NINHAM SHAND CONSULTING SERVICES

GEOTECHNICAL INVESTIGATION: ETHANOL AFRICA'S GRAIN ALCOHOL PLANT, BOTHAVILLE

Report No.: JW121/06/A872

August 2006

<u>SYNOPSIS</u>

i.

This report presents the findings of a geotechnical investigation for the proposed Grain-Alcohol Plant at Bothaville in the north-western Free State. The investigation included fourteen large diameter auger holes, eleven test pits and laboratory testing of the soil samples.

The site is underlain by fine grained sandstones of the Vryheid Formation, Karoo Sequence. The average depth to the rockhead is 2,8m varying from 1,8m to 4,1m across the site. The soil profile above the sandstone consists of fine sandy hillwash, a poorly developed pedogenic horizon and fine sandy residual soils. The hillwash has a collapsible grain structure. No heaving soils were encountered on site.

Due to the collapsible nature of the hillwash, light structures should be founded on stiffened raft foundations or on a soil raft. Medium and heavy structures may be founded on spread footings extending to the residual sandstone below the hillwash and to the very soft rock weathered sandstone respectively. Piled foundations may also be considered for heavier structures.

The area is situated in a zone of mining induced seismicity and design precautions are required.

Both the hillwash and the residual sandstone classify as fine silty sands with poor to moderate compaction characteristics. The upper hillwash layer is suitable for use in lower subgrade layers below roads and construction of lightly loaded soil rafts. Selected layers, including the terrace wearing course will have to be imported.

The surface sands will soften on wetting and will not form a suitable construction platform. Impact rolling of critical areas of the site should be considered and an imported gravel wearing course should be provided to improve the traffickability of the site during construction.

NINHAM SHAND CONSULTING SERVICES

GEOTECHNICAL INVESTIGATION: ETHANOL AFRICA'S **GRAIN ALCOHOL PLANT, BOTHAVILLE**

REPORT NO: JW121/06/A872

	PAGE	
1.	INTRODUCTION	1
2. 2.1 2.2 2.3	Information supplied	1 1 2
3.	PROPOSED DEVELOPMENT	2
4. 4.1 4.2 4.3 4.4 4.5	Description	3 3 4 5 5
	Field work Laboratory testing	6 6 8
	SOIL PROFILE AND MATERIAL PROPERTIES Soil profile Material properties Excavatability	8 8 8 10
7. 7.1 7.2 7.3 7.4	FOUNDING OPTIONS Shallow spread footings Deeper foundations on residual sandstone Spread footings on rock Piled foundations	10 10 10 11 11
8. 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	RECOMMENDATIONS Site preparation Roads Light Structures Steel Framed Structures Heavy Vessels and Distillation Columns Tanks and Cooling Towers Silos Grain Off-Loading Bins and Reclaim Tunnel Pipe and Cable Racks	12 12 13 13 14 14 14 15 15 16
9.	CONCLUSIONS	16

Jones & Wagener Consulting Civil Engineers

APPENDICES

APPENDIX A	Auger hole profiles
APPENDIX B	Test pit profiles
APPENDIX C	Summary of soil test results
APPENDIX D	Data from preliminary investigation

DRAWINGS

Drawing A872-00-001: Geotechnical Investigation – Trial hole layout. Revision 1

iii

NINHAM SHAND CONSULTING SERVICES

GEOTECHNICAL INVESTIGATION: ETHANOL AFRICA'S GRAIN ALCOHOL PLANT, BOTHAVILLE

REPORT NO: JW121/06/A872

1. INTRODUCTION

Ethanol Africa are planning to construct a grain alcohol plant in the maize producing area of Bothaville in the north-western Free State. The consulting engineers on the project, Ninham Shand Consulting Services, requested Jones & Wagener to carry out a detailed geotechnical investigation for the proposed plant to supplement the preliminary investigation carried out by themselves earlier.

This report describes the investigation fieldwork which was carried out from 10th to 12th July 2006 and presents the results of the subsequent laboratory testing. The report provides recommendations for the preparation of the site and for founding of the major structures.

2. <u>TERMS OF REFERENCE</u>

2.1 Appointment

Following an initial meeting with Mr. Jean Louw of Ninham Shand on 3rd July, Jones & Wagener provided a proposal and cost estimate for the geotechnical investigation (our reference A872pd01_let_Proposal.doc, dated 3 July 2006). In a letter from Ninham Shand dated 6 July 2006 (Ref: 401364/LO/981), Jones & Wagener were requested to proceed with the investigation in terms of this proposal.

2.2 Information supplied

Jones & Wagener were supplied with the following drawings and reports:

- Preliminary layout drawing: "Grain Alcohol Plant, Site Layout". Lampets drawing no. UGH001-GA-00-01-L.
- Revised layout drawing: Electronic copy
- > Plant layout drawings (reduced scale photocopies): various.

JONES & WAGENER (PTY) LTD REG NO. 93/02655/07 VAT No. 4410136685

DIRECTORS: PW Day Preng MSc(Eng) FSAICE D Brink Preng Hons Beng FSAICE JA Kempe Preng BSc(Eng) GDE MSAICE CG Waygood Preng BSc(Eng) MSAICE PG Gage Preng Ceng BSc(Eng) GDE MSAICE GR Wardle Preng MSc(Eng) MSAICE JP van der Berg Preng PhD Meng MSAICE ASSOCIATES: BR Antrobus PrSciNat BS(Hons) MSAIEG MD Grossett Preng Ceng BSc(Eng) GDE MSAICE AAArb RA Cooper Preng BSc(Eng) GDE MSAICE JR Shamrock Preng MSc(Eng) MSAICE MIVM JE Glendinning PrSciNat MSc(Env. Geochem) DC Rowe BSc(Eng) MSAICE NJ Vermeulen Preng PhD Meng MSAICE SW Jacobsz PhD Meng GMSAICE MW Palmer MSc(Eng) AJ Bain BEng CONSULTANTS: W Ellis Preng Ceng MIStructe Report 401364/BN/R/1: Geotechnical Report for Proposed New Ethanol Plant in Bothaville. Report to Ethanol Africa on preliminary investigation by Ninham Shand, April 2006.

2.3 Abbreviations and symbols

Commercial

J & W	Jones & Wagener
NSCS	Ninham Shand Consulting Services
NHBRC	National Home Builders Registration Council

Technical

°C	Degrees C elsius (Temperature)
CBR	Californian Bearing Ratio (compacted soils)
LDH80	Truck mounted auger with 80 foot reach
LL	Liquid Limit
LS	Linear Shrinkage
MF60	Truck mounted auger with 60 foot reach
MDD	Maximum Dry Density (compacted soils)
Mod. AASHTO	Modified AASHTO MDD (compacted soils)
PI	Plasticity Index
SG	Specific Gravity
TLB	Tractor-mounted Loader/Backhoe

3. PROPOSED DEVELOPMENT

The plant will be used to produce ethanol from maize. It comprises the following major components:

- Grain offloading station with a 8m deep basement
- Seven 35m diameter grain silos, 45m high
- > A 36m high milling and mashing plant, approximately 16m x 20m in plan
- A 465 kilolitre per day ethanol plant consisting of fermentation, evaporation, liquefaction, cooling, yeast propagation and distillation modules; up to 45m high
- Product storage tanks and road loading station
- Ancillary structures (boiler house, waste water treatment plant, cooling towers, workshops, laboratory, control room, offices, stores etc).

The layout of the plant as provided electronically by NSCS is shown on J&W's drawing A872-00-001 at the back of this report.

4. LOCATION AND DESCRIPTION OF SITE

4.1 Location

The site is situated on a 40 hectare site on the western side of the Bothaville Industrial area. The Industrial Area is situated on the western side of the R30 Provincial Road from Orkney to Bothaville on the northern side of the town as shown in Figure 1.

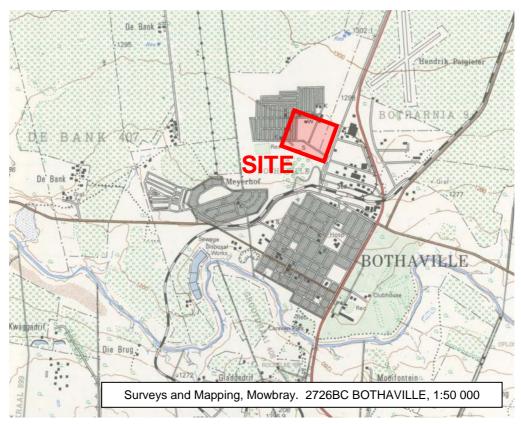


Figure 1: Location of site

4.2 Description

From the 1:50 000 topographical map (see Figure 1), the western parts of the site were previously occupied by a residential development which has since been demolished.

The site, which is relatively flat, is crisscrossed with a number of tracks and footpaths. The eastern half of the site is covered with indigenous grass, scattered thorny shrubs and isolated indigenous trees (Photo 1). The western portion of the site is covered with the remains of the residential development with numerous broken bricks, cracked concrete floor slabs, shallow excavations, heaps of ash and other foreign material (Photo 1 and Photo 2). Only one concrete walled room (cold room or strong room) has escaped demolition. Vegetation over this area of the site is patchy comprising mainly burnt indigenous grasses, weeds and occasional shrubs and trees.

4

Photo 1: Looking east from centre of site. Bothaville Industrial Area in background.

Photo 2: Looking west from centre of site. Demolished structures in background.

The only visible service on the site is an overhead power line which cuts across the north west corner. There are, however, a number of linear depressions visible on the eastern side of the site which could correspond to backfilled service trenches. These features were avoided during positioning of test pits.

4.3 Regional geology

The Bothaville area is situated on the Vryheid Formation of the Karoo Sequence comprising sedimentary strata including sandstones, siltstones and shales. One or more dolerite sills are present in the area and numerous dolerite outcrops are shown on the 1:250 000 geological map¹ along the course of the Valsrivier mainly to the south of the site but also to the east and west (See Figure 2).

The site itself is underlain by fine grained sandstone of the Vryheid Formation which is covered by a thin mantle of recent aeolian sand.

Council for Geoscience (2000). 1:250 000 Geological Map - 2726 Kroonstad.

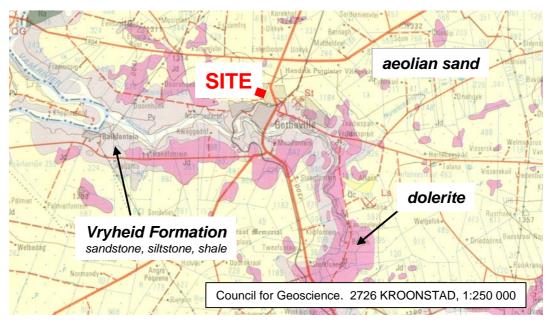


Figure 2: Geological map: 1:250 000 (Council for Geoscience)

4.4 Climate

Bothaville lies near the western edge of the Highveld Climatic Region². Rainfall is in the form of showers and thundershowers sometimes accompanied by hail, mainly in the summer months (October – March). The average precipitation in the region is approximately 570mm per annum³. The summers are warm with an average daily maximum temperature on approximately 31°C in January. Winter nights are cold with an average daily minimum temperature of 0° - 1°C in June and July with frequent frost in low lying areas. Sunshine duration in Summer is approximately 60% rising to 80% (of the possible) in Winter. Surface winds are generally light but very occasional tornados occur.

4.5 Seismicity

In this area of South Africa, mining induced seismicity (earth tremors) are more prevalent than natural seismic events. According to SABS 0160⁴, Bothaville falls within Zone 2 where account needs to be taken of mining induced seismic events. The maximum seismic event with a 10% probability of being exceeded in a 50 year period is 200cm/sec. This value agrees with more recent data produced by the Council for Geoscience⁵ indicates a value of 0,20g.

Seismic design precautions are required.

² Weather Bureau, Republic of South Africa. **Climate of South Africa. Part 8 – General Survey. Publication WB28**. Department of Environmental Affairs, RSA.

³ Weather Bureau, Republic of South Africa. Climate of South Africa. Climate statistics from 1961 – 1990. Publication WB42. Department of Environmental Affairs, RSA.

⁴ SABS 0160 – 1989 (as amended 1990) **Code of practice for the general procedures and loadings to be adopted in the design of buildings**. S.A. Bureau of Standards, Pretoria.

⁵ Kijko A., Graham G., Bejaichund M., Roblin D.L. and Brandt M.B.C. (2003) **Probabilistic Seismic-Hazard Maps for South Africa**. Council for Geoscience, Pretoria.

5. INVESTIGATION

5.1 Field work

Fourteen large diameter auger holes and eleven test pits were excavated on the site between 10th and 12th July 2006.

The test pits (TP1 to TP11), were excavated using a JCB Site Master TLB equipped with a standard 600mm wide bucket. The test pits were excavated to a depth of between 3,0 and 4,0m and were generally terminated in very stiff to very soft rock material where the rate of excavation was slow. The sidewalls of all test pits were stable and the holes could be safely profiled in situ.

Most of the large diameter auger holes (AH1 to AH11) were drilled using an LDH 80 auger rig equipped with an 800mm diameter, double start flight auger. After this machine broke down during drilling of AH11, an MF 60 auger rig was brought to site and the remainder of the holes were completed using this rig with the same auger flight as before. The auger holes were drilled to depths varying from 3,8m – 7,2m, generally terminating on very soft rock to soft rock sandstone. The rate of penetration of the drilling rig in the stiff residual soils and the very soft rock sandstone was slow and the average drilling time was of the order of 60 minutes per hole. With the exception of some minor sloughing of the loose sands between 0,1 and 0,8m below ground level, the holes were stable and could be safely profiled in situ. All test pits and auger holes were profiled in accordance with standard practice^{6,7}. The profiles of the auger holes are given in Appendix A and the profiles of the test pits in Appendix B.

The positions of all test pits and auger holes are indicated on drawing A872-00-001 at the back of this report.

5.2 Laboratory testing

During profiling, disturbed, undisturbed and bulk samples were taken for laboratory testing. Table 1 provides details of the sample locations and the tests undertaken.

During the consolidometer testing, the samples were loaded initially at natural moisture content to an applied pressure of 125kPa. The samples were then saturated at that load and the resulting heave / settlement observed. Further loading and unloading of the sample then continued in the normal manner.

The results of the laboratory tests are summarised in Appendix C.

⁶

Brink A.B.A. and Bruin R.M.H. (eds) (1990) **Guidelines for Soil and Rock Logging in South Africa**, 2nd Impression 2002. Proc. Geoterminology Workshop. SAIEG - AEG - SAICE 1990.

⁷ Jennings J.E., Brink A.B.A. and Williams A.A.B. (1973) **Revised Guide to Soil Profiling for Civil Engineering Purposes in South Africa**. The Civil Engineer in South Africa, January 1973.

Sample	Depth (m)	Sample Description	Grading & Indicator	Moisture Content	Mod & CBR	Consoli- dometer	Density & SG
AH1/1	2,5	Disturbed	Х				Х
AH1/2	0,9	Disturbed	Х	х			
AH2/1	1,1	Disturbed	Х	х			
AH3/1	1,7	Disturbed	Х				
AH5/1	1,7	Disturbed	Х	х			
AH5/2	1,0	Disturbed	Х	х			
AH6/1	1,0	Disturbed	Х				
AH8/1	2,3	Block	Х			х	
AH11/1	3,3	Disturbed	Х				
TP1/1	0,6	Block	Х			х	
TP1/2	0,2 - 0,6	Bulk x 2	Х	х	х		
TP3/1	1,5	Disturbed	Х				
TP3/2	0,9	Block	Х			х	
TP4/1	4,1	Disturbed	Х				
TP4/2	1,2	Disturbed	Х	х			
TP4/3	0,9	Disturbed	Х	х			
TP4/4	0,4	Disturbed	Х	х			х
TP5/1	0,1 - 0,5	Bulk x 2	Х	х	х		
TP5/2	1,3	Block	Х			х	
TP5/3	3,0	Disturbed	Х				
TP6/1	0,7 - 1,4	Bulk x 2	Х	х	х		
TP6/2	3,0	Block	Х			х	
TP6/3	3,4	Disturbed	Х				
TP7/1	2,6	Block	Х			х	
TP8/2	8,2	Disturbed	Х	х			
TP8/3	1,0	Disturbed	Х	х			
TP9/1	2,1	Disturbed	Х				х
TP11/1	0,1 - 0,8	Bulk x 2	Х	х	Х		
TP11/2	0,8-1,4	Bulk x 2	Х	х	Х		

Table 1: Summary of soil samples submitted for laboratory testing

5.3 Information from NSCS reports

During the course of the preliminary investigation carried out by Ninham Shand Consulting Services, eight test pits, two boreholes and six hand held drop weight penetrometer tests were undertaken on the site. The positions of these tests are shown on drawing A872-00-001. The factual data from these tests is given in Appendix D.

6. SOIL PROFILE AND MATERIAL PROPERTIES

6.1 Soil profile

The soil profile is reasonably uniform across the entire site and may be subdivided into the following horizons.

HORIZON	DEPTH*	DESCRIPTION
Hillwash	1,9m avg. (1,2m – 2,7m)	Moist, brown and orange-brown, loose, slightly porous, silty fine sand. Upper 100mm generally desiccated and dense. The profile is illuviated (fines leached downwards) and the lower half of the layer generally has a slightly higher clay content and a higher consistency. Varying degrees of ferruginisation occur near the transition with the underlying residual soils.
Residual sandstone	2,8m avg. (1,8m – 4,1m)	Slightly moist, light brown mottled orange and light grey, firm to very stiff, slightly ferruginised, silty fine sand.
Weathered sandstone7,2m+ (Depth of auger refusal varies from 3,8m to 7,2m)		Light grey to off-white, highly weathered, very soft rock becoming soft rock, indistinctly bedded and jointed, fine grained sandstone.

Table 2:	General description	of soil horizons with	n depths to base of horizon
----------	---------------------	-----------------------	-----------------------------

* Depth given to base of horizon from present ground level. Figures in brackets denote range.

No seepage or water table was encountered in any of the boreholes and test pits excavated on this site.

6.2 Material properties

Table 3 below summarises the material properties for each of the material types encountered on this site.

Horizon:	Hillwash	Illuviated	Residual
Property		Hillwash	sandstone
Material Type:			
Description	Sand or silty sand	Silty sand	Silty sand
Unified classification	Generally SM	Generally SC	Generally SC
AASHTO Classification	A-2-4[0]	A6[1] to A-2-4[0]	A6[2] to A-2-4[0]
TRH14	G9 – G7	SPOIL	Not tested
Grading:			
% Coarse sand and gravel	23 (20 – 26)*	20 (17 – 23)	14 (2 – 26)
% Fine sand	55 (51 – 59)	45 (34 – 50)	48 (41 – 61)
% Silt	19 (14 – 22)	28 (24 – 37)	29 (22 – 33)
% Clay	4 (1 – 6)	8 (4 – 12)	9 (7 – 12)
Grading Modulus	0,84 (0,79 – 0,95)	0.73 (0,68 – 0,87)	0,68 (0,59 – 0,91)
Atterberg Limits:			
Liquid Limit	19 (16 – 23)	26 (22 – 35)	27 (20 – 30)
Plasticity Index	5 (0 – 10)	9 (5 – 16)	9 (6 – 11)
Linear Shrinkage	2,1 (0 – 3,3)	4,4 (3,3 – 6,0)	4,7 (3,3 – 6,0)
Field Density and SG:			
Density (kg/m ³)	1707 (1583-1950)	1465 (1 test)	1781 (1671- 906)
Moisture Content (%)	8 (5 – 11)	11 (7 – 14)	12 (9 – 14)
S.G.	2,65 (2,64 – 2,65)	2,65 (1 test)	2,63 (2,51–2,71)
% Collapse @ 125kPa	2,9 (2,6 – 3,2)	8,6 (1 test)	0,8 (0 – 2,2)
Compaction Characteristics:			
Mod AASHTO MDD (kg/m ³)	1958 (1940-1991)	1879 (1846-1911)	Not tested
OMC (%)	10,2 (9,6 – 10,6)	12,2 (11,2-13,2)	
CBR @ 90% Mod AASHTO	11 (7 – 18)	1,6 (1,6-2,1)	
CBR @ 95% Mod AASHTO	16 (10 – 24)	2,4 (1,8 – 2,9)	

9

 Table 3:
 Summary of laboratory test results

* Average and (range)

The salient points from the above summary are:

- The hillwash soils, including the illuviated material, have a collapsible grain structure. Collapse settlements of 3% - 9% were measured at 125kPa which, when extrapolated to 200kPa gives a collapse potential of 5% -11%. This indicates that moderate to severe trouble can be expected with performance of foundations for light structures placed in this material (Schwartz, 1985)⁸.
- > No potentially expansive material was encountered on the site.
- Although the effect of illuviation of the hillwash (accumulation of fines at the base of the layer) is clearly evident in profile, there are only minor differences in grading and plasticity index from the laboratory tests. In fact all the materials on site, transported and residual, grade as a silty fine sand of low to moderate plasticity (SC and SM according to the unified classification).
- The compacted strength of the hillwash soils as measured by the CBR varies quite considerably. CBRs at 90% Mod. AASHTO vary from 1 to 18 and the TRH classification from spoil to G7. The marked difference between the CBR of the

⁸ Schwartz K. (1985) **Collapsible Soils; State of the Art**. Civil Engineering in South Africa, July 1985, p379-393.

upper hillwash and the lower illuviated hillwash from the test results is very unexpectedly pronounced. On site, a lesser distinction between the two materials is expected.

6.3 Excavatability

All transported and residual soils classify as soft excavation in terms of the definitions contained in SABS1200D⁹. The very soft rock or better weathered sandstone will generally classify as intermediate excavation, i.e. material that can be excavated by heavy ripping or using a large excavator.

The only area of the site where hard rock excavation may be required is at the grain off loading area (AH 6) where the depth of the reclaim tunnel below the offloading bins is expected to be about 8m whereas near-refusal was encountered in auger hole AH6 at 4,5m. It would be prudent to allow for hard rock excavation below 4,5m for this structure.

7. FOUNDING OPTIONS

7.1 Shallow spread footings

As indicated above, the hillwash sands have a potentially collapsible grain structure. In accordance with the NHBRC classification¹⁰, portions of the site would classify as C2 with estimated collapse settlements in excess of 10mm. As such, conventional strip footings founded directly on the hillwash sands are not recommended.

Practical founding solutions for light structures such as offices, laboratories etc include stiffened raft foundations, deep strip footings on the underlying ferruginised soil / residual sandstone or a soil raft. Although the NHBRC permit the over-excavation and recompaction of material within the foundation trenches, our experience is that this operation is difficult and often unreliable.

7.2 Deeper foundations on residual sandstone

Over much of the site, the top of the residual sandstone is within 3m of the ground surface. This material generally has a stiff or better consistency and will form a suitable founding stratum for moderately loaded structures on spread footings or foundation rafts.

Due to the depth of founding, the bearing capacity of these soils should be adequate. Nevertheless, a maximum bearing pressure of 200kPa is recommended in order to ensure practical footing sizes and to control settlements.

The expected settlement of spread footings placed on the residual sandstone is estimated to be of the order of 1,5mm per metre width of foundation per 100 kPa of net bearing pressure for a square footing increasing to 2,5mm per metre width per 100kPa for a strip footing. For example, a 1,5m wide square footing carrying a nett bearing pressure of 200kPa would be expected to settle by 4,5mm (say 5mm) i.e. 1,5mm x 1,5 x 200/100. These values are based on an estimated elastic modulus of the residual soils of 50MPa

⁹ SABS 1200D:1988. **Standardised specification for civil engineering construction. D: Earthworks.** S.A. Bureau of Standards, Pretoria.

¹⁰ National Home Builders Registration Council. (1999) **Home Building Manual, Parts 1, 2 and 3.**

over the full depth of influence of the foundation. As the stiffness of the soil profile improves with depth, the above prediction will become increasingly conservative as the width of the footing increases.

7.3 Spread footings on rock

Over most of the site, the rockhead is present at a depth of between 2,5m and 4,1m. The rock is generally a very soft rock, fine grained sandstone improving gradually in consistency with depth. Spread footings or raft foundations for heavy structures may be placed on the rockhead using a maximum allowable bearing pressure of 600kPa. Higher bearing pressures are possible but will require further investigation or detailed inspection of the foundations during construction.

7.4 Piled foundations

Piled foundations may be considered below heavy structures in areas where the depth to rockhead makes the use of spread footings unattractive.

The stable soil profile and deep water table on the site are ideally suited to the installation of large diameter bored piles. Pile founding depths of between 6 and 8m are expected over most of the site. Note that a more powerful auger rig than was used during the investigation will be capable of drilling to depths in excess of those achieved during the investigation and it will probably not be necessary to drill the pile holes to refusal of such rigs except in the case of very heavily loaded piles.

On the assumption that the piles will be founded on soft rock sandstone (UCS approximately 6MPa), an allowable end bearing stress of 3MPa may be assumed for hand cleaned pile holes. Note that hand cleaning is not possible in holes smaller than 750mm diameter. In such cases, the end bearing capacity of the pile should be ignored and the pile designed as a friction pile. The allowable socket friction in very soft rock sandstone may be taken as 150kPa increasing to 200kPa in very soft rock to soft rock sandstone.

Assuming a socket length of 2m and founding of the pile on soft rock or better sandstone gives the following capacities for piles of various diameters:

Pile Diameter	Shaft Friction	Base Capacity	Total Working Load
450mm	420kN	-	420kN
600mm	570kN	-	570kN
750mm	700kN	1 300kN	2 100kN
900mm	850kN	1 900kN	2 750kN
1 050mm	1 000kN	2 600kN	3 600kN

Table 4: Capacity of hand cleaned bored cast in situ piles of various diameters

Based on: 2m socket in very soft rock (150kPa shaft friction) End bearing on soft rock (3MPa end bearing)

Higher pile capacities may be achieved by increasing the socket length or augering to medium hard rock sandstone at greater depth.

Predrilled driven cast in situ piles may be considered as an alternative to bored piles. In view of the relatively shallow rockhead (and hence the short shaft length) it is recommended that predrilling should be undertaken to the top of the very soft rock sandstone and the pile based out at this level. Under these circumstances, the following pile capacities may be assumed for driven cast in situ piles.

Pile Diameter	Total Working Load
355mm	500kN
410mm	750kN
530mm	1 200kN
600mm	1 600kN

Table 5: Capacity of driven cast in situ piles of various diameters¹¹

Single piles below columns should be designed to take account of moments induced by construction tolerances and lateral loading during seismic events. Short piles with nominal socket lengths are particularly susceptible failure under lateral loading.

8. <u>RECOMMENDATIONS</u>

8.1 Site preparation

Although the topography of the site is relatively flat, the surface of the site undulates due mainly to human activity. Existing roads, tracks and footpaths tend to be lower than the overall level of the site. In other areas, the site has been elevated by the placement of fill material (e.g. the area to the east of AH12 and TP10). Localised zones of disturbed soil are also likely to be present in the area previously occupied by residential development. Terracing of the site will therefore be required.

Prior to commencement of site preparation works, all remaining rubble and surface vegetation should be removed to spoil. Topsoil with roots (generally to 150mm depth) should be stripped and stockpiled for landscaping and rehabilitation purposes.

The minimum requirements for terracing of the site involve cutting the in situ sands to fill. Prior to placement of fill, a "road bed" preparation should be carried out in which the exposed surface sands are scarified to a depth of 150mm, the moisture content adjusted to OMC $\pm 2\%$ and the upper 150mm of material compacted to 90% Mod. AASHTO Maximum Dry Density. Fill material should be placed and compacted to 93% Mod. AASHTO Maximum Dry Density at OMC $\pm 2\%$. Due to the fine grained nature of the material, the maximum (compacted) layer thicknesses should not exceed 200mm unless it can be shown that uniform compaction can be obtained throughout the full thickness of the thicker layer with the compaction equipment to be used on the site.

Note that the above site preparation will not ensure traffickability of the site in areas of cut and thin fill. Such a terrace will also not provide a suitable working platform for cranes with heavily loaded outriggers.

¹¹ Frankipile South Africa (Pty) Ltd (1995) **A guide to practical geotechnical engineering in Southern Africa**. Third edition. Franki Africa, Johannesburg.

As an alternative to the above minimum recommendations, consideration may be given to the use of impact rolling to improve the consistency of the transported sands to a depth of between 1,2m and 1,5m and reduce the collapse potential of this material. If this solution is adopted, care should be taken to preserve the in situ moisture content of the material to be compacted as the sands will not compact adequately when dry. Compaction should first be undertaken on the side of the terrace where fill is to be placed. On completion of impact rolling, the disturbed upper layer of the compacted material should be scarified, moistened to OMC $\pm 2\%$ and compacted with a conventional roller. A conventional cut to fill operation, as described above, may then take place followed by further impact rolling of the cut side of the terrace. Note that impact rolling could result in a drop in ground level of between 100mm and 200mm due to densification of the soils at depth.

Terraces compacted as described above should be capable of supporting applied bearing pressures of up to 150kPa provided settlements are checked and found to be acceptable. Where the specified depth of excavation results in hillwash remaining below the compacted terrace, bearing pressures should not exceed 100kPa.

A wearing course of G7 or better material will be required to improve traffickability of the site particularly in the rainy season. It is also recommended that falls of at least 1:200 be provided on all terraces to encourage surface drainage.

8.2 Roads

The hand held drop weight penetrometer tests given in Appendix D indicate that the CBR of the in situ soils to a depth of approximately 1,3m may be as low as 2 (generally ranging from 2 to 8). This is consistent with the profile descriptions and laboratory test results.

Under these circumstances, it is recommended that the road design be based on a CBR of <3 for the in situ material and a CBR of 3 to 7 after in situ compaction. As the illuviated hillwash below an average depth of 1,0m may have a CBR of less than 3, the CBR of the in situ material should be checked by penetrometer testing of the roadbed or laboratory testing during construction. Where there is any doubt about the quality of the in situ material, a further layer of G9 material (lower subgrade) should be provided.

If the roadbed is kept dry, no pioneer layer will be required. However, any flooding of the roadbed due to rain will soften the in situ materials and make them both untraffickable and unworkable.

As indicated in Section 6.2, the upper hillwash sands generally classify as G7 to G9 materials according to TRH14. Accordingly, these may be used in the lower subgrade layers in road construction. All selected material (G7 and above) will have to be imported. Dolerite borrow pits in the area will probably yield the most convenient source of such material.

8.3 Light Structures

Light structures include single storey buildings such as administration buildings (offices, gate house, etc.), laboratories, MCC, control rooms, etc.

Due to the collapsible nature of the hillwash sands, light structures should be founded on stiffened raft foundations or on a mattress of compacted soil (soil raft) as prescribed for C2 sites by the NHBRC¹². The NHBRC recommendations regarding articulation of the superstructure and site drainage should also be followed.

¹² National Home Builders Registration Council. (1999) **Home Building Manual, Parts 1, 2 and 3.**

Where a mattress of compacted soil (soil raft) is to be formed on which light structures are to be founded, it is recommended that the following procedure be followed.

- Excavate all hillwash sands to the top of well ferruginised or residual soils. If a lesser depth is specified by the designer, this should not be at less than 1,5 times the breadth of the foundation below founding level.
- Scarify the material at the base of the excavation to a depth of 150mm, adjust the moisture content to OMC ±2% and compact the upper 150mm to a density of 90% Mod. AASHTO Maximum Dry Density.
- Replace the excavated sands in layers not exceeding 200mm thick compacting each layer to 95% Mod. AASHTO Maximum Dry Density at OMC ±2%. Note that, if it is not possible to obtain a compaction density of 95% on the first layer, the required density for this layer only may be reduced to 93% Mod. AASHTO.
- Continue terrace construction to the underside of floor level whereafter foundation trenches should be excavated into the compacted terrace. This is preferable to placing fill material between completed foundations.

8.4 Steel Framed Structures

Steel framed structures include structures such as workshops, stores and certain of the plant structures. These are likely to vary from light, flexible, sheeting clad structures to heavy, settlement sensitive processing plant structures subject to dynamic loading. The common factor is that loads are concentrated at column positions.

Light, flexible structures may be founded on spread footings extending to the top of the residual sandstone as described in Section 7.2.

Heavy and settlement sensitive plant should be founded on spread footings extending to the very soft rock sandstone or on piled foundations as described in sections 7.3 and 7.4. Note that large spread footings with heavy plinths or shear walls below ground level will provide better resistance to horizontal dynamic loading than vertical piles. If piled foundations are required to resist dynamic loads, the horizontal component of the load should be taken by raking piles rather than relying on subgrade reaction on vertical piles.

The soil preparation below the floors should be consistent with the loads to be imposed on the floors. Where floors are to be trafficked by heavy vehicles or forklifts, a full road preparation (or soil raft) should be provided as described in Sections 8.2 and 8.3.

8.5 Heavy Vessels and Distillation Columns

These are generally tall, heavy and settlement sensitive structures.

Such structures should be founded on raft foundations placed on the sandstone rock (Section 7.3) or on a group of piles (Section 7.4) with an appropriately designed pile cap. The design should take account of horizontal seismic loading particularly where the piles are founded on top of the rock or only socketed a short distance into rock.

8.6 Tanks and Cooling Towers

Steel tanks are generally capable of tolerating moderate differential settlements across the floor of the tank but require the perimeter of the tank to remain plane. Concrete ponds below cooling towers are less tolerant to settlement but are generally more lightly loaded.

It is recommended that tanks and cooling towers be founded on a soil raft as described in Section 8.3 with two additional provisions. Firstly, the soil raft should extend to the top of the residual sandstone in the case of small tanks and cooling towers and to the top of the weathered sandstone below large tanks (>150kPa bearing pressure). Secondly, the soil raft should be constructed using G7 or better material. Such material will probably have to be imported.

Allowance should be made for settlements of between 10mm and 15mm per 100kPa of applied load near the centre of the tank. A concrete ring beam should be provided if the walls of the tank are incapable of tolerating differential settlements of half the above magnitude.

Concrete ponds below cooling towers should be designed as rigid units in the case of small ponds or be provided with sealed movement joint in the case of larger ponds at the designer's discretion. Movement joints should be provided between adjacent ponds.

Bunded areas around tanks should be placed on a soil raft (say) 1,0m thick constructed as described in Section 8.3 using hillwash sands as a fill material. Sealed movement joints should be provided.

8.7 Silos

We understand that the silos are steel "tanks" with a conical concrete floor at the bottom of the tank section, supported on columns.

In view of the modest depth to rock in the vicinity of the silos (2,3m - 4,2m), it is recommended that the silos be founded on spread footings bearing on very soft rock or better as described in Section 7.3. Piled foundations may be considered but are unlikely to be effective due to the shallow depth of the rock. Short single piles will also be vulnerable to lateral loading during seismic events.

8.8 Grain Off-Loading Bins and Reclaim Tunnel

The grain off-loading bins and the reclaim tunnel extend to a depth of 8m below terrace level and are the deepest structures on site.

According to AH6, the top of the residual sandstone is at 1,5m and the rockhead at 2,1m. The excavation should be battered to 1:1,5 (V:H) in the hillwash and 1:1 in the residual soils. A 2m wide bench should be provided at the level of the rockhead. Excavation in the rock may be battered at 70° to the horizontal or stepped to achieve the equivalent overall slope or flatter.

If it is considered preferable to cut the sides of the excavation vertical, soil nailing may be considered over the upper 3m of the profile followed by rock bolts, mesh and a nominal gunite skin in the rock below.

Allowance should be made in the Schedule of Quantities for hard rock excavation below 4,5m but the quality of the material and the need for blasting should be assessed on site.

Backfill around the structure should be carefully controlled in order to prevent settlement below the approach roads. Layer thicknesses should be reduced commensurate with the type of compaction equipment to be used. Consideration should be given to the use of cement stabilised backfill below the approach roads and jockey slabs.

Where the conveyor tunnel comes up to ground level, appropriate measures should be taken to minimise or accommodate differential settlements caused by founding on in situ

hillwash. The use of a soil raft or the founding of supports on the residual sandstone may be considered.

16

8.9 Pipe and Cable Racks

Pipe and cable racks should be founded on spread footings on the residual sandstone (see Section 7.2) or small diameter piles (Section 7.4).

9. <u>CONCLUSIONS</u>

The site is considered suitable for the construction of the proposed Grain-Alcohol Plant. Adequate founding for heavy structures is available on very soft rock sandstone which underlies the site at a depth of 3m to 4m. Lighter structures may be founded on the residual sandstone, stiffened rafts or soil rafts.

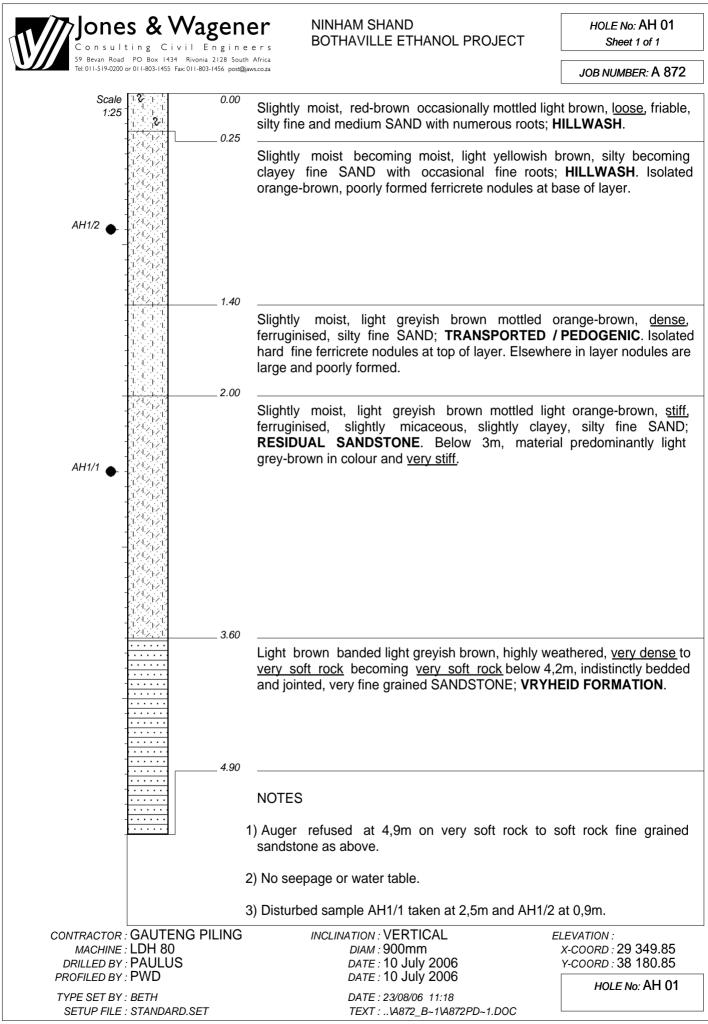
The two main geotechnical challenges on this site are the collapsible nature of the hillwash sand that blankets the site to a depth of approximately 2m and the poor compaction characteristics of the soils on the site. All selected fill material will have to be imported. Traffickability of the site during construction can be improved by impact rolling and provision of a gravel wearing course.

PETER DAY PrEng for Jones & Wagener

Rfuch

RICHARD PUCHNER PrSciNat for Jones & Wagener

25 August 2006


\\Day\alljobs\A872_Shands_Bothaville\A872pd02_rep.doc

Jones & Wagener Consulting Civil Engineers

APPENDIX A

AUGER HOLE PROFILES

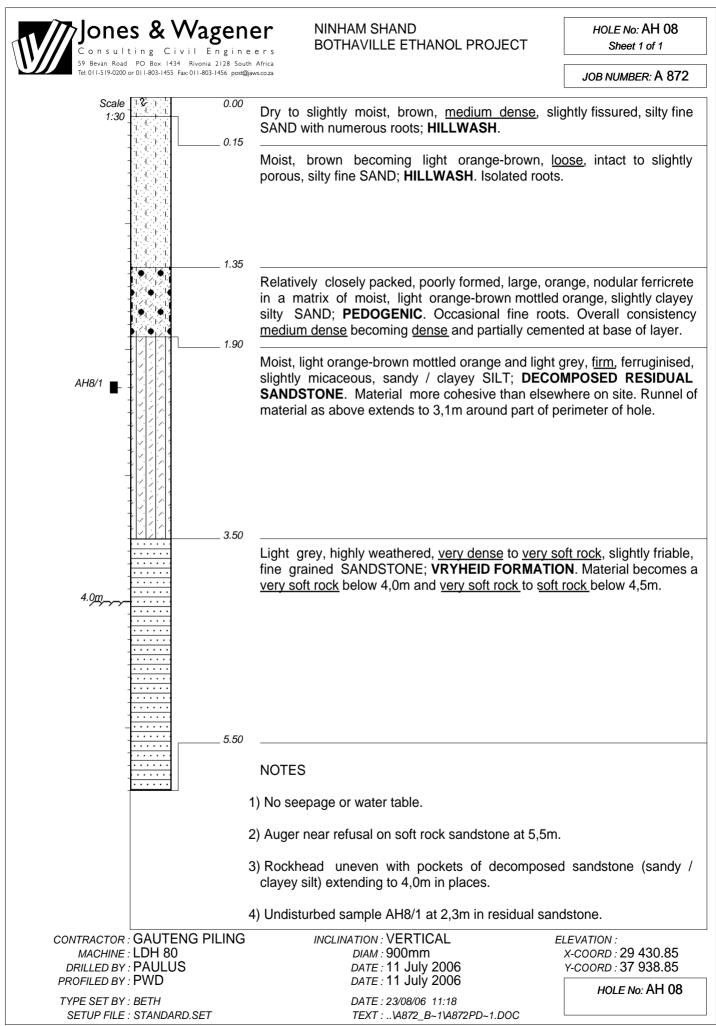
dot.PLOT 4015 J&W

59 Bevan Road PO Box 1434 Rivonia 2128 South Africa Tet: 011-519-0200 or 011-803-1455 Fax: 011-803-1456 post@jaws.co.za Scale 1.20 0.00 Slightly r 1:20 1.20 1.20 HLLWAS	JOB NUMBER: A 872
1:20 Juddiel Slightly r	
	noist, brown, loose, friable, intact, silty fine SAND with fine roots
1995 111	
	lightly yellowish brown, <u>loose</u> , intact, silty fine SAND with al fine roots; HILLWASH .
AH2/1 👝 ferruginis	prown, occasionally mottled orange-brown, <u>firm</u> , slightly ed, clayey fine SAND with isolated fine nodular ferricrete base of layer; ILLUVIATED TRANSPORTED MATERIAL ENIC.
1.45	
to <u>very</u> DECOMF	noist, light brown mottled light grey-brown and orange-brown, <u>stif</u> <u>stiff</u> , slightly ferruginised, slightly clayey, silty fine SAND; POSED RESIDUAL SANDSTONE . Material contains runnels o speckled black clayey silt.
1082684 - 1082684 - 1082684	
[16] 42] [16] 42] 2.15	
Dry to s	lightly moist, light grey mottled light orange-brown, <u>very stiff</u> to <u>rock</u> , slightly micaceous, fine grained SANDSTONE; VRYHEID TON .
soft_rock	y to off-white, highly weathered, <u>very soft rock</u> becoming <u>very</u> to <u>soft rock</u> below 3,2m and <u>soft rock</u> at base of hole indistinctly and jointed, slightly micaceous fine grained SANDSTONE DERMATION .
4.00	
NOTES	
1) Auger re	fused at 4,0m on soft rock fine grained sandstone.
, ,	
	age or water table.
3) Disturbe	d sample AH2/1 at 1,1m.
CONTRACTOR : GAUTENG PILING MACHINE : LDH 80 DRILLED BY : PAULUS	INCLINATION : VERTICAL ELEVATION : DIAM : 900mm X-COORD : 29 322.85 DATE : 10 July 2006 Y-COORD : 38 128.85
PROFILED BY : PWD TYPE SET BY : BETH	DATE : 10 July 2006 DATE : 23/08/06 11:18

M <i>M</i> one	s & \	Wagen	er NINHAM SHAND	HOLE No: AH 03		
Consul 59 Bevan Road	ting Ci PO Box 143	vil Engine 4 Rivonia 2128 South	ers Donna (Ville Linia (Ville)	Sheet 1 of 1		
Tel: 011-519-0200	or 011-803-1455	Fax: 011-803-1456 post@jav	ws.co.za	JOB NUMBER: A 872		
Scale 1:30	12 1 2 1 2 1 2 1 1 2	0.00	Slightly moist to moist, brown mottled light brown, SAND with fine roots; HILLWASH .	loose, friable, silty fine		
			Moist, light brown, <u>loose</u> , slightly friable, silty fir HILLWASH . Isolated fine roots.	ne and medium SAND;		
AH3/1		1.10	Moist, light brown mottled orange-brown, <u>medium</u> silty fine SAND as matrix to scattered, fine, hard poorly formed, orange-brown, large concret PEDOGENIC .	ferricrete nodules and		
-		1.90	Moist, light brown mottled orange-brown and ferruginised, clayey / silty fine SAND; DECO SANDSTONE .			
		2.30	Slightly moist, light orange-brown mottled light grovery dense, slightly ferruginised, silty fine SAND of light grey clayey silt; DECOMPOSED RESIDUAL	with occasional runnels		
-			Light grey-brown occasionally banded light weathered, <u>very soft rock</u> , indistinctly bedded at SANDSTONE; VRYHEID FORMATION . Material depth.	nd jointed, fine grained		
-						
-		5 50				
		5.50	NOTES			
		1) No seepage or water table.			
	2) Auger refused on soft rock fine grained sandstone at 5,5m.					
	3) Disturbed sample AH3/1 at 1,7m.					
CONTRACTOR . MACHINE . DRILLED BY .	: LDH 80		,	ELEVATION : X-COORD : 29 375.85 Y-COORD : 38 092.85		
PROFILED BY . TYPE SET BY .	: PWD : BETH		DATE : 10 July 2006 DATE : 23/08/06 11:18	HOLE No: AH 03		
SETUP FILE .	. STANDAI	KU.3E1	TEXT :\A872_B~1\A872PD~1.DOC	dot PLOT 4015 IRW/		

NINHAM SHAND BOTHAVILLE ETHANOL PROJECT

HOLE No: AH 04 Sheet 1 of 1


JOB NUMBER: A 872

0		0.00						
Scale . 1:40 -		0.00	Dry to slightly moist, light brown banded dark bro fine SAND with layers of ash and foreign mate FILL .					
- - -		_ 0.10 _ 1.05	Moist, brown, <u>loose</u> , slightly friable, intact, silty fine roots; HILLWASH . Material becomes light orange-b					
		_ 1.00	Relatively closely packed, fine, well developed r large orange-brown, poorly cemented, concretion light orange brown, slightly clayey, silty fine SAND;	is in a matrix of moist,				
-		1.15	Moist, light orange-brown mottled orange, <u>stiff</u> , fer fine SAND / sandy SILT with poorly formed concretions; FERRUGINISED RESIDUAL SANDST	, orange, ferruginous				
		1.50	Slightly moist, light orange-brown mottled orange stiff, silty fine SAND with runnels of light grey,	e and grey-brown, <u>very</u> sandy silt / clayey silt;				
-		1.90	HIGHLY WEATHERED TO DECOMPOSED RESID Light brown mottled light orange-brown, highly weat fine grained SANDSTONE with occasional runnels	athered, <u>very soft rock.</u>				
- - - -		2.60	as above; VRYHEID FORMATION.	y weathered, <u>very soft</u>				
-			<u>rock</u> , indistinctly jointed, fine grained SANDSTONE; VRYHEID FORMATION . Below 3,5m <u>very soft rock</u> to <u>soft rock</u> becoming <u>soft rock</u> a bottom of hole. Material becomes a uniform light greyish brown to light olive-brown with depth.					
-		7.00	NOTES					
		1) No seepage or water table.					
		2	2) Auger did not refuse but making very slow progress.					
		3	3) No samples taken.					
MACHINE : DRILLED BY	PAULUS	ILING	<i>DIAM</i> : 900mm DATE : 10 July 2006	LEVATION : X-COORD : 29 350.00 Y-COORD : 38 050.00				
PROFILED BY . TYPE SET BY .			DATE : 10 July 2006 DATE : 23/08/06 11:18	HOLE No: AH 04				
-	: STANDARD.SET	-	TEXT :					

Consult Consult	0	nginee		HOLE No: AH 05 Sheet 1 of 1
	PO Box 1434 Rivonia r 011-803-1455 Fax: 011-803-			JOB NUMBER: A 872
Scale 1:30 -			Dry to slightly moist, dark brown, silty fine SAN rubble; FILL . Numerous roots.	ID as matrix to scattered
- - - - -		 :	Moist, brown becoming slightly orange-brown, slightly cohesive, slightly porous, silty fine SAND (illuviated) with depth; HILLWASH . Scattered roo	becoming slightly claye
AH5/2 🔶 _			Moist, orange-brown mottled orange and light l clayey SAND; FERRUGINISED, ILLUVIATED HI	
AH5/1			Relatively closely packed, fine, well developed arger orange-brown, poorly cemented concreti brown mottled light grey and orange, clayey fin TRANSPORTED . Overall consistency medium de	ons in a matrix of mois e SAND; PEDOGENIC
+ + + + + + + + + + + + + + + + + + + +	14424 14424 14424 14424 14424	1	Moist, light orange-brown mottled light grey a ferruginised, clayey fine SAND; FERRU SANDSTONE.	nd orange, <u>firm to stif</u> JGINISED RESIDUAI
		1	Slightly moist, light grey mottled orange and of ferruginised clayey / silty fine SAND; DEC SANDSTONE.	
	· · · · · · · · · · · · · · · · · · ·		Light orange-brown mottled orange and light gre <u>s</u> soft rock, fine grained SANDSTONE; VRYHEID F	
-	· · · · · · · · · · · · · · · · · · ·	_ 3.70 _		and the second
		2	Light grey-brown, occasionally mottled orange-to <u>very soft rock</u> to <u>soft rock</u> , indistinctly jointed, SANDSTONE; VRYHEID FORMATION . Consistent with depth.	fine grained RESIDUA
	· · · · · · · · · · · · · · · · · · ·	6.00	NOTES	
-		1)	No seepage or water table.	
		2)	Auger close to refusal and making slow progress	
		3)	Disturbed sample AH5/1 at 1,7m and AH5/2 at 1,	,0m.
L CONTRACTOR : MACHINE : DRILLED BY :	LDH 80	ILING	INCLINATION : VERTICAL DIAM : 900mm DATE : 10 July 2006	ELEVATION : X-COORD : 29 385.00 Y-COORD : 38 030.00
PROFILED BY :			DATE : 10 July 2006	1-000KD : 30 030.00

Jones & Wagene Consulting Civil Engined		HOLE No: AH 06 Sheet 1 of 1
59 Bevan Road PO Box 1434 Rivonia 2128 South / Tel: 011-519-0200 or 011-803-1455 Fax: 011-803-1456 post@jaw		JOB NUMBER: A 872
Scale 0.00	Dry to slightly moist, dark brown, loose, slightly with numerous roots. HILLWASH .	organic, silty fine SAND
	Moist, brown, <u>very loose</u> , slightly porous, slightly HILLWASH . Isolated fine roots.	v friable, silty fine SAND;
AH6/1	Moist, orange-brown mottled orange, <u>loose</u> to ferruginised, clayey / silty fine SAND; FERRUG HILLWASH . Isolated poorly formed large orang base of layer.	GINISED, ILLUVIATED
	Closely packed, well developed, hard ferricrete n gravel in a matrix of moist, light orange-brown, PEDOGENIC / PEBBLE MARKER . Overall consis	clayey / silty fine SAND;
2.10	Slightly moist, light brown mottled orange-br ferruginised, clayey SAND; DECOMPOSED RESI	
 	Light orange-brown mottled orange-brown and highly weathered, <u>very dense</u> to <u>very sc</u> SANDSTONE; VRYHEID FORMATION . Occasi clayey silt with roots on joint planes.	oft rock, fine grained
	Light greyish brown, highly weathered, <u>very sol</u> SANDSTONE; VRYHEID FORMATION . Occasi zones. Description of material becomes <u>very sof</u> 3,3m and <u>soft rock</u> below 3,8m.	onal orange ferruginised
	NOTES	
1)	No seepage or water table.	
2) Auger drilling with difficulty - near refusal.	
3) Disturbed sample AH6/1 at 1,0m.	
CONTRACTOR : GAUTENG PILING MACHINE : LDH 80 DRILLED BY : PAULUS PROFILED BY : PWD	INCLINATION : VERTICAL DIAM : 900mm DATE : 10 July 2006 DATE : 10 July 2006	ELEVATION : X-COORD : 29 308.85 Y-COORD : 38 011.85 HOLE No: AH 06
TYPE SET BY : BETH SETUP FILE : STANDARD.SET	DATE : 23/08/06 11:18 TEXT :\A872_B~1\A872PD~1.DOC	

Consult Consult	0 0	ineer		HOLE No: AH 07 Sheet 1 of 1		
	PO Box 1434 Rivonia 2128 pr 011-803-1455 Fax: 011-803-1456			JOB NUMBER: A 872		
Scale 1:20 -			Dry to slightly moist, dark brown, <u>very loose</u> , organ umerous roots; HILLWASH .	ic silty fine SAND with		
-		Ν	loist, light brown, <u>loose</u> , silty fine SAND w IILLWASH.	ith numerous roots;		
- - -		C	Noist, Ilight orange-brown, <u>loose</u> , friable, silty fin Occasional roots. Upper portion of layer unstabl 50mm from sidewall of hole.			
-	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	.35 _				
-		р /	arge, orange, poorly formed ferricrete concreti acked in a matrix of moist, greyish brown, silty fine TRANSPORTED . Isolated roots. Overall consisten	e SAND; PEDOGENIC		
-		C g c	Closely packed nodular ferricrete in a matrix of moi rey-brown and orange, clayey / silty fine SAND; onsistency <u>dense</u> .			
-		N fe R Ia	Moist, orange-brown mottled light grey-brown an erruginised sandy / clayey SILT / clayey SA RESIDUAL SANDSTONE. Material becomes <u>ver</u> ayer.	ND; DECOMPOSED		
-		L V	ight orange mottled orange and occasionally lig ery soft rock, decomposed fine grained RESI (RYHEID FORMATION.			
-	2 2 2	d	loist, <u>very stiff</u> to <u>very soft rock</u> , light grey-br ecomposed, slightly clayey fine grained SAN C ORMATION .			
-	3	.30 _ L <u>S</u>	ight grey, highly weathered, <u>very soft rock</u> beco oft rock, fine grained SANDSTONE; VRYHEID FO	oming <u>very soft rock</u> to RMATION .		
-	4 • • • • • • • • • • • • • • • • • • •	.20 _ N	IOTES			
-	· · · · · · · · · · · · · · · · · · ·	1) [No seepage or water table.			
]			2) Auger did not refuse but making slow progress.			
		3) 1	No samples taken.			
MACHINE : DRILLED BY :	PAULUS	١G	<i>DIAM :</i> 900mm DATE : 10 July 2006	LEVATION : x-coord : 29 385.00 y-coord : 37 975.00		
PROFILED BY : TYPE SET BY : SETUP FILE -			DATE : 10 July 2006 DATE : 23/08/06 11:18 TEXT :\A872_B~1\A872PD~1.DOC	HOLE No: AH 07		

dot.PLOT 4015 J&W

Jones & Wage Consulting Civil Engi	NINHAM SHAND BOTHAVILLE ETHANOL PROJECT	HOLE No: AH 09 Sheet 1 of 1			
59 Bevan Road PO Box 1434 Rivonia 2128 Tel: 011-519-0200 or 011-803-1455 Fax: 011-803-1456 p	outh Africa	JOB NUMBER: A 872			
Scale 32 1 1 0.0	Dry to slightly moist, dark brown, <u>dense</u> , fiss numerous roots; HILLWASH .	ured, silty fine SAND with			
	Moist, brown becoming orange-brown, <u>mediu</u> SAND; HILLWASH . Isolated fine roots.	<u>m_dense</u> , intact, silty fine			
	Moist, orange-brown, <u>medium dense</u> , lightly SAND as matrix to scattered, large, poorly f HILLWASH / PEDOGENIC . Isolated fine roots.				
	Closely packed nodular ferricrete in a matrix of material as above; PEDOGENIC . Overall consistency <u>dense</u> . Moist, orange-brown, <u>medium dense</u> , slightly ferruginised, clayey fine SAND; HILLWASH? Could be residual sandstone.				
	Slightly moist, light brown banded orange-bro dense, indistinctly horizontally bedded, silty f DECOMPOSED RESIDUAL SANDSTONE. orange-brown mottled light grey, clayey / Elsewhere around perimeter of hole, material as	ine SAND / sandy SILT; Occasional runnels of sandy silt to 3,1m.			
· · · · · · · · · · · · · · · · · · ·	 Light grey banded light orange-brown, highly weathered, very so indistinctly bedded fine grained SANDSTONE; VRYHEID FORMAT 				
	Light grey to pale brown, highly weathered, indistinctly bedded and jointed, fine grained FORMATION .				
	NOTES				
	1) No seepage or water table.				
	2) Auger did not refuse but penetrating very slowly	·.			
	3) Minimal smear to a depth of 5m but smear to 50	•			
CONTRACTOR : GAUTENG PILIN MACHINE : LDH 80 DRILLED BY : PAULUS PROFILED BY : PWD	G INCLINATION : VERTICAL DIAM : 900mm DATE : 11 July 2006 DATE : 11 July 2006	ELEVATION : x-coord : 29 414.85 y-coord : 37 904.85			
TYPE SET BY : BETH	DATE : 23/08/06 11:18	HOLE No: AH 09			

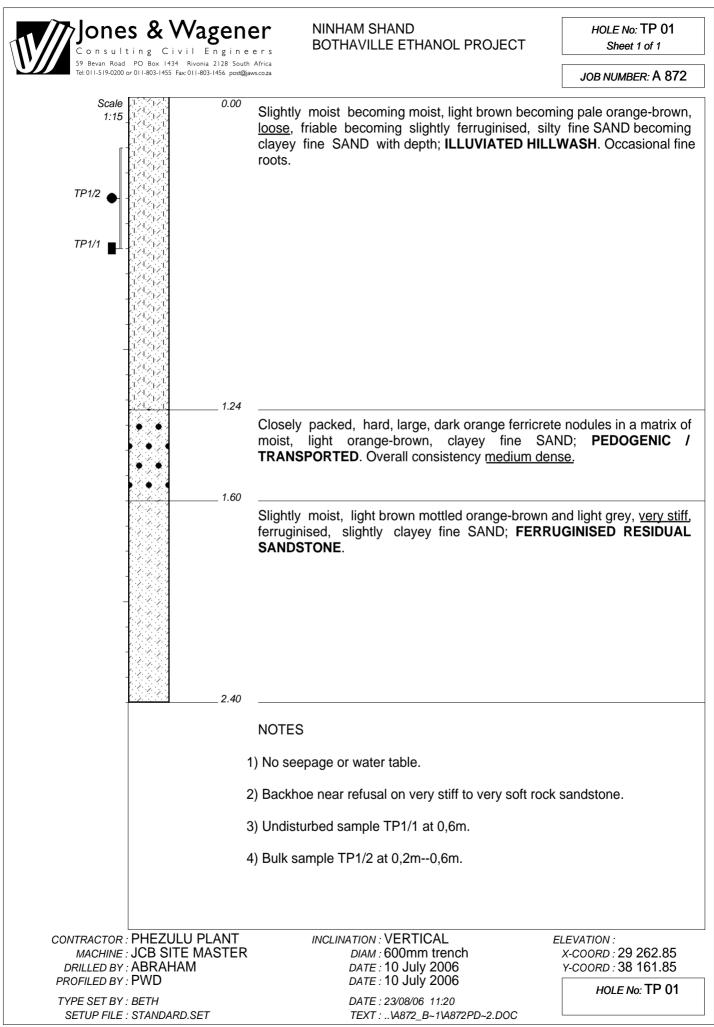
TEXT : ...\A872_B~1\A872PD~1.DOC

SETUP FILE : STANDARD.SET

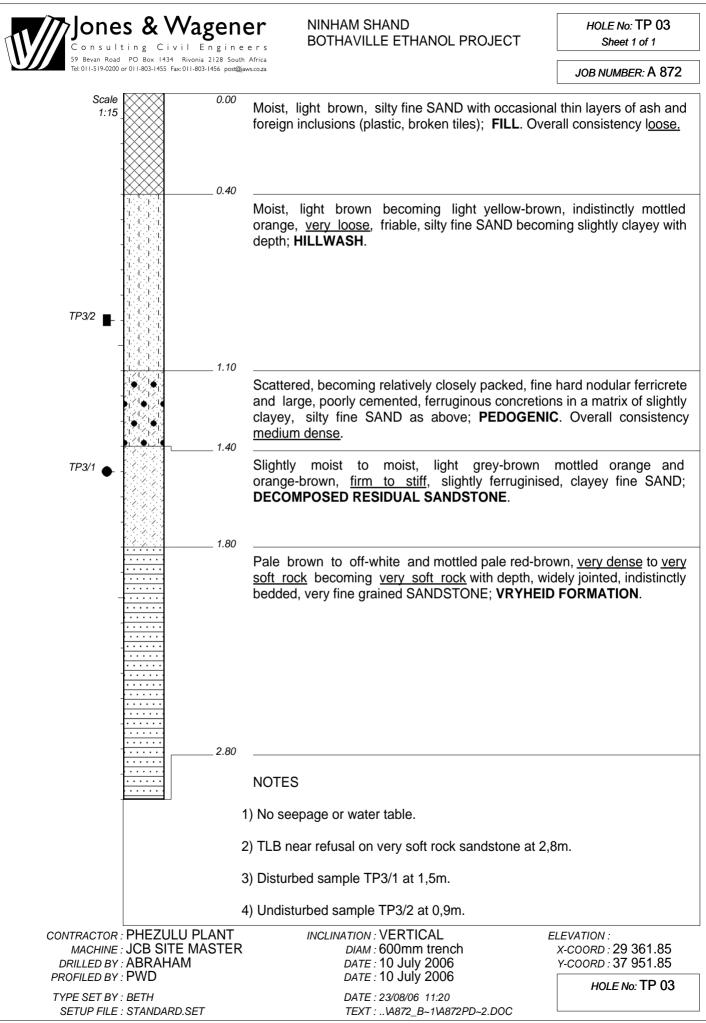
	s & Wag	sen (ers		I SHAND /ILLE ETHAN(OL PROJECT	HOLE No: AH 10 Sheet 1 of 1
	PO Box 1434 Rivonia 2 pr 011-803-1455 Fax: 011-803-1	128 South	Africa				JOB NUMBER: A 872
Scale _ 1:40 -		0.00			moist, brown IILLWASH .	, <u>medium dense</u> ,	silty fine SAND with
-		_ 0.10			ose becoming ne roots; HILL		dense, silty fine SAND
		_ 1.10				tled orange, <u>mediu</u> SAND; ILLUVIATE	<u>m dense</u> (<u>firm)</u> , intact, D HILLWASH.
		_ 1.60	Slightly clayey DECOM marker overlyin	y moist, li / silty fine MPOSED in eviden ng materia	ight orange-b SAND with so FERRUGINIS ice). Material al but appear	prown mottled orar cattered, poorly form	ige, <u>stiff</u> , ferruginised, ned, ferricrete nodules; ANDSTONE?(No pebble and stiffer than grading. Isolated
-		5.80	Slightly moist, orange-brown mottled orange and light grey, <u>very dense</u> to <u>very soft rock</u> , silty fine SAND from highly weathered sandstone with pockets of red-brown clayey sand of more decomposed material; VRYHEID FORMATION .				
-			<u>rock</u> wi	rith occasio		e patches, indistinc	ly weathered, <u>very soft</u> tly jointed, fine grained
			<u>rock</u> ,		bedded an		n, <u>very soft rock</u> to <u>soft</u> ained SANDSTONE;
			NOTES				
		1	1) No see	epage or w	ater table.		
		2	2) Auger near refusal on soft rock fine grained sandstone at 7,2m.3) Smear up to 25mm over most of socket.				
		3					
MACHINE : DRILLED BY :	PAULUS	lNG		DI <i>i</i> DA	DN : VERTICAL 4M : 900mm TE : 11 July 20	06	ELEVATION : X-COORD : 29 474.85 Y-COORD : 37 854.85
PROFILED BY : TYPE SET BY : SETUP FILE :				DA	TE : 11 July 20 TE : 23/08/06 11: XT :\A872_B~1\	18	HOLE No: AH 10

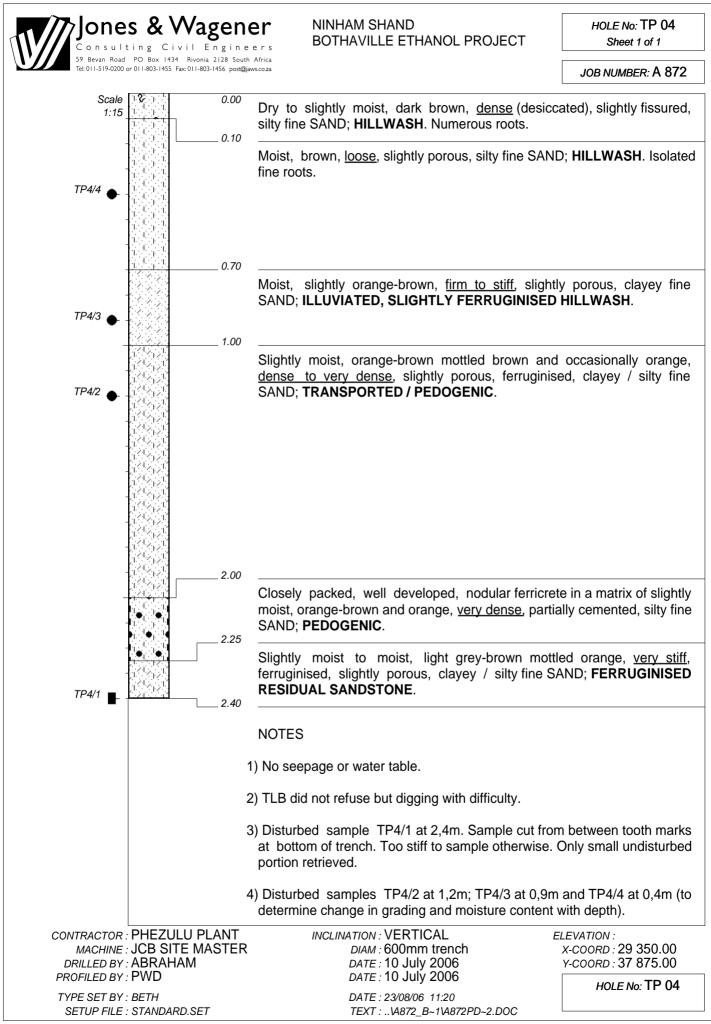
Jone	s & Wage		NINHAM SHAND BOTHAVILLE ETHANOL PROJECT	HOLE No: AH 11 Sheet 1 of 1
	PO Box 1434 Rivonia 2128 or 011-803-1455 Fax: 011-803-1456 p			JOB NUMBER: A 872
Scale 1:25		Dry to Nume	o slightly moist, brown, <u>dense</u> , fissured, sil rous roots.	ty SAND; HILLWASH .
-		Moist, HILLV	brown, <u>loose</u> , intact, silty fine SAND with VASH .	scattered fine roots;
-		Moist, silty fi poorly	light orange-brown mottled brown, <u>medium</u> ine SAND; ILLUVIATED HILLWASH . Occasi formed ferricrete nodules towards base of ial becomes slightly moist and <u>stiff</u> .	onal fine roots. Isolated
-		Relativ of ora consis	vely closely packed, dark brown, hard ferricr ange-brown, ferruginised, silty fine SAND; stency <u>dense (very stiff)</u> .	
-		Slightl SAND	ly moist, orange-brown, <u>very stiff</u> , ferruginis as matrix to isolated nodular ferricrete; ILLU	
-		Closel moist, PEBB	ly packed, hard, dark brown ferricrete nodule orange-brown, partially cemented, silty fine BLE MARKER.	
-	12001 12000 12000 12000 12000 12000	Slightl	ly moist, orange-brown mottled brown, <u>very st</u> fine SAND; DECOMPOSED RESIDUAL SAN	
AH11/1 •		Slightl SILT;	ly moist, pale brown, <u>very dense</u> , intact, silty DECOMPOSED RESIDUAL SAND e-brown ferruginised patches.	fine SAND / fine sandy STONE . Occasional
- - - -	4. 	Pale I soft ro	brown occasionally mottled orange-brown, ock SANDSTONE with occasional <u>very dense</u> m thick above 4,5m.	
-	5.	³⁰ NOTE	S	
-	· · · · · · · · · · · · · · · · · · ·	1) No se	eepage or water table.	
-		2) Auge	r did not refuse, rotation gearbox breakdown.	
		3) Distu	rbed sample AH11/1 at 3,5m to check grading	of sandstone.
MACHINE : DRILLED BY :	PAULUS	G	<i>diam :</i> 900mm <i>DATE :</i> 11 July 2006	LEVATION : X-COORD : 29 422.85 Y-COORD : 37 811.85
TYPE SET BY :	PROFILED BY : PWD TYPE SET BY : BETH SETUP FILE : STANDARD.SET		DATE : 11 July 2006 DATE : 23/08/06 11:18 TEXT :\A872_B~1\A872PD~1.DOC	HOLE No: AH 11

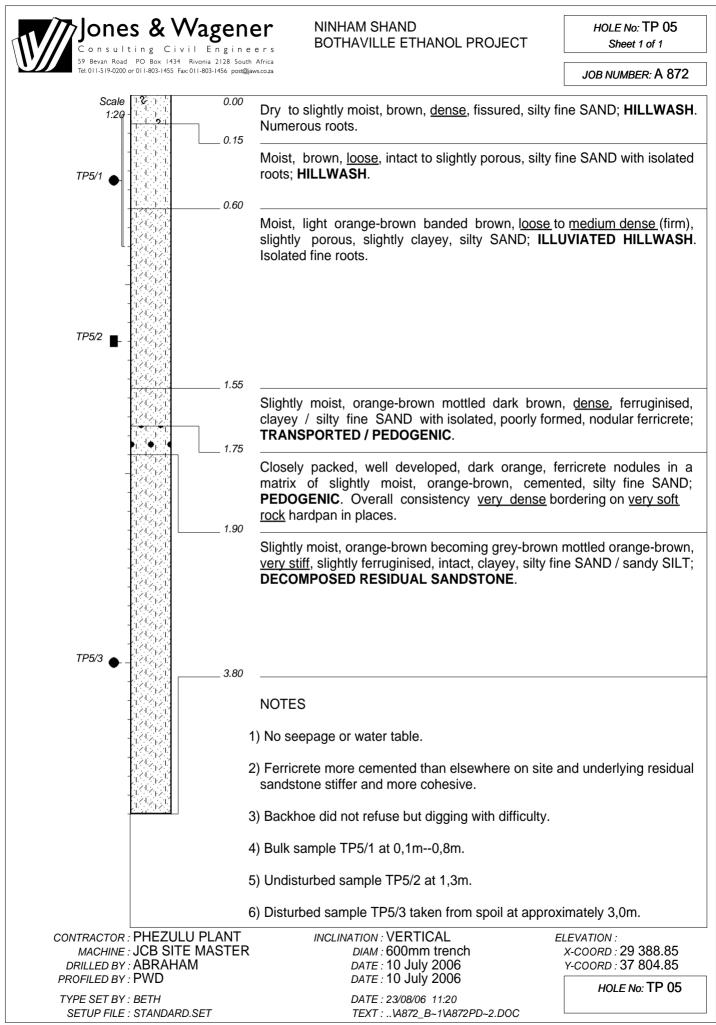
Consul	0 0	eers BOTHAVILLE ETHANOL PROJECT	HOLE No: AH 12 Sheet 1 of 1
	PO Box 1434 Rivonia 2128 So or 011-803-1455 Fax: 011-803-1456 pos		JOB NUMBER: A 872
Scale 1:20		Dry to slightly moist, dark brown, <u>medium den</u> numerous roots; HILLWASH . Moist, brown becoming light brown, <u>loose</u> , slightly silty fine SAND with occasional fine roots; HILWLA	r friable, slightly porous,
		Moist, light orange-brown, <u>dense</u> , slightly ferruginis fine SAND; ILLUVIATED HILLWASH .	sed, slightly clayey, silty
	2.05		
		Slightly moist, orange-brown mottled orange, <u>v</u> silty / clayey fine SAND as matrix to scattered, nodular ferricrete; PEDOGENIC / TRANSPORTED <u>Very dense</u> to <u>very soft rock</u> , well cemented, HA consisting of large maroon and black ferricrete orange-brown, silty SAND matrix; PEDOGENIC .	arge, poorly developed RDPAN FERRICRETE
		Slightly moist, orange-brown mottled orange, <u>v</u> silty fine SAND; DECOMPOSED RESIDUAL becomes very dense to very soft rock towards bas	SANDSTONE. Material e of layer.
	······ ······ ······ ······ ······ ·····	Pale grey-brown banded orange-brown, highly we indistinctly bedded, fine grained SANDSTONE; VR	
		NOTES	
		1) No seepage or water table.	
		 Auger (now an NF60 due to breakdown of the LI slowly in very soft rock to soft rock sandstone. 	DH 80) penetrating very
		3) No samples taken.	
CONTRACTOR MACHINE DRILLED BY PROFILED BY	: PAULUS	INCLINATION : VERTICAL DIAM : 900mm DATE : 11 July 2006 DATE : 11 July 2006	ELEVATION : X-COORD : 29 489.85 Y-COORD : 37 928.85
TYPE SET BY		DATE : 23/08/06 11:18 TEXT :\A872 B~1\A872PD~1.DOC	HOLE No: AH 12

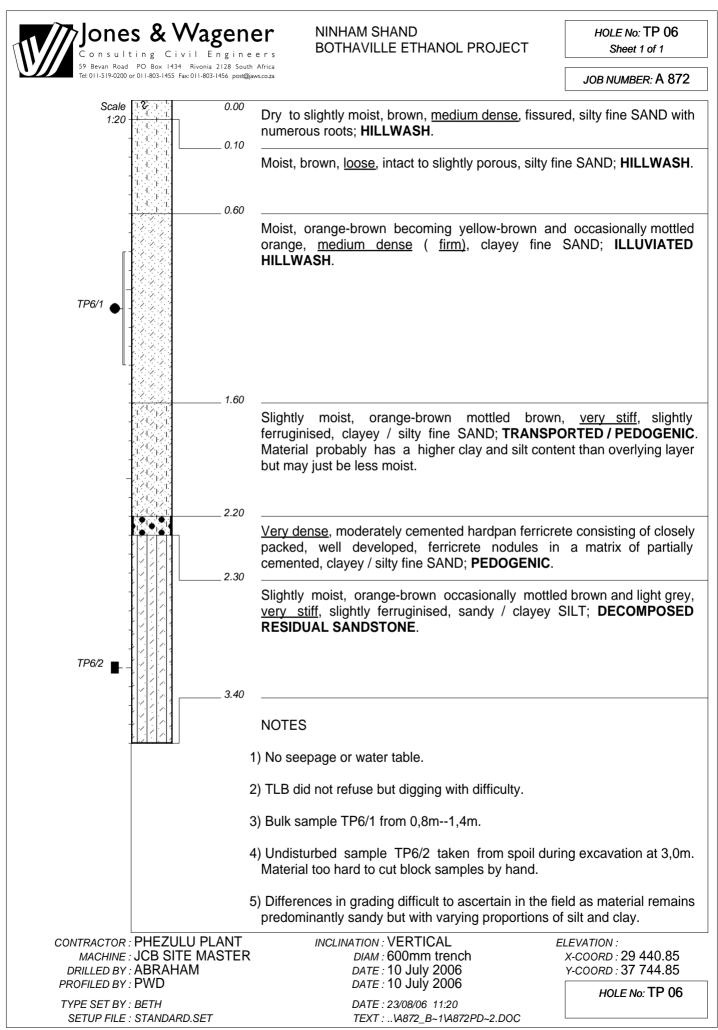

	s & Wage		HOLE No: AH 13 Sheet 1 of 1			
	PO Box 1434 Rivonia 2128 S or 011-803-1455 Fax: 011-803-1456 po		JOB NUMBER: A 872			
Scale 1:20	18 1 0.0 1 2 1 1 1 1	Moist, brown becoming yellow-brown, <u>loose</u> , int fine SAND with occasional fine roots. Upper 1 numerous roots.				
-	12 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Moist, light orange-brown, occasionally mottled c dense, intact, slightly ferruginised, clayey / silty fi HILLWASH.				
	1.9	Slightly moist, orange-brown, <u>stiff</u> , slightly porous, ferruginised clayey fine SAND with isolated fine roots and scattered nodular ferricrete; ILLUVIATED HILLWASH . Closely packed, <u>hard</u> , black, fine nodular ferricrete in a matrix of slightly moist, orange-brown, partially cemented, silty fine SAND; PEDOGENIC Overall consistency <u>very dense</u> . Slightly moist, orange-brown, <u>very dense</u> , ferruginised, silty / clayey fine SAND; DECOMPOSED RESIDUAL SANDSTONE . Light grey mottled light purple and light orange-brown, highly weathered, <u>very soft rock</u> , fine grained SANDSTONE; VRYHEID FORMATION Bedding or jointing visible.				
	2.6					
-	2.7					
	4.1	NOTES				
		 No seepage or water table. NF 60 refused at 4,1m on very soft rock to sandstone as above. 	soft rock fine grained			
CONTRACTOR MACHINE DRILLED BY PROFILED BY	PAULUS	<i>INCLINATION :</i> VERTICAL <i>DIAM :</i> 900mm <i>DATE :</i> 12 July 2006	ELEVATION : X-COORD : 29 544.85 Y-COORD : 37 843.85			
TYPE SET BY		DATE : 12 July 2006 DATE : 23/08/06 11:18 TEXT :\A872 B~1\A872PD~1.DOC	HOLE No: AH 13			

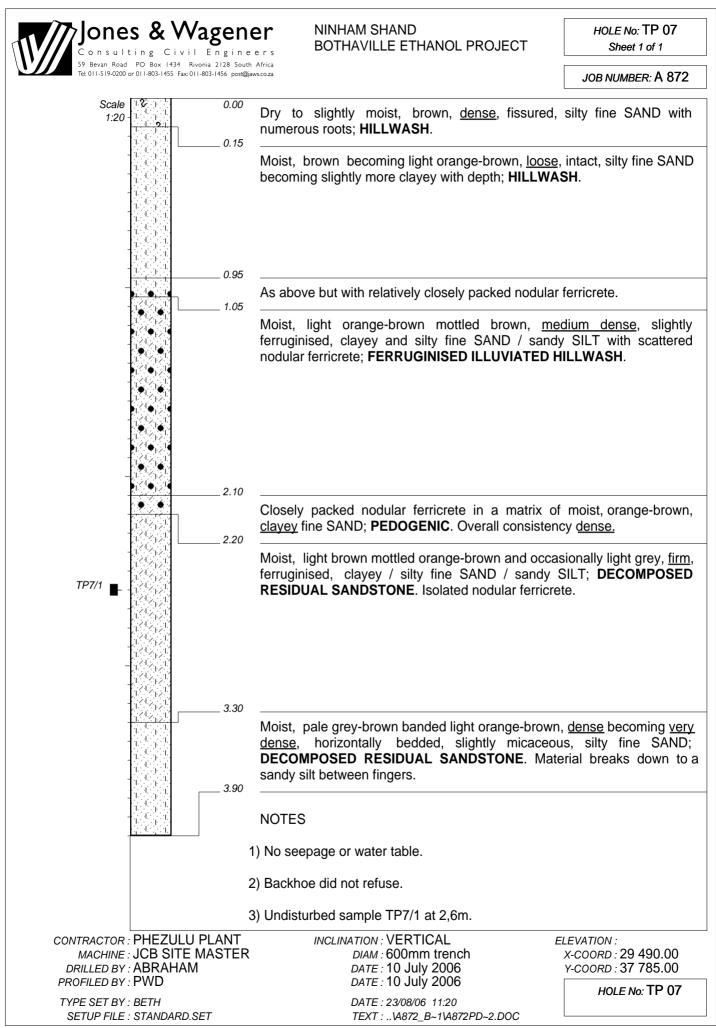
Jone	s & Wag	en(gine	ers NI BC	NHAM SHAND DTHAVILLE ETHA	NOL PROJECT	HOLE No: AH 14 Sheet 1 of 1		
	PO Box 1434 Rivonia 21 or 011-803-1455 Fax: 011-803-145					JOB NUMBER: A 872		
Scale 1:25 ⁻		0.00		Dry to slightly moist, brown, medium dense, silty fine SAND with numerous roots; DESICCATED HILLWASH .				
-		0.70	Moist, bro HILLWASH		, silty fine SAND with	h isolated fine roots;		
		0.70	ferruginised		<u>loose</u> becoming <u>me</u> ty fine SAND with D HILLWASH .			
- - -	1.75 2.30 2.45	1.75	SAND; ILI		mottled orange, <u>stiff</u> , fe WASH. Isolated, poo	erruginised clayey fine orly developed, large		
-			Closely packed, well formed, fine nodular ferricrete in a matrix of slightly moist, orange-brown mottled orange, partially cemented, silty SAND; PEDOGENIC . Overall consistency <u>very dense</u> . Slightly moist, orange-brown mottled orange and occasionally light grey towards base of layer, <u>very stiff</u> , ferruginised, clayey fine SAND; DECOMPOSED RESIDUAL SANDSTONE .					
-		3.30	indistinctly	bedded and join N . Occasional ru	rple-brown, highly wea ted, fine grained SAN nnels of orange-brown			
	·····	4.50	NOTES					
		1	I) No seepag	e or water table.				
			2) NF 60 ref 4,5m.	used on very so	ft rock to soft rock fine	grained sandstone at		
		3	3) No samples taken.					
CONTRACTOR : MACHINE : DRILLED BY : PROFILED BY :	PAULUS	ING	INC	CLINATION : VERTIC DIAM : 900mm DATE : 12 July DATE : 12 July	2006	LEVATION : X-COORD : 29 570.85 Y-COORD : 37 769.85		
TYPE SET BY :				DATE : 23/08/06		HOLE No: AH 14		

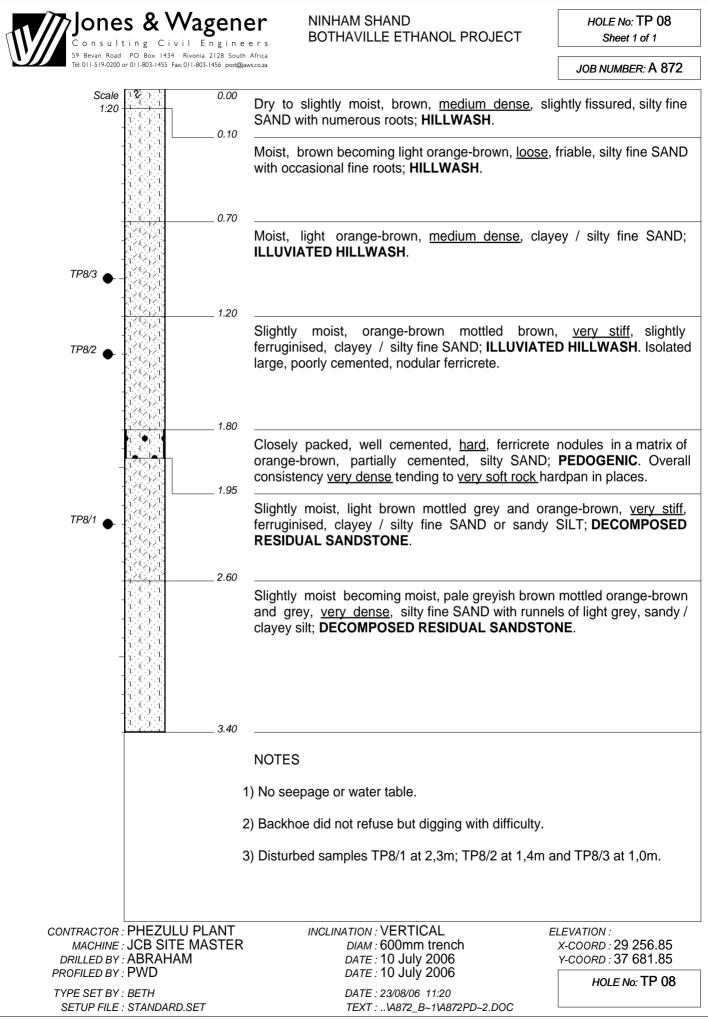

APPENDIX B

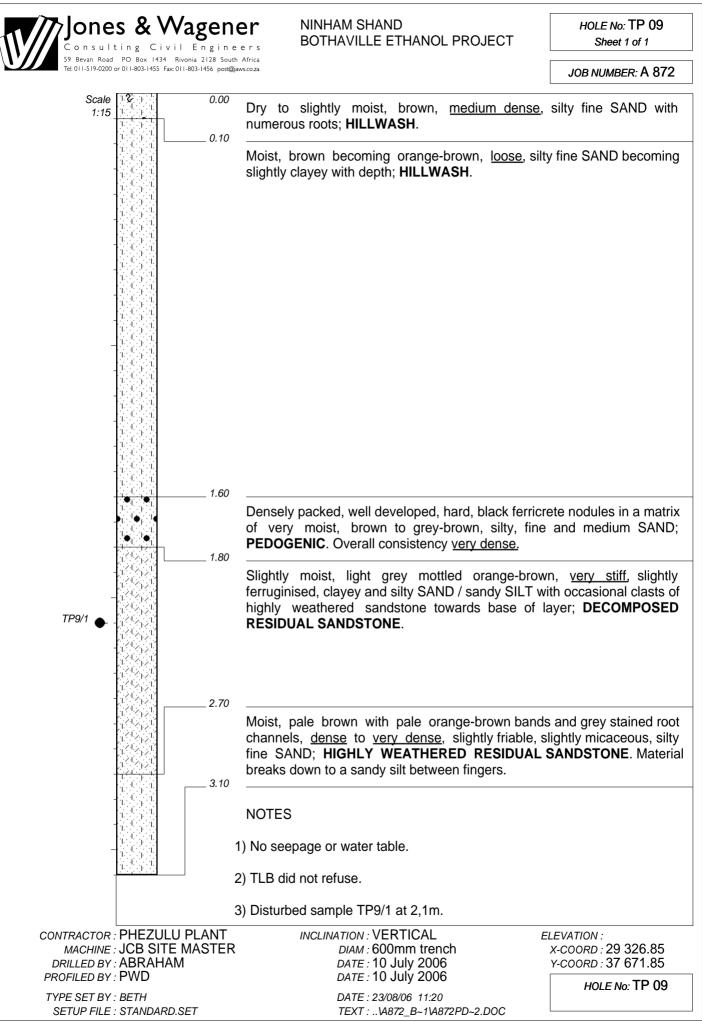

TEST PIT PROFILES



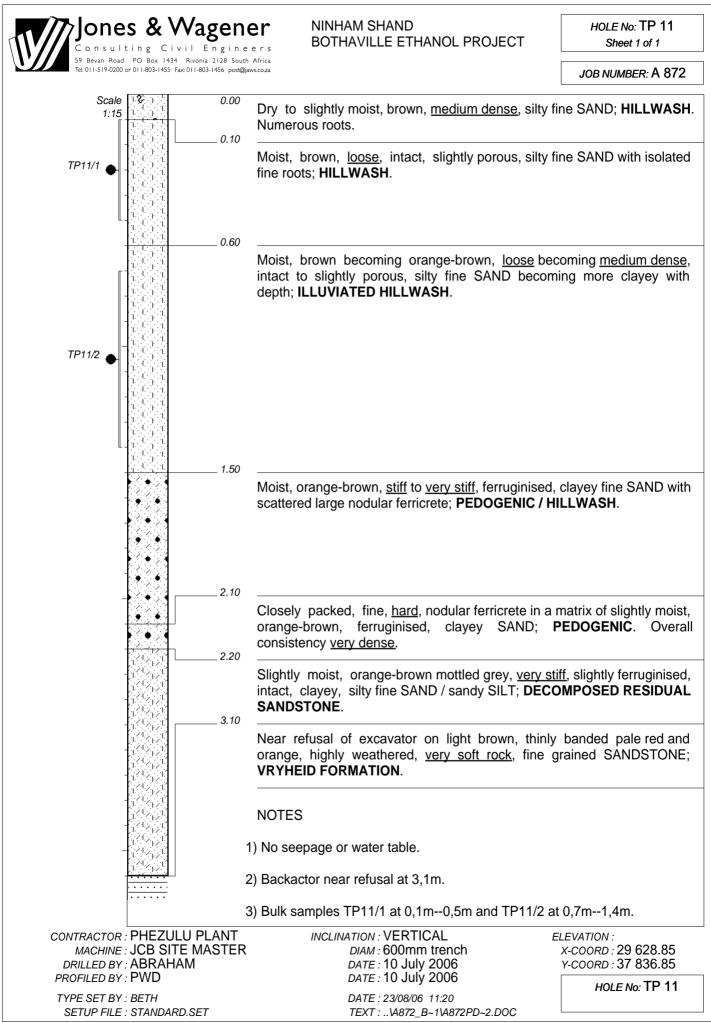

JONE	s & Wager		HOLE No: TP 02 Sheet 1 of 1
	PO Box 1434 Rivonia 2128 So r 011-803-1455 Fax: 011-803-1456 post	th Africa	JOB NUMBER: A 87
Scale 1:15		Slightly moist, light brown, friable, <u>very loos</u> REWORKED HILLWASH . Numerous roots.	<u>se</u> , silty fine SAN
- - - - -		Moist, light brown banded brown and occasionally of fine SAND with isolated fine roots.	dark brown, <u>loose,</u> s
	0.50	Moist, brown, occasionally banded light brown, <u>l</u> slightly cohesive, silty becoming clayey fine SAND;	
	1.35	Relatively closely packed, fine, hard nodular ferricr poorly cemented concretions in a matrix of moi clayey fine and medium SAND; PEDOGENIC / TF consistency <u>medium dense</u> . Moist, orange-brown and light grey-brown mottled clayey, silty fine SAND with inclusions of highly we sandstone; RESIDUAL SANDSTONE . Overall cons	ist, light brown, silt RANSPORTED. Ove orange, <u>dense</u> , sligh eathered very soft ro
- - - - - - - - - - 	1.90	Pale grey-brown to off-white banded orange-bro very soft rock becoming very soft rock to soft rock medium to widely jointed, fine grained SAN FORMATION.	wn, highly weathere
	2.20	NOTES	
		1) No seepage or water table.	
		2) Backhoe refused on very soft rock to soft rock fine 2,2m. Could dig further but not productively.	e grained sandstone
		3) No samples taken.	
			ELEVATION : X-COORD : 29 452.85 Y-COORD : 38 002.85
YPE SET BY :		DATE : 10 July 2000 DATE : 23/08/06 11:20 TEXT :VA872_B~1VA872PD~2.DOC	HOLE No: TP 02





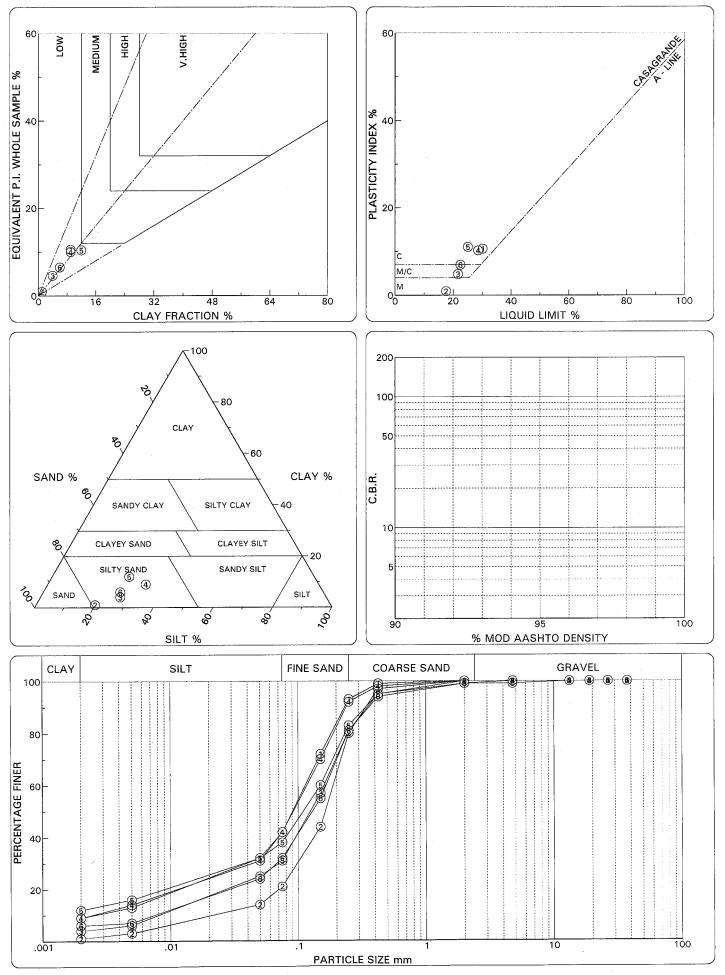


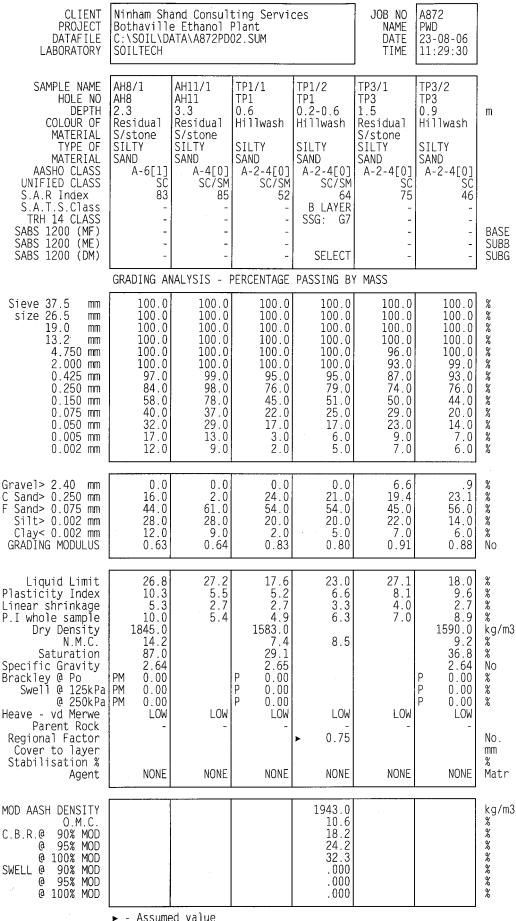
dot.PLOT 4015 J&W



	s & Wag			HOLE No: TP 10 Sheet 1 of 1
59 Bevan Road Tel: 011-519-0200	PO Box 1434 Rivonia or 011-803-1455 Fax: 011-803-			JOB NUMBER: A 872
Scale 1:15		0.00 _ 0.10	Dry to slightly moist, brown, <u>medium dense</u> , numerous roots; HILLWASH . Moist, brown, <u>loose</u> , slightly porous, silty fine SAND	-
		_ 0.60	Moist, light orange-brown mottled brown, <u>loose</u> bea silty fine SAND becoming slightly more clayey wi HILLWASH . Occasional fine roots.	
-		_ 1.80	Slightly moist, light orange-brown indistinctly mosting slightly ferruginised, clayey fine SAND; ILLUVIATE	
		_ 2.20 _ 2.35	<u>Very dense</u> to <u>very soft rock</u> , HARDPAN FERRICR Slightly moist, light orange-brown mottled light grey silty / clayey fine SAND; DECOMPOSED RESIDUA	and orange, very stiff,
			NOTES No seepage or water table. TLB did not refuse but digging with difficulty.	
		3	No samples taken.	
MACHINE	PHEZULU PL JCB SITE MA ABRAHAM PWD		INCLINATION : VERTICAL E DIAM : 600mm trench DATE : 10 July 2006 DATE : 10 July 2006	ELEVATION : X-COORD : 29 544.85 Y-COORD : 37 940.85
TYPE SET BY .			DATE : 23/08/06 11:20 TEXT :\A872_B~1\A872PD~2.DOC	HOLE No: TP 10

APPENDIX C


SUMMARY OF SOIL TEST RESULTS


SUMMARY OF SOIL TEST RESULTS

CLIENT PROJECT DATAFILE LABORATORY	Ninham Sha Bothaville C:\SOIL\D/ SOILTECH	e Ethanol I		ces	JOB NO NAME DATE TIME	A872 PW DAY 23-08-06 11:28:25	
SAMPLE NAME HOLE NO DEPTH COLOUR OF MATERIAL TYPE OF MATERIAL AASHO CLASS UNIFIED CLASS S.A.R Index S.A.T.S.Class	AH1/1 AH1 2.5 Residual S/stone SILTY SAND A-6[2] SC 91	A1/2 AH1 0.9 Hillwash SILTY SAND A-2-4[0] SM 55	AH2/1 AH2 1.1 Illuviatd Hillwash SILTY SAND A-2-4[0] SC/SM 69	S/stone SILTY SAND A-6[1]	AH5/1 AH5 1.7 Illuviatd Hillwash SILTY SAND A-6[1] SC 77	AH6/1 AH6 1.0 Illuviatd Hillwash SILTY SAND A-2-4[0] SC/SM 70	m
TRH 14 CLASS SABS 1200 (MF) SABS 1200 (ME) SABS 1200 (DM)		-				- - -	BASE SUBB SUBG
			PERCENTAGE	PASSING B	/ MASS	r	
Sieve 37.5 mm size 26.5 mm 19.0 mm 13.2 mm 4.750 mm 0.425 mm 0.250 mm 0.150 mm 0.075 mm 0.050 mm 0.005 mm 0.002 mm	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 99.0\\ 93.0\\ 72.0\\ 42.0\\ 32.0\\ 13.0\\ 9.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 97.0\\ 80.0\\ 44.0\\ 21.0\\ 14.0\\ 3.0\\ 1.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 95.0\\ 81.0\\ 57.0\\ 31.0\\ 25.0\\ 6.0\\ 4.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 98.0\\ 92.0\\ 70.0\\ 42.0\\ 31.0\\ 14.0\\ 9.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 99.0\\ 95.0\\ 83.0\\ 60.0\\ 38.0\\ 32.0\\ 16.0\\ 12.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 99.0\\ 99.0\\ 94.0\\ 81.0\\ 55.0\\ 32.0\\ 24.0\\ 7.0\\ 6.0\\ \end{array}$	% % % % % % % % % % %
Gravel> 2.40 mm C Sand> 0.250 mm F Sand> 0.075 mm Silt> 0.002 mm Clay< 0.002 mm GRADING MODULUS	$\begin{array}{c} 0.0 \\ 7.0 \\ 51.0 \\ 33.0 \\ 9.0 \\ 0.59 \end{array}$	0.0 20.0 59.0 20.0 1.0 0.82	0.0 19.0 50.0 27.0 4.0 0.74	0.0 8.0 50.0 33.0 9.0 0.60	.9 16.1 45.0 26.0 12.0 0.68	1.0 18.0 49.0 26.0 6.0 0.75	% % % % No
Liquid Limit Plasticity Index Linear shrinkage P.I whole sample Dry Density N.M.C. Saturation	30.2 10.6 6.0 10.5 1906.0 9.2 59.1	17.6 9 0.0 9 8.2	21.7 4.8 3.3 4.6 11.7	28.6 10.2 6.0 10.0	25.1 11.0 5.3 10.4 11.2	22.5 6.9 3.3 6.5	% % kg/m3 %
Specific Gravity Brackley @ Po Swell @ 125kPa @ 250kPa Heave - vd Merwe Parent Rock Regional Factor	2.71 P 0.00 P 0.00	LOW -	LOW 	LOW -	LOW -	LOW -	No % % No .
Cover to layer Stabilisation % Agent	NONE	NONE	NONE	NONE	NONE	NONE	mm % Matr
MOD AASH DENSITY O.M.C. C.B.R.@ 90% MOD @ 95% MOD @ 100% MOD @ 95% MOD @ 100% MOD @ 100% MOD							kg/m3 % % % % % %
	P - Pressu	ure applie	d exceeds :	swell pres	sure		

SAMPLE NUMBER	1	2	3	4	5	6
SAMPLE NAME	AH1/1	A1/2	AH2/1	AH3/1	AH5/1	AH6/1
HOLE NUMBER	AH1	AH1	AH2	AH3	AH5	AH6
DEPTH	2.5	0.9	1.1	1.7	1.7	1.0

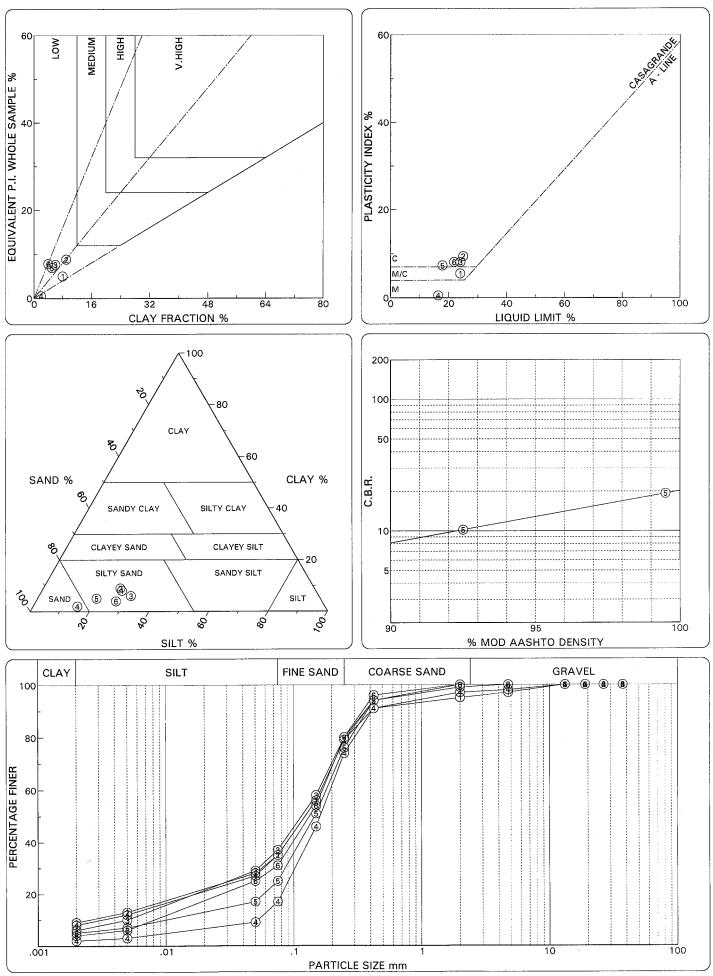
SUMMARY OF SOIL TEST RESULTS

- Assumed value ►

Ρ - Pressure applied exceeds swell pressure

M - Moisture content too high for swell to occur

SAMPLE NUMBER SAMPLE NAME	① AH8/1	② AH11/1	③ TP1/1	④ TP1/2	⑤ TP3/1	⑥ TP3/2
HOLE NUMBER	AH8	AH11	TP1	TP1	TP3	TP3
DEPTH	2.3	3.3	0.6	0.2-0.6	1.5	0.9

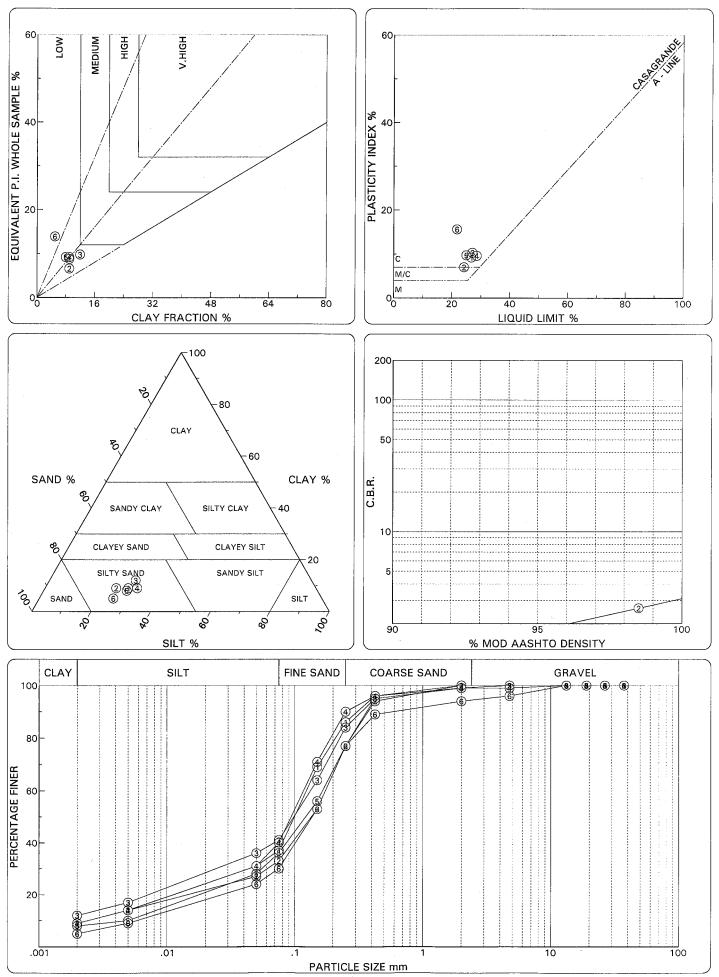

.

SUMMARY OF SOIL TEST RESULTS

CLIENT PROJECT DATAFILE LABORATORY	Bothaville	and Consult e Ethanol M ATA\A872PD0	ting Servi Plant D3.SUM	ces	JOB NO NAME DATE TIME	A872 PW DAY 23-08-06 11:28:54	
SAMPLE NAME HOLE NO DEPTH COLOUR OF MATERIAL TYPE OF MATERIAL AASHO CLASS UNIFIED CLASS S.A.R Index S.A.T.S.Class TRH 14 CLASS SABS 1200 (MF) SABS 1200 (ME)	TP4/1 TP4 2.4 Residual S/stone SILTY SAND A-2-4[0] SC/SM 77 -	TP4/2 TP4 1.2 Hillwash/ Pedogenic SILTY SAND A-2-4[0] SC 75 -	TP4/3 TP4 0.9 Illuviatd Hillwash SILTY SAND A-4[0] SC 77 -	TP4/4 TP4 0.4 Hillwash SAND A-2-4[0] SM 49 -	TP5/1 TP5 0.1-0.5 Hillwash SILTY SAND A-2-4[0] SC 53 B LAYER LSG: G9	TP5/2 TP5 1.3 Illuviatd Hillwash SILTY SAND A-2-4[0] SC 66 - -	m BASE SUBB
SABS 1200 (DM)	GRADING AM	- NALYSIS - F	- PERCENTAGE	- PASSING B'	§ SELECT (MASS	-	SUBG
Sieve 37.5 mm size 26.5 mm 19.0 mm 13.2 mm 4.750 mm 0.425 mm 0.425 mm 0.150 mm 0.075 mm 0.050 mm 0.005 mm 0.002 mm	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 99.0\\ 94.0\\ 79.0\\ 56.0\\ 35.0\\ 28.0\\ 13.0\\ 9.0\\ \end{array} $	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 94.0\\ 80.0\\ 58.0\\ 37.0\\ 29.0\\ 10.0\\ 6.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 98.0\\ 97.0\\ 91.0\\ 74.0\\ 46.0\\ 17.0\\ 9.0\\ 3.0\\ 2.0\\ \end{array}$		$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 96.0\\ 96.0\\ 54.0\\ 31.0\\ 25.0\\ 6.0\\ 4.0\\ \end{array}$	* * * * * * * * * * * * * *
Gravel> 2.40 mm C Sand> 0.250 mm F Sand> 0.075 mm Silt> 0.002 mm Clay< 0.002 mm GRADING MODULUS	4.7 16.3 44.0 27.0 8.0 0.79	.9 20.1 44.0 26.0 9.0 0.72	$\begin{array}{c} 0.0\\ 20.0\\ 43.0\\ 31.0\\ 6.0\\ 0.69\end{array}$	2.9 23.1 57.0 15.0 2.0 0.95	$\begin{array}{c} 0.0\\ 24.0\\ 51.0\\ 20.0\\ 5.0\\ 0.81\end{array}$	0.0 20.0 49.0 27.0 4.0 0.73	% % % No
Liquid Limit Plasticity Index Linear shrinkage P.I whole sample Dry Density N.M.C. Saturation Specific Gravity Brackley @ Po Swell @ 125kPa	24.0 5.5 3.3 5.0	25.0 9.4 4.7 8.8 8.7	24.1 8.1 4.0 7.6 12.5	16.4 .5 0.0 5.5 1950.0 5.5 40.6 2.65 PM 0.00 PM 0.00	17.9 7.3 2.7 6.9 11.2	21.9 8.1 4.0 7.8 1465.0 9.7 31.8 2.65 PM 0.00 PM 0.00	% % % kg/m3 % No % %
0 250kPa Heave - vd Merwe Parent Rock Regional Factor		LOW -	LOW -	PM 0.00 LOW	LOW - ▶ 0.75	PM 0.00 LOW	% No. mm
Cover to layer Stabilisation % Agent	NONE	NONE	NONE	NONE	NONE	NONE	% Matr
MOD AASH DENSITY O.M.C. C.B.R.@ 90% MOD @ 95% MOD @ 100% MOD SWELL @ 90% MOD @ 95% MOD @ 100% MOD		ed value			1991.0 9.6 8.1 12.8 20.2 .000 .000 .000		kg/m3 % % % % %

Assumed value
 Unsuitable for material shallower than 150 mm in layer.
 P - Pressure applied exceeds swell pressure
 M - Moisture content too high for swell to occur

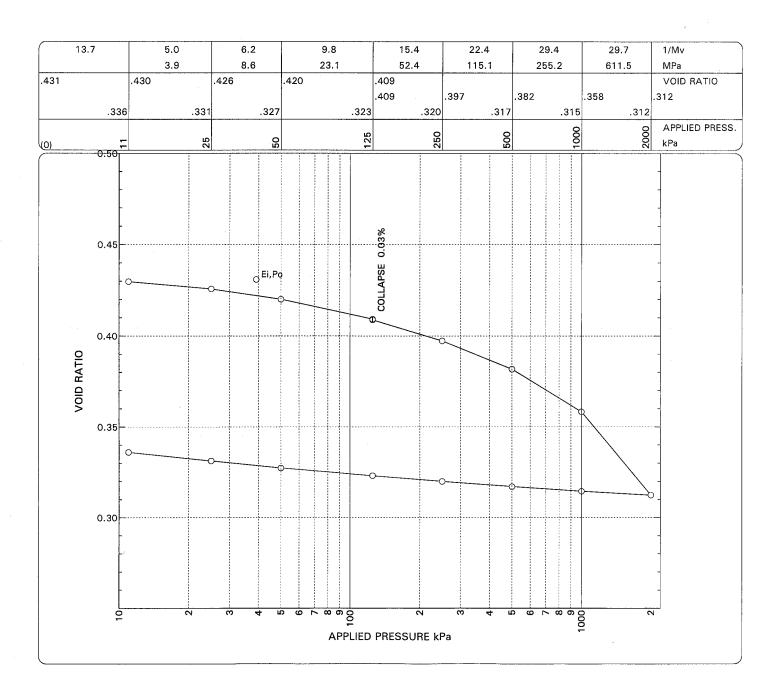
SAMPLE NUMBER	1	2	3	4	6	6
SAMPLE NAME	TP4/1	TP4/2	TP4/3	TP4/4	TP5/1	TP5/2
HOLE NUMBER	TP4	TP4	TP4	TP4	TP5	TP5
DEPTH	2.4	1.2	0.9	0.4	0.1-0.5	1.3


.

SUMMARY OF SOIL TEST RESULTS

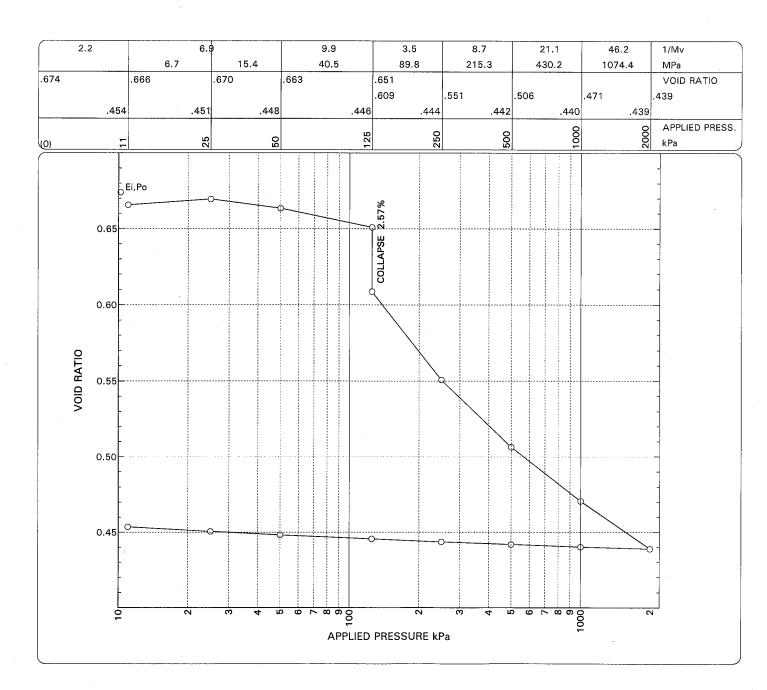
CLIENT PROJECT DATAFILE LABORATORY	Bothavill	and Consul e Ethanol ATA\A872PD	ting Servio Plant 04.SUM	ces	JOB NO NAME DATE TIME	A872 PW DAY 23-08-06 11:29:59	
SAMPLE NAME HOLE NO DEPTH COLOUR OF MATERIAL TYPE OF MATERIAL	TP5/3 TP5 3.0 Residual S/stone SILTY SAND	TP6/1 TP6 0.7-1.4 Illuviatd Huillwash SILTY SAND	S/stone SILTY SAND	TP6/3 TP6 3.4 Residual S/stone SILTY SAND	TP7/1 TP7 2.6 Residual S/stone SILTY SAND	TP8/2 TP8 1.4 Illuviatd Hillwash SILTY SAND	m
AASHO CLASS UNIFIED CLASS S.A.R Index S.A.T.S.Class TRH 14 CLASS SABS 1200 (MF) SABS 1200 (ME) SABS 1200 (DM)	A-4[0] SC 81 - - - -	A-2-4[0] SC 74 SPOIL SPOIL FILL	A-6[1] SC 84 - - - -	A-4[1] SC - - - - -	A-4[0] SC - - - - -	A-2-6[1] SC 57 - - - - -	BASE SUBB SUBG
			PERCENTAGE	r	I		
Sieve 37.5 mm size 26.5 mm 19.0 mm 13.2 mm 4.750 mm 0.425 mm 0.250 mm 0.150 mm 0.075 mm 0.005 mm 0.002 mm	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 96.0\\ 86.0\\ 69.0\\ 37.0\\ 31.0\\ 14.0\\ 9.0\\ \end{array}$	$100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 94.0 \\ 77.0 \\ 53.0 \\ 33.0 \\ 27.0 \\ 14.0 \\ 9.0 \\ 9.0 \\ 14.0 \\ 9.0 \\ 100.0 \\ 1$	$100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 99.0 \\ 95.0 \\ 84.0 \\ 64.0 \\ 41.0 \\ 36.0 \\ 17.0 \\ 12.0 \\ 12.0 \\ 100.0$	$100.0 \\ 100.0 \\ 100.0 \\ 99.0 \\ 99.0 \\ 96.0 \\ 90.0 \\ 71.0 \\ 40.0 \\ 31.0 \\ 14.0 \\ 9.$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 99.0\\ 95.0\\ 77.0\\ 56.0\\ 36.0\\ 28.0\\ 10.0\\ 8.0\\ \end{array}$	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 96.0\\ 94.0\\ 89.0\\ 77.0\\ 53.0\\ 30.0\\ 24.0\\ 9.0\\ 5.0\\ \end{array}$	* * * % * * * * * * * * *
Gravel> 2.40 mm C Sand> 0.250 mm F Sand> 0.075 mm Silt> 0.002 mm Clay< 0.002 mm GRADING MODULUS	0.0 14.0 49.0 28.0 9.0 0.67	0.0 23.0 44.0 24.0 9.0 0.73	.9 15.1 43.0 29.0 12.0 0.65	$\begin{array}{c} 1.0\\ 9.0\\ 50.0\\ 31.0\\ 9.0\\ 0.65\end{array}$.9 22.1 41.0 28.0 8.0 0.70	5.7 17.3 47.0 25.0 5.0 0.87	% % % No
Liquid Limit Plasticity Index Linear shrinkage P.I whole sample Dry Density N.M.C. Saturation Specific Gravity	26.7 9.2 4.7 8.8	24.2 7.0 3.3 6.6 11.3	27.1 10.3 6.0 9.8 1757.0 10.7 56.2 2.64	28.6 9.6 4.7 9.2	25.0 9.7 4.7 9.2 1671.0 13.1 60.0 2.63	21.8 15.6 3.3 13.9 7.1	% % kg/m3 % No
Brackley @ Po Swell @ 125kPa @ 250kPa Heave - vd Merwe Parent Rock	LOW -	LO₩ ► 0.75	P 0.00 P 0.00 P 0.00 LOW	LOW -	PM 0.00 PM 0.00 PM 0.00 LOW	LOW -	% % %
Regional Factor Cover to layer Stabilisation % Agent	NONE	NONE	NONE	NONE	NONE	NONE	mm % Matr
MOD AASH DENSITY O.M.C. C.B.R.@ 90% MOD @ 95% MOD @ 100% MOD & 95% MOD @ 95% MOD @ 100% MOD		1911.0 11.2 1.0 1.8 3.1 .000 .000 .000					kg/m3 % % % %
C 100/0 1100	► - Assume						10

Assumed value
 P - Pressure applied exceeds swell pressure
 M - Moisture content too high for swell to occur


SAMPLE NUMBER	1	2	3	4	5	6
SAMPLE NAME	TP5/3	TP6/1	TP6/2	TP6/3	TP7/1	TP8/2
HOLE NUMBER	TP5	TP6	TP6	TP6	TP7	TP8
DEPTH	3.0	0.7-1.4	3.0	3.4	2.6	1.4

.

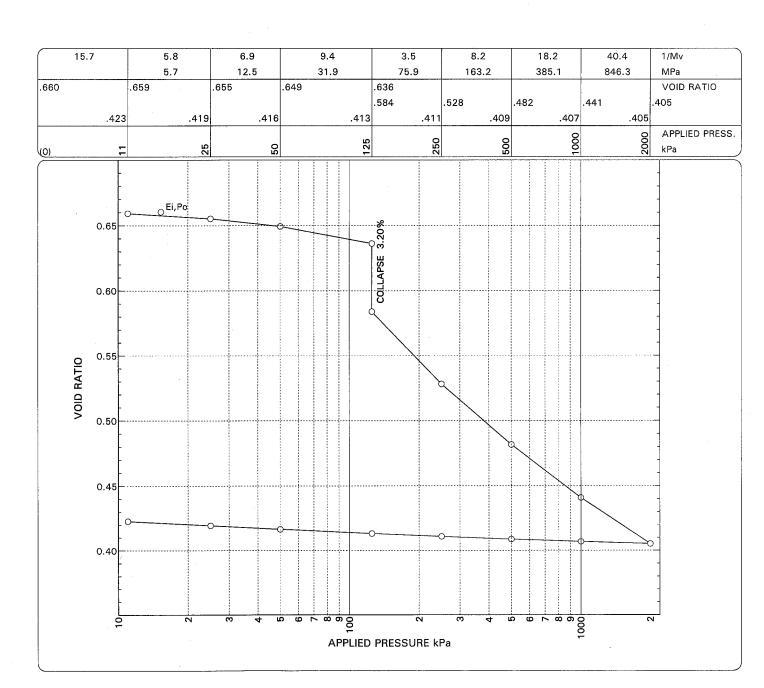
m


DATAFILE LABORATORY	Ninham Shand Consulting Services Bothaville Ethanol Plant C:\SOIL\DATA\A872PD06.CON SOILTECH A872		
NAME	PW DAY		
DATE	23-08-06		
	· · · · · · · · · · · · · · · · · · ·		
TIME	11:31:33		
	· · · · · · · · · · · · · · · · · · ·		
SAMPLE NAME	AH8/1		
TRIAL HOLE	AH8		
	2.3		
	Residual Sandstone		
	11 July 2006		
TESTING DATE	21 July 2006		
REMARKS	Soaked at 125kPa		
	l		
	· · · · · · · · · · · · · · · · · · ·		
DRY DENSITY	1845 kg/m3		
INITIAL MOISTURE CONTENT	14.21 %		
FINAL MOISTURE CONTENT	12.67 %		
INITIAL SATURATION	87.06 %		
FINAL SATURATION'	99.54 %		
SPECIFIC GRAVITY	2.64 NO		
	L		

CLIENT	Ninham Shand Consulting Services	
PROJECT	Bothaville Ethanol Plant	
DATAFILE	C:\SOIL\DATA\A872PD07.CON	
LABORATORY	SOILTECH	
JOB NO	A872	
NAME	PW DAY	
DATE	23-08-06	
TIME	11:32:01	
	[
SAMPLE NAME	TP1/1	
TRIAL HOLE	TP1	
EPTH metres	0.6	m

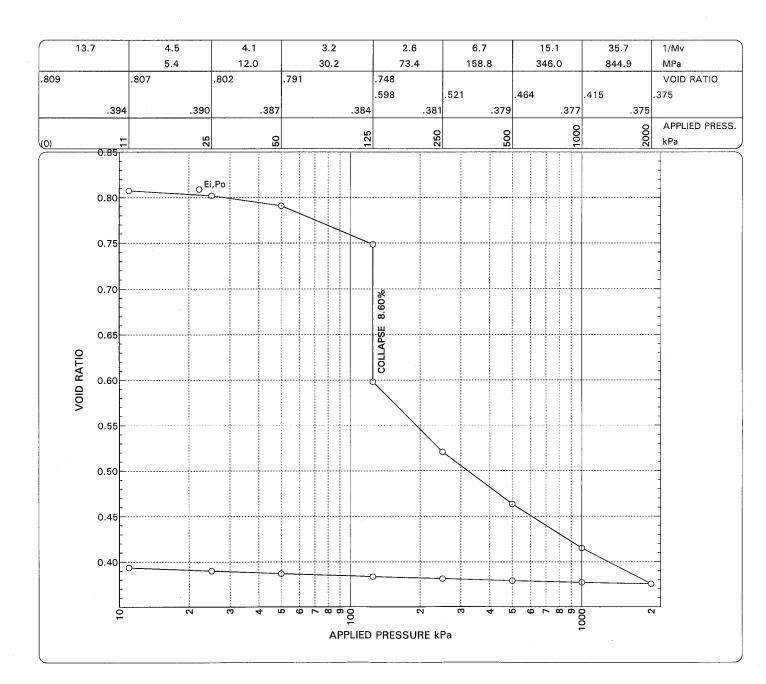
SAMPLE NAME |TP1/1 TRIAL HOLE |TP1 DEPTH metres |0.6 DESCRIPTION |Hillwash SAMPLING DATE |10 July 2006 TESTING DATE |21 July 2006 REMARKS |Soaked at 125kPa

	DRY	DENSITY	1583	ka/m3
INITIAL	MOISTURE	CONTENT	7.38	*
FINAL	MOISTURE	CONTENT	17.04	8
IN	ITIAL SA	TURATION	29.01	20
	FINAL SA	TURATION	99.56	alo
	SPECIFIC	GRAVITY	2.65	No
			i	

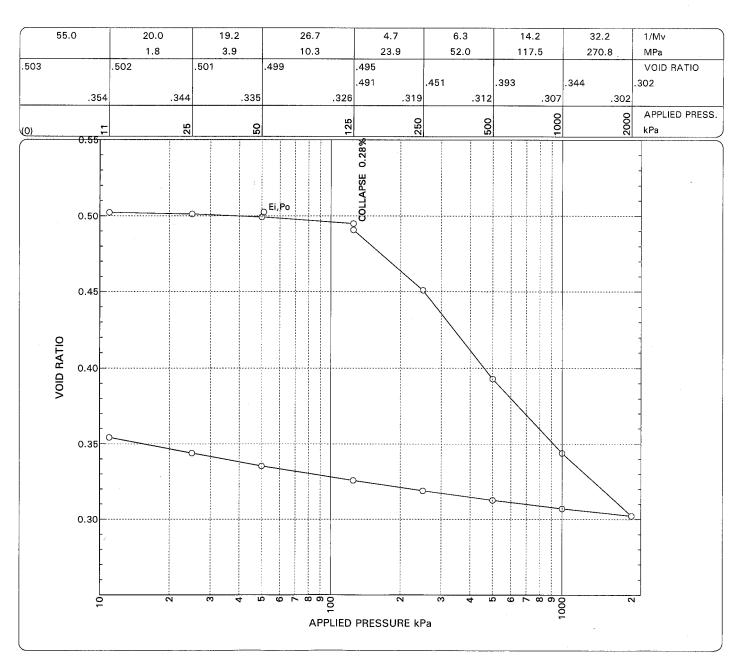


m

DATAFILE LABORATORY JOB NO	Ninham Shand Consulting Services Bothaville Ethanol Plant C:\SOIL\DATA\A872PD08.CON SOILTECH A872 PW DAY 23-08-06 11:32:18
SAMPLE NAME	TP3/2
TRIAL HOLE	TP3
	0.9
DESCRIPTION	· · · · · · · · · · · · · · · · · · ·
SAMPLING DATE	10 July 2006
TESTING DATE	21 July 2006
REMARKS	Soaked at 125kPa
	· · ·
DRY DENSITY	1590 kg/m3
INITIAL MOISTURE CONTENT	9.19 %
FINAL MOISTURE CONTENT	15.92 %
INITIAL SATURATION	36.74 %
FINAL SATURATION	99.41 %


2.64 No

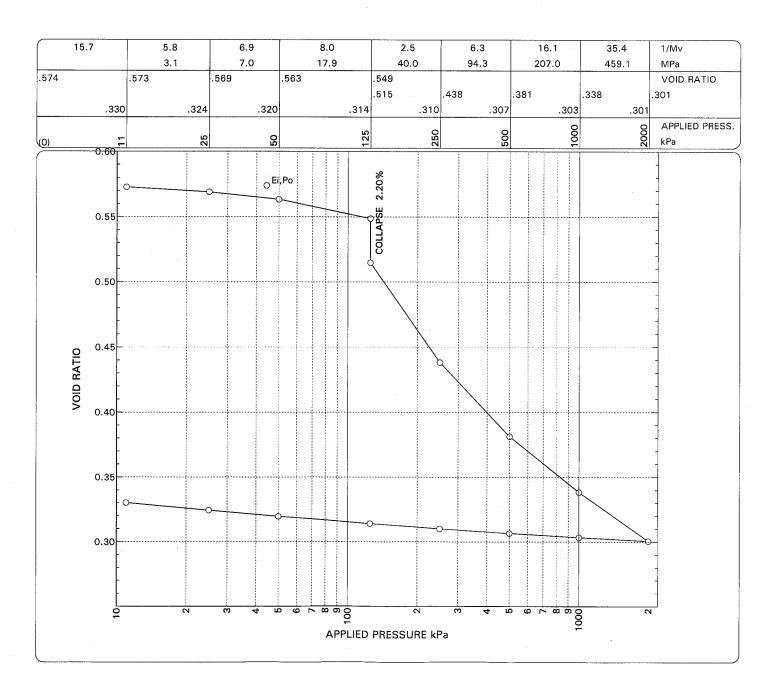
SPECIFIC GRAVITY


	-
Ninham Shand Consulting Services	
Bothaville Ethanol Plant	i
C:\SOIL\DATA\A872PD09.CON	İ
SOILTECH	Í
A872	ĺ
PW DAY	ĺ
23-08-06	Ì
11:32:39	
	l
	1
TP5/2	
TP5	
1.3	m
Illuviated Hillwash	
10 July 2006	
21 July 2006	
Soaked at 125kPa	
L	J
1465 kg/m3	
	Bothaville Ethanol Plant C:\SOIL\DATA\A872PD09.CON SOILTECH A872 PW DAY 23-08-06 11:32:39 TP5/2 TP5 1.3 Illuviated Hillwash 10 July 2006 21 July 2006 Soaked at 125kPa

	DRI	DENSILL	1402	Kg/ms	2
INITIAL	MOISTURE	CONTENT	9.67	8	
FINAL	MOISTURE	CONTENT	14.82	oto	
IN	ITIAL SAT	FURATION	31.68	oto	
	FINAL SAT	FURATION	99.79	010	
	SPECIFIC	GRAVITY	2.65	No	

CLIENT	Ninham Shand Consulting Services	
PROJECT	Bothaville Ethanol Plant	İ
DATAFILE	C:\SOIL\DATA\A872PD10.CON	ĺ
LABORATORY	SOILTECH	ĺ
JOB NO	A872	İ
NAME	PW DAY	İ
DATE	23-08-06	İ
TIME	11:33:04	ĺ
		j
		1
SAMPLE NAME	TP6/2	ł
TRIAL HOLE	TP6	
DEPTH metres	3.0	m
DESCRIPTION	Residual Sandstone	1.
SAMPLING DATE	10 July 2006	
TESTING DATE	21 July 2006	
REMARKS	Soaked at 125kPa	
		l I
	· · · · · · · · · · · · · · · · · · ·	
DRY DENSITY	1757 kg/m3	

kg/m	1757	DRY DENSITY
8	10.68	INITIAL MOISTURE CONTENT
8	13.34	FINAL MOISTURE CONTENT
જ	56.10	INITIAL SATURATION
જ	99.41	FINAL SATURATION
No	2.64	SPECIFIC GRAVITY
1		

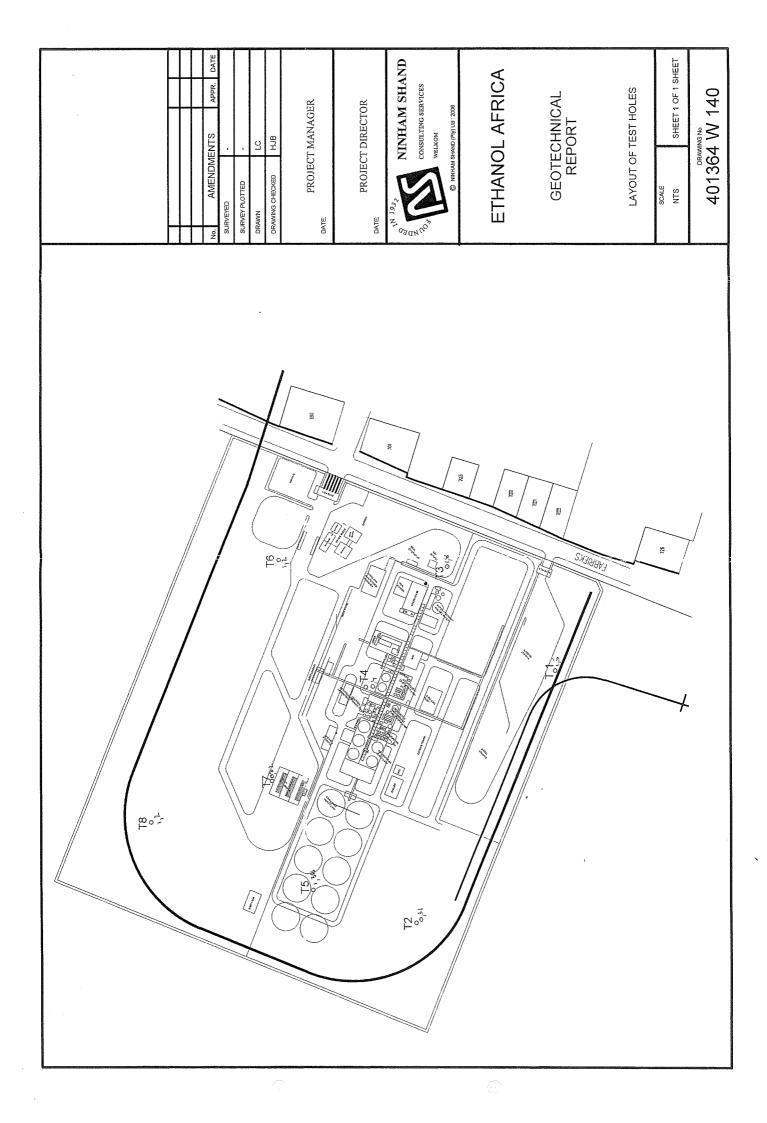


.

CLIENT	Ninham Shand Consulting Services			
PROJECT	Bothaville Ethanol Plant			
DATAFILE	C:\SOIL\DATA\A872PD11.CON			
LABORATORY	SOILTECH			
JOB NO	A872			
NAME	PW DAY			
DATE	23-08-06			
TIME	11:33:21			
	L			
SAMPLE NAME	TP7/1			
TRIAL HOLE	TP7			
DEPTH metres	2.6			
DESCRIPTION	Residual Sandstone			
SAMPLING DATE	11 July 2006			
TESTING DATE	21 July 2006			
REMARKS	Soaked at 125kPa			
	[]			
DRY DENSITY	1671 kg/m3			
INITIAL MOISTURE CONTENT	13.10 %			
FINAL MOISTURE CONTENT	12.53 %			
INITIAL SATURATION	60.03 %			
FINAL SATURATION	99.78 %			

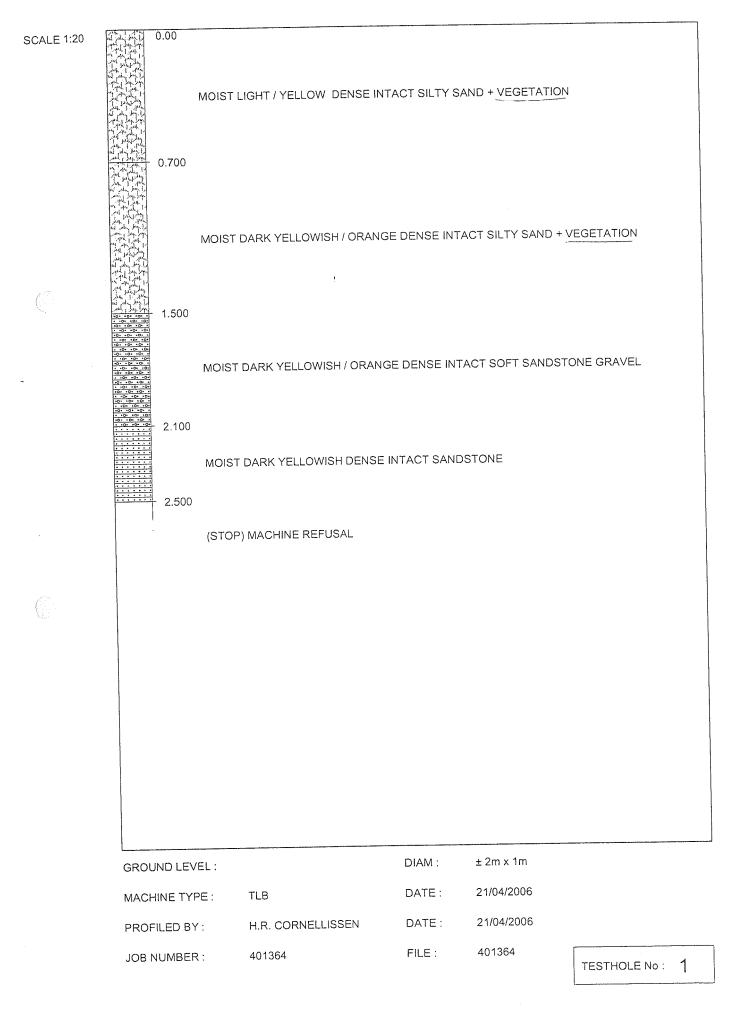
2.63 No

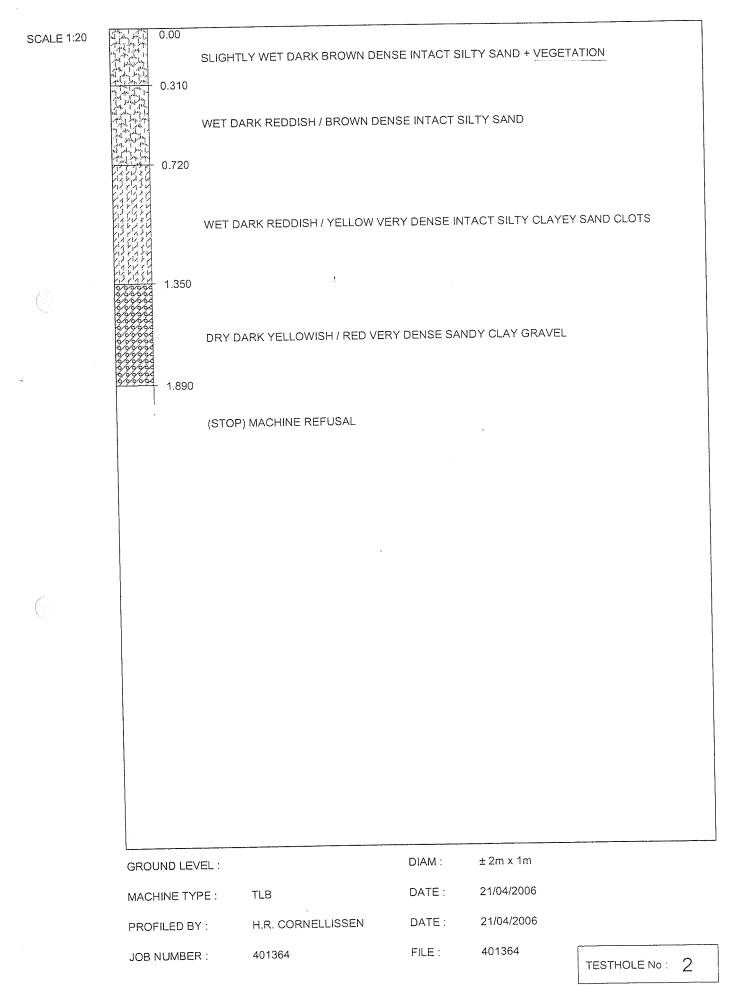
SPECIFIC GRAVITY

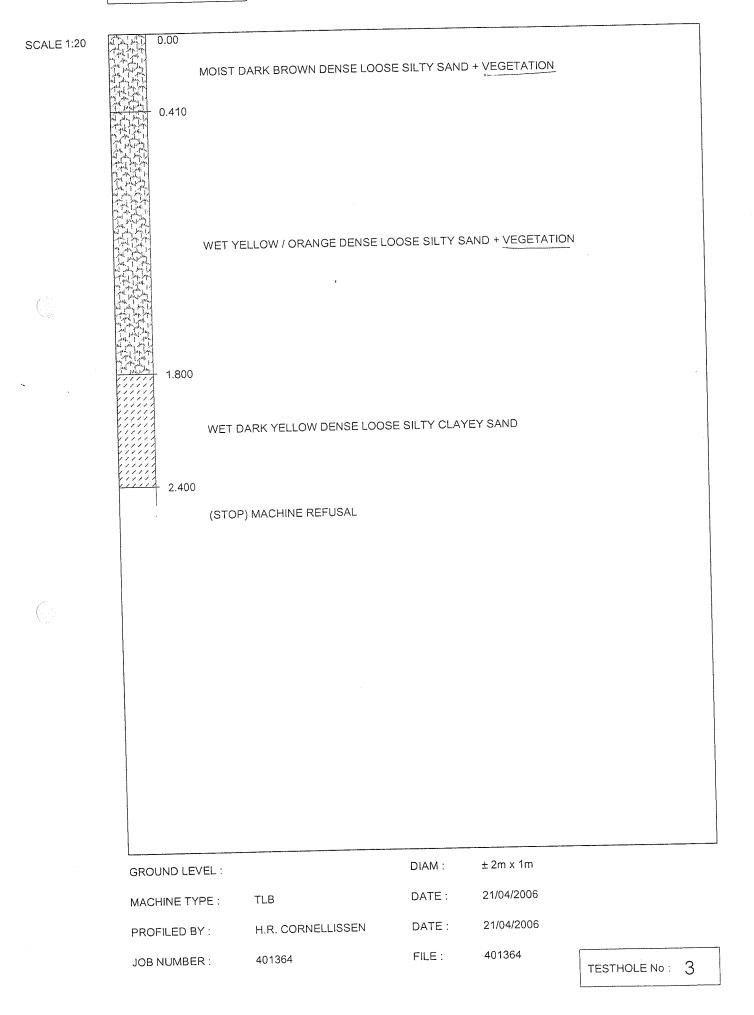


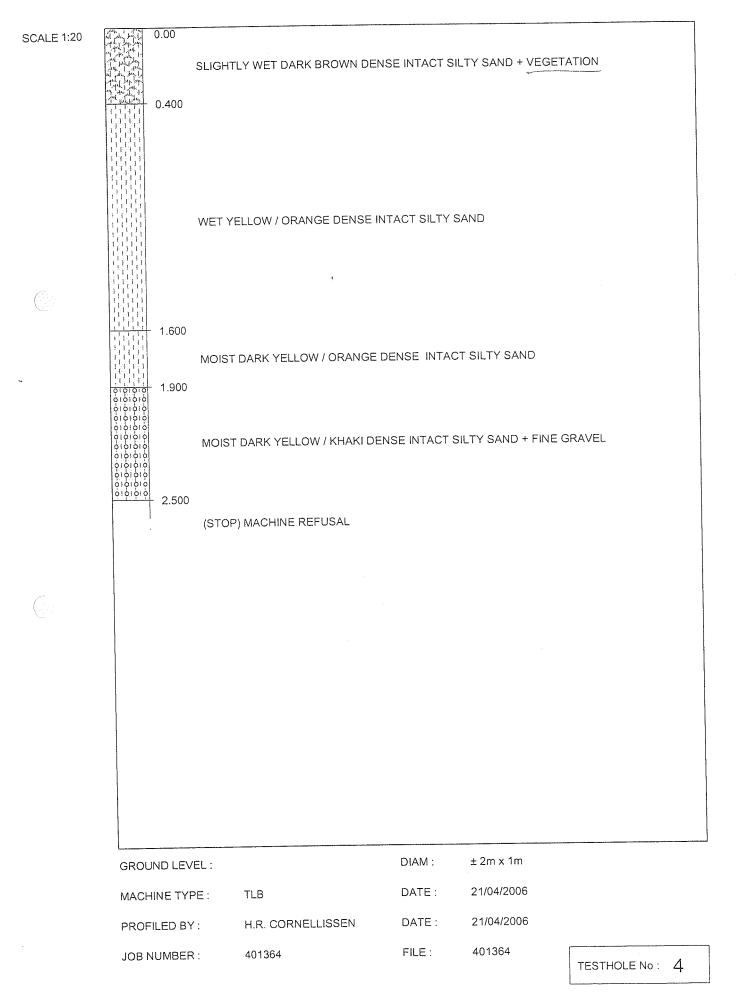
m

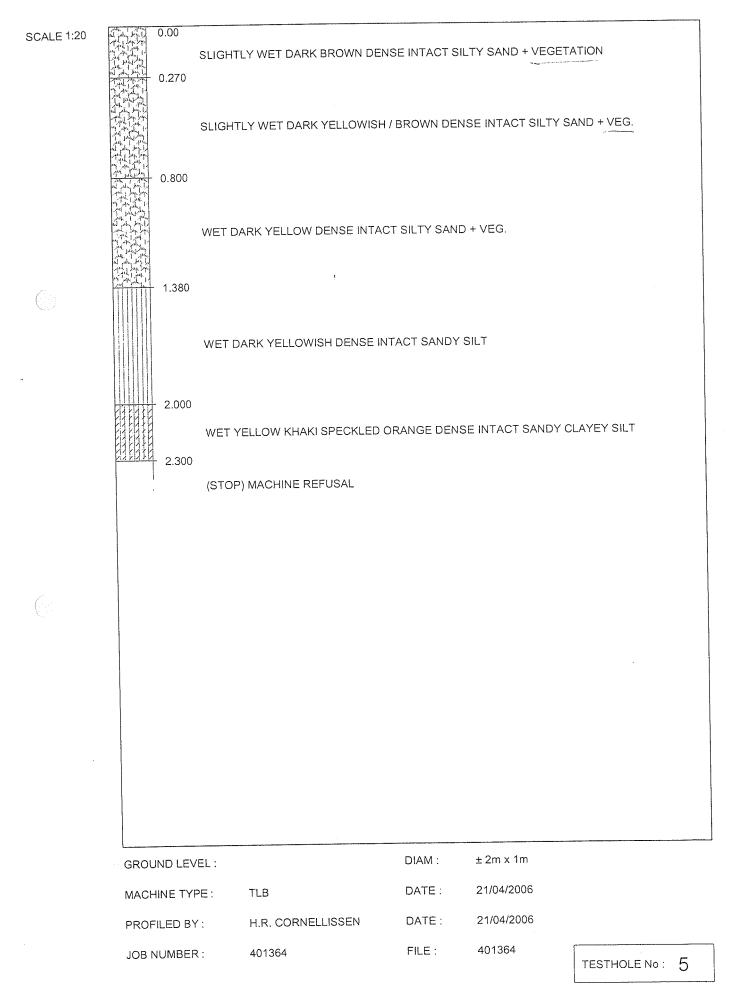
APPENDIX D

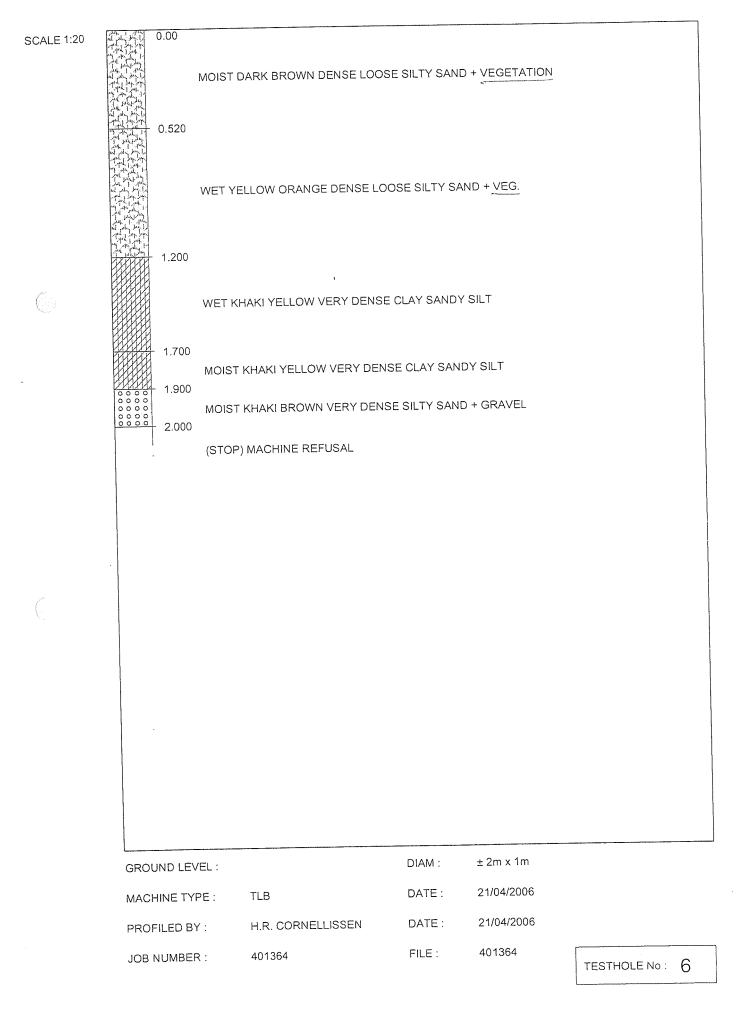

DATA FROM PRELIMINARY INVESTIGATION

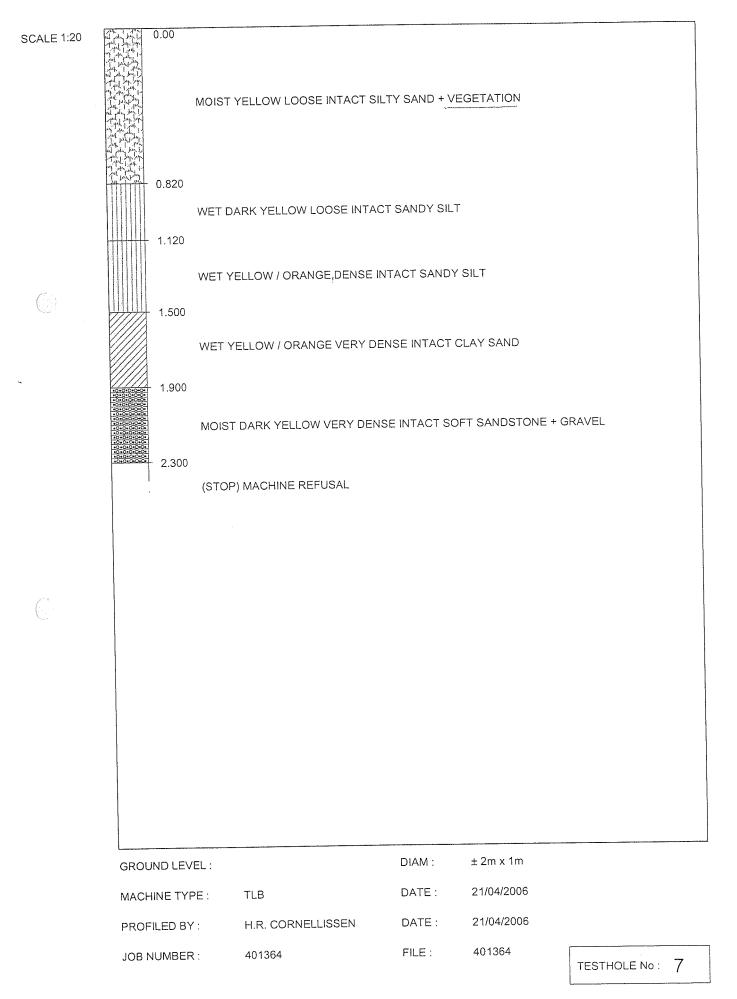

TESTHOLE No: 1


TESTHOLE No: 2


TESTHOLE No: 3


TESTHOLE No: 4


TESTHOLE No: 5


TESTHOLE No : 6

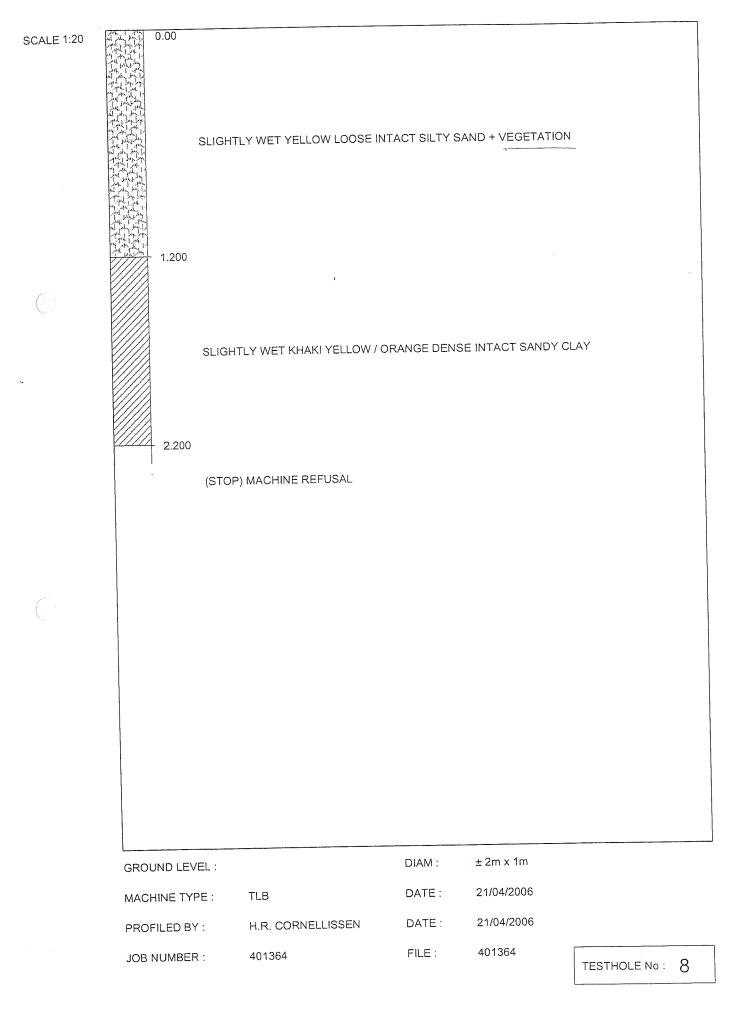
TESTHOLE No: 7

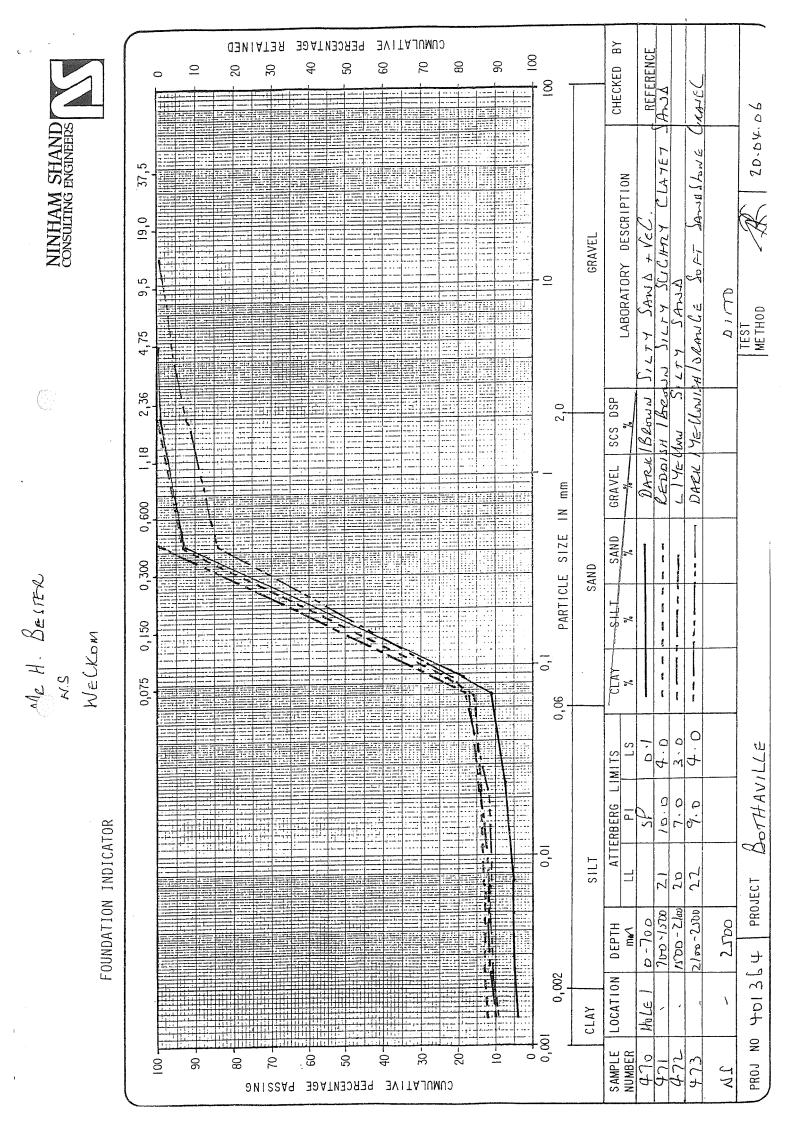
TESTHOLE No	:	8
-------------	---	---

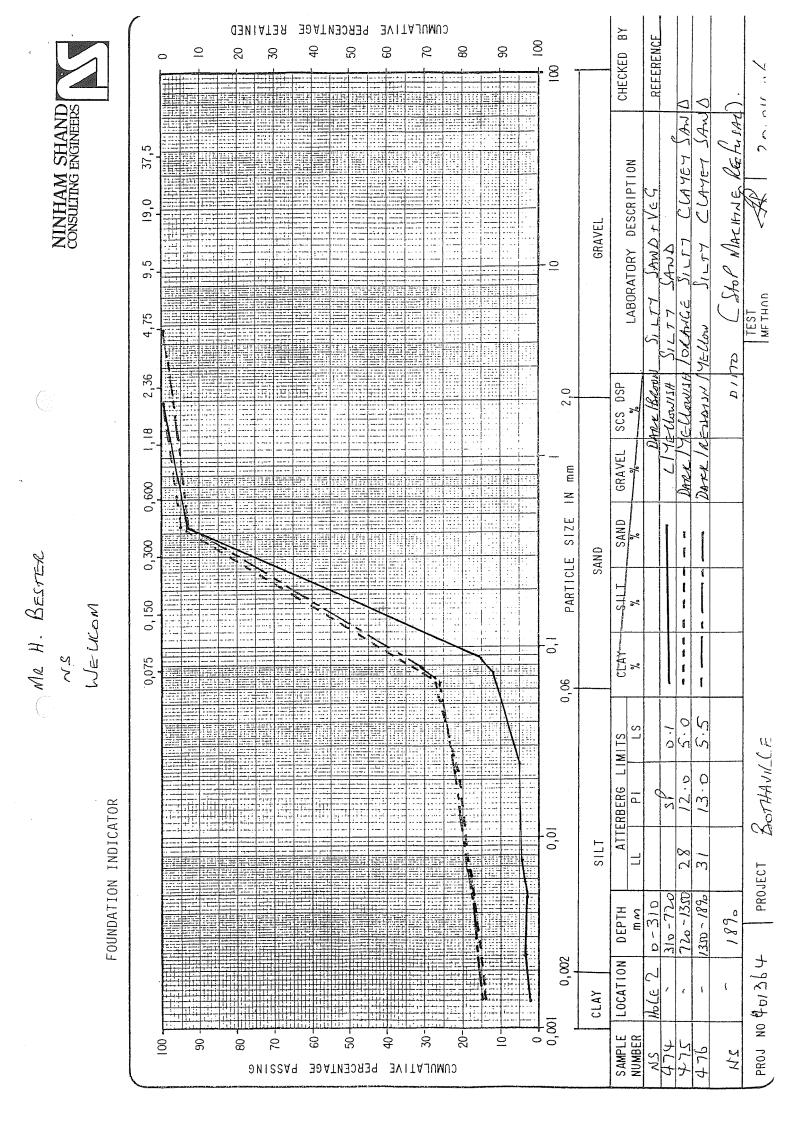
.

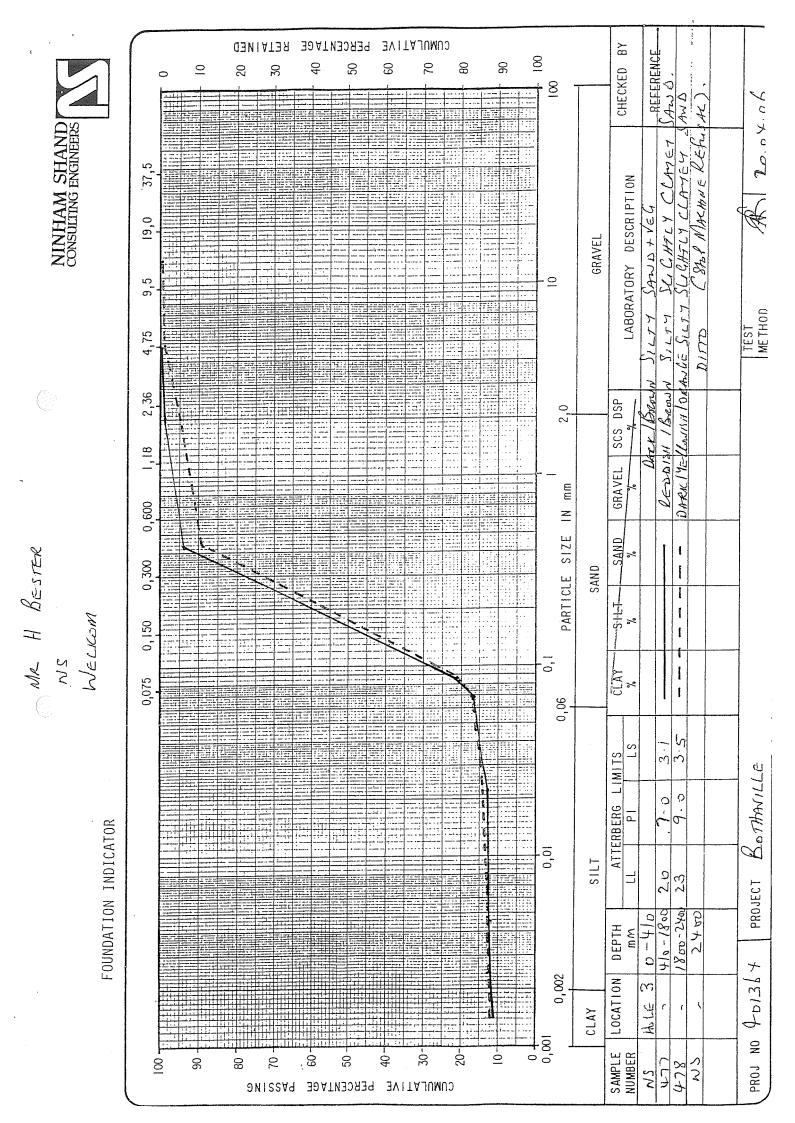
¢

GEOTECHNICAL INVESTIGATION BOTHAVILLE

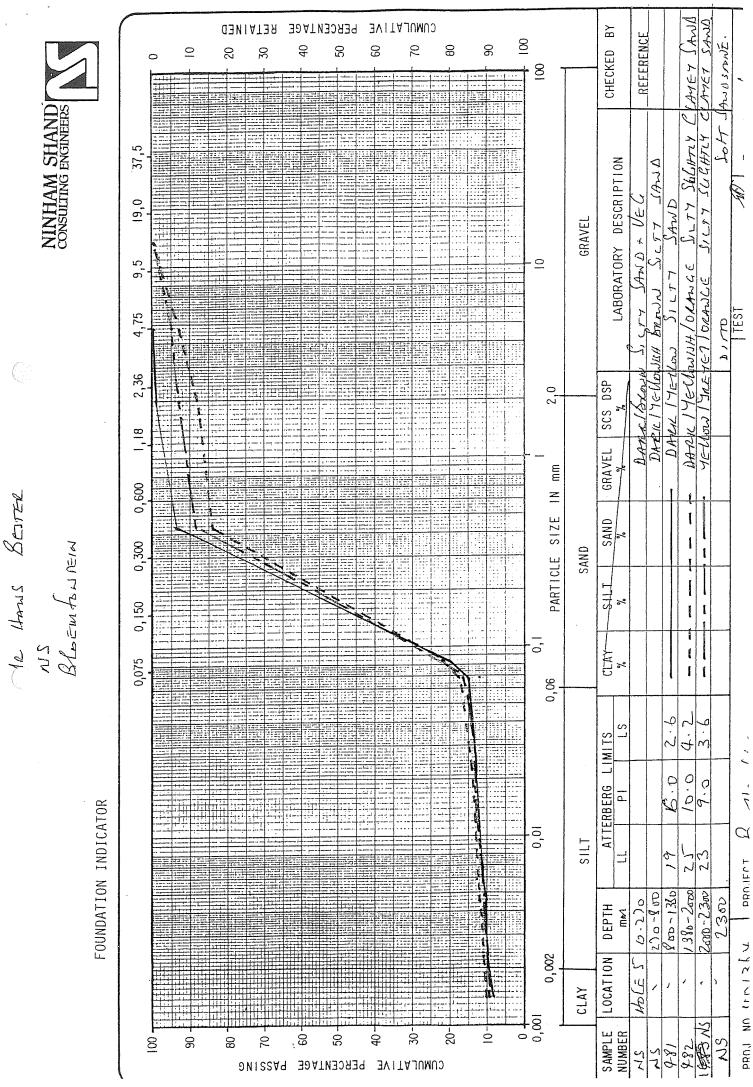

٦

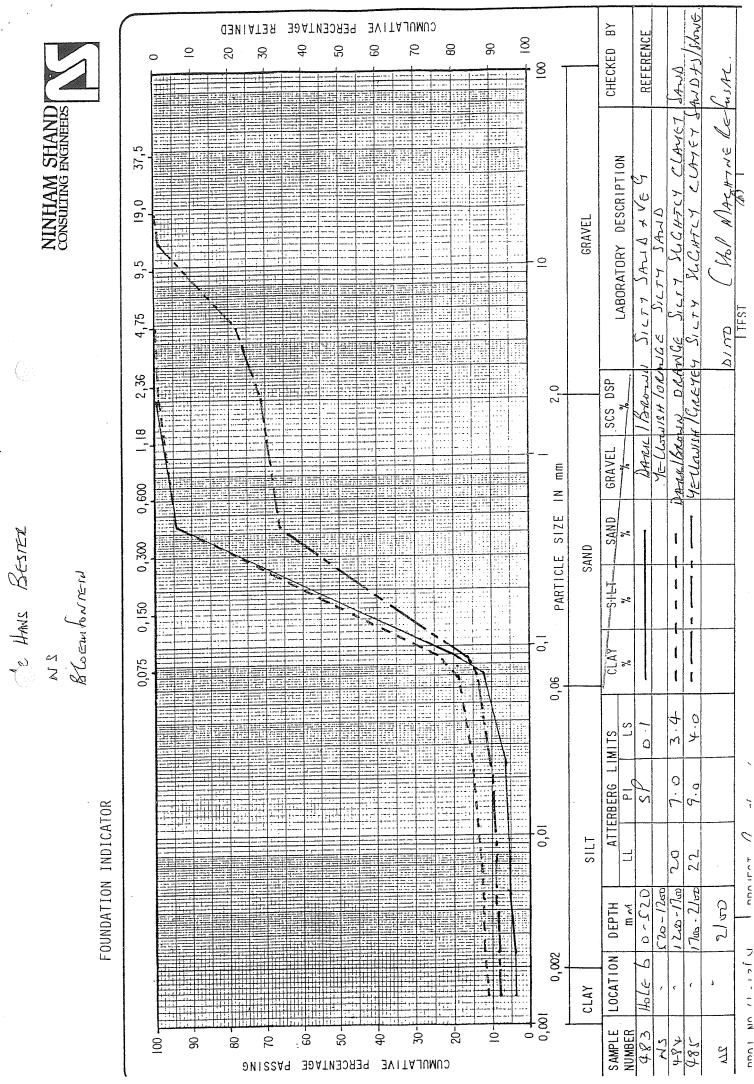

SCALE 1:20	0.00	ITLY WET YELLOW LOOSE I	NTACT SILTY S	SAND + VEGETATION	N	
	1.200	'				
-	SLIG 2.200	HTLY WET KHAKI YELLOW /	ORANGE DENS	SE INTACT SANDT C		
		P) MACHINE REFUSAL				
Ċ						
	GROUND LEVEL :		DIAM :	± 2m x 1m		
	MACHINE TYPE :	TLB	DATE :	21/04/2006		
	PROFILED BY :	H.R. CORNELLISSEN	DATE :	21/04/2006		
	JOB NUMBER :	401364	FILE :	401364	TESTHOLE No : 8	_

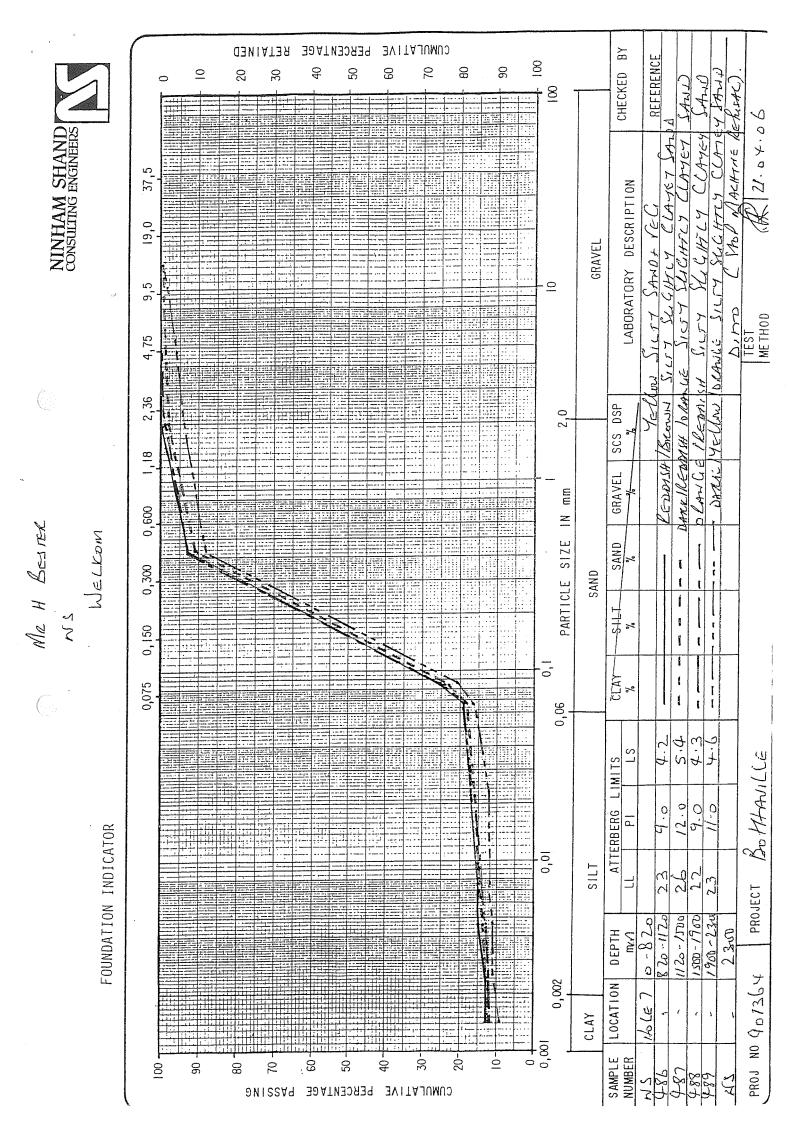

TESTHOLE No: 8	HOLE No: 8
----------------	------------

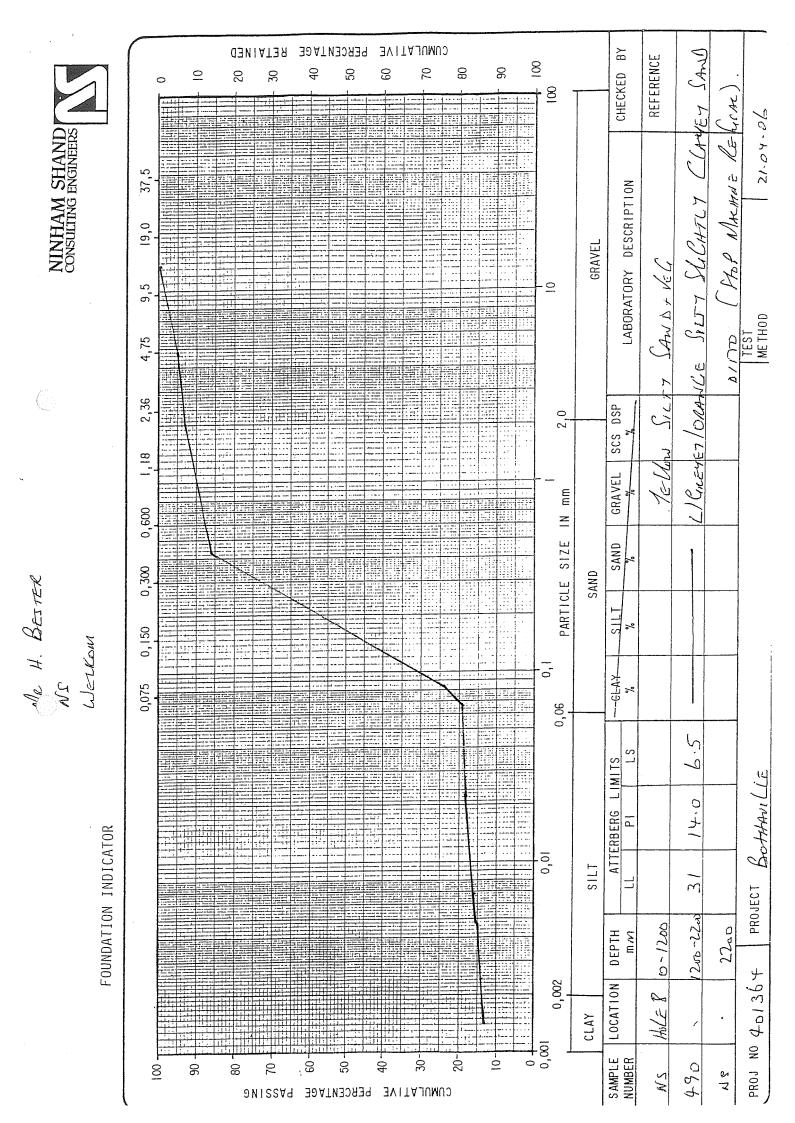

GEOTECHNICAL INVESTIGATION BOTHAVILLE

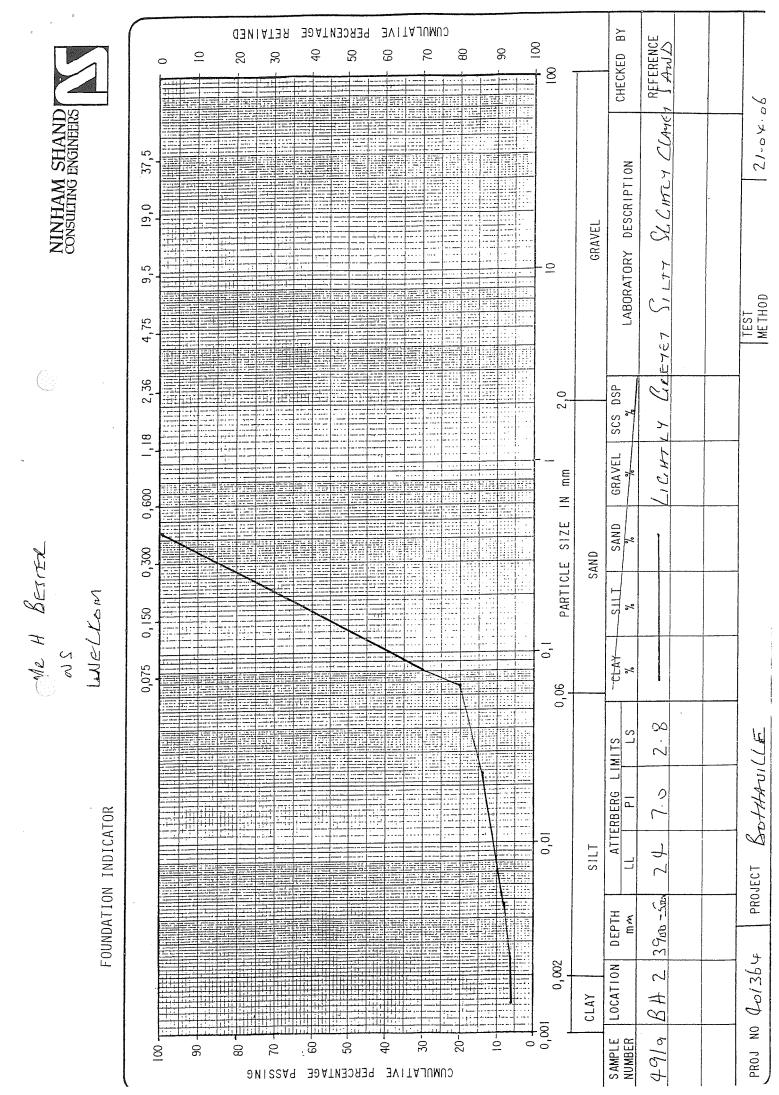






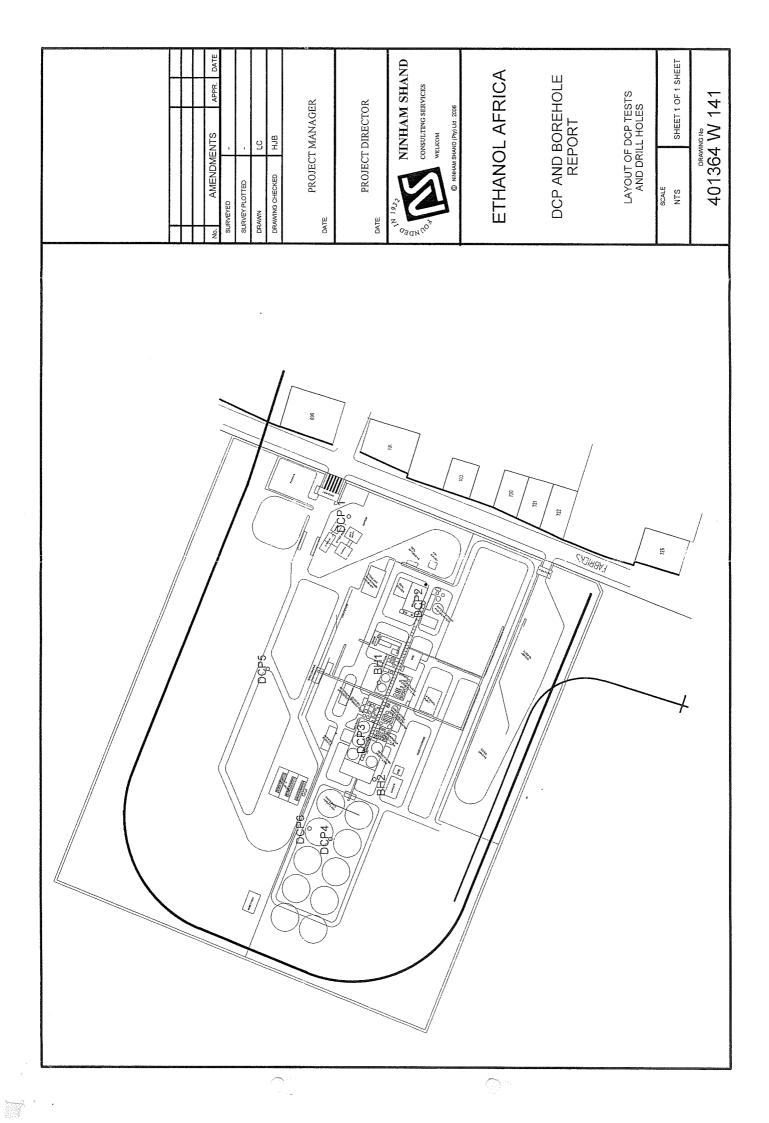


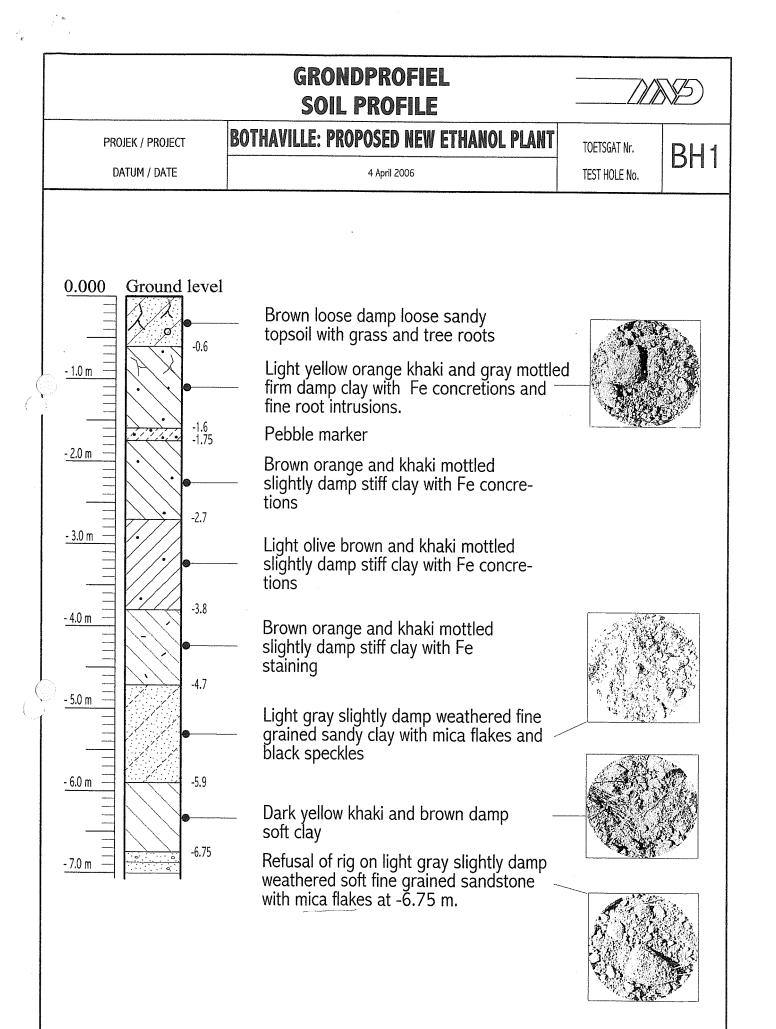



PRO.IFCT

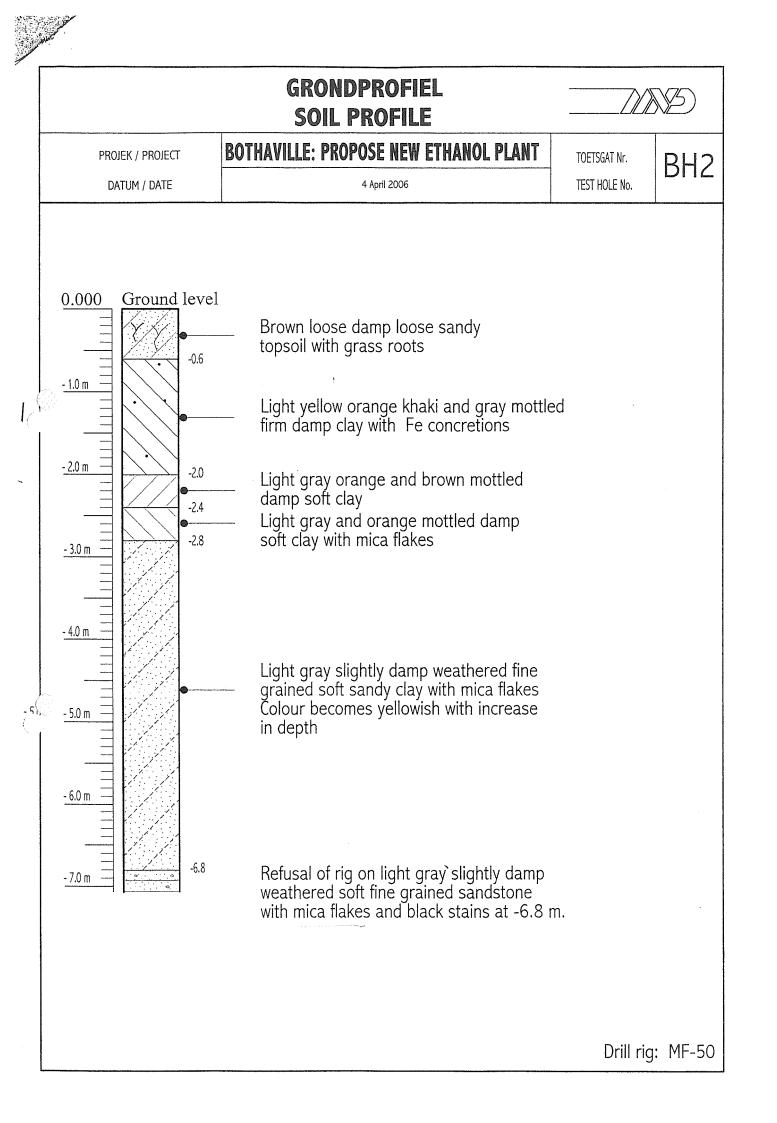
N Jerr I VN LUGO

Project:	BOTHAVILLE
^{>} roj no:	401364


PREDICTION OF HEAVE

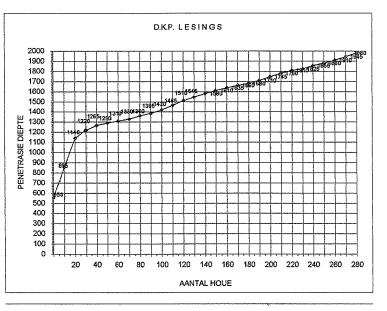

ς.

Van der Merwe Method: Construction of Road Embankments, TRH9

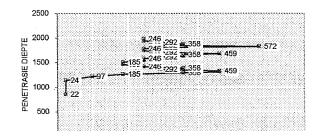

		A	1	2	B 1 x 2	3	C 2 x 3	Fig 9	D Table III	E Table IV	A x D x
yer	Depth (mm)	Layer thickness (m)	PI (Atterberg)	Cum % passing < 425 sieve	PI (Whole sample)	Cum % passing < 0.002 sieve	Clay fraction	Relationship (B & C)	Heave mm/m of profile	Depth factor	Heave (mm)
1	<u>Testhole 1</u> 0 700	0.7	SP	93		4	3.72	Low	0	0.85	0
2	700 1000 1000 1500	0.3 0 <i>.</i> 5	10 10	93 93	9.3 9.3	13 13	12.09 12.09	Low Low	0	0.85 0.6	0
3	1500 2000 2000 2100	0.5 0.1	7 7	100 100	7 7	11 11	11 11	Low Low	0	0.6 0.4	0
4	2100 2500	0.4	9	84	7.56	10	8.4	Low	0 Total heave :	0.4	0
1	<u>Testhole 2</u> 0 310										
2	310 720	0.41	SP	93		3	2.79	Low	. 0	0.85	0
3	720 1000	0.28 0.35	12 12	95 95	1 11.4 11.4	14 14	13.3 13.3	Low Low	0	0.85 0.6	0
4	1350 1890	0.54	13	93	12.09	16	14.88	Medium	20 Total heave	0.6	6.48 6.48
1	<u>Testhole 3</u> 0 410										
2	410 1000 1000 1800	0.59 0.8	7 7	94 94	6,58 6.58	12 12	11.28 11.28	Low Low	0 0	0.85 0.6	0
3	1800 2000 2000 2400	0.2 0.4	9 9	89 89	8.01 8.01	12 12	10.68 10.68	Low Low	0	0.6 0.4	0
1	<u>Testhole 4</u> 0 400	1							Total heave		
2	400 1000 1000 1600	0.6	9	97 97	8.73 8.73	13 13	12.61 12.61	Low Low	0	0.85	0
3	1600 1900										
4	1900 2000 2000 2500	0.1 0.5	12 12	57 57	6.84 6.84	6 6	3.42 3.42	Low Low	0 0 Total heave	0.6 0.4	0 0 0
1	<u>Testhole</u> 3 0 270	5									
2	270 800										
3	800 1000 1000 1380	0.2 0.38	16 16	94 94	15.04 15.04	10 10	9.4 9.4	Low Low	0	0.85 0.6	0
4	1380 2000	0.62	8	88	7.04	11	9.68	Low	0	0.6	C
5	5 2000 2300	0.3	8	84	6.72	10	8.4	Low	0 Total heav	0.4 e =	0
	Testhole 1 0 520	6 0.52		94		4					
	2 520 1000 1000 1200										
\vdash	3 1200 1700	0.5	7	94	6.58	12	11.28	Low	0	0.6	(
	4 1700 2000 2000 2100		9 9	66 66	5.94 5.94	8 8	5.28 5.28	Low Low	0 0 Total heav	0.6 0.4	

÷ 1	Testhole 7 0 820										
2	820 1000 1000 1120	0.18 0.12	9 9	93 93	8.37 8.37	13 13	12.09 12.09	Low Low	0 0	0.6 0.85	0 0
3	1120 1500	0.38	12	91	10.92	13	11.83	Low	0	0.85	0
4	1500 1900	0.4	9	88	7.92	12	10.56	Low	0	0.85	0
5	1900 2000 2000 2300	0.1 0.3	11 11	98 98	10.78 10.78	10 10	9.8 9.8	Low Low	0	0.85 0.4	0
									Total heave	1 = 1	0
1	<u>Testhole 8</u> 0 1000 1000 1200										
2	1200 2000 2000 2200	0.8 0.2	14 14	81 81	11.34 11.34	14 14	11.34 11.34	Low Low	0	0.6 0.4	0
									Totai heave		0

Drill rig: MF-50

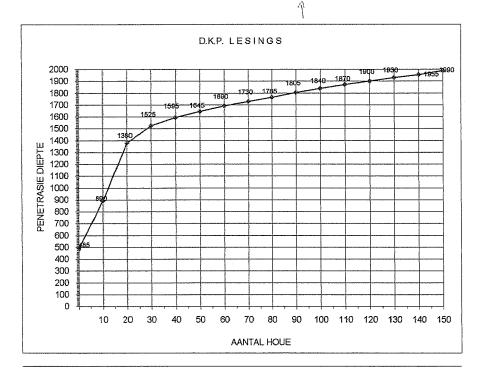

1

PROJEK ... ETHANOL AFRICA DATUM....: \$2888888


Ľ,

,

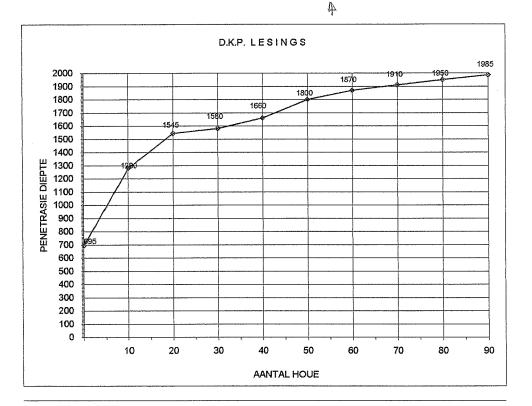
		ETHANOL	AFRICA					0				
	DATUM:	*******					, cb	K				
				BER	שע	w hr						
	DIEPTE		DKP	DKP	SOM	KDV	EDS	EDS	DIEPTE	mm/slag	FAKTOR	
	(mm)	SLAE	GETAL	FAKTOR	VAN			X	VIR	Vir	VIR	
	1		(mm/slag)		HOUE			1/3	GRAFIEK	GRAFIEK	GRAFIEK	
	(A1)		(X1)		(X2)		kPa	kPa	(A2)	(X3)	(X4)	
	555			0.00								
	855	10	30	0.28	10	5	67	22	555	30	0.28	
0,59	1140	10	29	0.46	20	6	71	24	855	30	0.28	
	1220	10	8 62	0.49	30	29	292	97	855	28.5	0.46	
	1265	10	0	0.50	40	61	556	185	1140	8	0.49	
	1290	10	3	0.50	50	128	1073	358	1220	4.5	0.50	5075
	1310	10	2	0.50	60	170	1377	459	1265	2.5	0.50	
	1330	10	2	0.50	70	170	1377	459	1290	2	0.50	
	1360	10	3	0.51	80	102	875	292	1310	2	0.50	
	1385	10	3	0.51	90	128	1073	358	1330	3`	0.51	
	1420	10	4	0.52	100	84	737	246	1360	2.5	0.51	
	1465	10	5	0,53	110	61	556	185	1385	3.5	0.52	
	1510	10	5 U	0.53	120	61	556	185	1420	4.5	0.53	
	1545	10	4	0.54	130	84	737	246	1465	4.5	0.53	
	1580	10	4	0.55	140	84	737	246	1510	3.5	0.54	
	1610	10	3	0.55	150	102	875	292	1545	3.5	0.55	[
	1635	10	3	0.55	160	128	1073	358	1580	3	0.55	
¢' `	1660	10	3	0.55	170	128	1073	358	1610	2.5	0.55	
	1680	10	2	0.56	180	170	1377	459	1635	2.5	0.55	
1,16	1710	10	3	0.56	190	102	875	292	1660	2	0.56	an an
1-	1745	10	4	0.56	200	84	737	246	1680	3	0.56	
	1780	10	4	0.57	210	84	737	246	1710	3.5	0.56	
	1810	10	3	0,57	220	102	875	292	1745	3.5	0.57	
	1825	10	233	0.57	230	218	1716	572	1780	3	0.57	NO
	1855	10		0.58	240	102	875	292	1810	1.5	0.57	2790
	1880	10	3	0.58	250	128	1073	358	1825	3	0.58	-
	1910	10	3	0.58	260	102	875	292	1855	2.5	0.58	
. 1. 0	1945	10	4	0.59	270	84	737	246	1880	3	0.58	
1,42	1980	10	4	0.59	280	84	737	246	1910	3.5	0.59	
'												


VEILIGE DRAVERMOë (EDS/3) k Par .

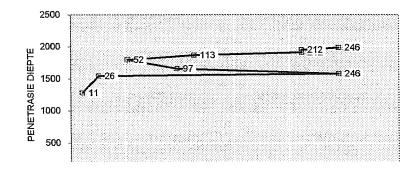
PROJEK...: ETHANOL AFRICA DATUM...: 06-Apr-06 POSISIE..:

 C^{2}

			BER	EK	EN	IN	GE			
DIEPTE (mm) (A1)		DKP GETAL (mm/slag) (X1)	DKP FAKTOR	SOM VAN HOUE (X2)	KDV	EDS kPa	EDS X 1/3 kPa	DIEPTE VIR GRAFIEK (A2)	mm/slag ViR GRAFIEK (X3)	FAKTOR VIR GRAFIEK (X4)
485	[0.00							
890	10	41	0.42	10	4	48	16	485	40.5	0.42
1380	10	49	0.75	20	3	39	13	890	40.5	0.42
1525	10	15	0.80	30	14	150	50	890	49	0,75
1595	10	7	0.81	40	35	340	113	1380	14.5	0.80
1645	10	5	0.82	50	53	495	165	1525	7	0.81
1690	10	5	0.83	60	61	556	185	1595	5	0.82
1730	10	4	0.84	70	70	635	212	1645	4.5	0.83
1765	10	4	0.84	80	84	737	246	1690	4	0.84
1805	10	4	0.85	90	70	635	212	1730	3.5	0.84
1840	10	4	0.85	100	84	737	246	1765	4	0.85
1870	10	3	0.85	110	102	875	292	1805	3.5	0.85
1900	10	3	0.86	120	102	875	292	1840	3	0,85
1930	10	3	0.86	130	102	875	292	1870	3	0.86
1955	10	3	0.86	140	128	1073	358	1900	3	0.86
1990	10	4	0.87	150	84	737	246	1930	2.5	0,86



VEILIGE DRAVERMOë (EDS/3)



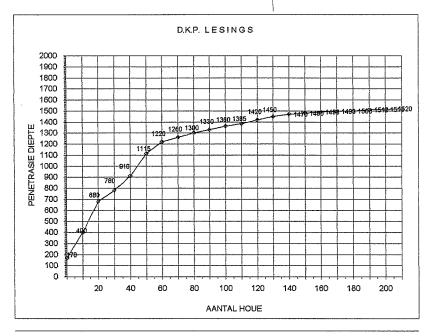
PROJEK...: ETHANOL AFRICA DATUM....: 06-Apr-06 POSISIE..:

DIEPTE (mm) (A1)	SLAE	DKP GETAL (mm/slag) (X1)	DKP FAKTOR	SOM VAN HOUE (X2)	KDV	EDS kPa	EDS X 1/3 kPa	DIEPTE VIR GRAFIEK (A2)	mm/slag VIR GRAFIEK (X3)	FAKTOR VIR GRAFIEK (X4)
695			0.00							
1280	10	59	0.47	10	2	32	11	695	58.5	0.47
1545	10	27	0.58	20	6	77	26	1280	58 <i>.</i> 5	0.47
1580	10	4	0.59	30	84	737	246	1280	26.5	0.58
1660	10	8	0.61	40	29	292	97	1545	3.5	0.59
1800	10	14	0.65	50	14	156	52	1580	8	0.61
1870	10	7	0.66	60	35	340	113	1660	14	0.65
1910	10	4	0.67	70	70	635	212	1800	7	0.66
1950	10	4	0.67	80	70	635	212	1870	4	0.67
1985	10	4	0.68	90	84	737	246	1910	4	0.67

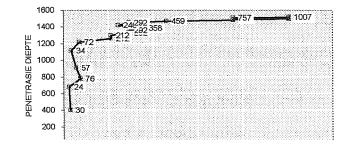
VEILIGE DRAVERMOë (EDS/3)

1178

3


 C_{i}

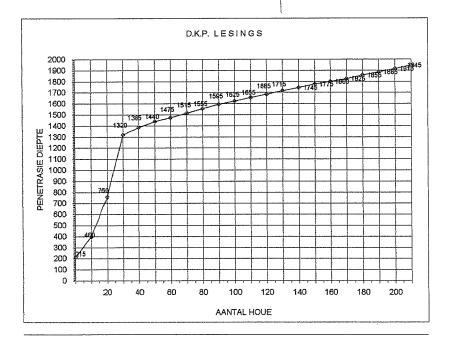
PROJEK ... ETHANOL AFRICA DATUM....: ########


2

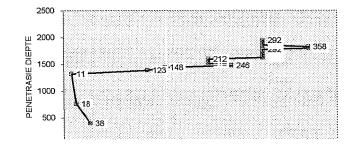
-@

DIEPTE (mm)	SLAE	DKP GETAL (mm/slag)	DKP FAKTOR	SOM VAN HOUE	KDV	EDS	EDS X 1/3	DIEPTE VIR GRAFIEK	mm/slag VIR GRAFIEK	FAKTOR VIR GRAFIEK
(A1)		(X1)		(2(2)		kPa	kPa	(A2)	(X3)	(X4)
170			0.00							
400	10	23.	0.51	10	8	90	30	170	23	0.51
680	10	28	0.84	20	6	72	24	400	23	0.51
780	10	10	0.90	30	22	228	76	400	28	0.84
910	10	13	0.97	40	16	170	57	680	10	0.90
1115	10	21	1.09	50	9	102	34	780	13	0,97
1220	10	11	1.13	60	21	216	72	910	20.5	1.09
1260	10	4	1.14	70	70	635	212	1115	10.5	1.13
1300	10	4	1.15	80	70	635	212	1220	4	1.14
1330	10	3	1.15	90	102	875	292	1260	4	1.15
1360	10	3	1.16	100	102	875	292	1300	3	1.15
1385	10	3	1.16	110	128	1073	358	1330	3	1.16
1420	10	4	1.16	120	84	737	246	1360	2.5	1.16
1450	10	3	1.17	130	102	875	292	1385	3.5	1.16
1470	10	2	1.17	140	170	1377	459	1420	3	1.17
1480	10	1	1.17	150	300	2270	757	1450	2	1.17
1490	10	1	1.17	160	300	2270	757	1470	1	1.17
1495	10	1	1.17	170	415	3020	1007	1480	1	1.17
1500	10	1	1.17	180	415	3020	1007	1490	0.5	1.17
1510	10	1	1.17	190	300	2270	757	1495	0.5	1.17
1515	10	1	1.17	200	415	3020	1007	1500	1	1.17
1520	10	1	1.17	210	415	3020	1007	1510	0.5	1.17

VEILIGE DRAVERMOë (EDS/3)


966°

PROJEK... ETHANOL AFRICA DATUM....: ########


÷

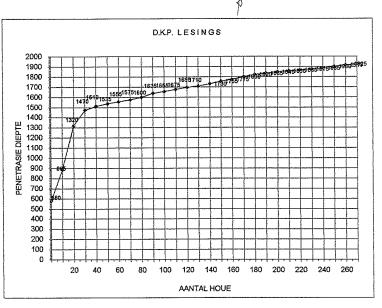
*

			BER	EK	EN	IN	GE				
DIEPTE (mm)	SLAE	DKP GETAL (mm/slag)	DKP FAKTOR	SOM VAN HOUE	KDV	EDS	EDS X 1/3	DIEPTE VIR GRAFIEK	mm/slag VIR GRAFIEK	FAKTOR VIR GRAFIEK	
(A1)		(IntilStag) (X1)		(X2)		kPa	kPa	(A2)	(X3)	(X4)	
215			0.00								
400	10	19	0.34	10	10	115	38	215	18.5	0.34	
760	10	36	0.78	20	4	54	18	400	18.5	0.34	
1320	10	56	1.19	30	2	33	11	400	36	0.78	
1385	10	7	1.21	40	38	369	123	760	56	1.19	
1440	10	6	1.22	50	47	445	148	1320	6.5	1.21	
1475	10	4	1.23	60	84	737	246	1385	5.5	1.22	
1515	10	4	1.24	70	70	635	212	1440	3.5	1.23	
1555	10	4	1.24	.80	70	635	212	1,475	4	1.24	
1595	10	4	1.25	90	70	635	212	1515	4	1.24	
1625	10	3	1.25	100	102	875	292	1555	4	1.25	
1655	10	3	1.26	110	102	875	292	1595	3	1.25	
1685	10	3	1.26	120	102	875	292	1625	3	1.26	
1715	10	3	1.27	130	102	875	292	1655	3	1.26	
1745	10	3	1.27	140	102	875	292	1685	3	1.27	47
1775	10	3	1.27	150	102	875	292	1715	3.	1.27	4
1800	10	3	1.27	160	128	1073	358	1745	3	1.27	
1825	10	3	1.28	170	128	1073	358	1775	2.5	1.27	
1855	10	3	1.28	180	102	875	292	1800	2.5	1.28	
1885	10	3	1.28	190	102	875	292	1825	3	1.28	
1915	10	3	1.29	200	102	875	292	1855	3	1.28	
1945	10	3	1.29	210	102	875	292	1885	3	1.29	

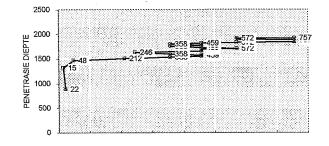
VEILIGE DRAVERMOë (EDS/3)

6

PROJEK.... ETHANOL AFRICA


POSISIE..:

۴.


 $\begin{pmatrix} \hat{g}_{i} \\ \hat{g}_{i} \end{pmatrix}$

÷

DIEPTE (mm)	SLAE	DKP GETAL	DKP FAKTOR	SOM VAN	KDV	EDS	EDS X	DIEPTE VIR	mm/slag ViR	FAKTOR VIR
		(mm/slag)		HOUE			1/3	GRAFIEK	GRAFIEK	GRAFIEK
(A1)		(X1)		(X2)		kPa	kPa	(A2)	(X3)	(X4)
580	1		0.00							
885	10	31	0.27	10	5	66	22	580	30.5	0.27
1320	10	44	0.56	20	3	44	15	885	30.5	0.27
1470	10	15	0.61	30	13	145	48	885	43.5	0.56
1510	10	4	0.62	40	70	635	212	1320	15	0.61
1535	10	3	0.62	50	128	1073	358	1470	4	0.62
1555	10	2	0.62	60	170	1377	459	1510	2.5	0.62
1575	10	2	0.63	70	170	1377	459	1535	2	0.62
1600	10	3	0.63	80	128	1073	358	1555	2	0.63
1635	10	4	0.63	90	84	737	246	1575	2.5	0.63
1655	10	2	0.63	100	170	1377	459	1600	3.5	0.63
1675	10	2	0.64	110	170	1377	459	1635	2	0.63
1695	10	2	0.64	120	170	1377	459	1655	2	0.64
1710	10	2	0.64	130	218	1716	572	1675	2	0.64
1730	10	2	0.64	140	170	1377	459	1695	1.5	0.64
1755	10	3	0.64	150	128	1073	358	1710	2	0.64
1775	10	2	0.64	160	170	1377	459	1730	2.5	0.64
1800	10	3	0.65	170	128	1073	358	1755	2	0.64
1820	10	2	0.65	180	170	1377	459	1775	2.5	0.65
1835	10	2	0.65	190	218	1716	572	1800	2	0.65
1845	10	1	0.65	200	300	2270	757	1820	1.5	0.65
1855	10	1	0.65	210	300	2270	757	1835	1	0.65
1865	10	1	0.65	220	300	2270	757	1845	1	0.65
1875	10	1	0.65	230	300	2270	757	1855	1	0.65
1885	10	1	0.65	240	300	2270	757	1865	1	0,65
1900	10	2 3	0.65	250	218	1716	572	1875	1	0.65
1915	10	2 5	0.65	260	218	1716	572	1885	1.5	0.65
1925	10	1	0.65	270	300	2270	757	1900	1.5	0.65

VEILIGE DRAVERMOë (EDS/3)

