ <0.29
4403	E64	0.87	1.06	Ž.	61	130	7930	ું 3721	16	4.30
4406 (E64	2.62	2.68		63	57	3591 ్ర	® 3969	2 ,,	0.50
4407	E64	3.59	3.70		63	119	7497	3969	13	3.28
4409	E100	1.71	1.79		ູ 61	59	3599	3721	0	0.00
4410	E100	2.00	2.07		ं [°] 61	72 🐇	4392	3721	٥	0.00
4359	W417	5.16	5.30		63	70 🐧	200 200 m	3969	0	0.00
4362	W417	5.30	5.45		63	94	5922	3969	0	ి 0.00
4396	E6	8.00	8.18	N.27	63	34	2142	3969	0	0.00
4397 ್ಷ	E6	8.34	8.46	1	63	41	2583 ්	3969	0 🔩	0.00
4412	E100	10.32	10.42	1	61	101	6161	3721	.0	0.00

The above test results are pertinent to the samples received and tested only,

While the tests are carried out according to recognized standards Controllab shall not be liable for egroneous testing or reporting thereof.

Technical Signatory:

Atterbury TR0050

ABOUT DNV GL

Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas and energy industries. We also provide certification services to customers across a wide range of industries. Combining leading technical and operational expertise, risk methodology and in-depth industry knowledge, we empower our customers' decisions and actions with trust and confidence. We continuously invest in research and collaborative innovation to provide customers and society with operational and technological foresight. Operating in more than 100 countries, our professionals are dedicated to helping customers make the world safer, smarter and greener.