REPORT ON ENGINEERING GEOLOGICAL INVESTIGATIONS UNDERTAKEN FOR THE PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA

Undertaken for the Messrs Umsebe Development Planners

April 2013 GEO3•1048

TABLE OF CONTENTS

1. CONCLUSIONS AND RECOMMENDATIONS
2. INTRODUCTION
2.1. Terms of reference
2.2. Site description
2.3. Reference sources
3. SITE INVESTIGATIONS
3.1. Interpretation of aerial photographs
3.2. Fieldwork
3.3. Sampling and laboratory testing
3.4. Permeability tests
3.5. Hydro-census
4. GEOTECHNICAL ASSESSMENT
4.1. Geology and Subsoils
4.2. Laboratory Results
4.3. Permeability
4.4. Expansive Soils
4.5. Excavatability
4.6. Groundwater
4.7. Topography
4.8. Stability of sidewalls
5. HYDRO-GEOLOGICAL ASSESSMENT
5.1. Interpretation of aerial photographs
5.2. Groundwater potential
6. REPORT PROVISIONS
7. REFERENCES

APPENDIX A - FIGURES 1 AND 2

APPENDIX B - SOIL PROFILES

APPENDIX C - LABORATORY TEST RESULTS

APPENDIX D - PERMEAMETER TEST RESULTS

APPENDIX E - INFORMATION ON BOREHOLES

1. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the investigation, together with the interpretation of aerial photographs, the site has been divided into three zones (**Figure 1**, **Appendix A**). The zones delineated contain similar soil profiles and development constraints, which are summarized in **Table 1**.

The proposed cemetery site, which was selected by others, has a number of flaws. These include, permeable soils coupled with a shallow, non-perennial perched, groundwater table, the sites' proximity to the adjacent drainage lines and the potential for grave instability near surface. Notwithstanding these constraints, and taking cognisance that they are characteristic of the area, we are of the opinion that the current site can be pursued for a cemetery, providing the following mitigating measures are implemented:

- A buffer at least 100m wide must be included around the perimeter of the site extending up-slope from the centre of the adjacent streams; deep-rooted, indigenous, hydrophilic vegetation/trees should be planted in this buffer to reduce the amount of percolating groundwater entering the adjacent streams.
- The non- or slightly cohesive surficial regolith is susceptible to erosion. As such, it is recommended that a phased approach be undertaken to clearing and grubbing the site for use, i.e., areas up to 1-hectare only, should be cleared and grubbed for use as necessary.

	Table 1: Summary of Engineering Geological conditions affecting the selection of Cemeteries - Proposed Nkambeni Cemetery near Hazyview																
Zone	Abbreviated soil profile	· · · · · · · · · · · · · · · · · · ·			Permeability of the regolith at internment depth - based on soil classification and/or in situ tests			Distance to domestic water source		Distance to drainage feature		Average gradient		Estimated Buffer Zone		Grave Stability	Overall Suitability*
			Excavation method	Cemetery suitability*	Soil classification	Estimated permeability [cm/s]	Cemetery suitability*	Distance [m]	Cemetery suitability*	Distance [m]	Cemetery suitability*	Slope [°]	Cemetery suitability*	Depth [m]	Cemetery suitability*		
	mostly thin transported soils / reworked	loose - medium dense	pick and shovel	:11				. 1000		-100				<2	not suitable	potentially problematic near surface	suitable with
1	residua grading into more competent residua	dense grading into very dense	backhoe	ideal	SC and SM	5x10 ⁻⁴	<u>too</u> permeable	>1000	suitable	<100	not suitable	mostly $<6^{\circ}$	ideal	<1	<u>not suitable</u>	stable	mitigating measures
п	as above with slightly thicker transported soils	medium dense	pick and shovel	ideal				>1000		0	not suitable			<1	not suitable	potentially problematic	not suitable
Criteria used to assess cemetery suitability ³		ž	Very loose-loo soft-soft: spad dense/ firm: pi shovel; very d stiff: backhoe; hammer and b	e; medium ck and ense/ very rock: jack- lasting.	Upper permeability limit ~ 5×10^{-5} cm/s (In arid areas or areas where water resources are situated at greater distance from the cemetery the limit may be increased to 1 x 10 ⁻⁴ cm/s). To ensure normal decomposition, the minimum permeability should be 1 x 10 ⁻⁷ cm/s.			permeability 1x10 ⁻⁴ cm/s 5x10 ⁻⁵ cm/s 1x10 ⁻⁵ cm/s 5x10 ⁻⁶ cm/s 1x10 ⁻⁶ cm/s 5x10 ⁻⁷ cm/s 1x10 ⁻⁷ cm/s	<u>distance**</u> 465m 308m 182m 166m 153m 152m 150m	permeability 1x10 ⁻⁴ cm/s 5x10 ⁻⁵ cm/s 1x10 ⁻⁵ cm/s 5x10 ⁻⁶ cm/s 1x10 ⁻⁶ cm/s 5x10 ⁻⁷ cm/s 1x10 ⁻⁷ cm/s	distance** 415m 258m 132m 116m 103m 102m 100m	Slopes betwo 6° are ideal. results in are impeded dra slopes >6° n surface erosi	Slopes <2° cas of inage, while nay result in	The basal bu between the grave and th (perched or should be at	deepest e water table permanent)	Consistencie: loose/ very se recommendee not suitable; dense /firm a ideal.	oft: not d; loose/soft: medium

2. INTRODUCTION

2.1. Terms of reference

In terms of an appointment from Mr T Masuku of Messrs Umsebe Development Planners, Geo3cc has undertaken an engineering geological investigation for a proposed cemetery in Nkambeni. Our appointment follows the submission of a proposal and costing dated 7 December 2012 (Our reference GQ/1351/a/hjs).

Within the scope of the investigation, the following objectives were defined:

- determine the excavatability and suitability of the regolith for a cemetery
- assess the basic soil properties of the in situ soils through laboratory testing
- provide a preliminary hydro-geological assessment for the site
- assess the overall suitability of the site for a cemetery

2.2. Site description

The proposed cemetery is situated on Portion A (Portion of Portion 148 of the farm Kaap Block Section F), colloquially known as Sand River, approximately 7-kilometres south-southeast of Hazyview in Mpumalanga (**Figure 2**). The site, with an aerial extent of approximately 40-hectares and occupying a spur sloping to the south, east and north, comprises virgin ground with grass veld, scattered trees and areas of dense scrub.

2.3. Reference sources

The following published maps and aerial photographs were consulted during the investigation:

- 1:250,000 scale Geological Series Map, Barberton 2530
- 1:50,000 scale Topographical Series Map, Kiepersol 2531AA
- Aerial photographs:
 - 0233 and 0232, strip 4, job 987, scale 1:30,000 (three times enlargements), date
 1996
 - · 1161-1165, strip 54, 1140-1144, strip 55, job 56, date 1944
- Layout plan with boundaries and contours provided by Messrs Umsebe Development Planners has been used in the compilation of **Figure 1**

3. SITE INVESTIGATIONS

3.1. Interpretation of aerial photographs

To facilitate the mapping of soil units on-site, and identify structural geological features traversing or near the site, aerial photographs at scales of approximate 1:10,000 and 1:30,000 were examined stereoscopically. The results from the analysis are summarized in **Figures 1** and **2** (**Appendix A**), which delineates the soil units and information gleaned from our hydro-geological assessment, respectively.

3.2. Fieldwork

The fieldwork phases of the investigation were undertaken in January and February 2013. Seventeen pits, sited to straddle the site, were excavated to refusal or the depth capabilities of a Volvo BL71 backhoe. The pits were profiled according to standard procedures⁶ and the result soil logs are included in **Appendix B**.

3.3. Sampling and laboratory testing

During inspection of the *in situ* soils, ten indicator samples were recovered from the sidewalls of the test pits. These samples were submitted to the laboratories of Messrs Engeolab in Rocky Drift for testing according to our instructions.

All samples were subjected to foundation indicator tests, which were used to classify the soils. The test results, in the format they were received from the laboratory, are included in **Appendix C**, while an evaluation of the results is undertaken in **Section 4**.

3.4. Permeability tests

To provide an assessment of the permeability of the regolith, two permeameter tests were undertaken at approximately 1m below natural ground level, next to pits with soil profiles deemed to be representative of the site, i.e., representative of the soils at internment depth. These results are included in **Appendix D**.

3.5. Hydro-census

To obtain an indication of the groundwater users around the site, for an evaluation of the effect the cemetery may have on their water, and to provide an assessment of the groundwater development potential of the area, a hydro-census has been conducted in a 1-kilometre radius of the site. The census has mostly relied on groundwater databases, since residents' in the area are provided with bulk water, and those questioned, were not aware

of additional boreholes. The salient information from the databases are included in **Appendix E**.

4. GEOTECHNICAL ASSESSMENT

4.1. Geology and Subsoils

The results from the fieldwork phase of the investigation reveal the site is underlain by granite bedrock, albeit below a mantle of thin transported soils and residua. In terms of the published 1:250,000 scale geological series map of the area, Barberton 2530, the granite is grey to white in colour, coarse-grained and biotite-rich, and belongs to the Nelspruit Suite of Basement Granitic Rocks (Zn). The geology map also indicates the presence of a diabase sill, extending around the western and southern sides of the site and a shear zone some six kilometres to the east. The near horizontal sill intrusion is situated up-slope of the site and will not influence the hydro-geological or geotechnical characteristics of the site. Similarly, the shear zone is well beyond the influence of the site, i.e., beyond the Mbabala River that constitutes an area of recharge.

A generalized soil profile for the site, i.e. prevalent in Zone I (Figure 1), comprises:

a surficial topsoil horizon approximately 0.3m thick and comprising brown, loose, open textured, mostly silty SAND with numerous roots overlying, isolated occurrences of thin hillwash comprising reddish brown, loose or firm, open textured, silty or clayey SAND with fine roots overlying, sporadic pebble marker gravel horizons of abundant gravels in a matrix of silty or clayey SAND with an overall consistency of medium dense, overlying, some 0.3 to 1.7m of reworked residual granite comprising mostly reddish brown, medium dense, pinholed, silty SAND with scattered to numerous gravels grading with depth into, mostly greater than 1m of residual granite comprising yellow-brown speckled buff, medium dense or dense, intact, silty SAND with scattered to numerous predominantly fine gravels

Below approximately 2m the consistency of the residuum generally improves to dense throughout.

Zone I' (**Figure 1**) comprises those areas of the site where more competent regolith is prevalent at shallower depth than in Zone I, with the potential for sporadic suboutcropping and outcropping granite; very dense residua is generally encountered within 2m of natural ground level. Zone II (**Figure 1**) comprises those areas with thicker transported soils, prevalent in the poorly defined drainage lines.

4.2. Laboratory Results

The results from foundation indicator tests undertaken on samples recovered from the sidewalls of the pits are summarized in **Table 2**, with interpolated soil parameters, based on our experience and/or available literature, included in **Table 3**. These results indicate that the surficial hillwash present sporadically, classifies as SC in terms of the Unified Soil Classification (USC). The underlying reworked residual granite typically also classifies as SC (USC) and A.2.4 (0) in terms of the PRA classification. With depth, the reworked residua becomes less clayey, grading into residua that classifies as SM (USC) and A.1.a (0) (PRA). The plasticity indices and linear shrinkages of the residua tends to decrease with depth, i.e. become less plastic, while the grading modulus/"gravelliness" increases.

4.3. Permeability

The results from *in situ* permeability tests undertaken in the residua with consistencies of medium dense and dense, are of the order of 5×10^{-4} cm/s (**Appendix D**). These results are, in general, more permeable than the interpolated permeability for the regolith (**Table 3**). The permeabilities are greater than the minimum recommended permeability of 1×10^{-7} cm/s², but more permeable than the maximum recommended permeability³ of 5×10^{-5} cm/s.

The permeability of the regolith affects the safe distance³ that cemeteries should be sited from domestic water sources and drainage features. <u>Based on the recorded permeabilities</u>, the outer boundary of the site should be at least 465m from a domestic water source and at least 415m from a drainage feature³ (**Table 1**).

4.4. Expansive Soils

Plotting the Plasticity Index (whole sample) against the clay percentage on a standard Activity diagram for each sample tested, reveals that the regolith - transported and residual soils - classify as *low*, i.e. not expansive soils are envisaged on the site.

4.5. Excavatability

With reference to **Figure 1**, pits in Zone I, were typically excavated to approximately 3.0m without refusal of the backhoe, although competent residual granite was often encountered towards the base of the pits. Pits excavated in Zone I' on-the-other-hand, were typically only

	1					Tabl	le 2: Labor	atory de	etermine	l soil pro	perties f	rom indi	cator tes	ts				
Te	Fest Soil Origin Horizon Sample Soil Constituents [%] Atterberg GM LS		LS Activity		ctivity	Classif	ication											
Pi	it		De	pth	Depth		1 1				Limits				0,4 = kaol	linite; 0,9 = illite;	UNIFIED	PRA
No	0.		[n	n]		clay	silt	sand	gravel	LL	PI	PI*			1,5-6,0 =	montmorillonite		
			From	То	[m]	[<0,002mm]	[0,002-0,06mm]	[0,06-2,0mm]	[2,0-60mm]					[%]				
ТР	1	hillwash	0.30	2.50	0.30 - 2.50	13	17	60	10	42	17	8	1.29	8.4	0.6	LOW	CL	A.2.7 (1)
ТР	2	r/r granite	0.80	1.07	0.80 - 1.07	4	10	61	25	28	6	2	1.75	6.0	0.5	LOW	SM/SC	A.1.b (0)
TP	2	r/r granite	0.30	1.00	0.30 - 1.00	3	13	51	33	28	7	2	1.83	3.4	0.7	LOW	SM/SC	A.2.4 (0)
TP	9	r/r granite	0.70	1.00	0.70 - 1.00	4	12	55	29	29	8	3	1.78	4.0	0.8	LOW	SC	A.2.4 (0)
TP	11	r/r granite	0.45	1.75	0.45 - 1.75	6	12	37	45	25	9	3	1.94	4.7	0.5	LOW	SC	A.2.4 (0)
TP	14	r/r granite	0.50	2.20	0.50 - 2.20	3	9	40	48	24	8	2	2.12	3.4	0.7	LOW	SC	A.2.4 (0)
ТР	2	r/ granite	1.00	1.60	1.00 - 1.60	4	7	73	16	33	13	3	1.81	6.7	0.8	LOW	CL	A.2.6 (0)
TP	4	r/ granite	0.70	2.00	0.70 - 2.00	3	5	39	53	32	8	2	2.21	3.7	0.7	LOW	SW	A.2.4 (0)
TP	11	r/ granite	1.70	3.00	1.70 - 3.00	4	6	26	64	33	6	1	2.32	2.7	0.3	LOW	SM	A.1.a (0)
TP	16	r/ granite	1.10	2.00	1.10 - 2.00	1	3	34	62	32	4	1	2.41	2.0	1.0	LOW	SW	A.1.a (0)

Notes: PI = plasticity index (*) = on whole sample; LL = liquid limit; LS = linear shrinkage; GM = grading modulus; nt = not tested; r/r = reworked residual; r/ = residual.

	Table 3: Interpolated soil parameters from available literature/experience-to be confirmed through appropriate laboratory tests before being used															
Te	st	Soil Origin	Hori	zon	Basio	C				Geotechnic	cal				Road	
Pi	it		Dep	oth	Relative	PI		k			Kenny (1959)		Cc	TRH 14	CBR @ MO	D AASHTO
N	0.		[m	ı]	Density		k	[after Hazen]	Classification	С	Ø	Ø	(Skempton -		90 - 93%	100%
			From	То			[cm/s]	[cm/s]			effective		Terzaghi & Peck)			
ТР	1	hillwash	0.30	2.50	0.50	17	7.23E-005	1.00E-006	low	82	32	27	0.224 - 0.288	G7	16	61
TP	2	r/r granite	0.80	1.07	0.25	12	5.89E-002	8.41E-004	medium	9	39	26	0.126 - 0.162	G6	39	139
TP	2	r/r granite	0.30	1.00	0.25	7	9.41E-002	4.41E-004	medium	9	38	27	0.126 - 0.162	G6	39	139
TP	9	r/r granite	0.70	1.00	0.75	8	5.70E-003	4.41E-004	medium	32	37	46	0.133 - 0.171	G6	36	121
TP	11	r/r granite	0.45	1.75	0.50	9	4.17E-002	1.00E-004	medium	22	36	41	0.105 - 0.135	G6	38	121
ТР	14	r/r granite	0.50	2.20	0.50	7	2.72E-001	1.44E-003	high	18	37	45	0.098 - 0.126	G5	45	139
ТР	2	r/ granite	1.00	1.60	0.50	13	6.34E-003	2.03E-003	medium	37	34	38	0.161 - 0.207	G6	28	121
TP	4	r/ granite	0.70	2.00	0.50	7	6.67E-001	7.74E-003	high	17	37	47	0.154 - 0.198	G5	48	139
TP	11	r/ granite	1.70	3.00	0.50	5	3.07E+000	3.14E-003	high	13	39	49	0.161 - 0.207	G5	58	159
ТР	16	r/ granite	1.10	2.00	0.25	4	4.80E+001	5.57E-002	high	5	43	36	0.154 - 0.198	G5	69	159

Notes: PI = plasticity index; k = permeability; C = cohesion; phi = internal angle of friction; Cc = coefficient of consolidation.

excavated to 2m or shallower, before the backhoe encountered refusal; sporadic suboutcropping granite was also encountered in these areas.

Thus, in Zone I, the consistency of the regolith over the depth of interest, i.e. 1.8m, is generally loose to medium dense, although dense locally, and it is envisaged that graves in these areas can readily be excavated by hand. In Zone I' occupying the convex side slopes, with more competent residua present at shallower depth, a backhoe will mostly be required to excavate to the required depth of approximate 1.8m.

4.6. Groundwater

Pits throughout the site mostly encountered groundwater seepage near the interface between the unconsolidated regolith comprising hillwash and reworked residual granite, and the more competent residual granite and/or weathered bedrock. The seepage represents a perched, groundwater table, consistent with our experience in the Lowveld, and formed as a result of infiltrating surface water, perching on top of the more competent and less permeable residua. Overall therefore, the site is susceptible to the development of a perched, groundwater table after periods of prolonged precipitation, i.e. non-perennial. The minimum recommended buffer of at least 2m below internment depth, for the promotion of anaerobic conditions, is therefore not achieved. Of note also, is that the poorly defined drainage depression near Pits 1 and 6, extending to the southeast and east respectively, are susceptible to increased percolating ground- and surface water. Notwithstanding the above comments, locating an area nearby with unconsolidated regolith deeper than 4m, will prove difficult.

4.7. Topography

The recommended gradient for cemeteries is 2° to $6^{\circ3}$. Sites with slopes steeper than 6° are susceptible to erosion, while slopes shallower that 2° are susceptible to the ponding of surface water and development of areas with impeded drainage. The overall gradient of the proposed site is mostly less than 6° , although with sporadic slopes as steep as 8° ; these steeper slopes, coupled with the non- or slightly cohesive surficial regolith, will make these localized areas more susceptible to erosion once denuded of vegetation.

4.8. Stability of sidewalls

The consistency of the regolith to 1.0m is often loose, suggesting that grave sidewall instability could also pose a problem.

5. HYDRO-GEOLOGICAL ASSESSMENT

5.1. Interpretation of aerial photographs

The topography of the site and environs is characterized by the African erosion surface⁵, albeit dissected. As such, bedrock is usually present below a mantle of residua and/or transported soils. However, in the dissected areas characteristic of the proposed cemetery, areas of thick unconsolidated regolith are unlikely.

Stereoscopic interpretation of aerial photographs at a scale of 1:30 000 did not reveal any lineaments, which may provide preferential secondary aquifers in the granite, traversing the site (**Figure 2**). The diabase sill, indicated on the published geological series map and extending around the western and southern boundary of the site, is interpolated to be near horizontal. Furthermore, this diabase sill is present above the site and as such, will not influence the hydro-geology of the site.

5.2. Groundwater potential

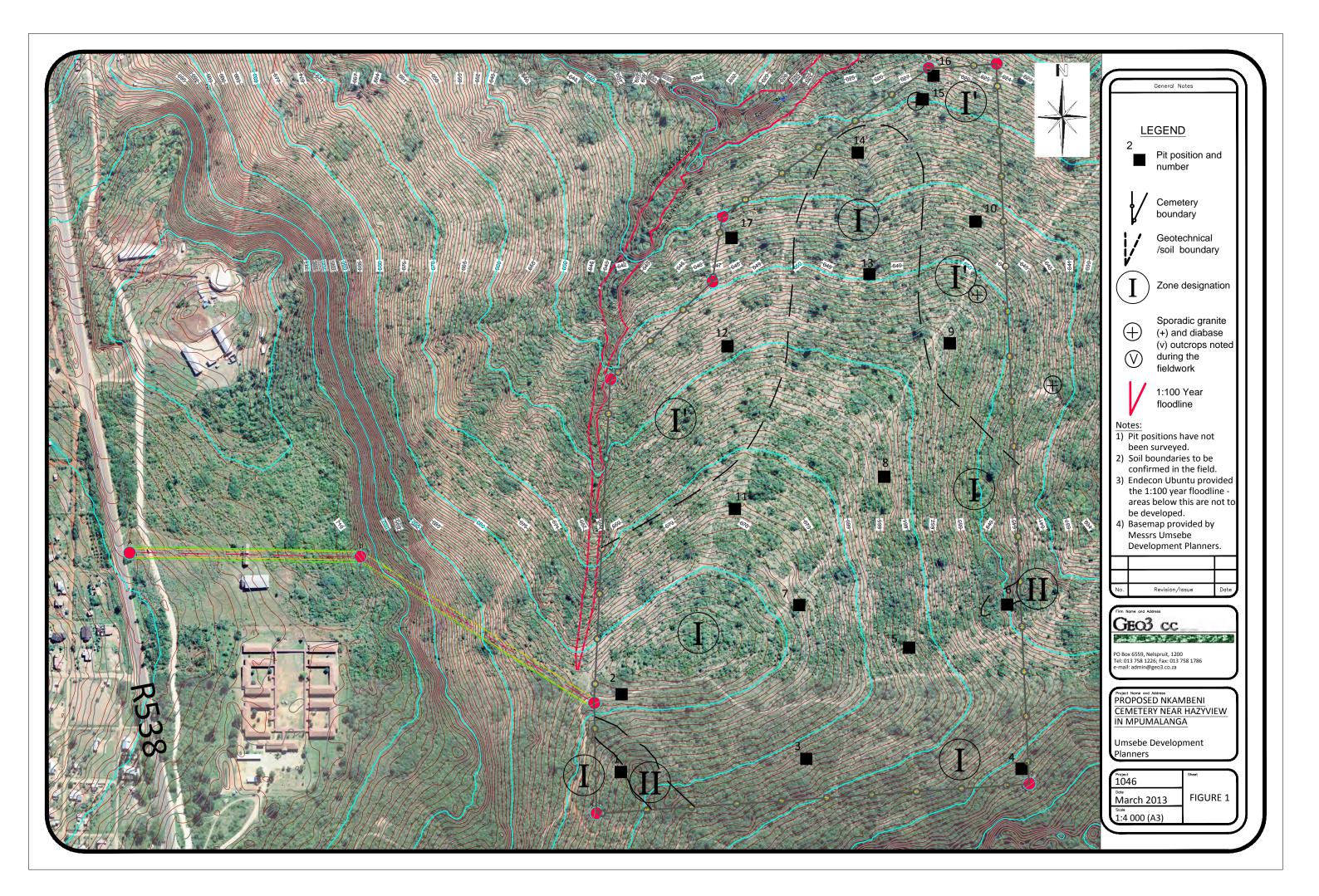
Groundwater occurrences in the granites are generally associated with secondary aquifers confined to fractures, zones of deeper weathering and contact zones with intrusive dykes - see comments in Section 5.1 above. Typically, these aquifers are characterised by low yielding⁷ boreholes. In terms of Vegter's Hydro-geological Maps⁸, the probability of drilling a successful borehole (~0,1 l/s) in the granites is less than 40%, while the probability of drilling a successful borehole with a yield of greater than 2l/s is 10 to 20%. The overall groundwater potential of the site, based on Vegter's Maps⁸, is therefore *poor*.

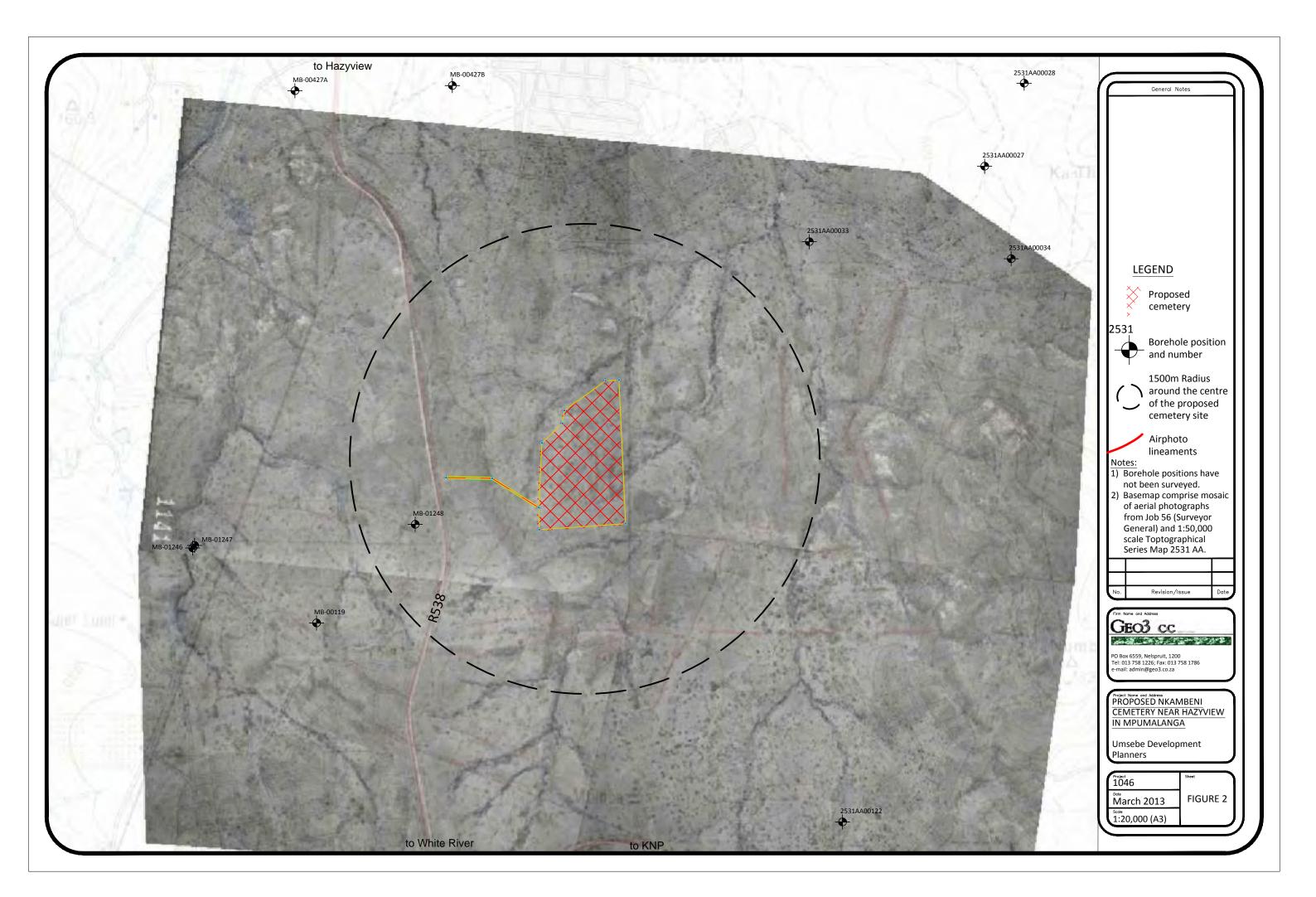
Interrogation of the National Groundwater Archive (NGA) yielded seven boreholes in a 5-kilometre radius of the site. However, none of these holes falls within the required 1-kilometre radius of the site to warrant further investigation. Discussions with hydro-geological consultants working in the area, yielded a single borehole near the site. However, this borehole (MB-01248, **Appendix D**), was drilled above the site with a reported yield of only 0.11/s. Discussion with residents in the area, revealed they rely on bulk water to the area; no-one that we spoke to knew of additional boreholes in the area. The hydro-census therefore identified a single, low-yielding, borehole near the site - MB-01248 (**Figure 2**).

Taking cognisance of the information gleaned from the hydro-census, bedrock geology and the interpretation of aerial photographs, the overall groundwater development potential of the area is deemed to be *poor*.

6. REPORT PROVISIONS

While every effort was made during the fieldwork to identify the different soil and rock horizons and determine their distribution, guaranteeing that isolated zones of either poorer soils or hard rock excavation has not been identified is impossible under the constraints of an investigation of this nature. The investigation has therefore sought to highlight hydro- and engineering geological constraints affecting the use of the site as a cemetery, and to provide early warning to municipal engineers and environmentalists.


We trust that the above observations suffice in your requirements of us in this project, and will make ourselves available to discuss our findings should there be any queries.


HJ Schurink, Pr.Sci.Nat., GDE. for Geo3cc

7. REFERENCES

- 1. Amoozegar, A. (1997). Comparison of Saturated Hydraulic Conductivity and Percolation Rate: Implications for Designing Septic Systems. ASTM International.
- 2. Brink, A.B.A. *Engineering Geology of Southern Africa*. Volume 1-The first 2 000 million years of geological time, Building Publication, Pretoria, 1979, 319pp.
- 3. **Fisher, G.J.** *The selection of Cemetery Sites in South Africa*. Fourth Symposium on Terrain Evaluation and Data Storage. August 1994.
- 5. Partridge, T.C. and Maud, R. *Map showing the principal cyclic land surfaces of Southern Africa at 1:2500000.* South African Journal of Geology, 1987, 90(2).
- 6. South African Institute for Engineering Geologists-Association of Engineering Geologists-South African Institute of Civil Engineers (Geotechnical Division). (1990). Guidelines for soil and rock logging - Geotechnology Workshop.
- 7. South African Department of Water Affairs and Forestry. (Second edition 1998). Minimum requirements for water monitoring at waste management facilities - Waste Management Series. CPT Book Printers, Cape.
- 8. Vegter, J.R. *Groundwater Resources of South Africa An Explanation of a set of National Groundwater Maps.* Prepared for the Water Research Commission. August 1995.

APPENDIX A FIGURES 1 AND 2

APPENDIX B SOIL PROFILES

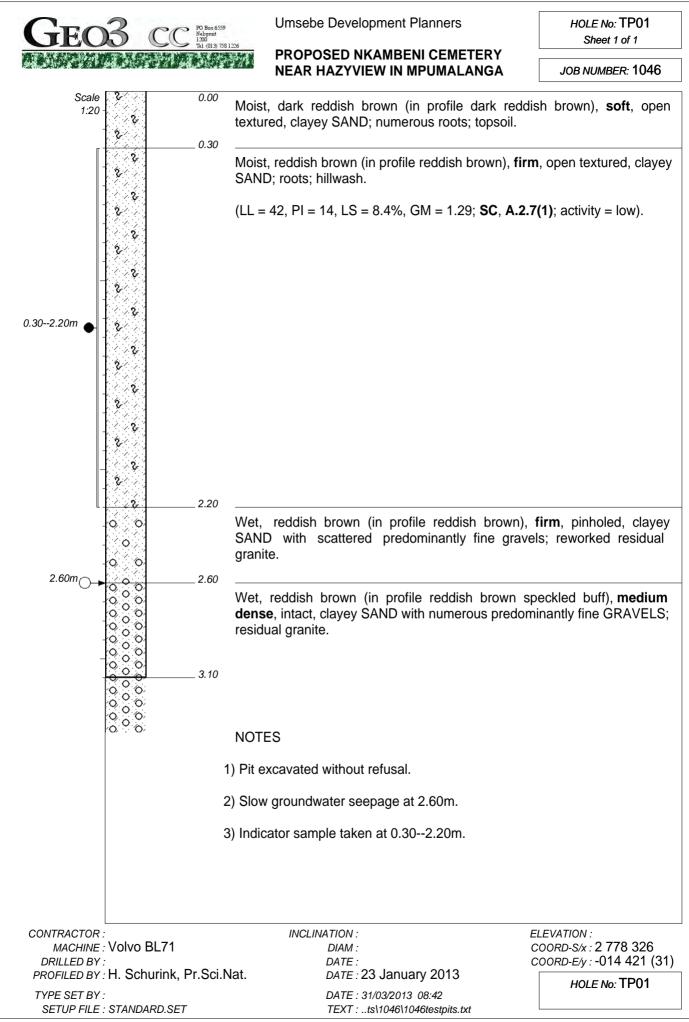
SOIL DESCRIPTIVE TERMS

Descriptive Order - 1. Moisture. 2. Colour. 3. Consistency. 4. Soil Structure. 5. Soil Type. 6. Origin

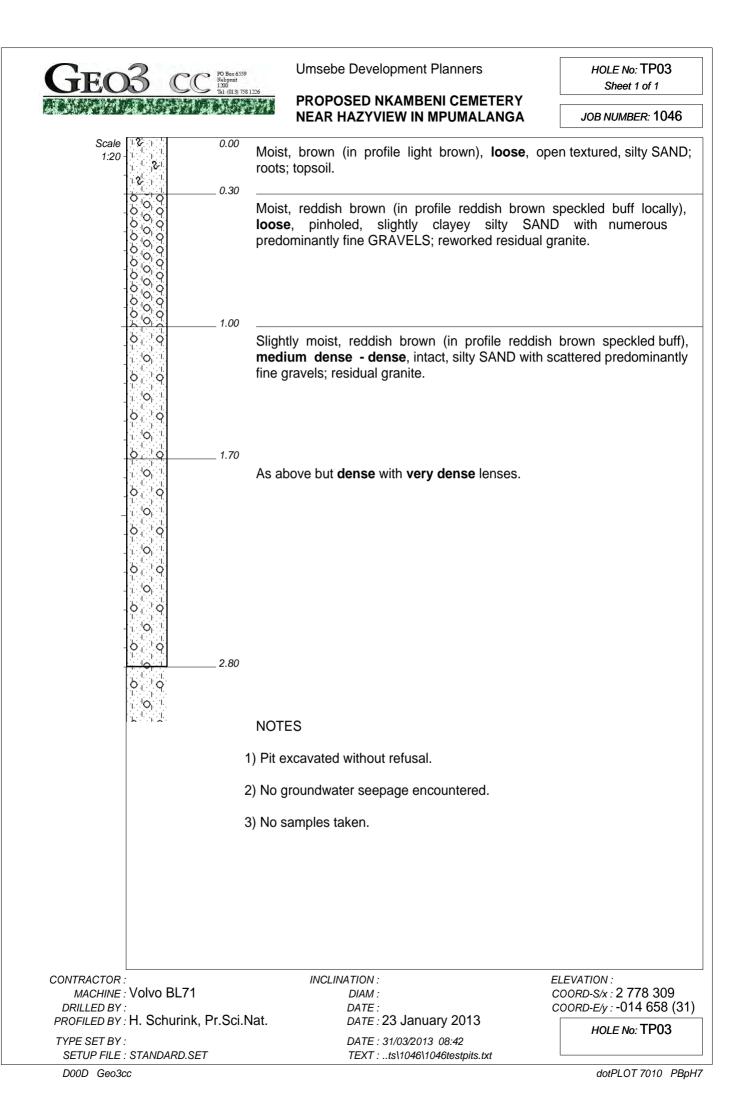
. MOISTURE C	ONDITION - assessment of insitu conditions.		2. COLOUR - d	lescribed in profile, at natural moisture content unless otherwise specified.
Dry	No water detectable; sample cannot be moulded.		Speckled	Very small patches of colour < 2mm
Slightly Moist	Water just discernable; sample can be moulded.		Mottled	Irregular patches of colour 2 - 6mm
Moist	Water easily discernable.		Blotched	Large irregular patches 6-20mm
√ery Moist	Water can be squeezed out.		Banded	Approximately parallel bands of varying colour
Wet	Vet Generally below the water table.			Randomly orientated streaks of colour
			Stained	Local colour variations; associated with discontinuity surfaces

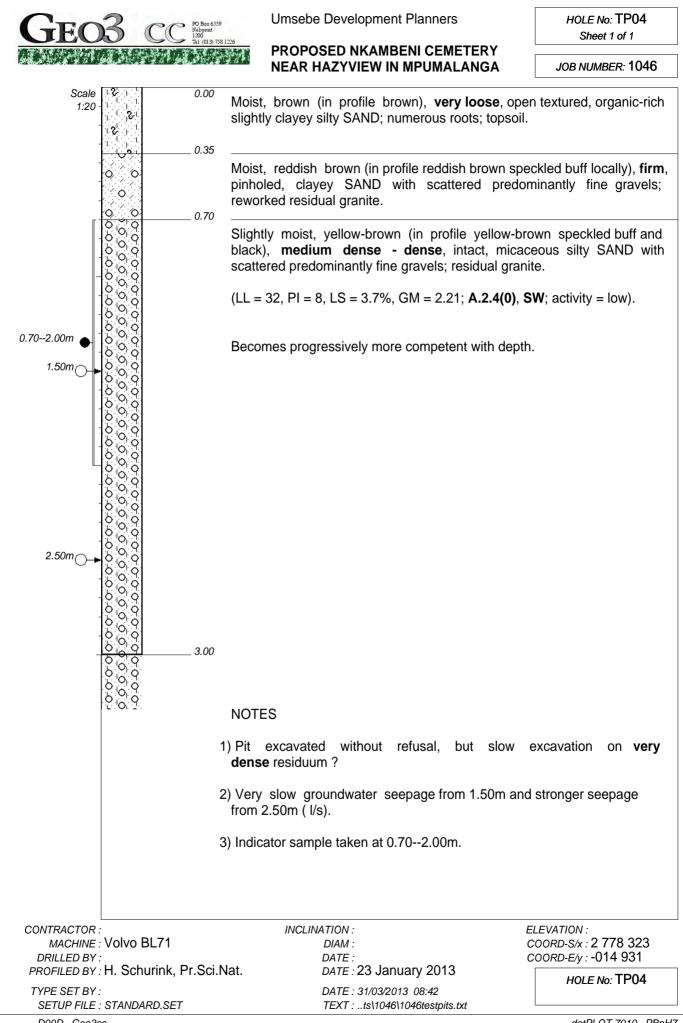
3(a) CO soil	NSISTEN	CY: GRANULAR SOILS - measure of the hardness or d	enseness of a		3(b) CO soil	NSIST	ENCY: COHESIVE SOILS - measure of the hardness or den	seness of a
SPT "N"	GRAVELS & clean SANDS Typical D Generally free draining soils Density(kg/				SPT "N"		and CLAYS and combinations thereof with SANDS. lly slow draining soils ($\varphi = 0$ material).	UCS (kPa)
< 4	Very Loose	Crumbles very easily when scraped with geological pick.	< 1450		<2	Very soft	Pick point can easily be pushed in to shaft of handle; easily moulded by fingers.	< 50
4 - 10	Loose	Small resistance to penetration by sharp geological pick.	1451 - 1600		2 - 4	Soft	Pick point can easily be pushed in 30 - 40 mm; moulded by fingers with some pressure; easily penetrated by thumb.	50 - 125
>10 - 30		Considerable resistance to penetration by sharp end of geological point.	1601 - 1750		5 - 8	Firm	Pick point penetrates up to 10mm; very difficult to mould with fingers; indented by thumb with effort; can just be penetrated with an ordinary hand spade.	126 - 250
>30 - 50 -	Dense	Very high resistance to penetration by sharp end of geological pick; requires many blows of pick for excavation.	1751 - 1925		9 - 15	Stiff	Slight indentation produced by pushing pick point into soil; cannot be moulded by fingers; penetrated by thumb nail; requires hand pick for excavation.	251 - 500
> 50	Very Dense	High resistance to repeated blows of geological pick; requires power tools for excavation.	> 1925		16 - 20		Slight indentation produced by blow of pick point; requires power tools for excavation; indented by thumb nail with difficulty.	501 -1000

4. SOIL STRUC	TURE - presence or absence of fissures or other planes of weakness.	5. SOIL TYPE -	soil texture des particles.	cribed on the basis of the grain size of
Intact	Structureless, no discontinuities identified.	SOIL TYPE	PARTICLE SIZE [mm]	REMARKS
Fissured	Soil contains discontinuities which may be open or closed, stained or unstained and of variable origin.	CLAY	< 0.002	Feels sticky; soils hands; shiny when wet.
Slickensided	Contains highly polished shear surfaces, glossy and often striated.	SILT	0.002 - 0.06	Dilatant; dusts off once dry; chalky feel on teeth.
Shattered	Very closely to extremely closely spaced continuities resulting in gravel size soil fragments which are usually stiff to very stiff and difficult to break down.	SAND fine medium coarse	0.06 -0.2 0.2 - 0.6 0.6 - 2.0	Gritty on teeth. Visible to naked eye. Visible to naked eye.
Micro-shattered	As above, but sand-sized fragments.	GRAVEL fine	2 - 6	Observed with the naked eye. Matrix-
Controlled / uncontrolled	Descriptive term for fill material; relates to whether the material has been engineered, i.e. controlled, or not, i.e. uncontrolled.	medium coarse	6 - 20 20 - 60	supported - clasts supported by matrix Clast-supported - clasts touching (matrix may or may not be present).
Open textured	Contains small voids between individual grains-visible to the naked eye. Alt pinholed.	COBBLES	60 - 200	
Stratified	Parallel bedding planes. Laminated if layers are less than 20mm thick.	BOULDERS	>200	
Varved	Alternating silty and clayey layers.	Fine grained soils 35%.	s: slightly <5%; cl	ayey/silty 5-15%; very silty/clayey 15-
Foliated	Residual metamorphic texture.	Gravels / cobbles numerous 20-45%		ccasional <5%, scattered 5-20%,

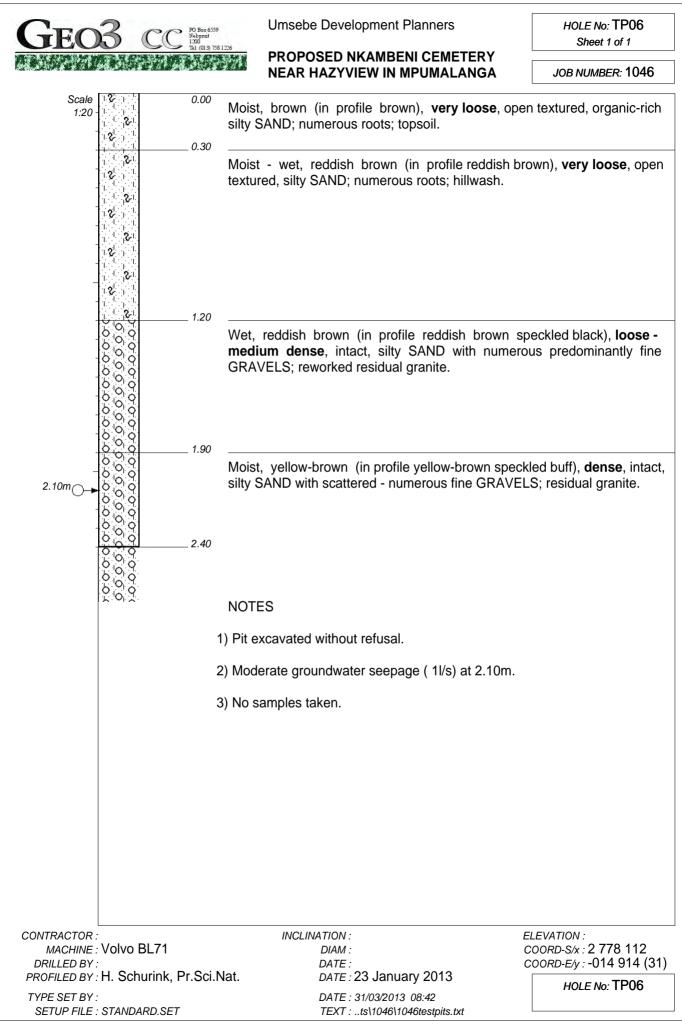

6. ORIGIN	- origination of particular soil horizon.	DEGREE OF CEMENT	TATION OF PEDOCRETES	UCS (MPa)
Transported	Alluvium, hillwash, talus, colluvium etc.	Very weakly cemented	Some material can be crumbled between finger and thumb; disintegrates under knife blade to a friable state.	0.1 - 0.5
Residual	Weathered from parent rock.	Weakly cemented	Cannot be crumbled with fingers; some material can be crumbled by strong pressure between thumb and hard surface; under light hammer blows disintegrates to a friable state.	0.5 - 2.0
Pedocretes	Ferricrete, calcrete, laterite, silcrete, dorbank etc.	Cemented	Material crumbles under firm blows of sharp pick point; grains can be dislodges with some difficulty by a knife blade.	2 - 5
		Strongly cemented	Firm blows of sharp pick point on hand held specimen show 1 - 3 mm indentations; grains cannot be dislodged by knife blade.	5 - 10
		Hardpan	Hand held specimen can be broken by single firm blow of hammer head; similar appearance to concrete.	10 - 25

to concrete.
Reference: Guide to soil profiling for Civil Engineering Purposes - Geoterminology Workshop (1990) SAIEG - AEG - SAICE (Geotechnical Division).


ROCK DESCRIPTIVE TERMS


Description for rocks masses: A - description of rock B - description of discontinueties C - description of fracture filling

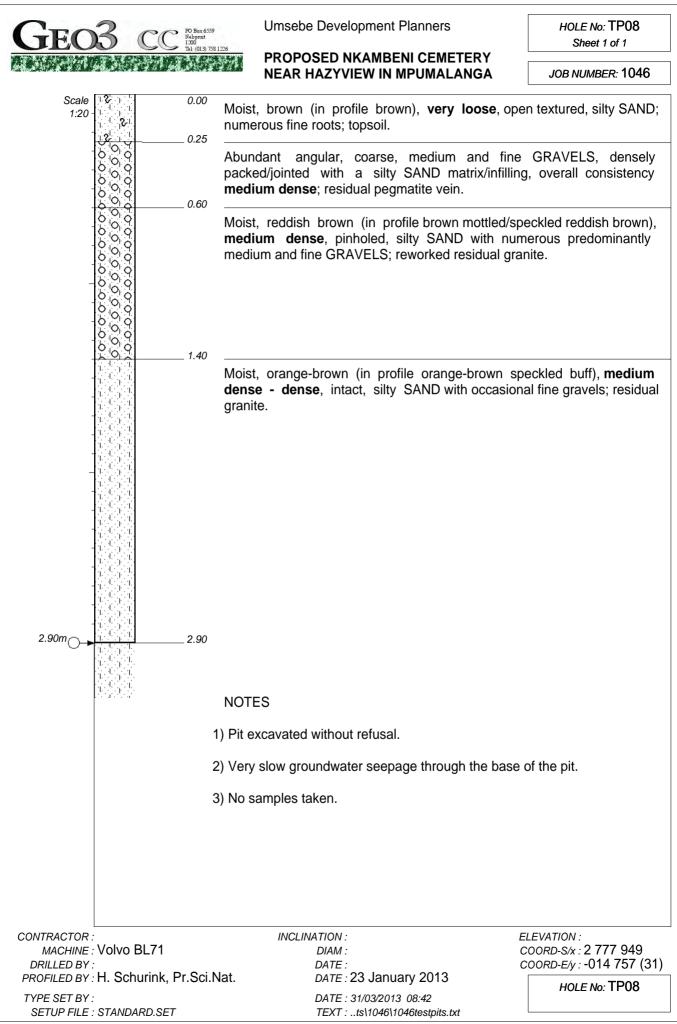
A. ROCK DESCR	IPTION	Descriptive Or	rder for rock description: 1. Co	lour 2. Weathering 3	3. Texture 4. Fr	racture and microtexture 5.Roc	k hardness 6. R	lock type.	
1. Colour	Described wet								
2. Weathering									
Degree of Weathering		Extent of Di	scolouration	Fracture Condition	Surf	ace Characteristics	Original Fabric	Grain Boundary Condition	
Unweathered	No visible alte	ration.		Closed or stained	Unchanged		Preserved	Tight	
Slightly weathered	Fractures stain on both sides of		ed < 20% of fracture spacing	Discoloured, may contain thin filling	Partial discolo rock colour.	uration. Often unweathered	Preserved	Tight	
Moderately weathered	Staining or dis on both sides of		ends >20% of fracture spacing	Discoloured, may contain thick filling.		plete discolouration. Not poorly cemented rocks.	Preserved	Partial opening	
Highly weathered	Extends throug	ghout the rock.			Friable and us	ually pitted	Mainly preserved	Partial separated.	
Completely weathered	Totally discold	oured.			Resembles a s	oil	Partially preserved	Complete separation of grains.	
3. Texture					4. Microstruc	cture and fracture spacing			
Classification	Size	F	Recognition		Separation	Spacing (foliation, cleavage, bedding, etc.)	Spacing (fractures, joints, etc.)	Fracture spacings/metre	
Very fine grained	< 0,2	Individual grai	ins cannot be seen with a hand	lens.	< 6	very intensely			
Fine grained	0,2 - 0,6	Just visible as	individual grains under hand le	ns	6 - 20	intensely	Very highly	> 50	
Medium grained	0,6 - 2,0	Grains clearly eye.	visible under hand lens, just vi	sible to the naked	20 - 60	very thinly	Highly	5 - 50	
Coarse grained	2 - 6	Grains clearly	visible to the naked eye.		60 - 200	thinly	ing.inj	0.00	
Very coarse grained	> 6	Grains measur	able		200 - 600	medium	Moderately	~1 - 5	
					600 - 2 000	thickly	Slightly	~ 1	
					> 2 000	very thickly	Very Slightly	< 1	
5. Rock Hardness									
Hardness	Description			UCS (MPa)	Hardness	Description		UCS (MPa)	
Very soft rock		eeled with a kr	blow with geological pick ife; too hard to cut undisturbed	1 - 3			Breaks with difficulty, rings when struck.		
Soft rock		raped and peele of geological I	d with a knife; 1-3mm indents pick.	3 - 10	Very hard rock	Point load or laboratory test res to distinguish between catego	sults necessary	70 - 200	
Medium hard rock		pick head will	break hand held specimen. with a knife.	10 - 25	Extremely hard rock			> 200	
6. Rock Type	According to a	accepted lithogr	aphic terminology.						
B. DISCONTINU	TY SURFAC	E DESCRIPT	ION:	Descriptive Order fo	r joint descripti	on: 1.Type 2. Separation 3.Fi	ll material 4. R	oughness 5. Orientation	
1. Type	Bedding plane	s, flow banding	, foliation, joints, shears, faults	, fractures.					
2. Seperation		3. Fracture fi	lling	4. Roughness of dis	countinuity pla	anes			
Description	Separation	Description	Definition	Classification	Description				
Closed	sed 0 Clean No fracture filling material Smooth				Appears smoo	th and is essentially smooth to	the touch. May	be slickensided.	
Very narrow	0 - 0,6	Stained	Colouration of rock only. No recognisable filling.	Slightly rough	y rough Aspiraties on the fracture surface are visible and can be distinctly felt.				
Narrow	0,6 - 2,0	Filled	Recognisable filling material.	Medium rough	Asperities are clearly visible and fracture surface feels abrasive.				
Wide	2,0 - 6,0			Rough	Large angular asperities can be seen. Some ridge and high side angle steps are evident.				
Very wide	6,0 - 20			Very rough	Near vertical s	steps and ridges occur on the fr	acture surface.		
5. Discontinuity or	ientation		Discontinuity inclinations (i.e orientated core the fracture in			easured with respect to the hor	izontal i.e. a ver	tical joint dips at 90° in	
C. FRACTURE F	ILLING DESC	CRIPTION	Fracture filling should be desc	cribed in terms of the	MCCSSO Soil	Classification			


D00D Geo3cc

PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA

HOLE No: TP05 Sheet 1 of 1

Scale 1:20 -	0.0	Moist, brown (in profile numerous fine roots; top	e brown), very loose , op soil.	en textured, silty SAND;
-	0.3 1 02 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Moist, reddish brown (in profile reddish brown ND with scattered predom dual granite.	
- - - - - - - - - - - - - - - - - - -	0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Slightly moist, yellow-br	own (in profile yellowish / ted, silty SAND with scat	
2.70m	0 - 1 0	0		
		NOTES		
		1) Pit excavated without re	afusal, but slow excavatior).
		2) Slow groundwater seep		
		3) No samples taken.		
DRILLED BY	Volvo BL71	INCLINATION : DIAM : DATE : date : 23	January 2013	ELEVATION : COORD-S/x : 2 778 168 COORD-E/y : -014 791 (31)
TYPE SET BY :		DATE : 31/	03/2013 08:42 \1046\1046testpits.txt	HOLE No: TP05
DOOD Geo30	YC.			dotPLOT 7010 PBpH7



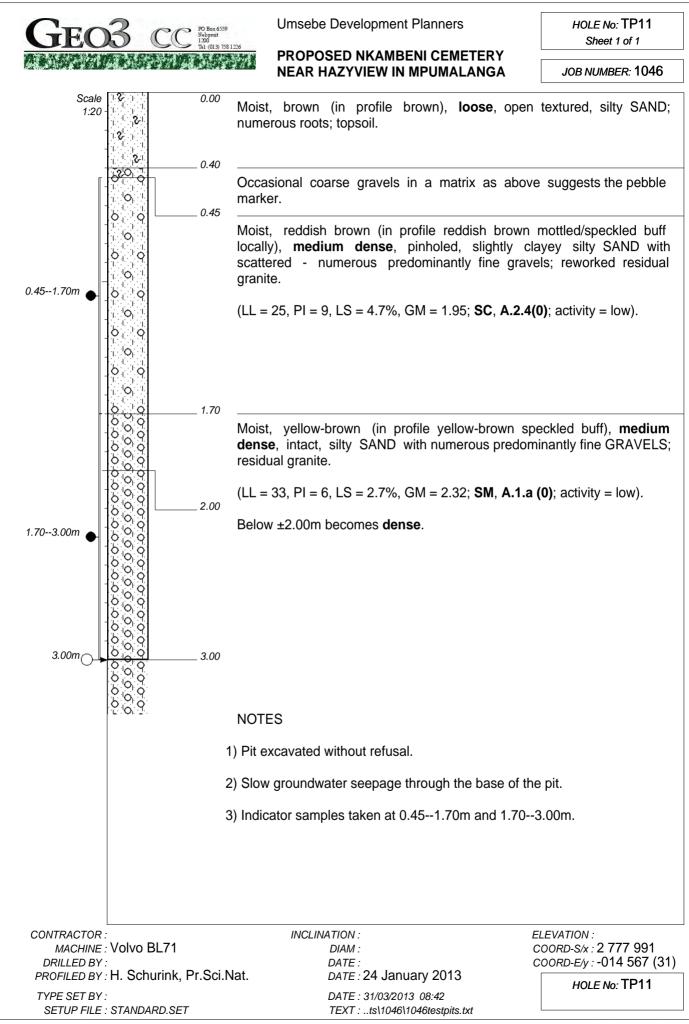
PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA

HOLE No: TP07 Sheet 1 of 1

Scale 1:20 -	1.2 (1) (1) 1.4 (1) 1.4 (2) 1.4 (2)		wn (in profile brown), very loos fine roots; topsoil.	e , open textured, silty SAND;
-			et, brown (in profile brown), loo s predominantly fine GRAVELS; fi	
-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	clayey SA reworked r	ow-brown (in profile yellow-brown s ND with scattered - numerous pr esidual granite.	
-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	intact, silt	pist, yellow-brown (in profile yellow- cy SAND with scattered - nun ; residual granite.	
	000	NOTES		
		1) Pit excava	ated without refusal, but slow excav	vation.
		2) No ground	dwater seepage encountered.	
		3) No sample	es taken.	
CONTRACTOR :			ICLINATION :	ELEVATION :
MACHINE : DRILLED BY :	Volvo BL71		DIAM : DATE :	COORD-S/x : 2 778 114 COORD-E/y : -014 649 (31)
TYPE SET BY :		Sci.Nat.	DATE : 23 January 2013 DATE : 31/03/2013 08:42	HOLE No: TP07
SETUP FILE :	STANDARD.SET		TEXT :ts\1046\1046testpits.txt	

HOLE No: TP09 Sheet 1 of 1

PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA


Scale 1:20 -	0.00	Moist, brown (in profile brown), very loose , open silty SAND; numerous fine roots; topsoil.	textured, organic-rich
-	2 0.55	Moist, reddish brown (in profile reddish brown), clayey SAND; roots; hillwash.	loose, open textured,
-		Abundant coarse, medium and fine, sub-rounded, vein quartz GRAVELS, densely packed in a pink overall consistency medium dense ; pebble marker.	noled matrix as above;
- - - - - - - - - - 	0.70 0.6 0.6 0.6 0.6 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	Moist, reddish brown (in profile reddish brown), me slightly clayey silty SAND with numerous predomin reworked residual granite. //(Permeability = 5.53x10	nantly fine GRAVELS;
-			
- - - - -		Slightly moist, brown (in profile reddish brown spe medium dense , intact, micaceous silty SAND gravels; residual granite.	<i>, , , , , , , , , ,</i>
	2.60	White speckled black, highly weathered, medium gr	rained, very soft rock ;
	[+·\`+'	NOTES	
) Pit excavated to refusal.	
	:	?) No groundwater seepage encountered.	
		3) No samples taken.	
		 In situ permeability test undertaken at 0.701.00m. Additional pit for permeability test. 	
CONTRACTOR : MACHINE :	Volvo BL71		LEVATION : 00RD-S/x : 2 777 780
DRILLED BY		DATE : C	OORD-E/y : -014 844 (31) HOLE No: TP09
TYPE SET BY : SETUP FILE :	STANDARD.SET	DATE : 31/03/2013 08:42 TEXT :ts\1046\1046testpits.txt	
D00D 00			

HOLE No: TP10 Sheet 1 of 1

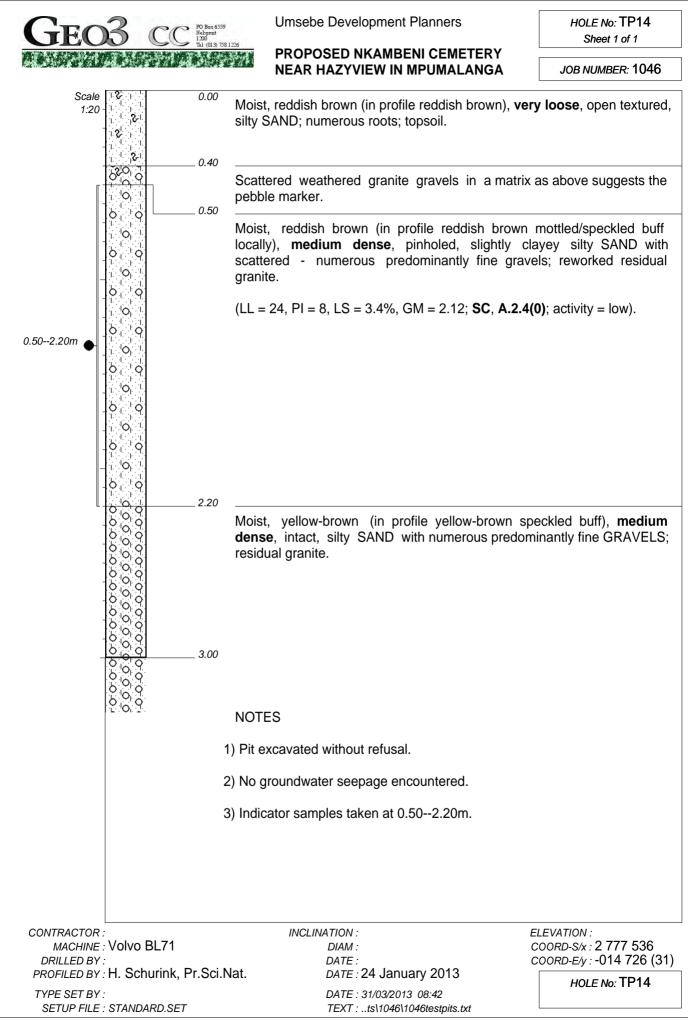
PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA

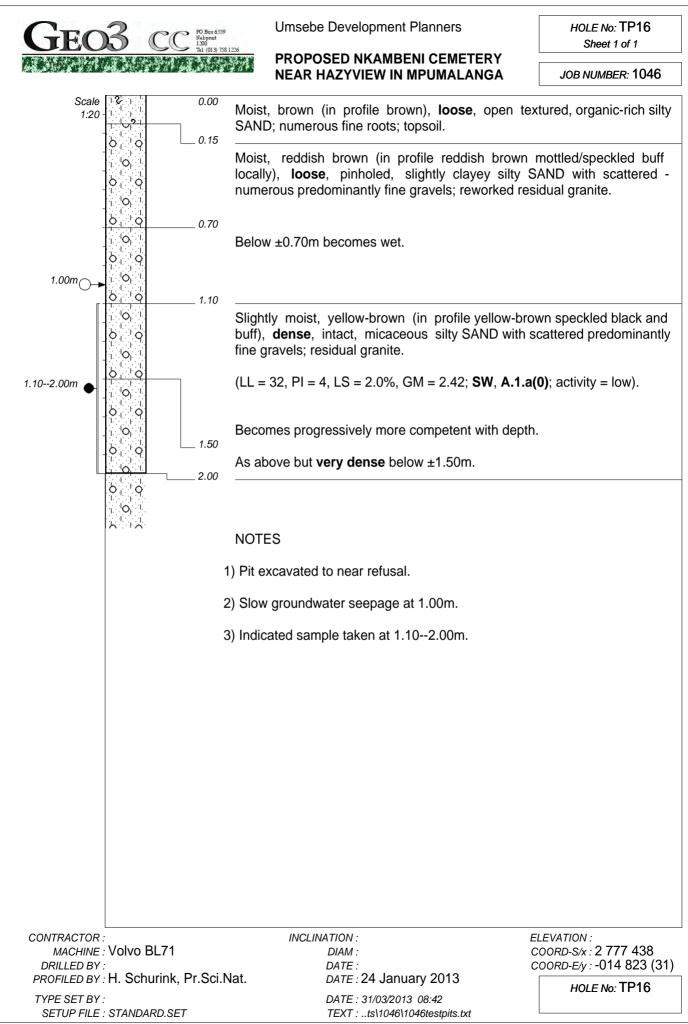
Scale 1:20 -		Moist, brown (in profile brown), very loose, ope fine roots; topsoil.	n textured, silty SAND;
-	0.15 0 0 0 0 0 0 0 0 0	Scattered coarse, medium and fine gravels in a mat the pebble marker.	rix as above suggests
- - -	0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Moist, reddish brown (in profile reddish brown sp dense , pinholed locally, silty SAND with numero medium and fine GRAVELS; partially reworked resid	ous weathered, coarse,
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Abundant coarse, medium and fine pegmatite GRA' in a matrix as above; overall consistency dense , res	
-	0.0.0.0.0.0.0 0.0.0.0.0.0 0.0.0.0.0.0	Moist, yellow-brown (in profile yellow-brown speckle intact, silty SAND with numerous predominan GRAVELS; residual granite.	
	1.80 + + + + + + + + + + + + + + + + + + +		hered, medium to
		NOTES	
		1) Pit excavated to refusal.	
		2) No groundwater seepage encountered.	
		3) No samples taken.	
CONTRACTOR :			LEVATION :
DRILLED BY :	Volvo BL71 H. Schurink, Pr.Sc	DATE : C	:00RD-S/x : 2 777 624 :00RD-E/y : -014 874 (31)
TYPE SET BY :		DATE : 20 Gandary 2010 DATE : 31/03/2013 08:42 TEXT :ts\1046\1046testpits.txt	HOLE No: TP10

D00D Geo3cc

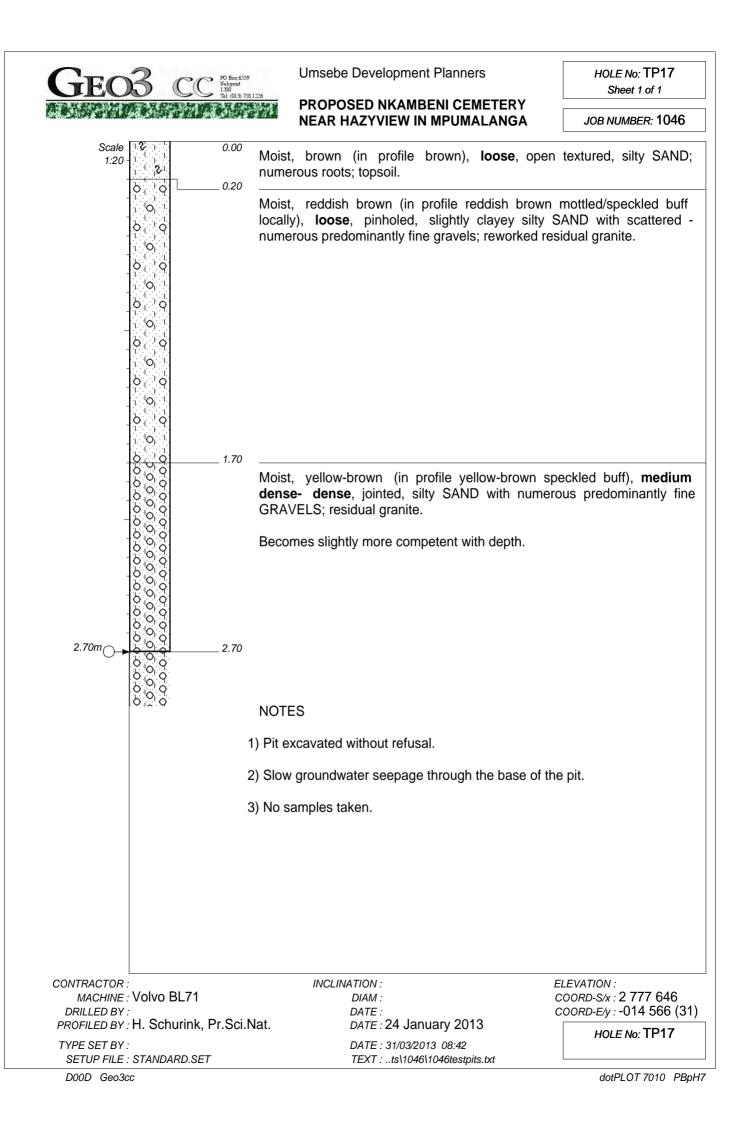
PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA

HOLE No: TP12 Sheet 1 of 1

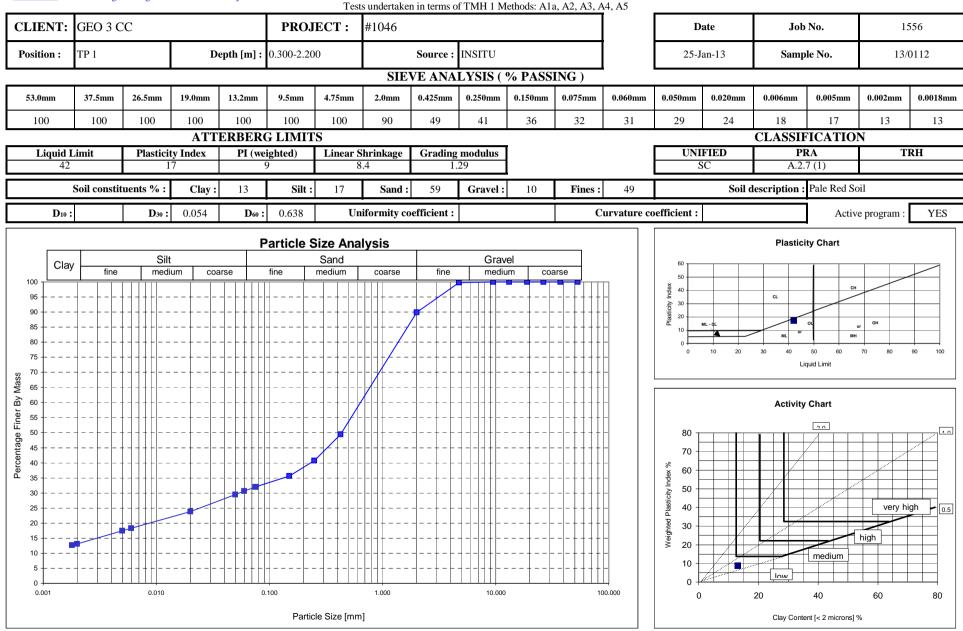

Scale 1:20 - - - - - - - - - - - - - - - - - - -	1 0.00 1 1 1 2 1 2 1 1 1 0.30 1 0.1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0	Moist, brown (in profile brown), loose , open numerous roots; topsoil. Moist, reddish brown (in profile reddish brown locally), medium dense , pinholed, slightly cl scattered - numerous predominantly fine grav granite. Moist, yellow-brown (in profile yellow-brown sp dense , intact, silty SAND with numerous predom residual granite. Below ±1.00m becomes dense .	mottled/speckled buff ayey silty SAND with els; reworked residual peckled buff), medium
-	0 9 0 0 0 <td>Below ±1.70m becomes very dense.</td> <td></td>	Below ±1.70m becomes very dense .	
	0.0.0.0	NOTES 1) Pit excavated to near refusal.	
		2) No groundwater seepage encountered. 3) No samples taken.	
DRILLED BY	Volvo BL71	DIAM : DATE :	ELEVATION : COORD-S/x : 2 777 783 COORD-E/y : -014 559 (31)
TYPE SET BY :		DATE : 31/03/2013 08:42 TEXT :ts\1046\1046testpits.txt	HOLE No: TP12


HOLE No: TP13 Sheet 1 of 1

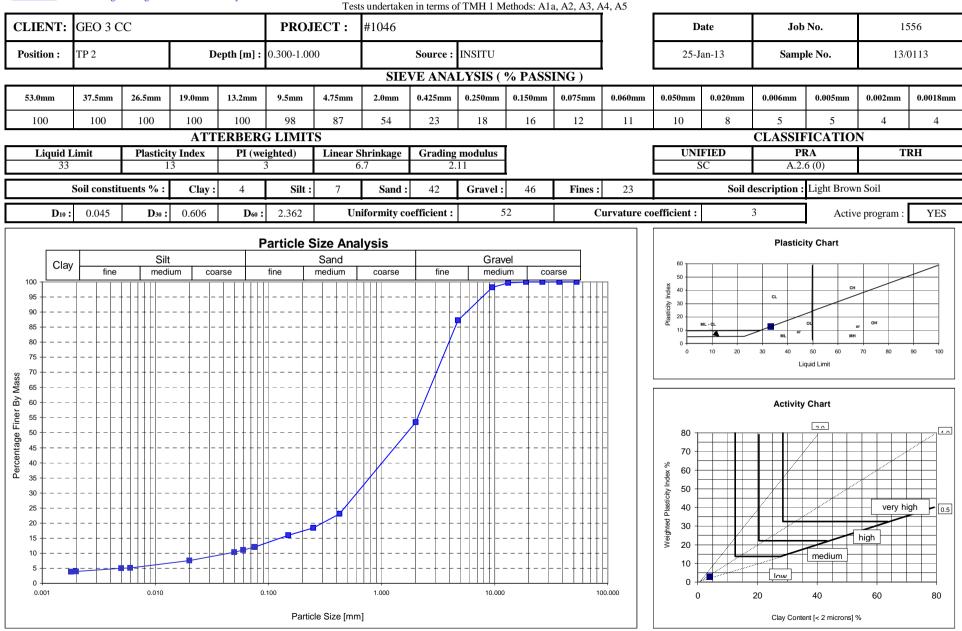
PROPOSED NKAMBENI CEMETERY NEAR HAZYVIEW IN MPUMALANGA


Scale 1:20	0.00	Moist, brown (in profile brown), loose , open textured, silty SAND; numerous roots; topsoil.			
-	1 & 1 1 1 & 1 1 1 & 2 1 & 1 1 & 1	Moist, reddish brown (in profile reddish brown), loose , open textured, silty SAND; fine roots; hillwash.			
	0.65				
		Abundant predominantly medium and fine, vein quartz GRAVELS and ferricrete concretions, densely packed in a matrix as above; overall consistency medium dense ; fine roots; pebble marker.			
		Moist, reddish brown (in profile reddish brown mottled/speckled buff locally), medium dense , pinholed, slightly clayey silty SAND with scattered - numerous predominantly fine gravels; reworked residual granite.			
	<u>0</u> 0 1.70				
-	2.90	Moist, yellow-brown (in profile yellow-brown speckled buff), dense , intact, silty SAND with numerous predominantly fine GRAVELS; residual granite.			
	000	NOTES			
	 Pit excavated without refusal. No groundwater seepage encountered. 				
		3) No samples taken.			
CONTRACTOR		INCLINATION : ELEVATION :			
MACHINE	: Volvo BL71	DIAM : COORD-S/x : 2 777 693			
DRILLED BY . PROFILED BY .	: H. Schurink, Pr.Sci.	DATE : COORD-E/y : -014 740 (31) Nat. DATE : 24 January 2013 HOLE No: TP13			
TYPE SET BY SETUP FILF	: : STANDARD.SET	DATE : 31/03/2013 08:42 TEXT :ts\1046\1046testpits.txt			
D00D Geo30		dotPLOT 7010 PBpH7			

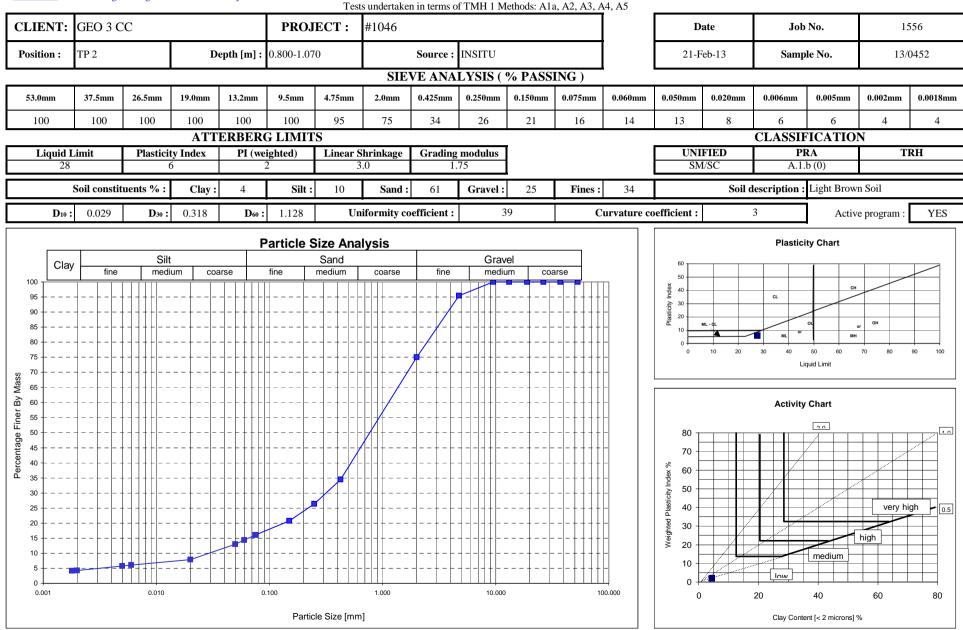
GEO3 CC PO Ben 4559 Magnet Tal (013) 728 1226	Umsebe Development Planners PROPOSED NKAMBENI CEMETERY	HOLE No: TP15 Sheet 1 of 1	
ten verden komenden Somen	NEAR HAZYVIEW IN MPUMALANGA	JOB NUMBER: 1046	
	ellow and reddish brown speckled be oarse-grained, very soft rock ; GRANITE.	uff, highly weathered,	
N	IOTES		
1) F	Profile recorded on sub-outcropping weathered	granite.	
2) N	No evidence of groundwater seepage.		
3) N	No samples taken.		
CONTRACTOR : MACHINE : Volvo BL71	INCLINATION : DIAM :	ELEVATION : COORD-S/x : 2 777 469	
DRILLED BY : PROFILED BY : H. Schurink, Pr.Sci.Nat		COORD-E/y : -014 808 (31 HOLE No: TP15	
TYPE SET BY : SETUP FILE : STANDARD.SET	DATE : 31/03/2013 08:42 TEXT :ts\1046\1046testpits.txt		



D00D Geo3cc


APPENDIX C LABORATORY TEST RESULTS

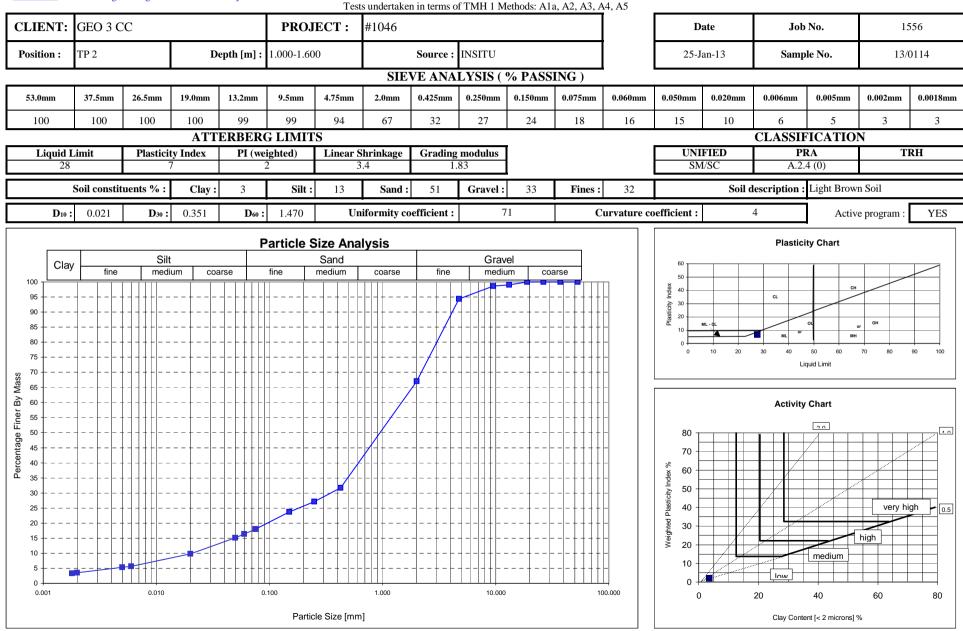
CHECKED BY :



REMARKS:

indicator v2.5a.1556.0113 13

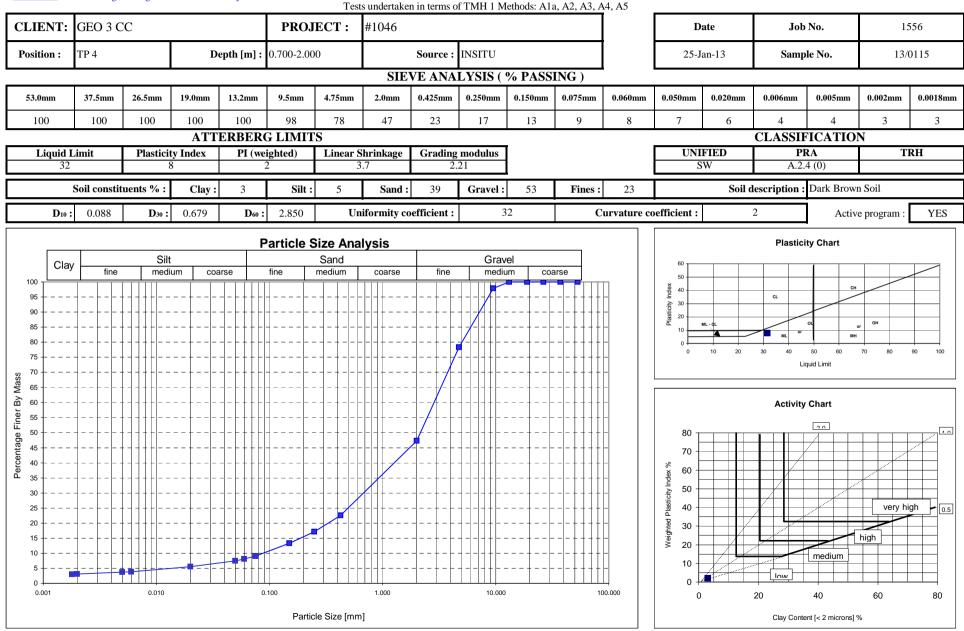
CHECKED BY :



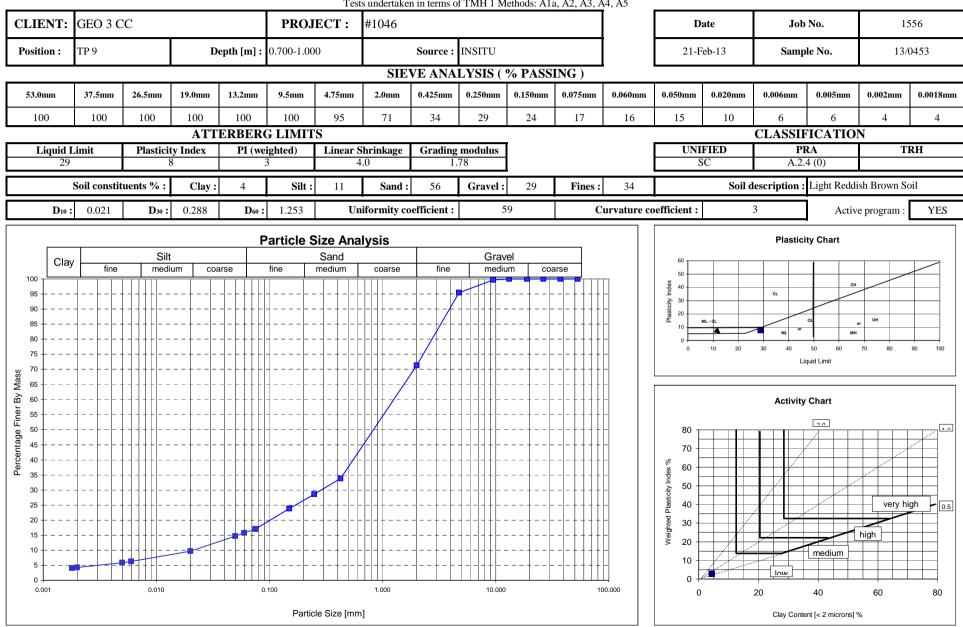
none

REMARKS:

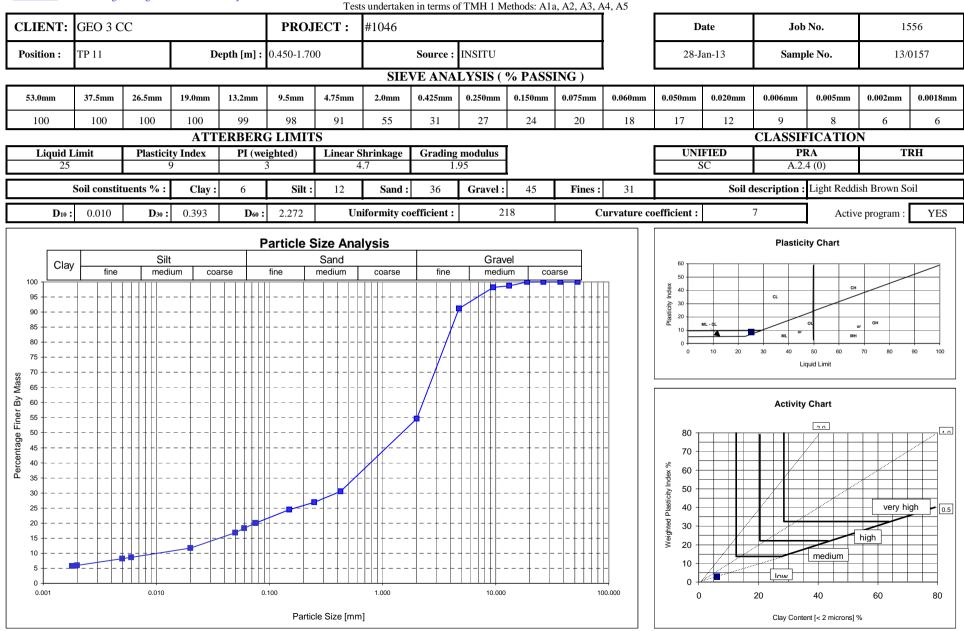
CHECKED BY : G van Gelder



none

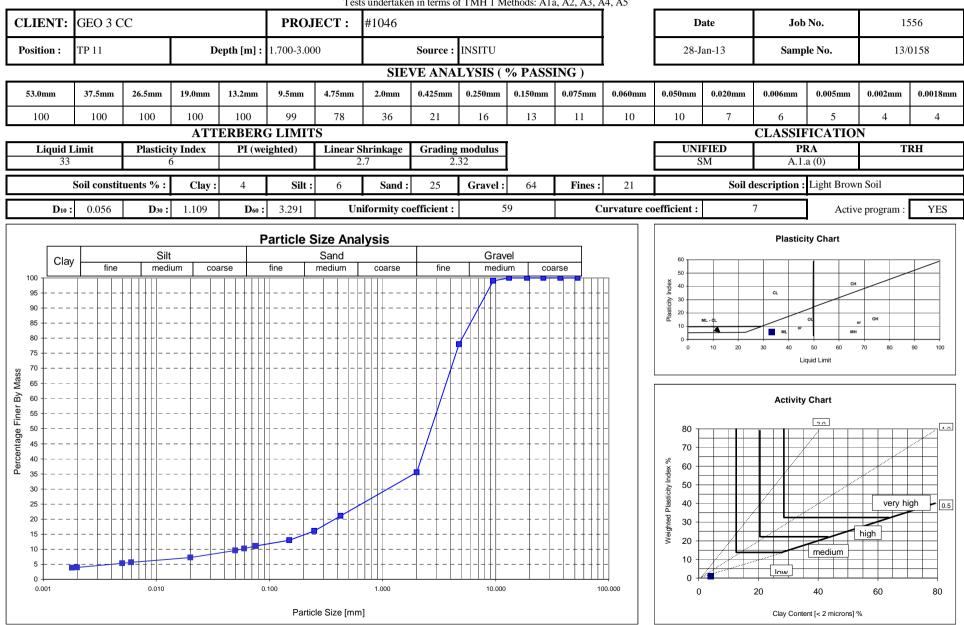

CHECKED BY :

CHECKED BY :



Tests undertaken in terms of TMH 1 Methods: A1a, A2, A3, A4, A5

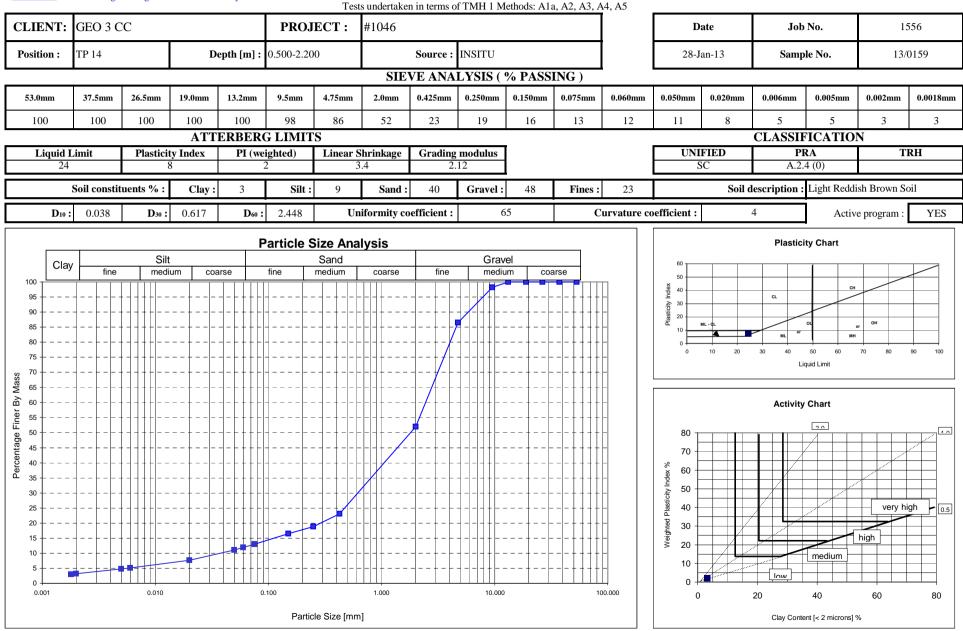
CHECKED BY :



REMARKS:

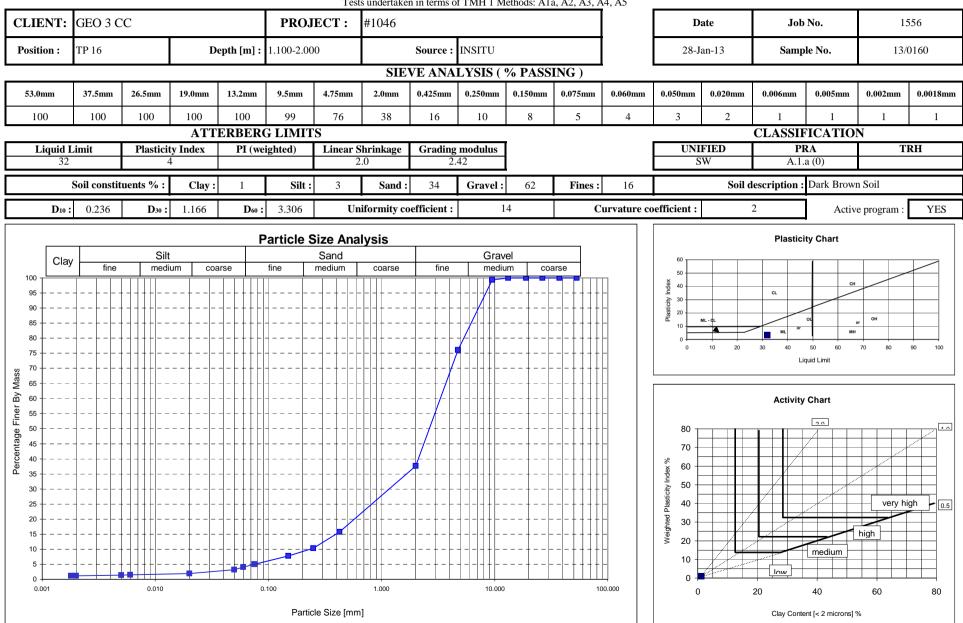
indicator v2.5a.1556.0157 13

CHECKED BY :



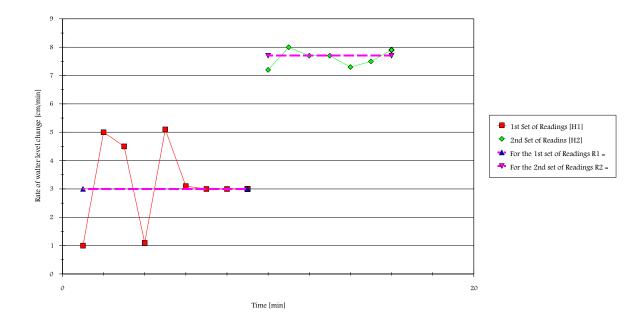
Tests undertaken in terms of TMH 1 Methods: A1a, A2, A3, A4, A5

CHECKED BY :



REMARKS:

CHECKED BY :


Tests undertaken in terms of TMH 1 Methods: A1a, A2, A3, A4, A5

CHECKED BY :

APPENDIX D PERMEAMETER TEST RESULTS

CLIENT:	Umsebe Develo	opment Planne	ers	GUELPH	PERMEAI		TER DATA				JOB NO.: POSITION:	1046 TP 02
STANDARI Date:	DIZED PROCE 12-Feb-13		PERMEAMI Investigator:	E TER READI hj		AL		ow g.l. [cm]:	Coordin	nates X / Y : Depth	of well [cm]:	
	ined reservoirs -	X =	35.22			1	Reservoir	Remarks :				
Inner	reservoir only -	Y =		cm^2		1	used	2. 1 C. (. f D 1		- C 11	(112)	
Reading #	Time		of water in well		Rate of wate	-	Reading #		Time Interval		(H2) set at 10cm Water level	Rate of water
Reading #	[min]	[min]	in Reservoir [cm]	change [cm]	level change [cm/min]	- 1 - I	Reading #	[min]	[min]	in Reservoir [cm]	change [cm]	level change [cm/min]
1			21.20				1			35.90		
2	15.0	15.0	21.90	0.70	0.047		2	1.0	1.0	41.20	5.30	5.300
3	20.0	5.0	22.50 23.20	0.60	0.120	_	3	2.0	1.0	46.20 50.10	5.00 3.90	5.000 3.900
5	30.0	5.0	24.10	0.90	0.180		5	5.0	2.0	59.50	9.40	4.700
6	40.0	10.0	26.00	1.90	0.190		6	7.0	2.0	68.90	9.40	4.700
7 8	50.0 55.0	10.0 5.0	28.00 28.80	2.00 0.80	0.200	-	7	8.0	1.0	73.60	4.70	4.700
R, the steady state	rate of flow, is achieved	when R is the same i	n three consecutive ti	ime intervals.		-						v1.1b
	For the 1st set of For the 2nd set Field saturated hydraulic conductivity	of Readings F 0.0041		0.190 4.700 7.83E-002	-		3.17E-003 7.83E-002 0.0054	•	3.17E-003	=	6.57E-004	cm / sec
	Matrix flux potential		2.16	3.17E-003	-		0.0237	2.16	7.83E-002	=	-3.62E-003	cm^2/sec
	Alpha parameter	6.57E-004	/	-3.62E-003	=		-1.81E-001	cm^-1				
	Rate of walter level change [cm/min]									◆ 2nd	Set of Readings [H1 Set of Readins [H2 the 1st set of Readi the 2nd set of Read] ngs R1 =
	0		20		40			60	1	80		
					Time [min]							

				GUEL PH	PERMEAN	IETER DATA	SHEET				
CLIENT	Umsebe Develo	nment Planne	rs	GULLIN	SITE:	Nkambeni Cer				JOB NO.: POSITION:	1046 TP 09
CLILION.		pinent i luine	15				linetery	Coordi	nates X / Y :	100111010	
STANDARI Date:	DIZED PROCE 12-Feb-13		PERMEAME Investigator:	E TER READI hj		ALCULATIONS Depth belo	ow g.l. [cm]:	70		of well [cm]:	30
	ned reservoirs - reservoir only -	X = Y =	35.22	cm^2 cm^2	F	Reservoir 1 used	Remarks :				
	1st Set of Readir	os with height (L		2nd Set of Readi	ngs with height	of water in well	(H2) set at 10cm	
Deading #			Water level	Water level	Rate of water		Time		Water level	Water level	Rate of water
Reading #	[min]	[min]	in Reservoir	change [cm]	level change [cm/min]	Reading #	[min]	[min]	in Reservoir	change [cm]	level change [cm/min]
	[]	լոույ	[UII]	[em]			[iiiii]	լոույ	[em]	[em]	
1			2.00			1			18.70		
2	1.0	1.0	3.00	1.00	1.000	2	1.0	1.0	25.90	7.20	7.200
3	2.0	1.0	8.00	5.00	5.000	3	2.0	1.0	33.90	8.00	8.000
4	3.0	1.0	12.50	4.50	4.500	4	3.0	1.0	41.60	7.70	7.700
5	4.0 5.0	1.0	13.60 18.70	1.10 5.10	1.100 5.100	5	4.0	1.0	49.30 56.60	7.70	7.700 7.300
7	6.0	1.0	21.80	3.10	3.100	7	6.0	1.0	64.10	7.50	7.500
8	7.0	1.0	24.80	3.00	3.000	8	7.0	1.0	72.00	7.90	7.900
9	8.0	1.0	27.80	3.00	3.000						
10	9.0	1.0	30.80	3.00	3.000						
R, the steady state	rate of flow, is achieved w	hen R is the same in	n three consecutive ti	me intervals.			•				v1.1b
	For the 1st set o	f Readings R	1 =	3.000	/ 60 =	5.00E-002	cm / sec				
	For the 2nd set of	of Readings R	.2 =	7.700	/ 60 =	1.28E-001	cm / sec				
	Field saturated hydraulic conductivity	0.0041	2.16	1.28E-001	-	0.0054	2.16	5.00E-002	=	5.53E-004	cm / sec
	Matrix flux potential	0.0572	2.16	5.00E-002	-	0.0237	2.16	1.28E-001	=	-3.92E-004	cm^2/sec
	Alpha parameter	5.53E-004	/	-3.92E-004	=	-1.41E+000	cm^-1				

APPENDIX E INFORMATION ON BOREHOLES

USER DEFINED REPORT Date compiled: 2013/01/24												24		
NR_ON_MA	P Y_COORD	X_COORD	ALTITUDE	BH_DIAM	COLLAR_HI	DEPTH	SITE_STATU	USE_APPLIC	DATE_INSTL	TYPE_INSTL	DEPTH_INTK	DISCH_RATE	DUTY_CYCL	WATER_Q
MB-00431A	-14572.92453	2774425	570.000	165.000		62.000	D	DA						1
MB-00431B	-14519.70342	2774400	570.000	165.000		50.000	D	DA						
MB-00427A	-12845.48663	2775596	595.000	165.000		67.000	D	DA						í í
MB-00427B	-12842.71627	2775562	590.000	165.000		54.000	D	DA						
MB-00638	-13100.65406	2773209	570.000	170.000		47.200	G	DA	19000101	S		0.00000	0.00000	CLASS 2
MB-01036	-12868.34204	2782009	768.000	170.000	0.480	80.110	U	DA	19000101	N	42.000	0.400	18.000	CLASS 1
MB-01245	-12331.37633	2781491	722.000	170.000	0.750	59.070	U	DA	20100118	N	30.000	0.500	18.000	CLASS 0
MB-01246	-12197.93341	2778491	680.000	170.000	0.100	35.460	U	DA	19000101	N	30.000	2.500	24.000	CLASS1
MB-01247	-12213.07675	2778474	680.000	165.000	0.400	28.600	U	DA	19000101	N	24.000	2.000	24.000	CLASS 0
MB-01248	-13606.04159	2778340	720.000	170.000	0.190	59.410	U	DA	19000101	Ν	40.000	0.100	12.000	CLASS 0

GeositeInfo_DataOwner	GeositeInfo_Identifier	eositeInfo_GeositeTyGeo	ositeInfo_Latitude	GeositeInfo_Longitude GeositeInfo_CoordinateMetho	(_ElevationCo_I	DateWhenStatusWa	Blowing_yield [I/s]	water_level [m]
Geo, Water Affairs - Pretoria	2531AA00027	Borehole	-25.09036	31.17065 Estimated 1:50 000 map	100	01/03/1960	1.0	[,,,]
Geo, Water Affairs - Pretoria	2531AA00028	Borehole	-25.08564	31.17315 Estimated 1:50 000 map	100	25/02/1960	0.3	
Geo, Water Affairs - Pretoria	2531AA00033	Borehole	-25.09036	31.17066 Estimated 1:50 000 map	100	24/02/1960	0.4	
Geo, Water Affairs - Pretoria	2531AA00034	Borehole	-25.09564	31.17231 Estimated 1:50 000 map	100	19/12/1960	0.3	
Geo, Water Affairs - Pretoria	2531AA00119	Borehole	-25.11644	31.12871 Estimated 1:50 000 map	10	08/07/1994	no info	
Geo, Water Affairs - Pretoria	2531AA00121	Borehole	-25.14144	31.12481 Estimated 1:50 000 map	10	08/07/1994	no info	
Geo, Water Affairs - Pretoria	2531AA00122	Borehole	-25.12786	31.16175 Estimated 1:50 000 map	10	08/07/1994	no info	
Geo, Water Affairs - Pretoria	2531AA00123	Borehole	-25.13424	31.16092 Estimated 1:50 000 map	10	08/07/1994	no info	
Geo, Water Affairs - Pretoria	2531AA00125	Borehole	-25.13734	31.14121 Estimated 1:50 000 map	10	08/07/1994	no info	
Geo, Water Affairs - Pretoria	2531AA00149	Borehole	-25.14481	31.12631 Estimated 1:50 000 map	100		1.3	9.0
Geo, Water Affairs - Pretoria	2531AA00150	Borehole	-25.14481	31.12631 Estimated 1:50 000 map	100		0.0	
Geo, Water Affairs - Pretoria	2531AA00151	Borehole	-25.14481	31.12631 Estimated 1:50 000 map	100		0.1	20.0
Geo, Water Affairs - Pretoria	2531AA00152	Borehole	-25.14481	31.12631 Estimated 1:50 000 map	100		0.0	