PERSBERG FARM DAM HYDROLOGY AND DAM SAFETY REPORT

19 JANUARY 2016

EMPLOYER:	ENGINEER:
Erich Müller	Flip Krugel
Tel: 082 4438049	119 Deputation Street
Email: erich@dundeekzn.co.za	VRYHEID
	3100
	Tel: 034 9823425
	fkrugel@raws.co.za

PERSBERG FARM DAM HYDROLOGY REPORT 19 JANUARY 2016 CONTENTS

1.	QUALITY MANAGEMENT AND APPROVALS	.3
2.	INTRODUCTION	.5
3.	GENERAL CLIMATOLOGICAL DATA.	.5
4.	YIELD ANALYSIS	.8
4.1.	IRRIGATION REQUIREMENTS	. 8
4.2.	DAM YIELD ANALYSIS AND IRRIGATION AREA OPTIMIZATION	. 9
5.	FLOOD DETERMINATION 1	1
6.	MAXIMUM CAPACITY AND DESIGN FLOODS 1	2
7.	SPILLWAY1	2
8.	DAM BUILDING MATERIAL TEST RESULTS 1	3
9.	SEEPAGE LINE AND SLOPE STABLILTY 1	6
10.	DAM BREAK ANALYSIS 1	8
11.	REFERENCES	20
12.	ANNEXURES	21
12.1.	YIELD ANALYSIS	21
12.2.	FLOOD CALCULATIONS	28
12.3.	MAXIMUM DISCHARGE CALCULATIONS	31
12.4.	IRRIGATION REQUIREMENTS	33
12.5.	SLOPE STABILITY	34
12.6.	SOIL TEST RESULTS	36
12.7.	DAM BREAK ANALYSIS	52

PERSBERG FARM DAM HYDROLOGY REPORT

19 JANUARY 2016

1. QUALITY MANAGEMENT AND APPROVALS

STATUS OF REPORT:	DRAFT
Approved by GFK Consulting	Engineers cc

F.Krugel	Date
Accepted and Approved by the Employer	
Employer	Date

.....(Print name)

PERSBERG FARM DAM HYDROLOGY REPORT 19 JANUARY 2016 EXECUTIVE SUMMARY

The analysis indicates that the dam yield at the current volume with the proposed 90ha maize and 40ha oats will not nearly be sufficient to meet the full irrigation demand. It is proposed to plant a smaller area of both maize and oats to reduce the risk of the dam running empty. In our opinion planting 30ha maize and 10 ha oats will result in an acceptable risk of the dam running empty.

The present spillway capacity is inadequate. The eventual size will depend on the final selected full supply level and the safety categorization. As an interim measure we propose that the spillways be cut level as per attached drawing, each one at least 14m wide, minimum 1.2m deep. Tyres are used as the current rip rap. It is suggested to extend the tyres to the crest of the dam wall to accommodate wave action. The tyres would need to be anchored properly to avoid lifting up and moving.

A dam with a capacity of just under 50 000m³ would still yield water at an acceptable risk with 30 ha maize and 10 ha oats, although the risk will be slightly higher of running empty. Obviously the owner can evaluate the feasibility of planting oats after the rainy season by evaluating the dam levels prior to planting each year. Should the volume be lower than 50 000 m³ the dam would not need to registered but a licence to store and use water will still be required.

It was found that the increased capacity of the upstream Persberg Farm Dam will not negatively impact on the downstream dam, as the lower dam has its own significantly larger catchment and there is no water demand from the dam at present.

Soil compaction tests indicate that the compaction on top is less than what is generally prescribed for earth dams. However, DCP tests indicate an increase of compaction with depth and it is estimated that the general required compaction has been achieved from approximately 2 m deep from the crest and deeper, where it is the most important.

A slope stability analysis indicates that both the upstream and downstream slopes are safe, as the safety factors are above the required minimum.

Due to the fairly high permeability of the embankment material and the absence of any vertical cutoff drains, there may be some seepage on the downstream slope. It is recommended that a sand cutoff filter/drain be cut into the downstream toe and a 110mm drainage pipe be placed at the bottom of the filter. This would allow seepage water to be collected safely in the filter and drained downstream of the dam.

A dam break analysis indicates that in the event of a "Sunny day" dam break, with a full breach developing in 12 minutes, that the resulting flood water will overtop the road by approximately 100mm. In the event that the breach develops over 18 minutes the resulting flood water will safely pass under the road through the culvert. In accordance to statistics there is a slight possibility that such a breach can develop in 12 minutes. It is debatable whether a flood over a very short time of 100mm deep over the road will impose a serious enough risk to classify the dam as a Category II dam.

Our recommendation would be to immediately make the recommended changes to the spillways etc. but that the Dam Safety Office of Department of Water Affairs is requested to categorize the dam at its present full supply level or recommend at what volume the dam would be acceptable from a safety risk perspective. Should the full supply level be dropped (without lowering the wall) to just less than 50 000m³ a "sunny day" dam break will pass safely under the road through the culvert.

2. INTRODUCTION

GFK Consulting Engineers were appointed by Mr. Erich Müller to undertake a Hydrology Assessment and a Safety Analysis of the dam on the farm Persberg, for development appraisal and dam/water use licencing purposes.

3. GENERAL CLIMATOLOGICAL DATA.

The site lies within quaternary catchment number V33B.

Quaternary catchment details extracted from WR 2012 are as follows:

Table 1: Quaternary Catchment Details

Quaternary Catchment	Catchme	nt Area	Forestry	Alien Vegetation	Irrigation	Ra	infall	S Pan	MAR
	Gross (km ²)	Net (km ²)	Area (km²)	Area (km²)	Area (km²)	Zone	MAP (mm)	(mm)	Net (mcm)
V33B	407	407	0	1	0.09	V3D	736	1500	24.61

Climatological data from rainfall station 335746W was used to determine the mean annual precipitation used for the analysis of 736mm. This station lies approximately 3 km south of the site. The monthly Symons Pan evaporation was obtained from station W2E004 and adjusted using the MAE of the quaternary catchment as published by the Water Research Commission (WRC). Station W2E004 is situated at Klipfontein dam just south of Vryheid. The A-Pan evaporation was determined from the SA Atlas isohyets at the site of the dam.

The evaporation and rainfall indicated in Table 2.3 and 4 are as follows:

Table 2: Evaporation

Evaporation (mm)	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Symons Pan	141	149	158	153	131	127	104	95	83	94	123	142	1500
A-Pan	164	166	194	187	157	146	125	108	94	104	140	159	1744

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
1985	169	158	139	130	93	93	97	142	139	151	182	149	1641
1986	153	48	149	104	101	95	104	140	155	155	152	177	1533
1987	184	162	141	114	129	91	113	122	104	129	127	170	1585
1988	167	156	140	123	101	90	100	126	126	140	153	147	1569
1989	155	102	141	106	92	78	102	144	170	166	138	169	1563
1990	167	146	134	110	92	94	95	119	140	143	193	163	1595
1991	151	131	113	137	106	78	102	142	143	151	170	173	1597
1992	169	174	150	135	134	113	107	141	161	198	185	192	1858
1993	189	118	129	119	110	89	105	124	150	131	152	165	1581
1994	154	139	138	101	94	107	106	120	158	156	168	188	1629
1995	194	173	138	113	89	84	112	144	168	152	152	160	1679
1996	147	126	126	103	68	95	82	119	201	165	171	194	1596
1997	169	155	106	116	90	104	87	135	129	129	152	146	1519
1998	154	144	142	105	119	102	96	126	150	140	147	162	1585
1999	176	147	152	126	102	94	101	127	130	127	147	123	1552
2000	110	94	106	79	70	59	88	108	140	110	117	140	1223
2001	152	111	126	82	80	70	73	110	129	118	118	140	1308
2002	159	111	129	102	94	69	89	82	116	140	145	136	1371
2003	153	132	148	103	86	54	82	128	114	164	134	174	1471
2004	130	107	84	87	80	68	69	101	111	153	162	153	1306
2005	138	122	118	85	93	84	87	113	146	136	155	156	1433
2006	124	112	97	85	89	64	93	105	118	132	132	179	1331
2007	168	164	137	97	107	75	108	125	149	109	135	147	1521
2008	128	145	122	85	71	57	96	123	144	145	142	161	1418
2009	137	110	112	94	81	70	76	105	118	112	114	153	1282
2010	125	130	128	84	100	70	75	116	167	139	137	158	1429
2011	153	131	127	105	95	78	94	123	142	141	149	158	1496
2012	153	131	127	104	95	87	94	123	142	141	149	139	1485
2013	128	119	102	102	102	97	83	139	148	138	163	115	1435
2014	147	135	110	92	92	98	95	118	173	125	126	145	1457
2015	148	129	120	99	98	82	89	122	120	141	149	158	1455
Average	153	131	127	104	95	83	94	123	142	141	149	158	1500

Table 3: Monthly evaporation station for W2E004 adjusted for local Mean Annual Evaporation.

Patched data

Year Oc 1920 1921 1921 1922 1923 1924 1924 1925 1926 1927 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1945	101 55 126 45 70 92 137 99 72 21 40 90 14 40 90 14 45 59 18 78 27	Nov 142 71 167 104 129 75 150 78 26 139 22 42 99 186 153	165 247 136 94 137 123 128 167 58 98 193 30 140	89 159 91 174 159 126 97 183 60 97 119	Feb 173 118 97 160 141 50 181 65 66 58	Mar 79 62 13 87 80 59 86 70 163	Apr 11 4 5 36 53 19 2 11	May 14 41 0 21 6 25 0	0 45 11 0 1 55	lut 0 9 0 9 0 9	0 82 12 16 0	67 32 0 46 65	Total 841 926 666 782 850
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	55 126 45 70 92 137 99 72 21 40 90 14 45 59 18 78	71 167 104 129 75 150 78 26 139 22 42 99 186	247 136 94 137 123 128 167 58 98 193 30 140	159 91 174 159 126 97 183 60 97 119	118 97 160 141 50 181 65 66	62 13 87 80 59 86 70	4 5 36 53 19 2	41 0 21 6 25	45 11 0 1 55	9 9 0 9	82 12 16 0	32 0 46 65	926 666 782
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	126 45 70 92 137 99 72 21 40 90 14 45 59 18 78	167 104 129 75 150 78 26 139 22 42 99 186	136 94 137 123 128 167 58 98 193 30 140	91 174 159 126 97 183 60 97 119	97 160 141 50 181 65 66	13 87 80 59 86 70	5 36 53 19 2	0 21 6 25	11 0 1 55	9 0 9	12 16 0	0 46 65	666 782
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	45 70 92 137 99 72 21 40 90 14 45 59 18 78	104 129 75 150 78 26 139 22 42 99 186	94 137 123 128 167 58 98 193 30 140	174 159 126 97 183 60 97 119	160 141 50 181 65 66	87 80 59 86 70	36 53 19 2	21 6 25	0 1 55	0 9	16 0	46 65	782
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	70 92 137 99 72 21 40 90 14 45 59 18 78	129 75 150 78 26 139 22 42 99 186	137 123 128 167 58 98 193 30 140	159 126 97 183 60 97 119	141 50 181 65 66	80 59 86 70	53 19 2	6 25	1 55	9	0	65	
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	92 137 99 72 21 40 90 14 45 59 18 78	75 150 78 26 139 22 42 99 186	123 128 167 58 98 193 30 140	126 97 183 60 97 119	50 181 65 66	59 86 70	19 2	25	55				
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	137 99 72 21 40 90 14 45 59 18 78	150 78 26 139 22 42 99 186	128 167 58 98 193 30 140	97 183 60 97 119	181 65 66	86 70	2					75	698
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	99 72 21 40 90 14 45 59 18 78	78 26 139 22 42 99 186	167 58 98 193 30 140	183 60 97 119	65 66	70			0	18	20		839
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	72 21 40 90 14 45 59 18 78	26 139 22 42 99 186	58 98 193 30 140	60 97 119	66			27	0			64	776
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	21 40 90 14 45 59 18 78	139 22 42 99 186	98 193 30 140	97 119			21	4	37	28		102	651
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	40 90 14 45 59 18 78	22 42 99 186	193 30 140	119	50	79	60	0	0			28	597
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943	90 14 45 59 18 78	42 99 186	30 140		59	37	8	0	0				485
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943	14 45 59 18 78	99 186	140	70	284	112	0	46	11	5			706
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	45 59 18 78	186		78	108	55	24	0 0	0		0		552
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	59 18 78		169	260	139	69	12	47	0	52	50		1029
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	18 78		182	93	82	66	89	11	9	0		22	766
1936 1937 1938 1939 1940 1941 1942 1943 1944	78	52	155	143	150	121	5	112	3	1	0		785
1937 1938 1939 1940 1941 1942 1943 1944		248	64	210	130	121	11	0	7	0	-		905
1938 1939 1940 1941 1942 1943 1944	21	35	288	128	124	22	7	0	74	67	8		804
1939 1940 1941 1942 1943 1944	113	41	173	78	148	55	, 0	44	,4 0				755
1940 1941 1942 1943 1944	37	207	239	102	66	73	0	15	64				882
1941 1942 1943 1944	25	86	298	162	133	27	128	0	0				888
1942 1943 1944	17	62	98	205	133	81	20	21	19	0		57	745
1943 1944	69	146	159	158	77	94	128	69	7	85			1131
1944	194	126	133	150	144	53	0	3	, 61	0			993
	78	48	96	107	61	185	11	15	0			-	606
1945	11	35	8	107	22	49	0	0	0		0	-	234
1946	130	129	40	36	85	70	28	0	42	0	-		597
1947	62	192	134	143	124	101	64	0	0	0			853
1948	122	156	134	188	198	101	96	1	9			-	1077
1949	82	135	148	72	36	95	43	29	0			9	670
1950	79	150	114	61	69	181	33	18	9	-		-	866
1951	76	6	151	218	40	55	41	11	4	46	6		656
1952	58	124	153	158	256	64	51	0	6	0	61	30	958
1953	24	123	55	73	148	138	27	61	14				720
1954	162	203	126	252	162	74	30	4	0				1016
1955	71	103	68	29	180	120	0	41	0				650
1956	45	209	272	127	56	41	87	0	12	77	38		1122
1957	114	54	31	114	52	44	126	0	0				555
1958	85	114	89	67	136	26	25	40	0				643
1967	68	139	172	119	31	91	12	14	0				711
1968	29	76	143	101	125	239	70		8				854
1969	123	30	152	141	144	49	19	0	4			82	878
1970	85	67	58	117	59	71	46	112	0				707
1971	157	101	172	167	113	107	20	53	12	10	1	3	929
1972	94	112	89	97	210	40	83	7	0			60	
1973	9	122	30	191	17	53	55	6	24	0		5	
1974	20	121	59	88	104	12	66	0	0				559
1975	14	80	110	105	116	88	14	48	0			1	593
1976	108	31	55	182	51	107	11	0	0				644
1977	99	50	118	332	84	65	0	0	0				813
Average	73	106	129	132	111		0	U	0	0		04	010

Table 4: Monthly rainfall data for rainfall station 335746

4. YIELD ANALYSIS

4.1. IRRIGATION REQUIREMENTS

The total monthly and annual irrigation requirement was calculated using SAPWAT software. The initial proposal by the client was to plant 90 ha maize in October and 40 ha oats in April.

The irrigation requirement where the monthly rainfall is included was done with SAPWAT. An analysis was also run assuming the worst case with no rain, for academic purposes. The results including rain is further used in the analysis. The results can also be found in the annexure.

Crop	<u>No rain analysis</u>	Including rain analysis
Maize (90ha)	596 700 m³/a	171 900 m³/a
Oats (40ha)	181 600 m³/a	111 600 m³/a
Total	778 300 m³/a	283 500 m³/a

The crop factors and monthly evapotranspiration per crop type were also determined by SAPWAT and are indicated below in Table 3 and Table 4 respectively.

Table 3: Crop Factors

Crop factors	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Maize	0.1	0.6	1.1	1.1	1.1	0	0	0	0	0	0	0
Oats	0	0	0	0	0	0	0.1	0.2	0.5	0.75	1	1.1

Table 4: Evapotranspiration

Evapotranspiration (mm)	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maize	74.4	115	147.2	129	110.7	85.2	0	0	0	0	0	0	663
Oats	33.6	0	0	0	0	0	43.8	73.6	59.3	64.1	81.8	98.8	454

The monthly irrigation requirements are indicated in the table below.

Table 6: Monthly gross irrigation requirements including rain (SAPWAT)

Including Rainfall (mm)	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maize	14	17	57	48	32	23	0	0	0	0	0	0	191
Oats	0	0	0	0	0	0	35	35	17	39	82	71	279

The average irrigation requirements using simple formula results in irrigation requirements of approximately 15% more than indicated above. The SAPWAT software uses a daily water balance procedure and would therefore be much more accurate. The WRSM software uses the same crop factors with monthly rainfall figures over 84 years, but with average evaporation and average rainfall effectivity figures. The crop demands would thus be more in the WRSM analysis, but the actual amount supplied correlates well with SAPWAT figures for a fair reliability of supply. For a high reliability of supply the WRSM analysis supply more irrigation water than indicated by SAPWAT and less for a low reliability of supply.

4.2. DAM YIELD ANALYSIS AND IRRIGATION AREA OPTIMIZATION

The yield analysis of the dam was calculated using the WRSM 2000 model. The catchment of the upstream dam on the Persberg Farm as well as that of the downstream dam on the neighbouring dam was analysed. This is done to determine whether the dam would be able to meet the required irrigation demands. Further the effect of the newly constructed upstream dam on the downstream neighbouring farm dam was also analysed. The following parameters were used for the analysis:

Catchment	Catchment Area		Forestry	Alien Vegetation	Irrigation	Farm	Dams	Ra	ainfall
	Gross (km ²)	Net (km ²)	Area (km²)	Area (km²)	Area (km²)	Area (km²)	Volume (m ³)	Station	MAP (mm)
Persberg Dam Catchment	3.5	3.5	0.27	0	0.9	0.062	85000	335746	733
Downstream Dam Catchment	6.3	6.3	0.5	0	0	0.047	40000	335746	733

Table 5: Catchment characteristics

Table 6: Dam volume calculation at current FSL

AREA AT	FSL mMSL	AREA (m²)	VOLUME (m³)	VOLUME (Mm³)	FSL DEPTH (m)
LOWEST CONTOUR	1511	8551	8701	0	2
CONTOUR ABOVE	1512	32078	32765	0	3
CONTOUR ABOVE	1513	61531	85777	0	4

The volume of the dam was calculated using data from arIal surveyed points on a 30 x 30 m grid. To determine the total volume, excavated material used for the dam, estimated at $15000m^3$ is included in the estimated volume of 85 777 m³.

There is no irrigation demand from the smaller downstream dam and the catchment directly contributing to flow to the smaller downstream dam is significantly larger than for the upper dam under investigation. The runoff of this catchment would be more than adequate to provide the downstream dam with sufficient water to be always full, given the fact that there is no irrigation from the lower dam. In the event that irrigation will be done from this lower dam in future, the size will be the restricting factor, not the fact that some of the runoff from the two catchments combined will be held back in the upper dam.

Table 10 indicates the probability of the dam running empty with various crop models. This is based on crop factors as determined by SAPWAT.

Crops (ha)		Probability of dam running empty (%)										
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
90 Maize - 40 Oats	41	44	68	64	59	0	0	8	25	47	73	95
40 Maize - 20 Oats	24	24	54	48	39	0	0	0	9	24	33	51
30 Maize - 10 Oats	7	7	20	22	20	0	0	0	5	6	8	14
20 Maize - 20 Oats	15	11	15	16	14	0	0	0	5	11	18	28
20 Maize - 10 Oats	2	2	4	6	4	0	0	0	1	1	2	5

Table 7: Probability of dam running empty at current volume

From the results above, it is suggested that planting 30 ha maize and 10 ha oats is an acceptable risk at the current volume of the dam or 20 ha maize and 20 ha oats.

The dam full supply level could be lowered to a level of approximately 1512.3 m in order to reduce the volume to approximately 50 000 m³. The dam will then fall outside the requirement for categorization but a licence to use and store water will still be required.

AREA AT	FSL mMSL	AREA (m²)	VOLUME (m ³)	FSL DEPTH (m)
LOWEST CONTOUR	1511.0	8551	8701	2
CONTOUR ABOVE	1512.0	32078	31765	3
CONTOUR ABOVE	1512.4	43000	49727	3

Table 8: Dam volume calculation at a reduced FSL

Should the dam be reduced to a volume of just less than 50 000 m³ the optimum area to be irrigated would still be in the order of 30 ha maize and 10 ha oats but with a slightly higher probability of running dry.

Table 9: Probability of dam running empty at a reduced dam volume (49 900m³)

Crops (ha)		Probability of dam running empty (%)										
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
40 Maize - 20 Oats	39	27	52	46	35	0	0	1	8	21	45	84
30 Maize - 10 Oats	11	12	28	29	24	0	0	0	2	7	11	18
20 Maize - 10 Oats	8	5	9	12	11	0	0	0	2	4	5	12

5. FLOOD DETERMINATION

The Persberg Dam catchment covers a total area of 3.5 km². The catchment area and slopes were determined using Civil Designer. Majority of the catchment is covered in grasslands. The proposed land to be cultivated as well as the light bush in the area was taken into account for the flood analysis.

Flood magnitudes were calculated using 5 methods, namely the Rational, Alternative Rational, Unit Hydrograph, Standard Design Flood (SDF) and Empirical method. The Alternative Rational method should be the most accurate since it uses the most site specific values whereas the SDF, Unit Hydrograph and Empirical methods use regional input values. The latter three methods are used as a check for the Rational and Alternative Rational methods. The values for the Alternative Rational method are indicated in the table below. Refer to the annexures for more details.

Main catchment characteristics are as indicated below in Table 10 (See other detail on calculation sheets).

Catchment Area (km ²)	3.5
Longest water course (km)	2.34
Height difference 10-85% slope (m)	39.1
Percentage rural (%)	100
Percentage urban/industrial (%)	0
1:5 Year flood (m ³ /s)	22.38
1:10 Year flood (m ³ /s)	31.11
1:20 Year flood (m ³ /s)	40.64
1:50 Year flood (m ³ /s)	53.70
1:100 Year flood (m ³ /s)	65.23
1:200 Year flood (m ³ /s)	73.85

Table 10: Catchment Characteristics & Alternative Rational Floods

6. MAXIMUM CAPACITY AND DESIGN FLOODS

The maximum discharge was calculated using the current triangular spillway shape with the total freeboard available being 1.2 m above FSL at the wing wall sides. Both the left and right wings were analysed as the slope differs on either side. The maximum capacities of the present spillways are as follows:

Q (right) $= 25.08 \text{ m}^{3/\text{s}}$

Q (left) $= 23.20 \text{ m}^{3/s}$

Total $= 48.28 \text{ m}^{3/\text{s}}$

The present spillways will not be able to even accommodate the 1:50 year flood (See table below)

The Recommended Design Flood (RDF) and the Safety Evaluation Flood (SEF) were also determined. The dam may be regarded as a small Category I dam (5m to 12m high). However due to the downstream road it may have a significant hazard rating, hence the Category II floods were also determined. According to DWA, the Category I dam RDF should be the 1:20 or 1:50 year flood and the SEF the 1:100 year flood. The Category II dam RDF should be the 1:100 year flood and the SEF the 1:200 year flood.

The calculations on the maximum discharge and the design floods can be found in the annexure with results indicated in the table below.

Table 11: Design floods

	Cat	egory I	Category II		
RDF	1:50	53.75 m³/s	1:100	65.23 m³/s	
SEF	1:100	65.23 m³/s	1:200	73.85 m³/s	

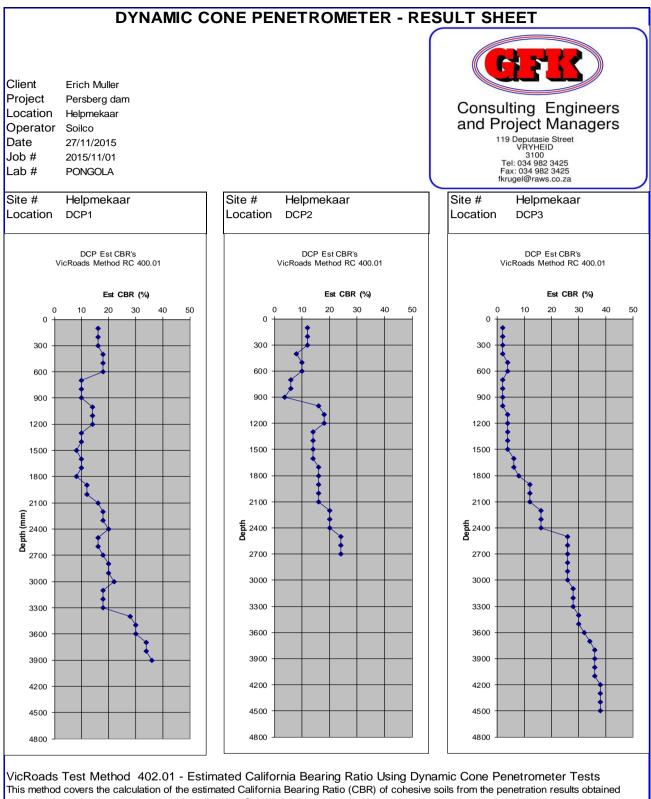
7. SPILLWAY

Spillway design for the RDF should further allow for a dry freeboard over and above the flood height through the spillway. The calculation of the dry freeboard is shown in the table below. A total dry freeboard of 0.51 m is required to accommodate wave action. Tyres are used as the current riprap on the dam wall and the run-up factor was determined taking this into consideration. The tyres should be placed to the crest of the wall to accommodate wave action.

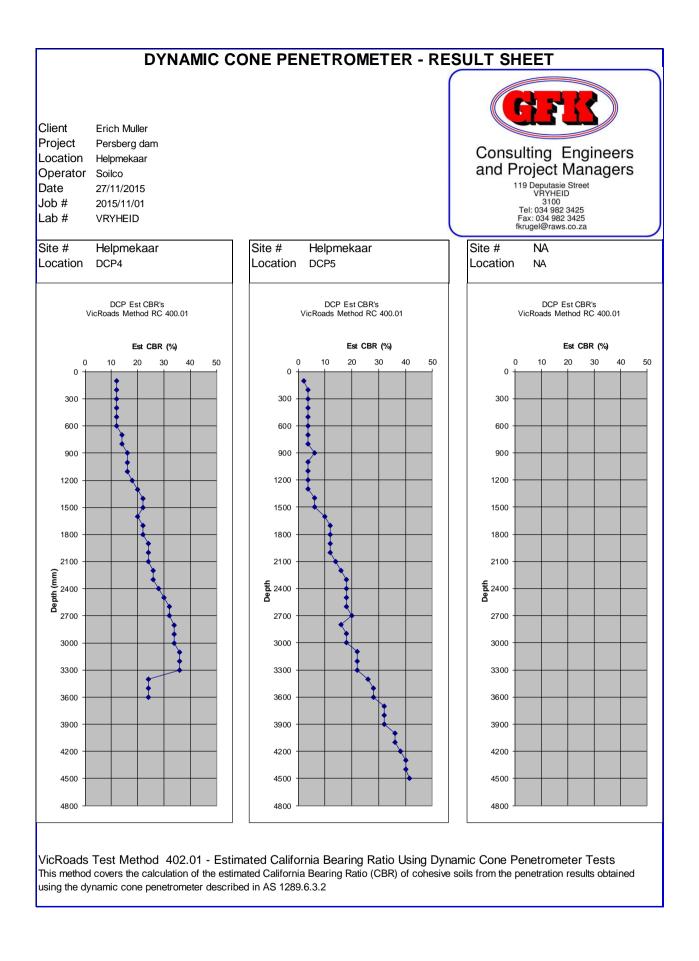
Table 12: Dry freeboard calculation

FETCH	396.03	m
WIND SPEED OVER LAND	28	m/s
WIND SPEED RATIO	1.07	
WIND SPEED OVER WATER	29.96	
Cd	0.002149	
Х	2014	Dimensionless
Ux	1.39	Dimensionless
Н	1.85	Dimensionless
Hs	0.36	Wave height (m)
SLOPE 1: (3)	2.2	
W50	6	kg
D50	0.14	m
THICKESS RIPRAP REQUIRED	0.28	m
RUNUP FACTOR	1.4	
RUNUP = DRY FREEBOARD	0.51	m Vertical

The spillway is sized according to the RDF and SEF for both a Category I and Category II dam. The following spillway lengths were calculated considering wave action during a flood:


Table 13: Spillway lengths required for the spillways cut level

	Category I			Category II				
	Flood	Length (m)		Flood	Lengt	th (m)		
		Left Wing	Right Wing		Left Wing	Right Wing		
RDF	1:50	25	25	1:100	31	30		
SEF	1:100	6	6	1:200	8	8		


The spillway widths indicated above assumes the full supply level will remain as is, with only the existing spillways cut level into the side slope with lengths as indicated. If the FSL is dropped to reduce the size of the dam to less than 50 000m³, the required spillway length will reduce significantly.

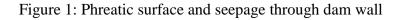
8. DAM BUILDING MATERIAL TEST RESULTS

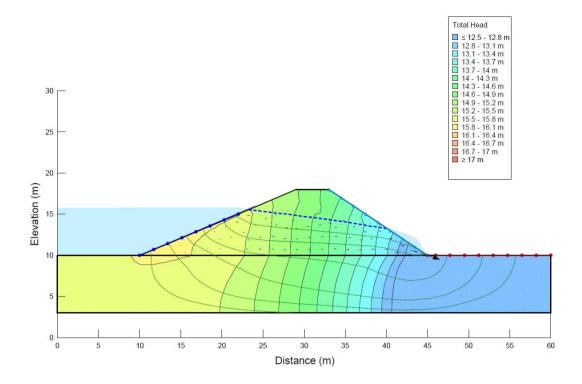
Troxler (nuclear density instrument) and DCP (Dynamic Cone Penetrometer) compaction tests were conducted at five locations across the dam wall. From the results obtained it can be concluded that the compaction over the first meter does not meet the general required compaction of 95% of Maximum Proctor density. An average compaction of 86% is achieved, with only one location exceeding the requirement at 98.3%. However, the compaction increases with an increase in depth of the dam wall and is higher at the bottom. By extrapolating the DCP results with increased depths to the compaction achieved at the top, it can be estimated that the required compaction is met at approximately 2m from the dam crest and exceeded towards the bottom where it counts most. The DCP results are indicated below.

using the dynamic cone penetrometer described in AS 1289.6.3.2

Pit 1 and Pit 2 (as indicated in the annexure) indicate the results for the natural foundation and embankment respectively. The following results were obtained:

	Natural Ground (foundation) (Pit 1)	Embankment (Pit 2)
Permeability (cm/sec)	9.306 x 10 ⁻⁸	1.083 x 10 ⁻⁵
Unified Soil Classification	CL	OH or MH
Cohesion (kPa)	27	21
Friction angle (°)	22	27


Table 14: Soil Parameters


The permeability was tested at a compacted density of 95% of Maximum Proctor density. The results as indicated above may not be a true reflection as the actual in-situ compaction measured is lower than 95% at the top of the dam wall but most likely higher at the bottom where it counts most. Higher compacted materials may have a lower permeability due to excess voids removed. The permeability of the embankment may be higher at the top due to insufficient compaction. The foundation permeability is lower than that of the embankment making the embankment material suitable for construction.

Cohesion and friction were obtained from consolidated drained shear box tests. The laboratory results can be found in the annexure.

9. SEEPAGE LINE AND SLOPE STABLILTY

The phreatic surface as shown in Figure 1 below was determined using a permeability of $9.306 \times 10-8$ cm/sec for the natural ground and $1.083 \times 10-5$ cm/sec for the embankment. Due to the fairly high permeability of the homogeneous embankment there may be some seepage on the downstream toe. A sand filter could be cut into the toe where the seepage water is expected to exit the embankment. A 110 mm drainage pipe can be placed at the bottom of the filter to allow the water to drain. See attached drawings for details.

Using the above phreatic surface the slope stability of the dam was analysed to determine if it would be stable during operation. The soil unit weight and saturated unit weights as indicated in Table 15 were obtained from the soil parameters of the two test pits.

Table 15: Unit weights of soil used f	for slope analysis
---------------------------------------	--------------------

	Natural Ground	Embankment
Bulk unit weight	17.4	16.3
Saturated unit weight	17.8	21.7

The slope stability was analysed at full supply level and the minimum factors of safety (FOS) were determined using the Slope Stability software. Provision was made to accommodate seismic action at 0.1g. The critical section of the dam wall was analysed where the following slopes were measured:

- Upstream slope: 1:2.48
- Downstream slope: 1:1.66

The following minimum Factors Of Safety (FOS) were obtained:

- Upstream slope FOS: 1.92
- Downstream slope FOS: 1.63

According to The U.S. Army Corps of Engineers (2003), the long term downstream factor of safety should not be lower than 1.5. The FOS as calculated in the analysis is 1.63 which is sufficient and should not pose any significant problems. Similarly the minimum upstream slope safety factor is 1.5 The upstream calculated FOS is 1.92 which is significant larger than the required minimum of 1.5. Both FOS are above 1.3 which is the minimum after construction.

Relatively high safety factors are observed for the steep slopes. This may be due to the high friction angles in the embankment as well as the foundation material. The upstream slope FOS is higher than the downstream slope FOS due to the steep downstream slope of 1:1.66.

The list of calculated factors of safety as well as the graphical representation of the slip circles can be found in the annexure.

10. DAM BREAK ANALYSIS

A dam break analysis was simulated on HEC-RAS to determine the effect a possible dam break would have on the downstream road. The dam break was analysed with an estimated final bottom width of 3 m and side slopes of 1:0.7 on either side over a development time period of 1 hour.

Event	Flood	Effect on downstream road
Dam break at Present FSL	Without flood (Sunny day dam break)	Flood water will flood the road by approximately 100mm deep.
Dam break at FSL for 49 900m ³ dam	Without flood (Sunny day dam break)	Flood water will pass safely under the road through the culvert.
Flood without dam break	1:20	Insignificant. The culvert size is sufficient to accommodate a 1:20 flood.
Flood without dam break	1:50	Significant. Flood causes water to flow over the road with a depth of approximately 0.5m.

The risk of a potential dam break in conjunction with the 1:20 or 1:50 year flood is deemed negligible as the probability of the two events happening simultaneously is nearly impossible as the wall is likely to only break when overtopped during floods. Due to the spillways being sized according to the design floods the dam should be able to accommodate a 1:50 year flood, hence the probability of the dam overtopping is low. In the nearly impossible event of a dam break during a 1:20 or 1:50 year flood, the water would flow over the road at a depth of approximately 0.6 and 0.9m respectively. It can thus be argued that a dam break will increase the risk of flooding the road in the event it occurs during a 1:20 year flood, but the probability is so low that it can be ignored. In the event of a 1:50 year flood the road will be overtopped anyway and will pose a serious risk. With a simultaneous dam break, the risk will not necessarily be significantly more. It can also be argued that in the event that the water level in the dam is low, that it will attenuate a 1:50 year flood which will make the risk of flood water overtopping the road less.

Figure 2 below indicates the maximum rise in water level in the culvert due the dam break without a flood for a dam with FSL for a 49 900m³dam. There is sufficient space between the maximum water level and the top of the culvert hence the road should not sustain any damage. The results regarding the floods can be seen in the annexure.

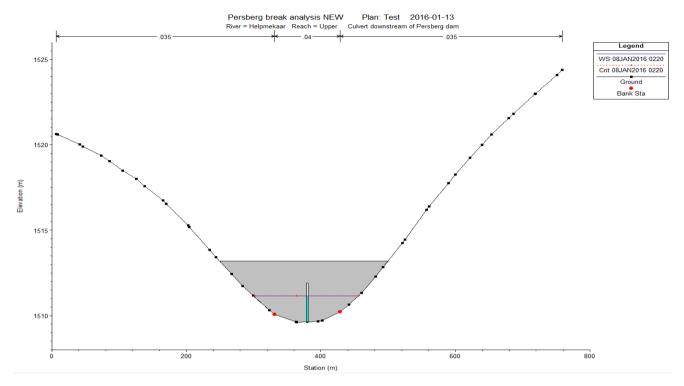
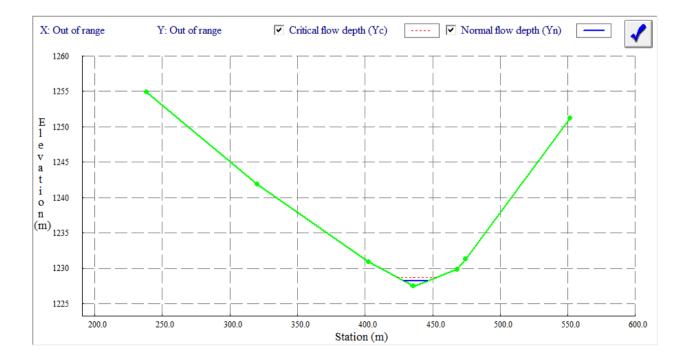
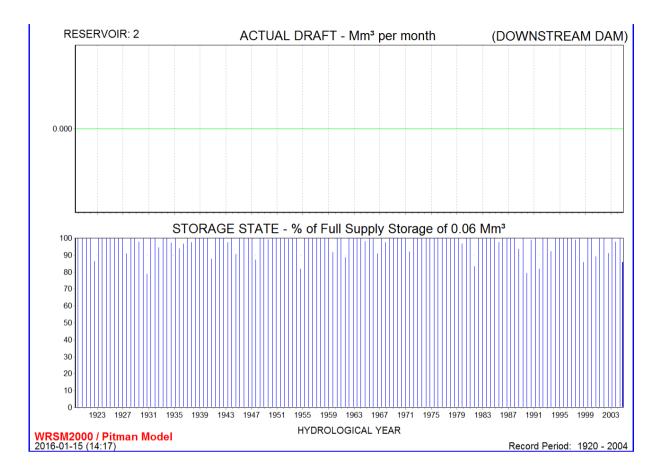



Figure 2: Effect of dam break without a flood on downstream culvert

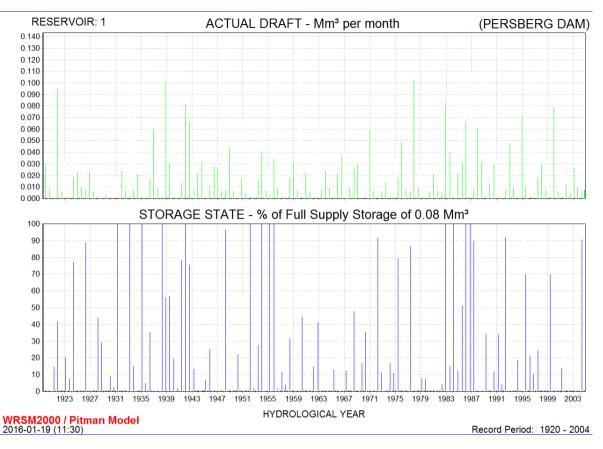
The effect of the dam break as far as 7.8 km downstream was analysed. A large cliff is found approximately 6 km downstream of the dam. The flow conditions downstream of this cliff were analysed separately as there are no obstructions. A flow rate was determined from HEC-RAS just upstream of the cliff which was then used to calculate the flow depth of the water in the river channel. A normal flow depth of 0.6 m was calculated indicating the water would flow in the river channel and not cause any significant damage should the Persberg Farm Dam break. Figure 3 below indicates the critical flow depth as well as the normal flow depth.

11. REFERENCES

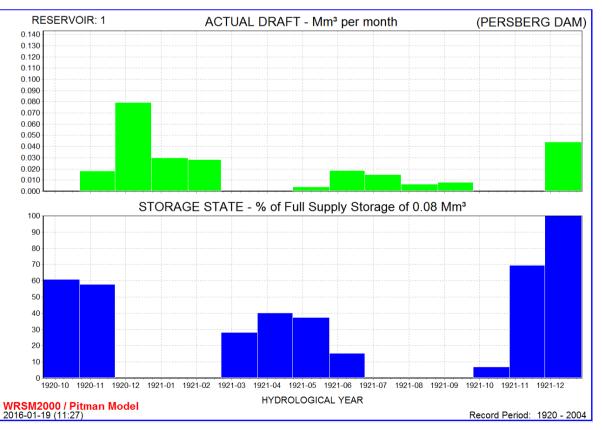
Kriel JP, 1963, *Recent investigations on the Evaporation from large water surfaces and evaporation tanks in South Africa*, International Association of Scientific Hydrology. Bulletin, 8:4, 10-18

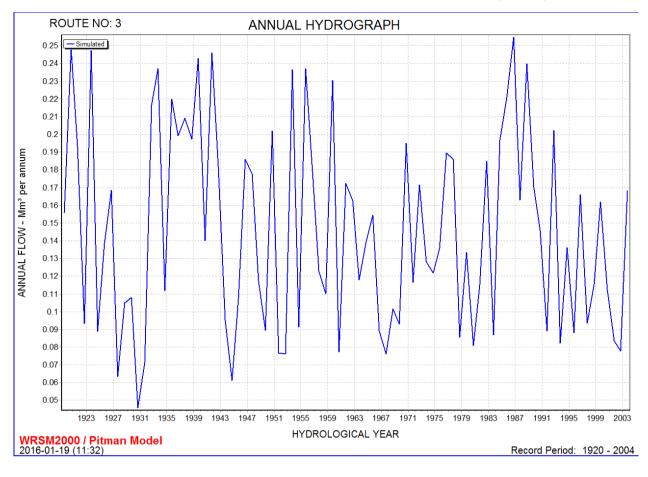

Rust E, Design of Small Dams

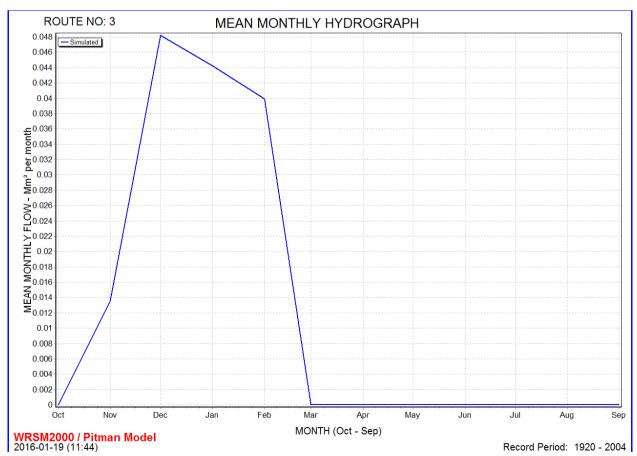
2003, DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington, Engineering and Design SLOPE STABILITY

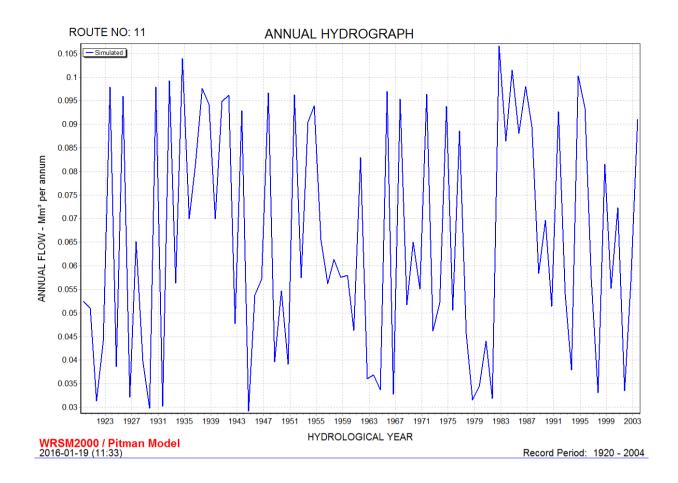

12. ANNEXURES

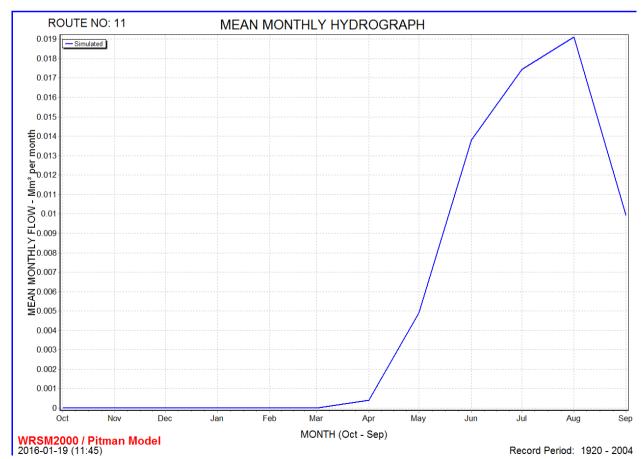
12.1. YIELD ANALYSIS

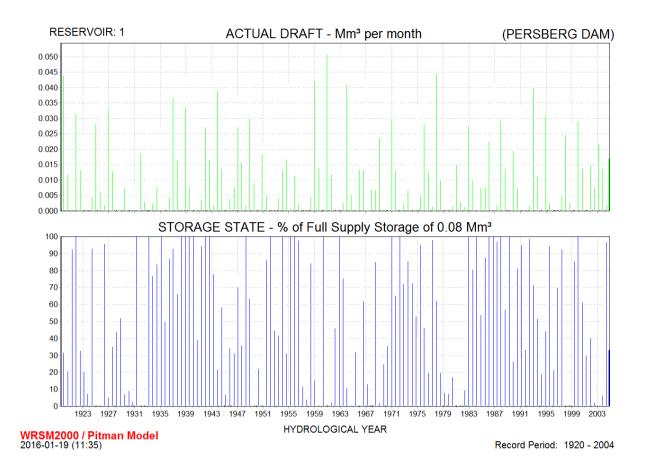

DOWNSTREAM DAM STORAGE

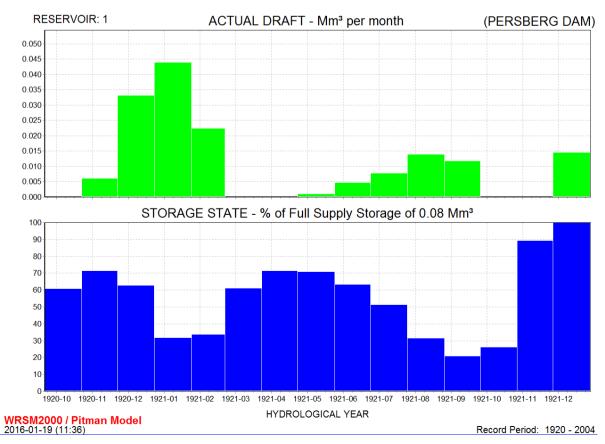

PERSBERG DAM STORAGE OVER THE FULL RECORD PERIOD – 90 HA MAIZE AND 40 HA OATS

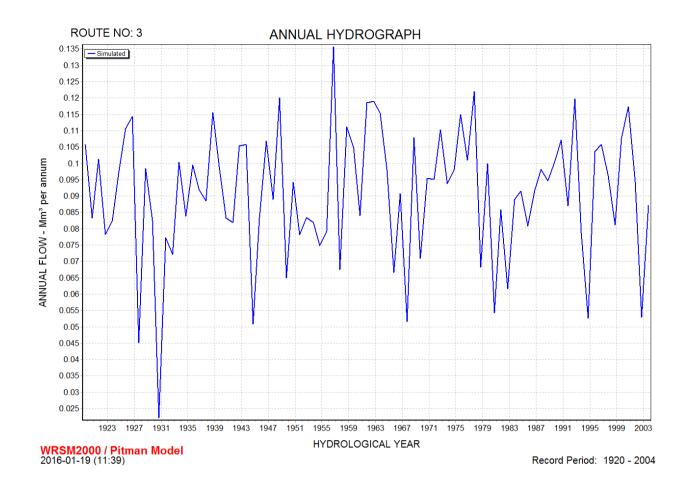

PERSBERG DAM STORAGE OVER 1 YEAR - 90 HA MAIZE AND 40 HA OATS

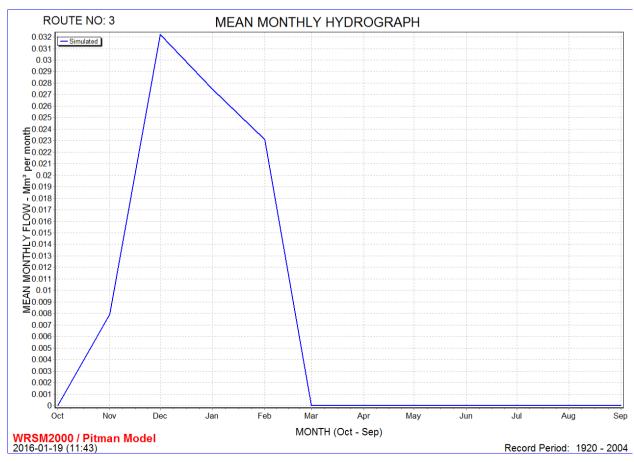

ANNUAL HYDROGRAPH OF RESERVOIR TO MAIZE IRRIGATION (90 HA)

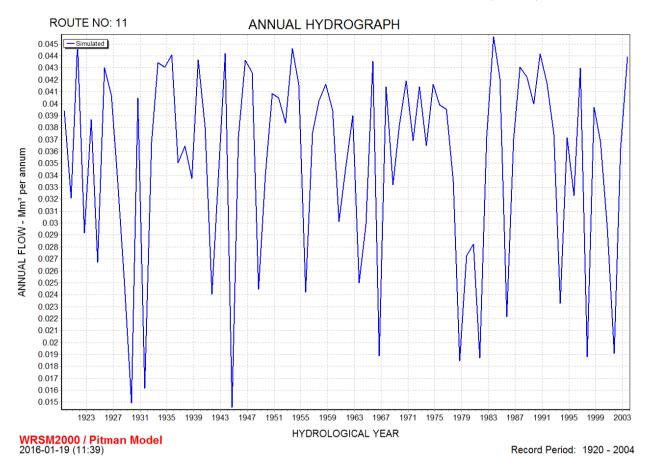

MONTHLY HYDROGRAPH OF RESERVOIR TO MAIZE IRRIGATION (90 HA)

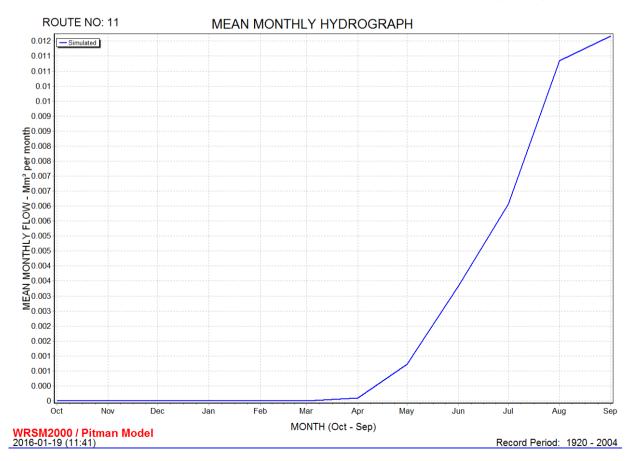

ANNUAL HYDROGRAPH OF RESERVOIR TO OATS IRRIGATION (40 HA)


MONTHLY HYDROGRAPH OF RESERVOIR TO OATS IRRIGATION (40 HA)


PERSBERG DAM STORAGE OVER THE FULL RECORD PERIOD - 30 HA MAIZE AND 10 HA OATS


PERSBERGDAM STORAGE OVER 1 YEAR - 30 HA MAIZE AND 10 HA OATS


ANNUAL HYDROGRAPH OF RESERVOIR TO MAIZE IRRIGATION (30 HA)


MONTHLY HYDROGRAPH OF RESERVOIR TO MAIZE IRRIGATION (30 HA)

ANNUAL HYDROGRAPH OF RESERVOIR TO OATS IRRIGATION (10 HA)

MONTHLY HYDROGRAPH OF RESERVOIR TO OATS IRRIGATION (10 HA)

27

12.2. FLOOD CALCULATIONS

Utility Programs for Drainage Flood calculations

 Project name:
 Persberg Dam

 Analysed by:
 B Muhl
 Sinotee

 Name of river:
 Description of site:
 Persberg Dam Catchment

 Filename:
 \\FILESERVER\raws\GFK PROJECTS\DAM HELPMEKAAR\Flood Calculations.fld

 Date:
 11 December 2015

Printed: 17 December 2015

Page 2

Flood Frequency Analysis: Alternative Rational Method

FICOU FIEdu	BICY MIRLYSI	S. AIC	ernacive K	acional n	echou				
Project				= Persbe	ra Dam				
Analysed by				= B Muhl		•			
Name of rive	ar			- 5 Maii	•				
Description				= Persbe	ra Dam	Catoba	ont		
Date	or side			= 2015-1		Caterini	enc		
	-ht			= 3.5 km					
Area of cate					-				
Dolomitic an				= 0.0 %					
	ongest water	course		= 2.34 k			_		
Flow of wate		10.05	-1	= Define		r cours	0		
	erence along	10-85	slope	= 39.1 m					
Area distril	Dution			= Rural:	100 %	, Urba	n:0%, Lak	es: 0 %	
Coboberent de		The base							
	escription -	Urban				-			
Lawns			Residenti	al and in					
Sandy, flat	(<2%)	0	Houses		0	City c		0	
Sandy, steep		0	Flats		0	Suburb		0	
	flat (<2%)		Light ind		0	Street		0	
	steep (>7%)		Heavy ind	ustry	0	Maximu	m flood	0	
	escription -	Rural							
Surface slop			Permeabil			Vegeta			
Lakes and pa	ans	24	Very perm		1		bush & fores		2
Flat area		76	Permeable		25	Light 1	bush & culti	vated land	30
Hilly		0	Semi-perm	eable	70	Grassl	ands		66
Steep areas		0	Impermeab	le	4	Bare			2
Days on which	ch thunder w	as hea	rd	= 70 day	/year				
Weather Serv	vices statio	n numb	er	= 335746	5				
Weather Serv	vices statio	n loca	tion	= HELPME	KAAR (SAP)			
Mean annual	precipitati	on (MA	P)	= 709	mm				
Duration 2				100 200)				
1 day 57	75 88	10	3 123	140 158	3				
2 days 70	93 11	1 12	9 155	176 199)				
	112 13			223 255	5				
	5 143 17			273 309					
	d recalibrat	ed Her	shfield re	lationshi	p was	used to	determine p	oint rainfal	1.
Average slop	pe			= 0.0222	28 m/m				
Time of cond	centration			= 33.1 m	in				
Run-off fact	tor								
Rural - Cl				= 0.389					
Urban - C2				= 0.000					
Lakes - C3				= 0.000					
Combined - (C			= 0.389					
Return	Time of	Po	int	ARF	Avera	ge	Factor	Runoff	Peak
period	concentrati	on ra	infall		inten	sity	Ft	coefficient	flow
(years)	(hours)			(%)	(mm/h			(%)	(m ³ /s)
1:2	0.55	24	. 23	100.0	43.88		0.75	29.2	12.44
1:5	0.55	40	.87	100.0	74.02		0.80	31.1	22.38
1:10	0.55	53	.46	100.0	96.82		0.85	33.0	31.11
1:20	0.55	66	.05	100.0	119.6	2	0.90	35.0	40.69
1:50	0.55	82	. 69	100.0	149.7	6	0.95	36.9	53.78
1:100	0.55		. 28	100.0	172.5		1.00	38.9	65.23
1:200	0.55	10	7.87	100.0	195.3	6	1.00	38.9	73.85
Dun off one	eeiniant non		a includes					. For show	and important

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Calculated using Utility Programs for Drainage 1.1.0

The software programs were developed for the convenience of its users. Although every reasonable effort has been made to ensure that the programs are accurate and reliable the program developers, Sinotech CC, accept no liability of any kind for any results, interpretation thereof or any use made of the results obtained with these programs. All users of these programs dos o entirely at their own risk. Copyright (C) 2009 SINOTECH CC, www.sinotechcc.co.za, software@sinotechcc.co.za

<u>Utility Programs for Drainage</u> <u>Flood calculations</u>

 Project name:
 Persberg Dam

 Analysed by:
 B Muhl
 Sinotect

 Name of river:
 Bescription of site:
 Persberg Dam Catchment

 Filename:
 \\FILESERVER\raws\GFK PROJECTS\DAM HELPMEKAAR\Flood Calculations.fld

 Date:
 11 December 2015

Printed: 17 December 2015

Flood Frequency Analysis: Rational Method

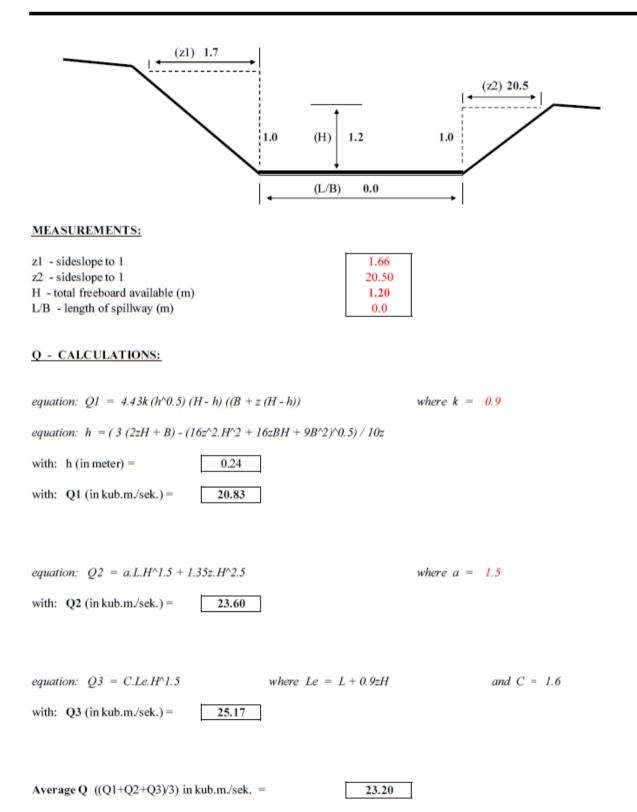
Project = Persberg Dam Analysed by = B Muhl Name of river Description of site = Persberg Dam Catchment = 2015 - 12 - 11Date Area of catchment $= 3.5 \text{ km}^2$ Dolomitic area = 0.0 % Mean annual rainfall (MAR) = 733.00 mm = 2.34 km Length of longest watercourse Flow of water = Defined water course Height difference along 10-85 slope = 39.1 mRainfall region = Inland Area distribution = Rural: 100 %, Urban: 0 %, Lakes: 0 % Catchment description - Urban area (%) Residential and industry Business Lawns 0 0 Sandy, flat (<2%) Houses 0 City centre Sandy, steep (>7%) Heavy soil, flat (<2%) 0 0 Flats Suburban 0 Light industry 0 0 Streets 0 Heavy soil, steep (>7%) 0 Heavy industry 0 Maximum flood 0 Catchment description - Rural area (%) Surface slopes Permeability Vegetation 24 Very permeable Thick bush & forests Lakes and pans 1 2 Flat area Permeable 76 25 Light bush & cultivated land 30 Hilly 0 Semi-permeable 70 Grasslands 66 Steep areas 0 Impermeable 4 Bare 2 ---------Average slope = 0.02228 m/mTime of concentration = 33.1 min Run-off factor Rural - C1 = 0.389 Urban - C2 Lakes - C3 = 0.000= 0.000 Combined - C = 0.389 The HRU, Report 2/78, Depth-Duration-Frequency diagram was used to determine the point rainfall.

Return Period (years)	Time of concentration (hours)	Point rainfall (mm)	ARF (%)	Average intensity (mm/h)	Factor Ft	Runoff coefficient (%)	Peak flow (m³/s)
1:2	0.55	28.2	99.5	50.9	0.75	29.2	14.43
:5	0.55	38.5	99.3	69.2	0.80	31.1	20.92
1:10	0.55	48.7	99.2	87.4	0.85	33.0	28.09
1:20	0.55	60.1	99.0	107.7	0.90	35.0	36.64
L:50	0.55	78.1	98.7	139.6	0.95	36.9	50.12
:100	0.55	96.1	98.3	171.3	1.00	38.9	64.73
Run-off c	oefficient percer	ntage includes	adjust	ment saturation	factors (Ft) for steep	and impermeab

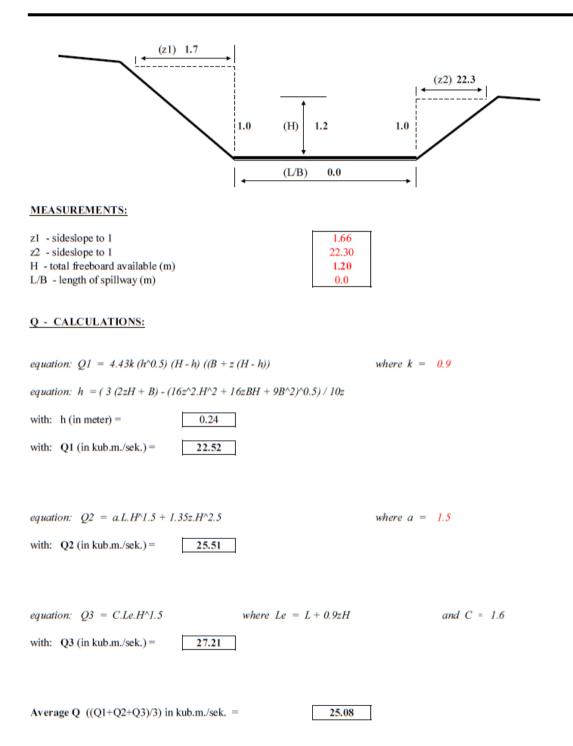
Calculated using Utility Programs for Drainage 1.1.0

The software programs were developed for the convenience of its users. Although every reasonable effort has been made to ensure that the programs are accurate and reliable the program developers, Sinotech CC, accept no liability of any kind for any results, interpretation thereof or any use made of the results obtained with these programs. All users of these programs do so entirely at their own risk. Copyright (C) 2009 SINOTECH CC, www.sinotechcc.co.za, software@sinotechcc.co.za

Page 1


Summary of peak floods for different return periods

Method	1:2	1:5	1:10	1:20	1:50	1:100	1:200	Design year
Rational method	14.43	20.92	28.09	36.64	50.12	64.73		60
Alternative rational method	12.44	22.38	31.11	40.69	53.78	65.23	73.85	60
Unit hydrograph method	15.77	26.17	38.20	53.36	80.58	111.83		65
Standard design flood method	5.056	15.70	25.46	36.42	52.69	66.29	80.68	60
Empirical method			19.14	26.03	36.36	45.93		50


Name of project	River name	Date
Persberg Dam		11 December 2015 🗸
Description of site	Designer	
Persberg Dam Catchment	B Muhl	8
Catchment characteristics	Calculate floods for the following return periods	Urban area Lawns Factor
Area of catchment 3.5	km² 🔽 1:2 year 🔽 1:20 year	Sandy, flat (<2%) 0 0.10
Length of longest watercourse 2.34	km ✓ 1:5 year ✓ 1:50 year ✓ 1:10 year ✓ 1:100 year	Sandy, steep (>7%) 0 0.20
Defined watercourse Overland flow	Values for "r" if overland flow	Heavy soil, flat (<2%) 0 0.17
Height difference along 10-85 slope 39.1	Clean soil (r=0,1)	Heavy soil, steep (>7%) 0 0.35
	- Dainfall marian	Residential areas
Area dolomite 0		Houses 0 0.50 ÷
Mean annual rainfall 733	mm Inland 🔽 🖾	Flats 0 0.70 -
Physical characteristics as a percentage of the a	area of the catchment	Industry
- Area distribution (%)	Adjustment factor for value of C	Light industry 0 0.80 ÷
Rural 100 Urban 0 Lakes 0	Default factors Factor for flat and permeable catchments	Heavy industry 0.90
- Rural area	iactors perincasic carcinicitis	Business
Surface slope Permeability	Vegetation	City centre 0 0.70
Lakes and pans 24 Very permeable 1		Suburban 0.70
Flat area 76 Permeable 25	Light bush & cultivated land 30	Streets 0 0.95 ÷
Hilly 0 Semi-permeable 70	Grasslands 66	Maximum flood 1.00 ÷
Steep areas 0 Impermeable 4	Bare 2	View run-off coefficient factors

LEFT WING

CALCULATION OF THE MAXIMUM DISCHARGE CAPACITY AT BY-WASH SPILLWAYS IN cub.m./sec. USING THREE (3) METHODS

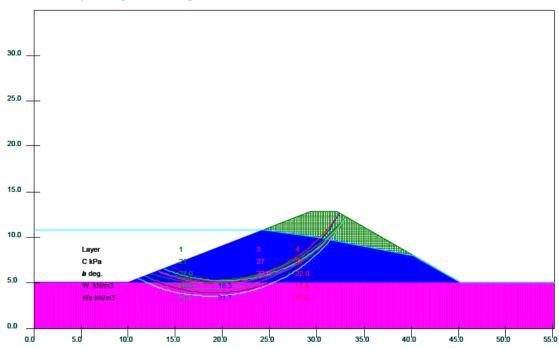
CALCULATION OF THE MAXIMUM DISCHARGE CAPACITY AT BY-WASH SPILLWAYS IN cub.m./sec. USING THREE (3) METHODS

12.4. IRRIGATION REQUIREMENTS

NO RAINFALL

W-statio Climat	n: <mark>V33B</mark> e: Mild, hum	id, war		n: Persberg d: Field a) Dam	Irri s	ystem: <mark>Cent</mark> Soil: <mark>Loan</mark>			Field size:	90.0 90.0	
Strategy	5	Stage 1		Sta	ige 2		St	age 3	_	Stag	<u>e 4</u>	
Timin	g: Depletion	of RAW (%	70	Depletion of	RAW (%	70	Depletion of	f RAW (%	70	Depletion of I	RAW (%	70
Applicatio	n: Fixed dep	oth (mm)	20 F	ixed depth	(mm)	20	Fixed depth	n (mm)	20	Fixed depth (mm)	20
Сгор		Optio	n	Start	Oct		Nov	Dec		Total	Margin	~
🕨 Maize		Long grower	s	01/10/195	4612	25.0	37500.0	191625	.0	583500.0		
Oats		Spring types		01/04/195		0.0	0.0	0	.0	156734.6		

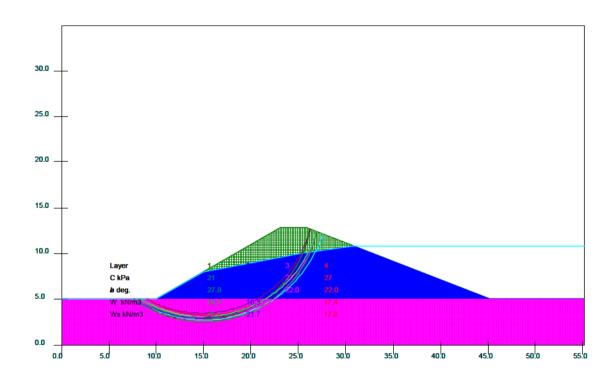
INCLUDING RAINFALL


		-	Irrig	ati	on requ	ireme	ent	: m³/a (a	verage))			
-				C	Crop area:	≓							
v	V-station:	V33B		Fa	rm: Persber	n Dam	lrri s	ystem: Cent	re nivot		Field size:	90.0	000
		Mild, hum	id, war		eld: Field a	y Dam		Soil: Loan			ated size:	90.0	
Str	ategy	5	Stage 1		Sta	ige 2		St	age 3		Sta	ge <u>4</u>	
	Timing:	Depletion	of RAW (%	70	Depletion of	FRAW (%	70	Depletion of	f RAW (%	70	Depletion of	RAW (%	70
Ap	oplication:	Fixed dep	th (mm)	20	Fixed depth	(mm)	20	Fixed depth	n (mm)	20	Fixed depth		20
	Сгор		Optio	n	Start	Oct		Nov	Dec	\top	Total	Margin	~
	Maize		Long growers	6	01/10/195	187	50.0	3000.0	58875	.0	179250.	0	
	Oats		Spring types		01/04/195		0.0	0.0	C	.0	114612.3	2.	

1

12.5. SLOPE STABILITY

UPSTREAM


Y-Coord 16.3 16	33.1 33.1	12.3	Higher 7.6	- 5	Lower	Safety
16		12.3	7.6	5	11.00	
	33.1			9	1.92	
10.4	00.1	12.3	8.3	5	1.92	
16.4	33.1	12.3	8.3	5	1.92	
16.7	33.1	12.3	7.6	5	1.92	
16.6	33.1	12.3	8.3	5	1.92	
16.9	33.1	12.3	6.9	5	1.92	
15.7	33.1	12.3	9	5	1.92	
16.1	33.1	12.3	9	5	1.92	
17.1	33.1	12.3	7.6	5	1.92	
15.7	33.1	12.3	8.3	5	1.92	
	16.6 16.9 15.7 16.1 17.1	16.6 33.1 16.9 33.1 15.7 33.1 16.1 33.1 17.1 33.1	16.6 33.1 12.3 16.9 33.1 12.3 15.7 33.1 12.3 16.1 33.1 12.3 17.1 33.1 12.3	16.6 33.1 12.3 8.3 16.9 33.1 12.3 6.9 15.7 33.1 12.3 9 16.1 33.1 12.3 9 17.1 33.1 12.3 7.6	16.6 33.1 12.3 8.3 5 16.9 33.1 12.3 6.9 5 15.7 33.1 12.3 9 5 16.1 33.1 12.3 9 5 17.1 33.1 12.3 7.6 5	16.6 33.1 12.3 8.3 5 1.92 16.9 33.1 12.3 6.9 5 1.92 15.7 33.1 12.3 9 5 1.92 16.1 33.1 12.3 9 5 1.92 16.1 33.1 12.3 9 5 1.92 17.1 33.1 12.3 7.6 5 1.92

. . .

DOWNSTREAM

Ci	ircle Ce	ntre			Su	Factors of		
X-Coor	d	Y-Coord	Radius		Hiqhe	r	Lower	Safety
14.6	15.9	12	26.2	12.7	9.7	5	1.62	
15.1	14.8	11.2	26.2	12.7	9.7	5	1.63	
15.6	16.2	12.6	27.6	12.1	9.7	5	1.63	
15.1	17.5	13.6	27.6	12.1	9.7	5	1.64	
14.5	15.3	12	26.2	12.7	8.3	5	1.64	
14.1	17.1	12.9	26.2	12.7	9.7	5	1.64	
14.9	16.8	13.5	27.6	12.1	8.3	5	1.64	
15.3	15.6	12.7	27.6	12.1	8.3	5	1.64	
15.6	13.9	10.7	26.2	12.7	9.7	5	1.65	
14.9	14.3	11.4	26.2	12.7	8.3	5	1.65	

12.6. SOIL TEST RESULTS

SOILCO MATERIALS INVESTIGATIONS (PTY) L1 CIVIL ENGINEERING MATERIALS TESTING LABORATORY

Reg. No. : 1965/09585/07

NOOIGEDACHT FARM - LOUWSBURG ROAD P.O. BOX 872 VRYHEID 3100, KWAZULU - NATAL TEL: 034 982 6012 FAX: 034 982 6013 e-mail:soilco@vhd.dorea.co.za

Date : 02 December 2015

For the attention of : Mr Muller

Selwyn Muller / Eric Muller P O Box 478 Dundee 3000

Project Details: Persberg Helpmekaar Farm DamJob Card Number: 199520Sample Number / s: V2518 - V2521

Dear Sir,

Herewith, please find the original report / s, pertaining to the above-mentioned project. All tests conducted are in accordance with prescribed test method. Information herein consists of the following :-

Materials Report and Reference No.	Test Conducted	Prescribed Method	No. of Pages
In-Place Density Report (Soilco SF 48)	Troxler Method	TMH 1 A10 (b)	1
Dynamic Cone Penetrometer - Plots	DCP Survey	DCP Survey	1
Moisture / Density Relationship (Soilco SF 38)	Modified AASHTO	TMH 1 A7	3
Unified Soil Clasification	External Labrotory	External Labrotory	3
Consolidated Drained Shearbox	External Labrotory	External Labrotory	4
Falling Head Permeability	External Labrotory	External Labrotory	1
Failing fread Ferniedoliky	Execution		

We thank you for your valued support and look forward to assisting you in the near future.

Yours faithfully,

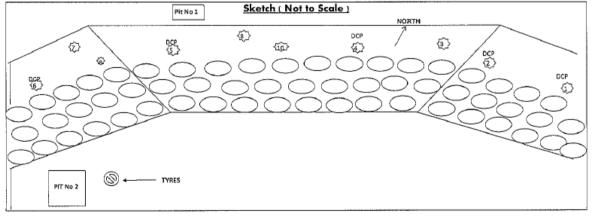
For/Spi

Information contained herein is confidential to Solico Materials Investigations and the addressee. The following results pertain only to the area or samples tested. Whilst every

Reports shall not be reproduced, except in full, without the prior consent of Solico Materials Investigations (Pty) Ltd. Should there be any deviation from the prescribed test method, comments will be made thereof, pertaining to the test on the relevant materials report.

CIVIL ENGINEERING MATERIALS TESTING LABORATORY

Reg. No. : 1965/09585/07


NOOITGEDAGHT FARM - LOUWSBURG ROAD P.O.BOX 761 VRYHEID 3100 KWAZULU - NATAL TELEPHONE : + 27 (0) 34 9826012 TELEFAX : + 27 (0) 34 9826013 email : soilco@vhd.dorea.co.za

IN SITU DENSITY REPORT

Client : Mr Selwyn Muller / Eric Muller Project : Persberg Helpmekaar Farm Dam

Job Card No. : 199520 Date Received : 30/10/2015 Date Tested : 30/10/2015 Date Reported : 17/11/2015

Tested By	r: Jacob / Phum	lani	Test Method		TMH 1 N	lethod A 10	(b)	Nuclea	r Densi	ty Met	hod
Laboratory No.	Kilometer and	Description	n	Layer Tested	Depth (mm)	M.D.D, (kg/m ³)	о.м.с	Field ((kg	Density (m³)	Field M.C.	Compaction
	Position		Tusard	(ium)	(kg/m)	(%)	Wet	Dry	(%)	(24)	
1	3m DCP from Top of Dam	Reddish Brown Sil	Ity Clay	Fill	300	1727	14.9	1744	1577	10.6	91.3
2	4	Reddish Brown Sil	Ity Clay	Fill	300	1727	14.9	1865	1698	9.8	98.3
3		Reddish Brown Sil	ity Clay	Fill	300	1727	14.9	1710	1503	13.8	87.0
4		Reddish Brown Sil	Ity Clay	Fill	300	1727	14.9	1703	1510	12.3	87,4
5		Reddish Brown Sil	ity Clay	Fill	300	1727	14.9	1485	1331	11.6	77.1
6	Þ	Reddish Brown Sil	Ity Clay	Fill	300	1727	14.9	1528	1415	8.0	81.9
7		Reddish Brown Sil	ity Clay	Fill	300	1727	14.9	1583	1468	7.8	85.0
8	*	Reddish Brown Sil	Ity Clay	Fill	300	1727	14.9	1686	1558	8.2	90.2
9		Reddish Brown Si	ty Clay	Fill	300	1727	14.9	1651	1498	10.2	86.7
10	в	Reddish Brown Sil	ity Clay	Fill	300	1727	14.9	1744	1568	11.2	90,5

Remarks

3m DCP from top of Dam = :N8 * Numbers are Densities :

For Soilco Page 1 of 1 a tauting and Reporting, Soitoo Materials Investigations (Pty) Ltd will

Revision 2

nation particles in terrain is particle risk to Solida Medica - Initial concerns into fact any externations well partinesignions and the addresses. The following results parties only to the area or sumplox tested. Whilst every precession is taken to ensure accesses test anding thereof. Reports shall not be reproduced, except in fail, without the prior concern of Solico Materials invasignizers (Pby). Lit. not be held responsible for any left

Shite 97.48

Reg. No. : 1965/09585/07

NOOITGEDAGHT FARM - LOUWSBURG ROAD P.O.BOX 761 VRYHEID 3100 KWAZULU - NATAL TELEPHONE : 034 982 6012 TELEFAX : 034 982 6013 email : soilco@vhd.dorea.co.za

Client	:	Mr Selwyn Muller / Eric Muller	
Oliciit		in oenyn maner / ane maner	

Project : Persberg Helpmekaar Farm Dam

Job Card No:	199520
Date Tested	30-10-2015
Report Date :	27-11-2015

DPL No. &	1 Dam wall - DCP 1	2 Dam wall - DCP 2	3 Dam wall - DCP 3	4 Dam wall - DCP 4	5 Dam wall - DCP 5
Depth (mm)	No. of Blows				
300	24	18	3	18	5
600	27	14	5	18	6
900	15	8	3	22	7
1200	21	26	5	25	6
1500	15	21	6	32	8
1800	13	23	10	32	17
2100	20	24	18	36	19
2400	28	30	24	40	26
2700	25	36	39	47	28
3000	31	Refusal	39	51	26
3300	27		42	54	33
3600	44		46	36	41
3900	52		53	Refusal	48
4200	Refusal		55		55
4500			57		61
4800			Refusal		Refusal
5100					
5400					
5700					
6000					
Remarks					

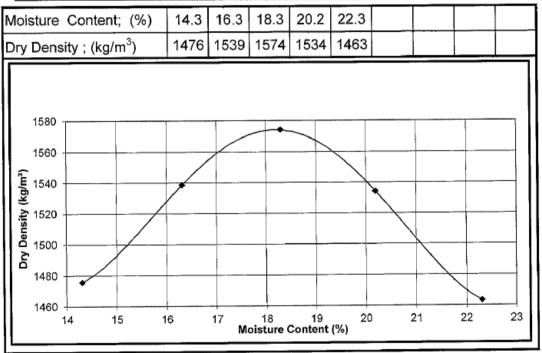
DYNAMIC CONE PENETROMETER (10 kg DPL)

This report is pertinent only to the area tested.

For Soilco:

SOILCO

CIVIL ENGINEERING MATERIALS TESTING LABORATORY


Reg. No. : 1965/09585/07

NOOIGEDACHT FARM - LOUWSBERG ROAD P.O. BOX 761 VRYHEID 3100 TEL : 034 9821909 FAX 034 9809235 e-mail : soilco@vhd.dorea.co.za

Client : Mr Selwyn Muller / Eric Muller	Job Card No.	199520
Project : Persberg Helpmekaar Farm Dam	Date Received	30/10/2015
Sampled by Jacob	Date Tested	16/11/2015
	Date Reported	17/11/2015

Laboratory Number Field Reference No.	V2518
Position in field	Pit 1
Depth (mm)	900 - 3000
Material Description	Yell.Brown Stained Lt Grey Sty Clay with Ferr.Nodules

MOISTURE / DENSITY RELATIONSHIP - PROCTOR EFFORT TMH1-METHOD (A7)

Maximum Dry Density	1574 kg/m ³
Optimum Moisture Content	18.3 %

The above test results are pertinent only to the samples received and tested at the laboratory. This report shall not be reproduced, except in full, without the prior consent of SOILCO MATERIALS INVESTIGATIONS (PTY) LTD

For Soilco :

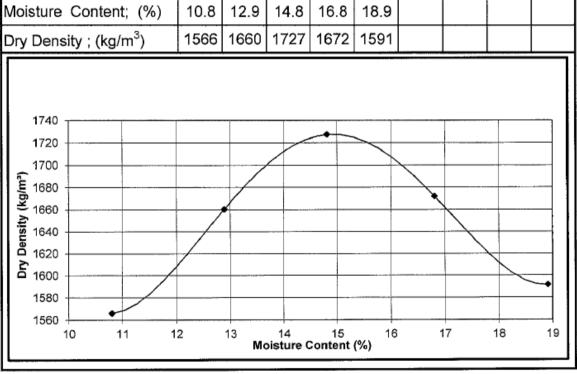
2003-02-24

Revision 2

Soilco SF 38

CIVIL ENGINEERING MATERIALS TESTING LABORATORY

Reg. No. : 1965/09585/07


NOOIGEDACHT FARM - LOUWSBERG ROAD P.O. BOX 761 VRYHEID 3100 TEL: 034 9821909 FAX 034 9809235 e-mail: soilco@vhd.dorea.co.za

Client : Mr Selwyn Muller / Eric Muller	Job Card No.	199520
Project : Persberg Helpmekaar Farm Dam	Date Received	30/10/2015
Sampled by Jacob	Date Tested	16/11/2015
	Date Reported	17/11/2015

Laboratory Number	V2519
Field Reference No.	
Position in field	Pit 2
Depth (mm)	0 -600
Material Description	Reddish Brown Silty Clay

5 5 17/11/2015 Date Reported

MOISTURE / DENSITY RELATIONSHIP - PROCTOR EFFORT TMH1-METHOD (A7)

Maximum Dry Density	$1727 \ km/m^3$
	1727 Kg/m
Optimum Moisture Content	14.9 %

The above test results are pertinent only to the samples received and tested at the laboratory. This report shall not be reproduced, except in full, without the prior consent of SOILCO MATERIALS INVESTIGATIONS (PTY) LTD

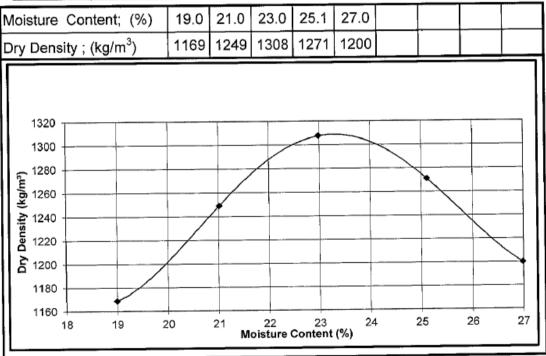
For Soilco :

Revision 2

2003-02-24

CIVIL ENGINEERING MATERIALS TESTING LABORATORY

Reg. No. : 1965/09585/07



NOOIGEDACHT FARM - LOUWSBERG ROAD P.O. BOX 761 VRYHEID 3100 TEL: 034 9821909 FAX 034 9809235 e-mail: soilco@vhd.dorea.co.za

Client : Mr Selwyn Muller / Eric Muller	Job Card No.	199520
Project : Persberg Helpmekaar Farm Dam	Date Received	30/10/2015
Sampled by Jacob	Date Tested	16/11/2015
	Date Reported	17/11/2015

Laboratory Number	V2520
Field Reference No.	
Position in field	Fill
Depth (mm)	300
Material Description	Reddish Brown Silty Clay

MOISTURE / DENSITY RELATIONSHIP - PROCTOR EFFORT TMH1-METHOD (A7)

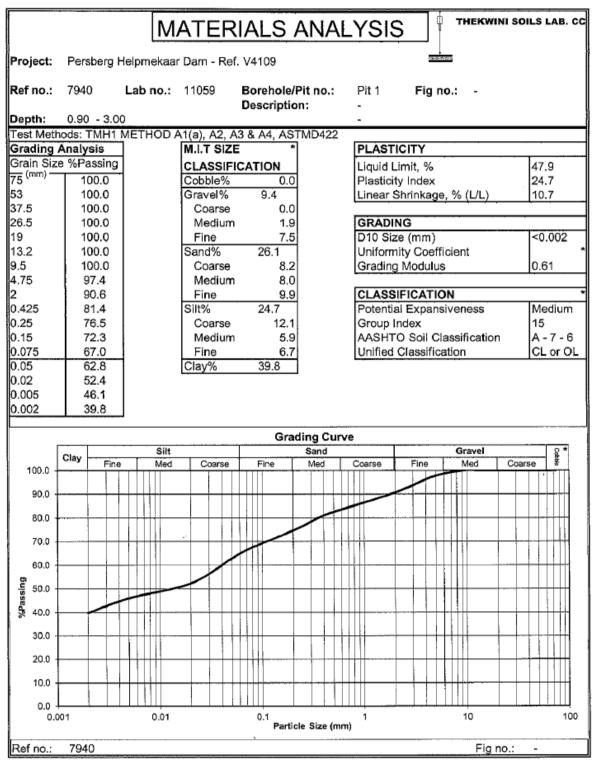
Maximum Dry Density	1309 kg/m ³
Optimum Moisture Content	23.2 %

The above test results are pertinent only to the samples received and tested at the laboratory. This report shall not be reproduced, except in full, without the prior consent of SOILCO MATERIALS INVESTIGATIONS (PTY) LTD

For Soilco :

2003-02-24

Revision 2

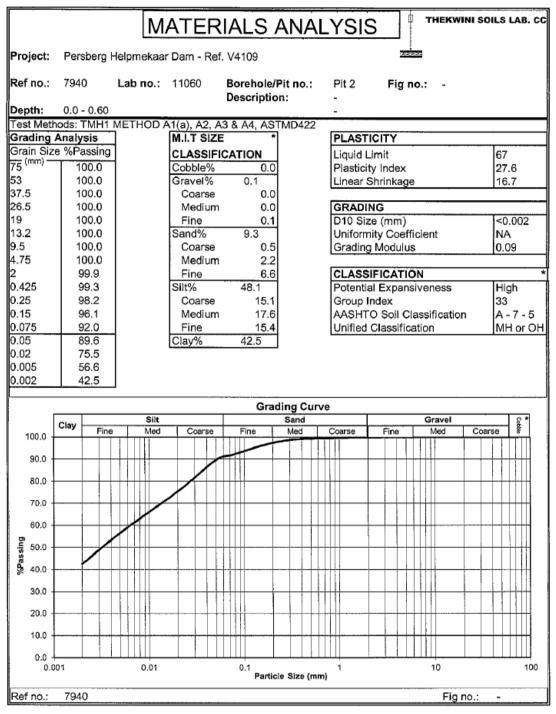

Soilco SF 38

				Laboratory Test Summary	Test Sum	mary	-=	THEKWINI SOILS LAB. CC	DILS LAB. CC
Job Description: Job no.:	Porsberg Helpmekaar Dam - Ref. V4109 7940	(, V4109		1		1		_	
Date:	01-12-2015								
Lab no.		11059	11060						
Location		Pit 1	Pit 2		_				
Depth		0.90 - 3.00	0.0 - 0.60						
Description									
		t							
Binder Material			,						
	75								
	37.5								
(
աս	19 iissi								
u) e									
ziS		100							
; øj:	4.75	16	100						
וילוכ		6	10						
۶d	125	8	66						
		11	98						
	0.15	72	96						ľ
	0.075	67	32						
9L		ß	90						
qəu	0.02	52	75						
			57						
	0.002		42						
	Coarse Sand <2.0 >0.425mm		0.6						
Soll	Fine Sand <0,425>0.05mm		10.3						
Morter	Silt <0.05 >0.005		32.8						
	Clay <0.005	41.4	56.3						
	Liquid Limit % (m/m)		67						
Atterberg	Plasticity Index	24.7	27.6						
Limits	Linear Shrinkage %	10.7	16.7						
	Natural MC %	-	,		-	_			
Mod AASHTO	Dry Density kg/m ³								
neusity	CIMC %								
	100% MUU								
	20 Sec.			-				ľ	
	93% (Interrect) *								
	80%								
	CBR Swell (%)								
AASHTO Soll Classification *	sification *	A-7-6 (15)	A - 7 - 5 (33)						
Grading Modulus		0.61	0.09						
1 KH 14 (1989)									-

Signature: Title:

Page 2 of ...

TEST REPORT


* Information marked with an asterisk is outside the scope of Accreditation.

The results only relate to the samples tested.

The report may not be reproduced except in full.

Page 3 of ...

TEST REPORT

* Information marked with an asterisk is outside the scope of Accreditation.

The results only relate to the samples tested.

The report may not be reproduced except in full.

Page 4 of ...

								_	_		_		_					_		_				 		_
B. CC 14058 1-7920	T0640		Shear Stress kN/m ²	2	48.2	68.4 83 1	92.9	100.1	115.9	122.3	128.1	131.7	140.3	141.9	143,4	146.3	143.4	147.1	147.2	148.6	146.7	0.041	6741			
S LAB. C	Facility No.	18.3 1496.3 64.872	0/// ∏	000	0.0	0.0	0.09	-0.12	0.15	0.19	-0.21	959	929	-0.29	-0.29	020	0.31	-0.31	-0.31	-0.32	-0.32	0.00	-0.33			
	a SANAS Accredited Testing Laboratory - Facility No. T0640	ŝ	Total Strain %	5	0.68	1.18	1,95	2.33	3,38	3.85	4.37	4.75	9.97 6.48	207	7.87	8.82	10101	10.83	11.97	13.43	15.18	10.01	18.33	 		
KWINI S VAT. REGISTRATI 68 Ridge Road, Toligate, DURBAN Fol.: (031) 201-8992	Testing La	MC at Test (%) Dry Density (kg/m ³) Volume at Test (cm	Totaf Strain (mm)	4	0.0	0.7	17	2.3	3.4	3.8	4.2	9.4	55	5.7	5.8 9.5	99	d u	6.2	6.2	6.3	9 9 9	0.0	ກ ຜູ້			
	Accredited		Vertical Gauge	1012	1011	1005	395	989	982 978	974	970	996	206	955	954	962	106	950	960	949	848	145	2047	 		1
·==	a SANAS.	(kPa) 300 Factor 82.3 36 79.3	Prooving Ring	0.0	0.21	0.297	0.401	0.431	0.472	0.519	0.541	0.554	0.58	0.583	0.584	0.59	250	0.58	0.573	0.569	0.55	0.038	0.534	 		-
N.L.	Test 3	Inputs Normal Stress (kPa) 300 Prooving Ring Factor 82.3 Area (cm ³) 79.2 Volume (cm ³)	Strain P	0.3	0.41	0.74	1.17		1.82				3.89		-	5.29	9.74 8.06	6.5	7.18	8,06	9.11	2:	÷	 		-
(sanas	Te	Pro Are Vol	Shear Stress KN/m ²		41.1	53.3	68.4	73.7	81.3 85.6	0.2	93.9	96.4	104.9	106.3	107.2	107.1	108.7	08.7	09.1	08.9	68.4	5.0L	112.0			┤
- 7625			<u> </u>	Ľ																				 		+
		18.3 1495.3 66.924	ovv D	-	-0.05	0.0	0.16	-0.18	-0.23	0.26	-0.27	0.29	50	-0.33	-0.33	0.34		-0.35	-0.35	-0.35	0.36	5	-0.36			
		MC at Test (%) Dry Density (kg/m ³) Volume at Test (cm ³)	Total Strain %		0.72	1.23	2.00	2.40	3.08	3.90	4.45	4.82	5.47 6.58	71.17	7.97	8.92	9,05 10.18	10.93	12.05	13.57	15.02	16.72	18.38			
		MC at Test (%) Dry Density (kg Volume at Test	Total Strain (mm)	;	0.1	6.1	1 1 1	3.6	4 4 8 4	25	5.4	57	6.1	6.5	6,6	8.9	2 0 0 0	6.9	6.9	7.0	21	5	17			
		200 1 81.35 1 36 79.2	Vertical Gauge	1097	1080	1078	1066	1061	1052	1045	1043	1040	1036	1032	1031	1029	6201	1028	1028	1027	1026	1026	1026			
		ess (kPa) ing Factor n ³)	Prooving Ring	•	0.181	0.234	0.298	0.32	0.351	0.386	0.4	0.409	0.42	0.44	0.44	0.435	0.43	0.432	0.428	0.42	0.411	0.41	0.408			
	Test 2	Inputs Normal Stress Prooving Ring Area (cm ³) Volume (cm ³)	Strain Guage	•	0.2	0.74	1.2	44	1.85	234	2.67	2.89	3.28	4.3	4.78	5.35	6.79	6.56	7.23	8.14	9.01	10.03	11.03			
EST	-		Shear Stress KNim ²		32.0	37.6	45.9	49.5	53.2 cc.4	5 5	58.0	58,6	60.4 8 6	613	62.3	62.3	62.4 62.4	650	64.3	66.3	65.8	66.5	6.99		_	
SHEAR BOX TES' Description:	d to 96% of M	18.3 1495.3 71.892	ovv₀		-0.03	90 ⁻⁰	2	-0.20	-0.23	26.0-	-0.28	-0.29	0.30	-0.32	-0.32	-0.33	0.33	50 C	-0.33	-0.34	0.34	19:34 -0:34	6,34			
SHEAR Description:	(ecompacte	a c	Total Z Strain %		0.33	1.23	2.02	2.42	3,12	3.05	4.47	4.85	5.50	7.18	7,98	8.93	9,67	10.20	12.08	13.60	15.03	16.72	18.38			
AINED a	-	MC at Test (%) Dry Density (kg/m ³) Volume at Test (cm ³)	Total Strain (mm)		0.8	91	3.0	40.4	4.6	ອັນ ກິດເ	22	5.7	6.9	6.3	6.4	6.5	6.5	6.9 8.6	6.6	6.7	6.7	6.8	6.8			
DR/		100 M 69.83 D 36 V 79.2	Vertical Gauge	1250	1247 1244	1234	1220	1210	1204	1107	1196	1193	1191	1187	1186	1185	1185	1185	18	1183	1183	1182	1182			
DATED DRAINE SULTS Fersberg Helpmekaar Dam 7340 0.00-3.0	Pit 1		Preoving Vertical Ring Gauge	0	0.115	0.192	0.212	0.25	0.267	1120	0.287	0.269	0.296	0.295	0,297	0.294	0.282	1870	0.283	0.297	0.29	0.287	0.283	 		_
۳. Rö	Position: 1 Test 1	Inputs Normal Stress (kPa) Proowing Ring Factor Area (cm ²) Volume (cm ³)	Strain Guage	0	0.2	0.74	0.98	1.45	1.87	2,09	2,68	2.91	3.3	4.31	4.79	5.36	5.8	6.12	7.25	8.16	9.02	10.03	11.03			

CONSOLIDATED DRAINED SHEAR BOX TEST

Project
Ref no.
Lab no.
Depth (m):
Position:

Jeans 200

100

0+

50

100

150

200

250

Normal Stress (kPa)

300

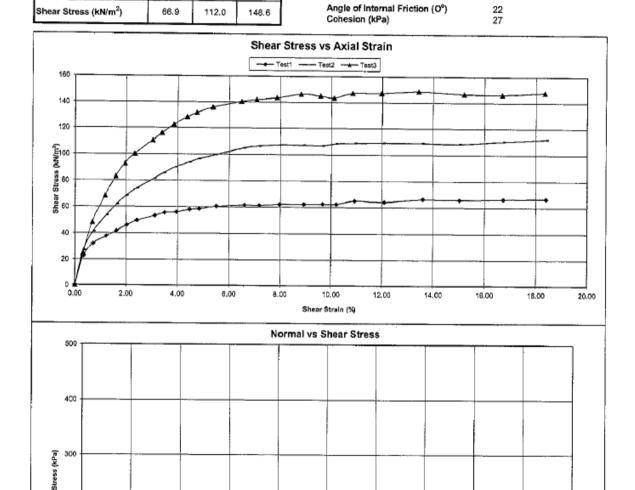
350

400

450

500

Persberg Helpmekaar Dam 7940 11059 Sample Type 0.90 - 3.0 Recompacted to 95% of MOD. Pit 1 Description:



a SANAS Accredited Testing Laboratory - Facility No. T0640

Test 2 Test 1 Test 3 Normal Stress (kN/m²) 100 200 300 Dry Density (kg/m³) 1495 1495 1495 Moisture Content (%) 18.3 18.3 18.3 Shear Strain (%) 18.4 18.4 13.4 Shear Stress (kN/m²) 66.9 112.0 148.6

		-			_																								
3. CC	1-7920 T0640			Shear Stress kN/m ²		22.2 46.8	58.6	5.5 85.3	103.1	111.6 173.6	140.6	149.4	156.2	0.101	171.2	172.5	168.5	158.2	148.3	142.9									
S LAB. (w210061. P.O. Box 20464.	Fax: (031) 201-7920 Facility No. T0640		23.2 1243.55 67.284	Δ wo		0 0 0 0 0	-0.02	9 0 9 0	-0.14	-0.17	-0.28	-0.31	-0.34	10.37 10.38	-0.41	-0.43	-0.46	-0.49	-0.55	-0.56		-							
SOIL MICHING AN	92 F		÷.	Total Strain %		0.33	1,15	2.18	3.15	3.68	6.22	7.10	7.97	8.80	10.37	11.18	12.58	13.98	17 10	18.37									
THEKWINI SOILS LAB. CC VAL REDISTRATION NO. ASSIZIODSI. Set RADGE ROAD PROJ SECOND PROJ	2//2/2/ Tel: (031) 201-9992 Fax: (031) 201-7320 a SANAS Accredited Testing Laboratory - Facility No. T0640		MC at Test (%) 23.2 Dry Density (kg/m ³) 1243.5 Volume at Test (cm ³) 67.284	Total Strain (mm)	1	0.1	0.4	n 8	2.8	3.4	4 m 0 m	6.3	6.9	4.4	282	8.8	6°6	6.6		11.3									
	Tel : Accredited		*	Vertical Gauge	1215	1214	1211	7911	1187	1181	1159	1152	1146	1141	1133	1129	1122	1116	1109	1102						_			
•=====	a SANAS			Prooving Ring	•	0.1	0.262	0.331	0.453	0.488	0.030	0.632	0.655	0.672	0.7	0,699	0.672	0.62	80.0	0.531					-				
าลร	ICI	Test 3	Inputs Normal Stress (kPa) Prooving Ring Factor Area (cm ²) Volume (cm ³)	Strain F Guage	0	0.2	0.69	8.5	1.89	2.21	3 73	4.26	4.78	5.28	90'0 8 23	6.71	7.55	8.39	50.55	11.02									
(sanas		Ĕ	N N N	Shear Stress KN/m ²		24.6	47.7	58.1 84.5	78.9	84.6	104.5	108.5	112.8	116.7	123.0	125.5	130.4	130.5	128.1	119.4	113.1	-							
, See			1,55	ovv	╞	00.00	0.04	0.07	0.14	0.19	020	0.33	-0.34	0.38	-0.35	0.43	-0.47	-0.51	-0.53	0.58	-0.61								
			23.2 1243.55 69.12	4		- 4	Ÿ		- Y	Ÿ.	۲ ۲ —						-	7		- 1	-						-		
			MC at Test (%) Dry Density (kg/m³) Volume at Test (cm³)	Total Strain %		0.38	1.18	1.95	3,23	3.77	4.83	7.18	8.03	3.87	40.8 10.47	11.28	14.33	15.72	16.87	14.20	20.03								
		ĺ	MC at Test (%) Dry Density (kg/m³) Volume at Test (cm	Strain (mm)		0.1	0.8	1, c	2.9	3.9	4.0	6.6	6.9	2.6	6.0	2.0	9.5	10.2	10.7	11.0	12.3								
			200 79.5 36 79.2	Vertical Gauge	1165	1164	1157	1150	1136	1126	1125	080	1096	1089	1086	1078	1070	1063	1058	1000	1042								
			ess (kPa) Ing Factor n³)	Prooving Ring	°	0.111	0.214	0.259	0.267	0.371	0.41	0.46	0.474	0.486	0.507	0.509	0.511	0.503	0.487	0.472	0.413							_	
		Test 2	Inputs Normal Stress Prooving Ring Area (cm ³) Volume (cm ³)	Strain Guage	0	0.23	0.71	1.17	6, F	2.26	2.9	3.76	4.82	5.32	5.73	97'9	8.6	9.43	10.12	10.55	12.02								
EST	JOD.			Shear Stress LMm ²	KIWII	20.7	35,1	4.5	45.0 5.75	64.1	58.7	99.7	64.7	65.8	699	1.69	0.69	68.8	69.1	68.3	66.4	64.7	62.7						
L BOX T	- Sample Type: Recompacted to 95% of MOD		23.2 1243,55 72.144	∧ NNo		-0.01	90.0- 90.0-	-0.12	-0.15	0.22	-0.24	-0.26	-0.29	-0.30	-0.31	0.32	-0.35	-0.35	-0.37	0.39	14-14- 14-14-	-0.45	-0.47						
SHEAR Description:	- Sample Type: Recompacted		<u> </u>	Total /		0.43	0.92	1.85	233	3,83	4.87	5.55	7.23	8.10	8.95	9.65 10 E7	11.40	12.10	12.77	14.13	10.70 10.70	17.27	18.45	1					
	,		MC al Test (%) Dry Density (kg/m ³) Volume al Test (cm ³)	Total Strain	(mm)	0.2	77	2.5	0.0	4.4	4.9	5 5 5	0.0	6	6.3	9.0	0	1.7	7.4	7.8	5.0 2 3	06	9.6	1					
DR/			100 N 36 V 79.2 V	Vertical Gauge	anct	1206	1196	1183	£178	1162	1159	1155	2611	1147	1145	1143	1141	1137	1134	1130	1125	1118	113	2					
DATED DRA SULTS Persberg Holpmekaar	11060 0.0 - 0.60 Pit 1		ļ	Prooving V Ring		0.092	0.14	0.182	0.198	0.233	0.25	0.257	0.262	0.271	0.273	0.28	0.274	0.271	0.27	0.263	0.254	270	0.229	V.64-V					
CONSOLIDATED DRAINED SHEAR BOX TEST TEST RESULTS Project Persberg Helpmekaar Bef no. 7940	Lab no. Depth (m): Position:	Test 1	Inputs Normal Stress (kPa) Prooving Ring Factor Area (cm ²) Volume (cm ³)	Strain Guage	4	0.26	0.55	1.1	14	2,3	2.92	3.33	3.8	4.86	5.37	6.79	10.34 No.0	7.26	7.66	3.48	9.17	2018	11.07						

CONSOLIDATED DRAINED SHEAR BOX TEST

Project
Ref no.
Lab no.
Depth (m):
Position:

0

Ď

50

100

150

200

250

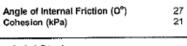

Normal Stress (kPa)

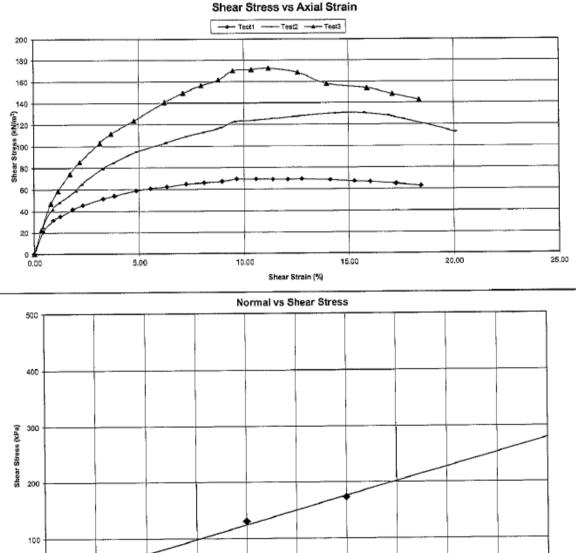
300

360

400

Persberg Helpmekaar 7940 11060 Sample Type 0.0 - 0.60 Recompacted to 95% of MOD. Pit 1 Description:

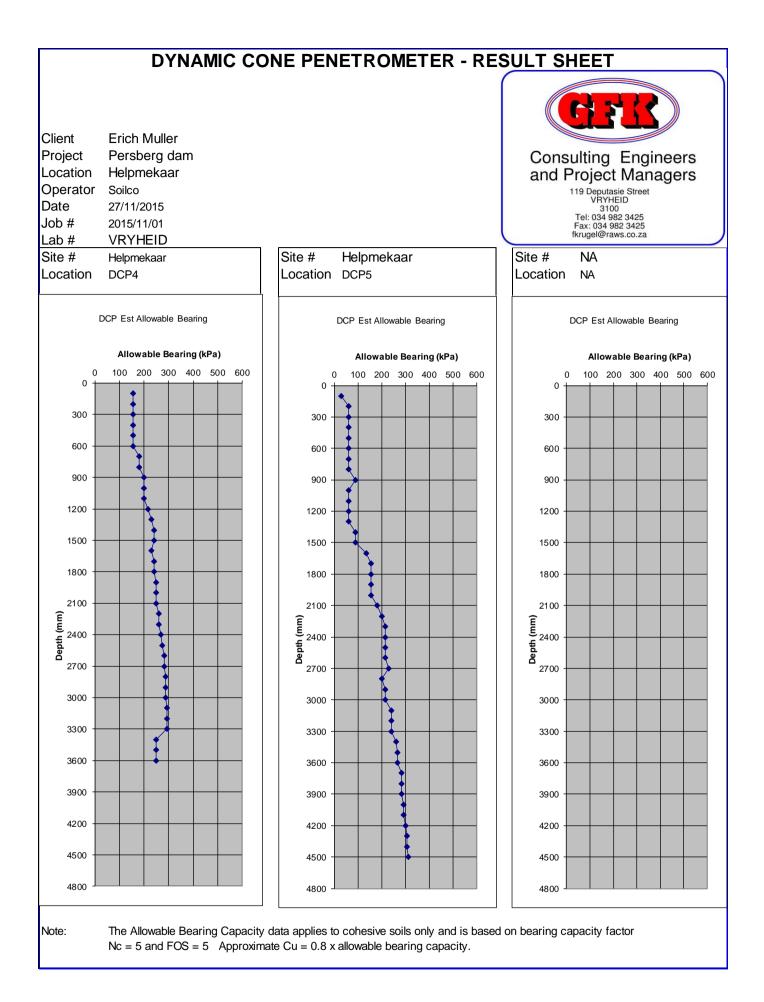

a SANAS Accredited Testing Laboratory - Facility No. T0640

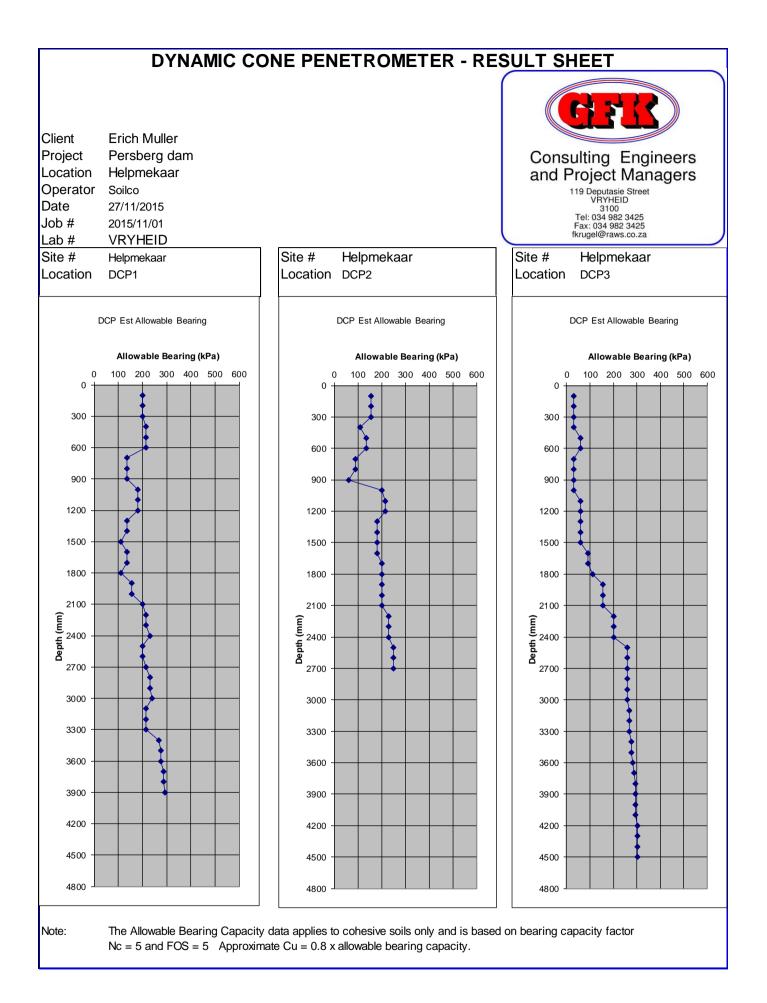


	Test 1	Teşt 2	Test 3
Normal Stress (kN/m ²)	100	200	300
Dry Density (kg/m³)	1244	1244	1244
Moisture Content (%)	23.2	23.2	23.2
Shear Strain (%)	9.7	15.7	11.2
Shear Stress (kN/m²)	69.1	130.5	172.5

Shear Strength Perameters

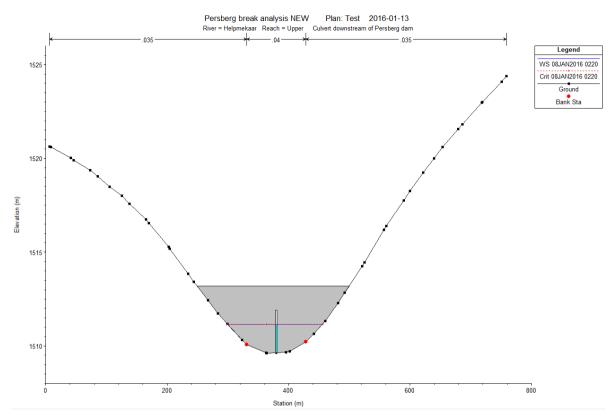
97.96





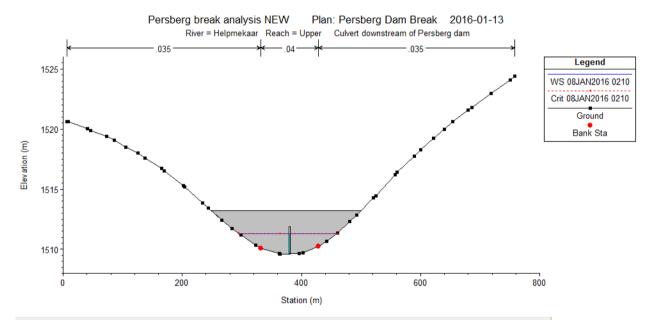
450

500

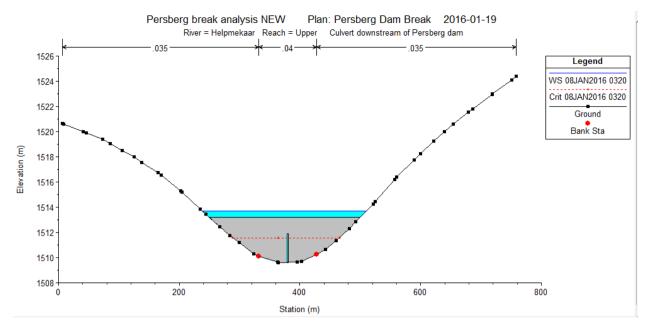

			Falling H	ead Perme	ability	THEKWINI SOILS LAB. CC
Date :	01-12-20	15				KAT. REBUTHIOD INC. (BRIDDÀL. 18 ROIge Road, P.O. Jac 30466,
Ref :	7940					Tel: (42) 231-4882 Fer: (12) 201-5820
Client :	Soilco M	aterials Inves	tigation			
Project :	Persberg	Helpmekaar	Dam			
Labor: Num		Sample Number	Proctor MOD kg/m ³	OMC %	Recompacted Dry Density Kg/m ³	Permeability k = cm/sec
				er head hei		
110	59	-	1574	18.3	1495	9.306 x 10 ⁻⁸
110	60	-	1629	17.0	1596	1.083 x 10 ⁻⁶

12.7. DAM BREAK ANALYSIS

DAM BREACH for dam under 50 000m³

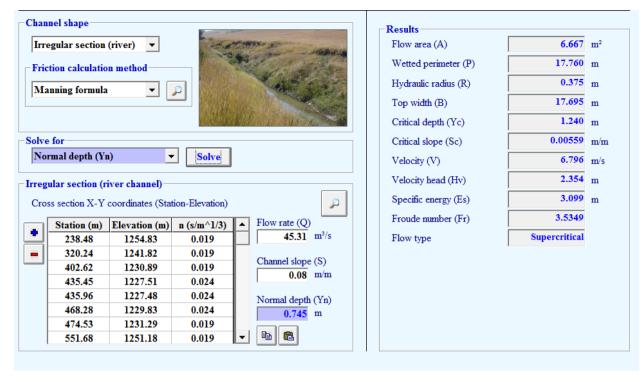


River: Helpmekaar	Profile: 08JAN	2016 0220 🔽 Culv (Group: Culvert#1 🛛 💌
Reach Upper	R S: 17.1	▼ ↓ ↑ Plan:	Sunny Day 🔹 💌
Plan: Sunny Day He	elpmekaar Upper RS: 17.1	Culv Group: Culvert#1 Pro	ofile: 08JAN2016 0220
Q Culv Group (m3/s)	12.73	Culv Full Len (m)	
#Barrels	1	Culv Vel US (m/s)	3.90
Q Barrel (m3/s)	12.73	Culv Vel DS (m/s)	5.43
E.G. US. (m)	1512.25	Culv Inv El Up (m)	1509.60
W.S. US. (m)	1512.62	Culv Inv El Dn (m)	1509.20
E.G. DS (m)	1509.80	Culv Frctn Ls (m)	0.11
W.S. DS (m)	1509.79	Culv Exit Loss (m)	2.03
Delta EG (m)	2.45	Culv Entr Loss (m)	0.31
Delta WS (m)	2.83	Q Weir (m3/s)	
E.G. IC (m)	1512.10	Weir Sta Lft (m)	
E.G. OC (m)	1512.25	Weir Sta Rgt (m)	
Culvert Control	Inlet	Weir Submerg	
Culv WS Inlet (m)	1511.16	Weir Max Depth (m)	
Cul∨WS Outlet (m)	1510.33	Weir Avg Depth (m)	
Cul∨ Nml Depth (m)	0.78	Weir Flow Area (m2)	
Culv Crt Depth (m)	1.56	Min El Weir Flow (m)	1513.20
	Errors, Warnin	igs and Notes	
Note: The flow in the	culvert is entirely supercritical	l.	


DAM BREACH CROSS SECTION DATA AT MAXIMUM WATER SURFACE ELEVATION

		HEC-RAS Plan: P	Persberg P	River: Helpr	nekaar Re	ach: Upper	Profile: 08	3JAN2016 03	340		Reloa	ad Data
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude 7
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Upper	22	08JAN2016 0340	0.10	1510.25	1512.72		1512.72	0.000000	0.00	336.80	202.39	
Upper	21	08JAN2016 0340	9.86	1510.25	1512.72		1512.72	0.000001	0.03	336.80	202.39	
Upper	20.1		Lat Struct									
Upper	20	08JAN2016 0340	12.77	1510.25	1512.72	1510.48	1512.72	0.000001	0.04	336.71	202.37	
Upper	19.1		Inl Struct									
Upper	19	08JAN2016 0340	12.77	1509.95	1512.71		1512.71	0.000001	0.03	388.37	212.94	
Upper	18	08JAN2016 0340	13.13	1509.62	1512.71		1512.71	0.000000	0.03	462.58	229.58	
Upper	17.1		Culvert									
Upper	17	08JAN2016 0340	13.13	1509.24	1509.79		1509.80	0.000751	0.36	36.43	95.46	
Upper	16	08JAN2016 0340	26.98	1506.90	1507.45		1507.49	0.004588	0.85	31.80	89.66	
Upper	15	08JAN2016 0340	39.60	1501.75	1502.44		1502.55	0.012255	1.49	26.63	67.58	
Upper	14	08JAN2016 0340	39.61	1498.49	1499.39		1499.41	0.001534	0.72	55.53	94.02	
Upper	13	08JAN2016 0340	39.65	1496.36	1498.99	1496.84	1498.99	0.000008	0.13	345.54	204.08	
Upper	12.1		Inl Struct									
Upper	12	08JAN2016 0340	39.65	1496.04	1496.61		1496.69	0.008730	1.24	32.01	85.57	
Upper	11	08JAN2016 0340	39.88	1495.71	1496.26		1496.34	0.009961	1.27	31.51	87.21	
Upper	10	08JAN2016 0340	40.76	1494.89	1495.44		1495.54	0.014048	1.43	28.44	84.51	
Upper	9	08JAN2016 0340	43.61	1493.94	1494.49		1494.55	0.006978	1.12	38.82	98.34	
Upper	8	08JAN2016 0340	45.31	1492.03	1493.74	1492.54	1493.74	0.000102	0.33	145.42	122.68	

1:20 YEAR FLOOD



River: Helpmekaar	Profile: 08JAN	2016 0210 🔽 Culv 0	Group: Culvert#1 📃 💌
Reach Upper	▼ RS: 17.1	▼ ↓ ↑ Plan:	Persberg 💌
Plan: Persberg Hel	pmekaar Upper RS:17.1	Culv Group: Culvert #1 Prot	ile: 08JAN2016 0210
Q Culv Group (m3/s)	14.53	Culv Full Len (m)	
#Barrels	1	Culv Vel US (m/s)	4.08
Q Barrel (m3/s)	14.53	Culv Vel DS (m/s)	5.59
E.G. US. (m)	1512.49	Culv Inv El Up (m)	1509.60
W.S. US. (m)	1513.00	Culv Inv El Dn (m)	1509.20
E.G. DS (m)	1509.80	Culv Frctn Ls (m)	0.11
W.S. DS (m)	1509.79	Culv Exit Loss (m)	2.24
Delta EG (m)	2.69	Culv Entr Loss (m)	0.34
Delta WS (m)	3.21	Q Weir (m3/s)	
E.G.IC (m)	1512.40	Weir Sta Lft (m)	
E.G. OC (m)	1512.49	Weir Sta Rgt (m)	
Culvert Control	Outlet	Weir Submerg	
Culv WS Inlet (m)	1511.31	Weir Max Depth (m)	
Culv WS Outlet (m)	1510.45	Weir Avg Depth (m)	
Culv Nml Depth (m)	0.85	Weir Flow Area (m2)	
Culv Crt Depth (m)	1.71	Min El Weir Flow (m)	1513.20

File Type Options He	elp							
River: Helpmekaar	Profile: 08JAN	2016 0320 v Culv 0	Group: Culvert#1 📃					
Reach Upper	▼ RS: 17.1	▼ I I Plan:	Persberg 💌					
Plan: Persberg Hel	pmekaar Upper RS: 17.1	Culv Group: Culvert #1 Prof	ile: 08JAN2016 0320					
Q Culv Group (m3/s)	17.82	Culv Full Len (m)						
#Barrels	1	Culv Vel US (m/s)	4.37					
Q Barrel (m3/s)	17.82	Culv Vel DS (m/s)	5.86					
E.G. US. (m)	1512.91	Culv Inv EI Up (m)	1509.60					
W.S. US. (m)	1513.69	Culv Inv EI Dn (m)	1509.20					
E.G. DS (m)	1509.84	Culv Frotn Ls (m)	0.12					
W.S. DS (m)	1509.83	Culv Exit Loss (m)	2.56					
Delta EG (m)	3.07	Culv Entr Loss (m)	0.39					
Delta WS (m)	3.86	Q Weir (m3/s)						
E.G. IC (m)	1513.11	Weir Sta Lft (m)						
E.G. OC (m)	1512.91	Weir Sta Rgt (m)						
Culvert Control	Inlet	Weir Submerg						
Culv WS Inlet (m)	1511.55	Weir Max Depth (m)						
Culv WS Outlet (m)	1510.66	Weir Avg Depth (m)						
Culv Nml Depth (m)	0.99	39 Weir Flow Area (m2)						
Culv Crt Depth (m)	1.95	Min El Weir Flow (m)	1513.20					

RIVER CHANNEL DOWNSTREAM OF CLIFF

<u>Utility Programs for Drainage</u> <u>Basic hydraulic calculations</u>

 Project:
 Persberg Dam

 River:
 Helpmekaar

 Designer:
 B Muhl

 Date:
 13 January 2016

 Description:
 Downstream of cliff

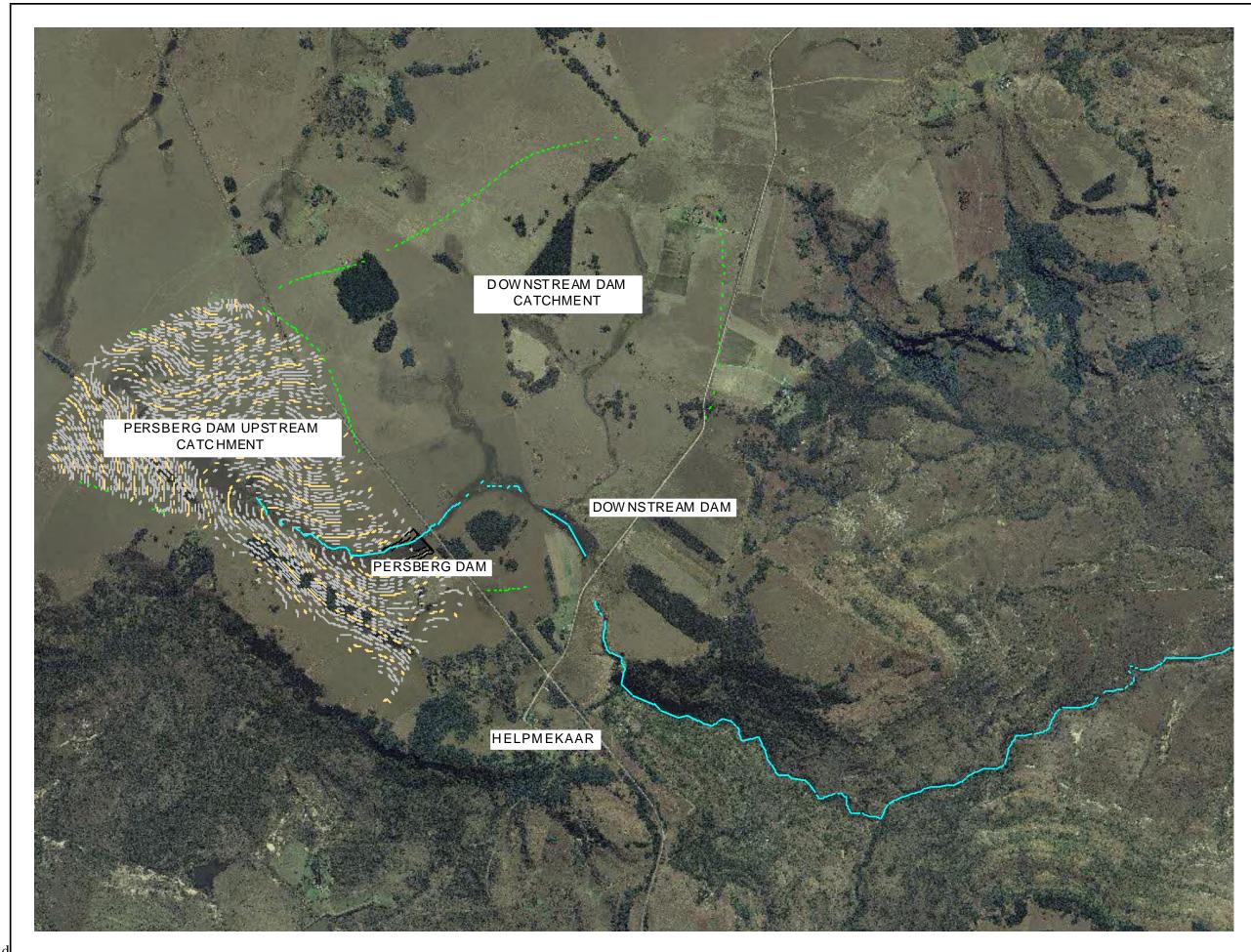
 Filename:
 \\FILESERVER\raws\GFK PROJECTS\DAM HELPMEKAAR\Downstream cliff 2.bhp

Printed: 13 January 2016

Page 1

BASIC HYDRAULIC CALCULATIONS

INPUT DATA


Channel shape selected:		Irregular section (river channel)
Friction calculation method:		Manning formula
Flow rate (Q):		45.31 m ³ /s
Channel slope (S):		0.08 m/m
Normal depth (Yn):		0.745 m (Solved)
Station(m)	Elevation(m)	Roughness value (s/m^1/3)
238.48	1254.83	0.019
320.24	1241.82	0.019
402.62	1230.89	0.019
435.45	1227.51	0.024
435.96	1227.48	0.024
468.28	1229.83	0.024
474.53	1231.29	0.019
551.68	1251.18	0.019

RESULTS

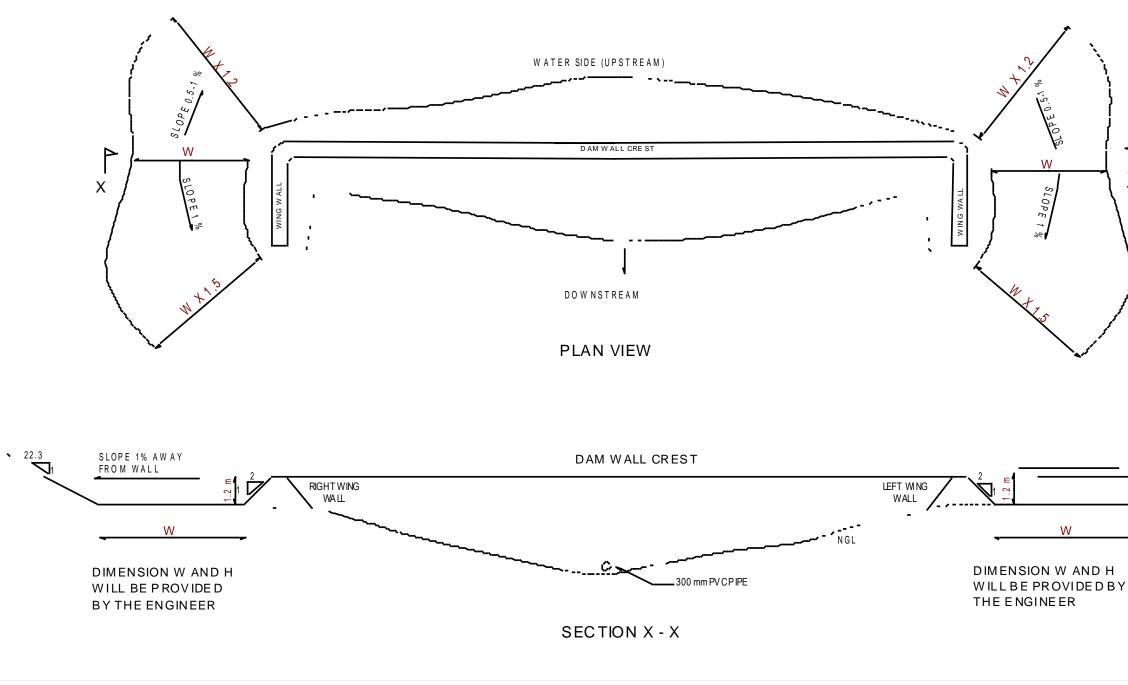
Flow area (A):	6.667 m ²
Wetted perimeter (P):	17.760 m
Hydraulic radius (R):	0.375 m
Top width (B):	17.695 m
Critical depth (Yc):	1.240 m
Critical slope (Sc):	0.00559 m/m
Velocity (V):	6.796 m/s
Velocity head (Hv):	2.354 m
Specific energy (Es):	3.099 m
Froude number (Fr):	3.5349
Flow type:	Supercritical

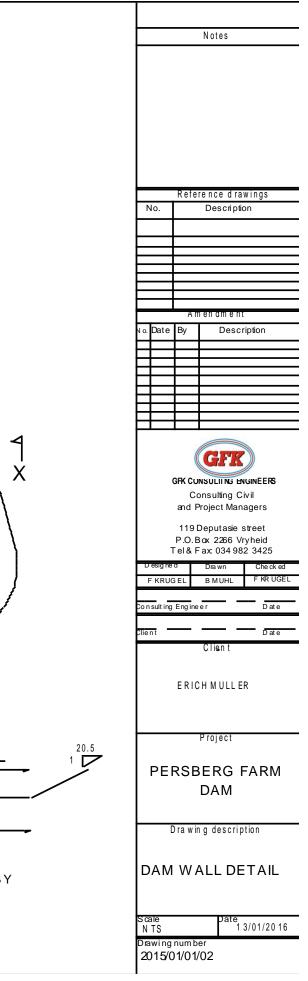
Calculated using Utility Programs for Drainage 1.1.0

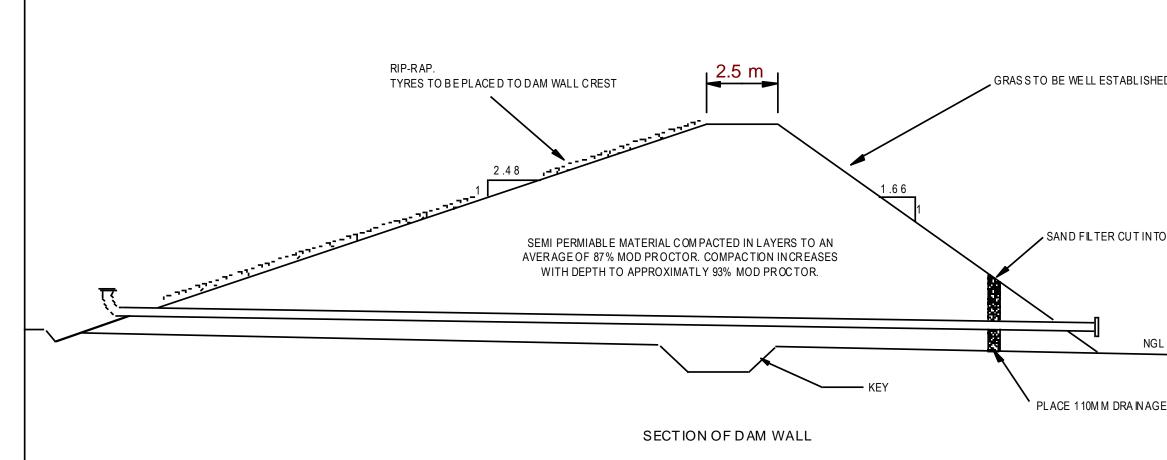
The software programs were developed for the convenience of its users. Although every reasonable effort has been made to ensure that the programs are accurate and reliable the program developers, Sinotech CC, accept no liability of any kind for any results, interpretation thereof or any use made of the results obtained with these programs. All users of these programs do so entirely at their own risk. Copyright Protected 2009 by SINOTECH CC, www.sinotechcc.coza, software@sinotechcc.coza

Notes				
Reference drawings				
N o. D es crip tio n				
20 12/0 5 LAYOU T PLAN				
/01 /0 1				
Arm en dment				
No. Date ^{By} Description				
CESA CESA				
GFK				
GFK CONSULTING ENGINEERS				
Consulting Civil and Project Managers				
119 Deputasie street P.O.Box 2266 Vryheid Tel & Fax: 034 982 3425				
Designed Drawn Checked				
F KRUGEL B MUHL F KRU GEL				
Client				
ERICH MULLER				
Daria 4				
Proje d				
PER SBERG FARM DAM				
Drawing description				
CATCHMENT LAYOUT PLAN				
Scale Date				
NTS 13/01/2016				
Drawingnumber 2015/01/01/01				

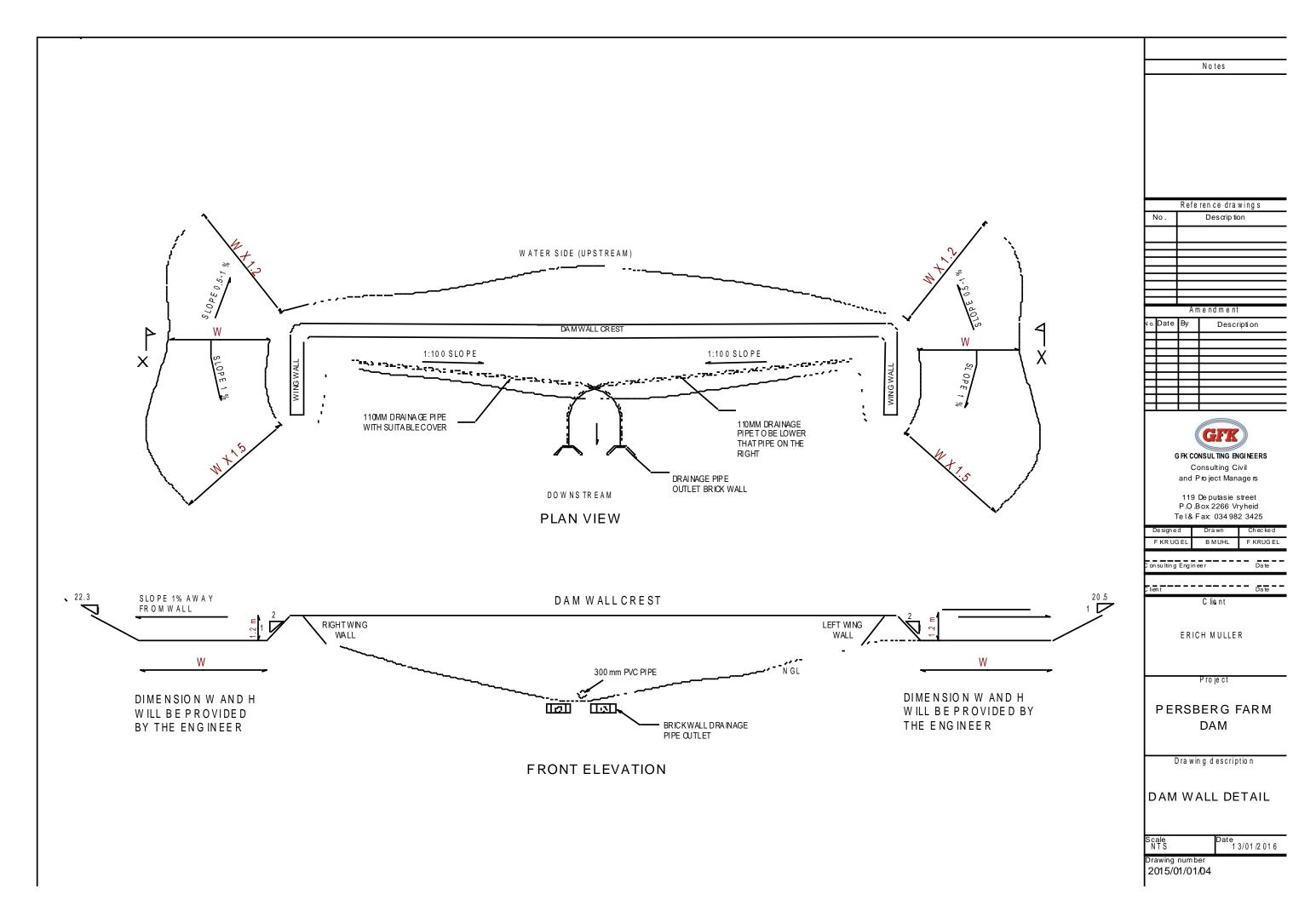
CONSTRUCTION NOTES:


Construction shall be in accordance with SABS 1200 DE


SPILLWAY:


The spillway is to be excavated to the recommended minimum width. The total freeboard of the embankment is to be no less than the minimum recommended height above the spillway level. The spillway and the slope downstream of the spillway shall be deared of obstructions such as trees, boulders, etc., and all depressions filled in an approved manner. The slope of the open cut flanking the spillway shall be sloped to a minimum slope of 1:2 or flatter. The face of the training wall must be carefully lined with stone to a depth of 250 mm. The entire spillway and the slope downstream of the spillway shall be topsoiled and grassed. The topsoil shall be lightly compacted by wheeled vehicles or by tamping. The final thickness of topsoil after compaction shall be at least 75 mm.

GRASSING AND FINISHING :


The entire exposed embankment surfaces shall be topsoiled and planted with an approved grass to be well fertilized until growth is firmly established. The embankment crest shall be sloped slightly backwards towards the dam basin to aid with the drainage of rain water from the crest.

	N otes
	Reference drawings No. Description
	No. Description
	A m end m e nt
-	No. Date By Description
Ð	
	GFK
	GFK CUNSUL IING ENGINEERS
D DOWNS TREAM TOE.	Con sul ting Civil and Project Man agers
bowno interni roe.	
	119 Deputasie street P.O.Box 2266 Vryheid
	Tel & Fax: 0349823425
	F KRUG EL B MUHL F KRU GEL
	Con su ltin g En gin ee r Da te
	Client Date
	onent
EPIPE	ERICH MULLER
	P roject
	PERSBERG FARM
	DAM
	Drawing description
	Drawing description
	DAM WALL DE TAIL
	Scale Date NTS 1 3/01/201 6
	Drawing number
	2015/01/01/02

