GEOTECHNICAL

FINAL REPORT

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

House 336 A Malamulele Limpopo 0982 nduna@ntamuengineers.co.za Reg no. 2019/ 127448/ 07

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

Prepared for	:	REAL DEVELOPMENT PLANNING COMPANY
		9 Leadwood Street
		Nelspruit
		Mpumalanga
		1200
Prepared by	:	NTAMU ENGINEERS (NTE)
Contact Person		Mabasa Nduna
Contact Person		Mabasa Nduna House 336
Contact Person		
Contact Person		House 336
Contact Person		House 336 Malamulele
Contact Person		House 336 Malamulele Limpopo Province
Contact Person		House 336 Malamulele Limpopo Province 0982

Report No. : NTE22-03

DOCUMENT CONTROL SHEET

Client:	REAL DEVELOPMENT PLANNING COMPANY
Report Title:	GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA.
Report No:	NTE 22-03
Date Issued:	01 February 2022

DOCUMENT DISTRIBUTION

Сору	Туре	Recipient	Organization
1	PDF/EMAIL	Harrington Dlhamini	REAL DEVELOPMENT PLANNING COMPANY
2	PDF/EMAIL		

Note: Electronic copies of this report are issued in portable document format and distributed via one of the following media; CD-ROM, Email. Copies held by Ntamu Engineers Consulting are stored on mass storage media archive.

TECHNICAL	NAME AND SURNAME	SIGNATURE	DATE
Prepared by	Mabasa Nduna Moses (Cand.Sci. Nat)	G.	01/02/2022
Reviewed by	Mabunda Vincent (Pri.Sci.Nat)	Alt	01/02/2022
Approved by	Mabunda Vincent (Pri.Sci.Nat)	Att.	01/02/2022

DECLARATION

This report has been professionally independently prepared by Ntamu Engineers (Pty) Ltd, which is a South African Professional Consulting firm, with a team of professionals specializing in a number of environmental science and environmental engineering fields.

Company Contact Details

Head Office Physical Address: House 336 A,

Malamulele, Limpopo 0982

Telephone Number: (074) 967 0776 Fax Number: N/A E-mail: <u>nduna@ntamuengineers.co.za</u>

Date: 01/02/2022

Signature _

0

EXECUTIVE SUMMARY

Ntamu Engineers here in referred as NTE was appointed by Real Development Planning Company to undertake a Phase 1 geotechnical site investigation for the proposed Integrated Human Settlement on Portion 3 Of the Farm Naboomspruit 348 Kr, Mookgopong, Limpopo Province, South Africa.

The site investigation included a review of available data, a subsurface investigation involving a series of test pits and in situ tests, laboratory tests and a report detailing the findings of the investigation. The surface conditions on site were slightly moist at the time of the investigation, and access across the site with equipment was relatively easy.

The site is located in the Southern Hemisphere which is characterised by warm to hot rainy summers and cold dry winters. Mookgopong receives approximately 599 mm of rain annually with most of the rainfall occurring during summer months and the winter months receiving the least rainfall.

According to the Geological Map Sheet 2428 Nylstroom Map at a scale of 1: 250 000, the proposed site is characterised by the Volcanic rocks, sandstone, Basalts of the Letaba formation which forms part of the Karoo Sequence. Furthermore, the site is dominantly underlain by a transported soil horizon confined to the upper portions of the site. Underlying the transported horizon is the ironized ferricrete soil material.

A total of eleven (11) trial pits were advanced to depths ranging between 1 and 1.5 meters below ground level (mbgl) using an TLB. The trial pits data indicates that the site is generally underlain by gravelly sands and silty sands. No groundwater seepage was encountered on all trial pits excavated as part of the investigation. It should also be pointed out that the investigation was carried out during rainy season (January) hence the slightly moist conditions were noted.

A total of fifteen (15) Dynamic Cone Penetrometer (DCP) tests were advanced adjacent to the trial pits to compliment trial pit data. The DCP tests were advanced from surface to depths ranging between 0.42 and 0.78 mbgl. The DCP test results indicate CBR values ranging between 0% and 168%. The derived Estimated Allowable Safe Bearing Pressure (EASBP) ranges between 0 kPa and 2900 kPa indicating a weak to moderate bearing pressure of the underlying soil horizons. It should be noted that the results of DCP testing is affected by the moisture content of the soil profile, as well as any pebbles or cobbles that may be struck during the testing.

A total of four (4) disturbed bulk samples were submitted to an accredited Laboratories and Surveyors for testing. The laboratory testing included grading analysis, Atterberg Limit determinations and Mod/CBR compaction tests. A genuine conclusion and recommendation will be given after receiving of the laboratory analyses.

The laboratory test results indicate that the site is typically underlain by Clayey sand, sand-clay mixtures classified as SC. The Liquid Limit of the samples ranges between 34% and 38% with the Linear Shrinkage ranging between 6% and 9%. The samples indicate low to medium plasticity Index ranging between 12% and 18%. Furthermore, the laboratory tests indicate that the samples have low to high clay content, with fair to moderate compaction characteristics of the surficial soils with the grading modulus ranging between 0,91 and 2,46. The sample also indicate low to moderate CBR value ranging between 4.2% and 21% at 95% MOD AASHTO.

Thus, the site is **suitable** for Housing Development and can be classified as **2/S1/H**.

Contents

EXE	ECUTIVE SUMMARY	III
1	INTRODUCTION	
1.1	PROJECT BACKGROUND	7
1.2	GENERAL PURPOSE OF THE INVESTIGATION	7
2	METHODOLOGY	8
2.1	Desktop Study	8
2.2	FIELD INVESTIGATION	8
2.3	LABORATORY ANALYSES	8
2.4	Deliverables	9
3	SITE DESCRIPTION	9
3.1	SITE LOCATION	9
3.2	CLIMATE AND TOPOGRAPHY	9
4	GEOLOGY	11
4.1	LOCAL GEOLOGY	11
4.2	Hydrogeology	11
5	FIELD INVESTIGATION RESULTS	13
5.1	TRIAL PITS	
5.2	Dynamic Cone Penetrometer test	
6	LABORATORY RESULTS	22
7	GEOTECHNICAL ASPECTS	24
7.1	Workability Of Site Material	24
7.1.1	1 Excavation characteristics	24
7.1.2	2 PROBLEM SOILS	24
7.1.3	3 SEEPAGE CONDITIONS	24
7.1.4	4 SLOPE STABILITY	24
7.1.5	5 EXISTENCE OF COLLAPSIBLE/COMPRESSIBLE PROFILE	24
7.1.6	6 ERODIBILITY OF THE SOIL	24
7.1.7	7 Bedrock	25
7.1.8	8 PAVEMENT LAYERS	25
7.1.9	9 SITE CLASSIFICATION	25
8	CONCLUSION	25
8.1	SITE PREPARATIONS, GRADING AND RECOMMENDATIONS	
8.1.1		
8.1.2	2 EARTHWORK CONSTRUCTION	
8.1.3	3 INSTALLATION OF UNDERGROUND SERVICES	
8.1.4	4 FOUNDATION RECOMMENDATIONS	
9	REFERENCE	28

LIST OF FIGURES

FIGURE 3-1 MOKGOPONG WEINERT N-VALUES	9
FIGURE 3-2 SITE LOCATION MAP	10
FIGURE 4-1 GEOLOGY MAP	
FIGURE 5-1 TRIAL PITS SITE LOCATION	15
FIGURE 5-2 ZONATION MAP	
FIGURE 5-3 DCP LOCATION MAP	20
FIGURE 6-1 SUMMERY OF LABOROTARY RESULTS	23

LIST OF TABLES

TABLE 4-1 SUMMARY OF GEOLOGY	. 11
TABLE 5-1 ZONATION OF TRIAL PITS	. 13
TABLE 5-2 TRIAL PITS SUMMERY	. 14
TABLE 5-3 PHOTO LOG	. 17
TABLE 5-4 DCP COORDINATES	. 18
TABLE 5-5 DCP RESULTS	. 19
TABLE 5-6 DCP PHOTO LOG	. 21
TABLE 9-1 FOUNDATION DESIGN, BUILDING PROCEDURES AND PRECAUTIONARY MEASURES FOR SINGLE-STOREY TYPE 1 BUILDINGS FOUNDED ON SOIL HORIZONS SUBJECT TO BOTH CONSOLIDATION AND COLLAPSE SETTLEMENT	. 27
LIST OF APPENDIXES	

Appendix A Soil Logs

Appendix B Laboratory Results

1 INTRODUCTION

1.1 PROJECT BACKGROUND

Ntamu Engineers (NTE) was appointed by Real Development Planning Company to conduct a phase 1 geotechnical investigation assessment for a proposed Integrated Human Settlement on Portion 3 Of the Farm Naboomspruit 348 Kr, Mookgopong, Limpopo Province, South Africa. It is understood that the site measure approximately 10 ha and that the development site has a closed dumping site and also bothered by a railway on the Southern Eastern boundary.

1.2 GENERAL PURPOSE OF THE INVESTIGATION

The general purpose of the investigation includes:

- To describe the location and geology of the proposed site;
- Determine the geological origin of the material on site;
- Investigate and explain the various soil types as well as the predicted foundation circumstances;
- Highlight any problem soils, slope stability or drainage issues;
- Determining the ground water depth level;
- Estimate the bearing capacity, settlement and/or swell potential of the soil;
- Identify and discuss the main on-site geotechnical constraints,
- Recommendation on aspects of the site that can adversely affect the design and cost of the project (Facilitate an adequate and economical design),
- Comment on the founding conditions,
- Provide the geotechnical basis for planning and preliminary design purposes

The general purpose of the investigation was accomplished by:

- Excavation of a total number of eleven (11) trial pits to maximum depth of 1.5 mbgl below ground level and;
- Performing laboratory tests to determine physical or engineering characteristics of the soil on site;
- Performing engineering analysis to develop design guidelines and recommendations.

Subsequent sections of this report contain descriptions of the fieldwork, general subsurface conditions, design recommendations, and construction considerations.

February 2022

2 METHODOLOGY

2.1 DESKTOP STUDY

Conduct a desktop study for the site to determine the expected geological and geotechnical conditions on site. The desktop study will include the review of the available information from pre-feasibility studies and published maps which include Google Earth Imagery, geological map sheets of the area.

2.2 FIELD INVESTIGATION

The site investigation typically includes subsurface exploration through the excavation of trial pits and DCP testing to obtain information on the physical properties of the surficial soils underlying the site.

Trial test pits – Test pits will be excavated on the footprint of proposed structures using a Tractor Loader Backhoe (TLB) for the purpose of in-situ inspection and profiling purposes, as well as soil sampling for laboratory testing. The soil horizons encountered in each trial pit were described comprehensively applying the MCCSSO technique as advocated by Jennings et al (1973). The acronym – MCCSSO – stands for Moisture, Colour, Consistency, Structure, Texture and Origin. The test pits will be excavated to a maximum depth of about 3m or to practical excavation refusal on shallow bedrock or sidewall collapse. Soil samples will be taken from representative horizon for laboratory testing.

These will be directed by engineering geologist and the pits will generally be backfilled the same day immediately after inspections and sampling are concluded.

Dynamic Cone Penetrometer (DCP) – Dynamic Cone Penetration Tests (DCP) provide an in-situ method to determine the strength of the subsurface and design load of the soil. Once the maximum design load of a soil is known, these results can be used to calculate appropriate footings and foundations for sub/superstructures to be placed on or within the soil. This is achieved by measuring the extent of penetration into the ground of a calibrated tip or cone and weight which is dropped from a standardized height.

2.3 LABORATORY ANALYSES

Representative soil samples will be taken from encountered horizons and submitted to a suitable SANAS accredited soil laboratory for testing in Gauteng Province. The following laboratory tests are proposed, dependent on material, condition and samples collected:

- Foundation indicator tests (Grading, hydrometer and Atterberg Limits);
- Modified AASHTO compaction;
- Soaked California Bearing Ratio (CBR) tests on coarse grained soils;
- Natural Moisture Content

2.4 DELIVERABLES

An interpretive geotechnical report will be compiled to present the information obtained during the site investigation including the prevailing site conditions, local geology and stratigraphy, material classification and characterization, geotechnical design parameters and recommendations for foundation designs and lateral support for basement constructions.

3 SITE DESCRIPTION

3.1 SITE LOCATION

The site is located within Mookgopong, which is approximately 0.66 km south east of Naboomspruit Police Station, Limpopo Province, South Africa. The centre coordinates are approximately - 24.523431°S and 28.716391°E.

The locality map can be viewed in Figure 3-2.

3.2 CLIMATE AND TOPOGRAPHY

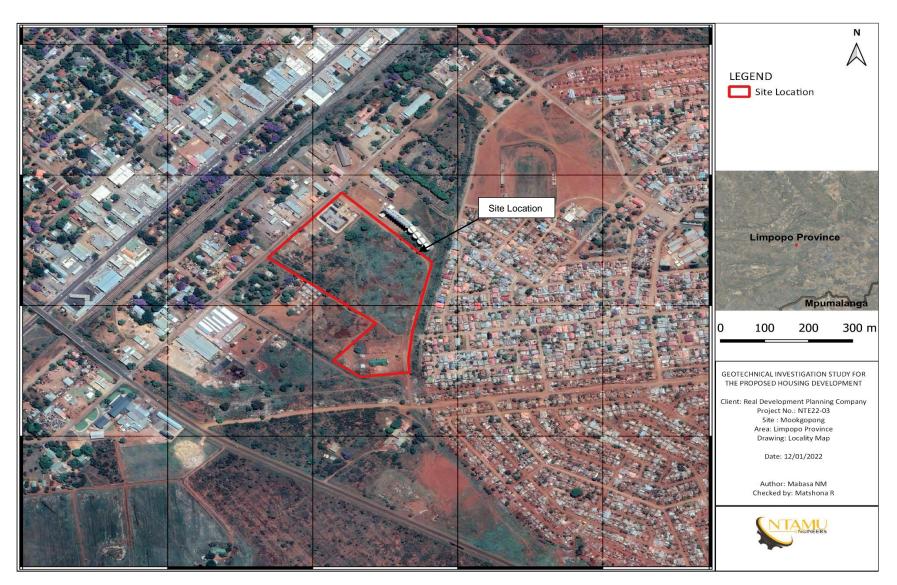

The site is located in the Southern Hemisphere which is characterised by warm to hot rainy summers and cold dry winters. Mookgopong receives approximately 599 mm of rain annually with most of the rainfall occurring during summer months and the winter months receiving the least rainfall. The average annual temperatures in Mookgopong are 19.5°C. According to Köppen and Geiger, this climate is classified as BSh. The site lies in an area with a Weinert N value that is less than 5, which indicates that chemical decomposition is the dominant form of weathering.

FIGURE 3-1 MOKGOPONG WEINERT N-VALUES

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

FIGURE 3-2 SITE LOCATION MAP

February 2022

4 GEOLOGY

4.1 LOCAL GEOLOGY

According to the Geological Map Sheet 2428 Nylstroom Map at a scale of 1: 250 000(Figure 4-1), the proposed site is characterised by the Volcanic rocks, sandstone, Basalts of the Letaba formation which forms part of the Karoo Sequence.

TABLE 4-1 SUMMARY OF GEOLOGY

Мар Туре	Geological Unit	Formation, group, and supergroup	Symbol
2428 Nylstroom Map	Basalts	Letaba formation, Karoo Sequence	J

4.2 HYDROGEOLOGY

The 1:500 000 Hydrogeological map series of the Republic of South Africa classify the bedrock as fractured, intergranular.

Aeolian and alluvial sands are relatively porous making it easier for infiltration to occur. Contact zones of different geological units, fractures, joints, faults are also preferred groundwater pathways. Other pathways include in-situ features such as permeable pores and cavities within the strata.

Groundwater seepage was not encountered all of the trial pits excavated as part of the investigation. It must be pointed out that this investigation was carried out during rainy season (January); hence slightly moist conditions were noted. During periods of prolonged rainfall, a marked increase in the occurrence and magnitude of groundwater seepage flow can be anticipated. Perched groundwater flows at the soil / rock interface are likely to become more prolific in rainy months.

Depth of groundwater table can be variable, being relatively shallow in low-lying areas and slightly deeper in high lying areas.

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

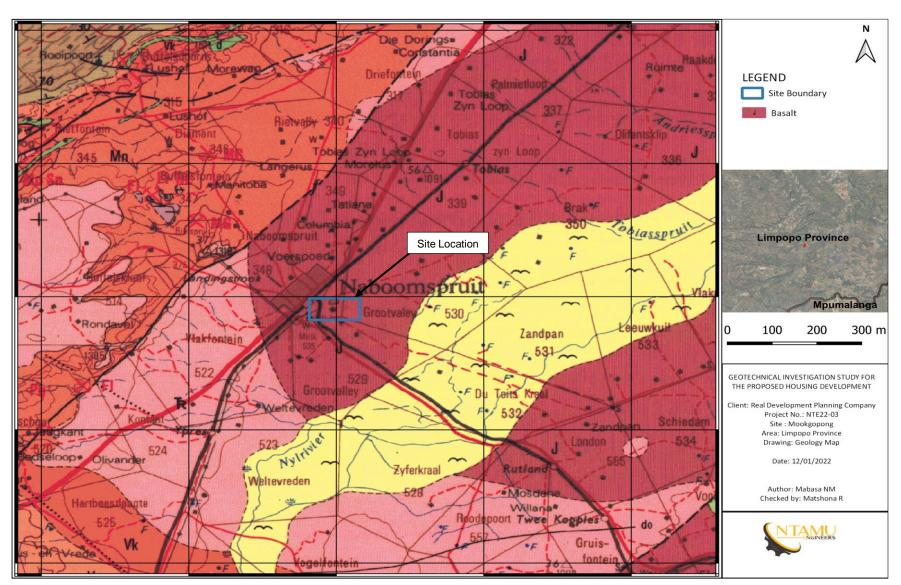


FIGURE 4-1 GEOLOGY MAP

FIELD INVESTIGATION RESULTS

5.1 TRIAL PITS

The site investigation was conducted on the 13th of January 2022. A total of eleven (11) trial pits were advanced to depths ranging between 1 and 1.5 meters below ground level (mbgl) using an TLB. A layout with trial pit locations is shown in Figure 5-1 and a photo log of the trial pits is provided in Table 5-3 photo log. Due to erratic GPS satellite signal reception, the coordinates and elevations recorded have an accuracy of only +/- 5 m.

The trial pits excavated across the proposed site revealed that the site can be divided into two separate zones, Zone A and Zone B. The summery of zonation of trial and zonation map can be viewed inTable 5-1 and Figure 5-2.

Zone A (New Site)	Zone B (Old Dumping Site)
TP 1	TP 5
TP 2	TP 6
TP 3	TP 11
TP 4	
TP 7	
TP 8	
TP 9	
TP 10	

TABLE 5-1 ZONATION OF TRIAL PITS

Zone A: New Site

The excavation of the trial pits across zone A site revealed that the site is dominantly underlain by a transported soil horizon confined to the upper portions of the site. Underlying the transported horizon is the ironized ferricrete. The full description of the field logs is presented in Appendix A.

- **Top soil** The colluvium encountered on site comprises dry to slightly moist, reddish brown, loose to medium dense, intact, silty sand. This material was encountered at depths between 0 to 1.1 mbgl. This horizon was encountered in eight (8) trial pits at TP1, TP2, TP3, TP4, TP7, TP8, TP9 and TP10.
- Ironized ferricrete An ironized ferricrete material underlies the colluvium material. The ferricrete horizon comprises of dry to slightly moist, reddish brown, dense, intact, ironized sandy gravel. The material was encountered at depths between 0.2 to 1.5mbgl. This horizon was encountered in eight (8) trial pits at TP1, TP2, TP3, TP4, TP7, TP8, TP9 and TP10.

Zone B: Old Dumping Site

The excavation of the trial pits across zone B site revealed that the site is dominantly underlain by an uncontrolled fill and transported soil horizon confined to the upper portions of the site. Underlying the transported horizon is the ironized ferricrete. The full description of the field logs is presented in Appendix A.

- Uncontrolled fill- The engineering fill encountered on site comprises of slightly moist, brown, loose, intact, silty sand with spotted roots in places, bottles, ash coal pebbles, boulders and bricks. This material was encountered at depths between 0 to 1.4 mbgl. This horizon was found in three (3) trial pits TP5, TP6 and TP11.
- **Top soil** The colluvium encountered on site comprises dry to slightly moist, reddish brown, loose to medium dense, intact, silty sand. This material was encountered at depths between 0.8 to 0.9 mbgl. This horizon was encountered in one (1) trial pit (TP11).
- Ironized ferricrete An ironized ferricrete material underlies the colluvium material. The ferricrete horizon comprises of dry to slightly moist, reddish brown, dense, intact, ironized sandy gravel, ferricrete nodular. The material was encountered at depths between 0.5 to 1.2mbgl. This horizon was encountered in ten (2) trial pits (TP5 and TP11).

TRIAL PIT NUMBER	END OF HOLE (EOH)	DEPTH(M)	WATER SEEPAGE
TP 1	End of hole due to hard digging	1.5 m	No water seepage
TP 2	End of hole due to hard digging	1.2m	No water seepage
TP 3	End of hole due to hard digging	1 m	No water seepage
TP 4	End of hole due to hard digging	1 m	No water seepage
TP 5	End of hole due to hard digging	1 m	No water seepage
TP 6	End of hole due to hard digging	1.4 m	No water seepage
TP 7	End of hole due to hard digging	1.2 m	No water seepage
TP 8	End of hole due to hard digging	1.2 m	No water seepage
TP 9	End of hole due to hard digging	1.4 m	No water seepage
TP 10	End of hole due to hard digging	1.1 m	No water seepage
TP 11	End of hole due to hard digging	1.2 m	No water seepage

TABLE 5-2 TRIAL PITS SUMMERY

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022



FIGURE 5-1 TRIAL PITS SITE LOCATION

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

FIGURE 5-2 ZONATION MAP

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

TABLE 5-3 PHOTO LOG

Photo Logs: Mookgopong Geotechnical Investigation				
ELEMENT PHO 55 THE VIEW DIELE TIPE Date:	TPG Max Depth 1,4m			
PLATE 1: Trial pits 10 Soil profiling	PLATE 2: Trial Pit 6 Observed Uncontrolled fill (Old Dumping Site)			
	Image: Sector of the sector of th			
PLATE 3: Trial pit 1 Soil Profiling	PLATE 4: Trial Pits 10 back filling			

5.2 DYNAMIC CONE PENETROMETER TEST

The DCP penetration rates were used for the evaluation of subsoil consistency and the empirical derivation of the estimated allowable safe bearing pressure (EASBP) and in-situ CBR, according to the methods of Terzaghi & Peck, modified by Meyerhof (Craig, 1997) and Draft TMH 6 (1984) respectively. The DCP test results are summarized in Table 5-5 and DCP location can be viewed in Figure 5-3

- A total of fifteen (15) Dynamic Cone Penetrometer (DCP) tests were advanced adjacent to the trial pits to compliment trial pit data. The DCP tests were advanced from surface to depths ranging between 0.42 and 0.78 mbgl.
- The DCP test results indicate CBR values ranging between 0% and 168%.
- The derived Estimated Allowable Safe Bearing Pressure (EASBP) ranges between 0 kPa and 2900 kPa indicating a weak to moderate bearing pressure of the underlying soil horizons.

It should be noted that the results of DCP testing is affected by the moisture content of the soil profile, as well as any pebbles or cobbles that may be struck during the testing. A horizon saturated due to heavy rainfall will provide a lower set of results than a similar test in the dry season. Awkwardly oriented pebbles or cobbles struck may give false high readings. Coordinates and the results of the DCP conducted are shown in Table 5-4

DYNAMIC CONE	COORDINATES		DYNAMIC CONE	COORDINATES	
PENETRATION	S	E	PENETRATION	S	E
DCP 1	-24.525653°	28.715981°	DCP 10	-24.522264°	28.715254°
DCP 2	-24.525828°	28.717073°	DCP11	-24.522225°	28.716292°
DCP 3	-24.524739°	28.716946°	DCP12	-24.523172°	28.716660°
DCP 4	-24.523728°	28.716885°	DCP13	-24.523253°	28.715386°
DCP 5	-24.523324°	28.717586°	DCP14	-24.524300°	28.716774°
DCP 6	-24.522758°	28.716936°	DCP15	-24.525420°	28.716767°
DCP 7	-24.523969°	28.715894°			
DCP 8	-24.522975°	28.715930°			
DCP 9	-24.523101°	28.714488°			

TABLE 5-4 DCP COORDINATES

TABLE 5-5 DCP RESULTS

	Of DCP1				DCP2			DCP3			DCP4			DCP5			DCP6			DCP7		DCP8				DCP 9	
No. Of Blows	Depth (mm)	CBR %	EASBP (kPa)	Depth (mm)	CBR %	EASBP (kPa)	Depth (mm)	CBR %	EASBP (kPa)																		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	60	18	193	30	42	411	50	22	236	160	5	66	130	7	83	160	5	66	160	5	66	140	6	77	90	11	124
10	70	168	1362	60	42	411	60	168	1362	220	18	193	240	8	100	240	12	141	210	22	236	200	18	193	180	11	124
15	80	168	1362	70	168	1362	70	168	1362	250	42	411	290	22	236	350	8	100	230	70	640	250	22	236	330	6	71
20	90	168	1362	80	168	1362	80	168	1362	300	22	236	350	18	193	490	6	77	280	22	236	280	42	411	460	7	83
25	100	168	1362	100	70	640	90	168	1362	390	11	124	410	18	193	510	70	640	370	11	124	320	29	301	480	70	640
30	160	18	193	110	168	1362	120	42	411	440	22	236	460	22	236	520	168	1362	420	22	236	350	42	411	500	70	640
35	220	18	193	150	29	301	150	42	411	490	22	236	500	29	301	530	168	1362	470	22	236	360	168	1362	520	70	640
40	250	42	411	190	29	301	170	70	640	520	42	411	560	18	193				500	42	411	390	42	411	550	42	411
45	300	22	236	230	29	301	230	18	193	560	29	301	580	70	640				530	42	411	400	168	1362	570	70	640
50	390	11	124	270	29	301	270	29	301	580	70	640	590	168	1362				550	70	640	430	42	411	580	168	1362
55	510	7	91	290	70	640	350	12	141	600	70	640	600	168	1362				570	70	640	450	70	640	590	168	1362
60	610	9	111	320	42	411	360	168	1362	640	29	301	610	168	1362				610	29	301	470	70	640	600	168	1362
65	650	29	301	360	29	301	390	42	411	660	70	640	620	168	1362				630	70	640	500	42	411	610	168	1362
70	670	70	640	410	22	236	400	168	1362	690	42	411							660	42	411	530	42	411			
75	680	168	1362	490	12	141	410	168	1362	700	168	1362							680	70	640	550	70	640			
80	690	168	1362	520	42	411	420	168	1362										710	42	411	580	42	411			
85	700	168	1362	590	14	163																620	29	301			
90	710	168	1362	600	168	1362																650	42	411			
95	720	168	1362	610	168	1362																680	42	411			
	730	168	1362	620	168	1362																690	168	1362			

No. Of		DCP10			DCP11			DCP12			DCP13			DCP14			DCP15	
Blows	Depth (mm)	CBR %	EASBP (kPa)	Depth (mm)	CBR %	EASBP (kPa)	Depth (mm)	CBR %	EASBP (kPa)									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	80	12	141	170	5	62	110	8	100	60	18	193	40	29	301	50	22	236
10	90	168	1362	240	14	163	200	11	124	80	70	640	50	168	1362	60	168	1362
15	90	402	2900	330	11	124	270	14	163	100	70	640	60	168	1362	70	168	1362
20	150	20	212	450	7	91	320	22	236	110	168	1362	80	70	640	80	168	1362
25	180	42	411	580	7	83	370	22	236	120	168	1362	100	70	640	90	168	1362
30	240	18	193	650	14	163	400	42	411	180	18	193	110	168	1362	150	18	193
35	330	11	124	660	168	1362	420	70	640	240	18	193	120	168	1362	210	18	193
40	450	7	91	670	168	1362	450	42	411	300	18	193	190	14	163	240	42	411
45	550	9	111				480	42	411	350	22	236	220	42	411	290	22	236
50	590	29	301				680	4	52	400	22	236	270	22	236	380	11	124
55	610	70	640				700	70	640	490	11	124	330	18	193	500	7	91
60	630	70	640				720	70	640	580	11	124	370	29	301	600	9	111
65	640	168	1362				730	168	1362	680	9	111	420	22	236	640	29	301
70	650	168	1362							720	29	301	440	70	640	660	70	640
75	660	168	1362							740	70	640	450	168	1362	670	168	1362
80	670	168	1362							750	168	1362	460	168	1362	680	168	1362
85	680	168	1362							760	168	1362	470	168	1362	690	168	1362
90	690	168	1362							770	168	1362	490	70	640			
95	700	168	1362							780	168	1362						

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

FIGURE 5-3 DCP LOCATION MAP

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

TABLE 5-6 DCP PHOTO LOG

Photo Logs: Mookgopong G	eotechnical Investigation
PLATE 1: Conducting DCP adjacent to TP10	PLATE 2: Conducting DCP adjacent to TP9
	Image: PMD SD Image: PMD SD <td< td=""></td<>
PLATE 3: boulders and Uncontrolled fill that can affect DCP reading	PLATE 4: Ironized ferricrete nodular

6 LABORATORY RESULTS

Laboratory testing included grading analysis, Atterberg Limit determinations and Mod/CBR compaction tests which are summarized in Figure 6-1. Detailed laboratory test results are presented in Appendix B.

A total of four (4) disturbed bulk samples were submitted for geotechnical laboratory for testing (Tp2, Tp3, Tp7 and Tp9).

- The laboratory test results indicate that the site is typically underlain by Clayey sand, sand-clay mixtures classified as SC.
- The Liquid Limit of the samples ranges between 34% and 38% with the Linear Shrinkage ranging between 6% and 9%. The samples indicate low to medium plasticity Index ranging between 12% and 18%.
- Furthermore, the laboratory tests indicate that the samples have low to high clay content. The moderate clay content and the Plasticity Index indicate that the samples will exhibit low to high potential expansiveness (Van der Merwe, 1964).

Three (3) samples were collected from the test pits excavated and submitted for CBR testing (Tp2, Tp7 and Tp9).

- The samples indicate moderate compaction characteristics of the surficial soils with the grading modulus ranging between 0,91 and 2,46.
- The sample indicate low to moderate CBR value ranging between 4.2% and 21% at 95% MOD AASHTO.
- The laboratory testing shows that the COLTO classification for surficial soils could not be detected according to TRH14 classification.

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

FIGURE 6-1 SUMMERY OF LABOROTARY RESULTS

				Particle Size (%)				Atterberg Limits (%)			Modified ASSHTO		ASSHTO	USCS				CBR			
Sample No.	Lab Ref	Description (m)	Clay	Silt	Sand	Gravel	ш	LS	PI	GΜ	MDD (kg/m3)	ОМС (%)	Class	Class	Port.Exp	90	93	95	98	100	COLTO Class
TP 2	A22/0178	0.1-0.4	24.2	14.4	50.3	11.1	36	8	16	1.32	1968	11.7	A-6(2)	SC	Medium	4.4	6.5	8.8	14	20	-
TP 3	A22/0179	0-0.2	7.9	12.3	42.7	37.2	34	6	12	2.06			A-2-6(0)		Low						
TP 7	A22/0180	0.7 – 1.2	32.6	17.7	49.4	0.4	38	9	17	0.91	1726	12.1	A-6(5)	SC	Medium	3.6	3.9	4.2	7.3	11	-
TP 9	A22/0181	0.7 – 1.4	16.4	13.3	47.6	22.6	34	8	18	1.64	2094	9	A-2-6(1)	SC	Low	9.6	15	21	45	73	-

LS = Linear Shrinkage LL = Liquid Limit State Highways and Transport Officials

PI = Plasticity Index Pot. Exp. = Potential Expansiveness (vd Merwe Classification) CBR = California Bearing Ratio OMC = Optimum USCS = Unified Soil Classification System AASHTO – American Association for

Moisture content PI = Plasticity Index

February 2022

7 GEOTECHNICAL ASPECTS

It is also the purpose of this investigation to consider various geotechnical factors at the site which may have an influence on the proposed developments and associated infrastructure. The geotechnical factors observed during the field investigation are discussed below.

7.1 WORKABILITY OF SITE MATERIAL

7.1.1 EXCAVATION CHARACTERISTICS

Trial pits were excavated to depths ranging between 0.1 and 1.5 mbgl with all of the test pits terminated due to hard diggings. Excavations for the proposed housing development are expected to utilise soft excavation techniques to remove the thick layer of uncontrolled fill, thin layer of colluvium, intermediate excavation techniques to remove the ferricrete material. it is recommended that all required earthworks be carried out in accordance with guidelines provided by SANS 1200 (latest edition).

7.1.2 PROBLEM SOILS

Problem soils such as dolomite were not encountered during excavation of the trial pits.

7.1.3 SEEPAGE CONDITIONS

No groundwater was not encountered during test pit excavation or profiling. However, a periodical, shallow perched water table, which could cause the flooding of excavations, is expected to be present on the site during and after high rainfall. This is confirmed by the presence of paedogenic material.

7.1.4 SLOPE STABILITY

Layers for material encountered in trial pit TP6 were unstable during excavation and profiling, while stable on all other test pits. Slope instability is anticipated over the TP6 area.

7.1.5 EXISTENCE OF COLLAPSIBLE/COMPRESSIBLE PROFILE

The soils encountered on the site typically comprise clayey sands and silty sand with no visual open-textured structure such as pinholes which indicate collapse potential.

7.1.6 ERODIBILITY OF THE SOIL

During the site investigation, major visible signs of surface soil erosion were identified in the most part of the site, in the form of erosion rills to indicate that the material could be erodible. The site must be shaped to improve stormwater runoff and extensive stormwater management must be considered. **All drainage boundaries near the areas or drainage lines and flood lines must be confirmed by the relevant Competent Person (flood line specialist**).

7.1.7 BEDROCK

No bedrock was encountered within the test excavated. However, a Paedogenic material comprising ironized ferricrete nodular was encountered in ten (10) trial pits (TP1, TP2, TP3, TP4, TP5, TP7, TP8, TP9, TP10 and TP11). The material was encountered at depths between 0.2 to 1.5mbgl.

7.1.8 PAVEMENT LAYERS

The material encountered on site comprises of thin engineering and colluvium layer underlain by Paedogenic material (ironized ferricrete nodular). The gravelly nature of ferricrete nodular material indicates that they may exhibit fair compaction characteristics and therefore may not be suitable for the housing development.

7.1.9 SITE CLASSIFICATION

According to the desktop study, field investigation as well as laboratory testing the following can be concluded: The laboratory tests indicate that material underlying the site are classified as clays and silts which exhibit low to medium potential expansiveness and low to medium plasticity. The development potential has been broadly classified in terms of two Geotechnical Sub-Areas based on field observations/investigation and laboratory soil testing of soil samples, the site can be classified as **2/S1/H** for **Zone A** and **Zone B**

8 CONCLUSION

- A geotechnical investigation was conducted in Mookgopng within Naboomspruit, Limpopo Province, South Africa.
- According to the Geological Map Sheet 2428 Nylstroom Map at a scale of 1: 250 000, the proposed site is characterised by the Volcanic rocks, sandstone, Basalts of the Letaba formation which forms part of the Karoo Sequence.
- The area is not underlain by dolomite; therefore, it is classified as non-dolomitic area.
- A total of eleven (11) trial pits were advanced to depths ranging between 1 and 1.5 meters below ground level (mbgl) using an excavator The trial pits data indicates that the site is generally underlain by silty gravel and sandy gravel.
- The material encountered on site comprises an Uncontrolled fill, colluvium layer underlain by ferricrete nodular.
- A total of fifteen (15) Dynamic Cone Penetrometer (DCP) tests were advanced adjacent to the trial pits to compliment trial pit data. The DCP tests were advanced from surface to depths ranging between 0.42 and 0.78 mbgl. The DCP test results indicate CBR values ranging between 0% and 168%. The derived Estimated Allowable Safe Bearing Pressure (EASBP) ranges between 0 kPa and 2900 kPa indicating a weak to moderate bearing pressure of the underlying soil horizons.

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

- Groundwater was not encountered during test pit excavation or profiling, however during periods of
 prolonged rainfall, a marked increase in the occurrence and magnitude of groundwater seepage flow can
 be anticipated. Perched groundwater flows at the soil / rock interface are likely to become more prolific in
 rainy months.
- A total of four (4) disturbed bulk samples were submitted to Laboratories for testing.
- The laboratory test results indicate that the site is typically underlain by Clayey sand, sand-clay mixtures classified as SC. The Liquid Limit of the samples ranges between 34% and 38% with the Linear Shrinkage ranging between 6% and 9%. The samples indicate low to medium plasticity Index ranging between 12% and 18%. Furthermore, the laboratory tests indicate that the samples have low to high clay content, with moderate compaction characteristics of the surficial soils with the grading modulus ranging between 0,91 and 2,46. The sample also indicate low to moderate CBR value ranging between 4.2% and 21% at 95% MOD AASHTO.
- Thus, the site is suitable for Housing Development and is classifiefied as 2/S1/H

It is understood that the investigation is for the proposed housing development on portion 3 of the farm Naboomspruit 348 KR in Mookgopong.

8.1 SITE PREPARATIONS, GRADING AND RECOMMENDATIONS

8.1.1 EXCAVABILITY

Soft to hard rock excavation in terms of SABS 1200 is anticipated using light earthmoving equipment due to the nature of the underlying soils.

8.1.2 EARTHWORK CONSTRUCTION

It is recommended that all earthworks be carried out along the guidelines given in SANS 1200 and should be carried out in a manner to promote stable development of the site.

8.1.3 INSTALLATION OF UNDERGROUND SERVICES

Based on engineering properties of material underlying the proposed area; material on-site is classified soft to hard excavation (SANS 1200 D). TLB machines or excavators will be required during excavation for the services.

8.1.4 FOUNDATION RECOMMENDATIONS

It is recommended that the heavy dump proof membrane be places within the reinforcement on deep strip footing or soil raft foundation.

The foundational recommendations and designs are shown in Table 8-1

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

TABLE 8-1 FOUNDATION DESIGN, BUILDING PROCEDURES AND PRECAUTIONARY MEASURES FOR SINGLE-STOREY TYPE 1 BUILDINGS FOUNDED ON SOIL HORIZONS SUBJECT TO BOTH CONSOLIDATION AND COLLAPSE SETTLEMENT

NHBRC ZONES	SITE CLASS	CONSTRUCTION TYPE	FOUNDATION DESIGN AND BUILDING PROCEDURES
		Soil Raft	 Remove in-situ material from at least 1.5m beyond the perimeter of the structure to a depth of at least 1.0m below natural ground level. Rip and compact 150mm of the bottom in-situ material. Import competent material (at least G6) and compacted to 95% MOD AASHTO MAXIMUM DENSITY in layers not exceeding 150mm.
Zone A Zone B	2/S1/H	Compaction of in-situ soils below individual footings	 Remove in-situ material below foundations to a depth and width of 1.5 times the foundation width or to a competent horizon (Basalt bedrock) and replace with material compacted to 93% MOD AASHTO density at -1% to 2% of optimum moisture content. Normal construction with lightly reinforced strip foundations and light reinforcement in masonry
		Deep Strip Footing	 Normal Construction with precautions. Founding on competent horizon (Basalt bedrock) below problematic zone.

February 2022

9 **REFERENCE**

The investigation is carried out in accordance with the following guidelines:

- GFSH-2 guidelines published by the Department of Housing (2002),
- Jennings J.E., Brink A.B.A., Williams A.A.B.: "Revised Guide to Soil profiling for Civil Engineering Purposes in Southern Africa" (September 2002).
- South African Bureau of Standards SANS 634. Geotechnical investigations for township development. Pretoria 2012.
- South African Bureau of Standards SANS 1200D. Standardised specification for civil engineering construction Section D: Earthworks. Pretoria 2002 (and amendments).
- Govender, N., 2019. Characterisation of the deep aquifers of South Africa-the bushveld igneous complex, crystalline basement rocks and dolomite formations (Doctoral dissertation, University of the Free State).

GEOTECHNICAL INVESTIGATION STUDY FOR THE PROPOSED INTERGRATED HUMAN SETTLEMENT ON PORTION 3 OF THE FARM NABOOMSPRUIT 348 KR, MOOKGOPONG, LIMPOPO PROVINCE, SOUTH AFRICA

February 2022

APPENDIX A: Soil Logs

					OORDINATES S-24.525617° E 28.715906°
					OORD SYS WGS84
		eal Dev ILimpo			DMPLETION 2022/01/16 JRFACE ELEVATION 1106 m
		kgopor			
		51	5		
сом	MENT	2			GGED BY Nduna Mabasa
00111		0			ECKED BY Matshona R
				r	
ted					
Sample Collected	<u>-</u>		bc		
č	Water Level	(u)	Graphic Log	Soil Description	
nple	ter	Depth (m)	ihde		
Saı	Wa	De	Gr		
	-	-	333	Slightly moist, brown, loose, intact, silty sand with roots in places, colluvium	
		_	$\langle \langle \rangle$		
		- 0.1	5 5 5		
		_	555		
		-	$\langle \langle \rangle \rangle$		
		- 0.2	<pre>{</pre>		
		_	555		
		_	333		
		- 0.3	<pre> { } </pre>		
		_	555		
		_	$\langle \langle \rangle \rangle$		
		- 0.4	· · · · ·	Slightly moist, reddish brown, medium dense to dense, intact, silty sand, colluvi	jum.
		-			
		_			
		- 0.5 -			
		_			
		- 0.6			
		- 0.0			
		_			
		- 0.7			
		_			
		_			
		- 0.8			
		_			
		_			
		- 0.9			
		_			
		-			
		- 1 -			
		_			
		- 11			
		- 1.1 -	0. 1	Slightly moist, reddish brown, dense, intact, sandy gravel, ironized ferricrete ma	aterial.
		_	000		
		- 1.2	0 C °		
		E I	5.0		
		_	0000		
		- 1.3	0.0		
		_	· • •		
		_	S C C		
		- 1.4	S. 0	No Seepage	
		_	0.0	Walls stable	
		_	2.0	Refusal No sample taken	

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

PRO CLIE LOC	JECT INT R Ation	NAME	GEOT /elopme po	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1.2 m nt Planning Company	COORDINATES S-24.525814° E 28.717168° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1106 m
CON	IMEN	ſS			LOGGED BY Nduna Mabasa CHECKED BY Matshona R
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil De	escription
	-	0.05	{ { {	Slightly moist, brown, loose, intact, silty sand with roots in place	ces, colluvium
		0.1		Slightly moist, reddish brown, medium dense to dense, intact,	silty sand, colluvium.
		0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		No Seepage Walls stable	nized ferricrete material.

PROJECT NUMBER NTE22-03 DATE 2022/01/16 COORDINATES S-24.524752°E 28 PROJECT NAME GEOTECHNICAL INVESTIGAT TOTAL DEPTH 1 m COORD SYS WGS84											
1				ECHNICAL INVESTIGAT TOTAL DEPTH 1 m ent Planning Company	COORD SYS WGS84 COMPLETION 2022/01/16						
		ILimpo			SURFACE ELEVATION 1113 m						
SITE	Моо	kgopor	ng								
	COMMENTS LOGGED BY Nduna Mabasa										
COM	IMENI	S			CHECKED BY Matshona R						
-	<u> </u>										
Sample Collected			_								
Coll	evel	و	Graphic Log	Soil D	escription						
nple	Water Level	Depth (m)	phic								
Sar	Ňa	Del	Gra								
		_		Slightly moist, brown, loose, intact, silty sand with roots in pla	aces, colluvium						
		- 0.05									
		_									
		— 0.1 									
		- 0.15									
		- 0.2	· <u>··</u> ···	Slightly moist, reddish brown, dense, intact, sandy gravel, iro	nizod farriarata matarial						
		_		Signuy moist, reduisir brown, dense, intact, sandy gravel, no							
		- 0.25									
		_ 0.3									
		- 0.3	0.0								
		- 0.35	0.00								
		_									
		- 0.4	0 ° ° ° °								
		- 0.45	0.0								
		- 0.40 -	000								
		- 0.5									
		_	000								
		- 0.55 -	9. 2								
		 0.6									
		- 0.65	00000								
		_									
		- 0.7									
		- 0.75									
			0.0								
		- 0.8									
			O C. C								
		- 0.85 -									
			0.0								
		- 0.9 -		Refusal Walls not stable							
		- 0.95	S.C.	No seepage No samples taken							
		_	0.00	Fl taken @0 - 0.2 m							

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

PRO. CLIEI LOCA	JECT NT Re ATION Moo	NAME eal Dev ILimpo kgopor	velopme po	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1 m nt Planning Company	COORDINATES S-24.52380° E 28.71620° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1107 m LOGGED BY Nduna Mabasa CHECKED BY Matshona R
-					
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil De	escription
	-	-	$\left\{ \left\{ \right\} \right\}$	Slightly moist, brown, loose, intact, silty sand with roots in pla	ces, colluvium
		0.05 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7		Slightly moist, prown, loose, intact, slity sand with roots in pla	
		- 0.8			
		0.85 0.9 0.95 0.95		Slightly moist, reddish brown, dense, intact, sandy gravel, iron No Seepage Walls stable	nized ferricrete material.

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

No Sample taken

1				E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1 m	COORDINATES S-24.523327°E 28.717638° COORD SYS WGS84
		eal Dev I Limpo		ent Planning Company	COMPLETION 2022/01/16 SURFACE ELEVATION 1111 m
		kgopor			
сом	MENT	rs			LOGGED BY Nduna Mabasa
					CHECKED BY Matshona R
ected					
e Collo	Level	(m)	ic Log	Soil D	escription
Sample Collected	Water Level	Depth (m)	Graphic Log		
	-	_	Ŵ	Slightly moist, brown, loose, intact, silty sand with roots in pla	aces, bottles and ash coal, Uncontrolled fill
		- 0.1			
		0.15 			
		- 0.2			
		- - - 0.25			
		_			
		- 0.3			
		- 0.35			
		- 0.4			
		0.45 			
		- 0.5		Slightly moist, reddish brown, dense, intact, sandy gravel, iro	nized ferricrete material.
		_ 0.55			
		0.6	0.0		
		- 0.65 	000		
		- 0.7	0.0		
		- - - 0.75	0.0		
		_	0000		
		- 0.8	0.00		
		- 0.85	0.0		
		- 0.9	00000		
		_	0.00		
		- 0.95 - -	0.0	No Seepage Walls stable No Sample taken	

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

1			BER NT		COORDINATES S-24.522761°E 28.716967°					
1				ECHNICAL INVESTIGAT TOTAL DEPTH 1.4 m Int Planning Company	COORD SYS WGS84 COMPLETION 2022/01/16					
LOC	ATION	ILimpo	ро		SURFACE ELEVATION 1113 m					
SITE	Моо	kgopo	ng							
COMMENTS LOGGED BY Nduna Mabasa CHECKED BY Matshona R										
		1								
Sample Collected										
olle	le	_	-og							
ole C	rLe	m h	hic I	Soil Des	scription					
Sam	Water Level	Depth (m)	Graphic Log							
	-	-	XXX	Slightly moist, brown, loose, intact, silty sand with roots in plac	es, bottles, refused bags, pebbles and boulders, Uncontrolled					
		_	\otimes	fill						
		- 0.1	\bigotimes							
		_	\times							
		_	$\times\!\!\times\!\!\times$							
		- 0.2	\otimes							
		_	\otimes							
			\bigotimes							
		- 0.3 -	\times							
		_	\times							
		- 0.4	\otimes							
		_	$\times\!\!\times\!\!\times$							
		-	\times							
		- 0.5 -	$\times\!\!\times\!\!\times$							
		_	\otimes							
		- 0.6	\otimes							
		_	\otimes							
		_	\bigotimes							
		- 0.7 -	XXX							
		_	\otimes							
		- 0.8	\otimes							
		_	\times							
		_	\times							
		- 0.9	\times							
		_	$\times\!\!\times\!\!\times$							
		- 1	\otimes							
		- '	\otimes							
		_	ŽŽŽ							
		- 1.1	\times							
		_	\otimes							
			\otimes							
		- 1.2 -	\times							
		-	$\times\!\!\times\!\!\times$							
		- 1.3	\times	Refusal Walls not stable						
		-	\otimes	No seepage						
1		-	$\sim \sim \sim$	No samples taken						

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

PRO CLIE LOC	JECT NT RO ATION	NAME	velopme po	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1.2 m ent Planning Company	COORDINATES S-24.523941° E 28.715880° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1106 m
сом	MENT	S			LOGGED BY Nduna Mabasa CHECKED BY Matshona R
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil Descript	tion
		0.00 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5		Slightly moist, brown, loose, intact, silty sand with roots in places, co Slightly moist, reddish brown, medium dense to dense, intact, silty s	and, colluvium.
		0.75		Slightly moist, reddish brown, dense, intact, sandy gravel, ironized fe No Seepage Walls stable CBR taken @ 0.7 - 1.2 m	erricrete material.

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

_

PRO CLIE LOC	JECT NT R ATION	NAME	GEOT velopme po	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1.2 m ent Planning Company	COORDINATES S-24.522937° E 28.715932° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1109 m				
COMMENTS LOGGED BY Nduna Mabasa CHECKED BY Matshona R									
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil Description					
	-	0.00		Dry, brown, loose, intact, silty sand with roots in places, colluvium Slightly moist, reddish brown, medium dense to dense, intact, silty sand, o	colluvium.				
		0.4		Slightly moist, reddish brown, dense, intact, sandy gravel, ironized ferricre	ete material.				
		- 0.9 - 0.9 - 0.9 - 1 - 1.0 - 1.0 - 1.1		No Seepage Walls stable Refusal No sample taken					

Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

PRO CLIE LOC	JECT INT R ATION	NAME	GEOT /elopme po	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1.4 m ent Planning Company	COORDINATES S-24.523074° E 28.714440° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1108 m
сом	IMENT	ſS			LOGGED BY Nduna Mabasa CHECKED BY Matshona R
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil Descri	ption
	-	 0.1 		Dry, brown, loose, intact, silty sand with roots in places, colluvium	
		- 0.2 		Slightly moist, reddish brown, medium dense to dense, intact, silty	^r sand, colluvium.
		0.5 0.5 			
		 0.8		Slightly moist, reddish brown, dense, intact, sandy gravel, ironized	l ferricrete material.
		- 0.9 - - - - - 1 - -			
		- - - - - - - 1.2 - -	0.0.0.0.0 0.00.0.0		
		- 1.3 - -		No Seepage Walls stable Refusal CBR taken @ 0.7 - 1.4m	

PRO CLIE LOC	JECT NT R ATION	NAME	GEOT /elopmo po	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1.1 m ent Planning Company	COORDINATES S-24.522221° E 28.715253° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1108 m				
сом	COMMENTS LOGGED BY Nduna Mabasa CHECKED BY Matshona R								
ected									
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil Descr	iption				
	-	-		Dry, brown, loose, intact, silty sand with roots in places, colluvium					
		- 0.05							
		- 0.1 - - 0.15							
		- 0.1							
		- 0.2							
		- 0.3		Slightly moist, reddish brown, medium dense to dense, intact, silty	y sand, colluvium.				
		- - - 0.35							
		0.4							
		 0.4\$							
		0.5		Slightly moist, reddish brown, dense, intact, sandy gravel, ironized	d ferricrete material.				
		0.5							
		0.6							
		- 0.65 - -	0000						
		0.7). 00.						
		- 0.75 - - 0.8	0.00						
		0.8							
		0.0:	0000						
		0.9	0						
		 1							
		 1.05		No Seepage Walls stable Refusal No sample taken					

L Disclaimer This bore log is intended for geotechnical purposes. produced by ESlog.ESdat.net on 16 Jan 2022

PRO CLIE LOC	JECT INT R ATION	NAME	E GEOT velopme opo	E22-03 DATE 2022/01/16 ECHNICAL INVESTIGAT TOTAL DEPTH 1.2 m ent Planning Company	COORDINATES S-24.522183° E 28.716289° COORD SYS WGS84 COMPLETION 2022/01/16 SURFACE ELEVATION 1111 m
сом	IMENT	rs			LOGGED BY Nduna Mabasa CHECKED BY Matshona R
Sample Collected	Water Level	Depth (m)	Graphic Log	Soil D	escription
		0.0		Slightly moist, brown, loose, intact, silty sand with roots in pla	, silty sand, colluvium.

Appendix B: Laboratory Results

256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax : Email : martinus.schwartz@sgs.com

CLIENT :	NTAMU ENGINEERS (PTY)LTD	OUR REF.:	PL/48753a
ADDRESS :	MABASA NDUNA P.O BOX 403,HOUSE 336A MALAMULELE 0982	YOUR REF.:	
ATTENTION :	Mr Nduna Mabasa	DATE :	24.01.2022

PROJECT : Moogopong Geotech

SGS MATROLAB

a SANAS Accredited Testing Laboratory, No. T0025 Tests marked * "Not SANAS Accredited" in this Report are not included in the SANAS Schedule of Accreditation for the laboratory.

TEST REPORT / RESULTS

Sample/s:	Sampled by :	Client
	Date Received / Sampled :	13.01.2022
	Date Tested :	13-26.01.2022

Sampling method : By Client

0

Section / Position tested identified by : Client - Refer To Test Results

Number of pages in this Report : 7

General : Samples were delivered to Laboratory by client.

Opinions and interpretations expressed herein are outside the Scope of SANAS Accreditation.

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from SGS MATROLAB

This document is issued by the Company under its General Condition of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

4.5.0(SGS)(2021.05.05)

No. of Pages : 7

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY.

This document is issued by the Company under its General Condition of Service accessible at http://www.sos.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

TEST RESULTS

Project

Your Ref

Our Ref

NTAMU ENGINEERS (PTY)LTD MABASA NDUNA P.O BOX 403, HOUSE 336A MALAMULELE 0982 Attention: Mr. Nduna Mahasa

Attention: Mr Nduna Mabasa Date Reported : 26.01.2022											
	FOUNDATION INDICATOR (ASTM: D422)										
Sample No.	: A22/0178	Material Desc	ription : Dusky re	ed CLAYEY	SAND						
Hole No.	: TP2		Clay (%)	Silt (%)	Sand (%	%) Grav	vel (%) Cla	ssification			
Depth	: 100-400	Jennings	24.2	9.2	39.1	27.5		NDY CLAY			
Liquid Limit (%)	: 36	Astm	24.2	14.4	50.3	11.1		AYEY SAND			
Plasticity Index	: 16	British Standa	rd 20.1	14.8	37.5	27.5	CL	AYEY SAND			
Linear Shrinkage (%)	: 8.0		CASAGRANDE PLASTICITY CHART								
PI of Whole Sample	: 9	70	≥ ≥	Т		70	/2	.0			
P.R.A. Classification	: A-6(2)	60†	LOW MEDIUM	HIGH	'A' Line	60		ERY HIGH 07			
Unified Soil Classifica	tic: SC	× ^{50†}	W			a 50+		=RY HIGH 0.7			
Activity	: 0.45	<u><u> </u></u>	ଭ			S 40		0.5			
Heave Classification	: LOW	ig 30 [−]				je 30	HIGH				
Grading Modulus	: 1.32	40 ⁻ 30 ⁻ 20 ⁻	6/) (c)		eld 50 40 30 20 10 10 10	MEDIUM	LOW			
Percentage (<0.002)	: 20.0		(I)			ā 10 ⁺	0	LOVV			
Moisture Content (%)	: 12.5		20 30 40 50 6	0 70 80 9	90 100	0	10 20 30	40 50 60 70			
			Liquid Limi				Percentage				
100			PARTICLE SIZ	EDISTRIE	BUTION						
80					/						
9 70											
VA 50											
₩ 40											
WN 20											
0 10											
36 20 115 0 36 220 115 0	000 000 000 000 000 000 000 000 000 00	0.0260 0.0400 0.0500 0.0500 0.0500	0.1500	0.4250	2.0000	4.7500	13.200	26.500 37.500 53.000 63.000 75.000			
Sieve Size (mm) 0.0015 0.0020	0.0050 0.0060 0.0075 0.0100 0.0150		0.1	0.4	5.0	4.7	13.	37. 53. 63.			
% Sieve 20 23 23			46 51	57	72	88	99 100	100 100 100 100			
JENN CLAY	SILT		SAND				GRAVEL				
			FINE	M	EDIUM CO.	DARSE					
ASTM CLAY	SILT		SAND	SA	AND SAI		GRAVEL				
FINE	1000 million (1000 million (10		NE MED			INE	MEDIUM	COARSE			
BS CLAY SILT	SILT	SILT SA	ND SAN	D SA	ND GF	RAVEL	GRAVEL	GRAVEL			

Remarks : Sampled by client.

FORM: A6

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.ses.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax : Empli

Email : martinus.schwartz@sgs.com

: Moogopong Geotech

: PL/48753 : 26.01.2022

SGS MATROLAB (PTY) LTD

- CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025

TEST RESULTS

56 B	rander Street, Jan Niemand Park, Pretoria.
OB	ox 912387, Silverton, 0127
el.	: (012) 800 1299
ax	
mail	: martinus.schwartz@sgs.com

NTAMU ENGINEERS (PTY)LTD	Project	: Moogopong Geotech
MABASA NDUNA		
P.O BOX 403,HOUSE 336A	Your Ref	:
MALAMULELE 0982	Our Ref	: PL/48753a
Attention: Mr Nduna Mabasa	Date Reported	: 26.01.2022

SIEVE ANALYSIS, CONSTANTS, CBR(SANS 3001:GR1,GR10,GR12,GR20,GR30,GR40)

F

	1.00.00				 		 		 	
SAMPLE NO.	A22/01	78								Preparation Method:
HOLE NO.	TP2									
ROAD NO.										
DEPTH	100-40	0								
CHAINAGE										
LAYER TYPE										
STABILISED WITH	Natura									
SUPPLIER	Natura									
CURING METHOD										
	10.01.0	000								
DATE TESTED	13.01.2									Creation
DESCRIPTION	Dusky	red								- Specification
										COTO:2020
SIEVE ANALYSIS (% PASSING)				G						
100.0 mm										
75.00 mm										
63.00 mm										
50.00 mm										
37.50 mm										
28.00 mm										
20.00 mm	100									
14.00 mm	99									
5.000 mm	89									
2.000 mm	72									
0.425 mm	57									
0.075 mm	39									
	00				 		 		 	
SOIL MORTAR							 		 	
COARSE SAND <2.0mm >0.425mm	22									
FINE SAND <0.425mm >0.075mm	25									
MATERIAL <0.075mm	53									
CONSTANTS										
	4.00				 		 	1	 	
GRADING MODULUS	1.32									
PRA CLASSIFICATION	A-6(2	2)								
COLTO CLASSIFICATION										
LIQUID LIMIT (%)	36									
PLASTICITY INDEX (0.425mm)	16									
LINEAR SHRINKAGE (%)	8.0									
MDD		_			 		 		 	
MAXIMUM DRY DENSITY (kg/m^3)	1968									
OPTIMUM MOISTURE CONTENT(%										
MOULDING MOISTURE (%)	11.3									
TYPE OF TEST	CBR									
	20						 		 	
CBR-UCS @ 100% MDD	20									
CBR-UCS @ 98% MDD	14									
CBR-UCS @ 97% MDD	12									
CBR-UCS @ 95% MDD	8.8									
CBR-UCS @ 93% MDD	6.5									
CBR-UCS @ 90% MDD	4.4									
	loulotion				 		 	·	 	
CBR-UCS @ % MDD derived from ca			1 70				 		 1	
% SWELL MOULD [A][B][C]	0.90	1.40	1.70							

Remarks :

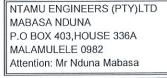
FORM: GR40

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sos.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587


a SANAS Accredited Testing Laboratory, No. T0025

TEST RESULTS

Project

Your Ref

Our Ref

P.O Box 912387,5 Tel. : (012) 800	
Fax :	5 1255
Email : martinus.	schwartz@sgs.com
: Moogop	ong Geotech

Date Reported

: PL/48753 : 26.01.2022

					I	=OU	ND	AT	ON	INDI	САТ	OR	(AST	M: D4	122)							
Sample No.	:	A22/0	0179			Mate	erial	Des	criptio	n : Du	sky r	ed SI	LTY S	AND									
Hole No.		TP3	0.		lī					Clay	(%)	S	ilt (%)	S	Sand	d (%)	Grave	el (%)	Cla	ssifi	catio	n	
Depth	:	0-200)			Jenn	ings			7.9	()		.9	2	28.0		57.2		SIL	TY S	SAN	C	
Liquid Limit (%)	:	34				Astr	-			7.9		1	2.3	4	2.7		37.2				SANI		
Plasticity Index	:	12				Britis	sh St	tand	ard	5.9		9	.9	2	26.9	2	57.2		SIL	TY S	SANI)	
Linear Shrinkage	(%) :	6.0			1			CAS	SAGR	ANDE	PLA	STIC	ITY C	HART				ACTI	/ITY	DIA	GRA	M	1.0
PI of Whole Samp	ole :	4				70	7		2	5		т					70		/2.	.0		/	1.0
P.R.A. Classificati	ion :	A-2-6	6(0)			60	b †		LOW	MEDIUM		HIGH		'A'	Lin		60†			ΞDV	HIG		
Unified Soil Class	ificatic:	SC				× 50	o†			ME			/			nple	50†		VE		піG	1	0.7
Activity	:	0.67				aput 40	o†				Ģ	H				Sar	40	1 X	/	/	/		0.5
Heave Classificati	ion :	LOW	1			City 30	pt				1					hole	30†		HIGH				
Grading Modulus	:	2.06				Plasticity Index	o†				6) (H)				0	20	MED	UM				
Percentage (<0.00	02) :	6.0				1(of	(SC)		9 0						ā	10	1			LOV	v	
Moisture Content	(%) :	8.7				0	0		20 3	0 40	50 6	50 70	80	90 100	1		0 0	10 20	30	40	50 6	0 7	0
	. ,						0	10		Liquid			, 00	00 100				Percer					
100								_	PAR	TICLE	SIZ	E DI	STRI	BUTIO	N					_	-	-	
00				_											_					_	_	_	_
≝ 80																		/					11-
																	/						
9 70 VI							Π																
SSV 60																/							
≗ 50 %							\top								1								
CUMULATIVE % PASSING SIEVE 0 06 0 00 0 05 0 00 0 00 0 00 0 00 0 00													_										
30 TI							++		-	-													
Ng 20		++	-																-				
0 10		-		-	H	-	++	+			-	+			+				-				
	6			0		0	00	0		0		0			-		 8		10	0	10		
Sieve Size (mm) 0.0015 0.0020	0.0036	0.0060	0.0100	0.0150	0.0260	0.0400	0.0500	0.0750		0.1500	0.2500	0.4250			2.0000		4.7500	13.200	19.000	26.500	37.500	33.00	63.000 75.000
	0 0		0	0	00	0	00	0	_	-	-	0			^N		N.			-	-		-
% Pass. Sieve 6 6	r 0	തത	ით	10	12	14	15	20		25	27	31			- 43		63	6		100	100	100	100 100
JENN CLAY			SI	ILT						SAN					_			GRAVE	_				
ASTM CLAY				SILT						FIN SAN				EDIUM AND		COARSE SAND		GRAVEI	-				
and a second sec	INE		MEDIU SILT	JM	CC SII	ARSE			INE AND		MED SAN	DIUM D		ARSE ND		FINE GRAVE		MEDIU GRAVEI			DARS RAVE		

Remarks : Sampled by client.

FORM: A6

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sas.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax : Empli

Email : martinus.schwartz@sgs.com

: Moogopong Geotech

SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025

TEST RESULTS

Project

Your Ref

NTAMU ENGINEERS (PTY)LTD MABASA NDUNA P.O BOX 403, HOUSE 336A MALAMULELE 0982 A

P.O BOX 403,HOUSE 336A MALAMULELE 0982	Our Ref		./48753		
Attention: Mr Nduna Mabasa	Date Rep	oorted : 26	.01.2022		
FOUN	ATION INDIC	ATOR (AST	⁻ M: D422)		
	Description : Darl	k red SANDY C	CLAY		
Hole No. : TP7	Clay (%) Silt (%)	Sand (%)	· · · · · · · · · · · · · · · · · · ·	Classification
Depth : 700-1200 Jenning		10.6	45.1		SANDY CLAY
Liquid Limit (%) : 38 Astm	32.6	17.5	49.4		SANDY CLAY
Plasticity Index : 17 British	tandard 26.5	18.5	43.2	11.7	SANDY CLAY
Linear Shrinkage (%) : 9.0	CASAGRANDE	PLASTICITY C	HART		TY DIAGRAM 1.0
PI of Whole Sample : 12 70	3 5	т		70	/2.0
P.R.A. Classification : A-6(5) 60 ⁺	LOW	нсн		60†	VERY HIGH
Unified Soil Classificatic: SC	WE	/	uple	50	VERY HIGH 0.7
Activity : 0.44		GH	Sar	40	0.0
Heave Classification : LOW			hole	30 ⁺ / H	GH
Activity : 0.44 Heave Classification : LOW Grading Modulus : 0.91		ଲ୍ଲା ଭି	of Whole Sample	20 MEDIL	
Percentage (<0.002) : 27.0	s ⁰ 00		L L	10	LOW
Moisture Content (%) : 14.8	10 20 30 40 5		00 100	0 10 20 3	0 40 50 60 70
		Limit (%)	50 100		age (<0.002)
	·				
	PARTICLE	SIZE DISTRI	BUTION		
a. 50					
¥ 40					
90 90 80 90 70 90 60 90 60 90 50 90 40 90 30 90 20 90 10 90					
			8	8 8	8 8 8 888
Sieve Size (mm) 0.0015 0.0020 0.0050 0.0050 0.0075 0.00050 0.0075 0.00050 0.00000000	0.0750	0.4250	5.0000	4.7500	19.000 26.500 37.500 53.000 63.000 75.000
% Sieve 26 31 31 33 33 33 33 35 33 35 33 36 33 37 37 37 37 37 37 37 37 37 37 37 37	22 20 20	3 2	æ	100 100	100 100 100 100 100 100 100 100 100 100
JENN CLAY SILT	SAND			GRAVEL	
ASTM CLAY SILT	FINE		IEDIUM COARSI AND SAND	GRAVEL	
FINE MEDIUM COARSE	FINE	MEDIUM CO	DARSE FINE	MEDIUM	COARSE
BS CLAY SILT SILT SILT	SAND	SAND SA	AND GRAVE	L GRAVEL	GRAVEL

Remarks : Sampled by client.

FORM: A6

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sos.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

TEST RESULT	S
-------------	---

MATROLAB

256 B	rand	er Stre	et, Jan	Niem	and Pa	ark,Preto	oria
P.O B	ox 9	12387,	Silver	ton,01	27		
Tel.	: (0	012) 80	0 129	9			
Fax	: `						

martinus.schwartz@sgs.com Email

	ILOI KLOOLIO	
NTAMU ENGINEERS (PTY)LTD	Project	: N
MABASA NDUNA		
P.O BOX 403,HOUSE 336A	Your Ref	:
MALAMULELE 0982	Our Ref	: P
Attention: Mr Nduna Mabasa	Date Reported	: 2

Moogopong Geotech

PL/48753b 26.01.2022

SIEVE ANALYSIS, CONSTANTS, CBR(SANS 3001:GR1,GR10,GR12,GR20,GR30,GR40)

SAMPLE NO.	A22/01	80							Preparation Method:
HOLE NO.	TP7	00							
ROAD NO.								9	
DEPTH	0700-1	200							
CHAINAGE									
LAYER TYPE									
STABILISED WITH	Natura	1							
SUPPLIER	ruturu								
CURING METHOD									
DATE TESTED	13.01.	2022							
DESCRIPTION	Dark r								- Specification
DESCRIPTION	Darkin	Ju							COTO:2020
				-				 	
SIEVE ANALYSIS (% PASSING)	r				 	 	 	 	
100.0 mm									
75.00 mm									
63.00 mm									
50.00 mm									
37.50 mm									
28.00 mm									
20.00 mm	100								
14.00 mm	100								
5.000 mm	100								
2.000 mm	88								
0.425 mm	71								
0.075 mm	50								
SOIL MORTAR									
COARSE SAND <2.0mm >0.425mm	19								
FINE SAND <0.425mm >0.075mm	24								
MATERIAL <0.075mm	57								
CONSTANTS									
	0.90								1
GRADING MODULUS									
PRA CLASSIFICATION	A-6	(5)							
COLTO CLASSIFICATION									
LIQUID LIMIT (%)	38								
PLASTICITY INDEX (0.425mm)	17								
LINEAR SHRINKAGĖ (%)	9.0							 	
MDD									
MAXIMUM DRY DENSITY (kg/m^3)	1720								
OPTIMUM MOISTURE CONTENT(%									
MOULDING MOISTURE (%)	12.2								
TYPE OF TEST	CBR								
CBR-UCS @ 100% MDD	11								
CBR-UCS @ 98% MDD	7.3								
CBR-UCS @ 97% MDD	6.1								
CBR-UCS @ 95% MDD	4.2								
CBR-UCS @ 93% MDD	3.9								
CBR-UCS @ 90% MDD	3.6								
CBR-UCS @ % MDD derived from c	alculatio	n.				 	 	 	
% SWELL MOULD [A][B][C]	1.60	2.41	2.50						
					 		 	 -	

Remarks :

FORM: GR40

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sus.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025

TEST RESULTS

NTAMU ENGINEERS (PTY)LTD MABASA NDUNA P.O BOX 403, HOUSE 336A MALAMULELE 0982 Attention: Mr Nduna Mabasa

					F	OUNE	ATI		IDICA	TOR (ASTI	VI: D42	2)						
Sample No.	:/	22/0	181			Material	Desc	ription	: Dark re	ed brow	n CLA	YEY SA	ND						
Hole No.		-P9							Clay (%)		lt (%)		nd (%)	Gravel (%)	Cla	assifica	ation		
Depth	: 7	00-1-	400			Jenning	3		16.4	7.		35.		40.0		AYEY	SAN	1D	
Liquid Limit (%)	: 3	34				Astm		1	6.4	13		47.	6	22.6		AYEY			
Plasticity Index	:	18			E	British S	tanda	ird 1	12.5	12	.8	34.	7	40.0	CL	AYEY	' SAN	1D	
Linear Shrinkage	(%) : 8	8.0					CAS	AGRA	NDE PL	ASTICI	TY CH	IART			TIVITY	DIAC	GRAM	A1.0	
PI of Whole Sam	ple : 8	3				70								70	12	2.0	/	7	′
P.R.A. Classificat	tion : /	4-2-6((1)			60		LOW	MEDIUM	HIGH		'A' L		601		ERY	HIGH	-	
Unified Soil Class	sificatic: S	SC				× ^{50†}			ME				of Whole Sample	50	/ `			0.7	
Activity	: ().62				2 40				CH			e Sa	40	1		/	0.5	
Heave Classificat	tion : I	JOW			-	£ 30 ⁺				00			Vhole	30	HIG	1	/		
Grading Modulus	: 1	.64				40 ⁺ 30 ⁺ 20 ⁺		្០	0	(UH (OH			of V	20 ⁻ / ME	DIUM		LOW		
Percentage (<0.0	02) :	13.0				10	SF		M (1)				a	10			2000		
Moisture Content	(%) : (6.6				0 0	10	20 30	40 50	60 70	80 9	0 100				40 5		70	
								L	iquid Lin	nit (%)				Perc	centag	e (<0.	002)		
				_															
100		TT							CLE S	ZEDR		BUTION					T	ТП	
uu 90		++	-	_	_		_										-	+++	
80		++	-	-														+++	
9 70		+	-	-	_								_/		+	+	+-		
8 60 H				_	_	_											+		
CUMULATIVE % PASSING SIEVE				_			_										+		
₩ 40		\square	_	_			_			1						+	+-		
AT 30	_	\square	_	_				-									+		
DW 20				_	_												+		
D 10																_	_		
			1		Ļ	ЩЦ													
Sieve Size (mm) 0.0015 0.0020	0.0036	0.0060	0.0100	0.0150	0.0260	0.0400	0.0750	0.1500	0.2500	0.4250		0000 0		4.7500	13.200	26.500	37.500	53.000 63.000	- - - -
	0.0	0.0	0.0	0.0	0.0	000	0.0	,	0.2	ö		ć	i.	4	5 ¢	3 2	37	1002	2
% Pass. Sieve 12 13	15 16	17 18	19	50	51	23 24	30	36	41	46		ç	8	4	97	100	100	100	2
JENN CLAY			SI	LT					SAND					GRA	/EL				
ASTM CLAY				SILT					FINE SAND			EDIUM	COARSI SAND	E GRAV	/EL				
	FINE	M	1EDIU		COA	ARSE	FI	NE	ME	DIUM	СО	ARSE	FINE	MEDI	UM	СО	ARSI	Ξ	
	SILT	S	ILT		SIL	Г	S	AND	SA	ND	SA	ND	GRAVE	L GRAV	/EL	GR	AVE	-	

Project Your Ref Our Ref Date Reported

: PL/48753

Fax

: 26.01.2022

256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299

Email : martinus.schwartz@sgs.com

: Moogopong Geotech

Remarks : Sampled by client.

FORM: A6

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

This document is issued by the Company under its General Condition of Service accessible at http://www.sos.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY.

TEST	RES	UL	TS
			the second se

256 Br	ander Street, Jan Niemand Park, Pretoria
P.O Bo	ox 912387, Silverton, 0127
Tel.	: (012) 800 1299
Fax	
Email	: martinus.schwartz@sgs.com

	00110	
NTAMU ENGINEERS (PTY)LTD	Project	: Moogopong Geotech
MABASA NDUNA		
P.O BOX 403,HOUSE 336A	Your Ref	
MALAMULELE 0982	Our Ref	: PL/48753c
Attention: Mr Nduna Mabasa	Date Reported	: 26.01.2022

SIEVE ANALYSIS, CONSTANTS, CBR(SANS 3001:GR1,GR10,GR12,GR20,GR30,GR40)

OIL VE / RIVIE							
SAMPLE NO.	A22/0181						Preparation Method:
HOLE NO.	TP9						
ROAD NO.							
DEPTH	700-1000						
CHAINAGE	100 1000						
	Natural						
STABILISED WITH	Natural						
SUPPLIER							
CURING METHOD	10.01.0000).	
DATE TESTED	13.01.2022						- Specification
DESCRIPTION	Dark red brown						COTO:2020
SIEVE ANALYSIS (% PASSING)					 		
100.0 mm							
75.00 mm							
63.00 mm							
50.00 mm							
37.50 mm							
28.00 mm	100						
20.00 mm	97						
14.00 mm	77						
5.000 mm							
2.000 mm	60						
0.425 mm	46						
0.075 mm	30						
SOIL MORTAR							
COARSE SAND <2.0mm >0.425mm	24						
FINE SAND <0.425mm >0.075mm	27						
MATERIAL <0.075mm	49						
	40				 		
CONSTANTS		1			 		
GRADING MODULUS	1.65						
PRA CLASSIFICATION	A-2-6(1)						
COLTO CLASSIFICATION							
LIQUID LIMIT (%)	34						
PLASTICITY INDEX (0.425mm)	18						
LINEAR SHRINKAGE (%)	8.0						
	1	1					
	2094						
MAXIMUM DRY DENSITY (kg/m^3)							
OPTIMUM MOISTURE CONTENT(%	6) 9.0						
MOULDING MOISTURE (%)	9.0						
TYPE OF TEST	CBR						
	73						
CBR-UCS @ 100% MDD CBR-UCS @ 98% MDD	45						
	35						
CBR-UCS @ 97% MDD	21						
CBR-UCS @ 95% MDD	15						
CBR-UCS @ 93% MDD	9.6						
CBR-UCS @ 90% MDD	9.0			 			
CBR-UCS @ % MDD derived from c	alculation.		 		 		1
% SWELL MOULD [A][B][C]	0.20 0.40 0.60						
to other model f. W-Wellel					 		-

Remarks :

FORM: GR40

4.5.0(SGS)(2021.05.05)

Technical Signatory : Martinus Schwartz/Sunil Dewnath

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sus.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.