STEINKOPF,

NAMA KHOI LOCAL MUNICIPALITY

PHASE 1 ENGINEERING GEOLOGICAL INVESTIGATION

to DETERMINE the POTENTIAL for TOWNSHIP DEVELOPMENT

at STEINKOPF,

NAMA KHOI LOCAL MUNICIPALITY, NORTHERN CAPE PROVINCE.

Georeference: 2917BC Steinkopf

GEOSET cc

CK 1999/65610/23

Engineering geologist:

fillinge

DAVID S. VAN DER MERWE B.Sc. (Hons)(Enggeol.)(Pret.) Pr. Sci. Nat. Reg. Nr. 400057/96; MSAIEG Reg. Nr. 93/154; NHBRC Reg. Nr. 600444.

March 2020

Report number: GS202003S

REPORT ON THE ENGINEERING GEOLOGICAL INVESTIGATION CONDUCTED AT STEINKOPF, NAMA KHOI LOCAL MUNICIPALITY, NORTHERN CAPE PROVINCE.

Executive Summary

A phase 1 engineering geological investigation with reference to GSFH-2 specification was conducted on the proposed development site at Steinkopf, Nama Khoi Local Municipality, Northern Cape Province, with the aim to assess aspects such as geology, relief and subsoil conditions which may influence the planned urban development in the area. The area is underlain by gneiss, granodiorite or adamellite of the Stalhoek Complex, Vioolsdrift Suite, but is locally covered by recent aeolian sand and calcrete gravel. No dolomite occurs on site and no stability investigation and evaluation is required. The mechanical properties of the soil layers were determined by means of laboratory tests performed on disturbed samples taken during the profiling of trial pits. The obtained site information is evaluated with regard to the development of masonry structures by the application of standard evaluation techniques. Development zonation for township development according to the NHBRC and SAIEG guidelines were done, indicating the geotechnical conditions of the site. Normal construction techniques will be required to enable proper development. This includes the use of compaction techniques and site drainage as described. Some severe problems regarding excavatability are be expected across the site inducing an elevated development cost, and a competent TLB, excavator, pneumatic tools and blasting will be required to reach installation depths for services in many places. These proposed mitigation measures will be sufficient to successfully address the anticipated geotechnical problems and to ensure the sustainable development as planned.

CONTENTS

1. INTRODUCTION AND TERMS OF REFERENCE	5
2. INFORMATION USED IN THE STUDY	6
3. SITE DESCRIPTION	
3.1 PHYSIOGRAPHY	6
3.1.1 Topography	6
3.1.2 Climate	6
3.1.3 Vegetation	7
4. NATURE OF INVESTIGATION	7
4.1 SITE INVESTIGATION	7
4.2 LABORATORY TESTS	
5. SITE GEOLOGY AND GROUNDWATER CONDITIONS	9
6. <u>GEOTECHNICAL EVALUATION</u>	9
6.1 ENGINEERING AND MATERIAL CHARACTERISTICS	9
6.1.1 SOIL PROFILES	
6.1.2 LABORATORY RESULTS	
6.2 SLOPE STABILITY AND EROSION	
6.3 EXCAVATION CLASSIFICATION WITH RESPECT TO SERVICES	11
6.4 IMPACT OF THE GEOTECHNICAL CHARACTER OF THE SITE ON	
SUBSIDY HOUSING DEVELOPMENTS	
6.4.1 EVALUATION FOR URBAN DEVELOPMENT	13
7. <u>SITE CLASSIFICATION</u>	
7.1 Engineering Geological Zonation	
8. FOUNDATION RECOMMENDATIONS AND SOLUTIONS	
8.1 <u>Consolidation or collapse settlement</u>	
9. <u>DRAINAGE</u>	
10. <u>CONCLUSIONS</u>	17
11. <u>BIBLIOGRAPHY</u>	19

Page

APPENDICES

APPENDIX A: FIGURES

- Figure 1: Steinkopf, Nama Khoi Local Municipality: Regional Locality Map.
- Figure 2: Steinkopf, Nama Khoi Local Municipality: Topography Map.
- Figure 3: Steinkopf, Nama Khoi Local Municipality: Geology Map.
- Figure 4: Steinkopf, Nama Khoi Local Municipality: Engineering Geological Zone Map with Test Pit Positions on Google Image.

APPENDIX B: SOIL PROFILES

Soil Profiles Tabled Summary Soil Profile Descriptions Soil Profile Photographs

APPENDIX C: LABORATORY RESULTS

Table A: Summary of Laboratory Results STL Summary of Laboratory Results STL Laboratory Results

APPENDIX D: TABULAR EXPLANATION OF ZONING

Extract from: THE SOUTH AFRICAN INSTITUTE OF ENGINEERING GEOLOGISTS (SAIEG), 1997. Guidelines for Urban Engineering Geological Investigations.

Table 1. Categories of Urban Engineering Geological Investigation

Table 2. Geotechnical Classification for Urban Development: Partridge, Wood & Brink (1993)

> Table 3. Residential Site Class Designations: SAICE, SAIEG & NHBRC (1995)

REPORT ON THE ENGINEERING GEOLOGICAL INVESTIGATION CONDUCTED AT STEINKOPF, NAMA KHOI LOCAL MUNICIPALITY, NORTHERN CAPE PROVINCE.

1. INTRODUCTION AND TERMS OF REFERENCE

On request of Maxim Planning Solutions, and on behalf of Barzani, an engineering geological investigation was conducted for the proposed development on the property for the Steinkopf, Nama Khoi Local Municipality, Northern Cape Province, and communication between us and the abovementioned parties lead to the field work, commencing on 4 March 2020.

The aim of this investigation was to identify and evaluate any possible engineering geological problems before commencement of proper township proclamation.

This report is based on the in-situ evaluation of all the representative soil horizons within the ground profile, visual results of the site visit and other relative exposed geotechnical properties on site and derived from interpretation of laboratory results.

The proposed site is located at Steinkopf, Nama Khoi Local Municipality, approximately 112 hectares in size. It is situated east of south of the existing Steinkopf town. Figures 1-4 in Appendix A delineates the site.

2. INFORMATION USED IN THE STUDY

The following was consulted during the investigation:

- 1.3.1 The geological map 2917BC Steinkopf. Scale 1:250 000. The Geological Survey of South Africa.
- 1.3.2 The topography map 2917BC Steinkopf. Scale 1:50 000.The Chief Directorate: Surveys and Land Information, Mowbray.

3. <u>SITE DESCRIPTION</u>

3.1 PHYSIOGRAPHY

3.1.1 Topography

The site is located on a slope from 794 to 819 masl towards the centre portion of the site, and then westwards into the Doring River which drains southwards towards the Buffels River.

3.1.2 Climate

The region is characterized by summer rainfall with thunderstorms, with annual very low rainfall figures of 205 mm for Springbok recorded at the closest weather stations to the site. Winters are dry with frost common. The warmest months are normally December and January with February the warmest month, and the coldest months are June and July.

An analysis of the data confirms a Weinert's N-Value in the order of 2 for Hopetown.

The mechanical disintegration of rocks will therefore be dominant over chemical decomposition, and shallow soil horizons will be expected in areas of poor drainage, underlain by igneous rocks.

Storm water drainage and road pavement design must incorporate the climatic extremes above.

3.1.3 Vegetation

The area is typically characterized by Kalahari Thornveld veld type (Acocks, 1988).

The site itself is covered by sparse grasslands of which some was used as agriculture land, and a few indigenous thorn trees are present on site.

4. NATURE OF INVESTIGATION

4.1 SITE INVESTIGATION

All available information (paragraph 1.3) was studied before and during the site visit.

The investigation commenced with a desk study, where all relevant information is collected and compiled on a base map. The site was divided into land forms, after which the accuracy of the information was checked by means of a field visit.

Test pits were dug and representative disturbed samples were collected and tested. The position of the test pits are represented in FIGURE 4 (Appendix A). The soil profiles were described by a registered engineering geologist according to the methods described by Jennings *et al* (Jennings 1973). This method describes each horizon in terms of moisture content, colour, consistency, structure, type of soil and origin of the soil.

Disturbed samples of the soil materials were taken for laboratory analysis. The grading of the soils were determined by sieve and hydrometer analysis, resulting in cumulative grading curves.

The mechanical properties of the soil material are described in terms of the liquid limit and plasticity index (determined by means of the Atterberg Limit tests) and the linear shrinkage. These values can be used to calculate the potential expansiveness of the soils, and to evaluate the materials for use as construction material. The consistency of a soil is described by means of its Atterberg limits, where the effect of a change in the moisture content on the consistency of a cohesive soil is measured. According to Cernica (1982) these tests are useful "mostly for soil identification and classification". It can also be used to determine the mechanical properties of cohesive soil material¹.

The linear shrinkage test to determine the percentage shrinkage that can be expected, is performed by wetting a soil to approximately its liquid limit and drying the resultant paste in a linear shrinkage mould.

The potential expansiveness of a soil depends upon its clay content, the type of clay mineral, its chemical composition and mechanical character. A material is potentially expansive if it exhibits the following properties (Kantey and Brink, 1952):

- a clay content greater than 12 percent,
- a plasticity index of more than 12,
- a liquid limit of more than 30 percent, and
- a linear shrinkage of more than 8 percent.

The potential expansiveness (low, medium, high, very high) is calculated by means of Van der Merwe's method (Van der Merwe, 1964), where the equivalent plasticity index versus the clay content of the material is plotted on a graph divided into heave categories. If any sample in the study area classifies as potentially expansive, the amount of heave or mobilization in mm measured on the surface will be calculated.

4.2 LABORATORY TESTS

The minimum requirements for areas 112ha large is 11 samples for foundation indicator tests (GFSH-2 guideline). This may vary and is sometimes limited according to the variability of the geotechnical character such as limited depths of test pits before refusal of the TLB, as well as the uniformity or simplicity of a site. Only 8 samples were tested as the material consisted mainly of calcrete gravel and rock without the possibility of sampling matrix material or soil.

No free swell tests were done as all these areas falls within the drainage features and outside the developable areas.

No consolidometer or collapse potential tests were done as it was impossible to secure any undisturbed soil sample required for these tests.

No soil chemistry samples were tested as all new developments use synthetic pipes

¹ Note that cohesionless soils (i.e. sandy material) cannot be tested for plasticity or collapse potential as this material does not contain enough fines to exhibit consistency. The taking of undisturbed samples is not possible due to disintegration.

not reactive to soil aggressiveness.

The disturbed samples taken during the investigation were tested by the accredited laboratory of Specialised Testing Laboratory in Pretoria to determine their physical properties. Indicator tests include a grading analyses, the determination of Atterberg limits and linear shrinkage. The original laboratory results and a summary of results are represented in Table A, Appendix C.

5. SITE GEOLOGY AND GROUNDWATER CONDITIONS

5.1 Geology

The site is underlain by gneiss, granodiorite or adamellite of the Stalhoek Complex, Vioolsdrift Suite, but is locally covered by recent aeolian sand and calcrete gravel.

Locally, the site is covered by alluvial gravel and calcrete.

No dolomite occurs on site and a stability investigation and evaluation is not required.

5.2 Groundwater Conditions

Plate flow is the dominant drainage pattern on site, with a prominent drainage channel in the centre portion of the site. Drainage occurs in a westerly direction towards a drainage feature and then in a southern direction towards the Doring River and later the Buffels River.

The permanent or perched water table on site is deeper than 1,5m below ground surface.

6. <u>GEOTECHNICAL EVALUATION</u>

6.1 ENGINEERING AND MATERIAL CHARACTERISTICS

6.1.1 SOIL PROFILES

According to the generic specification GFSH-2 guidelines, the minimum number of test pits for an area of 112ha is calculated to 34 test pits, but according to the specification of SAIEG in our document on Guidelines for Urban Engineering Geological Investigation, 1997, Table 1 (Appendix D), at least 12 test pits should be adequate for areas with a low variable geotechnical character and sites where extensive development with services exist with limited access and almost fully built-up and fenced, or where more than half of the site is developed and serviced and for the formalization of the planning process such as this site. We recorded positions, photographed, described and characterized 40 test positions covering this site.

All terrain land forms or mapping units were extensively sampled and more than adequate representative characterization of each unit took place.

The soil profiles with accompanied plates of profiles and rock outcrop are represented in Appendix B.

Typical soil profile

Dry to slightly moist and moist, red to dark brown, loose to dense, open textured sand with gravel of calcrete. Aeolian & pedogenetic.

Large calcrete boulders & gravel with refusal on hard pan calcrete or slightly weathered gneiss. Pedogenetic or residual gneiss.

Some severe problems regarding excavatability can be expected on the site, and a competent TLB, excavator, pneumatic tools and even blasting will be required to reach installation depths for services in many places, and the average refusal depth was calculated at less than 0,5m.

To ensure the stability of excavations, it will need standard sidewall protection in excavations exceeding 1,5m.

6.1.2 LABORATORY RESULTS

The laboratory tests indicated a slight collapse potential and compressibility of the matrix material with a low expansive potential of the material (according to the method of Van der Merwe, 1964). It had an expected range of total soil movement measured at surface as collapse calculated to less than 5mm consolidation or less than 7,5 mm swell, with a site classification of CR.

The laboratory result indicated that the samples had a clay content of less than 4%, a

linear shrinkage of less than 0,5%, the plasticity index was not determined as the material consisted of a slightly or non plastic matrix resulting that no liquid limit could be determined, and with a low expansive potential.

The Unified classification was SM (all 8 samples) as silty sand, poorly graded sand silt mixtures, and A-1-b (5 samples) as gravelly sand or graded sand that may include fines to A-2-4 (3 samples) as sand and gravel with low plasticity silt fines, according to the PRA classification.

The limited amount of samples tested are justified as the high calcrete gravel content with very limited sandy matrix material should have the same character across the site, as well as the limited depth of refusal of the competent TLB.

No mining activities on site or history of mining or contaminated land in the area were found.

The site is located far from any mining activities and in an inactive area regarding seismic activity.

Due to the level of development surrounding the area, the likelihood for the development of borrow pits on site are low.

All road building and construction materials for the building industry will be sourced from established commercial activities in and around Steinkopf.

6.2 SLOPE STABILITY AND EROSION

The potential for lateral soil movement or erosion is medium to high, and the loose sand is easily washed away during thunderstorms. Except for local slope instability within opened trenches and the collapse of pit side walls, no other slope instability is expected within these relative flat areas.

6.3 EXCAVATION CLASSIFICATION WITH RESPECT TO SERVICES

The excavation characteristics of the different soil horizons encountered have been evaluated according to the South African Bureau of Standards standardized excavation classification for earthworks (SABS – 1200D) and earthworks (small works – SABS 1200DA). In terms of this classification and the in-situ soil/rock consistencies as profiled, the relationships given below are generally applicable:

- 1. "soft excavation" very loose/very soft through to dense or stiff.
- 2. "intermediate excavation" very dense/very stiff through to very soft rock.
- 3. "hard excavation" soft rock or better

Severe problems regarding excavatability can be expected on the site, and sub outcrop, shallow rock or outcrop areas were found that were classified as hard rock excavation, and the average refusal depth was calculated at less than 0,5m.

Problems regarding excavations of the upper material is expected and it is difficultly excavated by the competent TLB, and it was classified as intermediate in restricted and non-restricted excavation (SANS 1200 D).

Severe problems regarding excavatability can be expected for excavations deeper than 0,5m on the site, and a competent TLB or excavator, pneumatic tools and blasting will be required to reach installation depths for services. It was classified as intermediate to hard excavation in restricted and non-restricted excavation (SANS 1200 D).

To ensure the stability of excavations, it will need standard sidewall protection in excavations exceeding 1,5m.

6.4 IMPACT OF THE GEOTECHNICAL CHARACTER OF THE SITE ON SUBSIDY HOUSING DEVELOPMENTS

During the engineering geological investigation it is essential to determine and quantify the extent of potential problems associated with the area (addressed in **bold** below), before proper township proclamation. The ideal conditions for urban development may be listed as follows:

- * A smooth surface gradient with slopes less than 12°. Accessibility should not be restricted by topography (plateau areas).
- * No potential for slope instability features landslides, mud flows.
- * Easy **excavation** for foundations and installation of services (normal depth of 1,5 m required).
- * Foundations above the ground water level or perched water table, with not too low permeability.
- * Development above the **1:50 year flood line**.
- * Adequate surface and subsurface drainage conditions, with minimal erosion potential.

- * No presence of problematic soils, for example heaving clays, **compressible clays, sand with some collapse potential**, or dispersive soils, that will require expensive remedial measures.
- * No potential for surface subsidence due to the presence of dolomite (sinkholes) or undermining.
- * No damaging differential subsidence or movement (less than 5mm total movement at the surface allowed).
- * The site should be placed away from potential pollutants such as waste disposal sites.

6.4.1 EVALUATION FOR URBAN DEVELOPMENT

Seepage and the presence of perennial fluctuations of ground water were not encountered on site, but a seasonal perched water table may exist.

Special care must be taken to ensure adequate surface drainage to prevent the accumulation of water next to structures.

The site contains slightly collapsible and compressible and soil with a low expansive potential, and foundations will require normal treatment to withstand movement associated with the variable moisture content of the soil.

Severe problems regarding excavatability to 1,5m can be expected on the site, and hard pan calcrete and gneiss rock and outcrop were noted on many portions of the site.

Retaining walls as well as slope stabilization measures are recommended on all constructed embankments exceeding 1,5m.

Storm water diversion measures such as ponding pools are recommended to control peak flows during thunderstorms.

All embankments must be adequately compacted and planted with grass to stop any excessive erosion and scouring of the landscape.

7. <u>SITE CLASSIFICATION</u>

By grouping together all the land facets with the same geotechnical characteristics, the site can be divided into <u>development zones</u>, this being the main objective or result of a phase 1 engineering geological investigation. Each zone can therefore be defined as a grouping of areas with specific geotechnical properties placing similar constraints upon development.

With the above-mentioned criteria in mind, the study area can be divided into typical development zones for residential development (SAICE, SAIEG & NHBRC, 1995):

Land suitable for development: Standard foundation techniques and normal construction with normal site drainage and standard building practice will be adequate for development.

Land suitable for development with precaution or risk: A few precautionary measures for problematic soils in this zone are necessary before urban development can be initiated, with a higher than normal cost implication to overcome geotechnical constraints. The risk of restricted excavatability for the placing of services induces a higher cost for development.

Land not suitable for development typically comprises of the drainage features that are susceptible to annual flooding below the 1:50 year flood line, and is also associated with perched water tables. Land in close proximity of unstable ground such as a potential slope failure or mud flow induced by rainfall is also not suitable for development.

On account of the field observations, laboratory results, previous experience and engineering properties of the soil, it is zoned as follows (SAIEG,1997 - See tabular explanation of classification in Appendix D):

7.1 Engineering Geological Zonation

Normal Development with risk:

Site Class CR/1A3F:

This zone represents the majority of the area and comprises of a relative thin top layer sandy material less than 0,75m in thickness of slightly collapsible and compressible or low expansive soil underlain by a competent pebble marker, calcrete or gneiss, with

estimated total movement of less than 7,5mm measured at surface with the risk of shallow rock, core stones and hard pan calcrete or gneiss rock outcrop adding a R or PR site class designation to the zone with problems relating to restricted excavation to less than 1,0m. Development on solid rock calcrete, calcrete rock outcrop known as hard pan calcrete or gneiss and will have an inflated cost where special pneumatic tools and blasting will be required for the installation of services. Normal foundation techniques will be adequate to enable proper development, with proper compaction within standard strip foundations and drainage provision that will be required. It is classified as CR in terms of the SAIEG & NHBRC guidelines (1995) or the SAICE Code of practice (1995), and 1A3F according to the classification for urban development (Partridge, Wood & Brink)(1993).

Suitable for development with precaution

Site Class PR:

Areas with a PR site class designation whith problems relating to restricted excavation to less than 0,5m, consisting of solid rock calcrete, calcrete rock outcrop known as hard pan calcrete or gneiss will have an inflated cost where special pneumatic tools and blasting will be required for the installation of services.

Site Class PQ:

Areas where small quarries or filling or dumping of spoil (Pq1) were identified must be rehabilitated before any construction can be allowed, and backfilling with an engineer's material may improve the developability of these zones, but these operations will dramatically increase the development cost in this zone.

Undevelopable:

Site Class PD:

Perennial drainage features with local steeper slopes within the upper channels and towards the river. The development is usually restricted to 32m from the centre of the river, and outside the 1:100 year floodline.

The geotechnical problems encountered will require normal foundation techniques and construction, with proper standard compaction techniques.

8. FOUNDATION RECOMMENDATIONS AND SOLUTIONS

8.1 Consolidation or collapse settlement

Site Class C (Estimated total Settlement of less than 5mm):

Normal Construction:

Minor collapse settlement requires normal construction (strip footing and slab on the ground) with compaction in foundation trenches and good site drainage.

Site Class C1 (Estimated total Settlement of between 5 and 10mm):

Modified normal construction:

Reinforced strip footing and slab on the ground. Articulation joints at some internal and all external doors and openings. Light reinforcement in masonry. Site drainage and service/plumbing precautions recommended. Foundation pressure not to exceed 50 kPa (single storey buildings).

Compaction of in situ soils below individual footings:

Remove in situ material below foundations to a depth and width of 1,5 times the foundation width or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at -1% to +2% of optimum moisture content. Normal construction with light reinforcement in strip foundation and masonry.

Deep strip foundations

Normal construction with drainage precaution. Founding on a competent horizon below problem horizon.

Soil Raft

Remove in situ material to 1,0m beyond perimeter of building to a depth and width of 1,5 times the widest foundation or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at -1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip footings and masonry.

9. DRAINAGE

The site is located on a shallow slope towards the centre portion of the site, and then westwards into the Doring River which drains southwards towards the Buffels River.

Plate flow is the dominant drainage pattern on site, and a prominent drainage channel intersects the site.

Although no seepage or the presence of perennial fluctuations of ground water were not encountered on site, we expect that a seasonal perched water table may exist. A calcified profile indicates that some perennial water level fluctuations occur.

Ground water in the form of seepage was not intersected in any test pits during the investigation, but some problems are foreseen and normal water tightening techniques such as damp course on foundation levels are required.

The expected high permeability of the silty sand may lead to leachate from sanitation systems to reach the ground water, and a closed water borne sewage system is recommended.

Special care must be taken to ensure adequate surface drainage to prevent the accumulation of water next to structures.

Storm water diversion measures such as ponding pools are recommended to control peak flows during thunderstorms. All embankments must be adequately compacted and planted with grass to stop any excessive erosion and scouring of the landscape.

10. CONCLUSIONS

- 1. A site of approximately 112 hectares, Steinkopf, Nama Khoi Local Municipality, was investigated to determine the engineering geological properties that will influence township proclamation.
- 2. The site is underlain by gneiss, granodiorite or adamellite of the Stalhoek Complex, Vioolsdrift Suite, but is locally covered by recent aeolian sand and calcrete gravel.
- 3. Some severe problems are foreseen regarding the excavatability to 1,0m depth on site, and shallow rock, core stones and rock outcrop or hard pan calcrete or gneiss were identified almost across the site.
- 4. Zoning of the site revealed zones with minor constraints regarding the **compressibility, collapse potential** and the **expansive potential** of the soil.
- 5. The following zones were identified on the site:

Normal Development with risk:

Site Class CR/1A3F: This zone represents the majority of the area and comprises of a relative thin top layer sandy material less than 0,75m in thickness of slightly collapsible and compressible or low expansive soil underlain by a competent pebble marker, calcrete or gneiss, with estimated total movement of less than 7,5mm measured at surface with the risk of shallow rock, core stones and hard pan calcrete or gneiss rock outcrop adding a R or PR site class designation to the zone with problems relating to restricted excavation to less than 1,0m. Development on solid rock calcrete, calcrete rock outcrop known as hard pan calcrete or gneiss and will have an inflated cost where special pneumatic tools and blasting will be required for the installation of services. Normal foundation techniques will be adequate to enable proper development, with proper compaction within standard strip foundations and drainage provision that will be required. It is classified as CR in terms of the SAIEG & NHBRC guidelines (1995) or the SAICE Code of practice (1995), and 1A3F according to the classification for urban development (Partridge, Wood & Brink)(1993).

Suitable for development with precaution

<u>Site Class PR</u>: Areas with a PR site class designation whith problems relating to restricted excavation to less than 0,5m, consisting of solid rock calcrete, calcrete rock outcrop known as hard pan calcrete or gneiss will have an inflated cost where special pneumatic tools and blasting will be required for the installation of services.

<u>Site Class PQ</u>: Areas where small quarries or filling or dumping of spoil (Pq1) were identified must be rehabilitated before any construction can be allowed, and backfilling with an engineer's material may improve the developability of these zones, but these operations will dramatically increase the development cost in this zone.

<u>Undevelopable: Site Class PD:</u> Perennial drainage features with local steeper slopes within the upper channels and towards the river. The development is usually restricted to 32m from the centre of the river, and outside the 1:100 year floodline.

- 6. **Normal and special construction** techniques will be required to enable proper development. This includes the use of **compaction techniques** and **site drainage** as described.
- 7. This investigation was done to reveal the geotechnical properties on site with the techniques as described to form our opinion. Although every possible factor during the investigation was dealt with, it is possible to encounter variable local conditions. This will require the inspection of foundations by a competent person to verify expected problems.

Engineering geologist:

Fillinge

DAVID S. VAN DER MERWE B.Sc. (Hons)(Enggeol.)(Pret.) Pr. Sci. Nat. Reg. Nr. 400057/96; MSAIEG Reg. Nr. 93/154; NHBRC Reg. Nr. 600444.

11. **BIBLIOGRAPHY**

ACOCKS, J.P.H., 1988. "Veld types of South Africa." Memoir no. 57 The Botanic Survey South Africa.

BRINK, A.B.A., 1979. "Engineering geology of Southern Africa Vol. 1". Building Publications, Pretoria.

BRINK, PARTRIDGE & WILLIAMS, 1982. "Soil Survey for Engineering." Clarendon Press, Oxford.

BRINK, PARTRIDGE & WILLIAMS. Priorities for the Application of Engineering Geology in Developing Countries. Department of Geology, University of the Witwatersrand.

FISHER, G.J., 1994. "The selection of cemetery sites in South Africa." Proceedings of the Fourth Symposium on Terrain Evaluation and Data Storage, Midrand, August 1994.

HUNT, R.E., 1984. "Geotechnical Engineering Investigation Manual." McGrawHill.

JENNINGS, J.E., BRINK, A.B.A & WILLIAMS, A.A.B., 1973. "Revised guide to soil profiling for civil engineering purposes in South Africa". The Civil Engineer in South Africa, Vol. 15, No.1, January 1973.

PARTRIDGE, T.C., WOOD, C.K., and BRINK, A.B.A., 1993. Priorities for Urban Expansion within the PWV Metropolitan Region: The Primacy of Geotechnical Constraints. South African Geographical Journal, Vol 75, pp 9 - 13.

SOUTH AFRICAN INSTITUTE OF CIVIL ENGINEERS/INSTITUTION OF STRUCTURAL ENGINEERS, 1995. Code of Practice: Foundations and Superstructures for Single Storey Residential Buildings of Masonry Construction. Joint Structural Division, Johannesburg.

SWARTZ, K., 1985. "Problem Soils in South Africa - State of the art: Collapsible Soils", The Civil Engineer in South Africa, July 1985.

THE NATIONAL HOME BUILDERS REGISTRATION COUNCIL (NHBRC), 1995. Standards and guidelines, first issue, May 1995.

THE SOUTH AFRICAN INSTITUTE OF ENGINEERING GEOLOGISTS (SAIEG), 1997. Guidelines for Urban Engineering Geological Investigations.

VAN DER MERWE, D.H., 1964. "The prediction of heave from the plasticity index and percentage clay fraction of soils". The Civil Engineer in South Africa., June 1964.

WEATHER BUREAUX, 1988. "Climate of South Africa. Climate statistics up to 1984.

WEINERT, H.H., 1980. "The natural road construction materials of Southern Africa", Academica, Cape Town.

APPENDICES

APPENDIX A: FIGURES

- Figure 1: Steinkopf, Nama Khoi Local Municipality: Regional Locality Map.
- Figure 2: Steinkopf, Nama Khoi Local Municipality: Topography Map.
- Figure 3: Steinkopf, Nama Khoi Local Municipality: Geology Map.
- Figure 4: Steinkopf, Nama Khoi Local Municipality: Engineering Geological Zone Map with Test Pit Positions on Google Image.

APPENDIX B: SOIL PROFILES

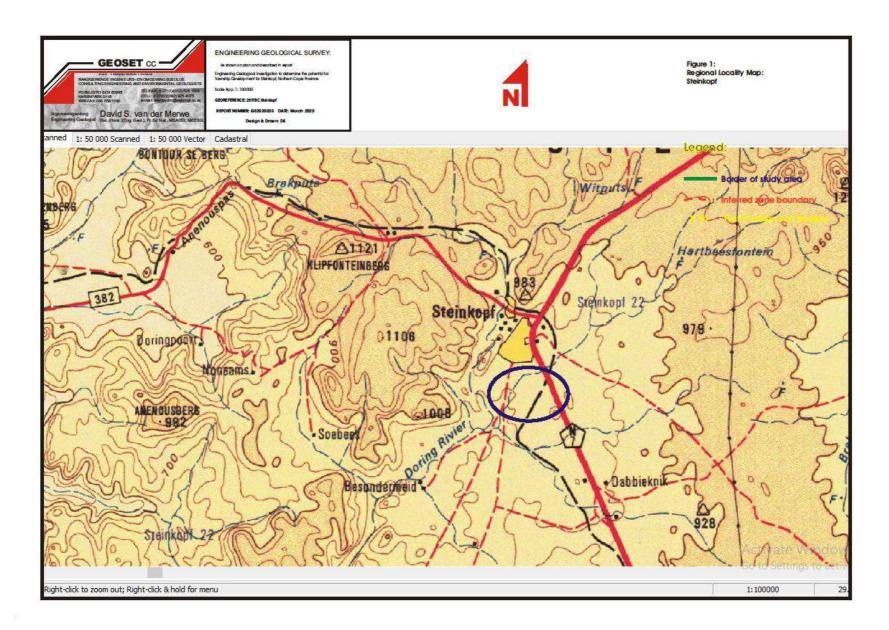
Soil Profiles Tabled Summary Soil Profile Descriptions Soil Profile Photographs

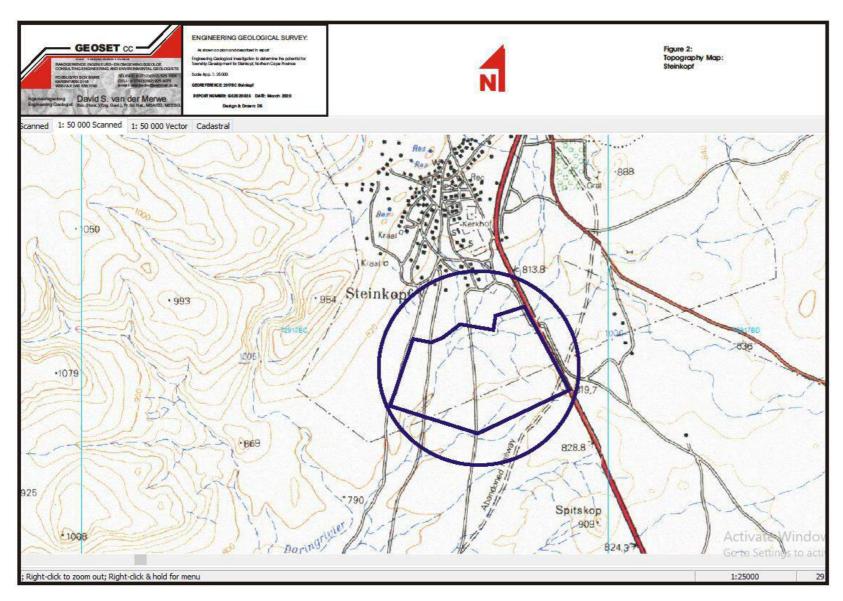
APPENDIX C: LABORATORY RESULTS

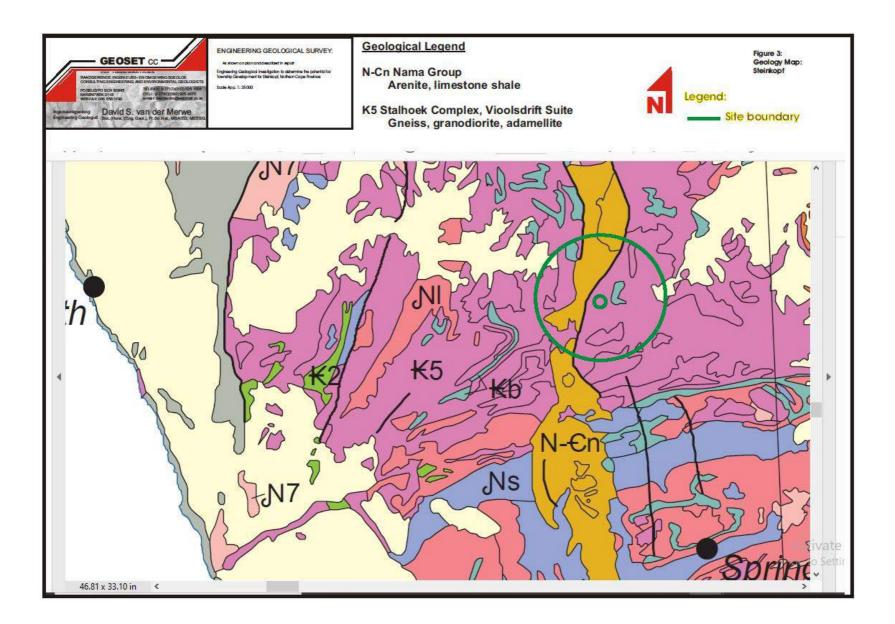
Table A: Summary of Laboratory Results STL Summary of Laboratory Results STL Laboratory Result

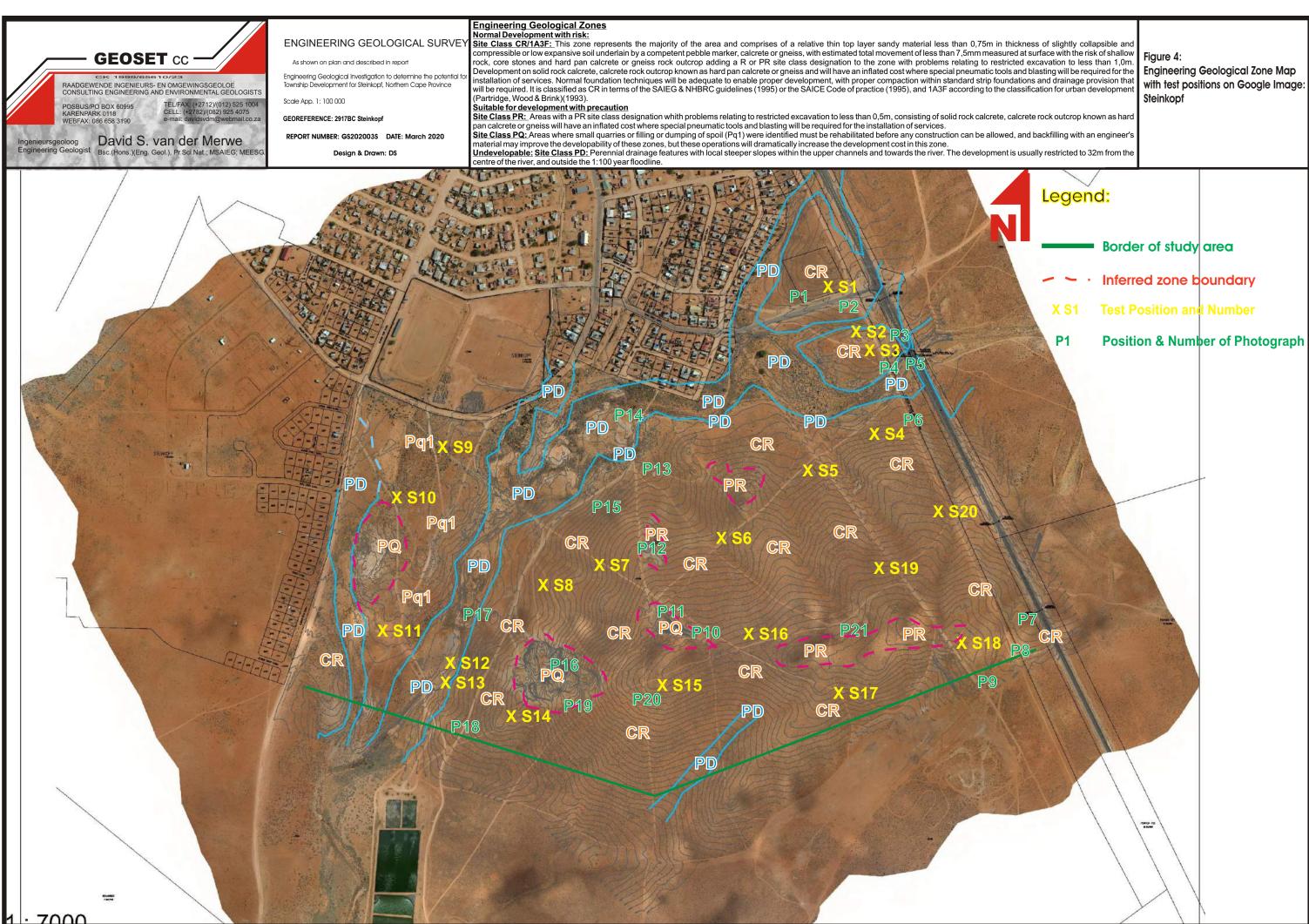
APPENDIX D: TABULAR EXPLANATION OF ZONING

Extract from: THE SOUTH AFRICAN INSTITUTE OF ENGINEERING GEOLOGISTS (SAIEG), 1997. Guidelines for Urban Engineering Geological Investigations.


Table 1. Categories of Urban Engineering Geological Investigation


Table 2. Geotechnical Classification for Urban Development: Partridge, Wood & Brink (1993)


> Table 3. Residential Site Class Designations: SAICE, SAIEG & NHBRC (1995)


APPENDIX A: FIGURES

- Figure 1: Steinkopf, Nama Khoi Local Municipality: Regional Locality Map.
- Figure 2: Steinkopf, Nama Khoi Local Municipality: Topography Map.
- Figure 3: Steinkopf, Nama Khoi Local Municipality: Geology Map.
- Figure 4: Steinkopf, Nama Khoi Local Municipality: Engineering Geological Zone Map with Test Pit Positions on Google Image.

APPENDIX B: SOIL PROFILES

Soil Profiles Tabled Summary Soil Profile Descriptions Soil Profile Photographs

						27			
T	est	Samples	Pebble	<u>Residual</u>	<u>Site</u>	<u>Remarks</u>	GPS Coordinates		Test
I	Pit	<u>Depth</u>	<u>Marker</u>	<u>gneiss</u>	<u>Class</u>				<u>Pit</u>
1	٧r	m	0m to m	to m			X Coord Y Coord		Nr
s	1		0,5	0,7+	CR	Refusal on calcified gneiss.	29°16'14,44" S 17°44'27,44" E	S	1
S	2	0.4	0.3	0,7+	CR	Refusal on calcified gneiss.	29°16'17,05" S 17°44'29,25" E	S	2
S	3	0.2	0.7	1,0+	CR	Refusal on calcified gneiss.	29°16'18,57" S 17°44'30,16" E	S	3
S	4	0.2	0.3	0,7+	CR	Refusal on calcified gneiss.	29°16'23,54" S 17°44'30,12" E	S	4
S	5		0.3	0,7+	CR	Refusal on calcified gneiss.	29°16'26,79" S 17°44'24,85" E	S	5
S	6		0.3	0,4+	CR	Refusal on calcified gneiss.	29°16'31,41" S 17°44'18,68" E	S	6
S	7	0.2	0.4	0,6+	CR	Refusal on calcified gneiss.	29°16'33,24" S 17°44'08,96" E	S	7
S	8	0.2	0.3	0,4+	CR	Refusal on calcified gneiss.	29°16'34,84" S 17°44'04,34" E	S	8
S	9		0.1	0,5+	CR	Refusal on calcified gneiss.	29°16'25,16" S 17°43'56,42" E	S	9
S	10		0.3	0,4+	CR	Refusal on calcified gneiss.	29°16'29,50" S 17°43'53,17" E	S	10
S	11		0	0+R	CR	Photo: Calcified gneiss outcrop	29°16'40,05" S 17°43'51,98" E	S	11
S	12		0.2	0,3+	CR	Refusal on calcified gneiss.	29°16'42,05" S 17°43'55,62" E	S	12
S	13				CR	Photo: Bridge with gneiss outcro	29°16'43,07" S 17°43'55,18" E	S	13
S	14	0.2	0.3	0,4+	CR	Refusal on calcified gneiss.	29°16'44,25" S 17°44'01,63" E	S	14
S	15		0.2	0,4+	CR	Refusal on calcified gneiss.	29°16'41,65" S 17°44'13,07" E	S	15
S	16		0.2	0,6+	CR	Refusal on calcified gneiss.	29°16'38,55" S 17°44'20,14" E	S	16
S	17	0.2	0.3	0,6+	CR	Refusal on calcified gneiss.	29°16'42,88" S 17°44'28,32" E	S	17
S	18		0.2	0,3+	CR	Refusal on calcified gneiss.	29°16'39,33" S 17°44'37,46" E	S	18
S	19		0.2	0,4+	CR	Refusal on calcified gneiss.	29°16'33,99" S 17°44'31,77" E	S	19
S	20	0.2	0.3	0,6+	CR	Refusal on calcified gneiss.	29°16'30,19" S 17°44'35,90" E	S	20
8	Dist	urbed sam	ples were	e taken.					
No	o wa	ter was en	countered	l in any tes	t pit				
Α,	JCB	3DX 4X4 S	Super TLB	was supp	lied by J	aco from Mass Hire in Springbok,	operated by Ralph.		
All	the	test pits w	ere dug to	the refuse	I depth o	of the TLB usually in calcrete or or	n calcified gneiss.		
Th	e m	oisture co	ntent of the	e soil profil	es were	usually described as dry and sor	netimes as slightly moist.		
						and and underlain by calcrete grav		oul	ders.
						reasing depth and was described	as veryloose.		
Re	efus	al was not	ed on calc	rete or cal	cified gn	eiss as medium hard rock.			
Re	fus	al on the c	alrete or c	alcified gne	eiss was	noted in all test pits, with an aver	age refusal depth of less than 0,	5m.	

				28	}					
Soil Pr	ofile Nr:	S1								
DATE: 4	March 202	20				GEOS	SET CC			
JOB NR:	: GS202003	S			Consulting			mental Geologists		
PROJEC	T NAME: S	Steinkopf						gewingsgeoloë		
	Extension			P.O. Box	/ Posbus 609	-	Tel: 012 5			
CLIENT:	Maxim / B	arzani		KARENPA	ARK 0118		Webfax: (86 658 3190		
TLB Cor	ntractor: M	ass Hire: 、	Jaco	e-mail: d	avidsvdm@\	v ebmail.co.z	za Cell: 0	82 925 4075		
TLB Ma	chine: JCB	3DX 4X4 S	Super New	Engi	neering Ge	ologist:	David S. van der Merwe.			
TLB Ope	erator: Ra	lph		Inge	nieursgeol	oog:	Pr. Sci. Nat., MSAIEG.			
Depth bng	Soil Profile	Sample Nr								
(m)	Symbol	Symbols	Description of	of soil and p	roperties					
0.1										
0.2	1.0, 0, 0, 1		Abundant, sr	nall & mediu	m, angular to	sub rounde	d, pebbles & c	obbles of gneiss		
0.3			& calcrete, c	last suppor	ted in a subo	rdinate matri	ix of orange bi	row n, dry		
0.4	Þ.0, °, °, °		aeolian silty	sand. Pebbl	e marker.					
0.5										
0.6			T 							
0.7			Refusal on d	ry, light brov	v n w hite, de	nse, intact, s	silty sandy gra	vel. Calcified gneiss.		
	or.~									
Notes:										
	l on calcifie									
	undwater w	as interse	cted.							
3. No san	nples.									
					1					
Lat/long		X Coord:	29°16'14	4,44" S						
WGS84 datu	ım	Y Coord:	17°44'2	7 44" F			Soil	Profile Nr: S1		

r				29		1					
Soil Pr	ofile Nr:	S2									
DATE: 4	March 202	20				GEOS	ET CC				
JOB NR:	GS202003	S					ring & Environmental Geologists				
	T NAME: S						nieurs- en Omgewingsgeoloë				
	Extension			P.O. Box /	P.O. Box / Posbus 60995 Tel: 012 525 1004						
CLIENT:	Maxim / B	arzani		KARENPA	RK 0118		Webfax: 0	86 658 3190)		
TLB Cor	ntractor: Ma	ass Hire: 、	Jaco	e-mail: da	avidsvdm@w	ebmail.co.z	a Cell: 08	82 925 4075			
TLB Mad	chine: JCB	3DX 4X4 S	Super New	Engir	neering Geo	ologist:	David S. va	n der Merwe	э.		
TLB Ope	erator: Ral	ph		Inge	nieursgeolo	oog:	Pr. Sci. Nat., I	VISA IEG.			
Depth bngl	Soil Profile	Sample Nr									
(m)	Symbol	Symbols	Description	of soil and pr	operties						
0.1			Abundant, si	mall & mediur	n, angular to	sub rounded	d, pebbles & co	obbles of gnei	SS		
0.2			& calcrete, o	clast support	ed in a subor	dinate matriz	x of orange br	ow n, dry			
0.3	0.404.0		aeolian silty	sand. Pebble	e marker.						
0.4											
0.5	,°,°,°,°, ć	S2-0,4									
0.6			Refusal on d	ry, light brow	n w hite, der	nse, intact, s	ilty sandy grav	/el. Calcified g	neiss.		
0.7	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،										
Notes:											
	l on calcifie	d aneiss									
	undwater wa	-	cted								
	turbed sam										
		- -,-	-								
Lat/long		X Coord:	29°16'1	7,05" S							
WGS84 datu	ım	Y Coord:	17°44'2	9,25" E			Soil	Profile N	r: S2		

			<u> </u>	30							
Soil Pr	rofile Nr:	S3									
DATE: 4	March 202	20				GEOS	SET CC				
JOB NR	: GS202003	3S			Consultin		ing & Environ		logists		
PROJEC	CT NAME: S	Steinkopf				Raadgewende Ingenieurs- en Omgewingsgeol					
	Extension			P.O. Box	P.O. Box / Posbus 60995 Tel: 012 525 100						
CLIENT:	: Maxim / B	arzani		KARENPA	KARENPARK 0118 Webfax: 086 658 319						
TLB Co	ntractor: M	ass Hire: 、	Jaco	e-mail: d	avidsvdm@	w ebmail.co.z	za Cell: 0	82 925 4075			
TLB Ma	chine: JCB	3DX 4X4 S	Super New	Engi	neering Ge	ologist:	David S. van der Merwe				
TLB Op	erator: Ra	lph		Inge	nieursgeo	oog:	Pr. Sci. Nat.,	MSAIEG.			
Depth bng	Soil Profile	Sample Nr									
(m)	Symbol	Symbols	Description of	of soil and p	roperties						
0.1											
0.2											
0.3			Dry, orange b	prown, loos	e, open textu	ured, silty sa	nd with small &	& medium, anç	jular to		
0.4		S3-0,2	sub rounded,	pebbles &	cobbles of g	neiss & calc	rete, aeolian si	ilty sand.			
0.5	ا، ، ، ، ، ، ا		Calcified peb	ble marker.							
0.6											
0.7	0. ۲O, ۲, ۱۸		<u> </u>								
0.8											
0.9			Refusal on di	ry, light brov	v n w hite, de	nse, intact, s	silty sandy gra	vel. Calcified	gneiss.		
1.0	0,0,0°,°,°,°,°,°,°,°,°,°,°,°,°,°,°,°,°,										
NI											
Notes:		d anoise									
	al on calcifie	-	atod								
	undwater w sturbed sam										
J. 🖝 DIS	auneu sam	ipie 53-0,2									
Lat/long		X Coord:	29°16'18	3 57" S	1						
WGS84 dati	um						601	Profile N	lr. 61		
vvG384 dat	uIII	Y Coord:	17°44'30	U,16" E	l		301	FIOTILE N	11: 33		

				31					
Soil Pr	ofile Nr:	S4							
DATE: 4	March 202	20				GEOS	ET CC		
	: GS202003							mental Geol	onists
	T NAME: S				-	-	-	gewingsged	_
	Extension			P.O. Box	Posbus 609	_	Tel: 012 52		
	Maxim / B	arzani		KARENPA				86 658 319	0
_	ntractor: M		Jaco		avidsvdm@w	ebmail.co.z		32 925 4075	
	chine: JCB				neering Geo			n der Merwe	Э.
	erator: Ra			_	nieursgeolo	-	Pr. Sci. Nat.,	MSAIEG.	
Depth bng	Soil Profile	Sample Nr		=					
(m)	Symbol	Symbols	Description	of soil and pr	operties				
0.1	9.00.00					red. siltv sar	nd with small &	medium, angu	ular to
0.2		S4-0,2			-		ete, aeolian si		
0.3	0,0,0,0,0,0		Calcified pet		<u> </u>			-	
0.4	· · · 0 · · · 0 · · · 0 9 · · 0 · · · 0		†						
0.5	, o, o, o, o								
0.6			Refusal on d	lry, light brow	n & w hite, d	ense, intact,	silty sandy g	avel. Calcified	l gneiss.
0.7	, , , , , , , , , , , , , , , , , , ,								
Notes:									
	l on calcifie	-							
	undwater w								
3. 🛡 Dis	turbed sam	ple S4-0,2							
				0.541.0					
Lat/long		X Coord:	29°16'2				• · · ·		
WGS84 datu	nu	Y Coord:	17°44'3	0,12" E			2011	Profile N	r: 54

				32					
Soil Pr	ofile Nr:	S5							
DATE: 4	March 202	20				GEOS	ET CC		
	: GS202003							mental Geol	ogists
	T NAME: S							gewingsgeo	
	Extension			P.O. Box	Posbus 609	_	Tel: 012 52		
	Maxim / B	arzani		KARENPA			Webfax: 0	86 658 3190)
TLB Co	ntractor: M	ass Hire: 、	Jaco	e-mail: d	avidsvdm@w	ebmail.co.z	a Cell: 08	32 925 4075	
TLB Ma	chine: JCB	3DX 4X4 S	Super New	Engir	neering Geo	ologist:	David S. va	n der Merwe	Э.
TLB Op	erator: Ra	lph		Inge	nieursgeolo	og:	Pr. Sci. Nat.,	MSAIEG.	
Depth bng	Soil Profile	Sample Nr							
(m)	Symbol	Symbols	Description	of soil and pi	operties				
0.1			Dry, orange	brown, loose	e, open textu	red, silty sar	nd with small &	a medium, angi	ular to
0.2			sub rounded	l, pebbles & c	obbles of gn	eiss & calcr	ete, aeolian si	lty sand.	
0.3	0,		Calcified pet	ble marker.					
0.4									
0.5									
0.6	0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,		Refusal on c	lry, light brow	n & white, d	ense, intact,	silty sandy g	ravel. Calcified	gneiss.
0.7	0, , 0, 0, 0, 0								
						I			
Notes:									
1. Refusa	al on calcifie	ed gneiss.							
-	undwater w	as interse	cted.						
3. No sar	nples.								
1		N 6		0.70% 0					
Lat/long		X Coord:	29°16'2				• "	D	
WGS84 dat	um	Y Coord:	17°44'2	4,85" E			201	Profile N	r: 55

				33	3				
Soil Pr	ofile Nr:	S 6							
DATE: 4	March 202	20				GEOS	SET CC		
	: GS202003						ing & Environ		logists
	CT NAME: S						eurs-en Om		
	Extension			P.O. Box	/ Posbus 609	_	Tel: 012 5		
CLIENT:	: Maxim / B	arzani		KARENP	ARK 0118		Webfax: (086 658 319	0
TLB Cor	ntractor: M	ass Hire: 、	Jaco	e-mail:	davidsvdm@v	v ebmail.co.z	za Cell: 0	82 925 4075	
	chine: JCB		Super New	_	ineering Ge	-	David S. va	an der Merw	e.
-	erator: Ra	-		Inge	nieursgeol	oog:	Pr. Sci. Nat.,	MSAIEG.	
	Soil Profile								
(m)	Symbol	Symbols	Description	of soil and p	properties				
0.1							d, pebbles & c		iss
0.2						rdinate matri	ix of orange bi	own, dry	
0.3	01.70.207.0		aeolian silty						/
0.4			Refusal on d	lry, light bro	w n w hite, de	nse, intact, s	silty sandy gra	vel. Calcified	gneiss.
								1	
Notes:									
	al on calcifie								
	undwater w	as interse	cted.						
3. No sar	mples.								
Lat/long		X Coord:	29°16'3	1,41" S	1				
WGS84 date	um	Y Coord:		8,68" E			Soil	Profile N	r: S6
			1/ 44 1	0,00 E			501		

				34					
Soil Pr	ofile Nr:	S7							
DATE: 4	March 202	20				GEOS	ET CC		
	: GS202003							mental Geologist	
	T NAME: S	-						gewingsgeoloë	
	Extension			P.O. Box /	/ Posbus 60995 Tel: 012 525 1004				
	Maxim / B	arzani		KARENPA			Webfax: 0	86 658 3190	
TLB Cor	ntractor: M	ass Hire: 、	Jaco	e-mail: d	avidsvdm@w	ebmail.co.z	a Cell: 08	32 925 4075	
TLB Ma	chine: JCB	3DX 4X4 S	Super New	Engir	neering Geo	ologist:	David S. va	n der Merwe.	
TLB Op	erator: Ra	lph		Inge	nieursgeolo	og:	Pr. Sci. Nat., I	VISAIEG.	
Depth bng	Soil Profile	Sample Nr		-					
(m)	Symbol	Symbols	Description	of soil and pr	operties				
0.1	9.0,0,0,0,0		Dry, orange	brown, loose	e, open textur	ed, silty sar	nd with small &	medium, angular to	
0.2		S7-0,2	sub rounded	, pebbles & c	obbles of gn	eiss & calcr	ete, aeolian sil	ty sand.	
0.3			Calcified peb	ble marker.					
0.4	0, 0, °, °, °, °, °, °, °, °, °, °, °, °, °,								
0.5									
0.6			Refusal on d	ry, light brow	n w hite, den	nse, intact, s	ilty sandy grav	el. Calcified gneiss	
N 1 <i>i</i>									
Notes:									
	al on calcifie		a t a d						
	undwater w								
3. 🛡 Dis	turbed sam	pie S7-0,2							
Lot/long		V Coord	20.04610	2 24" 5					
Lat/long		X Coord:	29°16'3				0-11		
WGS84 date	urn	Y Coord:	17°44'0	8,96" E			2011	Profile Nr: S	

				35	;						
Soil Pr	ofile Nr:	S8									
DATE: 4	March 202	20				GEOS	SET CC		//		
	: GS202003	-				onsulting Engineering & Environmental Geologists					
	CT NAME: S						eurs-en Om				
	Extension			P.O. Box	/ Posbus 60995 Tel: 012 525 1004						
	Maxim / B	arzani		KARENPA				086 658 319	90		
	ntractor: M		Jaco		lavidsvdm@v	v ebmail.co.z		82 925 4075			
	chine: JCB				neering Ge			an der Merv	/e.		
TLB Op	erator: Ral	lph			nieursgeol	-	Pr. Sci. Nat.,	MSAIEG.			
Depth bng	Soil Profile	Sample Nr									
(m)	Symbol	Symbols	Description	of soil and p	roperties						
0.1		· ·				red. siltv sa	nd with small &	& medium, and	ular to		
0.2		S8-0,2					rete, aeolian s				
0.3	0,0,0,0,0,0		Calcified peb	•							
0.4			Refusal on d	ry, light brow	v n w hite, de	nse, intact, s	ilty sandy gra	vel. Calcified	gneiss.		
				<i></i>					1		
			-								
Notes:											
	al on calcifie		- 41								
	undwater w										
3. 🛡 Dis	turbed sam	pie 58-0,2	2.								
/			000000	4.0.4% 0	1						
Lat/long		X Coord:	29°16'34				• • • •				
WGS84 dat	um	Y Coord:	17°44'0	4,34" E			201	Profile N	ır: 58		

				36	5				
Soil Pr	ofile Nr:	S9							
DATE: 4	March 202	20				GEOS	ET CC		
	: GS202003						ng & Environ		ogists
	T NAME: S						eurs-en Om		
	Extension	Jtenntopi		P.O. Box	/ Posbus 609		Tel: 012 5		
	Maxim / B	arzani			ARK 0118)86 658 319	0
	ntractor: M		Jaco		lavidsvdm@v	vebmail.co.z		82 925 4075	
	chine: JCB				neering Ge			an der Merw	e.
	erator: Ra			_	nieursgeol	-	Pr. Sci. Nat.,	MSAIEG.	
Depth bna	Soil Profile	Sample Nr		-					
(m)	Symbol	Symbols	Description	of soil and p	roperties				
0.1						red. siltv sar	nd with small &	k medium, and	ular to
0.2	· · · · · · · · · · · · · · · · · · ·					-	ete, aeolian si	-	
0.3			1		<u> </u>				
0.4			Refusal on d	lry, light brow	v n & w hite. d	lense, intact	, silty sandy g	ravel. Calcifie	d gneiss.
0.5	0,0,0,0,0,0 0,0,0,0			,, <u>,</u>			, , , , , , , , , , , , , , , , , , ,		
Notes:									
	al on calcifie	ed gneiss.							
	undwater w		cted.						
3. No sar									
	<u> </u>				1				
Lat/long		X Coord:	29°16'2	5,16" S			-		-
WGS84 datu	um	Y Coord:	17°43'5	6,42" E			Soil	Profile N	r: S9

				37	,				
Soil Pr	rofile Nr:	S10							
DATE: 4	March 202	20				GEOS	ET CC		
JOB NR	: GS202003	S					ng & Environ		logists
PROJEC	CT NAME: S	Steinkopf					eurs-en Om		
TOWN:	Extension			P.O. Box	/ Posbus 609	95	Tel: 012 5	25 1004	
	: Maxim / B			KARENPA	ARK 0118		Webfax: (86 658 319	90
	ntractor: M				avidsvdm@v			82 925 4075	
	chine: JCB		Super New	_	neering Ge	-		an der Merv	/e.
-	erator: Ra			Inge	nieursgeol	oog:	Pr. Sci. Nat.,	MSAIEG.	
· · · · · · · · · · · · · · · · · · ·	Soil Profile		Description	- 6 11					
(m)	Symbol	Symbols		of soil and p	-	1 14			<u> </u>
0.1 0.2						-	nd with small & rete, aeolian si		gular to
0.2			Calcified pet	•			ete, aeoliari si	iity sand.	
0.4					vn white der		silty sandy gra	vel Calcified	aneiss
0.4			Refusation d	i y, light brov			siity sandy gra		grieiss.
Notes:									
	al on calcifie								
	undwater w	as interse	cted.						
3. No sar	mple.								
									1
Lat/long		X Coord:	29°16'2	9.50" S	1				-
WGS84 date	um	Y Coord:		3,17" E			Soil	Profile Ni	
······································	an	T Coord:	17 43 5	3,17 E	l		3011		. 510

				38	3						
Soil Pr	ofile Nr:	S12									
	March 202	20				GEOS	SET CC				
	: GS202003										
	CT NAME: S				Consulting Engineering & Environmental Geologis Raadgewende Ingenieurs- en Omgewingsgeoloë						
	Extension	лешкор		PO Box	/ Posbus 609		Tel: 012 5		0106		
	: Maxim / B	arzani			ARK 0118	990	Webfax: 086 658 3190				
	ntractor: M		laco		davidsvdm@\	v ebmail co)82 925 4075	50		
	chine: JCB				neering Ge			an der Merv	ve.		
	erator: Ra			_	nieursgeol	-	Pr. Sci. Nat.,				
	Soil Profile	-		<u> </u>							
(m)	Symbol	Symbols	Description	of soil and p	properties						
0.1			Î			ured silty sa	and with small	& medium an	aular to		
0.2						-	rete, aeolian s		-		
0.3			*				t, silty sandy o				
0.0	-97-29 <u>-</u> 92-2		r tor dour on d	ry, iight bro			t, only oundy g		Ja grielos.		
									-		
									-		
									-		
									-		
									_		
									_		
Notes:									_		
	al on calcifie								_		
	undwater w	as interse	cted.						_		
3. No sar	nples.								_		
									_		
									_		
									_		
		X 0	0004014		1						
Lat/long		X Coord:	29°16'4				0 - 11 1				
WGS84 datu	um	Y Coord:	17°43'5	5,62" E			2011	Profile N	1: 512		

		<u></u>		39)					
Soil Pr	ofile Nr:	S14								
DATE: 4	March 202	20				GEOS	SET CC			
JOB NR:	GS202003	S			Consulting	gEngineeri	ng & Enviror	nmental Geo	ologists	
PROJEC	T NAME: S	Steinkopf			Raadgewe	nde Ingeni	eurs-en Om	gewingsge	oloë	
TOWN: E	Extension			P.O. Box	/ Posbus 609	95	Tel: 012 5	25 1004		
CLIENT:	Maxim / Ba	arzani		KARENP	ARK 0118		Webfax: (086 658 319	90	
	ntractor: Ma				nail: davidsvdm@w ebmail.co.za Cell: 082 92					
	chine: JCB		Super New		neering Ge		David S. va	an der Merv	ve.	
_	erator: Ral	-		Inge	nieursgeol	oog:	Pr. Sci. Nat.,	MSAIEG.		
Depth bngl	Soil Profile	Sample Nr								
(m)	Symbol	Symbols	Description	of soil and p	roperties					
0.1			Dry, orange	brow n, loos	e, open textu	red, silty sa	nd with small a	& medium, ang	gular to	
0.2		S14-0,2	sub rounded	, pebbles &	cobbles of gr	neiss & calci	rete, aeolian s	ilty sand.		
0.3	0.707.0	<u> </u>	Calcified peb	ble marker.						
0.4			Refusal on d	ry, light brov	v n w hite, de	nse, intact, s	silty sandy gra	vel. Calcified	gneiss.	
	•~~ * ~3378									
									_	
									_	
Notes:										
	l on calcifie									
	undwater wa									
3. 🛡 Dist	turbed sam	pie S14-0,	Ζ.							
									_	
									_	
_at/long		X Coord:	29°16'4	4 25" S	1					
Laviony		A 00010.	23 104	-,20 0				Profile N		

Soil P	rofile Nr:	S15							
						GEOS	SET CC		
	March 202								
	: GS202003						-	nmental Geo	-
	CT NAME: S	steinkopt				_	1	gewingsge	oloë
	Extension : Maxim / B	or=oni			/ Posbus 609	995	Tel: 012 5		0
	ntractor: M		1000		ARK 0118	u ah mail a a r		086 658 319	0
	chine: JCB				davidsvdm@\ ineering Ge			82 925 4075 an der Merw	0
1	erator: Ral			_	nieursgeol	-	Pr. Sci. Nat.,		с.
	Soil Profile	-					11.001.1400.,		
(m)	Symbol	Symbols	Description	of soil and r	properties				
0.1		Oymbols				red cilty co	nd with amall	& medium, ang	ular to
0.1								ilty sand. Calc	
0.2	۵۲۰۵۰ ۲۵۰۵ ۹ ۵۰۰۵ ۲۰۰۶		Sub Tourided	, peoples a	cobbles of gi			iity sand. Calc	
0.3			Refusal on d	ry light bro	wn & white o	lense intact	silty sandy o	ravel. Calcifie	d aneiss
0.4	o		Refusation u	ry, iight bro	wind winde, c		, siity saridy g		
Notes:									
	al on calcifie								
	oundwater w	as interse	cted.						
3. No sar	mples.								
//			000100	4.05" 0	1				
Lat/long		X Coord:	29°16'4		_		0 - 11 1		
WGS84 dat	um	Y Coord:	17°44'1	3,07" E			2011	Profile Nr	: 515

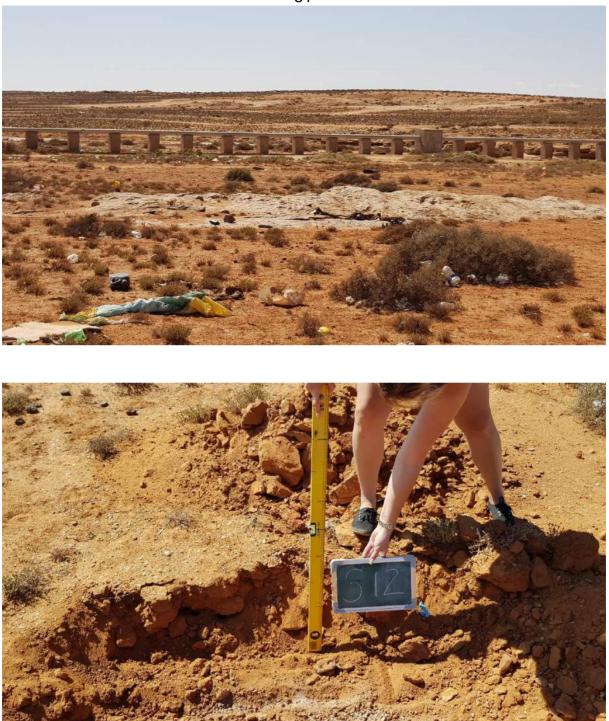
Soil Pr	ofile Nr:	S16		4'					
							SET CC		
	March 202								
	GS202003				1			nmental Geo	
	T NAME: S	steinkopf						gewingsge	oloë
	Extension	•			/ Posbus 609	995	Tel: 012 5		0
-	Maxim / B		-		ARK 0118			086 658 319	0
	ntractor: M				davidsvdm@v			82 925 4075	
	chine: JCB		Super New	_	ineering Ge	-		an der Merw	e.
-	erator: Ra	-		Inge	enieursgeol	oog:	Pr. Sci. Nat.,	MSAIEG.	
	Soil Profile		-						
(m)	Symbol	Symbols	Description	of soil and p	properties				
0.1								& medium, ang	
0.2			sub rounded	, pebbles &	cobbles of gr	neiss & calcı	rete, aeolian s	ilty sand. Calc	ified pet
0.3									
0.4			Refusal on d	ry, light bro	wn&white, c	lense, intact	, silty sandy g	ravel. Calcifie	d gneiss
0.5									
0.6									
Notes:									
	l on calcifie	-							
	undwater w	as interse	cted.						
3. No sar	nples.								
					-				
Lat/long		X Coord:	29°16'3	8,55" S					
WGS84 datu	um	Y Coord:	17°44'2	0,14" E			Soil I	Profile Nr	: S16

	Soil Profile Nr: S17			42		r	r		
Soil Pr	ofile Nr:	S17							1
DATE: 4	March 202	20				GEOS	ET CC		
JOB NR	GS202003	S					ng & Environ		logists
	T NAME: S						eurs-en Om		
	Extension	•		P.O. Box	/ Posbus 609		Tel: 012 5		
CLIENT:	Maxim / B	arzani		KARENPA	RK 0118	K 0118 Webfax: 086 658 3			0
TLB Cor	ntractor: M	ass Hire: 、	Jaco	e-mail: d	avidsvdm@v	vebmail.co.z			
TLB Ma	chine: JCB	3DX 4X4 S	Super New	Engi	neering Geo	ologist:	David S. va	n der Merw	e.
TLB Ope	erator: Ra	lph		Inge	nieursgeolo	oog:	Pr. Sci. Nat.,	MSAIEG.	
Depth bng	Soil Profile	Sample Nr							
(m)	Symbol	Symbols	Description of	of soil and p	roperties				
0.1			Dry, orange b	prown, loose	e, open textu	red, silty sar	nd with small &	& medium, ang	jular to
0.2		S17-0,2	sub rounded,	, pebbles & d	cobbles of gr	eiss & calcr	ete, aeolian si	lty sand.	
0.3	0,0,0,0,0,0,0,0		Calcified peb	ble marker.					
0.4			T						
0.5	0,0,0,0		Refusal on di	ry, light brow	v n w hite, der	nse, intact, s	ilty sandy gra	vel. Calcified	gneiss.
0.6	0,0,0,0,0 0,00								
Notes:									
	l on calcifie	-							
	undwater w								
3. 🛡 Dis	turbed sam	ple S17-0,	2.						
					1				
Lat/long		X Coord:	29°16'42				.		
WGS84 datu	um	Y Coord:	17°44'28	8,32" E			Soil F	Profile Nr	: S17

Sall D-	ofile N=	C 10		43	5					
Soli Pr	ofile Nr:	518				0500				
DATE: 4	March 202	20				GEOS	SET CC			
JOB NR:	: GS202003	S		Consulting Engineering & Environmental Geologi Raadgewende Ingenieurs- en Omgewingsgeologi						
PROJEC	T NAME: S	Steinkopf								
TOWN:	Extension			P.O. Box / Posbus 60995 Tel: 012 525 1004						
CLIENT:	Maxim / B	arzani		KARENP	ARK 0118 Webfax: 086 658 31					
TLB Cor	ntractor: M	ass Hire: 、	Jaco	e-mail: o	lavidsvdm@v	v ebmail.co.z	za Cell: 0	82 925 4075		
	chine: JCB		Super New	Engi	neering Ge	ologist:	David S. va	an der Merw	/e.	
TLB Ope	erator: Ra	lph		Inge	nieursgeol	oog:	Pr. Sci. Nat.,	MSAIEG.		
Depth bng	Soil Profile	Sample Nr								
(m)	Symbol	Symbols	Description	of soil and p	roperties					
0.1			Dry, orange	brow n, loos	e, open textu	red, silty sa	nd with small a	& medium, ang	gular to	
0.2							rete, aeolian s			
0.3			Refusal on d	ry, light brov	v n & w hite, c	lense, intact	t, silty sandy g	ravel. Calcifie	d gneis:	
	a a a an a									
Notes:										
1. Refusa	I on calcifie	d gneiss.								
	undwater w	as interse	cted.							
3. No san	nples.									
Lat/long		X Coord:	29°16'3	9,33" S						
WGS84 datu		Y Coord:	17.1410	7,46" E			Soil	Profile Nr	. \$12	

				44	4				
Soil Pi	rofile Nr:	S19							
DATE: 4	March 202	20				GEOS	SET CC	,	
JOB NR	: GS202003	S			Consulting			nmental Geol	oaists
	CT NAME: S							ngewingsgeo	
	Extension			P.O. Box	/ Posbus 609	_	Tel: 012 5		
	: Maxim / B	arzani		KARENF	ARK 0118		Webfax: (086 658 319	0
TLB Co	ntractor: M	ass Hire:	Jaco	e-mail:	davidsvdm@\	v ebmail.co.z	a Cell: 0	82 925 4075	
TLB Ma	chine: JCB	3DX 4X4 S	Super New	Eng	ineering Ge	ologist:	David S. va	an der Merw	e.
TLB Op	erator: Ral	lph		Inge	enieursgeol	oog:	Pr. Sci. Nat.,	MSAIEG.	
Depth bng	Soil Profile	Sample Nr							
(m)	Symbol	Symbols	Description	of soil and	properties				
0.1			Dry, orange	brow n, loos	se, open textu	red, silty sa	nd with small a	& medium, ang	ular to
0.2			sub rounded	l, pebbles &	cobbles of g	neiss & calci	rete, aeolian s	ilty sand. Calci	ified peb
0.3									
0.4			Refusal on d	lry, light bro	wn&white, a	dense, intact	, silty sandy g	ravel. Calcified	d gneiss.
Nint									
Notes:		d anoise							
	al on calcifie oundwater w		atad						
-		as interse	ciea.						
3. No sar	npies.								
Lat/long		X Coord:	29°16'3	3 99" S					
WGS84 dat	um						Sail	Profile Nr	. 610
vvGS04 uat	uIII	Y Coord:	1/°44'3	51,77" E			3011		. 319

ension xim / Ba ctor: Ma ne: JCB3 or: Ralp	0 S teinkopf arzani ass Hire: C 3DX 4X4 S	Description Dry, orange sub rounded Calcified peb	KARENPA e-mail: d Engin Inge of soil and p brow n, loose , pebbles & d ble marker.	Consulting Raadgewe / Posbus 609 ARK 0118 lavidsvdm@v neering Geo nieursgeolo roperties e, open textu cobbles of gr	y Engineeri nde Ingeni 95 v ebmail.co.z ologist: oog: red, silty sar	a Cell: 08	mental Geol gewingsgeo 25 1004 086 658 319 82 925 4075 an der Merw MSAIEG.	oloë 0 e.
AME: Sension xim / Ba ctor: Ma ne: JCB3 or: Ralp	S teinkopf arzani ass Hire: J 3DX 4X4 S oh Sample Nr Symbols	Description Dry, orange sub rounded Calcified peb	KARENPA e-mail: d Engin Inge of soil and p brow n, loose , pebbles & d ble marker.	Consulting Raadgewe / Posbus 609 ARK 0118 lavidsvdm@v neering Geo nieursgeolo roperties e, open textu cobbles of gr	y Engineeri nde Ingeni 95 v ebmail.co.z ologist: oog: red, silty sar	ng & Environ eurs-en Om Tel: 012 55 Webfax: 0 a Cell: 06 David S. va Pr. Sci. Nat., nd with small 8	mental Geol gewingsgeo 25 1004 086 658 319 82 925 4075 an der Merw MSAIEG.	oloë 0 e.
AME: S ension xim / Ba ctor: Ma ne: JCB3 or: Ralp I Profile	teinkopf arzani ass Hire: J BDX 4X4 S oh Sample Nr Symbols	Description Dry, orange sub rounded Calcified peb	KARENPA e-mail: d Engin Inge of soil and p brow n, loose , pebbles & d ble marker.	Consulting Raadgewe / Posbus 609 ARK 0118 lavidsvdm@v neering Geo nieursgeolo roperties e, open textu cobbles of gr	y Engineeri nde Ingeni 95 v ebmail.co.z ologist: oog: red, silty sar	ng & Environ eurs-en Om Tel: 012 55 Webfax: 0 a Cell: 06 David S. va Pr. Sci. Nat., nd with small 8	mental Geol gewingsgeo 25 1004 086 658 319 82 925 4075 an der Merw MSAIEG.	oloë 0 e.
ension xim / Ba ctor: Ma ne: JCB3 or: Ralp I Profile	arzani ass Hire: 3DX 4X4 S oh Sample Nr Symbols	Description Dry, orange sub rounded Calcified peb	KARENPA e-mail: d Engin Inge of soil and p brow n, loose , pebbles & d ble marker.	Raadgewe / Posbus 609 ARK 0118 lavidsvdm@v neering Geo nieursgeold roperties e, open textu cobbles of gr	nde Ingeni 95 v ebmail.co.z blogist: bog: red, silty sar	eurs-en Om Tel: 012 55 Webfax: 0 a Cell: 00 David S. va Pr. Sci. Nat.,	gewingsger 25 1004 086 658 319 82 925 4075 an der Merw MSAIEG.	oloë 0 e.
ension xim / Ba ctor: Ma ne: JCB3 or: Ralp I Profile	arzani ass Hire: 3DX 4X4 S oh Sample Nr Symbols	Description Dry, orange sub rounded Calcified peb	KARENPA e-mail: d Engin Inge of soil and p brow n, loose , pebbles & d ble marker.	/ Posbus 609 ARK 0118 lavidsvdm@v neering Geo nieursgeolo roperties e, open textu cobbles of gr	95 v ebmail.co.z blogist: bog: red, silty sar	Tel: 012 52 Webfax: 0 a Cell: 00 David S. va Pr. Sci. Nat.,	25 1004 086 658 319 82 925 4075 an der Merw MSAIEG. & medium, ang	0 e.
ctor: Ma ne: JCB3 or: Ralp Profile	ass Hire: C 3DX 4X4 S ph Sample Nr Symbols	Description Dry, orange sub rounded Calcified peb	e-mail: d Engin Inge of soil and p brow n, loose , pebbles & d ble marker.	lavidsvdm@v neering Geo nieursgeolo roperties e, open textu cobbles of gr	plogist: pog: red, silty sar	a Cell: 04 David S. va Pr. Sci. Nat., nd with small &	82 925 4075 an der Merw MSAIEG.	e.
ie: JCB3 or: Ralp I Profile	3DX 4X4 S ph Sample Nr Symbols	Description Dry, orange sub rounded Calcified peb	Engin Inge of soil and p brow n, loose , pebbles & o ble marker.	neering Geo nieursgeolo roperties e, open textu cobbles of gr	plogist: pog: red, silty sar	David S. va Pr. Sci. Nat.,	an der Merw MSAIEG. & medium, ang	
or: Ralı I Profile	ph Sample Nr Symbols	Description Dry, orange I sub rounded Calcified peb	Inge of soil and p brow n, loose , pebbles & o ble marker.	nieursgeolo roperties e, open textu cobbles of gr	red, silty sar	Pr. Sci. Nat.,	MSAIEG.	
Profile	Sample Nr Symbols	Dry, orange l sub rounded Calcified peb	of soil and p brow n, loos , pebbles & d ble marker.	roperties e, open textu cobbles of gr	red, silty sar	nd w ith small &	& medium, ang	ular to
	Symbols	Dry, orange l sub rounded Calcified peb	brow n, loos , pebbles & d ble marker.	e, open textu cobbles of gr				ular to
ymbol	•	Dry, orange l sub rounded Calcified peb	brow n, loose , pebbles & e ble marker.	e, open textu cobbles of gr				ular to
	S20-0,2	sub rounded Calcified peb	, pebbles & o ble marker.	cobbles of gr				ular to
	\$20-0,2	Calcified peb	ble marker.		neiss & calcr	ete, aeolian si	ilty sand.	
		Refusal on d	ry, light brov	yn white der				
		Refusal on d	ry, light brow	vnwhite dar				
				vii w nice, del	nse, intact, s	ilty sandy gra	vel. Calcified o	gneiss.
	al aug = !:							
		atad						
ea samp	bie 520-0,	۷.						
	V Coord	20°4612	0 10" 9	1				
						0 - 11 -		. 000
	water wa		water was intersected. ed sample S20-0,2. X Coord: 29°16'3	water was intersected. ed sample S20-0,2. a b c c c c c c c c c c <	water was intersected. ed sample S20-0,2. a b c c c c c c c c c c <	water was intersected. ed sample S20-0,2. a b c c c c c c c c c c <	water was intersected.	water was intersected. Image: S20-0,2. Image: S20-0,2. Image: S20-0,2. Image: S20-0,2. Image: S20-0,2.

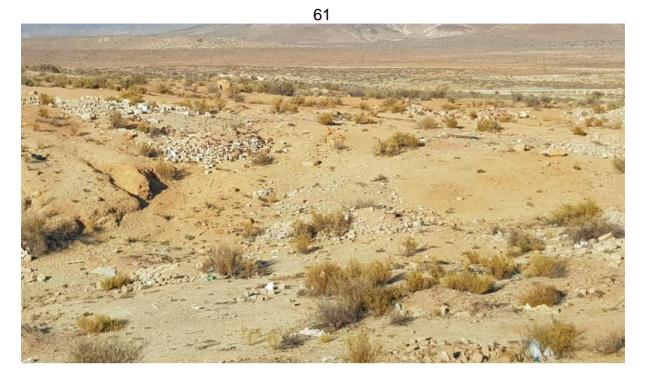


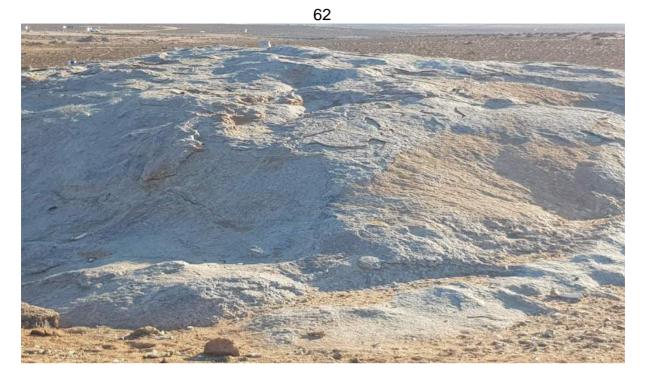


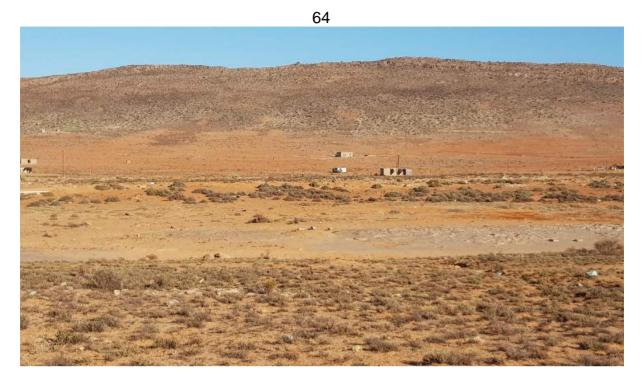
Р3



Р5







APPENDIX C: LABORATORY RESULTS

Table A: Summary of Laboratory Results STL Summary of Laboratory Results STL Laboratory Results

	<u>Table</u>	A Sun	nmary of Laborato	ory Res	<u>ults</u>					
Stats	Dej	oth	Material	Clay	Classifi	cation	% Linear	Plasticity	Liquid	Expan-
8	Nr	m	Description	%	Unified	PRA	Shrinkage	Index	Limit	siveness
1	S2	0,4	sand & gravel	3	SM	A-1-b	0.5	SP	ND	L
2	S3	0,2	sand	4	SM	A-2-4	0.5	SP	ND	L
3	S4	0,2	sand	1	SW-SM	A-1-b	0	NP	ND	L
4	S5	0,2	sand	2	SW-SM	A-1-b	0	NP	ND	L
5	S7	0,2	sand	3	SM	A-2-4	0	SP	ND	L
6	S8	0,2	sand	2	SM	A-2-4	0.5	SP	ND	L
7	S14	0,2	sand	3	SM	A-1-b	0	NP	ND	L
8	S17	0.2	sand	3	SM	A-1-b	0.5	SP	ND	L
Mater	ial poss	ibly ex	pansive if value:	>12%			>8%	>12	>30	Exp?
	Table	A Le	egend							
	Unified	k								
8	Accord	ling to t	the revised ASTM-Sta	andard o	n the "Unifie	ed Soil Cl	assification S	System" (We	inert).	
8	SM: S	ilty sa	nd; poorly graded s	and silt	mixtures					
2	SW: V	Vell gr	aded sand, gravelly	y sand v	with little o	r no fines	S.			
	PRA									
8	Public	Road	ls Classification (Bi	rink, Pa	rtridge & V	Villiams)	•			
5	A-1-b:	Gave	lly sand or graded s	sand ma	ay include	fines.				
3	A-2-4:	Sand	& gravel with low p	lasticity	silt fines.					
8	Expar	sivene	ess according to Va	an der N	/lerwe's m	ethod (B	rink, Partrid	ge & Willia	ms).	
8	L: Lov					· · ·	,		/	
0	L/M: L	ow to	medium expansive	ness						
0	M: Me									
0	H: Hig									
	3									
A clav	ev mate	erial is i	potentially expansive	with the	following pr	operties (Kantev and I	Brink. 1952):		
	-		nt greater than 12 p					, ,		
0	-		nkage of more than							
0			ndex of more than '							
0			of more than 30 pe							
•	~ Y									
3	NP: N	ot plas	tic: sandy material	with no	cohesion					
5		•	plastic with little co		5011001011					
8			ermined							

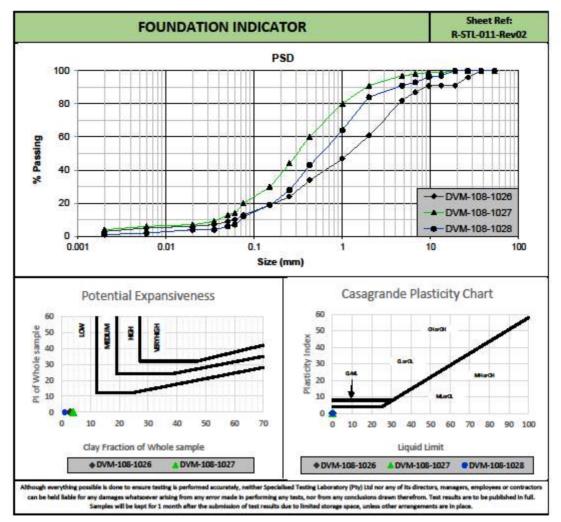
Quality | Excellence | Dn Time

Client Name: Geoset

late:	09-Apr-20							
Aethod:	SANS 3001 GR	1, GR3 GR10, G	R12 GR20, GR3	30, GR31, GR40	, GR50, GR53,	GR54 & BS 137	7 (where applie	able)
			SUMMA	RY OF TES	TDATA			
			Grading & Hydr					
Sample	52	53	54	S5	57	58	514	517
Depth (m)	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Lab No	DVM-108-1026	DVM-108-1027	DVM-108-1028	DVM-108-1029	DVM-108-1030	DVM-108-1031	DVM-108-1032	DVM-108-103
53.0	100	100	100	100	100	100	100	100
37.5	100	100	100	100	100	100	100	100
26.5	96	100	100	100	100	100	100	100
19.0	91	100	100	100	100	100	100	100
13.2	91	99	97	100	97	100	99	99
9.5	91	99	96	100	96	100	98	99
6.7	87	98	93	100	96	99	96	99
4.75	82	97	91	98	95	97	94	98
2.00	61	91	84	94	91	90	87	92
1.00	47	80	64	76	78	75	70	66
0.425	34	60	43	47	57	52	49	47
0.250	24	44	28	28	39	40	35	33
0.150	19	30	19	18	26	30	24	23
0.075	13	20	12	11	16	23	17	17
0.060	10	14	7	9	14	18	14	12
0.050	9	13	6	7	12	16	12	11
0.035	7	9	4	5	9	12	10	9
0.020	6	7	4	4	7	9	7	7
0.006	5	6	2	3	5	4	5	5
0.002	3	4	1	2	3	2	3	3
GM	1.92	1.29	1.61	1.48	1.36	1.35	1.47	1.44
			A	tterberg Limits			•	
LL (%)		1 (3.)	1 2,00	e ste	3	8 - 18 8	5	
PI (%)	SP	SP	NP	NP	SP	SP	NP	SP
15 (%)	0.5	0.5	0.0	0.0	0.5	0.5	0.0	0.5
- 352 - 3			pH	& Conductivit	Y	14 - 14		
pH					1	1		
EC (S/m)			2	Annone ann an the second s	£	2	S - 2	
10010000000				MDD / OMC	hann -		5. F	
MDD (kg/m ³)								
OMC (%)			1	000	<u> </u>	6 8	2 <u>8</u>	
				CBR			22	
100%				-	5.	2		
98%					10	11 I.I.		
97%								
95%			/		20	4	1. A	
93%								
90%				-	5.	2		
Swell (%)			1	UCS (MPa)		8 B	41 B	
100%	r			ucs (mra)		r		
100%				2	6. 22	-		
97%						i (li ii	
90%				TO Classification				
		-	LUL	a o classificatio		<u>ar 6</u>		<u> </u>

Although everything possible is done to ensure testing is performed accurately, neither Specialized Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever artising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be leapt for 1 month effect the submission of bost results due to limited storage space, unless other emagements are in place.

Unit 1, 13 Buddekke Steer, Koedoespool 0106 Roeidr | 072 674 6343 | roeidr@idid.co.ad Genie (002 309 4443) genie@idid.co.ad www.stidic.co.ad www.stidic.co.ad www.stidic.co.ad Were Stidic.co.ad

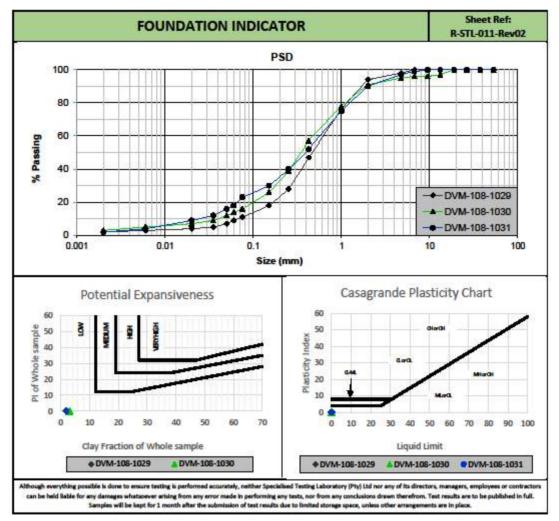

Client Name:	Geoset
Project Name:	Steinkopf
Job Number:	DVM-108
Date:	2020-04-09
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

		FOUND	ATION IND	DICATOR			t Ref: L1-Rev02
	rading & Hydr Particle Size (m	A CONTRACTOR		Atterberg Limits & Classification			
Sample	\$2	\$3	S4	Sample	S2	S3	S4
Depth (m)	0.4	0.2	0.2	Depth (m)	0.4	0.2	0.2
Lab No	DVM-108-1026	DVM-108-1027	DVM-108-1028	Lab No	DVM-108-1026	DVM-108-1027	DVM-108-10
53.0	100	100	100	Liquid Limit (%)	<u>. 84</u> 2	2	1223
37.5	100	100	100	Plastic Limit (%)	, 923),	2	323
26.5	96	100	100	Plasticity Index (%)	SP	SP	NP
19.0	91	100	100	Linear Shrinkage (%)	0.5	0.5	0.0
13.2	91	99	97	Pl of whole sample		-	
9.5	91	99	96				51 C
6.7	87	98	93	% Gravel	39	9	16
4.75	82	97	91	% Sand	51	77	77
2.00	61	91	84	% Silt	7	10	6
1.00	47	80	64	% Clay	3	4	1
0.425	34	60	43	Activity	0.0	0.0	0.0
0.250	24	44	28		20		·9
0.150	19	30	19	% Soil Mortar	61	91	84
0.075	13	20	12				
0.060	10	14	7	Grading Modulus	1.92	1.29	1.61
0.050	9	13	6	Moisture Content (%)	N/T	N/T	N/T
0.035	7	9	4	Relative Density (SG)*	2.65	2.65	2.65
0.020	6	7	4				
0.006	5	6	2	Unified (ASTM D2487)	SM	SM	SW-SM
0.002	3	4	1	AASHTO (M145-91)	A-1-b	A-2-4	A-1-b
Remarks:	*: Assumed					_	
	N / T: Not Te	sted					

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made is performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month efter the submission of test results due to limited storage space, unless other arrangements are in pleas.

Client Name:	Geoset
Project Name:	Steinkopf
Job Number:	DVM-108
Date:	2020-04-09
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Unit 1. 13 But date 8 free - Kondowsproot 0186 Specialised Testing Laboratory www.static.co.ac Gene 102 309 4449 gene(c)didat.co.ac Gene 102 309 4449 gene(c)didat.co.ac Gene 102 309 4449 gene(c)didat.co.ac www.static.co.ac Www.static.co.ac

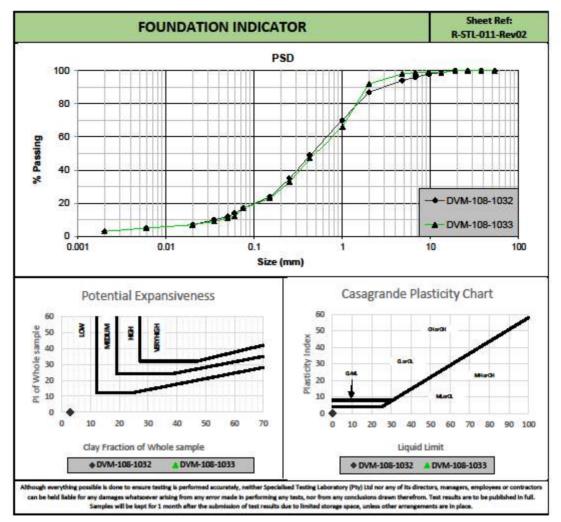

Client Name:	Geoset
Project Name:	Steinkopf
Job Number:	DVM-108
Date:	2020-04-09
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

		FOUND	ATION INC	DICATOR Sheet Re R-STL-011-R			
Grading & Hydrometer Analysis (Particle Size (mm) & % Passing)				Atterberg Limits & Classification			
Sample	\$5	\$7	S8	Sample	S5	S7	\$8
Depth (m)	0.2	0.2	0.2	Depth (m)	0.2	0.2	0.2
Lab No	DVM-108-1029	DVM-108-1030	DVM-108-1031	Lab No	DVM-108-1029	DVM-108-1030	DVM-108-10
53.0	100	100	100	Liquid Limit (%)	<u>. 82</u> 2	2	1223
37.5	100	100	100	Plastic Limit (%)	- 9 2 4	<u></u>	323
26.5	100	100	100	Plasticity Index (%)	NP	SP	SP
19.0	100	100	100	Linear Shrinkage (%)	0.0	0.5	0.5
13.2	100	97	100	Pl of whole sample	12	-	
9.5	100	96	100		900		619 (44)
6.7	100	96	99	% Gravel	6	9	10
4.75	98	95	97	% Sand	85	77	72
2.00	94	91	90	% Silt	7	11	16
1.00	76	78	75	% Clay	2	3	2
0.425	47	57	52	Activity	0.0	0.0	0.0
0.250	28	39	40			s (100)	-9
0.150	18	26	30	% Soil Mortar	94	91	90
0.075	11	16	23				
0.060	9	14	18	Grading Modulus	1.48	1.36	1.35
0.050	7	12	16	Moisture Content (%)	N/T	N/T	N/T
0.035	5	9	12	Relative Density (SG)*	2.65	2.65	2.65
0.020	4	7	9				
0.006	3	5	4	Unified (ASTM D2487)	SW-SM	SM	SM
0.002	2	3	2	AASHTO (M145-91)	A-1-b	A-2-4	A-2-4
Remarks:	*: Assumed						
	N/T: Not Te	sted					

Although everything possible is done to ensure testing is performed accurately, neither Specialized Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatoower arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month efter the submission of test results due to limited storage space, unless other arrangements are in place.

Client Name:	Geoset
Project Name:	Steinkopf
Job Number:	DVM-108
Date:	2020-04-09
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Unit 1. 13 Blockskie Steer, Koedoespool 0186 Roefer | 072 674 6343 | roefold(sitist.co.ad Gene 002 309 4443 : gene(citist.co.ad www.stdc.co.ad www.stdc.co.ad


Client Name:	Geoset
Project Name:	Steinkopf
Job Number:	DVM-108
Date:	2020-04-09
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

	FOUNDATION IN		INDICATOR		Sheet R-STL-011	
		ometer Analysis m) & % Passing)	Atterberg Limits & Classification			
Sample	S14	\$17	Sample	\$14	S17	
Depth (m)	0.2	0.2	Depth (m)	0.2	0.2	
Lab No	DVM-108-1032	DVM-108-1033	Lab No	DVM-108-1032	DVM-108-1033	
53.0	100	100	Liquid Limit (%)	19 <u>8</u> 2	<u> </u>	
37.5	100	100	Plastic Limit (%)	923).	2	
26.5	100	100	Plasticity Index (%)	NP	SP	
19.0	100	100	Linear Shrinkage (%)	0.0	0.5	
13.2	99	99	Pl of whole sample			
9.5	98	99				
6.7	96	99	% Gravel	13	8	
4.75	94	98	% Sand	73	80	
2.00	87	92	% Silt	11	9	
1.00	70	66	% Clay	3	3	
0.425	49	47	Activity	0.0	0.0	
0.250	35	33				
0.150	24	23	% Soil Mortar	87	92	
0.075	17	17				
0.060	14	12	Grading Modulus	1.47	1.44	
0.050	12	11	Moisture Content (%)	N/T	N/T	
0.035	10	9	Relative Density (SG)*	2.65	2.65	
0.020	7	7			- 10 - C	
0.006	5	5	Unified (ASTM D2487)	SM	SM	
0.002	3	3	AASHTO (M145-91)	A-1-b	A-1-b	
Remarks:	*: Assumed			_		
	N/T: Not Te	sted				

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made is performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month efter the submission of test results due to limited storage space, unless other errangements are in place.

Client Name:	Geoset
Project Name:	Steinkopf
Job Number:	DVM-108
Date:	2020-04-09
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

APPENDIX D: TABULAR EXPLANATION OF ZONING

Extract from: THE SOUTH AFRICAN INSTITUTE OF ENGINEERING GEOLOGISTS (SAIEG), 1997. Guidelines for Urban Engineering Geological Investigations.

Table 1. Categories of Urban Engineering Geological Investigation

Table 2. Geotechnical Classification for Urban Development: Partridge, Wood & Brink (1993)

> Table 3. Residential Site Class Designations: SAICE, SAIEG & NHBRC (1995)

lype	Planning	Planning Investigations	Urban Develo	Urban Development Investigations	Specialised Investigations
Description	Regional Engineering Geological Mapping (REGM)	Mapping for Urban Planning	Urban Development Investigation	Urban Development Investigation	Specialised Geotechnical Investigation
Size of study area and field work	More than 1000 ha. Walk-over survey and limited test pits and soil sampling.	Less than 1000 ha. Walk-over survey.	Less than 10 ha. Test pits, trial holes and soil sampling.	More than 10 ha. Walk-over survey with trial pits and test holes and soil sampling.	Not relevant. Specific to type of specialised investigation.
Suggested number of test pits	A minimum of 3 test pits per land facet type.	None suggested. However, a limited number of test pits may be required at the discretion of the consultant.	Between 6 and 10 test pits.*	Between 1 and 6 test pits per 10 ha. depending on the size and variability of the area to as much as 1 test pit per hectare for highly variable sites.*	Dependent on the type of specialised investigation performed.
Mapping unit	Land systems and land facets.	Terrain types: 1 - most favourable 2 - intermediate 3 - least favourable	Soil classes: C, H, S and P and other (e.g. excavation, drainage features)	Soil classes: C, H, S and P and other (e.g. excavation, drainage features)	Not applicable.
Reference	Brink, Partridge and Williams (1982)	Partridge, Wood and Brink (1993)	SAICE Code of Practice (1995)	SAICE Code of Practice (1995)	Not relevant.
Consultants	Engineering geologists.	Engineering geologists and to a lesser extent geotechnical engineers.	Both engineering geologists and geotechnical engineers.	Both engineering geologists and geotechnical engineers.	Geotechnical engineers and to a lesser extent engineering geologists.

Table 1. CATEGORIES OF URBAN ENGINEERING GEOLOGICAL INVESTIGATION

1

76

GUIDELINES FOR URBAN ENGINEERING GEOLOGICAL INVESTIGATIONS

GEOTECHNICAL CLASSIFICATION FOR URBAN DEVELOPMENT (after Partridge, Wood and Brink 1993) Table 2.

	CONSTRAINT	Most favourable (1)	Intermediate (2)	Least favourable (3)
A	Collapsible Soil	Any collapsible horizon or consecutive horizons totalling a depth of less than 750 mm in thickness.*	Any collapsible horizon or consecutive horizons with a depth of more than 750 mm in thickness.	A least favourable situation for this constraint does not occur.
-	Seepage	Permanent or perched water table more than 1,5 m below ground surface.	Permanent or perched water table less than 1,5 m below ground surface.	Swamps and marshes.
U	Active soil	Low soil-heave potential predicted. *	Moderate soil heave potential predicted.	High soil-heave potential predicted.
D	Highly compressible soil	Low soil compressibility expected.*	Moderate soil compressibility expected.	High soil compressibility expected.
ш	Erodability of soil	Low.	Intermediate.	High.
ш	Difficulty of excavation to 1,5 m depth	Scattered or occasional boulders less than 10% of the total volume.	Rock or hardpan pedocretes between 10 and 40 % of the total volume.	Rock or hardpan pedocretes more than 40 % of the total volume.
U	Undermined ground	Undermining at a depth greater than 100 m below surface (except where total extraction mining has not occurred.)	Old undermined areas to a depth of 100 m below surface where stope closure has ceased.	Mining within less than 100 m of surface or where total extraction mining has taken place.
Ŧ	Instability in areas of soluble rock	Possibly unstable.	Probably unstable.	Known sinkholes and dolines.
	Steep slopes	Between 2 and 6 degrees (all regions).	Slopes between 6 and 18 degrees and less than 2 degrees (Natal and Western Cape). Slopes between 6 and 12 degrees and less than 2 degrees (all other regions).	More than 18 degrees (Natal and Western Cape). More than 12 degrees (all other regions).
7	Areas of unstable natural slopes	Low risk.	Intermediate risk.	High risk (especially in areas subject to seismic activity).
×	Areas subject to seismic activity	10% probability of an event less than 100 cm/s ² within 50 years.	Mining-induced seismic activity more 100 cm/s ² .	Natural seismic activity more than 100 cm/s ² .
_	Areas subject to flooding	A "most favourable" situation for this constraint does not occur.	Areas adjacent to a known drainage channel or floodplain with slope less than 1%.	Areas .within a known drainage channel or floodplain.

GUIDELINES FOR URBAN ENGINEERING GEOLOGICAL INVESTIGATIONS

11

Table 3.	RESIDENTIAL	SITE CLASS	DESIGNATIONS	(SAICE, 1995)	
----------	-------------	------------	--------------	---------------	--

TYPICAL FOUNDATION MATERIAL	CHARACTER OF FOUNDING MATERIAL	EXPECTED RANGE OF TOTAL SOIL MOVEMENTS (mm)	ASSUMED DIFFERENTIAL MOVEMENT (% OF TOTAL)	SITE CLASS
Rock (excluding mud rocks which exhibit swelling to some depth)	STABLE	NEGLIGIBLE	•	R
Fine-grained soils with moderate to very high plasticity (clays, silty clays, clayey silts and sandy clays)	EXPANSIVE SOILS	< 7,5 7,5 - 15 15 - 30 > 30	50% 50% 50% 50%	H H1 H2 H3
Silty sands, sands, sandy and gravelly soils	COMPRESSIBLE AND POTENTIALLY COLLAPSIBLE SOILS	< 5.0 5,0 - 10 > 10	75% 75% 75%	C C1 C2
Fine-grained soils (clayey silts and clayey sands of low plasticity), sands, sandy and gravelly soils	COMPRESSIBLE SOIL	< 10 10 - 20 > 20	50% 50% 50%	S S1 S2
Contaminated soils Controlled fill Dolomitic areas Land fill Marshy areas Mine waste fill Mining subsidence Reclaimed areas Very soft silt/silty clays Uncontrolled fill	VARIABLE	VARIABLE		Ρ

NOTES:

- The classifications C,H,R and S are not intended for dolomitic area sites unless specific investigations are carried out to assess the stability (risk of sinkholes and doline formation) of the dolomites. Where this risk is found to be acceptable, the site shall be designated as Class P (dolomitic areas).
- 2. Site classes are based on the assumption that differential movements, experienced by single-storey residential buildings, expressed as a percentage of the total soil movements are equal to about 50% for soils that exhibit expansive or compressive characteristics and 75% for soils that exhibit both compressible and collapse characteristics. Where this assumption is incorrect or inappropriate, the total soil movements must be adjusted so that the resultant different movement implied by the table is equal to that which is expected in the field.
- 3. In some instances, it may be more appropriate to use a composite description to describe a site more fully e.g. C1/H2 or S1 and/or H2. Composite Site Classes may lead to higher differential movements and result in design solutions appropriate to a higher range of differential movement e.g. a Class R/S1 site. Alternatively, a further site investigation may be necessary since the final design solution may depend on the location of the building on a particular site.
- 4. Where it is not possible to provide a single site designation and a composite description is inappropriate, sites may be given multiple descriptions to indicate the range of possible conditions e.g. H-H1-H2 or C1-C2.
- Soft silts and clays usually exhibit high consolidation and low bearing characteristics. Structures founded on these horizons may experience high settlements and such sites should be designated as Class S1 or S2 a as relevant and appropriate.
- 6. Sites containing contaminated soils include those associated with reclaimed mine land, land down-slope of mine tailings and old land fills.
- 7. Where a site is designated as Class P, full particulars relating to the founding conditions on the site must be provided.

GUIDELINES FOR URBAN ENGINEERING GEOLOGICAL INVESTIGATION

- 8. Where sites are designated as being Class P, the reason for such classification shall be placed in brackets immediately after the suffix i.e. P(contaminated soils). Under certain circumstances, composite description may be more appropriate e.g. P(dolomite areas)-C1.
- Certain fills may contain contaminates which present a health risk. The nature of such fill should be evaluated and should be clearly demarcated as such.