

mineral resources

Department: Mineral Resources REPUBLIC OF SOUTH AFRICA

BASIC ASSESSMENT REPORT

And

ENVIRONMENTAL MANAGEMENT PROGRAMME REPORT

SUBMITTED FOR ENVIRONMENTAL AUTHORIZATIONS IN TERMS OF THE NATIONAL ENVIRONMENTAL MANAGEMENT ACT, 1998 AND THE NATIONAL ENVIRONMENTAL MANAGEMENT WASTE ACT, 2008 IN RESPECT OF LISTED ACTIVITIES THAT HAVE BEEN TRIGGERED BY APPLICATIONS IN TERMS OF THE MINERAL AND PETROLEUM RESOURCES DEVELOPMENT ACT, 2002 (MPRDA) (AS AMENDED).

NAME OF APPLICANT: IMERYS REFRACTORY MINERALS SOUTH AFRICA (PTY) LTD - ANNESLEY ANDALUSITE MINE (HAVERCROFT OPERATION) TEL NO: 081 010 9005 POSTAL ADDRESS: PO Box 217, Burgersfort PHYSICAL ADDRESS: Farm Streatham 100 KT, and Havercroft 99 KT, Greater Tubatse Local Municipality, Limpopo Province

FILE REFERENCE NUMBER SAMRAD: 73 MRC

February 2018

PO Box 72960, Lynnwood Ridge, 0040; Cell: 072 191 6074, Fax: 012 361 0645 E-mail: salome@becsenv.co.za

i

1 IMPORTANT NOTICE

In terms of the Mineral and Petroleum Resources Development Act (Act 28 of 2002 as amended), the Minister must grant a prospecting or mining right if among others the mining "will not result in unacceptable pollution, ecological degradation or damage to the environment".

Unless an Environmental Authorisation can be granted following the evaluation of an Environmental Impact Assessment and an Environmental Management Programme report in terms of the National Environmental Management Act (Act 107 of 1998) (NEMA), it cannot be concluded that the said activities will not result in unacceptable pollution, ecological degradation or damage to the environment.

In terms of section 16(3)(b) of the EIA Regulations, 2014, any report submitted as part of an application must be prepared in a format that may be determined by the Competent Authority and in terms of section 17(1)(c) the Competent Authority must check whether the application has taken into account any minimum requirements applicable or instructions or guidance provided by the competent authority to the submission of applications.

It is, therefore, an instruction that the prescribed reports required in respect of applications for an environmental authorisation for listed activities triggered by an application for a right or a permit are submitted in the exact format of, and provide all the information required in terms of, this template. Furthermore, please be advised that failure to submit the information required in the format provided in this template will be regarded as a failure to meet the requirements of the Regulation and will lead to the Environmental Authorisation being refused.

It is furthermore an instruction that the Environmental Assessment Practitioner must process and interpret his/her research and analysis and use the findings thereof to compile the information required herein. (Unprocessed supporting information may be attached as appendices). The EAP must ensure that the information required is placed correctly in the relevant sections of the Report, in the order, and under the provided headings as set out below, and ensure that the report is not cluttered with un-interpreted information and that it unambiguously represents the interpretation of the applicant.

2 OBJECTIVES OF THE BASIC ASSESSMENT PROCESS

The objective of the basic assessment process is to, through a consultative process-

- a) determine the policy and legislative context within which the proposed activity is located and how the activity complies with and responds to the policy and legislative context;
- b) identify the alternatives considered, including the activity, location, and technology alternatives;
- c) describe the need and desirability of the proposed alternatives,
- d) through the undertaking of an impact and risk assessment process inclusive of cumulative impacts which focused on determining the geographical, physical, biological, social, economic, heritage, and cultural sensitivity of the sites and locations within sites and the risk of impact of the proposed activity and technology alternatives on these aspects to determine:
 - i) the nature, significance, consequence, extent, duration, and the probability of the impacts occurring to; and
 - ii) the degree to which these impacts-
 - (aa) can be reversed;
 - (bb) may cause irreplaceable loss of resources; and
 - (cc) can be managed, avoided or mitigated;
- e) through a ranking of the site sensitivities and possible impacts, the activity and technology alternatives will impose on the sites and location identified through the life of the activity to
 - i) identify and motivate a preferred site, activity, and technology alternative;
 - ii) identify suitable measures to manage, avoid or mitigate identified impacts; and
 - iii) identify residual risks that need to be managed and monitored.

TABLE OF CONTENTS

TABLE	OF CONTENTS	iii
TABLE	OF FIGURES	vi
TABLE	OF TABLES	vii
ADDEN	IDUMS	ix
Executi	ve summary	X
PART A	A	1
SCOPE	OF ASSESSMENT AND BASIC ASSESSMENT REPORT	1
a)	Details of the Environmental Assessment Practitioner	1
b)	Location of the overall activity	2
c)	Locality map	4
d)	Description of the scope of the proposed overall activity	7
e)	Policy and legislative context	9
f)	Need and desirability of the proposed activities	33
g)	Motivation for the overall preferred site, activities and technology alternative	46
h)	Full description of the process followed to reach the proposed preferred alternatives within the site	46
i)	Details of the development footprint alternatives considered	46
ii)	Details of the Public Participation Process Followed	47
iii)	Summary of issues raised by interested and affected parties	48
iv)	The Environmental attributes associated with the development footprint alternatives	51
1	Geology	51
2	Climate	53
3	Topography	57
4	Soil	58
5	Pre-mining land capability, land use and existing infrastructure	58
6	Vegetation	58
7	Animal life	61
8	Surface water	61
9	Groundwater	63
10	Air quality	79
11	Environmental noise	80
12	Visual aspects	80
13	Cultural and heritage resources	81
14	Sensitive features	81
15	Regional socio-economic aspects	81
V)	Impacts and risks identified including the nature, significance, consequence, extent, duration, and p	robability
	of the impacts, including the degree to which these impacts	85
1	Impact assessment and management methodology	85
2	Screening level environmental risk assessment	93
3	Second level risk assessment	96
	3.1 Environmental component: Geology and the mineral resource	96

3.2 Environmental component: Topography including drainage patterns and visual asp	ects98
3.3 Environmental component: Soils	
3.4 Environmental component: Land capability, surrounding land use and landscape cl	haracter101
3.5 Environmental component: Vegetation	
3.6 Environmental component: Groundwater	
3.7 Environmental component: Surface water	107
3.8 Environmental component: Community safety	110
3.9 Environmental component: Air quality	111
3.10 Environmental component: Radiation	112
3.11 Environmental component: Noise, vibration, and shock	113
3.12 Environmental component: Traffic	115
3.13 Environmental component: Archaeological, historical and cultural aspects	116
3.14 Environmental component: Socio-economic	117
3 Latent risk assessment	119
4 Alternative options	119
5 Cumulative impacts	119
vi) Methodology used in determining and ranking the nature, significance, consequences	, extent, duration, and
probability of potential environmental impacts and risks	119
vii) The positive and negative impacts that the proposed activity (in terms of the in	nitial site layout) and
alternatives will have on the environment and the community that may be affected	
viii) The possible mitigation measures that could be applied and the level of risk	
ix) Motivation where no alternative sites were considered	
x) Statement motivating the alternative development located within the overall site	
i) Full description of the process undertaken to identify, assess and rank the impacts and	d risks the activity will
impose on the preferred site (In respect of the final site layout plan) through the life of th	ne activity 120
j) Assessment of each identified potentially significant impact and risk	
k) Summary of specialist reports	
I) Environmental impact statement	
(i) Summary of the key findings of the environmental impact assessment	
(ii) Final Site Map	121
(iii) Summary of the positive and negative implications and risks of the proposed a alternatives	-
m) Proposed impact management objectives and the impact management outcomes	
environmental management programme	
n) Aspects for inclusion as conditions of Authorisation	
 Description of any assumptions, uncertainties, and gaps in knowledge 	
 p) Reasoned opinion as to whether the proposed activity should or should not be authorise 	
 Period for which the Environmental Authorisation is required 	
r) Undertaking	
s) Financial Provision	
i) Explain how the aforesaid amount was derived	

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic v Assessment Report

	1	Auditable calculations of costs per activity or infrastructure	
	2	List of surface infrastructure	
	3	Cost assumptions based on final closure plan	
	4	Latent or residual impacts	
	5	Closure cost estimation	
ii)		Confirm that this amount can be provided for from operating expenditure	
t)		Specific Information required by the competent Authority	
	i)	Compliance with the provisions of sections 24(4)(a) and (b) read with section 24 (3	3) (a) and (7) of the
	Nat	ional Environmental Management Act (Act 107 of 1998)	132
	(*	1) Impact on the socio-economic conditions of any directly affected person	132
	(2	2) Impact on any national estate referred to in section 3(2) of the National Heritage Res	sources Act132
u)		Other matters required in terms of sections 24(4)(a) and (b) of the Act	
PAR	ТΒ		
ENV	IRO	NMENTAL MANAGEMENT PROGRAMME REPORT	
1)		Draft environmental management programme	
a)		Details of the Environmental Assessment Practitioner	
b)		Description of the Aspects of the activity	
c)		Composite map	
d)		Description of impact management objectives including management statements	
	i)	Determination of closure objectives	
	ii)	Volumes and rate of water use required for the operation	
	iii)	Has a water use license has been applied for?	
	ix)	Impacts to be mitigated in their respective phases	
e)		Impact management outcomes	
f)		Impact management actions	
i)		Financial provision	
	(a)	Describe the closure objectives and the extent to which they have been aligned to the b	aseline environment
	des	cribed under the Regulation	145
	(b)	Confirm specifically that the environmental objectives in relation to closure have b	peen consulted with
	land	downer and interested and affected parties	145
	(c)	Provide a rehabilitation plan that describes and shows the scale and aerial extent	of the main mining
	acti	vities, including the anticipated mining area at the time of closure	145
	(d)	Explain why it can be confirmed that the rehabilitation plan is compatible with the clos	ure objectives176
	(e)	Calculate and state the quantum of the financial provision required to manage	and rehabilitate the
	env	ironment in accordance with the applicable guideline	176
	(f)	Confirm that the financial provision will be provided as determined	176
j)		Mechanisms for monitoring compliance with and performance assessment against	t the environmental
		management programme and reporting thereon	
	i)	Monitoring of impact management actions	177
	ii)	Monitoring and reporting frequency	
	iii)	Responsible persons	

i. /)	Time period for implementing impact management estions	195
iv)	Time period for implementing impact management actions	
V)	Mechanism for monitoring compliance	
I)	Indicate the frequency of the submission of the performance assessment / environment	onmental audit report187
m)	Environmental awareness plan	
i)	Induction training	
ii)	General environmental awareness training	
iii)	Competency training	
iv)	Development of training material	
V)	Scheduling of training	
vi)	Training records	
vii)	Reconciliation to determine gaps in attendance	
viii)	Competency assessment	
n)	Specific information required by the Competent Authority	
1	Financial provision	
2	Potential risk of acid mine drainage	
2) L	ndertaking	
Reference	s	

TABLE OF FIGURES

Figure 1: Annesley Andalusite Mine organogram	xi
Figure 2: Locality map of Havercroft Operation (taken from Havercroft Mine Closure Plan (BECS Environmental, 2	2016,
draft)	4
Figure 3: Annesley Operation in relation to Havercroft Operation	5
Figure 4: Annesley Operation in relation to Havercroft Operation	6
Figure 5: Havercroft Operation surface layout plan	8
Figure 6: Pilgrims Rest Geological Map 2430 at a scale of 1:250 000 showing the general underlying geology of	of the
study area Local Geology (Shangoni Management Services, 2017)	52
Figure 7: Monthly diurnal temperature profile Shangoni Management Services, 2014)	55
Figure 8: Seasonal wind roses (Shangoni Management Services, 2014)	56
Figure 9: Diurnal wind roses (Shangoni Management Services, 2014)	57
Figure 10: Piper diagram indicating the relative distribution of major cations and anions	77
Figure 11: Stiff diagrams indicating the relative distribution of major cations and anions	77
Figure 12: Schoeller diagram indicating the relative distribution of major cations and anions	78
Figure 13: Air quality priority areas (<i>www.saagis.org.za</i>)	80
Figure 14: Financial provision summary	131
Figure 15: Percentage of financial provision	131
Figure 16: 3D Rehabilitation model of the plant area	146
Figure 17: Rehabilitation of the plant area	146
Figure 18: Waste rock dump view 1: 3D rehabilitation model	147
Figure 19: Waste rock dump view 2: 3D rehabilitation model	147
Figure 20: Waste rock dump profile before sloping	148

Figure 21: Waste rock dump profile after sloping	148
Figure 22: Profile A	149
Figure 23: Profile B	149
Figure 24: Profile C	150
Figure 25: Profile D	150
Figure 26: Profile E	151
Figure 27: Profile F	151
Figure 28: Sloping of Quarry 1	153
Figure 29: 3D rehabilitation model of Quarry 1	153
Figure 30: Sloping of Quarry 2	154
Figure 31: 3D rehabilitation model of Quarry 2	154
Figure 32: Sloping of Quarry 3	155
Figure 33: 3D rehabilitation model of Quarry 3	155
Figure 34: Sloping of Quarry 5	156
Figure 35: 3D rehabilitation model of Quarry 5	156
Figure 36: Sloping of Quarry 6	157
Figure 37: 3D rehabilitation model of Quarry 6	157
Figure 38: Sloping of Quarry 11	158
Figure 39: 3D rehabilitation model of Quarry 11	158
Figure 40: Sloping of Quarry 12	159
Figure 41: 3D rehabilitation model of Quarry 12	159
Figure 42: Sloping of Quarry 13 & 14	
Figure 43: 3D rehabilitation model of Quarry 13 & 14	160
Figure 44: Sloping of Quarry 15	161
Figure 45: 3D rehabilitation model of Quarry 15	161
Figure 46: Two typical cross-sectional shapes of a channel	
Figure 47: Sections illustrating toe berm construction (Reclamation Manual for Coal Surface Mining,	State of Virginia,
USA)	
Figure 48: Calculating barrier spacing (Taken by Campbell, 2001)	172
Figure 49: Summary of vegetation monitoring	

TABLE OF TABLES

Table 1: Description of the applicant	X
Table 2: Description of the landowner	X
Table 3: Description of the environmental assessment practitioner	1
Table 4: Farm names, 21-Digit Surveyor General codes, and coordinates	2
Table 5: Specified activity applied for	7
Table 6: Need and Desirability of the proposed project	33
Table 7: Interested and affected parties identified	48
Table 8: Rainfall statistics	53
Table 9: Evaporation	54

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic viii Assessment Report

Table 10: Temperature for Annesley	54
Table 11: Tree species	59
Table 12: Estimated flood frequencies	61
Table 13: Domestic use: Target Water Quality Guidelines	62
Table 14: Summary of boreholes identified during the hydrocensus	64
Table 15: Comparison of the hydraulic conductivity in different rock types	66
Table 16: DRASTIC vulnerability scores	68
Table 17: Ratings for the Aquifer System Management and Second Variable Classifications	68
Table 18: Ratings for the GQM Classification System	68
Table 19: GQM index for the study area	69
Table 20: Results of acid-base accounting	70
Table 21: Rock Classification	70
Table 22: Leach results evaluated according to the SANS 241: 2015 water quality guidelines	71
Table 23: Water sampling points for chemical constituents	72
Table 24: Hydrochemical data	73
Table 25: Socio-economic statistics for the area	81
Table 26: Socio-Economic statistics for the area	84
Table 27: Screening level risks and significance	93
Table 28: Summary of specialist reports	121
Table 29: Results of rate acquisition process	123
Table 30: Tariffs used for quantum determination	124
Table 31: Quarries rehabilitation	128
Table 32: Summary of the closure cost calculation until closure	129
Table 33: Grass species to be used	169
Table 34: Alien species occurring on site	174
Table 35: Alien vegetation control methods	174

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic ix Assessment Report

ADDENDUMS

ADDENDUM 1: MAPS AND PLANS

Addendum 1A: Locality map of Havercroft Operation Addendum 1B: Annesley Operation in relation to Havercroft Operation Addendum 1C: Annesley Operation in relation to Havercroft Operation Addendum 1D: Havercroft Operation surface layout plan

ADDENDUM 2: CURRICULUM VITAE

ADDENDUM 3: SPECIALIST STUDIES

Addendum 3A: Earthworks Report

ADDENDUM 4: PUBLIC PARTICIPATION PROCESS

Addendum 4A: Copy and proof of PPP-letters

Addendum 4B: Copy and proof of advertisement

Addendum 4C: Copy and proof of the site notices, and map indicating the location of these site notices

Addendum 4D: Public meeting presentation, attendance register and minutes of the meeting

Addendum 4E: Proof of BAR submitted to registered interested and affected parties, and stakeholders

Addendum 4F: Comments received

Addendum 4G: Database

ADDENDUM 5: COMPETENT AUTHORITIES' CORRESPONDENCE

Addendum 5A: Annesley Mine: Mining right

ADDENDUM 6: IMPACT ASSESSMENT

ADDENDUM H: UNDERTAKING

ADDENDUM J: APPROVAL

Executive summary

Applicant

BECS Environmental has been appointed by Imerys Refractory Minerals South Africa (Pty) Ltd: Annesley Andalusite Mine (Havercroft Operation) to apply for a basic assessment as part of decommissioning of the Havercroft Operation. Havercroft Operation forms part of the mining right of Annesley Mine. These two mining operations were previously known as Rhino Minerals (Pty) Ltd (refer to the mining right attached as Addendum 5A). The name has changed to Imerys Refractory Minerals South Africa (Pty) Ltd (a member of the Imerys Group), however, it is still the same company with same company registration number. Havercroft Operation was originally the Havercroft Andalusite Mine. This operation is now non-operational. Annesley Operation is still operational. The commodity type that was mined at Havercroft is an aluminium nesosilicate mineral called Andalusite (Al₂SiO₅).

Refer to Table 1 below for a description of the applicant, Figure 1 for an organogram of the applicant, and Table 2 for a description of the landowner of the mining site.

Project applicant	Imerys Refractory Minerals South Africa (Pty) Ltd
Trading name	Annesley Andalusite Mine
Contact person	Fuzi Maseko
Designation	Mine Manager - Annesley Operation and Havercroft
	Operation
Telephone number	+27 81 010 9005
E-mail address	Fuzi.Maseko@imerys.com

Table 1: Description of the applicant

Table 2: Description of the landowner

Landowner	Tribal Authority (Babinatlou Community) through the
	Government of South Africa
Contact person	Isaac Mampuru
Cell phone number	060 622 0054
E-mail address	morokeic@gmail.com

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic xi Assessment Report

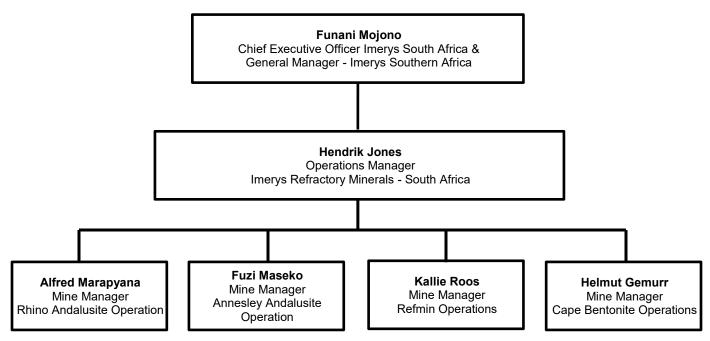


Figure 1: Annesley Andalusite Mine organogram

Project description

Havercroft Mine Operation:

Havercroft Operation is currently non-operational. This basic assessment application is for decommissioning of the operation and rehabilitation of the area.

Legal requirements

According to Section 24(2) and 24(5) of the National Environmental Management Act No 107 of 1998 (as amended) (NEMA):

'The Minister, or an MEC with the concurrence of the Minister, may identify (a) activities which may not commence without environmental authorisation(EA) from the competent authority; (b) geographical areas based on environmental attributes, and as specified in spatial development tools adopted in the prescribed manner by the Minister or MEC, with the concurrence of the Minister, in which specified activities may not commence without EA from the competent authority.

The Minister, or an MEC with the concurrence of the Minister, may make regulations consistent with subsection (4) laying down the procedure to be followed in applying for, the issuing of and monitoring compliance with EAs.'

PART A

SCOPE OF ASSESSMENT AND BASIC ASSESSMENT REPORT

a) Details of the Environmental Assessment Practitioner

This section includes the following:

- i. Details of the EAP;
- ii. Expertise of the EAP, which includes the qualifications of the EAP (with evidence) and a summary of the EAP's past experience in carrying out the EIA Procedure; and
- iii. A declaration that the EAP is independent in a form as may be specified by the competent authority

BECS Environmental was appointed as an independent consultant (EAP) to meet the requirements as set out in regulation 13 of the EIA Regulations. Refer below to a description of the EAP and refer to Addendum 2 for a detailed CV of the EAP, which includes the expertise including qualifications and past experience.

Name of company	BECS Environmental
Postal address	PO Box 72960, Lynnwood Ridge, 0040
Telephone number	012 361 9970
Cell phone number	072 191 6074
Facsimile number	012 361 0645
E-mail address	salome@becsenv.co.za
Name of responsible EAP	Salome Beeslaar
Expertise of EAP	B.Sc Environmental Science (UP), B.Sc Honours
	Geography (UP), M.Sc Geography (UP), Professional
	Scientist (Environmental Science)
Name of second responsible EAP	Deshree Pillay
Expertise of EAP	B. Sc Environmental Science (UP), B. Sc Honours
	Geography & Environmental Science (UP)

 Table 3: Description of the environmental assessment practitioner

I, Salome Beeslaar (8310190032081), hereby declare that I have no conflict of interest related to the work of this report. I declare that I have no business, personal, or financial interests in the property and/or mining right being assessed in this report and that I have no personal or financial connections to the relevant property owners or mine. I declare that the opinions expressed in this report are my own and a true reflection of my professional expertise and that there are no circumstances that may compromise my objectivity in performing such work.

Salome Beeslaar MSc – Geography SACNASP (400385/14) 20 February 2018

b) Location of the overall activity

Havercroft Operation is located 5km from the old Penge mining town, 5km from Ga Malepe, and approximately 31km north of Burgersfort town, on the R37 road towards Penge. Havercroft Operation is located approximately 5km north of Annesley Operation. The mining right is situated within the Sekhukhune District Municipality and Greater Tubatse Local Municipality, Limpopo Province.

The mine lies in the Primary Catchment of the Olifants River and the Quaternary Catchment referred to as the B71F draining region as defined by the Department of Water and Sanitation (DWS). The applicable water management area is the Olifants and the responsibility of the Mpumalanga Regional DWS, situated in Mashishing (Lydenburg).

A 132kVa Eskom power-line servitude runs through the mine property, through Segorong Village to Penge. No servitude runs through the quarry areas. A Telkom telephone line passes through the mine, towards Segorong Village. Main tarmac access roads from Burgersfort to Penge bypasses the mine. Gravel access road from Annesley Operation to Havercroft Operation passes through the mine area, and a gravel road from Annesley to Polokwane also passes through the mine. The Apiesdoring siding on the Steelpoort-Burgersfort-Lydenburg Railway line is approximately 35km from the mine and is equipped with ore handling facilities.

Farm Name	The farm Streatham 100 KT, and the farm Havercroft 99 KT
Application area (Ha)	8,183.3068ha
Magisterial district	Sekhukhune District Municipality and Greater Tubatse Local Municipality
Distance and direction	5km of the old Penge mining town, 5km from Ga Malepe, and approximately 31km north
from nearest town	of Burgersfort town, on the R37 road towards Penge

Table 4: Farm names, 21-Digit Surveyor General codes, and coordinates

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 3 Assessment Report

Streatham 100 KT:	Havercroft 99 KT:
T00KT0000000010000000	T00KT0000000009900000
3893.7945ha	4289.5123ha
Streatham 100 KT:	Havercroft 99 KT:
S24.3139, E30.1623	S24.3487, E30.2155
S24.3487, E30.2155	S24.3782, E30.2633
S24.3050, E30.2557	S24.3674, E30.3047
S24.2830, E30.2387	S24.3050, E30.2557
	T00KT000000001000000 3893.7945ha <u>Streatham 100 KT:</u> S24.3139, E30.1623 S24.3487, E30.2155 S24.3050, E30.2557

c) Locality map

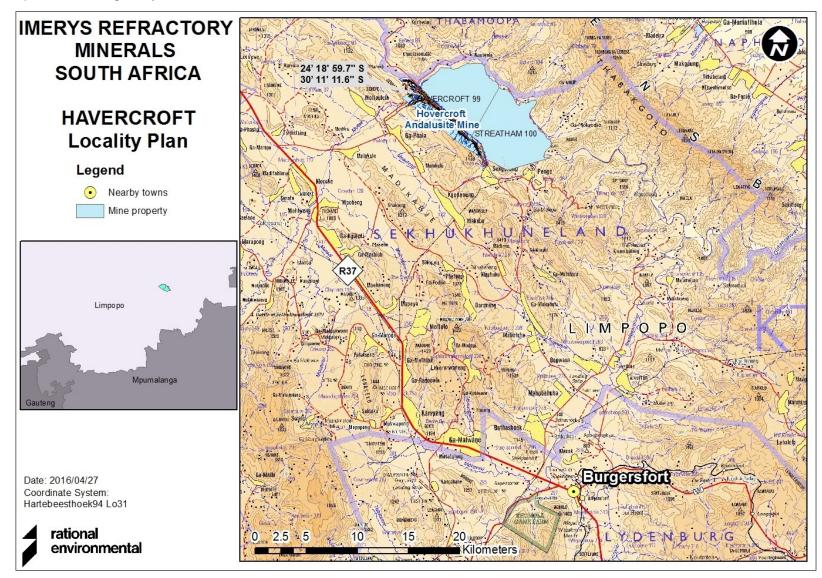


Figure 2: Locality map of Havercroft Operation (taken from Havercroft Mine Closure Plan (BECS Environmental, 2016, draft)

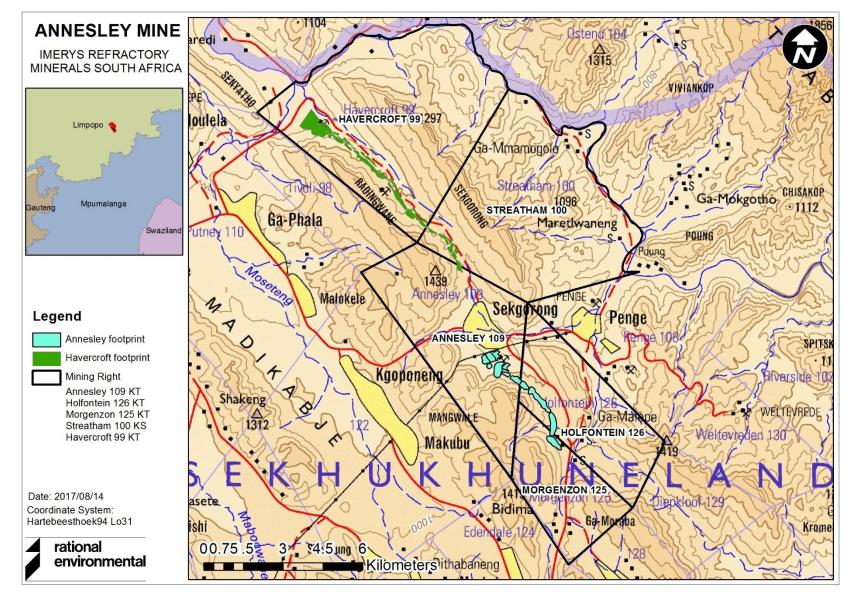


Figure 3: Annesley Operation in relation to Havercroft Operation

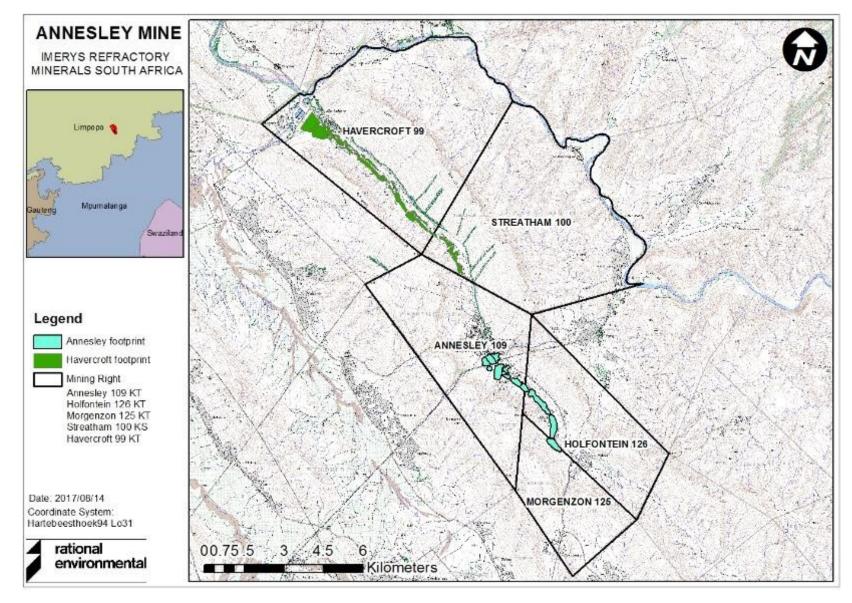


Figure 4: Annesley Operation in relation to Havercroft Operation

d) Description of the scope of the proposed overall activity

(i) Listed and specified activities

Refer to Table 5 below for a list of the specified activity applied for.

Table 5: Specified activity applied for	Table 5:	Specified	activity	applied for
---	----------	-----------	----------	-------------

Name of activity	Aerial extent of	Listed	Applicable
	the activity	activity	listing
			notice
Basic assessment:	Sloping:	22(ii)	GNR 983
The Havercroft Operation will be decommissioned.	1,466,633.50m ³		
The decommissioning of any activity requiring (ii) a prospecting	Roads and		
right, mining right, mining permit, production right or exploration	<u>plant:</u>		
right, where the throughput of the activity has reduced by 90% or	42,762.14m ²		
more over a period of 5 years excluding where the competent			
authority has in writing agreed that such reduction in throughput			
does not constitute closure.			
No waste license – sloping of mine residue, and no backfilling.	N/A	N/A	N/A

(ii) Description of the activities to be undertaken

Havercroft Operation is currently non-operational. The mining method used was opencast bench mining, advancing along the strike of the ore body. Mining was not continuous due to geological intrusions, such as dolerite dykes, and non-perennial watercourses that cut through the ore deposit. This results in a series of separate quarries along the strike of the ore body. The ore was crushed and screened, removing fines and barren ore. The ore was then concentrated by Heavy Medium Separation, whereafter it was dried and magnetically separated to produce a pure final product. Havercroft Operation consists of the following infrastructures (refer to Figure 5 for the site layout plan).

- Plant,
- Workshops,
- Offices,
- Slimes Dam,
- Quarries (1 15),
- Return water dam, and
- A Waste rock dump

Refer to Part B(1)((i)(c) for a complete description of the rehabilitation of the operation.

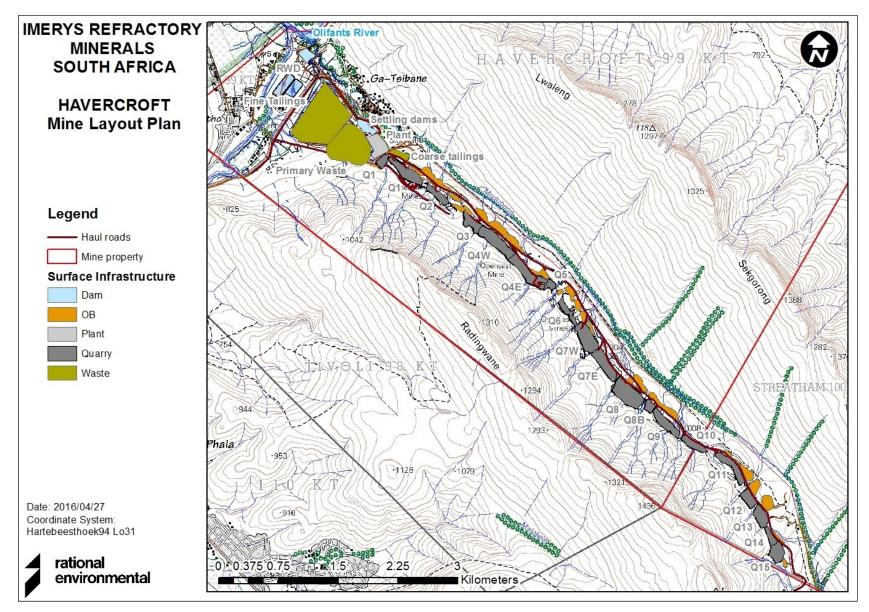


Figure 5: Havercroft Operation surface layout plan

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Authorisation applications		L	
MPRDA	According to the MPRDA, Annesley Andalusite	Addendum 5A	The mine has an approved mining right. This
	Mine must have a mining right as well as an		mining right has also been converted to the
	approved EMP. Due to changes from the Minerals		new MPRDA requirements. The mining right
	Act no 50 of 1991 (MA) to the MPRDA in 2002, all		was applied for and approved prior to 8
	mining rights had to be converted in 2009 from the		December 2014, therefore the requirements
	old MA to the new MPRDA. Any mining right		pertaining to a new mining right is not
	application submitted after 8 December 2014 must		applicable.
	be done in terms of NEMA and not MPRDA. This		
	application will include the listed activities pertaining		
	to mining (i.e. Activity 17 of GN 984 of the EIA		
	Regulations). These applications are still submitted		
	to DMR.		
	Any changes in the mining right, EMP, mining works	Addendum 5A	The mine applied for a section 102
	programme (MWP), or EA, must be authorised		amendment (i.t.o. MPRDA) in 2006, to include
	through a Section 102 (in terms of the MPRDA)		the Segorong Project (extension) into the
	amendment.		mining right. The amendment was approved in
			2011.
NEMA and the Environmental	The first listed activities which required an EA	Addendum 5A	The mine is in the process to apply for an EIA
Conservation Act 73 of 1989 as	(referred to as a record of decision (RoD) in the		for the river diversion, settling point and the
amended (ECA)	past) commenced in 1998. These activities were		backfilling of the quarries at Annesley
	published in the EIA Regulations of 1998 (GN1183).		Operation. No backfilling to take place at
	In 2006, the ECA activities and EIA Regulations		Havercroft Operation.
	were replaced by the first NEMA EIA Regulations.		
	The second set of NEMA EIA activities replaced the		

e) Policy and legislative context

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	first set of NEMA EIA activities in 2010. The ECA		This basic assessment application includes a
	activities, as well as the first and second NEMA EIA		listed activity under NEMA.
	activities, excluded the application for an EIA when		No EA for the application of a mining right is
	applying for a mining right; however, there are		necessary because the mine is older than 8
	various other activities that could potentially trigger		December 2014.
	an EIA. The third set of NEMA EIA activities		
	commenced on 8 December 2014. According to		
	these listings, an applicant must apply for both a		
	mining right as well as an EA for any new mine, and		
	a prospecting right as well as an EA for any new		
	prospecting activities.		
NWA	Section 21 of the NWA sets out the water uses for	Not applicable	The mine had and IWUL; however, it has
	which an IWUL is required. These water uses		elapsed. DWS will advise whether an IWULA
	commenced on 1 October 1998, and include		is necessary for the decommissioning and
	permissible water uses (water uses for which no		rehabilitation of Havercroft Operation.
	licensing or registration is necessary), general		
	authorisations (GA) (water uses for which		
	registration only is required), and water use licenses		
	(water used for which both registration and licensing		
	is required). An existing lawful water use is any		
	water use that commenced 2 years or more prior to		
	the NWA and authorised under the old Act. These		
	water uses are deemed lawful. In 1999, the GN 704		
	Regulations i.t.o. NWA was published. These		
	Regulations pertained to all mining rights, and		
	exemptions of water uses if necessary.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
NEMAQA	A list of activities which need an AEL was published	Not applicable	This is not applicable to Havercroft Operation.
	in 2010 (GN 248 of 2010 i.t.o. the NEMAQA. This		There is a dryer at the Annesley Operation for
	list was updated in 2013 (GN 893 of 2013 i.t.o.		which the mine has an AEL.
	NEMAQA). These lists further included compliance		
	timeframes for plant emission standards, whereby		
	new plant had to comply to new plants emission		
	standards on 1 March 2010; existing plants had to		
	comply with existing plant standards on 1 March		
	2015, and existing plants have to comply with new		
	plants standards on 1 March 2020.		
NEMWA	Waste management permits for certain waste	Not applicable	This is not applicable to Havercroft Operation.
	activities were required form 1989 i.t.o. the ECA.		Mine residue will be sloped. No backfilling will
	These permits were repealed by the publishing of		take place.
	the first listed waste management activities		
	licensing in 2009 (GN 718 of 2009 i.t.o. NEMWA).		
	These listings were replaced by new listings in 2013		
	(GN 921 of 2013 i.t.o. NEMWA). If a site has a		
	permit under ECA, this is still applicable until the		
	National Department of Environmental Affairs		
	(NDEA) requests an update under the new		
	legislation (NEMWA).		
National Heritage Resources Act no	All required permits as per the Act.	Not applicable	This is currently not applicable to Havercroft
25 of 1999 (NHRA)			Operation. In the event of any heritage
			resource discovered, a qualified specialist will
			be appointed.

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Section 15(1) of the National Forest	No person may cut, disturb, damage or destroy any	Not applicable	This is not applicable to Havercroft Operation.
Act No 84 of 1998 (NFA)	protected tree; or possess, collect, remove,		No additional vegetation will be removed.
	transport, export, purchase, sell, donate or in any		
	other manner acquire or dispose of any protected		
	tree, or any forest product derived from a protected		
	tree, except under a licence granted by the Minister.		
Mining			
Mining plans and surveying:	A competent person must survey the mine.	N/A	A competent surveyor conducts the mine
GN 447 of 2011 i.t.o. the Mine Health			surveying.
and Safety Act No 29 of 1996 (as	No mining operations may be carried out within a	N/A	
amended) (MHSA)	horizontal distance of 100m from reserve land,		The mine must compile risk assessment to
	buildings, roads, railways, dams, waste dumps, or		assess whether any mining operations are
	any other structure whatsoever including such		carried out within a horizontal distance of
	structures beyond the mining boundaries, or any		100m from the mentioned infrastructure.
	surface, which it may be necessary to protect in		
	order to prevent any significant risk, unless a lesser		
	distance has been determined safe by risk		
	assessment and all restrictions and conditions		
	determined in terms of the risk assessment are		
	complied with.		
Mine residue		L	
Mine residue management:	The assessment of impacts relating to the	N/A	The impacts of the mine residue are contained
Regulation 73 of the MPRDR (GN 349	management of residue deposits must form part of		within the mine's EIA/EMP. All impacts related
of 2011 i.t.o. MPRDA), GN 632 of	the EMP.		to the sloping of the mine residue on
2015 i.t.o. NEMWA.			Havercroft Operation are included in this BAR.

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Mine residue management -	A risk analysis based on the characteristics and the	N/A	Although a Waste Assessment Report was
Assessment of impacts and analyses	classification must be used to determine the		conducted for the mine residue in Annesley
of risks	appropriate mitigation and management measures.		Operation, this does not include a risk
Regulations 3 & 9(1)(a&g) & 12 of GN			assessment with appropriate mitigation and
632 of 2015 (Regulations Regarding			management measures.
the Planning and Management of	The decommissioning, closure and post-closure	N/A	The decommissioning, closure and post-
Mine Residue) under NEMWA,	management of mine residue must be done in		closure management of mine residue forms
regulation 8 of GN 634 of 2013 (Waste	accordance with the relevant provisions in the		part of the EIA/EMP. This BAR is compiled for
Classification and Management	environmental authorisation, an EMP; and any other		the decommissioning of Havercroft Operation.
Regulations) under NEMWA, GN 632	relevant legislation.		
of 2015 has replaced regulation 73 of	The pollution control barrier system shall be defined	N/A	This BAR is for sloping of already existing
GN 527 of 2004 under MPRDA. Refer	by the:		mine residue and not for new mine residue.
to transitional period	GN 635 of 2013 under NEMWA (National Norms		
	and Standards for the Assessment of Waste for		
	Landfill Disposal); and		
	GN 636 of 2013 (National Norms and Standards for		
	Disposal of Waste to Landfill).		
Mine residue management:	Mine residue must be characterised to identify any	N/A	A registered engineer is appointed as the
Regulation 4 of GN 632 of 2015 under	potentially significant health or safety hazard and		competent person on dams and residue.
NEMWA (Regulations Regarding the	environmental impact that may be associated with		
Planning and Management of Mine	the residue when deposited.		
Residue) under NEMWA	Mine residue must be characterised in terms of its:	N/A	The waste assessment has been done by
	• physical characteristics;		Aquatico and includes these requirements.
	chemical characteristics; and		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	mineral content that may include the specific gravity		
	of the residue particles and its impact on particle		
	segregation and consolidation.		
	Mine residue must be classified in accordance with	N/A	Although a Waste Assessment Report was
	SANS 10234 within 180 days of generation.		compiled, it does not include the GHS
			classification.
Mine residue management -	A risk analysis must be conducted and documented	N/A	The waste assessment has been done by
Characterisation	on all mine residue.		Aquatico and includes these requirements.
Regulation 5 of GN 632 of 2015	The classification of residue stockpile and residue	N/A	
(Regulations Regarding the Planning	deposit must be undertaken on the basis of the:		
and Management of Mine Residue)	characteristics of the residue;		
under NEMWA	• location and dimensions of the deposit (height,		
	surface area);		
	• importance and vulnerability of the		
	environmental components that are at risk;		
	• spatial extent, duration and intensity of		
	potential impacts; and		
	pollution control barrier system compliant with the		
	commensurate norms and standards for disposal of		
	waste to landfill.		
Mine residue management -	The process of investigation and selection of a site	N/A	This was not done for any of the sites,
Investigation and site selection	mine residue must entail:		however, no new mine residue will be
Regulation 6 of GN 632 of 2015	• the identification of a sufficient number of		established.
(Regulations Regarding the Planning	possible candidate sites.		
and Management of Mine Residue)	• qualitative evaluation and ranking of all		
under NEMWA	alternative sites;		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	Qualitative investigation of the top-ranking sites to		
	review the ranking done in terms of paragraph(b);		
	• a feasibility study on the highest-ranking site or		
	sites, involving:		
	\circ a preliminary health and safety		
	classification;		
	 an environmental classification; 		
	 geotechnical investigations; and 		
	 hydrological investigations. 		
	Further investigation on the preferred site, must be		
	conducted by competent person		
Mine residue management:	The design of the residue stockpile and deposit shall	N/A	No designs according to this legislation were
Regulations 7 & 9(1)(b) of GN 632 of	be undertaken by a competent person. The process		undertaken. This cannot be done anymore but
2015 (Regulations Regarding the	of investigation and selection of a site for residue		must form part of any new mine residue
Planning and Management of Mine	stockpiling and residue deposits must entail several		planning.
Residue) under NEMWA	factors as per the legislation. This will include		
	geotechnical investigations and groundwater		
	investigations. From these investigations, a		
	preferred site must be identified. Further		
	investigation on the preferred site is also necessary.		
	This must be carried out by a competent person. A		
	competent person must be qualified by virtue of his		
	or her knowledge, expertise, qualifications, skills		
	and experience; and is familiar with the provisions		
	of the Act and other related legislation and has been		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	trained to recognize any potential or actual problem		
	in the performance of the work.		
Mine residue management - Impact	Conduct statistical defensible and representative	N/A	Although a Waste Assessment Report was
Management	characterisation programme of relevant materials		compiled, it does not include a statistical
Regulation 8 of GN 632 of 2015			defensible and representative characterisation
(Regulations Regarding the Planning			programme of relevant materials.
and Management of Mine Residue)	Conduct an impact prediction study to assess the	N/A	Although a Waste Assessment Report was
under NEMWA	potential impacts of such actions or activities on the		compiled, it does not include an impact
	water resource over the full life cycle of the mining		prediction study to assess the potential
	operations and until the impact from the operation is		impacts of such actions or activities on the
	acceptable, which includes a monitoring		water resource over the full life cycle of the
	programme and an evaluation of the effect of the		mining operations and until the impact from the
	mitigatory measures to demonstrate acceptable		operation is acceptable, which includes a
	levels of impact.		monitoring programme and an evaluation of
			the effect of the mitigatory measures to
			demonstrate acceptable levels of impact.
Mine residue management - Impact	Preventative or remedial action must be taken in	N/A	The mine has an environmental emergency
Management	respect of any sign of pollution.		procedure.
Regulations 9(1)(d-f)&(2) & 11 of GN	Adequate measures must be implemented to	Part A(h)(v)	This will form part of the mine's management
632 of 2015 (Regulations Regarding	control dust pollution and erosion of the slopes at all		measures.
the Planning and Management of	residues.		
Mine Residue) under NEMWA	Dust and mine residue must be managed in		This will form part of the mine's management
	accordance with the requirements on dust control as		measures.
	regulated by Mine Health and Safety Act and in		
	terms of the NEMAQA.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	A system of routine maintenance and repair in		This will form part of the mine's management
	respect of all residues must be implemented to		measures.
	ensure the control of pollution and the integrity of		
	rehabilitation.		
Mine residue management -	A monitoring system for a mining residue with	N/A	This forms part of the EMP of the mine.
Monitoring and reporting system	respect to potentially significant impacts as		
Regulation 9(1)(c) & 10 of GN 632 of	identified in the EIA must be included		
2015 (Regulations Regarding the			
Planning and Management of Mine			
Residue) under NEMWA			
Rehabilitation and closure		L	
Section 24R of NEMA, Appendix 5 of	A closure plan must be submitted 5 years before	This entire BAR	The LoM for Annesley is more than 5 years.
the EIA Regulations, sections 43, 56,	closure to DMR and NDEA. An EMP and		This BAR is compiled as part of
61 of MPRDA	rehabilitation plan must be submitted 5 years before		decommissioning of Havercroft Operation.
	commencing with closure to DWS. Closure		
	objectives form part of the draft EMP and must		
	identify the key objectives for mine closure to guide		
	the project design, development and management		
	of environmental impacts; provide broad future land		
	use objective(s) for the site and provide proposed		
	closure costs. Imerys must ensure that details of		
	rehabilitation of the residue deposit are provided in		
	the EMP.		
Financial provision		1	
Section 24P of the NEMA,	The EMP must address the requirements as	Part A(s)	The financial provision is updated annually.
Regulations pertaining to financial	determined in the regulations, pertaining to the		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
provisioning for prospecting,	financial provision for the rehabilitation. The mine		
exploration, mining, or production	must annually update and review the quantum of the		
operations (GN 1147 of 2015 i.t.o.	financial provision in consultation with a competent		
NEMA	person, as required in terms of the approved EMP,		
	or as requested by the Minister.		
Non-mining waste management		L	1
Waste classification and disposal	Safety data sheets	N/A	This will form part of the mine's management
Regulation 5 of GN 634 of 2013	• Generators of hazardous waste must ensure		measures.
(Waste Classification and	that an MSDS for the hazardous waste is		
Management Regulations) under	prepared in accordance with SANS 10234.		
NEMWA	• If possible, use MSDS of product or products it		
	originates from.		
	• No MSDS necessary for Health Care Risk		
	Waste.		
Waste classification and disposal	A waste generator shall, as far as is reasonably		
Regulation 15(d) of GN 1179 of 1995	practicable ensure that all HCS waste which can		
(Hazardous Chemical Substances	cause exposure, is disposed of only on sites		
Regulations) under OHSA	specifically designated for this purpose in terms of		
	the ECA (or NEMA), in such a manner that it does		
	not cause a hazard inside or outside the site		
	concerned.		
	No person may collect waste for removal from		
	premises unless such person is authorised by law		
	to collect that waste, where authorisation is		
	required.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Waste classification and disposal	Waste generators must keep accurate and up to		
Regulation 10 of GN 634 of 2013	date records of the management of the waste they		
(Waste Classification and	generate, which records must reflect:		
Management Regulations) under	• the classification of the wastes;		
NEMWA	• the quantity of each waste generated,		
	expressed in tons or m ³ per month;		
	• the quantities of each waste that has either		
	been re-used, recycled, recovered, treated or		
	disposed of; and		
	• by whom the waste was managed.		
	The records must be retained for a period of at least		
	five (5) years, and made available to the		
	Department upon request.		
Waste classification and disposal	Every holder of waste that has been classified as		
Regulation 11 of GN 634 of 2013	hazardous must be in possession of a waste		
(Waste Classification and	manifest document containing the relevant		
Management Regulations) under	information		
NEMWA	Generators of waste classified as hazardous must		
	complete a waste manifest document for each		
	consignment of waste transported to a waste		
	manager or waste transporter.		
	All waste generators of hazardous waste must:		
	retain copies, or be able to access copies/records,		
	of the waste manifest documentation for a period of		
	at least five (5) years; and		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	make the waste manifest documentation available		
	to the Department upon request.		
Waste handling, and storage:	Employees collecting, transporting, and disposal of	N/A	This will form part of the mine's management
GN 527 of 2004 i.t.o. MPRDA, GN	hazardous waste must wear suitable Personal		measures.
1179 i.t.o. OHSA, sections 7 & 24 of	Protective Equipment (PPE). A waste disposal		
NEMWA, and GN 634 of 2013 i.t.o.	contractor must wear suitable PPE. All collectable		
NEMWA	hazardous waste must be placed into containers		
	that will prevent the likelihood of exposure during		
	handling. Waste containers must be intact and not		
	corroded or in any other way rendered unfit for the		
	safe storage of waste. Adequate measures must be		
	taken to prevent accidental spillage or leaking.		
	Waste must be contained in such a way that it		
	cannot be blown away. Avoid nuisances such as		
	odor, visual impacts, and breeding of vectors.		
	Prevent pollution of the environment and harm to		
	health. Any container or storage impoundment		
	holding waste must be labeled, or where labeling is		
	not possible, records must be kept. A new waste		
	storage facility must be registered with the		
	competent authority within 90 days prior to the		
	construction taking place. The assessment of		
	impacts relating to the disposal of waste material		
	must form part of the EMP.		
Waste handling, and storage:	A waste generator shall, as far as is reasonably	N/A	This is not in the contracts.
	practicable ensure that if the services of a waste		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Regulation 15(f) of GN 1179	disposal contractor are used, a provision is		
(Hazardous Chemical Substances	incorporated into the contract stating that the		
Regulations) under OHSA, Regulation	contractor shall also comply with the provisions of		
13 of GN 926 of 2013 (National norms	these regulations.		
and standards for the storage of			
waste) under NEMWA			
Waste handling, and storage	Any container or storage impoundment holding	N/A	This will form part of the mine's management
Regulation 6 of GN 634 of 2013	waste must be labeled, or where labeling is not		measures.
(Waste Classification and	possible, records must be kept.		
Management Regulations) under	Hazardous waste must be stored in covered		
NEMWA & Regulation 10 of GN 926	containers and only open when waste is added or		
of 2013 (National norms and	emptied.		
standards for the storage of waste)			
under NEMWA			
Waste re-use, recycle, recover:	Waste must be re-used, recycled, recovered,	N/A	Waste is removed from the site via a waste
GN 527 of 2004 i.t.o. MPRDA,	treated and/or disposed of within 18 months of		contractor. No recycling takes place on the
sections 7 & 24 of NEMWA, and GN	generation. Recycle hazardous waste as far as is		mine.
634 of 2013 i.t.o. NEMWA	reasonably practicable. Any person who undertakes		
	an activity involving the reduction, re-use, recycling		
	or recovery of waste must, before undertaking that		
	activity, ensure that the reduction, re-use, recycling		
	or recovery of the waste use less natural resources		
	than disposal of such waste and to the extent that it		
	is possible, is less harmful to the environment than		
	the disposal of such waste.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Unlawful disposal and littering:	No disposal of waste in or on any land, waterbody	N/A	This will form part of the mine's management
Sections 26 & 27 of NEMWA	or at any facility. No disposal of waste in a manner		measures.
	that is likely to cause pollution of the environment or		
	harm to health and well-being. No littering of any		
	public place, land, vacant erf, stream, watercourse,		
	street or road, or on any place to which the general		
	public has access. Unless the disposal of that waste		
	is authorised by law		
Waste tyres:	All requirements	N/A	The mine does not store tyres.
Regulations in terms of storage of			
tyres (GN 149 of 2009 i.t.o NEMWA)			
Asbestos management and disposal:	Ensure that all asbestos waste is placed in	N/A	The mine does not have asbestos waste.
GN 341 of 2008 i.t.o. ECA, and	containers that will prevent the likelihood of		
regulation 20 of GN 155 of 2001 i.t.o	exposure during handling. All vehicles, re-usable		
OHSAS	containers or any other similar articles which have		
	been in contact with asbestos waste must be		
	cleaned and decontaminated after use. All		
	asbestos waste which can cause exposure must be		
	disposed of only on sites specifically designated for		
	this purpose. All persons occupied in the collection,		
	transport, and disposing of waste in a manner which		
	may detrimentally impact on a water resource,		
	disposal of asbestos waste, must wear PPE,		
	including contractors.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Water management and pollution	An assessment of impacts relating to water	N/A	The impacts of water pollution are contained
control:	management and pollution control at mining		within the mine's EIA/EMP.
GN 527 of 2004 i.t.o. MPRDA	operations must form part of the EMP.		
Water management and pollution	No TDF shall be established on the bank of any		
control:	stream, river, dam, pan, wetland or lake without		
GN 704 Regulations of 1999 i.t.o.	written permission and upon such conditions as		
NWA	determined and as approved in the EMP. Toilet		
	facilities shall be located in such a manner that no		
	water or other pollution is caused. GN 704		
	Regulations of 1999 i.t.o. NWA place: restrictions on		
	locality; restrictions on the use of material; capacity		
	requirements of clean and dirty water systems;		
	protection of water resources; and security and		
	additional measures.		
Water management and pollution	A mine must ensure that preventative or remedial	N/A	The mine has an environmental emergency
control	action is taken in respect of any sign of pollution.		procedure.
Regulation 9 of GN 632 of 2015			
(Regulations regarding the planning			
and management of residue			
stockpiles and residue deposits)			
under NEMWA, Regulation 68 of GN			
527 of 2004 (Mineral and Petroleum			
Resources Development Regulations)			
under MPRDA			
Dams with safety risks	All residue stockpiles and deposits must be	N/A	The mine does not have an environmental
Sections 117-123 of NWA	classified into one or a combination of the following		classification for the mine residue.

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	categories: (1) the safety classification to		
	differentiate between residue stockpiles and		
	deposits of high, medium and low hazard based on		
	their potential to cause harm to life or property; and		
	(2) the environmental classification to differentiate		
	between residue stockpiles and deposits.		
	A mine must within the period specified, provide the		
	Minister with any information, drawings,		
	specifications, design assumptions, calculations,		
	documents and test results requested by the		
	Minister, pertaining to dams with a safety risk.		
Hazardous chemical substances ma	nagement		
Use, storage, and handling:	A Hazardous chemical substance (HCS) in storage	N/A	This will form part of the mine's management
Regulation 14 of GN1179 of 1995	or distributed must be properly identified, classified		measures.
under OHSAS, GN 1381 of 1994, GN	and handled in accordance with SABS 072 and		
247 of 1993, and GN 690 of 1989	SABS 0228. A container or a vehicle in which an		
under the Hazardous Substances Act	HCS is transported must be clearly identified,		
No 15 of 1973 (as amended) (HSA)	classified and packed in accordance with SABS		
	0228 and SABS 0229. Any container into which an		
	HCS is decanted must be clearly labeled with regard		
	to the contents thereof. Hazardous substances		
	must also be classified according to the Hazardous		
	Substances Regulations (GN 453 of 1977) i.t.o the		
	Hazardous Substances Act No 15 of 1973.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Transportation:	No person shall except as prescribed, accept after	N/A	Due to the number of requirements as set out
Section 54 of National Road Traffic	transportation, any prescribed dangerous goods.		in these regulations, it is unclear whether this
Act No 93 0f 1996 (NRTA), regulation	The NRTA and regulations place strict obligations		is in place.
277 of GN 255 of 2000 under NRTA	on the "consignee", "consignor, "driver" and		
	"operator" during transportation. Imerys is in the		
	position of the "consignee" due to the off-loading.		
Polychlorinated biphenyl (PCB):	PCBs must be phased out.	N/A	There is no phasing-out plan yet in place.
GN 549 of 2014 I.t.o. NEMA			
Radioactive sources:	The possession and use of Group IV hazardous	N/A	There are no such sources on the mine.
Section 3A of the HAS, GN 246 & 247	substances require a written authority in terms of the		
of 1993 i.t.o HSA	HSA.		
Air quality management			
Ambient air quality management	Limits and compliance for SO2, NO2, PM10, O3,	N/A	This will form part of the mine's management
Regulation 64 of GN 527 of 2004	C6H6, Pb, CO, PM2.5		measures.
(Mineral and Petroleum Resources			
Development Regulations) under			
MPRDA, GN 1210 of 2009 (National			
Ambient Air Quality Standards) & GN			
486 of 2012 (National Ambient Air			
Quality Standard for PM Less than 2.5			
Micron Metres) under NEMAQA			
Ambient air quality management	Hydrochlorofluorocarbons are phased-out.	N/A	Annesley is not yet phasing out old air
GN 351 of 2014 (Regulations			conditioners
Regarding the Phasing-out and			
Management of Ozone- Depleting			
Substances) under NEMAQA			

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Dust control	A mine must ensure that adequate measures are	N/A	This will form part of the mine's management
Regulations 9(f) & 11 of GN 632 of	implemented to control dust pollution and erosion of		measures.
2015 (Regulations Regarding the	the slopes at all residues.		
Planning and Management of			
Residue Stockpiles and Residue			
Deposits) under NEMWA			
Atmospheric impact report and air	Atmospheric impact report and air dispersion	N/A	The mine has an atmospheric impact report
dispersion modeling	modeling only if required from officer or if applying		and air dispersion modeling in place.
GN 747 of 2013 (Regulations	for AEL		
Prescribing the Format of the			
Atmospheric Impact Report) & GN			
533 of 2014 (Regulations Regarding			
Air Dispersion Modelling) under			
NEMAQA			
Environmental noise control and	The mine must comply with the provisions of the	N/A	This will form part of the mine's management
management:	MHSA. The assessment of impacts relating to noise		measures.
Regulation 66 of GN 572 of 2004 i.t.o.	pollution management and control, where		
MPRDA, section 34 of NEMAQA,	appropriate, must form part of the EMP No person		
Sections 25 & 26 of ECA, and GN 154	shall make, produce or cause a disturbing noise, or		
of 1992 i.t.o. ECA	allow it to be made, produced or caused by any		
	person, animal, machine, device or apparatus or		
	any combination thereof. No person shall drive a		
	vehicle on a public road in such a manner that it may		
	cause a noise nuisance.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Noxious or offensive gases:	No vehicle may be driven on a public road if the	N/A	This is very old legislation, there is no new
Section 35 of NEMAQA, GN 1651 of	noxious gases emitted have a density or content as		such legislation – technology also old?
1974 i.t.o. APPA	to produce a mean reading of 70 or more.		
Blasting, vibration and shock	The mine must comply with the provisions of the	N/A	No blasting takes place.
management, and control:	MHSA. An assessment of impacts relating to		
Regulation 67 of GN 572 of 2004 i.t.o.	blasting, vibration and shock management and		
MPRDA	control, where applicable, must form part of the		
	EMP.		
Biodiversity management			
Alien and invasive species	Category 1a Listed Invasive Species must be	N/A	The mine needs an alien eradication plan.
GN598 of 2014 (Alien and Invasive	combatted or eradicated. Category 1b Listed		
Species Regulations) & GN864 of	Invasive Species must be controlled. Category 2		
2016 (Alien and Invasive Species	Listed Invasive Species require a permit to carry out		
Lists) under NEMBA	a restricted activity within an area specified in the		
	Notice or an area specified in the permit. Category		
	3 Listed Invasive Species are subject to exemption.		
Fire breaks and firefighting:	Every owner on whose land a veldfire may start or	N/A	All vehicles and equipment at the mine are
Sections 12, 13, 17, 18 & 34 of	burn or from whose land it may spread, must		regularly inspected and maintained. The
National Veld and Forest Fire Act No	prepare and maintain a firebreak on his/her side of		emergency plan includes the prevention and
101 of 1998 (NVFFA)	the boundary between his/her land and any		control of veld fires.
	adjoining land. Every owner must have the		
	appropriate equipment and measures in place to be		
	ready to be able to combat veld fires and must be in		
	a position to report the occurrence of fires and to		
	take such measures as may be necessary to		
	combat such fires.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
Acquisition, disposal, sale or use of	Prohibition of certain fertilizers.	N/A	This will form part of the mine's management
fertilizers, farm feeds, agricultural			measures.
remedies and stock remedies:			
Section 7 <i>bis</i> of Fertilizers, Farm			
Feeds, Agricultural Remedies and			
Stock Remedies Act No 36 of 1947			
(FFFARSRA)			
Soil management			
Contaminated land:	The assessment of impacts relating to soil pollution	N/A	This will form part of the mine's management
GN 527 of 2004 i.t.o. MPRDA, and	and erosion control must form part of both the EMP.		measures.
sections 35-41 of NEMWA	The acidification, salination and mineralisation of		
	soils through seepage of polluted water must take		
	place as approved in the EMP. The spillage of		
	hazardous chemicals onto soils or its escape or		
	migration into surrounding soils from the approved		
	deposition area must be prevented. Oils, grease,		
	and hydraulic fluids must be disposed of. Oils,		
	grease, and hydraulic fluid spills must be cleaned up		
	by removing all contaminated soil and disposing		
	such soil in a waste disposal receptacle or at a		
	licensed facility. The chemical and physical		
	properties of topsoil to be used for the purposes of		
	rehabilitation must not be changed by introducing		
	foreign material, gravel, rock, rubble or mine residue		
	to such soil. An owner of land that is significantly		
	contaminated, or a person who undertakes an		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	activity that caused the land to be significantly		
	contaminated, must notify the department of that		
	contamination as soon as that person becomes		
	aware, of that contamination		
Heritage resources management		L	
Section 52 of MPRDA, and Sections	An EMP must include impacts on heritage aspects.	N/A	This will form part of the mine's management
34 & 35 of National Heritage	No person may alter or demolish any structure or		measures.
Resources Act No 25 of 1999 (NHRA)	part of a structure which is older than 60 years		
	without a permit issued by the relevant provincial		
	heritage resources authority. Any person who		
	discovers archaeological or palaeontological		
	objects or material or a meteorite must immediately		
	report the find to the responsible heritage resources		
	authority, or to the nearest local authority offices or		
	museum, which must immediately notify such		
	heritage resources authority.		
Emergency incidents			
Section 30 of NEMA, section 20 of	In the event of an emergency, the mine must: report	N/A	The mine has a new environmental
NWA S20, and Section 18 of NVFFA	through the most effective means reasonably		emergency procedure. This procedure will be
	available; take all reasonable measures to contain		implemented, and this will be audited as part
	and minimise the effects of the incident, including its		of the legal compliance audit.
	effects on the environment and any risks posed by		
	the incident to the health, safety and property of		
	persons; undertake clean-up procedures; remedy		
	the effects of the incident; and assess the		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	immediate and long-term effects of the incident on		
	the environment and public health.		
	Any owner who has reason to believe that a fire on		
	his or her land or the land of an adjoining owner may		
	endanger life, property or the environment, must		
	immediately notify the fire protection officer or, any		
	member of the executive committee of the fire		
	protection association, if one exists for the area; and		
	the owners of adjoining land; and do everything in		
	his or her power to stop the spread of the fire.		
Sustainable development			
Sustainable development principles:	Any mining operation must be conducted in	N/A	The mine has recently updated their
Section 2(3 & 4), of NEMA, section 2,	accordance with generally accepted principles of		environmental procedures. The mine also has
2(a)(ii), 22(2)(d) of NWA, GN 527 of	sustainable development by integrating social,		a Social and Labour Plan (SLP) in place. The
2004 i.t.o. MPRDA, section 37 of	economic and environmental factors into the		LoM is more than 5 years, however, the mine
MPRDA, section 2(a)(ii) of Section 2(3	planning and implementation of mining in order to		is in the process of compiling a closure plan as
& 4) of NEMA, section 2 of NWA,	ensure that exploitation of mineral resources serves		part of the new NEMA requirements. This plan
section of, and section of NWA	present and future generations. The mine shall		will include end land use.
	investigate new and emerging technologies and put		
	into practice water efficient devices or applied		
	technique for the re-use of water containing waste.		
	The Closure Plan must include agreed standard or		
	land use which conforms with the concept of		
	sustainable development.		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
International conventions/treaties	Convention on Biological Diversity, ratified by RSA	N/A	The mine must make a list of these chemicals
	on 2 November 1995: Conservation of biological		if there are any on the mine. If there are no
	diversity, the sustainable use of its components.		such chemicals on the mine, keep proof of this.
	UN Framework on Climate Change and Kyoto		
	Protocol, ratified by RSA on 29 August 1997: The		
	NDEA has published a report on 'A national climate		
	change response strategy" in response to the Kyoto		
	Protocol'. Greenhouse gas emissions and		
	inventories will be specifically dealt with in the		
	NEMAQA. Climate change is referred to explicitly in		
	the White Paper on Integrated Pollution and Waste		
	Management in 2000 and referenced in the White		
	Paper on a National Water Policy for South Africa,		
	1997. It is also specifically addressed in the		
	Government's imminent National Water Resource		
	Strategy.' Greenhouse gases are only included		
	under AEL requirements in the NEMAQA.		
	Stockholm Convention on Persistent Organic		
	Pollutants, ratified by RSA on 4 September 2002:		
	Persistent organic pollutants (POPs) include		
	various insecticides as well as PCBs. South Africa		
	published a report 'National Implementation Plan for		
	the Stockholm Convention on Persistent Organic		
	Pollutants' in 2012. According to this report, the duty		
	of care covers the responsibility of Imerys to avoid		

Applicable legislation and	Description of legislation and guidelines used to	Reference	How does this development comply with
guidelines used to compile the	compile the report (reference and description)	where applied	and respond to the policy and legislative
report			context (significance)
	the use, storage, generation, or uncontrolled		
	disposal thereof.		
	Vienna Convention on the Protection of the Ozone		
	Layer, and the Montreal Protocol, ratified by RSA on		
	15 January 1990: The Montreal Protocol includes		
	ozone depleting substances as well as a list of		
	products containing these substances. On 18		
	September 2015, the NDEA published a notice (GN		
	703 of 2015), requesting all companies to submit		
	information regarding the listed chemicals as per		
	Annex A within 60 days from the publication. 17		
	November 2015.		

f) Need and desirability of the proposed activities

As per the Guideline on Needs and Desirability in terms of the EIA Regulations (published 20 October 2014), the following table has been compiled:

Guideline requirement	Comments on requirement
1. How will this development (and its separate elements/aspects) impact on the	Threatened Ecosystems: Havercroft Operation falls within the Sekhukhune
ecological integrity of the area?	Norite Bushveld which is an endangered threatened ecosystem.
1.1 How were the following ecological integrity considerations taken into account?	
1.1.1 Threatened Ecosystems,	Sensitive, vulnerable, highly dynamic or stressed ecosystems: There is a
1.1.2 Sensitive, vulnerable, highly dynamic or stressed ecosystems, such as	High risk of desertification in this area because of the extensive removal of
coastal shores, estuaries, wetlands, and similar systems require specific attention	natural vegetation. The excessive harvesting of firewood further increases
in management and planning procedures, especially where they are subject to	this risk. A large constraint is the potential future impact on mining and
significant human resource usage and development pressure,	industrial activities on the natural vegetation and scenic environment.
1.1.3 Critical Biodiversity Areas ("CBAs") and Ecological Support Areas ("ESAs"),	Pollution of water and air in this zone is a noticeable risk also.
1.1.4 Conservation targets,	
1.1.5 Ecological drivers of the ecosystem,	Critical Biodiversity Areas ("CBAs") and Ecological Support Areas ("ESAs"):
1.1.6 Environmental Management Framework,	The area surrounding the quarries are classified as Critical Biodiversity Area
1.1.7 Spatial Development Framework, and	1
1.1.8 Global and international responsibilities relating to the environment (e.g.	Conservation targets: The high-lying areas should be conserved to retain
RAMSAR sites, Climate Change, etc.).	the natural vegetation and characteristics with the aim of accommodating
1.2 How will this development disturb or enhance ecosystems and/or result in the	possible future tourism. The extensive natural environment provides an
loss or protection of biological diversity? What measures were explored to firstly	opportunity for tourism activities including caravan parks, hiking trails,
avoid these negative impacts, and where these negative impacts could not be	mountain biking, sky diving, game parks, overnight accommodation, country
avoided altogether, what measures were explored to minimise and remedy	estate, etc. There is a couple of cases where the environment has been kept
(including offsetting) the impacts? What measures were explored to enhance	in its natural states through a number of private game and nature reserves.
positive impacts?	
1.3 How will this development pollute and/or degrade the biophysical environment?	Ecological drivers of the ecosystem: The ecosystem forms part of the
What measures were explored to firstly avoid these impacts, and where impacts	Sekhukhuneland Centre of Endemism; it includes important sub-
could not be avoided altogether, what measures were explored to minimise and	

Table 6: Need and Desirability of the proposed project

Guideline requirement	Comments on requirement
remedy (including offsetting) the impacts? What measures were explored to enhance positive impacts?	catchments, pans and wetlands and is important for grassland processes (NEMBA, GN 1002 of 2011).
	Environmental Management Framework for the Olifants and Letaba Rivers: The mountains to the east of the quarries has a sensitivity index of 3 whereas the low-lying areas of the quarries itself has a sensitivity index of - 1. The area further falls within Management Zone E (Rural Sekhukhune/platinum mining focus area). Future mining operations within this area along the platinum belt are already being planned. Over-allocation of the water resources in this area is a definite constraint. The area is also drought prone. A large potential conflict occurs in the areas that have been identified as future potential mining areas overlap with Centres of Endemism, which contain endangered vegetation. Thus, a conflict of opportunity occurs between the mining sector and the conservation/ecotourism sector. The other major anticipated conflict is that of the mining sector and agricultural sector competing in respect to water allocation.
	<u>Spatial Development Framework:</u> According to the SDF for the Greater Tubatse Local Municipality, Havercroft Operation falls within a mining belt (Environomics, 2009).
	 This basic assessment application is for the decommissioning of infrastructure on Havercroft Operation as well as the rehabilitation of the area. From above, it can the following can be summarised: Havercroft Operation falls within a mining belt; Targets of the rehabilitation must include using indigenous and if possible, endemic vegetation, especially in the high-lying areas.

Guideline requirement	Comments on requirement
	Water scarcity is an issue and must be considered.Wetlands and pans are important in the area and can be
	incorporated into the rehabilitation.
	• Water pollution is also an issue for the entire area. The
	rehabilitation of Havercroft Operation must ensure that water in the
	area is not contaminated.
1.4 What waste will be generated by this development? What measures were	Building rubble will be generated as part of decommissioning. The
explored to firstly avoid waste, and where waste could not be avoided altogether,	community will dismantle the plant and reuse most of the building rubble.
what measures were explored to minimise, reuse and/or recycle the waste? What	Any other waste will be taken to Annesley from where it will be disposed of
measures have been explored to safely treat and/or dispose of unavoidable waste?	as part of their waste stream.
1.5 How will this development disturb or enhance landscapes and/or sites that	All proposed activities are in the already existing mining area. It is not
constitute the nation's cultural heritage? What measures were explored to firstly	envisaged that any cultural heritage resources will be disturbed.
avoid these impacts, and where impacts could not be avoided altogether, what	
measures were explored to minimise and remedy (including offsetting) the impacts?	
What measures were explored to enhance positive impacts?	
1.6 How will this development use and/or impact on non-renewable natural	This basic assessment application is for the decommissioning of
resources? What measures were explored to ensure responsible and equitable use	infrastructure on Havercroft Operation as well as the rehabilitation of the
of the resources? How have the consequences of the depletion of the non-	area. No depletion of renewable or non-renewable resources are envisaged.
renewable natural resources been considered? What measures were explored to	
firstly avoid these impacts, and where impacts could not be avoided altogether,	
what measures were explored to minimise and remedy (including offsetting) the	
impacts? What measures were explored to enhance positive impacts?	
1.7 How will this development use and/or impact on renewable natural resources	
and the ecosystem of which they are part? Will the use of the resources and/or	
impact on the ecosystem jeopardise the integrity of the resource and/or system	
taking into account carrying capacity restrictions, limits of acceptable change, and	
thresholds? What measures were explored to firstly avoid the use of resources, or	
if avoidance is not possible, to minimise the use of resources? What measures were	

Guideline requirement	Comments on requirement
taken to ensure responsible and equitable use of the resources? What measures	
were explored to enhance positive impacts?	
1.7.1 Does the proposed development exacerbate the increased dependency on	
increased use of resources to maintain economic growth or does it reduce resource	
dependency (i.e. de-materialised growth)? (note: sustainability requires that	
settlements reduce their ecological footprint by using less material and energy	
demands and reduce the amount of waste they generate, without compromising	
their quest to improve their quality of life)	
1.7.2 Does the proposed use of natural resources constitute the best use thereof?	
Is the use justifiable when considering intra- and intergenerational equity, and are	
there more important priorities for which the resources should be used (i.e. what	
are the opportunity costs of using these resources this the proposed development	
alternative?)	
1.7.3 Do the proposed location, type and scale of development promote a reduced	
dependency on resources?	
1.8 How were a risk-averse and cautious approach applied in terms of ecological	All ecological impacts have already taken place. This application will aid in
impacts?	improving the ecosystem.
1.8.1 What are the limits of current knowledge (note: the gaps, uncertainties and	An Earthworks report was done to indicate the sloping of the area. No other
assumptions must be clearly stated)?	studies were done for rehabilitation. All information is based on previous
	studies done on the mine.
1.8.2 What is the level of risk associated with the limits of current knowledge?	It is unclear what the level of risk will be on the groundwater quality.
1.8.3 Based on the limits of knowledge and the level of risk, how and to what extent	No additional risk-averse cautious approach will be followed.
was a risk-averse and cautious approach applied to the development?	
1.9 How will the ecological impacts resulting from this development impact on	This area must be adequately rehabilitated to ensure the community can
people's environmental right in terms following	use the area once decommissioning and rehabilitation are finished.
1.9.1 Negative impacts: e.g. access to resources, opportunity costs, loss of amenity	
(e.g. open space), air and water quality impacts, nuisance (noise, odour, etc.),	The end land-use has been identified as grazing and game farming. Water
health impacts, visual impacts, etc. What measures were taken to firstly avoid	accumulating within the remaining quarries will be utilised and optimised to

Guideline requirement	Comments on requirement
negative impacts, but if avoidance is not possible, to minimise, manage and remedy	compliment the end land-use. Sloping should be at a safe angle for cattle
negative impacts?	and other animals to graze on site and provide easy access to the water.
1.9.2 Positive impacts: e.g. improved access to resources, improved amenity,	Sloping should allow for free drainage and prevent siltation of the water
improved air or water quality, etc. What measures were taken to enhance positive	resources.
impacts?	
1.10 Describe the linkages and dependencies between human well-being,	
livelihoods and ecosystem services applicable to the area in question and how the	
development's ecological impacts will result in socio-economic impacts (e.g. on	
livelihoods, loss of heritage site, opportunity costs, etc.)?	
1.11 Based on all of the above, how will this development positively or negatively	
impact on ecological integrity objectives/targets/considerations of the area?	
1.12 Considering the need to secure the ecological integrity and a healthy	There is no alternative to this project.
biophysical environment, describe how the alternatives identified (in terms of all the	
different elements of the development and all the different impacts being proposed),	
resulted in the selection of the "best practicable environmental option" in terms of	
ecological considerations?	
1.13 Describe the positive and negative cumulative ecological/biophysical impacts	Refer to the cumulative impact assessment; Part A(H)(v)(3)
bearing in mind the size, scale, scope, and nature of the project in relation to its	
location and existing and other planned developments in the area?	
A. Promoting justifiable economic and social development	
2.1 What is the socio-economic context of the area, based on, amongst other	The IDP and any other strategic plans, frameworks of policies applicable to
considerations, the following considerations?	the area: The strategic objectives are as follow:
2.1.1 The IDP (and its sector plans' vision, objectives, strategies, indicators, and	Create environment that promotes the development of the Local
targets) and any other strategic plans, frameworks of policies applicable to the area,	economy and facilitate job creation;
2.1.2 Spatial priorities and desired spatial patterns (e.g. need for integrated of	Create environment that promotes the development of the Local
segregated communities, need to upgrade informal settlements, need for	economy and facilitate job creation;
densification, etc.),	

Guideline requirement	Comments on requirement
2.1.3 Spatial characteristics (e.g. existing land uses, planned land uses, cultural landscapes, etc.), and 2.1.4 Municipal Economic Development Strategy ("LED Strategy").	-

Guideline requirement	Comments on requirement				
	Municipal Economic Development Strategy: The area is not suitable for				
	agriculture, and has been marked as mining area in the IDP. The IDP further states: Although there are several mines in the area, the existing resource remain unexploited. Investment in this sector is important as it brings with				
	an investment in infrastructure, results in the creation of job opportunitie				
	and generates many other economic spin-offs. The lack of economic growth				
	in the region warrants special attention and support to optimize the available				
	opportunities. However, cognizance should be taken of the outflow of money				
	from the mines in Greater Tubatse to other regions.				
	(Greater Tubatse LM, 2016)				
	This basic assessment application is for the decommissioning				
	infrastructure on Havercroft Operation as well as the rehabilitation of the				
	area. From above, it can the following can be summarised:				
	 Economic growth is an objective for the area. 				
	• Because the area has a low agricultural potential, mining is a				
	desirable economic growth factor.				
	• The use of local people to decommission and rehabilitate will				
	promote the economy.				
	• Further, it should be noted that any further prospecting and mining				
	projects could have a desirable effect on the economy of the area.				
2.2 Considering the socio-economic context, what will the socio-economic impacts	Socio-economic development initiatives are for Greater Tubatse:				
be of the development (and its separate elements/aspects), and specifically also	Education and skills development				
on the socio-economic objectives of the area?	Housing				
2.2.1 Will the development complement the local socio-economic initiatives (such	Health				
as local economic development (LED) initiatives), or skills development programs?					

Guideline requirement	Comments on requirement
2.3 How will this development address the specific physical, psychological,	
developmental, cultural and social needs and interests of the relevant	The mining at Annesley aid in the skills development of the area. The
communities?	rehabilitation and decommissioning itself will not aid in additional socio-
2.4 Will the development result in equitable (intra- and inter-generational) impact	economic objectives. For this reason, it is imperative that any additional
distribution, in the short- and long-term? Will the impact be socially and	mining projects in the area, should be considered. Such project will address
economically sustainable in the short- and long-term?	skills development in the long-term.
2.5. In terms of location, describe how the placement of the proposed development	Not applicable to this project.
will:	
2.5.1. result in the creation of residential and employment opportunities in close	
proximity to or integrated with each other,	
2.5.2. reduce the need for transport of people and goods,	
2.5.3. result in access to public transport or enable non-motorised and pedestrian	
transport (e.g. will the development result in densification and the achievement of	
thresholds in terms public transport),	
2.5.4. compliment other uses in the area,	
2.5.5. be in line with the planning for the area,	
2.5.6. for urban related development, make use of underutilised land available with	
the urban edge,	
2.5.7. optimise the use of existing resources and infrastructure,	
2.5.8. opportunity costs in terms of bulk infrastructure expansions in non-priority	
areas (e.g. not aligned with the bulk infrastructure planning for the settlement that	
reflects the spatial reconstruction priorities of the settlement),	
2.5.9. discourage "urban sprawl" and contribute to compaction/densification,	
2.5.10. contribute to the correction of the historically distorted spatial patterns of	
settlements and to the optimum use of existing infrastructure in excess of current	
needs,	
2.5.11. encourage environmentally sustainable land development practices and	
processes,	

Guideline requirement	Comments on requirement
2.5.12. take into account special locational factors that might favour the specific	
location (e.g. the location of a strategic mineral resource, access to the port, access	
to rail, etc.),	
2.5.13. the investment in the settlement or area in question will generate the highest	
socio-economic returns (i.e. an area with high economic potential),	
2.5.14. impact on the sense of history, sense of place and heritage of the area and	
the socio-cultural and cultural-historic characteristics and sensitivities of the area,	
and	
2.5.15. in terms of the nature, scale and location of the development promote or act	
as a catalyst to create a more integrated settlement?	
2.6 How were a risk-averse and cautious approach applied in terms of socio-	Refer to the impact assessment; Part A(H)(v)(1)
economic impacts? Level of risk associated with limits of current knowledge related	
to the following: Inequality, Social fabric, Livelihoods, Vulnerable communities,	
Critical resources, Economic vulnerability and Sustainability	
2.6.1 What are the limits of current knowledge (note: the gaps, uncertainties, and	IDPs, SDFs, and other published documents are used to determine the
assumptions must be clearly stated)?	socio-economic aspects of the area.
2.6.2 What is the level of risk (note: related to inequality, social fabric, livelihoods,	
vulnerable communities, critical resources, economic vulnerability, and	
sustainability) associated with the limits of current knowledge?	
2.6.3 Based on the limits of knowledge and the level of risk, how and to what extent	
was a risk-averse and cautious approach applied to the development?	
2.7 How will the socio-economic impacts resulting from this development impact on	This project will not affect these aspects.
people's environmental right in terms following:	
2.7.1 Negative impacts: e.g. health (e.g. HIV-Aids), safety, social ills, etc. What	
measures were taken to firstly avoid negative impacts, but if avoidance is not	
possible, to minimise, manage and remedy negative impacts?	
2.7.2 Positive impacts. What measures were taken to enhance positive impacts?	

Guideline requirement	Comments on requirement
2.8 Considering the linkages and dependencies between human well-being,	This basic assessment application is for the decommissioning of
livelihoods, and ecosystem services, describe the linkages and dependencies	infrastructure on Havercroft Operation as well as the rehabilitation of the
applicable to the area in question and how the development's socioeconomic	area. No depletion of renewable or non-renewable resources is envisaged.
impacts will result in ecological impacts (e.g. over utilisation of natural resources,	
etc.)?	
2.9 What measures were taken to pursue the selection of the "best practicable	The community will be involved in the rehabilitation and decommissioning
environmental option" in terms of socio-economic considerations?	activities. Environmental Health and Safety (EHS) risks and project hazards
2.10 What measures were taken to pursue environmental justice so that adverse	are identified as early as possible. Health and safety training is done, and
environmental impacts shall not be distributed in such a manner as to unfairly	PPE is provided.
discriminate against any person, particularly vulnerable and disadvantaged persons	
(who are the beneficiaries and is the development located appropriately)?	
Considering the need for social equity and justice, do the alternatives identified,	
allow the "best practicable environmental option" to be selected, or is there a need	
for other alternatives to be considered?	
2.11 What measures were taken to pursue equitable access to environmental	
resources, benefits, and services to meet basic human needs and ensure human	
well-being, and what special measures were taken to ensure access thereto by	
categories of persons disadvantaged by unfair discrimination?	
2.12 What measures were taken to ensure that the responsibility for the	
environmental health and safety consequences of the development has been	
addressed throughout the development's life cycle?	
2.13 What measures were taken to:	Refer to Part A(H)(ii) for public participation.
2.13.1 ensure the participation of all interested and affected parties,	
2.13.2 provide all people with an opportunity to develop the understanding, skills,	
and capacity necessary for achieving equitable and effective participation,	
2.13.3 ensure participation by vulnerable and disadvantaged persons	

Guideline requirement	Comments on requirement
2.13.4 promote community wellbeing and empowerment through environmental	
education, the raising of environmental awareness, the sharing of knowledge and	
experience and other appropriate means	
2.13.5 ensure openness and transparency, and access to information in terms of	
the process	
2.13.6 ensure that the interests, needs, and values of all interested and affected	
parties were taken into account and that adequate recognition was given to all forms	
of knowledge, including traditional and ordinary knowledge, and	
2.13.7 ensure that the vital role of women and youth in environmental management	
and development were recognised and their full participation therein was be	
promoted	
2.14 Considering the interests, needs, and values of all the interested and affected	
parties, describe how the development will allow for opportunities for all the	
segments of the community (e.g. a mixture of low-, middle-, and high-income	
housing opportunities) that is consistent with the priority needs of the local area (or	
that is proportional to the needs of an area)?	
2.15 What measures have been taken to ensure that current and/or future workers	All contractors, sub-contractors and workers will continue to attend
will be informed of work that potentially might be harmful to human health or the	compulsory environmental awareness training and inductions. This training
environment or of dangers associated with the work, and what measures have been	will highlight the dangers associated with the workplace. Procedures relating
taken to ensure that the right of workers to refuse such work will be respected and	to environmental risks will also be put in place and will be regularly updated.
protected?	
2.16 Describe how the development will impact on job creation in terms of, amongst	This information will only be available once this application has been
other aspects:	approved and the mine has liaised with the community.
2.16.1 the number of temporary versus permanent jobs that will be created,	
2.16.2 whether the labour available in the area will be able to take up the job	
opportunities (i.e. do the required skills match the skills available in the area),	
2.16.3 the distance from where labourers will have to travel,	

Guideline requirement	Comments on requirement
2.16.4 the location of jobs opportunities versus the location of impacts (i.e. equitable	
distribution of costs and benefits), and	
2.16.5 the opportunity costs in terms of job creation (e.g. a mine might create 100	
jobs, but the impact on 1000 agricultural jobs, etc.).	
2.17 What measures were taken to ensure:	A summary of all legislation is included in Part A(e) of this report.
2.17.1 that there were intergovernmental coordination and harmonisation of	All organs of state will receive this BAR. Any comments from them will be
policies, legislation, and actions relating to the environment	incorporated into the final decision.
2.17.2 that actual or potential conflicts of interest between organs of state were	The community will be involved in the rehabilitation and decommissioning
resolved through conflict resolution procedures?	activities.
2.18 What measures were taken to ensure that the environment will be held in	
public trust for the people, that the beneficial use of environmental resources will	
serve the public interest, and that the environment will be protected as the people's	
common heritage?	
2.19 Are the mitigation measures proposed realistic and what long-term	Residual impacts are discussed in Part B(d)(i)(2) of this BAR.
environmental legacy and the managed burden will be left?	
2.20 What measures were taken to ensure that the costs of remedying pollution,	The mine has an updated financial provision.
environmental degradation and consequent adverse health effects and of	
preventing, controlling or minimising further pollution, environmental damage or	
adverse health effects will be paid for by those responsible for harming the	
environment?	
2.21 Considering the need to secure the ecological integrity and a healthy bio-	There is no alternative to this project.
physical environment, describe how the alternatives identified (in terms of all the	
different elements of the development and all the different impacts being proposed),	
resulted in the selection of the best practicable environmental option in terms of	
socio-economic considerations?	
2.22 Describe the positive and negative cumulative socio-economic impacts	Refer to the cumulative impact assessment as part of the impact
bearing in mind the size, scale, scope, and nature of the project in relation to its	assessment: Part A(h)(v).
location and other planned developments in the area?	

The answers to the above-mentioned questions will ensure all the considerations are taken into account. During the assessment part of the report all the questions must again be considered. The incorporation of the above-mentioned questions into the basic assessment, scoping and reports will ensure that all the relevant considerations are taken into account in order to adequately consider need and desirability. The requirement to consider need and desirability

According to the 2014 IEM Guideline Series 9, Needs and Desirability (GN 891) when, considering ecological, social and economic impacts it is important to remember that while there might be some trade-offs between the considerations, in South Africa all development must in terms of Section 24 of the Constitution be ecologically sustainable, while economic and social development must be justifiable. There are therefore specific "trade-off rules that apply. Environmental integrity may never be compromised, and the social and economic development must take a certain form and meet certain specific objectives in order for it to be considered justifiable.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 46 Assessment Report

g) Motivation for the overall preferred site, activities and technology alternative

The final decommissioning and rehabilitation has been discussed with the community. Furthermore, the earthworks and sloping of the mine residue and the area has been planned with the aid of a specialist. The activities in this BAR is the most effective way to rehabilitate the area.

h) Full description of the process followed to reach the proposed preferred alternatives within the site

i) Details of the development footprint alternatives considered

The following definition of "alternatives" is given in the EIA Regulations: ""alternatives", in relation to a proposed activity, means different means of meeting the general purpose and requirements of the activity, which may include alternatives to the -

- (a) property on which or location where the activity is proposed to be undertaken;
- (b) type of activity to be undertaken;
- (c) design or layout of the activity;
- (d) technology to be used in the activity; or
- (e) operational aspects of the activity; and includes
- (f) the option of not implementing the activity.

(a) The property on which or location where it is proposed to undertake the activity

As above, no alternatives are applied for.

(b) The type of activity to be undertaken

As above, no alternatives are applied for.

(c) The design or layout of the activity

As above, no alternatives are applied for.

(d) The technology to be used in the activity

As above, no alternatives are applied for.

(e) The operational aspects of the activity

As above, no alternatives are applied for.

(f) The option of not implementing the activity

As above, no alternatives are applied for.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 47 Assessment Report

ii) Details of the Public Participation Process Followed

According to the Publication of Participation Guideline (NEMA), and I&AP is:

"(a) any person, group or persons or organisations interested in or affected by an activity, and (b) any organ of state that may have jurisdiction over any aspect of the activity".

This definition is more detailed in the Guideline for consultation with communities and I&APs (MPRDA): "Interested and affected' parties include, but are not limited to; (i) Host Communities, (ii) Landowners (Traditional and Title Deed owners), (iii) Traditional Authority, (iv) Land Claimants, (v) Lawful land occupier, (vi) The Department of Land Affairs, (vii) Any other person (including on adjacent and non-adjacent properties) whose socio-economic conditions may be directly affected by the proposed prospecting or mining operation (viii) The Local Municipality, (ix) The relevant Government Departments, agencies and institutions responsible for the various aspects of the environment and for infrastructure which may be affected by the proposed project."

The process followed adheres to the National Environmental Management Act 107-1998 - National guideline on minimum information (20180209-GGN-41432-00086) and the 2012, IEM Guideline Series 7, Public participation, GN 807.

(a) Formal announcement of the project

An advertisement was published in the local newspaper "Platinum Gazette" on 26 January 2018. Refer to Addendum 4B for a copy and proof of this advertisement. Three site notices were placed at and around the site on 26 January 2018. One site notice was placed at the King's place, one at MMakanaga Shop and one at Monopi Tavern. Refer to Addendum 4C for a copy and proof of the site notices placed. Letters were sent to all stakeholders as well as the Babinatlou Community on 24 January 2018. An sms was sent to all persons which could not be reach via email. Refer to Addendum 4A for this letter as well as proof of the letters sent, and sms's sent.

Details of the application were included in the notices placed in the designated areas mentioned above. The nature and the location of the activity, where further information can be obtained was added to the site notice. The applicant's intention to submit an application is clearly stated on the notice and comments in response to the site notices and advertisements are acknowledged. The competent authority will receive a copy of the newspaper advertisement which indicates the name of the newspaper and the date of publication. A picture of the site notice along with the coordinates of the site notice will also be sent to the competent authority and lastly copies of the written notices that were submitted by email or hand delivered will also be sent to the competent authority.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 48 Assessment Report

(b) Basic Assessment

A public and stakeholders meeting is held on 28 February 2018, 10h00, at Havercroft Mine. Refer to Addendum 4D for the meeting presentation.

The BAR is sent to all stakeholders and Babinatlou Community. Refer to Addendum 4E for proof of the BAR sent to all.

All I&APs are given the opportunity to comment on the final report if they are registered. This includes any issues that they have with the proposed activity and that they believe may be of significance in the consideration of the application. These comments need to be submitted within the specified timeframe.

The submission of the comments is received by the EAP. The organs of state have 40 days to comment (failing to do so will be taken as no comment) The DWS has 60 days in which to comment. If there are no comments within this time, then it will be regarded as no comments given to the CA.

Comments and responses are included in a separate report what is submitted with the BAR. Within 12 days of the date of decision taken by the department, all I&APs should be notified. They should also be notified that an appeal may be lodged.

All comments are included in Part A(h)(iii) below. Refer to Addendum 4F for all comments.

(c) Decision making announcement to stakeholders and I&APs

To be provided once received.

iii) Summary of issues raised by interested and affected parties

Refer below to a summary of all issues raised by the stakeholders and I&APs.

Interested a	and	Date co	mments	Issues raised	EAPs response to	Section reference	
Affected Parties		received		received		issues as	in this report
					mandated by the	where issues and	
					applicant	or response were	
						incorporated	
Affected parties							
Landowner/s							
According to the	title	See belov	under	None	N/A	N/A	
deeds, the Natio	onal	'Communiti	es'				

Table 7: Interested and affected parties identified

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 49 Assessment Report

Interested and	Date comments	Issues raised	EAPs response to	Section reference
Affected Parties	received		issues as	in this report
			mandated by the	where issues and
			applicant	or response were
				incorporated
Government of South				
Africa is the				
landowner, however,				
Babinatlou Community				
is the traditional				
landowner.				
Lawful occupier/s of th	ie land			
The land is currently	None	None	N/A	N/A
occupied by the mine.				
Landowners or lawful	occupiers on adjacen	t properties	l	
Babinatlou Community	See below under	None	N/A	N/A
	'Communities'			
Ward councillor - Ward	114		I	
Cllr. N Makofane	None	None	N/A	N/A
Ward councillor - Ward	115			
Cllr. A Kgaphola	None	None	N/A	N/A
Ward councillor - Ward	116			
Cllr. R Khoza	None	None	N/A	N/A
GTLM - Municipal man	ager			
Cllr R.S Mamekoa	None	None	N/A	N/A
SDM - Municipal mana	ger			
Mr. Seporo Masemola	None	None	N/A	N/A
Organs of state				
DWS Mpumalanga –	None	None	N/A	N/A
Lydenburg/Mashishing				
Office				
Communities				
Babinatlou Community	31 January 2018	Requested meeting	2 February 2018	Part A(h)(v)(3.14)
- Kgaogelo Mphofelo		be moved to	Venue moved to	
		Havercroft Mine.	Havercroft Mine.	
		High rate of		
		unemployment in		
		community.		

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 50 Assessment Report

Interested and Affected Parties	Date comments received	Issues raised	EAPs response to issues as mandated by the applicant	Section reference in this report where issues and or response were
				incorporated
Babinatlou Community	24 January 2018	Requested meeting	1 February 2018	
– Isaac Mampuru		invite and register	Final meeting	
		as I&AP	invitation was sent	
Babinatlou Community	31 January 2018	Requested meeting	1 February 2018	
– Thabo Mahlakwana		invite and register	Final meeting	
		as I&AP	invitation was sent	
DRDLR			I	<u> </u>
Ms Makhanana	None	None	N/A	N/A
Senwana				
Traditional Leaders				
Babinatlou Community	See below under	None	N/A	N/A
y	'Communities'			
Limpopo Department o	of Economic Developr	nent. Environment an	d Tourism	
Juliet Mukhari	None	None	N/A	N/A
Other Competent Auth		None	11/7 1	14/7 4
-	None	None	N/A	N/A
South African Heritage	None	None	N/A	IN/A
Resources Agency				
(SAHRA)				
Limpopo Heritage	None	None	N/A	N/A
Resources Agency				
(LHRA)				
Limpopo Department	None	None	N/A	N/A
of Agriculture,				
Forestry, and Fisheries				
(DAFF)				
Other affected parties			l	1
Historically disadvanta	aged communities			
None identified	None	None	N/A	N/A
Land claimants				
	None	None	N/A	N/A
Interested parties				
Lebalelo Water User	26 January 2018	Will attend the	29 January 2018:	N/A – no additional
Association		public meeting.	Meeting invite sent	responses yet.
		Also, to add 3	through. Additional	
		additional persons	anough. Additional	
		additional persons		

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 51 Assessment Report

Interested Affected Parties	and	Date receive	comments ed	Issues rai	sed	EAPs response to issues as mandated by the applicant	Section reference in this report where issues and or response were incorporated
				from the Water Association	Lebalelo User n	persons were added to list of I&APs.	

iv) The Environmental attributes associated with the development footprint alternatives

The environmental attributes described below include socioeconomic, social, heritage, cultural, geographical, physical and biological aspects. Refer below for the following:

- a. Type of environment affected by the proposed activity its current geographical, physical, biological, socioeconomic, and cultural character;
- b. Description of the current land uses;
- c. Description of specific environmental features and infrastructure on the site; and
- d. Environmental and current land use map which shows all environmental, and current land use features.

Please note, that this is an already existing mine.

1 Geology

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997):

1.1 Regional and local geology

Havercroft Mine Operation is situated along the north-northeastern rim of the Transvaal basin in the Timeball Hill Formation, which is near the base of the Pretoria Group. This location lies within the metamorphic aureole of the Bushveld Complex, the base of which lies some 3km stratigraphically above the orebody. The Bushveld Complex provided the heat source for the formation of the andalusite crystals.

The orebody outcrops/sub-outcrops against the north-eastern slopes of the Radingwane Mountain which is capped by the Daspoort Quartzites. The very uneven terrain is covered by a layer of rubble measuring from 0.5m to 6m thick. This talus consists mostly of quartzite boulders, an occasional lava boulder (sometimes very large) and very little soil.

The orebody is between 40m and 50m thick, strikes NW-SE and dips on average 15° to the SW. it displays three distinct zones and has gradational hanging wall and footwall contacts.

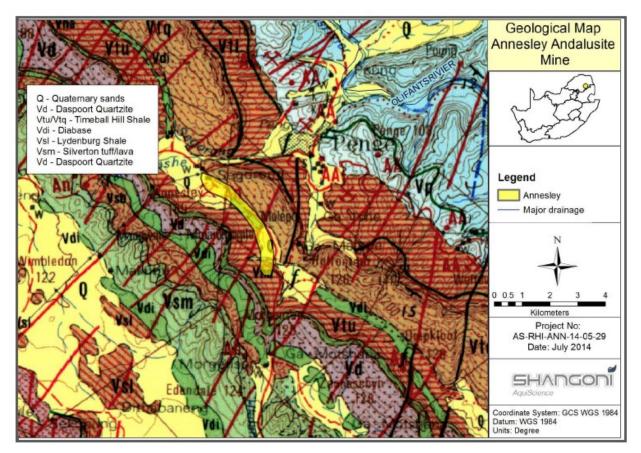


Figure 6: Pilgrims Rest Geological Map 2430 at a scale of 1:250 000 showing the general underlying geology of the study area Local Geology (Shangoni Management Services, 2017)

1.2 Mineralogy of the ore zone

The orebody is a metamorphically altered alumina-rich shale horizon. It is essentially a quartz-biotiteandalusite hornfels with minor amounts of garnet and staurolite. The andalusite crystals vary in crosssection from 1mm to 15mm and in length from 50mm to 20mm. weathering decreasing with depth, resulted in the formation of a sericitic layer around the andalusite crystals.

1.3 Intrusions and faulting

Up to three distinct diabase sills, irregularly weathered and probably of Bushveld Complex origin, are intrusive along bedding planes in the vicinity of and in the orebody. They vary in thickness from 0.5m to 5m and appears to be upwardly transgressive through the orebody from the east to the west. The ore above and below these sills displays alteration through contact metamorphism.

Six often very irregular, sub-vertical dolerite dykes of Karoo age transect the orebody from SW to NE. They are usually deeply weathered and deep gullies mark their position on the surface. Their effect on the ore appears to be minimal.

Only minor faulting and other structural deformation have been observed. Any water compartments that may exist lie below the mining operations at depths in excess of 50m.

2 Climate

Information for this section was extracted from the IWWMP (Shangoni Management Services, 2012), and Atmospheric Impact Report for Dryer (Shangoni Management Services, 2014):

2.1 Regional climate

The climate is moderate to hot, with occasional, very hot conditions in the low-lying valleys. The average daily temperature variation is 15°C. The area is part of a major mountain range and the winds blow consistently from the northeast. The rainy season lasts from late October until April with a maximum in November, mainly in the form of thunderstorms from the south-west, but also light to moderate precipitation blown in from the east. The rainfall is fairly low and in 12% of all years, there are severe drought conditions. There is no frost.

2.2 Rainfall and evaporation

Rainfall represents an effective removal mechanism of atmospheric pollutants. The annual rainfall at Annesley Andalusite Mine, during 2012, was approximately 510.68mm. Rainfall occurs mainly in the summer from December to February, with the peak being in December.

Month	Average (mm)	Days with more than 1 mm rain
January	95	9,8
February	84	6,8
March	70	6,8
April	20	2,6
Мау	8	2,2
June	4	1,3
July	4	1,3
August	8	1,7
September	19	1,8
October	59	6,3
November	102	10,1
December	86	8,4
Annual	559	59

Table 8: Rainfall statistics	
------------------------------	--

Month	Evaporation (mm)	
January	212	
February	174	
March	174	
April	139	
Мау	121	
June	102	
July	119	
August	167	
September	228	
October	259	
November	228	
December	217	
Average	2140	

Table 9: Evaporation

2.3 Temperature

The mean summer temperature for the year 2012 was 23.3°C, with temperatures rising to 37.4°C in February. The mean winter temperature was 14.5°C with a minimum temperature of 3.6°C in August 2012. Figure 7 illustrates how temperatures range on a daily basis throughout the year.

Month	Temperature		
	Мах	Min	
January	30,1	17,3	
February	29,7	17,4	
March	28,2	16,2	
April	27,4	12,1	
May	24,5	8,1	
June	21,7	3,9	
July	21,6	4,0	
August	24,0	6,9	
September	27,5	11,3	
October	30,4	14,6	
November	30,2	16,4	
December	30,1	17,4	
Annual	27,1	12,2	

Table 10: Temperature for Annesley

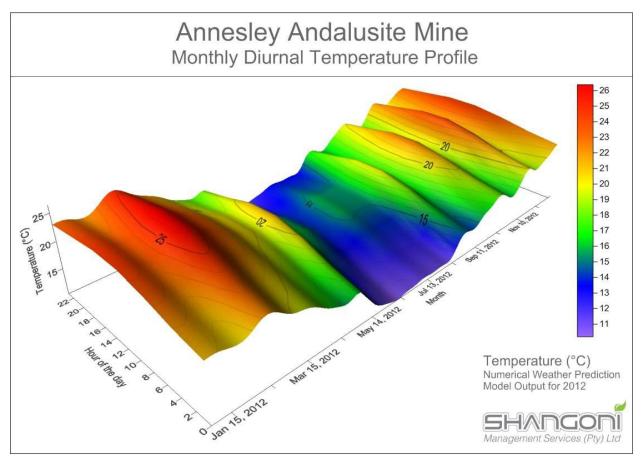


Figure 7: Monthly diurnal temperature profile Shangoni Management Services, 2014)

2.4 Wind

The predominant wind field throughout the year (2012), except during winter, was from an east northeasterly direction experiencing mostly moderate wind speeds between 1.5m/s and 3.1m/s. During winter wind was experienced primarily from a west southwesterly direction with some winds also coming from an east northeasterly direction.

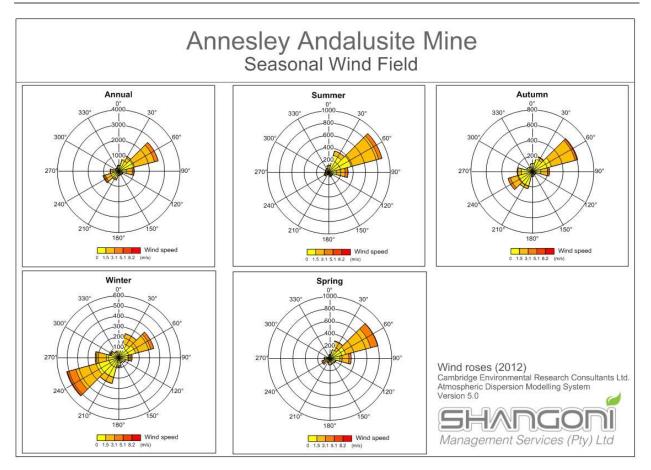


Figure 8: Seasonal wind roses (Shangoni Management Services, 2014)

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 57 Assessment Report

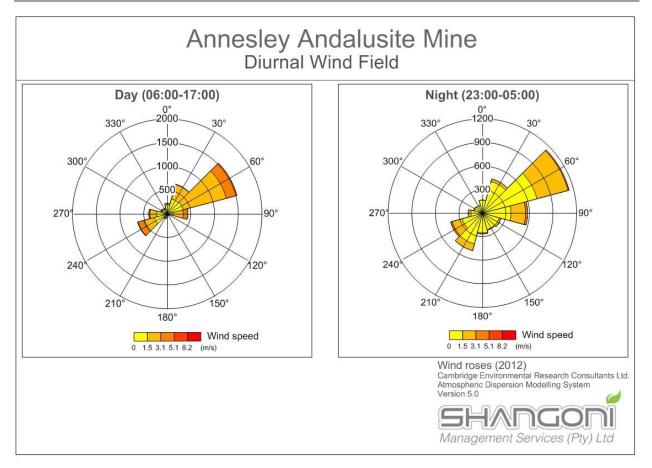


Figure 9: Diurnal wind roses (Shangoni Management Services, 2014)

2.5 Extreme events

The area experiences several extreme events on a regular basis, including frost, hail, drought, and high winds.

3 Topography

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997):

The mining area is 16km from the edge of the escarpment. The surrounding area is extremely rugged, with the high ridges above the mining area rising from the floor of the valley of the Olifants River at an elevation of 670m, to over 1,400m. The Radingwane Mountain is one of a series of parallel ranges which form the Drakensberg Range.

The mining area starts in the west in the flat valley of the Motse River and continues to the south-east, rising up and along the north slope of the ridge of the Radingwane Mountain, which is steeply sloping

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 58 Assessment Report

(average slope 18°) and rugged. The slope is intersected by a large number of well-defined gullies, but there are no major ravines.

The mining area starts at 670m on the banks of the Motse River with the highest point of the ore body at 1,070m.

4 Soil

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997):

The soils of the mountain slopes, which overlie the orebody, are skeletal and only developed in localised potholes and as a component of the scree, which is made up of metamorphic (hornfels) schist, diabase sill material and quartzitic rocks.

The major components of the topsoils are weathered silica and clay material, chiefly loamy biotite, rich in porphyroblasts of staurolite and/or garnets and cordierite. The topsoil is generally friable, pelitic, with an abundance of gravel and pebbles of all sizes.

5 Pre-mining land capability, land use and existing infrastructure

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997):

The land disturbed by the existing mining excavations is all wilderness land. The land is steep, the soil less than 0.25m deep and the volume of rocks larger than 100mm is more than 50%. The land covered by the TDF and WRD is arable land merging into grazing land.

The pre-mining land use, by the local subsistence farmers, was cultivated lands in the flat valley at the confluence of the Motse and Olifants Rivers, producing crops for local consumption. The steep valley of the Modubeng Spruit was used for grazing cattle and goats. The grass cover is sparse and the carrying capacity even in the flatter areas is no better than 15ha per head of large livestock.

There are a few scattered dwellings across the Modubeng Spruit to the northeast of the plant complex.

6 Vegetation

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997):

The area as described by Acocks, is Sourish Mixed Bushveld on the upper slopes, descending into Mixed Bushveld, which may be characterised as '*Acacia nigrescens-Combretum apiculatum-Kirkii wilmsii* Veld'.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 59 Assessment Report

The mining area is well wooded with a great variety of medium-sized species of trees as well as a great variety of shrubs and aloes.

The dominant grass species found in undisturbed areas are:

- Aristida scrabbrivalus
- Aristida congesta barbicollis
- Enneapogon centroides
- Digitaria eriantha
- Eragrostis racemosa

Stipagrostis uniplumis, Enneapogon centroides, and *Cynodon dactylon* grow abundantly on the top and slopes of the TDS and WRD.

The following species of trees are abundant on the north-east slope of the mountain.

Table 11: Tree species

Scientific name	Common name
Kirkii wilmsii	Mountain seringa
Acacia nigrescens	Knob thorn
Acacia senegalis	Three hook thorn
Acacia nilotica	Scented thorn
Acacia tortilis	Umbrella thorn
Acacia permixta	Slender thorn
Combretum apiculatum	Red bush willow
Combretum hereroense	Russet bush willow
Sclerocarya caffra	Marula
Dichrostachys cinerea	Sickle bush
Bolusanthus speciosus	Tree wisteria
Scotia brachypetala	Tree fuschia
Ziziphus mucronata	Buffalo thron
Bosnia albutrunca	Sheperds tree
Ozoroa paniculose	Common resin tree
Sterculia rogersii	Common star chestnut
Peltiphorum africanum	Weeping wattle
Balanites maughamii	Green thorn
Commiphora pyracanthoides	Common corkwood
Commiphora mollis	Velvet corkwood
Commiphora schimperi	Glossy-leaved commiphora

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 60 Assessment Report

Scientific name	Common name
Euphorbia ingens	Tree euphorbia
Euphorbia terucalli	Rubber euphorbia
Euphorbia cooperi	Transvaal candelabra tree

The following shrubs are found:

- Maytenus heterophylla
- Grevia flava
- Triaspis glacophila
- Clerodendrum spp.
- Becium obovatum
- Tinnea zambesica
- Euclia crispa
- Grevia bicolor
- Petalidium spp.
- Ormocarpum tricocarpum
- Ochna inerniis
- Psiadia puntulata
- Euclea undulata

The following aloes are common:

- Marlothii
- Castanea
- Wickensii
- Globuligemma
- Cryptopoda

Species of Adansonia digitata (Baobabs) are found in the low-lying area between the Motse River and Modubeng Spruit.

Invader species present:

- Nicotiana glauca
- Xanthium spinosum
- Xanthium strumarium

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 61 Assessment Report

7 Animal life

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997):

The area around the site is open to very few people in the actual mountainous areas, especially to the north. Hunting with dogs and snare setting have impacted on the number of animals, but the following species occur in this region:

Kudu, klipspringer, grey duiker, grey rhebuck, grysbuck, bushbuck, black-backed jackal, leopard, Chacma baboon, vervet monkey, and Bushpig.

The grey rhebuck and leopard are endangered species in the area.

8 Surface water

Information for this section was extracted from the Havercroft Andalusite Mine EMP (Avmin Ltd, 1997) and the Quarterly Water Quality Monitoring Report (BECS Environmental, 2016):

8.1 Surface water hydrology

The mining area is drained by a large number of well-defined watercourses which feed into the Modubeng Spruit. The extreme south-eastern section of the mining area drains into the south-flowing Segorong Spruit. The Modubeng Spruit and Segorong Spruit, which are both tributaries of the perennial Olifants River, only have a steady flow after periods of sustained good rains. The Olifants River adjoins the northern limit of the mining area and flows past the north-west of the mine. The Motse River flows to the west of the mine. The Modubeng Spruit flows along the northern boundary of the mine.

The catchment area is 2,230ha and the sub-catchment area is 1,165ha. The mean annual run-off from the catchment cannot be measured or calculated due to the complexities of different slopes, soil types, and vegetation cover. An annual run-off volume of 10% is assumed. The calculated volumes at 10% run-off are catchment of 1,246,570m³ and sub-catchment of 651,235m³. There is no dry weather flow in any of the water courses or the Modubeng Spruit.

The peak flows for the catchments are presented in the table below.

Site	Catchment	Flood pe	Flood peaks (m³/s)						
	area (km²)	Return p	Return periods						
		2	5	10	20	50	100	200	RMF
Olifants	34,237	410	920	1,400	2,000	3,550	4,950	6,250	8,400
Motse	820	175	275	378	530	760	1,000	1,200	1,800

Table 12: Estimate	d flood frequencies
--------------------	---------------------

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 62 Assessment Report

Site	Catchment	Flood pe	Flood peaks (m³/s)						
	area (km²)	Return p	Return periods						
		2	5	10	20	50	100	200	RMF
Modubeng	22.3	26	47	68	94	162	200	258	464

The drainage density of the site is 2.83km of drainage path per km² of land.

8.2 Surface water quality

Water quality monitoring was done in August 2016 (BECS Environmental, 2016). Refer below for the results.

Variable Unit Limit		Limit	Sample number		
			HAV 1	HAV 2	HAV 3
рН		6.0-9.0	7.76	7.68	7.81
Conductivity*	mS/m	≤70	96.8	59.3	61.9
Total dissolved solids	mg/l	≤450	781	449	510
Fluoride	mg/l	≤1.0	<0.05	<0.05	<0.05
Chloride	mg/l	≤100	186.2	84.9	138.2
Nitrate: N	mg/l	≤6	<0.02	<0.02	<0.02
Sulphate	mg/l	≤200	184.0	86.6	104.0
p-Alkalinity			0.0	0.0	0.0
m-Alkalinity			204.7	87.8	60.8
Carbonate			0.0	0.0	0.0
Bicarbonate			249.6	107.1	74.1
Total hardness		≤50	680.6	284.0	337.8
Calcium hardness			98.0	111.1	164.4
Magnesium			582.5	172.9	173.5
hardness					
Calcium	mg/l	≤32	39.3	44.5	65.8
Magnesium	mg/l	≤30	141.5	42.0	42.1
Sodium dissolved	mg/l	≤100	77.7	42.8	45.8
Potassium dissolved	mg/l	≤50	3.30	3.49	3.56
Iron dissolved	mg/l	≤0.1	<0.002	<0.002	<0.002
Manganese	mg/l	≤0.05	<0.005	<0.005	<0.005
dissolved					
Sum Cation	me/l		17.06	7.63	8.83
Sum Anion	me/l		17.08	7.66	8.86

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 63 Assessment Report

Variable	Unit	Limit	Sample number		
			HAV 1	HAV 2	HAV 3
Total viable organisms*	per 100ml	≤75	389	127	104
Total coliform Org	per ml	≤5	119	<1	<1
Faecal coliform Org	per ml	0	59	<1	<1

* General limits for general authorisations

** Too numerous to count

8.3 Surface water users

The community, living along the banks of the Modubeng Spruit, use this water, when available, for domestic purposes and for watering livestock. When the river is dry, water is collected from the Motse River.

9 Groundwater

Information for this section was extracted from the Geohydrological evaluation for the water use licence application report (Aurecon, 2010)) (from the IWWMP, 2012 (Shangoni Management Services)), and the Geohydrological impact assessment as input to the Section24G Rectification (Shangoni AquaScience, 2017)::

According to the published 1:250 000 geological map (2430 Pelgrims Rest), the area under investigation is underlain by the Timeball Hill Formation that forms part of the Pretoria Group and mainly comprises of andesitic lava, shale, and quartzite. Diabase dykes and sills of the Upper Vaalium age have intruded the Pretoria Group.

The ore zone principally comprises of quartz, feldspar, biotite, and Andalusite bearing hornfels. The ore body outcrops/sub-outcrops against the north-eastern slopes of the Radingwane Mountain, which is capped by Daspoort Quartzite of the Daspoort Formation. The surface of the ore body is covered by a layer of rubble, between 0.5m to 6m thick, consisting primarily of quartzite boulders, occasional lava boulders, and very little soil.

The ore body is a metamorphically altered alumina-rich shale horizon. It is essentially a quartzbiotiteandalusite hornfels with minor amounts of garnet and staurolite. The ore body varies between 40m and 50m in thickness, strikes NW and dips on average 15° to the SW.

The geological map indicates the presence of several regional linear structures, comprising of NESW striking dolerite dykes and NW-SE striking diabase dykes. The drainage line through the mine area runs parallel to the regional orientation of the diabase dykes.

They are usually deeply weathered and deep gullies mark their position on the surface. Their effect on the ore appears to be minimal.

A minimum of four distinct diabase sills, irregularly weathered and probably of Bushveld Igneous Complex origin, are intrusive along bedding planes in the vicinity of and within the ore body. They vary in thickness from 0.5m to 5m and appear to upwardly transgress through the ore body from east to west. The ore above and below these sills, display alteration through contact metamorphism. Only minor faulting and other structural deformation have been observed.

Groundwater occurrence favours weathered shale, brecciated or jointed zones and especially the contact zone between intrusive diabase sheets and shale. These contact zones would usually act as targets for groundwater exploration. On the contrary, it must be stated that little groundwater seepage from the contact zones between shales and diabase/dolerite dykes intercepted in the mining area occur. During the site visit, a small volume of water accumulated at the base of the open quarries was observed. No active dewatering takes place in the open casts. The contact between the diabase and shale where fracturing usually takes place and act as preferential flow paths for groundwater may have been metamorphosed with no distinct contact and consequently, little fracturing. Future exploratory drilling on these contact zones will shed more light on this issue.

9.1 Groundwater use

There is only one existing borehole (ANBH Mine) within the Annesley mining area, which delivers a yield of approximately 10 000 l/d (0.12 l/s). Water from this borehole is used as domestic water (cleaning and personal hygiene purposes only). Some boreholes outside the mining area exist, most of which are being used by the local community.

BH number	Owner	Static water level (mbgl)	User application
ANBH Mine	Annesley Mine	BH Sealed	Domestic use
ANBH Penge	Annesley Mine	78.8	Process Water
ANBH Chief	Segorong chief	BH Sealed	Domestic use
H12-2270	DWS	BH Sealed	Domestic use
BH School	Ga Malepe school	BH Sealed	Domestic use
ANW 1 (well)	Ga Malepe community	0.5	Domestic use

Table 14: Summary of boreholes identified during the hydrocensus

From the hydrocensus data it can be concluded that groundwater is being used as source of potable water in the area. Based on the acquired data, the average yield of a successful borehole in the study area is in the region of 1^ℓ/s (3,600^ℓ/hour). Based on the investigation and data acquired from the mine, a volume of

~1350m³/day of groundwater are being abstracted from the mine and adjacent properties. The majority hereof is being abstracted from the "Old Penge Shaft" which amounts to an average daily abstraction of 1,333m³/day. The mine further abstracts less than 10,000ℓ/day from a borehole ("ANBH Mine") located close to the Annesley plant. The neighbouring communities utilise groundwater for domestic purposes from 4 identified boreholes and 1 hand dug well.

It must be stated that it was not always practically possible to measure the yields of the boreholes and as no records for the boreholes exist, a qualified guess was made. This was done in conjunction with information provided by mine personnel. The same applies to the volume of water being abstracted from boreholes.

9.2 Groundwater levels

The mining area is underlain by a diabase sill of approximately 100m thick and is concordant with the sedimentary rock in which it intrudes. This sill is approximately 40m below the footfall of the ore body. Several dolerite dykes intersect the ore body, but none of these will be mined, leaving the water compartments locally intact. Due to the highly undulating nature of the topography, varied geology and localised presence of dykes and sills, the depth to water table in the B71F quaternary catchment varies significantly. This could be less than 10mbgl in some places and more than 40mbgl at others.

It was not possible to obtain measured water levels from the hydrocensus boreholes due to the fact that all the boreholes identified were sealed to prevent equipment theft and contamination. The water level of the "Old Penge Shaft" was measured to be 78.8mbgl. This is however not representative of the static regional groundwater level as it is deeper than the surrounding boreholes and major pumping from this shaft takes place. The water level in the hand dug well was measured to be at 0.5mbgl. An NGA hydrocensus of registered boreholes in the B71F Quaternary Catchment was therefore undertaken to establish regional groundwater levels for the area.

A total of eight boreholes in the B71F catchment are registered with the Department of Water Affairs (DWA) with only five (5) boreholes located in relatively close proximity to Annesley or within similar geology. The water levels for these boreholes range between 12.93mbgl and 36mbgl.

9.3 Aquifer parameters

Falling head tests ("Slug Tests")

No boreholes were accessible to conduct falling head tests ("slug tests"). The test involves continuous measuring of the water level response in a borehole to the rapid displacement of water therein. This displacement or rise in water level is caused as a result of the introduction of a slug below the rest water level. Data acquired from the "slug tests" are used to calculate the hydraulic conductivity of the substrata in

the immediate vicinity of the borehole in order to get an idea of the groundwater flow velocity. Theoretical K-values are presented in Table 15 in order to compare groundwater flow velocities in different rock types.

Rock Type	K (m/day)
Shale	1 x 10 ⁻⁸ - 1 x 10 ⁻⁶
Sandstone	10 ⁻³ - 1
Limestone	10-5 - 1
Basalt	3 x 10 ⁻⁴ - 3
Granite	1 x 10 ⁻⁴ - 3 x 10 ⁻²
Slate	10 ⁻⁸ - 10 ⁻⁵
Schist	10-7 - 10-4
Groundwater movement	
Extremely slow	1 x 10 ⁻⁶
Very slow	1 x 10 ⁻⁴
Slow	1 x 10 ⁻²
Moderate	1
Fast	10
Very fast	100

Table 15: Comparison of the hydraulic conductivity in different rock types

Keeping the (1) relatively low yielding boreholes, (2) little/no groundwater seepage into the open quarries and (3) occurring geological formations in mind, it can be concluded that groundwater movement at the mine will be very to extremely slow. The rock will have a typical hydraulic conductivity of 10⁻⁶ to 10⁻⁴. The advantage of a low hydraulic conductivity is that any pollutants that might accidently leak to the aquifer will migrate at very slow pace.

9.4 Aquifer classification

The DWS has characterised South African aquifers based on the rock formations in which it occurs together with its capacity to transmit water to boreholes drilled into specific formations. The water-bearing properties of rock formations in South Africa can be classified into four classes defined as:

1. Class A - Intergranular

• Aquifers associated either with loose and unconsolidated formations such as sands and gravels or with rock that has weathered to the only partially consolidated material.

2. Class B - Fractured

 Aquifers associated with hard and compact rock formations in which fractures, fissures and/or joints occur that are capable of both storing and transmitting water in useful quantities.

3. Class C - Karst

 Aquifers associated with carbonate rocks such as limestone and dolomite in which groundwater is predominantly stored in and transmitted through cavities that can develop in these rocks.

4. Intergranular and fractured

 Aquifers that represent a combination of Class A and B aquifer types. This is a common characteristic of South African aquifers. Substantial quantities of water are stored in the intergranular voids of weathered rock but can only be tapped via fractures penetrated by boreholes drilled into the fractured aquifer.

Each of these classes is further subdivided into groups relating to the capacity of an aquifer to transmit water to boreholes, typically measured in I/s. The groups, therefore, represent various ranges of borehole yields.

The water-bearing properties of the shale formations are generally more favourable than those of the quartzites due to their greater susceptibility to weathering. The quartzites do, however, constitute productive aquifers where these rocks are fractured and especially in the presence of ferruginization. Lesser and/ or more isolated groundwater occurrences are associated with fault and associated shear zones and with contact zones between diabase sills, dykes, shale, and quartzite. Water may also occur in occasional joints and fractures in fresh diabase.

Annesley Andalusite Mine is located in a **d3 aquifer class** region. The groundwater yield potential is classed as low to medium on the basis that most of the boreholes on record in the vicinity of the study area produce between 0.5 and 2.0l/s. Higher yields do sporadically occur where groundwater is tapped from good water-yielding fractures.

9.5 Regional aquifer classification

According to the regional aquifer classification map of South Africa, the Timeball Hill aquifer has been identified as a minor aquifer with relatively good groundwater quality (average = <300mg/I TDS). Based on the underlying hydrogeology of the project area the aquifer can be classified according to the Parsons classification system as follows:

- i. Intergranular and fractured shale/quartzites/diamictite of the Timeball Hill Formation
 - a. <u>Minor-aquifer</u>

9.6 Aquifer vulnerability

Tables 16 - 19 summarizes the aquifer classification vulnerability scores for the aquifer/s in the vicinity of Annesley Andalusite Mine. The final DRASTIC score of 101 indicates that the aquifer/s in the region has a medium susceptibility to pollution and a medium level of aquifer protection is therefore required.

Factor	Range/Type	Weight	Rating	Total	
D	15 - 30 m	5	3	15	
R	10 - 50 mm	4	6	24	
А	Fractured	3	6	18	
S	Loamy sand	2	7	14	
Т	0-2%	1	10	10	
1	Pretoria	5	4	20	
С	-	3	-	-	
DRASTIC SCORE = 101					

Table 16: DRASTIC vulnerability scores

In order to achieve the Groundwater Quality Management (GQM) Index a point scoring system as presented in Table 18 and Table 19 was used.

Table 17: Ratings for the Aquifer System Management and Second Variable Classifications

Aquifer System Management Classification					
Class	Points	Study Area			
Sole Source Aquifer System	6				
Major Aquifer System	4				
Minor Aquifer System	2	2			
Non-Aquifer System	0				
Special Aquifer System	0-6				
Second Variable Classification (weathered/fractured)					
High	3				
Medium	2	2			
Low	1				

Table 18: Ratings for the GQM Classification System	18: Ratings for	the GQM CI	lassification System
---	-----------------	------------	----------------------

Aquifer System Management Classification					
Class	Points	Study Area			
Sole Source Aquifer System	6				
Major Aquifer System	4				
Minor Aquifer System	2	2			
Non-Aquifer System	0				
Special Aquifer System	0-6				
Second Variable Classification (weathered/fractured)					
High	3				
Medium	2	2			
Low	1				

The occurring aquifer(s), in terms of the above definitions, is classified as a minor aquifer system. The vulnerability, or the tendency or likelihood for contamination to reach a specified position in the groundwater system after introduction at some location above the uppermost aquifer, in terms of the above, is classified as medium.

The level of groundwater protection based on the GQM Classification (Table 19):

GQM Index = Aquifer System Management x Aquifer Vulnerability

Table 19: GQM index for the study area

GQM Index	Level of Protection	Study Area
<1	Limited	
1-3	Low level	
3-6	Medium level	4
6-10	High level	
>10	Strictly non-degradation	

The ratings for the Aquifer System Management Classification and Aquifer Vulnerability Classification yield a GQM Index of 4 for the study area, indicating that a **medium level groundwater protection** may be required.

Due to the medium/high GQM index calculated for this area, a medium/high level of protection is needed to adhere to DWS's water quality objectives. Reasonable and sound groundwater protection measures are required to ensure that no further cumulative pollution affects the aquifer, even in the long term.

In terms of DWS's overarching water quality management objectives which is i) protection of human health and ii) the protection of the environment, the significance of this aquifer classification is that if any potential risk exists, measures must be triggered to limit the risk to the environment, which in this case is the i) protection of the secondary underlying aquifers and ii)) the non-perennial streams draining the project area.

9.7 Geochemical characterisation

Shangoni (2014) performed a geochemical study on four (4) mine residue deposit (MRD) samples to identify contaminants of concern and risks pertaining to day to day operation of the mine. Stormwater/leachate emanating from these MRDs are directed towards the pollution control and other water management infrastructure. A summary of the geochemical assessment is discussed below.

The waste locations sampled were:

• Overburden

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 70 Assessment Report

- HMS Waste
- Primary Waste
- Slimes Slurry (tailings)

The following tests were included in their assessment:

- Aqueous extraction. This procedure indicates which chemical constituents may be solubilised by deionised water.
- Static acid-base accounting (ABA). Static tests are the analytical tests used as a screening criterion
 of the samples, used to determine the difference between the acid-generating capability and the
 acid-neutralizing potential of the samples. Originally developed for the coal mining industry, this
 procedure provides information on the potential of solids to generate or neutralise acid formation
 and is correlated to the concentration of sulphides and neutralising minerals.

9.7.1 Acid-Base Accounting

The results of the ABA analyses are displayed in Table 20 and rock classification guideline in Table 21. According to these results, all of the samples are classified as a Type III rock, which according to the guidelines imply that they are non-acid forming. This is largely due to the low almost absent sulphur content. Although the *HMS waste* calculated a Neutralising Potential Ratio (NPR), of 1:1.60, the very low sulphur content of the waste resulted in a Type III classification.

Acid-Base Accounting	Sample Identification				
Modified Sobek (EPA-600)	Primary Waste	Overburden	Slimes	HMS Waste	
Paste pH	7.5	8.0	7.9	8.0	
Total Sulphur (%) (LECO)	0.02	0.01	0.02	0.01	
Acid Potential (AP) (kg/t)	0.625	0.313	0.625	0.313	
Neutralization Potential (NP)	7.00	2.50	5.50	0.500	
Nett Neutralization Potential (NNP)	6.38	2.19	4.88	0.187	
NPR (NP: AP)	11.20	8.00	8.80	1.60	
Rock Type	111		111		

Table 20: Results of acid-base accounting

Table 21: Rock Classification

TYPE I	Potentially Acid Forming	Total S(%) > 0.25% and NP:AP ratio 1:1 or less
TYPE II	Intermediate (uncertain)	Total S(%) > 0.25% and NP:AP ratio 1:3 or less
TYPE III	Non-Acid Forming	Total S(%) < 0.25% and NP:AP ratio 1:3 or greater

9.7.2 Leachate analysis

The results of the aqueous extraction test are displayed in Table 22. The results were evaluated according to the SANS 241: 2011 water quality standards. Where no standard is proposed in the SANS guideline or where relevant, health-based water quality standards as proposed by the DWS (DWAF, 1996) were sourced.

Note that the solid-to-liquid ratio of 1:4 used in the aqueous laboratory extractions can be considered relatively similar to reality but it must be stressed that in-situ conditions can never be 100% simulated under laboratory conditions. Therefore, any exceedance of the water quality standards should be treated as an indication of potential contaminants only.

The results in Table 22 indicate that the waste is chemically inactive/inert.

Parameter	SANS 241: 2015	Primary Waste	Overburden	Slimes	HMS Waste
pН	5.0 - 9.7	7.5	8.0	7.9	8.1
TDS	1200.0	156.0	94.0	176.0	140.0
Alkalinity		64.0	44.0	20.0	16.0
(CaCO ₃₎	-	04.0	44.0	20.0	10.0
Chloride (Cl)	300.0	27.0	11.0	25.0	21.0
Sulphate (SO ₄₎	500.0	21.0	9.0	55.0	44.0
Nitrate (NO ₃ -N)	11.0	0.20	1.80	<0.2	<0.2
Fluoride (F)	1.5	1.30	1.00	0.40	0.40
Silver (Ag)	na	<0.025	<0.025	<0.025	<0.025
Aluminium (Al)	0.3	0.282	0.537	0.687	0.471
Arsenic (As)	0.05	0.013	<0.010	<0.010	<0.010
Boron (B)	na	<0.025	<0.025	<0.025	<0.025
Barium (Ba)	na	<0.025	<0.025	<0.025	<0.025
Beryllium (Be)	na	<0.025	<0.025	<0.025	<0.025
Bismuth (Bi)	na	<0.025	<0.025	<0.025	<0.025
Calcium (Ca)	-	<2	2	4	3
Cadmium (Cd)	0.003	<0.005	<0.005	<0.005	<0.005
Cobalt (Co)	0.5	<0.025	<0.025	<0.025	<0.025
Chromium (Cr)	0.05	<0.025	<0.025	<0.025	<0.025
Copper (Cu)	2	<0.025	<0.025	<0.025	<0.025
Iron (Fe)	2	0.137	0.290	0.633	0.511
Potassium (K)	-	<1.00	<1.00	1.0	1.0
Lithium (Li)	na	<0.025	<0.025	<0.025	<0.025

Table 22: Leach results evaluated according to the SANS 241: 2015 water quality guidelines

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 72 Assessment Report

Parameter	SANS 241: 2015	Primary Waste	Overburden	Slimes	HMS Waste
Magnesium (Mg)	-	<2	<2	4	3
Manganese (Mn)	0.5	<0.025	<0.025	<0.025	<0.025
Molybdenum (Mo)	na	<0.025	<0.025	<0.025	<0.025
Sodium (Na)	200	46	28	33	27
Nickel (Ni)	0.07	<0.025	<0.025	<0.025	<0.025
Phosphorous (P)	-	0.028	0.032	<0.025	<0.025
Lead (Pb)	0.01	<0.020	<0.020	<0.020	<0.020
Antimony (Sb)	0.02	<0.010	<0.010	<0.010	<0.010
Selenium (Se)	0.01	<0.020	<0.020	<0.020	<0.020
Tin (Sn)	-	<0.025	<0.025	<0.025	<0.025
Strontium (Sr)	-	<0.025	<0.025	<0.025	<0.025
Titanium (Ti)	-	<0.025	<0.025	<0.025	<0.025
Vanadium (V)	0.2	<0.025	<0.025	<0.025	<0.025
Wolfram (W)	-	<0.025	<0.025	<0.025	<0.025
Zinc (Zn)	5	<0.025	<0.025	<0.025	<0.025
Zirconium (Zr)	-	<0.025	<0.025	<0.025	<0.025

Results are given in mg/l, except for pH

Solid to liquid ratio - 1:4

The salinity (TDS) is low with results ranging between 94 mg/l and 176 mg/l, which is mostly contributed by chloride (Cl), sulphate (SO₄) and sodium (Na), while the pH is neutral to slightly alkaline ranging between 7.9 and 8.1. The primary waste recorded an arsenic (As) concentration of 0.013 mg/l which slightly exceeds the SANS guideline but is still within DWS health-based guideline of <0.05 mg/l. None of the remaining parameters exceed the SANS guideline and is overall of good quality and of fairly low/inert chemical reactivity.

9.8 Water quality

9.8.1 Sampling sites

Water quality data was sourced from the client and from the Shangoni (2014) report. Information pertaining to the available water quality datasets are shown in Table 23.

Site ID	Coordinates	Site type
ANW1	S24.44250° E30.27653°	Hand dug well
BH School	S24.42535° E30.28083°	Domestic use borehole (No access)
ANBH Penge	S24.38356° E30.28016°	Production borehole (old Penge shaft)

Table 23: Water sampling points for chemical constituents

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 73 Assessment Report

Site ID	Coordinates	Site type
ANBH Chief	S24.38843° E30.24434°	Handpump for domestic use
H12 2770	S24.38797° E30.23859°	Open borehole (Dry)
ANBH Mine	S24.39388° E30.25409°	Borehole for domestic use downgradient from Pollution control dam
ANDITIMINE 324.39300 E30.23409		(PCD) (hygiene only)
ANQ6	S24.41533° E30.27315°	Quarry 6 open pit (rainwater)
PCD	S24.394420 E30.254050	PCD (Emergency Dam)
Village	S24.6572 E30.33473	Village borehole (staff housing Burgersfort)

9.8.2 Water quality

9.8.2.1 Interpretation according to relevant standards

Standards & guidelines applicable to the geohydrological investigation were the South African water quality guidelines namely i) the domestic colour coded classification system and; ii) the South African National Standard for drinking water. The hydrochemical results for the water samples taken at Annesley Andalusite Mine interpreted according to the South African drinking water guidelines, are displayed in Table 24.

Table 24: Hydrochemical data

Site Name	SANS	ANBH Chief	ANQ6	PCD	Proces	ANBH	ANBH	ANW	Village
	241: 2011				s water	Penge	Mine	1	boreho
									le
рН	≥5 to ≤9.7	6.99	8.93	7.94	8.1	8.05	7.13	5.56	8.34
EC (mS/m)	≤170	89.2	92.8	432	314	255	311	4.8	145
TDS (mg/l)	≤1200	503.2	523.5	2683	2041	1438.6	1754.5	27.2	818
Ca (mg/l)	-	49.3	41.5	161	148	164.0	195.0	2.4	5.27
Mg (mg/l)	-	38.8	35.5	166	131	154.0	133.0	1.0	165
Na (mg/l)	≤200	58.6	80.9	351	257	180	312	2.7	78.1
K (mg/l)	-	2.1	2.9	3.97	11.0	43.3	8.3	1.1	7.91
MALK (mg/l)	-	268.0	113.0	195.7	311	288.0	311.0	7.7	505
CI (mg/l)	≤300	68.2	170.0	548.8	394	369.0	500.0	3.9	165
SO₄ (mg/l)	≤500 ≤250*	22.8	62.9	582	517	632.0	746.0	3.6	58
NO ₃ -N (mg/l)	≤11	0.287	0.628	<0.02	1.21	0.343	1.16	0.311	6.98
PO₄ (mg/l)	-	<0.008	<0.008	<0.02	0.008	<0.008	0.008	<0.00 8	0.078
N_Ammonia (mg/l)	≤1.5*	0.009	0.022	-	0.030	0.086	0.012	0.062	0.017
F (mg/l)	≤1.5	0.70	0.54	<0.05	1.1	0.51	1.11	0.16	0.331
Al (mg/l)	≤ 0 .3 [#]	<0.003	<0.003	-	-	<0.003	<0.003	<0.00 3	<0.003
Fe (mg/l)	≤2 ≤0.3*	0.506	<0.003	<0.02	0.010	<0.003	<0.003	<0.00 3	<0.003
Mn (mg/l)	<u>≤0.5</u> ≤0.1*	0.17	<0.001	<0.005	0.090	1.37	<0.001	0.015	<0.001

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 74 Assessment Report

Site Name	SANS	ANBH Chief	ANQ6	PCD	Proces	ANBH	ANBH	ANW	Village
	241: 2011				s water	Penge	Mine	1	boreho
									le
Cr (mg/l)	≤0.05	<0.001	<0.001	-		<0.001	<0.001	<0.00	-
								1	
Cu (mg/l)	≤2.0	<0.001	<0.001	-		0.003	0.021	<0.00	-
								1	
Ni (mg/l)	≤0.07	<0.001	<0.001	-		<0.001	<0.001	<0.00	-
								1	
Zn (mg/l)	≤5*	3.35	<0.002	-		<0.002	<0.002	<0.00	-
_								2	
Co (mg/l)	≤0.5	0.001	<0.001	-		<0.001	<0.001	<0.00	-
								1	
Cd (mg/l)	≤0.003	<0.001	<0.001	-		<0.001	<0.001	<0.00	-
Die (os off)	10.01	10.001	10.004			10.001	10.001	1	
Pb (mg/l)	≤0.01	<0.004	<0.004	-		<0.004	<0.004	<0.00	-
A = ((1))	<0.04	10.007	-0.007			10.007	-0.007	4	
As (mg/l)	≤0.01	<0.007	<0.007	-		<0.007	<0.007	<0.00	-
	<0.04	-0.007	-0.007			<0.007	-0.007	7	
Se (mg/l)	≤0.01	<0.007	<0.007	-		<0.007	<0.007	<0.00 7	-
Si (mg/l)	-	19.3	3.31	-		14.1	23.8	6.42	-
	-	<0.001	<0.001	-		<0.001	<0.001	< 0.00	-
Ag (mg/l)	-	<0.001	<0.001	-		<0.001	<0.001	<0.00 1	-
B (mg/l)	-	0.029	0.026	-		0.241	0.284	0.01	-
Be (mg/l)	-	< 0.001	< 0.001	-		< 0.001	<0.001	< 0.00	_
De (ilig/i)	-	40.001	40.001			-0.001	-0.001	1	
Bi (mg/l)	-	0.012	< 0.004	-		< 0.004	< 0.004	< 0.00	-
51 (0.012	0.001			0.001	0.001	4	
Li (mg/l)	-	0.021	0.026	-		0.033	0.04	0.002	
Mo (mg/l)	-	0.018	0.013	-		0.017	0.042	0.006	-
Sr (mg/l)	-	0.224	0.302	-		0.665	1.34	0.013	-
TI (mg/l)	-	<0.037	< 0.037	-		< 0.037	<0.037	< 0.03	-
		0.001	0.000			01001	0.001	7	
V (mg/l)	≤0.2	<0.001	0.004	-		<0.001	0.034	< 0.00	-
								1	
Sb (mg/l)	≤0.02	0.002	0.002	-		0.003	0.021	0.001	-
Sn (mg/l)	-	<0.001	< 0.001	-		0.083	0.075	<0.00	-
								1	
Tot Hardness	-	283	250	-		1044	1035	10.01	-
(mg/l) DWA Classificat	ion	Good	Good	Poor	Margin	Poor	Poor	Ideal	Good
DWA CIASSIIICAT		Class 1	Class	class	al	class 3	class 3	Class	Good Class 1
			1	3	Class 3 EC/TD			0	50/70
Worst para	meters	EC/TDS, Fe, Mn	EC/TD S, CI	EC/TD S	S, CI,	SO4	SO4	-	EC/TD S, Cl
					Na				_, _ .

The following can be concluded:

- ANBH Chief, Quarry 6 (ANQ6), the hand dug well (ANW1) and the Village borehole recorded within the SANS 241: 2011 drinking water quality guidelines. The hand-dug well (ANW1) can be classified as *Ideal (Class 0)* while ANBH Chief, Quarry 6 and the Village borehole can be classified as *Good* (*Class 1*).
- ANBH Chief and Quarry 6 recorded within Good (class 1)¹ drinking water standards (WRC, 1998) with EC/TDS, Fe and Mn, and EC/TDS and CI exceeding *Ideal* (class 0) standards, respectively. The quality of these samples can be described as neutral (ANBH Chief) to slightly alkaline (ANQ6) with relatively fresh water. The borehole *ANBH Chief* recorded slightly raised Fe and Mn but this not an uncommon occurrence within groundwater where low levels of oxygen are present (solubility of Fe and Mn is, amongst others, correlated to an increasing reducing environment). *Quarry 6* water quality is reminiscent of an open and natural water body with an evaporation signature (Na-CI).
- The hand-dug well (ANW1) recorded to within *Ideal* (class 0) drinking water standards.

The hydrochemistry for the borehole on-mine (*ANBH Mine*), as well as the *PCD*, the Penge Shaft water, and the mine *process water*, all exceed the SANS 241: 2015 drinking water quality guidelines. Exceedance was measured in terms of:

• Salinity (EC/TDS), CI and SO₄ including Mn in *ANBH Penge* and Na in *ANBH Mine*.

They are classified as *Marginal* (*Class 2*) to *Poor* (*Class 3*) according to the colour coded classification system proposed by the DWS (WRC, 1998) mostly due to the high to elevated EC/TDS and SO₄, Cl and/ Na concentrations. The profiles can be described as neutral, relatively saline and extremely hard with high levels of Ca, Mg, Cl and Na and high to elevated levels of SO₄.

9.8.2.1 Groundwater Composition

Major ion composition of the water is used to classify it into various chemical types. Piper, Stiffs and a Schoeller diagram were used to present this classification graphically.

The Piper and Stiffs in Figure 10 and 11, respectively indicate that:

 Groundwater from ANBH Chief is typical of fresh recently recharged groundwater with a distinct Mg/Ca-HCO₃⁻ character.

¹ Note that classification in terms of drinking water is only according to hydrochemical parameters analysed and is not a suggestion of safe use.

- Quarry 6 (*ANQ6*) displays a water type characteristic of rainwater subjected to evaporation mixed with water of a Mg-SO₄ type character. This water type may also be an indication of ion exchange with the host rock.
- The hand-dug well displays a signature of a Na-HCO₃⁻ type water that is typical of shallow and 'open' groundwater systems in close contact with igneous types of rock or that has an evaporative signature.
- Groundwater from the Penge Shaft (*ANBH Penge*), the on-mine borehole (*ANBH Mine*), including the process water and *PCD* group together and display **similar signatures** based on their respective Stiff diagrams. All four hydrochemical sets display distinct Na/Mg-SO₄(Cl) characters.

A Schoeller diagram displaying the ion ratios for the sampling localities was constructed and shown in Figure 12. The diagram indicates similar ion compositions for the process water, ANBH Mine, and ANBH Penge, the process water sample, and water within the PCD. Background groundwater sources display unrelated signatures compared to groundwater from the on-mine borehole – ANBH Mine, located downgradient from the PCD.

Water abstracted from the Penge Shaft and used in the plant is polluted most probably due to historical mining activities at the old Asbestos Penge Mine and/ or due to the depth of the shaft. The fact that the groundwater from the Penge Shaft, the on-mine borehole, the process water and the PCD share very distinct similarities in ion composition, point towards a process related groundwater contamination effect as measured in the groundwater at ANBH Mine. The greatest contributing factor to the poor water quality of ANBH Mine is most probably related to the use of process water sourced from the Penge Shaft since the nature of the ore and mine residue deposits is chemically unreactive or inert. The pathway for pollution is either from leaching of the process water storage facilities such as the PCD or from process water spillages.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 77 Assessment Report

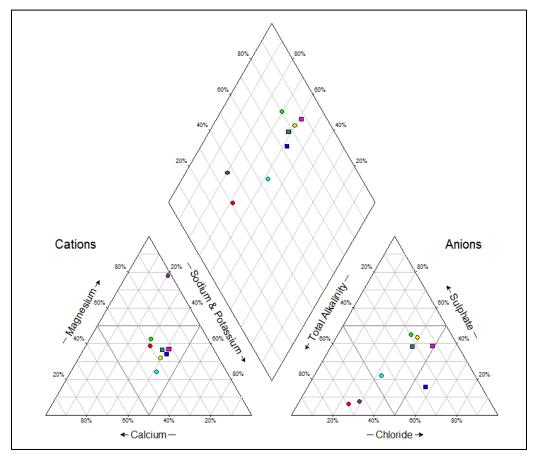


Figure 10: Piper diagram indicating the relative distribution of major cations and anions

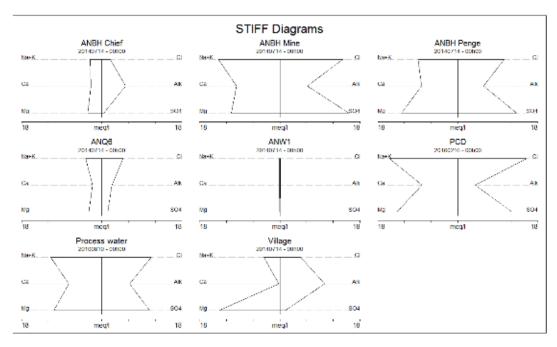


Figure 11: Stiff diagrams indicating the relative distribution of major cations and anions

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 78 Assessment Report

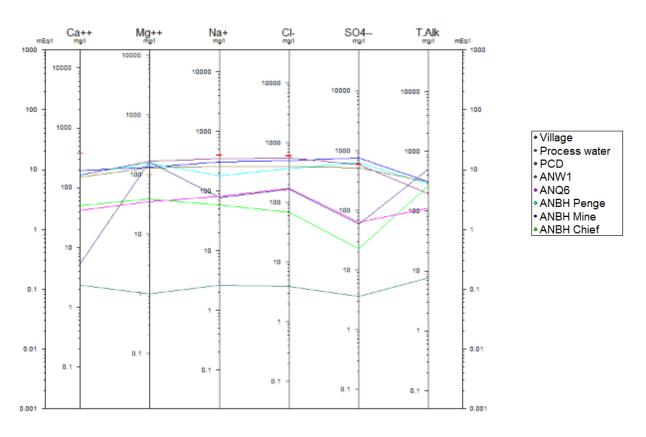


Figure 12: Schoeller diagram indicating the relative distribution of major cations and anions

9.9. Conceptual model

In a typical geohydrological setting, groundwater flow and aquifer development are closely linked to the geology of an area, which is no different for the aquifers underlying Annesley Andalusite Mine.

The area under investigation is underlain by the Timeball Hill Formation that forms part of the Pretoria Group and mainly comprises of andesitic lava, shale, and quartzite. Sills and dykes do occur widespread within the study area and groundwater occurrence generally favours these contact zones between intrusive diabase sheets/dykes and the host shale. These contact zones would usually act as targets for groundwater exploration as they may create preferential flow pathways for the movement of groundwater. However, a study by Aurecon (2010) revealed that that little/no favourable groundwater was intercepted on the contact zones between shales and diabase/dolerite dykes. It is expected that contact between the diabase and shale, where fracturing usually takes place and where preferential flow paths may exist, may have been metamorphosed with no distinct contact and consequently little fracturing. In addition, very small volumes of groundwater seepage into the mining pits occur. This emphasizes the impervious nature of the rock and an assumption can be made that groundwater flow in the occurring aquifers will be very slow. However, groundwater quality data suggest that the on-mine borehole is of poor quality displaying similar signatures to the upgradient PCD (emergency dam) and process water, and seepage is therefore expected to occur

from the dam/s. The ore and mine residue deposits are chemically inert, and therefore the abstraction and use of process water from the old Penge Shaft are believed to be the major contributor to the substandard water quality measured.

Based on hydrocensus information, it can be concluded that aquifer system in the study area is classified as a "Minor Aquifer System". The local population are not solely dependent on groundwater and borehole yields are generally low.

A geochemical study on waste material and mine residue conducted by Shangoni Management Services in 2014 (Shangoni, 2014) revealed that the ore and the waste material generated on site are chemically inert. The leachate tests revealed that none of the parameters exceeded the SANS guideline, is overall of good quality and of fairly low chemical reactivity. A 1:4 (solid: leachate) ratio was used in the extraction tests and although this is unlikely to be replicated *in-situ*, it is sometimes regarded as a more representative ratio to use compared to the general 1:20.

10 Air quality

Information included in this section was sourced from 'Greater Tubatse Local Municipality Integrated Development Plant' (Greater Tubatse Local Municipality, 2015/16), 'Annesley Andalusite Mine Annual Report (March 2016 – February 2017) (nd, 2017), 'Annesley Andalusite Mine Ambient Air quality monitoring programme' (Shangoni Management Services, 2016), and 'South African Air Quality Information System – Air quality priority areas (http://www.saaqis.org.za/Priority%20Areas.aspx)

The Tubatse Local Municipality is found in the North eastern part of the District. The main towns in the area are Burgersfort and Steelpoort. The main activity in this area is the mining of chrome and platinum. There are also three chrome smelters in the area. This then means that the area is likely to have air pollutants like sulphur dioxide, nitrous oxides, chromium (VI) and particulate matter. There is also significant traffic in the area due to the transportation of minerals which introduces a substantial pollution from the vehicles. Other pollutants like pesticides can also emanate from the farms around Ohrigstad towards Burgersfort, of which the extent has not yet been determined.

Currently, the district has three passive air quality monitoring stations which are being monitored by an independent company. The pollutants being monitored include SO2, NOX and Fallout dust. (GTM IDP, 2015/16).

According to the South African Air Quality Information System (www.saaqis.org.za), Annesley Andalusite Mine is not situated in an air quality priority area (refer to Figure 13 below).

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 80 Assessment Report

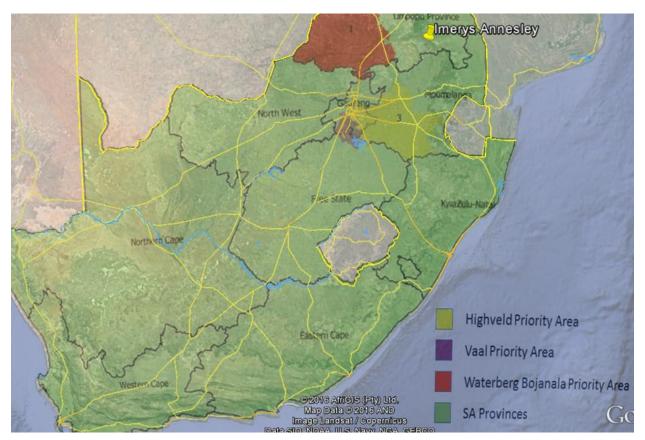


Figure 13: Air quality priority areas (www.saagis.org.za)

11 Environmental noise

Information for this section was extracted from the 'Approved EMP (nd, nd):

No baseline values were determined as the area is classified as rural and the statutory requirement for such areas is known to be 45dB. The only source of noise beyond the boundaries of the mine is expected to be low volume traffic noise from public roads.

12 Visual aspects

There is no specialist study done on visual aspects. The comment below is based on assumptions made during site visits.

Havercroft Mine Operation is visible from the scattered residential areas of the local inhabitants and from the access roads.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 81 Assessment Report

13 Cultural and heritage resources

Information for this section was extracted from the Approved EMP (Shangoni Management Services, 2006), and the EMP PAR (BECS Environmental, 2015):

Some tools dating to the Early and Middle Stone Age were found within the boundaries of Segorong village but are of low archaeological significance.

No archaeological site dating to the Iron Age was identified in the area of the mining area.

14 Sensitive features

According to the EMP (Shangoni Management Services, 2006), no red data vegetation species were noted but a protected tree species *Adonsonia digitata* (Baobabs) occurs in the low-lying area between the Motse River and Modubeng Spruit, outside of the mine area. *Euphorbia* species were found on the mine. It is unclear where these plant species are situated.

The grey rhebuck and leopard are endangered species in the area.

Havercroft Operation falls within the Sekhukhune Norite Bushveld which is an endangered threatened ecosystem. The area surrounding the quarries are classified as Critical Biodiversity Area 1.

15 Regional socio-economic aspects

Information for this section was extracted from the IWWMP (Shangoni Management Services, 2012):

The mining site is situated within the Sekhukhune District Municipality and Greater Tubatse Local Municipality. The statistics indicated in the table below was generated by the Demarcation Board and was valid as of March 2000.

Statistic	Number	Statistic	Number
No. of Households	1,410	Age breakdown	
Population		0-4	1,085
African	7,625	5-19	3,531
Coloured	12	20-29	1,155
Indian	0	30-49	1,143
White	12	50-64	426
Unspecified	33	Over 65	294
Gender		Age Unknown	55

Table 25: Socio-economic statistics for the area

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 82 Assessment Report

Statistic	Number	Statistic	Number
Male	3,434		
Female	4,246		
Annual individual income		Annual household income	
None	6,740	None	472
R1 – 2,400	86	R1 – 2,400	163
R2,401 – 6,000	366	R2,401 – 6,000	313
R6,001 – 12,000	121	R6,001 – 12,000	182
R12,001 – 18,000	91	R12,001 – 18,000	96
R18,001 – 30,000	62	R18,001 – 30,000	54
R30,001 – 42,000	67	R30,001 – 42,000	39
R42,001 – 54,000	49	R42,001 – 54,000	28
R54,001 – 72,000	20	R54,001 – 72,000	22
R72,001 – 96,000	3	R72,001 – 96,000	16
R96,001 – 132,000	3	R96,001 – 132,000	5
R132,001 – 192,000	3	R132,001 – 192,000	4
R192,001 – 360,000	1	R192,001 – 360,000	3
Over R360,000	0	Over R360,000	0
Unspecified	70	Unspecified	13

1. Major economic activities and sources of employment

- Annesley Andalusite Mine;
- Local shops;
- Schools and
- Farmers in the Burgersfort/Steelpoort areas.

2. Unemployment estimate for the region

Statistics are misleading as rural communities don't always understand the difference between selfemployed, employed, unemployed and pensioner. It is estimated that only about 11% of the residents are formally employed.

3. Housing demand, and availability

The mine is in the Malepe Tribal Area and land allocation is informal. The land is administrated as a communal land where small plots are allocated on a "Permission to Occupy" (PTO) basis. A number of formal townships have been established in the region, or is in the construction phase, and stands are readily available.

- 4. Social infrastructure schools, hospitals, sporting and recreating facilities, shops, police, civil administration
 - Churches at Segorong: 4 churches namely; Baptist Church, Segorong RCC, Apostolic Church, St Engenas ZCC.
 - Schools in Segorong: Segorong Primary School: (260 pupils, 8 teachers) and Madikoloshe Secondary School (126 pupils, 9 teachers);
 - Businesses in Segorong: Magana Gokatwa (bottle store, not in use), Hygienic Butchery (not in use), Matikwene Eating house (active), Majestic Café, Super Saving Store (active);
 - Health Services: Hospital at Penge;
 - Recreation Facilities: None;
 - Police: Burgersfort;
 - Civil Administration: The authority in the area is the Malepe Tribal Authority and is in the jurisdiction of the Sekhukhune Local Municipality. The Administrative Centre is at Praktiseer, some 24 km to the south.
- 5. Bulk services
 - Process water to the mine is pumped from the old mine at Penge;
 - Bulk water supply to Segorong Village is from a tank fed by a fountain;
 - There is no internal water reticulation in Segorong. The community collects the water at the storage tank and carries it to their houses;
 - No waste removal services exist;
 - Existing sewerage varies from ordinary pit latrines with makeshift structure to no sewerage at all;
 - The high voltage power line to Penge passes through the property and a low voltage line from the Penge substation supplies electricity to the mine;
 - There is no electricity in Segorong Village.
 - Key Economic Activities

There are no Gross Geographic Product (GGP) estimates available for Sekhukhune Cross-Border District Municipality, in which the Annesley Andalusite Mine – Segorong Project resides since the demarcation was done in December 2000. The closest proxy is to consider sectoral employment. However, there is not a strict correlation between employment and GGP, because a sector such as agriculture has a considerably higher employment co-efficient than a sector such as mining, which is more capital intensive. Sectoral employment figures for Sekhukhune Cross-Border District Municipality are reflected below because these are the best available at present.

Sector	Employment number		
Agriculture, hunting; forestry and fishing	11357		
Mining and quarrying	5618		
Manufacturing	3315		
Electricity; gas and water supply	707		
Construction	3299		
Wholesale and retail trade	9180		
Transport; storage and communication	2668		
Financial, insurance, real estate and business services	2736		
Community, social and personal services	17250		
Other and not adequately defined	6		
Private Households	7642		
Undetermined	6844		
Total	70622		

Community services, which are mostly government, is the largest employer by far, accounting for 25% of employment. It is probably also the largest contributor to GGP. It is evident that government is far more dominant in the Limpopo portion of Sekhukhune than in Mpumalanga.

The second biggest employer is agriculture and hunting, with 16% of total employment. In this case, Mpumalanga is the dominant contributor. Trading activities are in third place (13%) and this time the relative contributions from Limpopo and Mpumalanga are more balance, but with Limpopo ahead. This is a reflection of the larger number of people living in the Limpopo part of Sekhukhune district.

Private household activities are in fourth place at 11%. This time Mpumalanga is well ahead, reflecting the domestic work opportunities that are available at Groblersdal, Marble Hall, and Burgersfort. Mining is only the fifth largest employer, but probably the largest or second largest contributor to GGP. Limpopo, with its platinum mines in Tubatse and Fetakgomo, is the dominant area.

All the other sectors, including manufacturing and construction, are relatively small, accounting for less than five percent of total employment each. In-migration is likely to be less than 3000 of the total employment of almost 71,000, which is less than 5%. However, in addition to the total number of locally employed persons, there are probably at least 42,000 men who have families in Sekhukhune district, but who work elsewhere.

v) Impacts and risks identified including the nature, significance, consequence, extent, duration, and probability of the impacts, including the degree to which these impacts

1 Impact assessment and management methodology

The significance methodology is based on the requirements as set out in the National Guideline on Minimum Information of 2018, GN 86 in terms of the NEMA. The impact methodology also includes all the requirements as set out in the EIA Regulations of 2014, GN 982 (as amended) in terms of the NEMA. Appendix B of the Operational Guideline to Integrated Water and Waste Management of 2010 in terms of the NWA, which contains the quantitative risk assessment is also included. This operational guideline is used because certain cases described in the impact assessment are water based. Appendix A of the General Authorisations of 2016, GN 509 in terms of the NWA were used to construct a risk matrix for any activity that impedes or diverts the flow of water in a watercourse and alters the bed, banks, course or characteristics of a watercourse. In rehabilitation and closure impact assessments the requirements as set out in regulation 60 of the Mineral and Petroleum Resources Development Regulations of 2004, GN 527 in terms of the MPRDA as well as the requirements set out in the Regulation Pertaining to the Financial Provision for Prospecting, Exploration, Mining or Production Operations of 2015, GN 1147 (as amended) in terms of NEMA are also included. Section 3(b) of the General Authorisations of 2016, GN 509 in terms of the NWA states that a suitably qualified SACNASP professional member must determine risks associated with this risk matrix.

Impact management is based on the requirements as set out in the National Guideline on Minimum Information of 2018, GN 86 in terms of the NEMA; as well as the requirements as set out in the EIA Regulations of 2014, GN 982 (as amended) in terms of the NEMA. The mitigation hierarchy, as part of the impact management, used is adopted from the Mining and Biodiversity Guideline (Mainstreaming Biodiversity into the Mining Sector) IDB of 2013 in terms of the MPRDA to provide a clear approach for avoiding impact on the surrounding environment.

Impact identification and prediction means forecasting the change of environmental parameters due to developmental patterns. These parameters may also be changing due to climate change and should be included. Impact identification and prediction is a stepwise procedure to identify the direct, indirect and cumulative impacts (relating to both positive and negative impacts) for which a proposed activity and its alternatives will have on the environment as well as the community. This should be undertaken by determining the geographical, physical, biological, social, economic, heritage and cultural sensitivity aspects of sites and locations as well as the risk of impact of the proposed activity. Refer to part A(h)(iv) for a complete description of these environmental attributes. Sources of data to be used for gathering data on the environmental attributes as well as the impacts include; monitoring / sampling data collected and stored, assumptions and actual measurements, published data available from the departments or other stakeholders in the area as well as specialist studies.

A matrix selection process is the most common methodology used in determining and ranking the site sensitivities:

- The consequence: includes the nature / intensity / severity of the impact, spatial extent of the impact, and duration of the impact.
 - The nature / intensity / severity of the impact: An evaluation of the effect of the impact related to the proposed development on the receiving environment. The impact can be either positive or negative. A description should be provided as to whether the intensity of the impact is high, medium or low or has no impact in terms of its potential for causing negative or positive effects. Cognisance should be given to climate change which may intensify impacts.
 - The spatial extent of the impact: Indication of the zone of influence of the impact: A description should be provided as to whether impacts are either limited in extent or affect a wide area or group of people. Cumulative impacts must also be considered as the extent of the impact as may increase over time.
 - The duration of the impact: It should be determined whether the duration of an impact will be short-term, medium term, long term or permanent. Cumulative impacts must also be considered as the duration of the impact as it may increase over time.
- The likelihood: includes the probability of the potential occurrence of the impact, and frequency of the potential occurrence of the impact
 - The probability of the impact: The probability is the quality or condition of being probable or likely. The probability must include the degree to which these impacts can be reversed; may cause irreplaceable loss of resources; and can be avoided, managed or mitigated
 - The frequency of the potential occurrence of the impact.
- The significance: This is worst case scenario without any management measures. See below how significance is determined: Impact that may have a notable effect on one or more aspects of the environment or may result in noncompliance with accepted environmental quality standards, thresholds or targets and is determined through rating the positive and negative effects of an impact on the environment based on criteria such as duration, magnitude, intensity and probability of occurrence. Mitigation measures should be provided with evidence or motivation of its effectiveness

Significance of impacts should be determined for each phase of the mining lifecycle this includes; preconstruction, construction, operational, closure (including decommissioning) and post closure phases.

Likely impacts should be described qualitatively and then studied separately in detail. This provides consistent and systematic basis for the comparison and application of judgements. Ratings should then be assigned to each criterion. The significance of impacts should further be assessed both with and without mitigation action. Impact magnitude and significance should as far as possible be determined

by reference to either legal requirements (accepted scientific standards) or social acceptability. If no legislation or scientific standards are available, the EAP can evaluate impact magnitude based on clearly described criteria.

The description of significance is largely judgemental, subjective and variable. However, generic criteria can be used systematically to identify, predict, evaluate and determine the significance of impacts resulting from project construction, operation and decommissioning. The collection of potential impacts (environmental and social) identified during the environmental assessment should as far as possible be quantified. The process of determining impact magnitude and significance should never become mechanistic. Impact magnitude is determined by empirical prediction, while impact significance should ideally involve a process of determining the acceptability of a predicted impact to society. Making the process of determining the significance of impacts more explicit, open to comment and public input would be an improvement of environmental assessment practice.

Acceptable without further mitigation: Risks classified as posing potential significant risks are assessed whether these risks are acceptable without further mitigation. Criteria and standards that exist for acceptability are either emissions-based or they relate to the receiving environment (e.g. air quality, water quality or noise). Establishing the acceptability of a potential impact is as important as determining its significance. An impact identified as being non-significant by a specialist may be unacceptable to a section of the community. On the other hand, a significant impact may be acceptable if, for example, adequate compensation is given. The level of acceptability often depends on the stakeholders, particularly those directly affected by the proposed project. Ratings that can be used for acceptability are given. Targets for acceptability are defined through the most sensitive receptors and through achievable outcomes.

Residual and latent risks: substantiation why each risk is latent, including why the risk was not or could not be mitigated during concurrent rehabilitation and remediation or during the implementation of the final rehabilitation, decommission and closure plan;

Also included is a description of the expected timeframe in which the risk is likely to manifest; a detailed description of the triggers which can be used to identify that the risk is imminent or has manifested, how this will be measured and any cost implications thereof; and results and findings of the risk assessment.

The following table is an example of the impact assessment methodology followed. The activities arising from each phase will be included in the impact assessment tables. This is to identify activities that require environmental management actions for mitigation measures. The assessment of impacts will be conducted according to the synthesis of criteria required by the integrated environmental management procedure.

- In the event of a rehabilitation or closure impact assessment an additional risk assessment will be undertaken:
- a detailed description of the drivers that could result in the manifestation of the risks, to be
 presented within the context of closure actions already having been implemented during the
 execution of concurrent rehabilitation or during the implementation of the final rehabilitation,
 decommission and closure plan;
- the undertaking of a screening level environmental risk assessment where (i) all possible environmental risks are identified, including those which appear to be insignificant; (ii) the process is based on the input from existing data; (iii) the risks that are considered are qualitatively ranked as (aa) a potential significant risk; (bb) a uncertain risk; (cc) an insignificant risk;
- the undertaking of a second level risk assessment on issues classified as potential significant risks where (i) appropriate sampling, data collection and monitoring be carried out; (ii) more realistic assumptions and actual measurements be made; and (iii) a more quantitative risk assessment is undertaken, again classifying risks as posing a potential significant risk or insignificant risk
- risks classified as uncertain risks must be re-evaluated and re-classified as either posing potential significant risks or insignificant risks;
- document the status of insignificant risks; and
- an explanation of changes to the risk assessment results as applicable in annual updates to the plan.

When dealing with management, impact management outcomes must: be set for the expected activitybased impacts as identified per project phase as in the impact identification and significance rating process; be informed by stakeholder expectations and ensure legal compliance; be clearly documented; be measurable to determine compliance; describe the desired outcome of the management measure/s prescribed or the standard to be achieved; and be aligned to the mines closure objectives.

Management statements detail the processes, procedures and practices required to achieve an impact management outcome. A hierarchy of management tools used can also be used as seen below.

Policy

Set of policies are principles, rules and guidelines formulated to reach an organisation long-term goals.

Standards

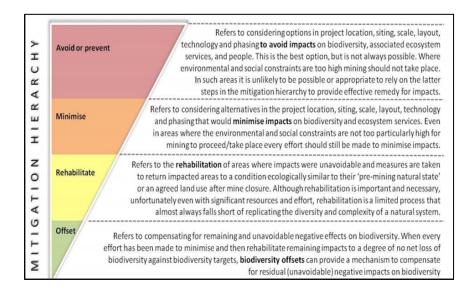
A document that provides requirements, specifications, guidelines or characteristics that can be used consistently to ensure that materials, products, processes and services are fit for their purpose.

Operating procedures

Established or prescribed methods to be followed routinely for the performance of designated operations or in designated situations.

Key Performance Indicators

Measurable value that demonstrates how effectively a company is achieving key business objectives


Managing measures contemplated can be grouped into:

- Modification measures changes to process and or practices to reduce risk.
- Control either through physical control or operational practices to ensure acceptable performance is maintained.
- Remedial action rehabilitation and pollution clean-up processes and practices.
- Avoidances where activities can be mitigated to an acceptable level, these are stopped or avoided.

As a further measure to management the mitigation hierarchy of the 2013 Mining and Biodiversity Guideline must also be incorporated. The aim is to prevent adverse impacts from happening or, where this is unavoidable, to limit their significance to an acceptable level.

In order to alleviate environmental harm, mitigation should include measures in the following order of priority as set out in the 2013 Mining and Biodiversity Guideline:

- Avoid or prevent loss to biodiversity and ecosystem services.
- Minimise impacts on biodiversity and ecosystem services.
- Rehabilitate concurrently or progressively with the proposed activity, and/or on cessation of the activity.
- Offset significant residual negative impacts on biodiversity or ecosystem services.

It is important to note that the mitigation hierarchy is applied to any stage of mining activity in the context of the biodiversity priority areas of information to determine the importance or sensitivity of the receiving

area. The following subsections will describe the four measures in the mitigation hierarchy listed above, introduce the notion of enhancement, and establish the boundaries of responsibility for mitigation and enhancement.

Avoiding or preventing impacts

If the biodiversity (an ecosystem, habitat for threatened species, ecological corridor or area that provides essential ecosystem services) is of conservation value or importance, it is best to plan to avoid or prevent impacts altogether by changing the location, siting, method or processes of the mining activities and related infrastructure.

Minimising impacts

Minimising impacts of mining is a mitigation measure that deals with the environment in general. In areas where the biodiversity is to be affected is of conservational value or importance, then every effort should be made to minimise those impacts that cannot be avoided or prevented. Mining companies should strive to minimise impacts on biodiversity to ensure environmental protection. Section 2 of NEMA contains environmental management principles that resonates with minimising the impact rather than stopping at mitigation, this is imperative in the mining sector.

Rehabilitating impacted areas

Rehabilitation is the measures that are undertaken to "as far as it is reasonably practicable, rehabilitate the environment affected by the prospecting or mining operations to its natural or predetermined state or to a land use which aligns to the generally accepted principle of sustainable development. A closure plan is an essential part of rehabilitation and must be developed based on the establishment of the closure objectives and criteria.

Biodiversity offsets

Biodiversity offsets are measurable conservation gains that help to balance any significant biodiversity losses that remain after actions to avoid, minimise and restore negative impacts have been taken. They are the last stage of mitigation and should be considered after appropriate avoidance, minimisation, and rehabilitation/restoration measures have been applied already.

Management measures to be implemented for the potential significant risks that must include:

- a description of the management measures to be applied; a predicted long-term result of the applied management measures;
- the residual and latent impact after successful implementation of the management measures;
- time frames and schedule for the implementation of the management measures;
- responsibilities for implementation and long-term maintenance of the management measures;
- financial provision for long-term maintenance; and
- monitoring programmes to be implemented.

Environmental component:

Activity:

Method for assessing risks:

			Before	With
			management	management
	Nature / Inten	sity / Severity of Impact		
	Low	Impacts affect the environmental in such a way that	1	
		natural, cultural and/or social functions and		
		processes are not affected.		
	Medium	Impacts affect the environment in such a way that	3	
		natural, cultural and/or social functions and		
		processes are altered		
	High	Impacts affect the environment in such a way that	5	
		natural, cultural and/or social functions and		
		processes will temporarily or permanently cease.		
	Spatial extent	t of Impact		1
	On-site	Impact occurs on-site	1	
щ	Local	Impact occurs within 5km radius of the site	2	
CONSEQUENCE	Regional	Regional Impact occurs within a 100km radius of the	3	
QUI		site		
NSE	National	National Impact occurs within South Africa	4	
COI	International	Impact occurs internationally	5	
	Duration of In	npact		1
	Short-term	Through dilution and dispersion, the impact reduces	1	
		to insignificant within 1 week.		
	Medium-term	Through dilution and dispersion, the impact reduces	2	
		to insignificant within the life of the mine.		
	Long-term	The impact will cease after the operational life of the	3	
		mine either because of natural process or by human		
		intervention		
	Permanent	Where mitigation either by natural process or by	4	
		human intervention will not occur in such a way or in		
		such a time span that the impact can be considered		
		transient.		
	Probability of	potential occurrence of the Impact		
LIKELIHOOD	Improbable	The possibility of the impact materializing is very low	1	
		either because of design or historic experience		
	Probable	There is a distinct possibility that the impact will occur	2	
	Highly	It is most likely that the impact will occur	3	
	probable			
	Definite	The impact will occur regardless of any prevention	4	
		measures		
	Frequency of	potential occurrence of the Impact		

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 92 Basic Assessment Report

									E	Befor	е	With	
									n	nana	gement	mana	gement
Annually c	or Impa	Impact occurs at least once in a year or less 1											
less	frequ	frequently											
6 months	Impa	Impact occurs at least once in 6 months 2											
Monthly	Impa	ct occurs	at lea	ast onc	e a m	onth			3				
Weekly	Impa	ct occurs	at lea	ast onc	e a w	eek.			4				
Daily	Impa	ct occurs	daily						5	,			
CONSEQUENCE							1						
		3	4	5	6	7	8	9	10	11	12	13	14
	2	5	6	7	8	9	10	11	12	13	14	15	16
	3	6	7	8	9	10	11	12	13	14	15	16	17
	4	7	8	9	10	11	12	13	14	15	16	17	18
LIKELIHOOD	5	8	9	10	11	12	13	14	15	16	17	18	19
	6	9	10	11	12	13	14	15	16	17	18	19	20
	7	10	11	12	13	14	15	16	17	18	19	20	21
	8	11	12	13	14	15	16	17	18	19	20	21	22
	9	12	13	14	15	16	17	18	19	20	21	22	23
Low	Where	it will	not h	nave a	a sigr	nificant	influ	ence	on th	ne	5- 11		
	environ	iment. M	anage	ement	meas	ures c	an be	e prop	osed	to			
	ensure	that sign	ifican	ce doe	s not i	ncreas	se						
Medium	Where	it coul	d ha	ve a	signi	ficant	influe	ence	on th	ne	12- 17		
	environ	environment unless it is mitigated											
	or man												
High	Where	it wou	ld ha	ave a	sign	ficant	influ	ence	on th	ne	18- 23		
		ment reg											
	possibl	e mitigat	ion a	nd he	nce m	iust be	e eith	er avo	bided	or			
	manage												
Medium positive		ase of a		act hav	ving a	oositiv	e outc	ome.			High posit	ive	
Acceptable without		nitigation											
Residual and latent	risks												
Cumulative impact													
Screening-Level Ri	sk Asses	sment											
Environmental obje													
Management measures to be applied (Alternative risk prevention or management strategies)													
Management timef													
Responsibilities for implementation and long-term maintenance													
Monitoring programmes													
Financial provision for long-term maintenance and/or environmental costs													
Uncertainties associated with the preferred closure option, which list will be used to identify and define any													
additional work that					of un	certain	ty						
Stakeholder expect	ations ar	nd / or co	mmer	nts									

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 93 Basic Assessment Report

	Before	With
	management	management
Legal compliance and standards		

2 Screening level environmental risk assessment

The **screening level risk assessment** includes all possible environmental risks identified in the approved EMP (1999) and includes the risk which appears to be insignificant. The risks are qualitatively ranked as:

- a potentially significant risk;
- an uncertain risk;
- an insignificant risk

According to the approved EMP (Shangoni, 2006), no latent impacts have been identified at this stage.

Residual impacts after closure are described in the approved EMP (Shangoni, 2006) below. Refer to the table below indicating whether these risks are potentially significant, uncertain, or insignificant.

Environmental	Description	Significance
component	component	
Geology and the	Because the mining of Andalusite goes hand in hand with the	Insignificant
mineral resource	extraction of the ore body the impact on the geology (mineral wise)	risk
	will be permanent. As part of mine planning, the effects of mining on	
	the geological features have been kept to a minimum to minimise	
	the potential risk to the employees and the environment during	
	mining. The extraction of ore takes place from the various pit areas	
	as described in the mining method.	
	No residual impact is foreseen with regards to geology because the	
	mining activity ceases and no further destruction of the geology will	
	take place.	
Topography	The mining activity will have permanent impacts on the topography	Potential
	of the area. This is a result of the slimes dam, waste rock dumps	significant risk
	and depression where the pit was constructed. The slimes dams	
	have however been constructed in such a way that effective	
	rehabilitation results in no effect on the topography. The only	
	measures that can be taken to minimise the impact on the	
	topography are to ensure that effective rehabilitation is done in	
	accordance with the proposed rehabilitation measures.	
	The management actions have been discussed in detail in the	
	rehabilitation section. All the actions with regards to the rehabilitation	

Table 27: Screening level risks and significance

Environmental	Description	Significance
component		ranking
	of the structures have been designed to work towards prevention of pollution and to minimise the effect the structures may have on the topography of the area.	
	The residual impact on the topography will be minimised as far as possible by applying the abovementioned approaches. The impact is however permanent and will continue after mining. Rehabilitation measure can minimise the visual effect and partially the topography effect due to sloping and terracing of areas.	
Soils	Various activities on the mine could have and can result in soil pollution. These activities include the workshop activities, use of pesticides, storage and handling of chemicals and the storage and disposal of waste.	Insignificant risk
	The potential does exist that polluted soil (due to spillages, storage etc.) may be present after closure. It is envisaged that these risks will be kept to a minimum through the implementation of the EMS per ISO 14001 standard requirements. The operational controls such as spill handling, disposal of waste, and the handling and storage of chemicals have been designed and implemented to keep this effect to a minimum.	
	Prior to the application for closure, a survey will be conducted to identify all the polluted areas and appropriate actions will be taken to remediate the effect of the pollution on the surrounding soils.	
Land capability, surrounding land use and landscape character	The areas that have been sterilised by the waste structures (waste rock dump, slimes dams) will not be rehabilitated back to the previous land capability. Objectives have been set for mine closure and the current mining area will be rehabilitated to such that it can be re-used for the pre-mining land use namely game and cattle farming.	Insignificant risk
Vegetetier	Considering the closure objectives, the impact on the land capability will be limited and the impact on land use will be negligible.	Detertic
Vegetation	Although vegetation was destroyed as part of the mining activities, vegetation was and will be re-introduced to various rehabilitated areas on site as per the rehabilitation plan scheduling and rehabilitation procedure.	Potential significant risk
	The only residual impact that is foreseen is the ingression of invader plants. To combat this action plans will be developed to identify all the invader plants on site and develop plans to eradicate such	

Environmental	Description	Significance
component		ranking
	invader plants. The re-vegetation of areas will only be done using indigenous plants.	
	Clear objectives have been set in chapter 4 (of the EMP) with regards to mitigation of the impact on vegetation. Considering the effective implementation of the actions the residual impact of vegetation will be negligible.	
Air quality	Various sources of potential air pollution had been identified as part of the aspect and impact identification process. These potential dust sources include the slimes dams, plant operations, waste rock dumps and plant discard dumps, mining activities, haul roads and conveyor belts. Considering the management measures identified with regards to rehabilitation and closure it is foreseen that the potential impact of these sources on air quality will be negligible.	Insignificant risk
	It is foreseen that some level of post- closure maintenance would need to be done on the slimes dams and waste rock dumps to ensure the vegetation cover is acceptable. The financial provision has been calculated in such a way as to consider this post closure cost. The detail with regards to the post closure actions will be developed in due course.	
	The plant will have no residual impact on the air quality because it will not be operational after closure. The plant and related infrastructure will most probably be demolished.	
Radiation	No residual impact with regards to radiation is envisaged. Radiation sources will be removed and disposed at the appropriate sites.	Insignificant risk
Noise, vibration and shock	No residual impact cause by noise is envisaged after closure. This is due to closure of the plant operations and mining activities which were mainly responsible for the noise generated on the mine. Blasting will also stop thus no vibration and shock will take place. Some structures that have been damaged due to mining activities (blasting and shock) will be identified and appropriate action initiated prior to the mining operations closing.	Insignificant risk
Visual aspects	The potential impacts associated with the visual issues and change in topography will be addressed as part of the implementation of closure objectives and mitigation measures to minimise the impacts. Visual impacts will be present after closure. These impacts will be minimised as far as practical by means of effective rehabilitation practices.	Potential significant risk
Traffic	It is foreseen that no residual impact on traffic will take place after closure. Traffic will decrease in the area.	Insignificant risk

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 96 Basic Assessment Report

Environmental	Description	Significance
component		ranking
Archaeological,	The impact that mining will have on these aspects identified in the	Insignificant
historical and cultural	heritage assessment will cease to exist after closure due to no	risk
aspects	mining activities taking place anymore. To ensure that these aspects	
	are well managed and the impact of mining activities are minimized	
	a management plan will be documented by the end of 2007. This	
	plan will have identified appropriate management measures that	
	would be required to minimize the potential impacts. These	
	measures will extend after closure where required.	
Socio-economic	The use of the community to decommission and rehabilitate will help	Potential
	with some temporary job creation. The community will also obtain	significant
	reusable material from the infrastructure. The end land use is to	positive risk
	return the area to the community for grazing which will also be a	
	positive impact.	

3 Second level risk assessment

3.1 Environmental component: Geology and the mineral resource

<u>Activity</u>: Partially sloping of mine residue over potentially economically viable minerals.

<u>Method for assessing risks</u>: Information for this risk was extracted from the Approved EMP (Shangoni Management Services, 2006).

			Before	With					
			management	management					
	Nature / Intensity / Severity of Impact								
	Low	The impact of the sloping mine residue will not alter	1	1					
		the geology in the area, therefore, natural, social,							
Щ		cultural and environmental processes are not							
ENC		affected.							
CONSEQUENCE	Spatial extent	of Impact							
NSE	On-site	Impact occurs on-site at the point where the mine	1	1					
co		residue is sloping.							
	Duration of Impact								
	Permanent	Once sloping is finished, this will n remain as a	4	4					
		permanent land pattern.							
	Probability of potential occurrence of the Impact								
Q	Improbable	The mine has already remove all the economic viable	1	1					
LIKELIHOOD		material.							
ELI	Frequency of potential occurrence of the Impact								
LIK	Annually or	This is a once-off impact.	1	1					
	less								
Signi	Significance before management 8 8								
Accep	otable without fu	rther mitigation:							
Rehabilitation to take place. Not acceptable without further monitoring after rehabilitation.									

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 97 Basic Assessment Report

		Before	With
		management	management
Residual and latent risks:			_
The residual impacts from the removal of geology will remain, as well	l as the i	residual impact f	rom covering of
geology. No additional latent impacts are envisaged.			Ū.
Cumulative impacts:			
Geology is also removed at the Annesley Mine which is 5km away.			
Screening-Level Risk Assessment:			
This risk is ranked as an insignificant risk.			
Environmental objective:			
To ensure correct sloping of mine residue.			
Management measures to be applied (Alternative risk prevention or ma	anagemo	ent strategies):	
Sloping should be done in accordance with the rehabilitation plan inclu	-	- ,	hort:
 Q1: Push remainder of OB opposite of high wall into the bottom of high wall into the bottom. 			
Q2: Push bottom OB stockpile into the quarry. Remove OB stockpile	•		•
high wall to allow for free drainage into the quarry that will assist w		-	
Q3: General sloping for free drainage should be established. This	-	-	a good location
for a drinking hole. It is recommended to ensure that all slopes tow			-
Q5: Break bench opposite of high wall. Potential traffic of locals a			
the east which would make this bench on the opposite side a pote			
Q6: Break lower benches that is easily reachable and push materi		-	uarrv.
Q11: Two OB stockpiles opposite of high wall should be pushed in		-	-
Q12: Push OB stockpile into quarry bottom.			5
 Q13 & 14: Push OB stockpiles into quarry bottom. 			
 Q15: OB stockpile should be brought back into the quarry. Note stockpile 	specifica	ally not to push ()B further down
that may cause further disturbance and more difficult to move into	-		
Mitigation hierarchy			
Rehabilitation			
Management timeframe and schedule:			
During rehabilitation.			
Responsibilities for implementation and long-term maintenance:			
Mine manager			
Monitoring programmes:			
Monitoring of rehabilitation. Refer to Part b(1)(j):			
• After reshaping the resultant topography must be surveyed to determine the degree to which the final			
topography meets planned objectives, particularly in terms of surface drainage and slope.			
Financial provision for long-term maintenance and/or environmental co		•	
Refer to Part A(S) of this BAR for financial provision. The financial		vision for sloping	of the quarries
amount to R1 235 023,45.			
There will be no additional environmental costs for these management measures.			
Uncertainties associated with the preferred closure option, which list will be used to identify and define any			

additional work that is needed to reduce the level of uncertainty:

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 98 Basic Assessment Report

	Before	With
	management	management
None		
Stakeholder expectations and / or comments:		
None received.		
Legal compliance and standards:		
Refer to Part A(d) for legal compliance and standards. In short:		
Regulations 3 & 9(1)(a&g) & 12 of GN 632 of 2015 (Regulations Regarding	the Planning and	Management of
Mine Residue) under NEMWA, regulation 8 of GN 634 of 2013 (Waste	Classification an	d Management
Regulations) under NEMWA, GN 632 of 2015 has replaced regulation 73 or	f GN 527 of 2004	under MPRDA.

Refer to transitional period

3.2 Environmental component: Topography including drainage patterns and visual aspects

<u>Activity:</u> Change in topography due to sloping of the slimes dam, waste rock dumps and the pits. <u>Method for assessing risks</u>: Information for this risk was extracted from the Approved EMP (Shangoni Management Services, 2006).

			Before	With
			management	management
	Nature / Inten	sity / Severity of Impact		
	Positive	The impact on the topography will be positive and	4	5
	medium	medium to high. Topography is not a resource,		
Щ		however, other resources such as drainage patterns		
ENG		and visual aspects are affected.		
CONSEQUENCE	Spatial extent	of Impact		
NSE	On-site	Impact occurs on-site at the point where the pits and	1	1
S		mine residue will be sloped.		
	Duration of Im	ipact		
	Permanent	Once sloping is finished, this will n remain as a	4	4
		permanent land pattern.		
	Probability of potential occurrence of the Impact			
QO	Definite	The impact will occur regardless of any prevention	4	4
ОН		measures		
LIKELIHOOD	Frequency of potential occurrence of the Impact			
Ę	Annually or	This is a once-off impact.	1	1
	less			
Signi	ficance before a	nd after management: (Positive)	14	15
Acce	ptable without fu	rther mitigation:		
Reha	bilitation to take	place. Not acceptable without further monitoring after re	ehabilitation.	
Residual and latent risks:				
The i	mpact from the	mine residue and pit in the operational phase is perma	anent. The sloping	g will lessen this
residual impact. No additional latent impacts are envisaged.				
Scree	ening-Level Risk	Assessment:		
This	This risk is ranked as a potential significant risk			

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 99 Basic Assessment Report

	Before	With
	management	management
Environmental objective:		
To ensure correct sloping of mine residue.		
Cumulative impacts:		
Annesley mine which is 5km away also impacts the pits due to mining activit	ies.	
Management measures to be applied (Alternative risk prevention or manage	ment strategies):	
Sloping should be done in accordance with the rehabilitation plan included in	n Part B1(i)(c). In s	hort:
• Sloping of most of the material to the north in the direction of the tailings	facility and to the	east towards the
plant area.		
Management timeframe and schedule:		
During rehabilitation.		
Mitigation hierarchy		
Rehabilitate		
Responsibilities for implementation and long-term maintenance:		
Mine manager		
Monitoring programmes:		
Monitoring of rehabilitation. Refer to Part b(1)(j).		
• After reshaping the resultant topography must be surveyed to determ	nine the degree to	which the final
topography meets planned objectives, particularly in terms of surface dr	ainage and slope.	
Financial provision for long-term maintenance and/or environmental costs:		
• Refer to Part A(S) of this BAR for financial provision. The financial prov	vision for sloping o	f the waste rock
dump amounts to R10 630 041,57		
• There will be no additional environmental costs for these management r	neasures.	
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any
additional work that is needed to reduce the level of uncertainty:		
None		
Stakeholder expectations and / or comments:		
None received.		
Legal compliance and standards:		
Refer to Part A(d) for legal compliance and standards		
• Regulation 4 of GN 632 of 2015 under NEMWA (Regulations Regarding	g the Planning and	Management of
Mine Residue) under NEMWA.		
• NEMA and the Environmental Conservation Act 73 of 1989 as amended	d (ECA)	

3.3 Environmental component: Soils

<u>Activity:</u> The EMP focusses on soil pollution. No mention is made of the residual impacts on the soil erosion. It is, however, assumed that the residual impacts of erosion on the soil will be significant and soil pollution from hydrocarbons and other chemicals will be insignificant. Very little topsoil was stockpiled during the mining activities. Topsoil is mixed with overburden and shows signs of erosion. Until such time that revegetation is completed, these areas will be prone to soil erosion.

<u>Method for assessing risks</u>: Per the final EMP Performance Assessment conducted in January 2016, erosion is visible on the site.

			Before	With	
			management	management	
	Nature / Inten	sity / Severity of Impact			
	Medium	The risks on <u>soil erosion</u> will be somewhat severe and reversible. The resources are moderately sensitive.	3	1	
CONSEQUENCE	Low	The risks on <u>soil pollution</u> will not be severe and reversible. The resources are not sensitive.	1	1	
Я В В	Spatial extent	of Impact	L		
ŇÖ	On-site	The risks will be site specific	1	1	
S	Duration of In	npact		•	
	Permanent	Soil erosion will be permanent without management, but only temporary with management.	4	2	
	Short-term	Soil pollution will be temporary.	1	1	
	Probability of	potential occurrence of the Impact			
	Probable	Soil erosion impact will be probable without management measures.	2	1	
LIKELIHOOD	Probable	Soil pollution impact will be probable without management measures.	2	1	
ELI	Frequency of potential occurrence of the Impact				
LIK	Monthly	Soil erosion impact can occur weekly without proper management.	4	1	
	Monthly	Soil pollution impact can occur weekly without proper management.	4	1	
Signi	ficance before a	nd after management: Soil erosion	14	6	
Signi	ficance before a	nd after management: Soil pollution	9	5	
Reha <u>Resic</u>	lual and latent ri	place. Not acceptable without further monitoring after re		risk from mining	
activi	ties, will remain.				
Cumu	ulative impacts:				
	-	nd mining activities in the area can lead to soil erosion	and pollution.		
Screening-Level Risk Assessment:					
Soil pollution is an insignificant risk. Risks form soil erosion are not included.					
Environmental objective:					
To pr	event soil erosio	n and pollution.			
Management measures to be applied (Alternative risk prevention or management strategies):					
• 5	Soil erosion prevention as per the rehabilitation plan.				

• All vehicles and machinery must be maintained to prevent soil pollution.

	Before	With
	management	management
Any leakages must be removed as hazardous waste.		
Mitigation hierarchy		
Prevention		
Management timeframe and schedule:		
During rehabilitation.		
Responsibilities for implementation and long-term maintenance:		
Mine manager		
Monitoring programmes:		
Refer to Part B(1)(j) of this BAR for a monitoring and maintenance plan.		
Erosion monitoring		
Financial provision for long-term maintenance and/or environmental costs:		
Financial provision is allocated for the monitoring of soil erosion, vegetat	ion growth, and a	alien vegetation
monitoring, R150 000,00		
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any
additional work that is needed to reduce the level of uncertainty:		
None		
Stakeholder expectations and / or comments:		
None received.		
Legal compliance and standards:		
Refer to Part A(d) for legal compliance and standards:		
Contaminated land: GN 527 of 2004 i.t.o. MPRDA, and sections 35-41 of NE	MWA	

3.4 Environmental component: Land capability, surrounding land use and landscape character

<u>Activity:</u> All mine residue will be sloped. According to the EMP (Shangoni, 2006), the areas that have been sterilised by the waste structures (waste rock dump, slimes dams) will not be rehabilitated back to the previous land capability.

			Before	With
			management	management
	Nature / Inten	sity / Severity of Impact		
	Positive	The impact on the Land capability, surrounding land	4	5
Щ	Medium	use and landscape character will be medium to high.		
ENG		Topography is not a resource, however, other		
gu		resources such as drainage patterns and visual		
CONSEQUENCE		aspects are affected.		
col	Spatial extent	of Impact		
	On-site	The risk will be site specific.	1	1
	Duration of In	ipact	L	

			Before	With	
			management	management	
	Permanent	Once sloping is finished, this will n remain as a	4	4	
		permanent land pattern.			
	Probability of	potential occurrence of the Impact			
8					
ĕ	Definite	The impact will occur regardless of any prevention	4	4	
LIKELIHOOD		measures			
LIK	Frequency of	potential occurrence of the Impact			
	Annually or	This is a once-off impact.	1	1	
	less				
Signi	ficance before a	nd after management: (Positive)	14	15	
Acce	ptable without fu	rther mitigation:		I	
Reha	bilitation to take	place. Not acceptable without further monitoring after re-	ehabilitation.		
Resid	lual and latent ri	<u>sks:</u>			
The i	mpact from the	mine residue and pit in the operational phase is perma	anent. The sloping	y will lessen this	
residu	ual impact. No a	dditional latent impacts are envisaged.			
Cumu	ulative impacts				
None					
Scree	ening-Level Risk	Assessment:			
These	e risks are ranke	ed as insignificant risks			
	onmental object				
		se that has been identified as grazing and game farmin	•		
Mana	Management measures to be applied (Alternative risk prevention or management strategies):				
See Part B((1)(i)(c) of this BAR. In short:					
• A	All pipelines must be removed;				
• 1	The plant area and associated infrastructure must be removed;				
• 5	Sloping as per re	habilitation plan must be done;			
• A	All unused roads	must be removed;			
• F	Reverentation as	per the rehabilitation plan must be implemented			

Revegetation as per the rehabilitation plan must be implemented. •

Management timeframe and schedule:

During rehabilitation.

Mitigation hierarchy

Rehabilitation

Responsibilities for implementation and long-term maintenance:

Mine manager

Monitoring programmes:

Refer to Part B(1)(j) of this BAR for a monitoring and maintenance plan.

Topographical reshaping ٠

Erosion monitoring •

Vegetation monitoring •

	Before	With
	management	management
Surface water drainage systems		
Surface water quality		
Groundwater quality		
Mine residue characteristics with respect to plant growth (soil quality		
Financial provision for long-term maintenance and/or environmental costs:		
The complete financial provision for rehabilitation is R17,284,909.10		
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any
additional work that is needed to reduce the level of uncertainty:		
It is assumed that with adequate management, the risk will subside.		
Stakeholder expectations and / or comments:		
None received.		
Legal compliance and standards:		
Refer to Part A(d) for legal compliance and standards:		
GN 527 of 2004 i.t.o. MPRDA, and sections 35-41 of NEMWA		

3.5 Environmental component: Vegetation

<u>Activity:</u> EMP (Shangoni, 2006), after closure, the rehabilitated soil could become infested with alien and invasive plant species.

			Before	With	
			management	management	
	Nature / Inten	sity / Severity of Impact			
	Medium	The risks of alien vegetation infestation will be	3	1	
		somewhat severe but reversible. The resources are			
		also moderately sensitive.			
Щ	Medium	The severity of incorrect planting methods is medium.	3	1	
CONSEQUENCE	Spatial extent	of Impact			
EQU	On-site	The risk will be site specific.	1	1	
ISN	Duration of Impact				
co	Permanent	Destruction of natural vegetation due to alien	4	1	
		vegetation as well as the incorrect plating of			
		indigenous vegetation will be permanent, but only be			
		temporary if management measures are			
		implemented.			
	Probability of	potential occurrence of the Impact	1		
D	Definite	Alien vegetation is already evident on the existing	4	1	
POF		mine; however, the probability will decline if			
LIKELIHOOD		management measures are implemented.			
LIK	Probable	Incorrect planting methods is a possibility.	2	1	
	Frequency of	potential occurrence of the Impact	·		

	Defere	With			
	Before				
	management	management			
Monthly Impact occurs based on the establishment and	3	3			
growing period of vegetation, periods of growth are					
shorter for certain vegetation.					
Significance before and after management: Alien vegetation	15	7			
Significance before and after management: Incorrect planting methods	13	7			
Acceptable without further mitigation:					
Rehabilitation to take place. Not acceptable without further monitoring after re	ehabilitation.				
Residual and latent risks:					
With adequate monitoring and maintenance, there will be no residual or later	it risks.				
Cumulative impacts					
Residential, farming and mining activities can lead to the loss of indigenous v	egetation and enh	ance the growth			
of alien vegetation.					
Screening-Level Risk Assessment:					
These risks are not included					
Environmental objective:					
To prevent the establishment of alien vegetation as they use a lot of enviro	nmental resources	s which restricts			
the growth of indigenous vegetation.					
Management measures to be applied (Alternative risk prevention or manager	<u>ment strategies):</u>				
See Part B((1)(i)(c) of this BAR. In short:					
• All alien seedlings and saplings must be removed as they become evident for the duration of operation and					
after closure for at least five years.					
Manual / mechanical removal is preferred to chemical control.					
• Implement an alien invasive plant monitoring and management plan	whereby the spre	ad of alien and			
invasive plant species into the rehabilitated areas are regularly removed	and re-infestation	monitored for at			
least five years.					
• The areas should be planted within indigenous vegetation typical of the a	area.				
Mitigation hierarchy					
Minimise and avoid					
Management timeframe and schedule:					
During rehabilitation.					
Responsibilities for implementation and long-term maintenance:					
Mine manager					
Monitoring programmes:					
Refer to Part B(1)(j) of this BAR for a monitoring and maintenance plan.					
 Rehabilitated areas will be monitored for a period of at least five years for 	or the occurrence	or alien invasive			
plant speciess					
Financial provision for long-term maintenance and/or environmental costs:					
	Refer to Part A(S) of this BAR. The financial provision for vegetation includes seeding, euphorbias planting and				
the removal of alien plants, R743 748,64					
דט,טד ו טד אוואין אוואין אוואיז א					

	Before	With		
	management	management		
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any		
additional work that is needed to reduce the level of uncertainty:				
It is assumed that with adequate management, the risk will subside.				
Stakeholder expectations and / or comments:				
None received.				
Legal compliance and standards:				
Refer to Part A(d) for legal compliance and standards.				
GN598 of 2014 (Alien and Invasive Species Regulations) & GN864 of 2016 (Alien and Invasive Species Lists)				
under NEMBA				

3.6 Environmental component: Groundwater

Activity: Seepage from already existing mine residue.

<u>Method for assessing risks</u>: Information for this risk was extracted from the Hydrogeological Report (Shangoni Management Services, 2013) conducted for Krugerspost Mine. These mines are not close to each other, however, the mineral mined are both Andalusite. A mining waste geochemical characterisation procedure was conducted on the waste generated by the andalusite mining activities to evaluate the potential risk it poses to the receiving surface and groundwater environments.

A sampling and analysis strategy to obtain representative samples of the geological materials and mine wastes was implemented. The analysis strategy included static geochemical testing of the waste material and included:

- An Acid Rain leach to determine the geochemical composition of materials (major and trace elements) based on a worst-case scenario; and
- The acid rock drainage, neutralisation and leaching potential of metals.

The samples were submitted to the Waterlab Pty Ltd, a SANAS accredited testing laboratory. Analyses included ABA analyses, major cation and anion distribution and an ICP-OES scan for dissolved metal phases.

			Before	With
			management	management
	Nature / Inter	nsity / Severity of Impact		
Щ	Medium	Groundwater pollution: The pH is likely to be neutral	3	3
CONSEQUENCE		to slightly alkaline and heavy metal solubilisation will,		
I D		therefore, be minimal. Further, it can be determined		
NSE		that the waste present a slight/ low risk to the		
S		environment posed by the sloping of mine residue.		
	Negligible	AMD: The pH is likely to be neutral to slightly alkaline,	0	0
		therefore the severity of acid mine drainage will be		
		negligible.		

			Before	With		
			management	management		
	Spatial extent	of Impact		.		
	Local	Vertical seepage will dominate during the operational	2	2		
		phase due to the high hydraulic conductivity of fines				
		thereby reducing horizontal seepage risks towards				
		the matrix and receiving environment. Seepage loads				
		from the slimes and tailings wastes will, therefore,				
		most probably remain isolated during the operational				
		phases.				
	Duration of In					
	Permanent	Pollution potential will be permanent, depending on	4	4		
		new monitoring results.				
	Probability of	potential occurrence of the Impact				
	Probable	<u>Groundwater pollution:</u> Although it is expected that	2	2		
	TTODADIC	vertical seepage will dominate over horizontal	2	2		
		seepage, it may nevertheless remain a potential risk				
~		towards the receiving environment. This would be				
LIKELIHOOD		especially true if large-scale fracturing and/				
Ĭ		weathering are present in the host matrix.				
IKEI	Improbable	<u>AMD:</u> It is unlikely that significant acid (if any) will be	1	1		
Ξ	Improbable	generated from the mine residue.	1	1		
	Frequency of	potential occurrence of the Impact				
			4	14		
	Annually or	Impact occurs at least once in a year or less	1	14		
0:	less	frequently.	1.1			
		nd after management: <u>Groundwater pollution:</u>	14	9		
-		nd after management: <u>AMD:</u>	0	0		
	ptable without fu					
		place. Not acceptable without further monitoring after re	ehabilitation.			
	dual and latent ri					
		e results of further monitoring, the risk of potential pollut	ion (excluding acio	d mine drainage)		
	will be a residual					
• 7	The potential for	acid mine drainage becoming a latent impact is not prol	bable.			
Cum	<u>ulative impacts</u>					
Groundwater can be polluted from the mining of Andalusite or the pollution from the nearby township. There is						
a sewerage works in the area which can contribute largely to groundwater pollution.						
Screening-Level Risk Assessment:						
These risks are ranked as uncertain risks						
Envir	onmental objecti	Ve:				
		dwater pollution.				
	-					
-	To reduce any groundwater pollution that may occur.					

Management measures to be applied (Alternative risk prevention or management strategies):

	5 (
	Before	With		
	management	management		
All quarries will be sloped and vegetated. This will help to reduce any form of	seepage from the	mine residue.		
Boreholes must be drilled as per the IWUL to monitor the groundwater quality	/.			
Management timeframe and schedule:				
Until DWS and DMR states otherwise.				
Responsibilities for implementation and long-term maintenance:				
Mine manager				
Monitoring programmes:				
Refer to Part B(1)(j) of this BAR for a monitoring and maintenance plan.				
Groundwater monitoring.				
Financial provision for long-term maintenance and/or environmental costs:				
Refer to Part A(S) of this BAR. Groundwater monitoring amounts to R600,000	00.0			
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any		
additional work that is needed to reduce the level of uncertainty:				
It is uncertain whether seepage will continue, therefore groundwater monitori	ng after rehabilitat	tion and closure		
is necessary.				
Stakeholder expectations and / or comments:				
None.				
Legal compliance and standards:				
Refer to Part A(d) for legal compliance and standards				
Section 21 of the National Water Act sets out the water uses for which an IWUL is required.				
Regulation 4 of GN 632 of 2015 under NEMWA (Regulations Regarding the Planning and Management of Mine				
Residue) under NEMWA'				

3.7 Environmental component: Surface water

Activity: Run-off from already existing mine residue.

<u>Method for assessing risks</u>: Information for this risk was extracted from the Quarterly Water Quality Monitoring Report (BECS Environmental, 2016).

			Before	With
			management	management
Щ	Nature / Inte	ensity / Severity of Impact	•	
CONSEQUENCE	Medium	Surface water pollution: It must be noted that there are	3	1
		many settlements in the area which also affect the water		
		qualities. Refer below for GoogleEarth Image of the		
00		samples.		

			Before	With
			management	management
		Of concern are the high microbiological results in the rivers. No sanitary facilities are used at Havercroft Mine. These results are therefore possibly from the settlements in the area. The natural hardness of water is influenced by the geology of the catchment and the presence of soluble calcium and magnesium minerals. Total hardness for all three samples were far above the acceptable limits. TDS, where the Olifants River and Mogomotsi River meet, was above the limit, however, this is negligible compared to the high concentration in the Mogomotsi River itself.Chloride, calcium magnesium and sodium were also above acceptable limits at some of the points.		
	Low	<u>Sedimentation:</u> Sloping of wastes do pose several advantages compared to surface storage and include the elimination of erosion and therefore sedimentation risks towards the receiving environment.	1	1
	Spatial exte	nt of Impact		
	Local	Receptors which may be influenced by the mining activities include the users in the Mogomotsi River (aquatic species, livestock, wildlife).	2	2
	Duration of	Impact	l	
	Long-term	Pollution potential will be permanent, depending on new monitoring results	3	3
	Probability	of potential occurrence of the Impact		
гікегіноор	Probable	<u>Surface water pollution:</u> This is already evident on the existing mine; however, the probability will decline if management measures are implemented.	2	1
KEL	Improbable	Sedimentation from mine residue will not be probable.	1	1
	Frequency of	of potential occurrence of the Impact		
	Annually	Impact occurs at least once in a year or less frequently	1	1
Signi	ficance before	and after management: Surface water pollution:	11	8

	Before management	With management			
Significance before and after management: <u>Sedimentation:</u>	8	8			
Acceptable without further mitigation:	Ŭ	5			
Rehabilitation to take place. Not acceptable without further monitoring after rehabilitation.					
Residual and latent risks:					
Depending on the results of further monitoring, the risk of potential pollution	and sedimentation	n will not be a			
latent risk.		in will not be a			
Cumulative impact					
According to the Hydrogeological Report (Shangoni Management Service	s 2013 the se	werade works			
Annesley Mining Operations and domestic activities will influence the surface w		werage works,			
	valer quality.				
<u>Screening-Level Risk Assessment:</u> These risks are ranked as uncertain risks					
Environmental objective:					
To prevent the contamination and sedimentation of surface water resources	bv implementin	a management			
strategies	5	5 5			
Management measures to be applied (Alternative risk prevention or manageme	ent strategies):				
All quarries will be sloped as per Part B(1)(i)(c) to reduce erosion and subsec	• -	on. The slimes			
dam will be revegetated. This will help to reduce any form of sedimentation from	-				
Mitigation hierarchy					
Minimise					
Management timeframe and schedule:					
Until DWS and DMR states otherwise.					
Responsibilities for implementation and long-term maintenance:					
Mine manager					
Monitoring programmes:					
Surface water drainage systems					
Surface water quality					
Financial provision for long-term maintenance and/or environmental costs:					
Refer to Part A(S) of this BAR.					
 No additional costs, will form part of the groundwater quality monitoring co 	sts				
Uncertainties associated with the preferred closure option, which list will be		and define any			
additional work that is needed to reduce the level of uncertainty:	dood to identify	ana aonno an <u>y</u>			
It is uncertain whether seepage leading to surface water pollution will continue,	therefore monitor	ing of the rivers			
after rehabilitation and closure is necessary.					
Stakeholder expectations and / or comments:					
None					
Legal compliance and standards:					
Refer to Part A(d) for legal compliance and standards					
 Section 21 of the NWA sets out the water uses for which an IWUL is required. 					

3.8 Environmental component: Community safety

Activity: Non-operational slimes dam and highwalls of the open pits.

Method for assessing risks: Advice from the Professional Engineer

			Before	With	
			management	management	
	Nature / Inten	sity / Severity of Impact			
	Low	According to the Professional Engineer, the Slimes	1	1	
		Dam will have a low Zone of influence since no wet			
UCE ICE		slimes are deposited on the dam anymore.			
ПШ П	High	People from the community who walk in the vicinity	5	1	
CONSEQUENCE		of the mine are at risk of <u>falling into the open pits</u> .			
SNC	Spatial exten	t of Impact	I		
Ō	Site specific	Both hazards are site-specific.	1	1	
	Duration of Ir	npact	I		
	Permanent		4	4	
	Probability of	potential occurrence of the Impact	I		
	Improbable	Not probable for <u>slimes dam</u> failure.	1	1	
0	Probable	Falling from pit is probable without management	2	1	
РОЧ		measures.			
LIKELIHOOD	Frequency of potential occurrence of the Impact				
Ľ	Annually	Once-off	1	1	
Significance before and after management: Slimes dam 8 8					
Signi	ficance before a	nd after management: Falling into pits	13	8	
Acce	ptable without fu	urther mitigation:			
Acce	ptable.				
Resid	dual and latent r	isks:			
No re	esidual or latent	risks.			
Cum	<u>ulative impact</u>				
N/A,	no cumulative in	npact			
Scree	ening-Level Risk	Assessment:			
Thes	e risks are not ir	ncluded			
Envir	onmental object	ive:			
Provi	ide an environm	ent that is safe for the community			
Mana	agement measu	res to be applied (Alternative risk prevention or manager	nent strategies):		
Euph	orbia will be pla	nted along the open pit. Once it grows into s dense bush	n it will be difficult	for people to fall	
inside the open pits.					
Mitigation hierarchy					
Avoid					
Management timeframe and schedule:					
IVIALIC	As part of rehabilitation				
As pa					
As pa		on nplementation and long-term maintenance:			

	Before	With		
	management	management		
Monitoring programmes:				
Vegetation monitoring				
Financial provision for long-term maintenance and/or environmental costs:				
The financial provision for vegetation includes seeding, euphorbias planting	and the removal	of alien plants,		
R743 748,64				
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any		
additional work that is needed to reduce the level of uncertainty:				
It is uncertain if the vegetation will aid in safety.				
Stakeholder expectations and / or comments:				
None				
Legal compliance and standards:				
Refer to Part A(d) for legal compliance and standards:				
Regulation 73 of the MPRDR (GN 349 of 2011 i.t.o. MPRDA), GN 632 of 2015 i.t.o. NEMWA.				
Regulation 4 of GN 632 of 2015 under NEMWA (Regulations Regarding the F	Planning and Mana	gement of Mine		
Residue) under NEMWA				

3.9 Environmental component: Air quality

<u>Activity</u>: Various sources of potential air pollution had been identified as part of the aspect and impact identification process. These potential dust sources include the slimes dams, plant operations, waste rock dumps and plant discard dumps, mining activities, haul roads and conveyor belts. Considering the management measures identified with regards to rehabilitation and closure it is foreseen that the potential impact of these sources on air quality will be negligible.

			Before	With	
			management	management	
NCE	N/A	No severity and no sensitive resources.	0	0	
NEI	Spatial exten	t of Impact			
CONSEQUENCE	N/A		0	0	
NO	Duration of Impact				
0	N/A		0	0	
OD	Probability of potential occurrence of the Impact				
ЮH	Improbable	Not probable	0	0	
LIKELIHOOD	Frequency of potential occurrence of the Impact				
	N/A		0	0	
Signif	ficance before a	nd after management	0	0	
Acceptable without further mitigation:					
Accep	Acceptable.				
Resid	lual and latent r	isks:			

	Before	With			
	management	management			
No residual or latent risks.					
Screening-Level Risk Assessment:					
These risks are insignificant					
Environmental objective:					
Ensure air quality is not affected severely by rehabilitation operations					
Management measures to be applied (Alternative risk prevention or manager	ment strategies):				
None necessary.					
Management timeframe and schedule:					
N/A					
Responsibilities for implementation and long-term maintenance:					
N/A					
Monitoring programmes:					
N/A					
Financial provision for long-term maintenance and/or environmental costs:					
N/A					
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any			
additional work that is needed to reduce the level of uncertainty:					
N/A					
Stakeholder expectations and / or comments:					
None					
Legal compliance and standards:					
Refer to Part A(d) for legal compliance and standards:					
GN 351 of 2014 (Regulations Regarding the Phasing-out and Management	GN 351 of 2014 (Regulations Regarding the Phasing-out and Management of Ozone- Depleting Substances)				
under NEMAQA					
Regulations 9(f) & 11 of GN 632 of 2015 (Regulations Regarding the Plann	ing and Manager	nent of Residue			
Stockpiles and Residue Deposits) under NEMWA					

3.10 Environmental component: Radiation

<u>Activity:</u> No residual impact with regards to radiation is envisaged. Radiation sources will be removed and disposed at the appropriate sites.

			Before	With	
			management	management	
	Nature / Intensity / Severity of Impact				
NCE	N/A	No severity and no sensitive resources.	0	0	
DIE	Spatial extent of Impact				
SEG	N/A		0	0	
CONSEQUENCE	Duration of Impact				
0	N/A		0	0	

			Before	With		
			management	management		
	Probability	of potential occurrence of the Impact	management	inanagement		
DO	-					
0HI	Improbable	Not probable	0	0		
LIKELIHOOD	Frequency of potential occurrence of the Impact					
	N/A		0	0		
Signific	ance before a	nd after management	0	0		
Accepta	able without fu	rther mitigation:				
Accepta	able.					
Residu	al and latent ri	sks:				
No resi	dual or latent r	isks.				
Screen	ing-Level Risk	Assessment:				
These	risks are insigr	hificant				
-						
Enviror	nmental objecti	ve:				
N/A						
Manage	ement measur	es to be applied (Alternative risk prevention or manage	<u>ment strategies):</u>			
None n	ecessary.					
Manage	ement timefrar	ne and schedule:				
N/A						
Respor	nsibilities for im	plementation and long-term maintenance:				
N/A						
Monitor	ring programm	es:				
N/A						
Financi	al provision fo	r long-term maintenance and/or environmental costs:				
N/A						
Uncerta	ainties associa	ted with the preferred closure option, which list will b	e used to identify	and define any		
addition	additional work that is needed to reduce the level of uncertainty:					
N/A	N/A					
Stakeh	Stakeholder expectations and / or comments:					
None						
Legal c	ompliance and	l standards:				
		legal compliance and standards. None are applicable.				

3.11 Environmental component: Noise, vibration, and shock

<u>Activity</u>: No residual impact caused by noise is envisaged after closure. This is due to the closure of the plant operations and mining activities which were mainly responsible for the noise generated on the mine.

			Before	With
			management	management
	Nature / Inte	nsity / Severity of Impact	L	
CONSEQUENCE	N/A	No severity and no sensitive resources.	0	0
	Spatial exte	nt of Impact		
SEQ	N/A		0	0
SNO	Duration of	Impact	I	
S	N/A		0	0
Q	Probability	of potential occurrence of the Impact		
LIKELIHOOD	Improbable	Not probable	0	0
ELII	Frequency of	f potential occurrence of the Impact		
LIK	N/A		0	0
Signific	ance before ar	nd after management	0	0
Accepta	able without fu	ther mitigation:		<u> </u>
Accepta	able.			
Residua	al and latent ris	sks:		
No resi	dual or latent r	isks.		
Screen	ng-Level Risk	Assessment:		
These r	isks are insigr	ificant		
Environ	mental objecti	ve:		
N/A				
-		es to be applied (Alternative risk prevention or manager	- ,	
		have been damaged due to mining activities (blasting	and shock) will b	e identified and
		iated prior to the mining operations closing.		
	ement timefrar	ne and schedule:		
N/A				
	sibilities for im	plementation and long-term maintenance:		
N/A				
	ing programm	<u>25:</u>		
N/A	al provinia- f	long term meintenense and/ar an immerstation (
Financi N/A	ai provision toi	long-term maintenance and/or environmental costs:		
-	inties associa	ted with the preferred closure option, which list will be	a used to identify	and define any
	Uncertainties associated with the preferred closure option, which list will be used to identify and define any additional work that is preded to reduce the lovel of uncertainty:			
N/A	dditional work that is needed to reduce the level of uncertainty:			
	older expectati	ons and / or comments:		
None	Stakeholder expectations and / or comments:			
	ompliance and	standards:		
-		legal compliance and standards. None are applicable.		

3.12 Environmental component: Traffic

<u>Activity</u>: It is foreseen that no residual impact on traffic will take place after closure. Traffic will decrease in the area.

			Before	With	
			management	management	
	Nature / Inte	ensity / Severity of Impact		4	
CONSEQUENCE	N/A	No severity and no sensitive resources.	0	0	
UE	Spatial exte	nt of Impact		1	
SEQ	N/A		0	0	
NO(Duration of	Impact		1	
с	N/A		0	0	
0	Probability	of potential occurrence of the Impact			
ЮН	Improbable	Not probable	0	0	
D	Frequency	of potential occurrence of the Impact			
D	N/A		0	0	
Signific	ance before a	nd after management	0	0	
Accepta	able without fu	rther mitigation:			
Accepta	able.				
Residua	al and latent ri	sks:			
No resi	dual or latent i	isks.			
Screen	ing-Level Risk	Assessment:			
These r	risks are insigr	nificant			
Environ	imental object	ve:			
N/A					
Manage	ement measur	es to be applied (Alternative risk prevention or mana	igement strategies):		
None n	ecessary.				
Manage	ement timefrar	ne and schedule:			
N/A					
Respor	sibilities for in	plementation and long-term maintenance:			
N/A					
Monitor	ing programm	es:			
N/A					
Financi	al provision fo	r long-term maintenance and/or environmental costs	<u>;</u>		
N/A					
Uncerta	ainties associa	ted with the preferred closure option, which list wi	Il be used to identify	and define any	
addition	ional work that is needed to reduce the level of uncertainty:				
N/A					
Stakeho	older expectat	ions and / or comments:			
None					
Legal c	ompliance and	standards:			

	Before	With
	management	management
Refer to Part A(d) for legal compliance and standards. None are applicable.		

3.13 Environmental component: Archaeological, historical and cultural aspects

<u>Activity</u>: The impact that mining will have on these aspects identified in the heritage assessment will cease to exist after closure due to no mining activities taking place anymore.

			Before	With	
			management	management	
	Nature / Inte	ensity / Severity of Impact			
NCE	N/A	No severity and no sensitive resources.	0	0	
QUE	Spatial exte	nt of Impact			
CONSEQUENCE	N/A		0	0	
	Duration of	Impact			
0	N/A		0	0	
0	Probability	of potential occurrence of the Impact			
ЮН	Improbable	Not probable	0	0	
D	Frequency of	of potential occurrence of the Impact			
	N/A		0	0	
Significa	ance before a	nd after management	0	0	
Accepta	able without fu	rther mitigation:			
Accepta					
<u>Residua</u>	al and latent ris	<u>sks:</u>			
	dual or latent r				
	ng-Level Risk				
These r	isks are insigr	ificant			
	mental objecti	<u>ve:</u>			
N/A					
_		es to be applied (Alternative risk prevention or manage			
	-	rchaeological, historical or cultural resource being unc	overed, all work r	nust stop and a	
	st must be cor				
-	ement timefrar	ne and schedule:			
	N/A				
Responsibilities for implementation and long-term maintenance:					
N/A					
	Monitoring programmes:				
	N/A				
	ai provision to	r long-term maintenance and/or environmental costs:			
N/A					

	Before	With
	management	management
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any
additional work that is needed to reduce the level of uncertainty:		
N/A		
Stakeholder expectations and / or comments:		
None		
Legal compliance and standards:		
Refer to Part A(d) for legal compliance and standards:		
National Heritage Resources Act no 25 of 1999 (NHRA), Section 15(1) of the	National Forest A	ct No 84 of 1998
(NFA)		

3.14 Environmental component: Socio-economic

Activity: Job creation and returning the land to grazing for the community

<u>Method for assessing risks</u>: Information for this risk was extracted from the needs and desirability section in this BAR.

			Before	With
			management	management
	Nature / Inte	ensity / Severity of Impact		
	Medium	Unemployment is a significant problem in the area.	4	5
		Job creation will therefore have a medium to high and		
		positive nature on the area.		
ж	Medium	The community is dependent on grazing as income.	4	5
ENC		Returning this area for grazing will have a medium to		
IOU		high and positive nature on the area.		
CONSEQUENCE	Spatial exte	nt of Impact		
S	On-site	Impact occurs on-site	1	1
	Duration of	Impact		
	Short-term	Job opportunities for rehabilitation will only be short-	1	1
		term.		
	Permanent	Returning the land for grazing will be permanent.	4	4
	Probability of potential occurrence of the Impact			
	Highly	Job opportunities will be created. Using local people	3	4
	probable	will ensure definite job opportunities.		
0	Highly	The land will be returned for grazing. With adequate	3	4
ЮН	probable	rehabilitation, this will be a definite impact.		
LIKELIHOOD	Frequency of	of potential occurrence of the Impact		
Ē	Annually	Both are once-off impacts	1	1
Signific	ance before a	nd after management: Job opportunities (Positive)	10	12
Signific	ance before	and after management: Returning land for grazing	12	15
(Positiv	•			
Accepta	able without fu	rther mitigation:		
Rehabi	litation to take	place. Acceptable once the community is satisfied with	rehabilitation	

	Before	With
	management	management
Residual and latent risks:		
N/A		
Screening-Level Risk Assessment:		
This risk is ranked as a potential significant positive risk.		
Environmental objective:		
To ensure local job opportunities.		
• To return the land for grazing.		
Management measures to be applied (Alternative risk prevention or manager	<u>nent strategies):</u>	
The community must be employed for decommissioning and rehabilitation ac	tivities, as far as p	oossible.
Proper rehabilitation will also ensure that the land can be return to grazing.		
Management timeframe and schedule:		
Until DMR states otherwise.		
Responsibilities for implementation and long-term maintenance:		
Mine manager		
Monitoring programmes:		
N/A		
Financial provision for long-term maintenance and/or environmental costs:		
N/A		
Uncertainties associated with the preferred closure option, which list will be	e used to identify	and define any
additional work that is needed to reduce the level of uncertainty:		
None		
Stakeholder expectations and / or comments:		
According to Mr Mphofelo: "we have higher rate of unemployment that will led	our community me	embers to higher
degree of poverty".		
Legal compliance and standards:		
Refer to Part A(d) for legal compliance and standards:		
• Section 24R of NEMA, Appendix 5 of the EIA Regulations, sections 43	, 56, 61 of MPRD	A (rehabilitation
and closure)		
• Section 2(3 & 4), of NEMA, section 2, 2(a)(ii), 22(2)(d) of NWA, GN 527	of 2004 i.t.o. MPI	RDA, section 37
of MPRDA, section 2(a)(ii) of Section 2(3 & 4) of NEMA, section 2 of NW	A, section of, and	section of NWA

(Sustainable development principles)

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 119 Assessment Report

3 Latent risk assessment

This section substantiation why each risk is latent, including why the risk **was not or could not be mitigated during concurrent** rehabilitation and remediation or during the implementation of the final rehabilitation, decommission and closure plan.

It also includes a detailed description of the **drivers that could result in the manifestation of the risks**, to be presented within the context of closure actions already having been implemented during the execution of concurrent rehabilitation or during the implementation of the final rehabilitation, decommission and closure plan; as well as a description of the expected **timeframe in which the risk is likely to manifest**, typically as expected years after closure, and the duration of the impact, including motivation to support these timeframes; a detailed description of the **triggers which can be used to identify that the risk is imminent or has manifested**, how this will be measured and any cost implications thereof; **results and findings** of the risk assessment; and an explanation of **changes to the risk assessment results** as applicable in annual updates to the plan.

Management activities for latent risks must include:

- 1. monitoring of results and findings, which informs adaptive or corrective management and/or risk reduction activities;
- 2. an assessment of alternatives to mitigate or manage the impacts once the risk has become manifested, which must be focussed on practicality as well as the cost of the implementation;
- 3. motivation, why the selected alternative, is the appropriate approach to mitigate the impact; and
- 4. a detailed description of how the alternative will be implemented.

No latent risks are envisaged at this point.

4 Alternative options

Alternative options must include the potential impacts of the alternative land use or development, as well as an identification of the alternative land uses which will be impacted upon. No proposed development footprint or alternatives are considered; therefore, no impacts are listed.

5 Cumulative impacts

Refer to Part A(h)(v)(3) for all cumulative impacts.

vi) Methodology used in determining and ranking the nature, significance, consequences, extent, duration, and probability of potential environmental impacts and risks

Refer above.

vii) The positive and negative impacts that the proposed activity (in terms of the initial site layout) and alternatives will have on the environment and the community that may be affected

No alternatives are applied for.

viii) The possible mitigation measures that could be applied and the level of risk

Refer to Part A(h)(v) above for possible mitigation measures that could be applied and the level of risk.

ix) Motivation where no alternative sites were considered

The final decommissioning and rehabilitation have been discussed with the community. Furthermore, the earthworks and sloping of the mine residue and the area have been planned with the aid of a specialist. The activities in this BAR is the most effective way to rehabilitate the area.

x) Statement motivating the alternative development located within the overall site

The final decommissioning and rehabilitation have been discussed with the community. Furthermore, the earthworks and sloping of the mine residue and the area have been planned with the aid of a specialist. The activities in this BAR is the most effective way to rehabilitate the area.

i) Full description of the process undertaken to identify, assess and rank the impacts and risks the activity will impose on the preferred site (In respect of the final site layout plan) through the life of the activity

Refer to Part A(h)(v) above for a full description of the process undertaken to identify, assess and rank the impacts and risks the activity will impose on the preferred site (In respect of the final site layout plan) through the life of the activity.

j) Assessment of each identified potentially significant impact and risk

This section includes all the known typical impacts of each of the activities (including those that could or should have been identified by knowledgeable persons) and not only those that were raised by registered interested and affected parties).

Refer to Part A(h)(v) for a complete impact assessment. Also, refer to Addendum 6 for the supporting impact assessment conducted by the EAP.

k) Summary of specialist reports

List of studies	Recommendations for	Specialist	Reference to applicable section of
undertaken	specialist reports	recommendations that have	report where specialist
		been included in the report	recommendations have been
			included
Earthworks	All sloping included in	This plan was incorporated	Part B(1)(i)(c)
plan	this report	into the BAR.	

Table 28: Summary of specialist reports

Refer to Addendum 3 attached for of the specialist reports.

I) Environmental impact statement

(i) Summary of the key findings of the environmental impact assessment

Environmental component	Description of impact
Geology and the mineral resource	Sloping of mine residue over economic viable geology.
Topography	Change in topography due to sloping of the slimes dam, waste
	rock dumps and the pits.
Soils	Soil erosion
	Soil pollution
Land capability, surrounding land use and	Rehabilitation of area to return land to community.
landscape character	
Vegetation	Establishment of alien vegetation
	Incorrect replanting of indigenous vegetation.
Groundwater	Seepage from already existing mine residue.
Surface water	Run-off from already existing mine residue.
Community safety	Safety hazard form non-operational slimes dam and highwalls of
	the open pits.
Air quality	None envisaged
Radiation	None envisaged
Noise, vibration, and shock	None envisaged
Traffic	None envisaged
Archaeological, historical and cultural aspects	None envisaged
Socio-economic	Job creation
	Returning land for grazing.

(ii) Final Site Map

Refer to Addendum 1 for all the maps.

(iii) Summary of the positive and negative implications and risks of the proposed activity and identified alternatives

This application is for the rehabilitation of an already disturbed area and will, therefore, have a net positive implication on the environment.

m) Proposed impact management objectives and the impact management outcomes for inclusion in the environmental management programme

Refer to Part A(h)(v) for all Proposed impact management objectives and the impact management outcomes.

n) Aspects for inclusion as conditions of Authorisation

The mine already has a mining right and EMP. The commitments in the EMP must also be adhered to where it is applicable. This will include for instance waste management, environmental emergencies, environmental awareness and handling of any hazardous substances.

o) Description of any assumptions, uncertainties, and gaps in knowledge

This BAR is compiled using already existing information and the Earthworks plan. No additional studies have been done.

p) Reasoned opinion as to whether the proposed activity should or should not

be authorised

i) Reasons why the activity should be authorised or not

The decommissioning of old redundant infrastructure and the rehabilitation of the area is necessary as part of mining.

ii) Conditions that must be included in the authorisation

The mine already has a mining right and EMP. The commitments in the EMP must also be adhered to where it is applicable. This will include for instance waste management, environmental emergencies, environmental awareness and handling of any hazardous substances.

q) Period for which the Environmental Authorisation is required

Until the end of rehabilitation.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 123 Assessment Report

r) Undertaking

The undertaking required to meet the requirements of this section is provided at the end of the EMP and is applicable to both the Basic Assessment Report and the EMP.

s) Financial Provision

i) Explain how the aforesaid amount was derived

Havercroft is non-operational and in the process to close-down. Closure costs must, therefore, be calculated with an accuracy of ±90%. Shangoni Management Services compiled a list indicating rates for actual costs to rehabilitate. The following is extracted from the Annesley Andalusite Mine Closure Liability Update (Shangoni Management Services, 2016):

The CES Group was contracted by Shangoni to acquire rates for demolition and rehabilitation of mining activities (Table 29). Procurement of budget pricing approached by identifying reputable demolition companies, various sites of varying sizes at various locations and identifying local companies in the study area with the ability to work on similar scale project. A bill of quantities (BoQ) was distributed to the various companies. The table below indicates the number of contractors to which the BoQ was distributed and the number of tenders received afterward.

Area	Number of contractors identified	Tenders received
National	6	1
North West	6	3
Free State	5	1
Northern Cape	7	2
Limpopo	5	3 (One joint venture with national based company)
Total	29	10

Table 29: Results of rate acquisition process

The prices received from contractors were reviewed by the CES Group, after which average and meridian rates were drawn rates to correctly establish a baseline rate. The following methods to establish the baseline rates were followed:

- Price A Average if priced across the board average of rates received per category;
- Price B Median pricing "middle" rate of all rates in series per category;
- Price C Average between Price A & B;
- Price D Average rate excluding top and bottom rates per category.
- Price D rate category that was used in the closure cost calculation, unless otherwise indicated in the closure cost spreadsheet "Rate" sheet.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 124 Assessment Report

The closure budget consists of the following areas:

Physical - Demolition of infrastructure where infrastructure does not form part of end land use. Potential to transfer to the third party was identified.

Biophysical - Actions to safeguard (making safe and stable) and re-establish the biophysical to ensure a sustainable landform and mitigate identified risks. This includes leveling of the dumps, seeding of the trees and grass.

1 Auditable calculations of costs per activity or infrastructure

Table 30: Tariffs used for quantum determination

Rehabilitation and Demolition	Unit	Rates
800mm thick /deep Reinforced in-situ concrete structures: Demolition and removal to demolition	m³	R 502.27
site		
400mm thick /deep reinforced concrete	m³	R 447.27
250mm thick /deep reinforced concrete	m³	R 350.00
340mm thick /deep concrete slabs	m³	R 400.00
220mm thick brick wall buildings (single storey) Face brick building, 14.8 x 10m x 4.4m high,	m²	R 447.27
consisting of 600 x 230mm strip footings laying 655mm deep, 150mm surface bed finished off		
with ceramic floor tiles including 110mm internal walls, with 1000 x 100mm apron around building		
and Roller shutter doors at service hatch 3000 x 1200mm. Ceilings at 2805mm high. Roof trusses		
1600mm high at centre with 500mm overhang, pitching 15 degrees and 0.6mm IBR profiled		
colomet roof sheeting, ridge capping, fascia boards, barge boards, gutters and downpipes.		
Face brick building, 48 x 12.46m x 7.85m high, consisting of 750 x 300mm strip footings laying	m³	R 435.00
755mm deep, 150mm surface bed finished off with ceramic floor tiles including 110mm internal		
walls, with 1000 x 100mm apron around the building. Ceiling below hollow block slab at 2805mm		
high. 1st-floor hollow block slab, 255mm thick finished off with ceramic floor tiles. Stairs to 1st		
floor 220mm threads x 150mm risers and slab to the wall at 1400mm high in middle and to one		
side of the building. Ceilings at 2890mm high. Prefabricated roof trusses 1900mm high at centre		
with 500mm overhang, pitching 15 degrees and 0.6mm colomet roof sheeting, ridge capping,		
fascia boards, barge boards, gutters, and downpipes. Canopy at entrance to building 3m wide \boldsymbol{x}		
2.8m high		
Excavating foundations 600 x 230 x 655mm deep strip footings	m³	R 320.00
Light steel construction cladded with corrugated iron (car ports etc.) Carports 7.5m x 11m,	m²	R 53.13
consisting of 6 x 75 SHS Columns in 500mm deep concrete bases with colomet 6mm IBR roof		
sheeting on 75 x 75 SHS Curved purlins (one carport size 5.5 x 2.5m x 2.3m high)		
Medium steel construction buildings (corrugated iron cladded workshops and sheds with concrete	m²	R 290.00
floors)		
Dismantle, break down and remove plant structure, not exceeding 15m height	m³	R 171.85

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 125 Assessment Report

Rehabilitation and Demolition	Unit	Rates
Demolish and remove 48kg/m railway line on P2 concrete sleepers, including fasteners, pads &	m	R 80.00
clips.		
Up to 400mm Diameter piping	m	R 37.69
Greater than 400mm Diameter piping	m	R 67.90
Dismantle and remove Cattle Fencing not exceeding 1.2m high, including posts, gates,	m	R 12.00
foundations, etcetera		
Dismantle and remove Mesh Fencing not exceeding 1.8m high, including posts, gates,	m	R 12.00
foundations, etcetera		
Dismantle and remove Security Fencing exceeding 1.8m high, including posts, gates,	m	R 13.50
foundations, etcetera		
Dismantle and remove Steel Palisade Fencing exceeding 1.8m high, including posts, gates,	m	R 22.00
foundations, etcetera		
Dismantle and remove Palisade Concrete Fencing exceeding 1.8m high, including posts, gates,	m	R 22.00
foundations, etcetera		
Dismantle and remove Electric Fencing not exceeding 2.1m high, including posts, gates,	m	R 22.00
foundations, etcetera		
Dismantle and remove Diamond Mesh Fencing not exceeding 2.4m high, including posts, gates,	m	R 22.00
foundations, etcetera		
Dismantle and remove Precast walling not exceeding 1.8m high, including posts, gates,	m	R 22.00
foundations, etcetera		
Wildlife fence 1.8m	m	R 140.00
15m H Pole structure complete with double 11kV Wolf conductor (6 x ACSR) and all accessories	m	R 45.00
Demolition of reinforced concrete silo 20m high	m³	R 89.77
Disconnect and remove 2 x MCC panels. Demolish and remove face brick building 6,5 x 9 x 5.05m	no	R
high to a roof truss, strip footings laying 750mm deep, 6 x 2m high columns with 300mm thick		26,850.00
concrete slab on columns. Steel stairs and hand railing to 1st floor. Steel roof structure 1,6m high		
to pitch.		
Disconnect and remove transformers, demolish transformer room brick building, 3 x 3 x 4m high.	no	R
		10,850.00
Remove fuel pumps & tank	m³	R 850.00
Remove overhead workshop cranes 15 Ton Single Girder crane - 20m wide	no	R
		6,500.00
Drain and fill French drain	no	R
		6,585.00
Filling of Soakaways	no	R
		6,585.00
Remove water tank	m³	R 450.00
Permatank	m³	R 850.00
Overland conveyor	m	R 540.00

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 126 Assessment Report

Rehabilitation and Demolition	Unit	Rates
Earthworks, break-up and level	m³	R 40.01
6m Office	no	R
		1,500.00
12m Office	no	R
		1,500.00
9.6m Park home	no	R
		1,500.00
Quarry maintenance	ha	R
		10,000.00
No cost incurred	n/a	R -
Ripping of dirt road	m²	R 14.89
Ripping of previously tar surfaced surface areas (tar removal measured elsewhere)	m²	R 21.31
Remove tarred surface areas not exceeding 50mm thick	m²	R 25.87
Break-up and remove paving bricks	m²	R 34.94
Break-up and remove concrete paving	m²	R 30.51
Demolish reinforced concrete	m³	R 950.69
Remove pumps and piping and demolish pump room size 3,5 x 5,25 x 3m high.	no	R
		1,805.75
Drain dam, leave to dry, remove liner	m²	R 18.63
Earthworks, break-up and level*	m ³	R 40.01
Traditional seeding	m²	R 3.36
Grass	m²	R 43.08
Sloping of open pit (also include sloping of WRD)	m ³	R 8.09
Enviroberm	m	R 22.55
Hydro seeding	m²	R 26.50

* Rating has been changed to include the sloping of the WRD and plant area.

2 List of surface infrastructure

Havercroft Operation consists of the following infrastructures (refer to Figure 5 for the site layout plan).

- Plant,
- Workshops,
- Offices,
- Slimes Dam,
- Quarries (1 15),
- Return water dam, and
- A Waste rock dump

3 Cost assumptions based on final closure plan

3.1 Pipelines

Various pipelines traverse the mining area. These pipes are steel pipes. None of these pipes are in use anymore. All steel pipes will be removed to other mines within the Imerys Group. These pipes will then be reused as part of their operations.

No additional financial provisioning for monitoring, maintenance and post-closure management is necessary.

3.2 Plant area and other buildings

The plant is currently non-operational. Associated buildings are the workshops. There is still scrap metal and plant equipment that need to be removed.

All hazardous materials such as hydrocarbons, fluorescent tubes, etc. will be removed by a licensed waste contractor to a licensed disposal area. The mine will obtain all the correct documentation such as safe disposal certificates and a copy of the disposal site license. All salvageable material will be removed to either a steel merchant or other mine operations. Concrete will be removed to a depth of 1m below the surface. Building rubble (inert waste) could be used for backfilling of the quarries, however, the disposal of more than 25tons need a waste license excluding the disposal of such waste for the purposes of leveling which has been authorised by or under other legislation. This will be discussed with DMR prior to disposal. Once all salvageable infrastructure has been removed and foundations are broken the plant area should be sloped to allow for free drainage to the east. There are also small stockpiles and walls from old return water dams that should be graded to fill unnatural depressions around the plant area. High walls should be broken and sloped to allow for vegetation growth.

No monitoring is necessary for the removal of the plant structures. Monitoring of the revegetation, as well as any erosion, will be necessary

It is assumed that all infrastructure will be removed and either disposed of or sold as scrap. Resloping of the area is based on surveyor data received from the mine.

3.3 Waste rock dump

There is a large waste rock dump to the north of the mine, just south of the slimes dam. On the western side is natural vegetation as well as a servitude for a high voltage power line.

On the western side is natural vegetation as well as a servitude for a high voltage power line. It is therefore proposed to slope most of the material to the north in the direction of the tailings facility and to the east towards the plant area.

Once the sloping is finalised it is also recommended to add contour paddocks along the side slopes of the waste rock dump no more than 20m apart. Previous contours of 50m apart have shown erosion to form along the slope.

The 3d rehabilitation models indicate the sloping and moving of material required on the left, with the final result on the right. This model consists of the only cut and fill and does not require any moving of material into or out of the site.

Monitoring of the revegetation, as well as any erosion, will be necessary. The water qualities, both surface, and groundwater will be monitored

Resloping of the area is based on surveyor data received from the mine. There are no groundwater qualities to confirm seepage potential.

3.4 Quarries

There are 15 quarries at Havercroft. These quarries are located along a mountainous line from north to south. These quarries have a steep high wall on the western side.

It is proposed to plant a thick row of euphorbias on the top of the high walls. This wil be done to prevent access of people and animals to these high walls.

Only the quarries where the need for earthworks has been identified are included in the description for sloping. Safeguarding of high walls are encouraged but has not been included in the modeling as there is a major safety concern to work above the high walls with machinery. All high walls have been modeled to remain in place due to this safety risk.

Quarry	Rehabilitation recommendation
Q1	Push remainder of OB opposite of high wall into the bottom of the quarry. Only light grading is required.
Q2	Push bottom OB stockpile into the quarry.
	Dig a trench in O/B stockpile located within drainage line above the high wall to allow for free drainage into the quarry that will assist with vegetation growth.

Table 31: Quarries rehabilitation

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 129 Assessment Report

Quarry	Rehabilitation recommendation
	General sloping for free drainage should be established. This area is also identified as a good
Q3	location for a drinking hole. It is recommended to ensure that all slopes towards the water are safe
	and stable.
Q5	Break bench opposite of high wall. Potential traffic of locals and animals are expected to come from
Qo	the east which would make this bench on the opposite side a potential safety risk.
Q6	Break lower benches that is easily reachable and push material to the bottom of the quarry.
Q11	Two OB stockpiles opposite of high wall should be pushed into the bottom of the quarry.
Q12	Push OB stockpile into quarry bottom.
Q13 & 14	Push OB stockpiles into quarry bottom.
Q15	OB stockpile should be brought back into the quarry. Note specifically not to push OB further down
QIJ	that may cause further disturbance and more difficult to move into the quarry.

Monitoring of the revegetation, as well as any erosion, will be necessary. The water qualities, both surface and groundwater will be monitored.

Resloping of the area is based on surveyor data received from the mine.

3.5 Primary and secondary access roads

There are various roads traversing the area. These roads will be kept after closure for farming activities. Roads will only be removed if requested by the community.

Monitoring of any erosion will be necessary.

It is assumed that some roads will be retained for farmers.

4 Latent or residual impacts

Refer to Part B(d)(2) for residual impacts.

5 Closure cost estimation

The following table contains a summary of the calculations made for the closure cost based on the **Final** Closure Plan and Rehabilitation Plan (BECS Environmental, 2016).

Item	Size (m / m ² / m ³)	Rate	Final cost			
Infrastructure removal						
Pipelines*	-	R0.00				

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 130 Assessment Report

Item	Size (m / m ² / m ³)	Rate	Final cost
Plant area and other buildings	2.14	R171.85	R367.76
Primary and secondary access roads	42,760.00	R14.89	R636,696.40
Sloping			
Waste rock dump and plant area	313,973.00	R8.09	R10,630,041.57
Quarry 1	3,051.00	R8.09	R24,682.59
Quarry 2	33,183.00	R8.09	R268,450.47
Quarry 3	7,858.50	R8.09	R63,575.27
Quarry 5	1,236.00	R8.09	R9,999.24
Quarry 6	5,926.00	R8.09	R47,941.34
Quarry 11	39,776.00	R8.09	R321,787.84
Quarry 12	21,198.00	R8.09	R171,491.82
Quarries 13 & 14	37,887.00	R8.09	R306,505.83
Quarry 15	2,545.00	R8.09	R20,589.05
Vegetation			
Seeding	209,449.00	R3.36	R703,748.64
Euphorbias planting	Once-off	R20,000.00	R20,000.00
Removal of alien planta	Once-off	R20,000.00	R20,000.00
Monitoring			
Soil erosion, vegetation growth, and alien vegetation monitoring	Annual for 5 years	R20,000.00	R150,000.00
Groundwater monitoring	Quarterly for 5 years	R20,000.00	R600,000.00
Sub-total			R13,995,877.81
P&G (13.5%)			R1,889,443.50
Contingency (10%)			R1,399,587.78
Total			R17,284,909.10

* No additional costs.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 131 Assessment Report

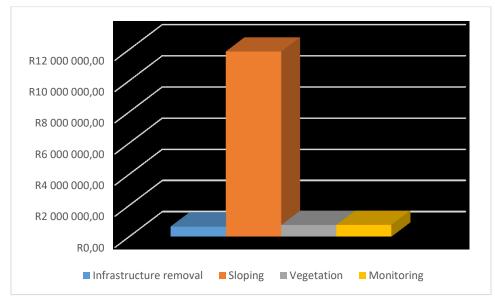


Figure 14: Financial provision summary

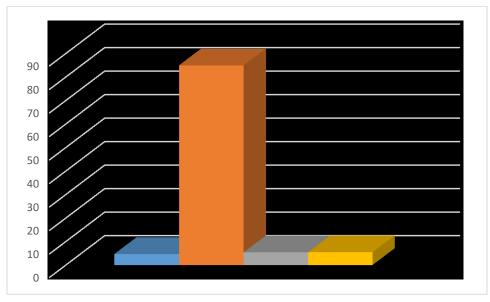


Figure 15: Percentage of financial provision

Referring to Figures 14 and 15 above, it is evident that sloping will be almost 85% of the entire financial provision.

ii) Confirm that this amount can be provided for from operating expenditure

The mine has provision for the rehabilitation of the area.

t) Specific Information required by the competent Authority

i) Compliance with the provisions of sections 24(4)(a) and (b) read with section 24 (3) (a) and

(7) of the National Environmental Management Act (Act 107 of 1998)

(1) Impact on the socio-economic conditions of any directly affected person

Refer to the needs and desirability of this BAR for a full description.

(2) Impact on any national estate referred to in section 3(2) of the National Heritage Resources

Act

None envisaged.

u) Other matters required in terms of sections 24(4)(a) and (b) of the Act

None envisaged.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 133 Assessment Report

PART B

ENVIRONMENTAL MANAGEMENT PROGRAMME REPORT

1) Draft environmental management programme

a) Details of the Environmental Assessment Practitioner

Refer to Part A(a) for the requirement for the provision of the details and expertise of the EAP.

b) Description of the Aspects of the activity

Refer to Part A(h)(v) of this BAR.

c) Composite map

Refer to Addendum 1 for all the maps.

d) Description of impact management objectives including management statements

i) Determination of closure objectives

1 End land use

The end land-use has been identified as grazing and game farming. Water accumulating within the remaining quarries will be utilised and optimised to complement the end land-use. Sloping should be at a safe angle for cattle and other animals to graze on site and provide easy access to the water. Sloping should allow for free drainage and prevent siltation of the water resources.

This end land use is then also the closure vison of the mine.

2 Residual impacts

Geology and the mineral resource:

Considering the fact that the mining of Andalusite goes hand in hand with the extraction of the ore body the impact on the geology (mineral wise) will be permanent. As part of mine planning, the effects of mining on the geological features have been kept to a minimum to minimise the potential risk to the employees and the environment during mining. The extraction of ore takes place from the various pit areas. The permanent removal of geology will be a residual impact.

Topography:

The mining activity will have permanent impacts on the topography of the area. This is a result of the fine tailings dam, WRDs and depression where the quarries were mined. The only measures that can be taken to minimise the impact on the topography are to ensure that effective rehabilitation is done in accordance with the proposed rehabilitation measures. The residual impact on the topography will be minimised as far

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 134 Assessment Report

as possible by applying the rehabilitation approaches. The impact is however permanent and will continue after mining. Rehabilitation measure can minimise the visual effect and partially the topography effect due to sloping and terracing of areas.

Soils:

Various activities on the mine could have and can result in soil pollution. These activities include the workshop activities, use of pesticides, storage and handling of chemicals and the storage and disposal of waste. The potential does exist that polluted soil (due to spillages, storage etc.) may be present after closure.

Prior to the application for closure, a survey will be conducted to identify all the polluted areas and appropriate actions will be taken to remediate the effect of the pollution on the surrounding soils. This will ensure no residual impacts after closure.

Land capability, surrounding land use and landscape character:

The areas that have been sterilised by the waste structures (WRDs, fine tailings dams) will not be rehabilitated back to the previous land capability. Objectives have been set for mine closure and the current mining area will be rehabilitated to such that it can be re-used for the pre-mining land use namely game and cattle farming.

Considering the closure objectives, the impact on the land capability will be limited and the residual impact on land use will be negligible.

Vegetation:

Although vegetation was destroyed as part of the mining activities, vegetation was and will be re-introduced to various rehabilitated areas on site as per the rehabilitation plan scheduling and rehabilitation procedure.

The only residual impact that is foreseen is the ingression of invader plants. To combat this action plans will be developed to identify all the invader plants on site and develop plans to eradicate such invader plants. The re-vegetation of areas will only be done using indigenous plants.

Clear objectives have been set with regards to mitigation of the impact on vegetation. Considering the effective implementation of the actions the residual impact of vegetation will be negligible.

Air quality:

Various sources of potential air pollution had been identified as part of the aspect and impact identification process. These potential dust sources include the fine tailings dams, plant operations, WRDs and plant

discard dumps, mining activities, haul roads and conveyor belts. Considering the management measures identified with regards to rehabilitation and closure it is foreseen that the potential residual impact of these sources on air quality will be negligible.

It is foreseen that some level of post-closure maintenance would need to be done on the fine tailings dams and WRDs to ensure the vegetation cover is acceptable. The financial provision has been calculated in such a way as to consider this post-closure cost. The detail with regards to the post-closure actions will be developed in due course.

The plant will have no residual impact on the air quality because it will not be operational after closure. The plant and related infrastructure will most probably be demolished.

Radiation:

No residual impact with regards to radiation is envisaged. Radiation sources will be removed and disposed at the appropriate sites.

Noise, vibration, and shock:

No residual impact caused by noise is envisaged after closure. This is due to the closure of the plant operations and mining activities which were mainly responsible for the noise generated on the mine. Blasting has also stop thus no vibration and shock will take place. Some structures that have been damaged due to mining activities (blasting and shock) will be identified and appropriate action initiated prior to the mining operations closing.

Visual aspects:

The potential impacts associated with the visual issues and change in topography will be addressed as part of the implementation of closure objectives and mitigation measures to minimise the impacts. Visual impacts will be present after closure. These impacts will be minimised as far as practical by means of effective rehabilitation practices.

Traffic:

It is foreseen that no residual impact on traffic will take place after closure. Traffic will decrease in the area.

Archaeological, historical and cultural aspects:

The impact that mining will have on these aspects identified in the heritage assessment will cease to exist after closure due to no mining activities taking place anymore.

Groundwater:

The pH is likely to be neutral to slightly alkaline and heavy metal solubilisation will therefore be minimal. Further, it can be determined that the waste present a slight/ low risk to the environment posed by the mine residue. The pH is likely to be neutral to slightly alkaline, therefore the severity of acid mine drainage will be negligible. Residual impacts on groundwater will only be known with adequate groundwater monitoring.

Surface water:

Residual impacts on surface water will only be known with adequate surface water monitoring.

Community safety:

According to the Professional Engineer, the Fine Tailings Dam will have a low Zone of influence due to the fact that no wet tailings are deposited on the dam anymore.

3 Closure objectives

Broad future land use objectives

The Broad future land use objectives for Havercroft Mine Operation are as follow:

- 1. To rehabilitate the land to a level where natural topography, vegetation, and land use approach the original state as closely as possible.
- 2. That stormwater control is permanent in view of the large volumes of fine erodible materials that have been created.
- 3. That the water quality and catchment yield return to the original state as closely as possible.

The rehabilitation of Havercroft will focus on sloping of quarries as far as possible, and sloping and levelling of any additional overburden; removal of alien vegetation and establishment of natural vegetation on all disturbed areas to also prevent erosion; adequate stormwater control to prevent siltation and pollution of the Rivers and Spruit; and removal of all old infrastructure.

Specific closure vision, objectives, and targets

- Pipelines: To remove all pipes in accordance with all environmental principles as well as the requirements of the MHSA.
- Plant area and other buildings: To keep the existing terraces with only minor cut and fill operations, and to allow a gradual drainage to the east of the plant.
- WRD: To prevent seepage and erosion from WRD.
- Quarries: To allow free flowing of surface water; to promote even vegetation growth, and to ensure the safety of quarry for community and animals.
- Primary and secondary access roads: To remove any unnecessary roads.

ii) Volumes and rate of water use required for the operation

None required.

iii) Has a water use license has been applied for?

Havercroft Operations has an IWUL. This IWUL has already expired. The mine is waiting for feedback from DWS whether they need to reapply for an IWUL.

ix) Impacts to be mitigated in their respective phases

Refer to the tables below for the Impacts to be mitigated in their respective phases, Impact management outcomes, and Impact management actions.

1 Removal of pipelines

Phase	Decommissioning and rehabilitation
Potential impact	Incorrect disposal of pipes
Aspects affected	Visual
Size and scale of disturbance	Unknown – will only be calculated during removal
Mitigation measures	Correct waste disposal as per the mine's waste procedure
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

2 Removal of plant area and other buildings

Phase	Decommissioning and rehabilitation
Potential impact	Incorrect disposal of building rubble
Aspects affected	Visual
Size and scale of disturbance	2.14m ³
Mitigation measures	Correct waste disposal as per the mine's waste procedure
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

Phase	Decommissioning and rehabilitation
Potential impact	Incorrect disposal of hazardous material
Aspects affected	Soil pollution

Size and scale of disturbance	2.14m ³
Mitigation measures	Correct waste disposal as per the mine's waste procedure
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

3 Sloping of WRD and plant area

Phase	Decommissioning and rehabilitation
Potential impact	Incorrect sloping leading to sedimentation of river down slope
Aspects affected	Water pollution
Size and scale of disturbance	1,313,973.00m ³
Mitigation measures	All quarries will be sloped as per Part B(1)(i)(c) to reduce erosion and subsequent sedimentation. The slimes dam will be revegetated. This will help to reduce any form of sedimentation from the dam.
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

Phase	Decommissioning and rehabilitation
Potential impact	Soil erosion
Aspects affected	Soil
Size and scale of disturbance	1,313,973.00m ³
Mitigation measures	See Part B((1)(i)(c) of this BAR. In short:
	• The area should be re-landscaped and resemble the landform prior to the
	open cast activities as far as possible.
	Revegetation will be implemented to reduce erosion.

	• Prior to the application for closure, a survey will be conducted to identify all
	the polluted areas and appropriate actions will be taken to remediate the
	effect of the pollution on the surrounding soils.
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

Phase	Decommissioning and rehabilitation
Potential impact	Rehabilitated soil could become infested with alien and invasive plant species
Aspects affected	Vegetation
Size and scale of disturbance	1,313,973.00m ³
Mitigation measures	See Part B((1)(i)(c) of this BAR. In short:
	All alien seedlings and saplings must be removed as they become evident
	for the duration of operation and after closure for at least five years.
	Manual / mechanical removal is preferred to chemical control.
	• Implement an alien invasive plant monitoring and management plan
	whereby the spread of alien and invasive plant species into the rehabilitated
	areas are regularly removed and re-infestation monitored for at least five
	years.
	• The areas should be planted within indigenous vegetation typical of the
	area.
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

Phase	Decommissioning and rehabilitation
Potential impact	Dust generation

Aspects affected	Air quality
Size and scale of disturbance	1,313,973.00m ³
Mitigation measures	None necessary, will cease once rehabilitation is finished
Mitigation type	N/A
Standard to be achieved	N/A
Compliance with standards	N/A
Time period for implementation	N/A

Phase	Decommissioning and rehabilitation
Potential impact	Noise generation
Aspects affected	Environmental noise
Size and scale of disturbance	1,313,973.00m ³
Mitigation measures	None necessary, will cease once rehabilitation is finished
Mitigation type	N/A
Standard to be achieved	N/A
Compliance with standards	N/A
Time period for implementation	N/A

4 Sloping of overburden at quarries

Phase	Decommissioning and rehabilitation
Potential impact	Soil erosion
Aspects affected	Soil
Size and scale of disturbance	152,660.50m ³
Mitigation measures	See Part B((1)(i)(c) of this BAR. In short:
	• The area should be re-landscaped and resemble the landform prior to the
	open cast activities as far as possible.
	Revegetation will be implemented to reduce erosion.

	• Prior to the application for closure, a survey will be conducted to identify all
	the polluted areas and appropriate actions will be taken to remediate the
	effect of the pollution on the surrounding soils.
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

Phase	Decommissioning and rehabilitation
Potential impact	Rehabilitated soil could become infested with alien and invasive plant species
Aspects affected	Vegetation
Size and scale of disturbance	152,660.50m ³
Mitigation measures	See Part B((1)(i)(c) of this BAR. In short:
	All alien seedlings and saplings must be removed as they become evident
	for the duration of operation and after closure for at least five years.
	• Manual / mechanical removal is preferred to chemical control.
	• Implement an alien invasive plant monitoring and management plan
	whereby the spread of alien and invasive plant species into the rehabilitated
	areas are regularly removed and re-infestation monitored for at least five
	years.
	• The areas should be planted within indigenous vegetation typical of the
	area.
Mitigation type	Control
Standard to be achieved	Rehabilitate
Compliance with standards	Guidelines for the rehabilitation of mined land (2007)
Time period for implementation	Until end of rehabilitation (end 2019)

Phase	Decommissioning and rehabilitation
Potential impact	Dust generation

Aspects affected	Air quality
Size and scale of disturbance	152,660.50m ³
Mitigation measures	None necessary, will cease once rehabilitation is finished
Mitigation type	N/A
Standard to be achieved	N/A
Compliance with standards	N/A
Time period for implementation	N/A

Phase	Decommissioning and rehabilitation
Potential impact	Noise generation
Aspects affected	Environmental noise
Size and scale of disturbance	152,660.50m ³
Mitigation measures	None necessary, will cease once rehabilitation is finished
Mitigation type	N/A
Standard to be achieved	N/A
Compliance with standards	N/A
Time period for implementation	N/A

5 Removal of roads

Phase	Decommissioning and rehabilitation
Potential impact	Dust generation
Aspects affected	Air quality
Size and scale of disturbance	42,760.00m ²
Mitigation measures	None necessary, will cease once rehabilitation is finished
Mitigation type	N/A
Standard to be achieved	N/A
Compliance with standards	N/A
Time period for implementation	N/A

e) Impact management outcomes

Refer to Part B(1)(d)(ix) above

f) Impact management actions

Refer to Part B(1)(d)(ix) above

i) Financial provision

(a) Describe the closure objectives and the extent to which they have been aligned to the baseline environment described under the Regulation

Refer to Part B(1)(d)(i) for closure objectives.

(b) Confirm specifically that the environmental objectives in relation to closure have been consulted with landowner and interested and affected parties

Refer to Part A(h)(ii) for public participation.

(c) Provide a rehabilitation plan that describes and shows the scale and aerial extent of the main mining activities, including the anticipated mining area at the time of closure

The following is extracted from Final Closure Plan and Rehabilitation Plan: As part of Closure Application (BECS Environmental, 2016) with Earthworks Report (Rational Environmental, 2016).

1 Removal of pipelines

All steel pipes will be removed to other mines within the Imerys Group. These pipes will then be reused as part of their operations.

2 Removal of plant area and other buildings

All hazardous materials such as hydrocarbons, fluorescent tubes, etc. will be removed by a licensed waste contractor to a licensed disposal area. The mine will obtain all the correct documentation such as safe disposal certificates and a copy of the disposal site license. All salvageable material will be removed to either a steel merchant or other mine operations. Concrete will be removed to a depth of 1m below the surface. Building rubble (inert waste) could be used for backfilling of the quarries, however, the disposal of more than 25tons need a waste license excluding the disposal of such waste for the purposes of leveling which has been authorised by or under other legislation. This will be discussed with DMR prior to disposal.

Once all salvageable infrastructure has been removed and foundations are broken the plant area should be sloped to allow for free drainage to the east. There are also small stockpiles and walls from old return water dams that should be graded to fill unnatural depressions around the plant area. High walls should be broken and sloped to allow for vegetation growth.

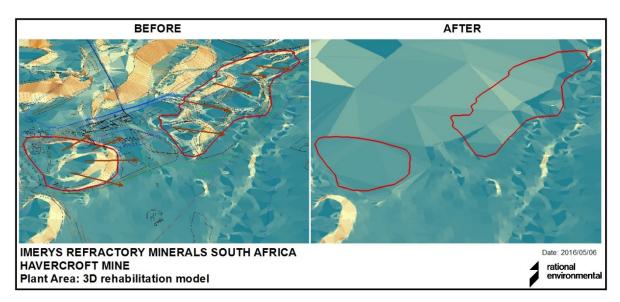


Figure 16: 3D Rehabilitation model of the plant area

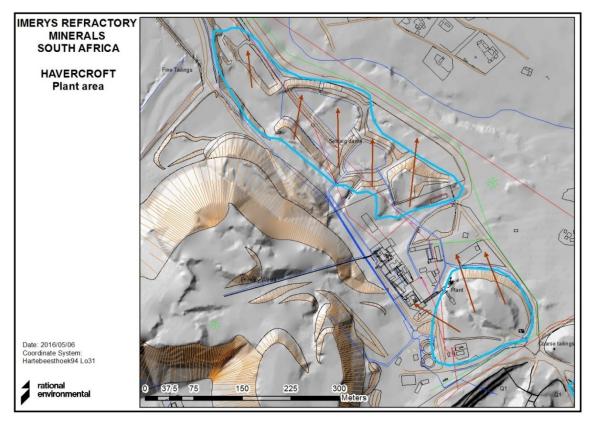


Figure 17: Rehabilitation of the plant area

3 Waste rock dump

On the western side is natural vegetation as well as a servitude for a high voltage power line. It is therefore proposed to slope most of the material to the north over the tailings facility and to the east towards the plant area. Once the sloping is finalised it is also recommended to add contour paddocks along the side slopes of the WRD no more than 20m apart. Previous contours of 50m apart have shown erosion to form along the slope.

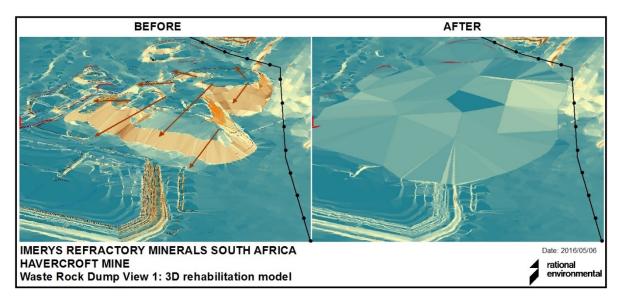


Figure 18: Waste rock dump view 1: 3D rehabilitation model

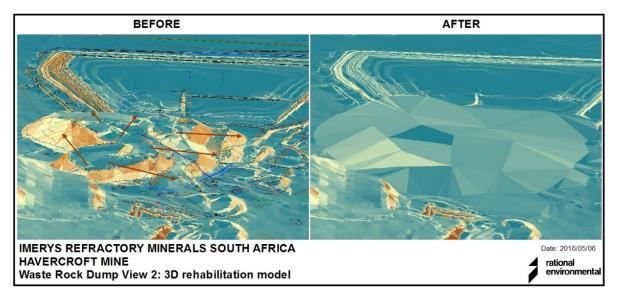


Figure 19: Waste rock dump view 2: 3D rehabilitation model

The 3d rehabilitation models indicate the sloping and moving of material required on the left, with the final result on the right. This model consists of only cut and fill and does not require any moving of material into or out of the site.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 148 Basic Assessment Report

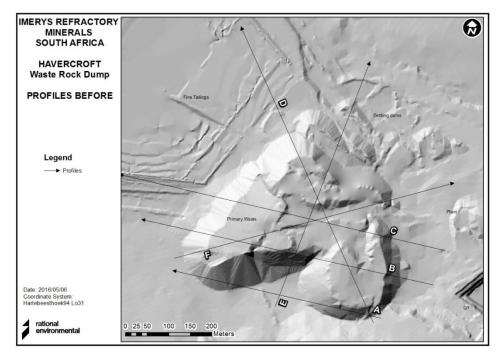


Figure 20: Waste rock dump profile before sloping

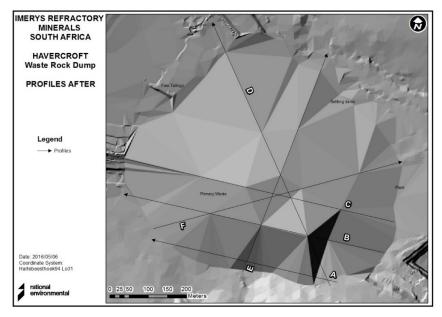
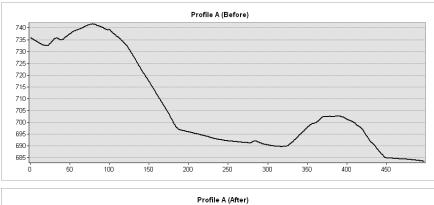
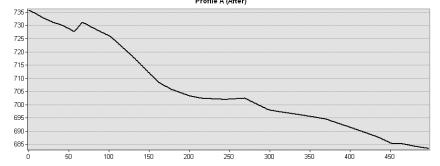
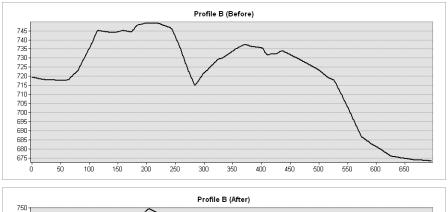




Figure 21: Waste rock dump profile after sloping


The cross-section profiles provide more detail on the required sloping and shape of the final WRD.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 149 Basic Assessment Report

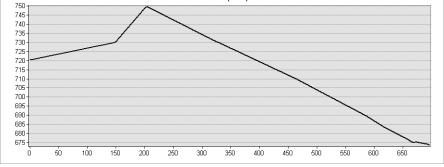
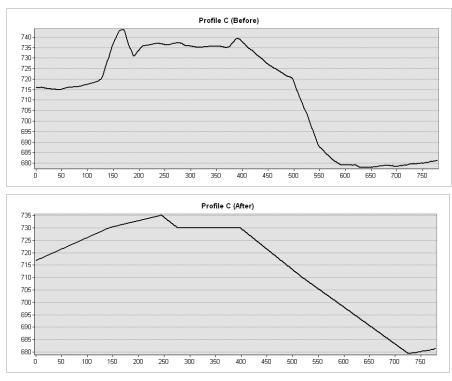
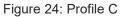




Figure 23: Profile B

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 150 Basic Assessment Report

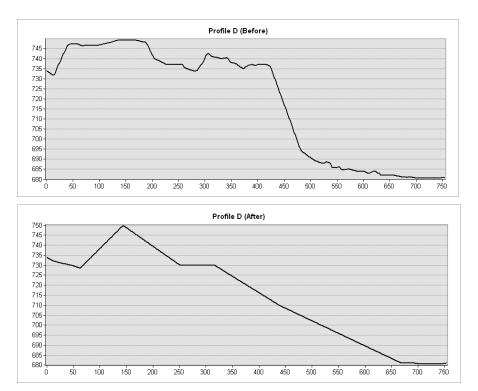
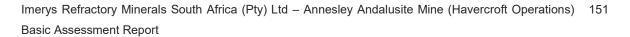
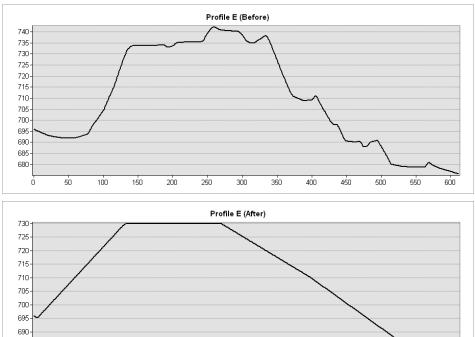
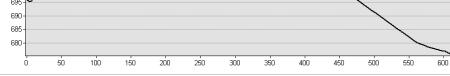
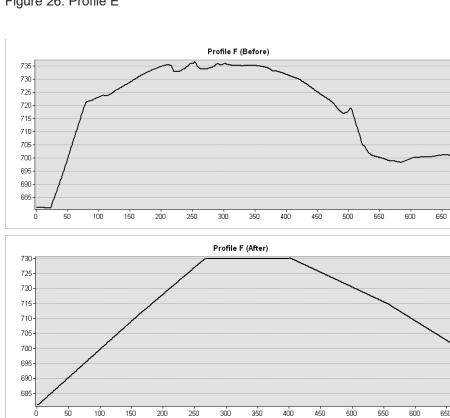
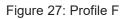






Figure 25: Profile D



Quarries

It is proposed to plant a thick row of euphorbias on the top of the high walls. This wil be done to prevent access of people and animals to these high walls.

Only the quarries where the need for earthworks has been identified are included in the description for sloping. Safeguarding of high walls are encouraged but has not been included in the modeling as there is a major safety concern to work above the high walls with machinery. All high walls have been modeled to remain in place due to this safety risk.

Quarry	Rehabilitation recommendation
Q1	Push remainder of OB opposite of high wall into the bottom of the quarry. Only light grading is
	required.
	Push bottom OB stockpile into the quarry.
Q2	Remove OB stockpile located within drainage line above the high wall to allow for free drainage
	into the quarry that will assist with vegetation growth.
	General sloping for free drainage should be established. This area is also identified as a good
Q3	location for a drinking hole. It is recommended to ensure that all slopes towards the water are safe
	and stable.
Q5	Break bench opposite of high wall. Potential traffic of locals and animals are expected to come
	from the east which would make this bench on the opposite side a potential safety risk.
Q6	Break lower benches that is easily reachable and push material to the bottom of the quarry.
Q11	Two OB stockpiles opposite of high wall should be pushed into the bottom of the quarry.
Q12	Push OB stockpile into quarry bottom.
Q13 & 14	Push OB stockpiles into quarry bottom.
Q15	OB stockpile should be brought back into the quarry. Note specifically not to push OB further down
	that may cause further disturbance and more difficult to move into the quarry.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 153 Basic Assessment Report

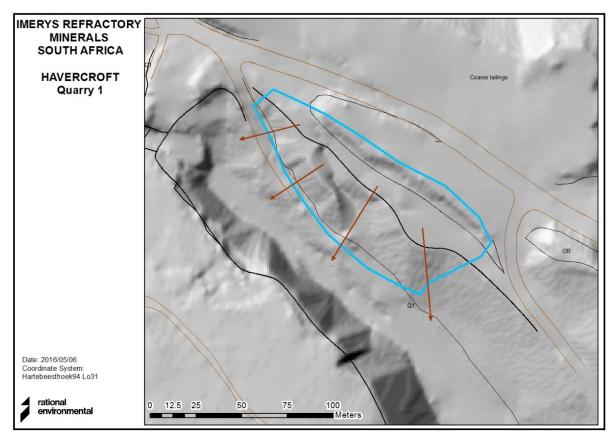


Figure 28: Sloping of Quarry 1

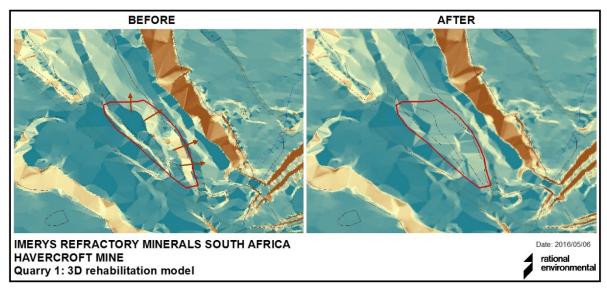


Figure 29: 3D rehabilitation model of Quarry 1

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 154 Basic Assessment Report

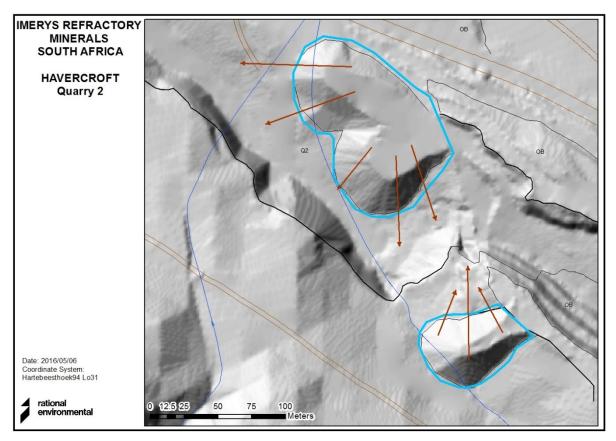


Figure 30: Sloping of Quarry 2

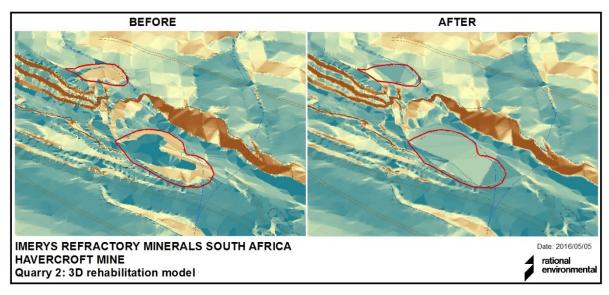


Figure 31: 3D rehabilitation model of Quarry 2

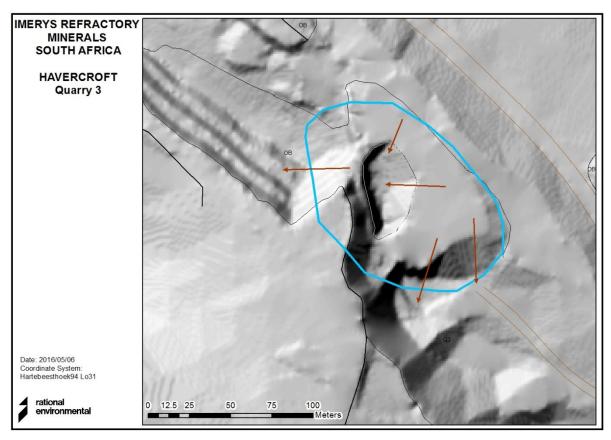


Figure 32: Sloping of Quarry 3

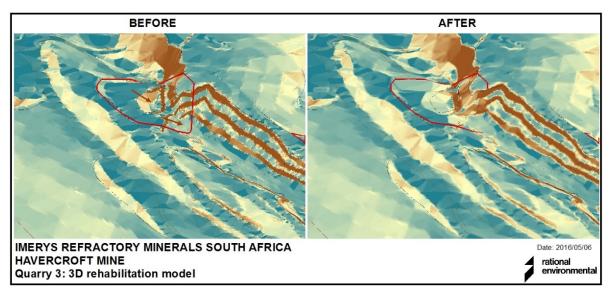


Figure 33: 3D rehabilitation model of Quarry 3

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 156 Basic Assessment Report

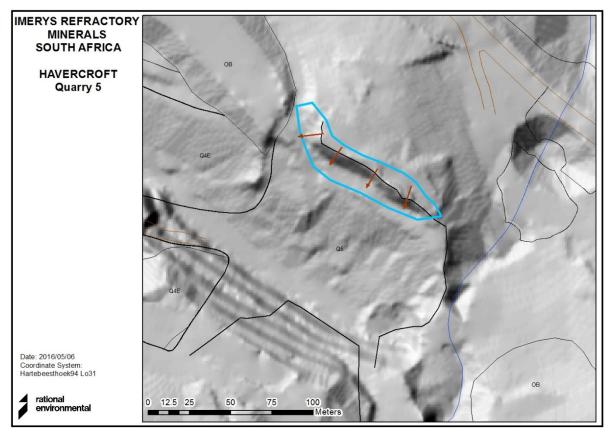


Figure 34: Sloping of Quarry 5

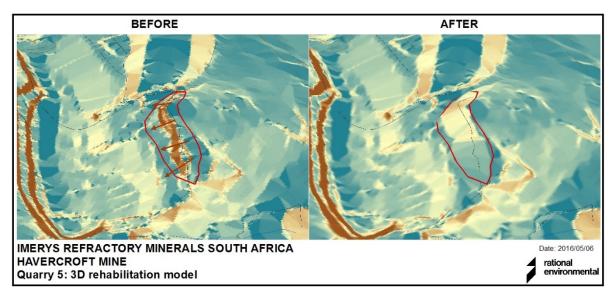


Figure 35: 3D rehabilitation model of Quarry 5

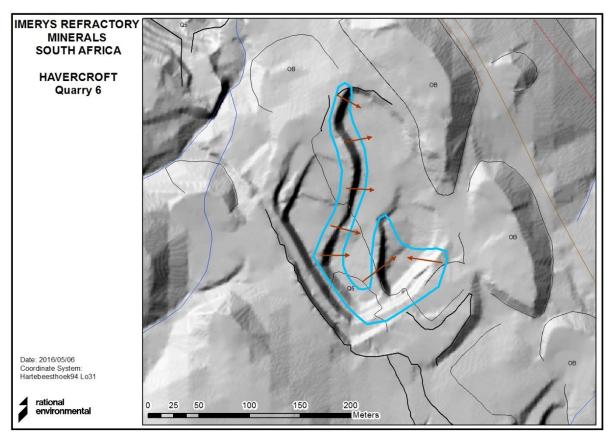


Figure 36: Sloping of Quarry 6

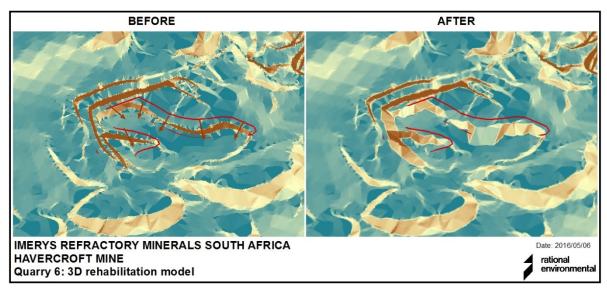


Figure 37: 3D rehabilitation model of Quarry 6

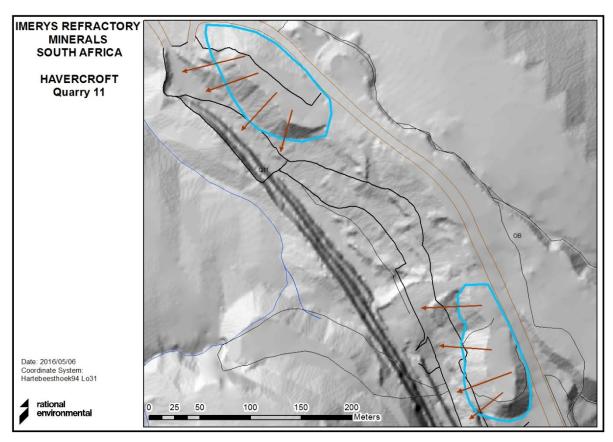


Figure 38: Sloping of Quarry 11

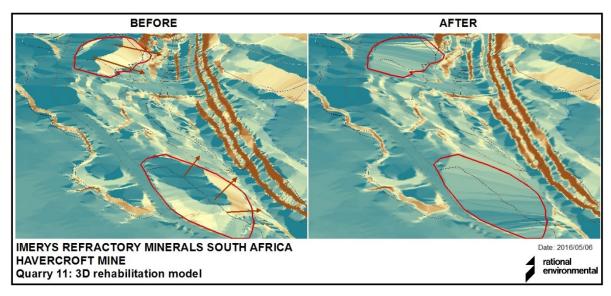


Figure 39: 3D rehabilitation model of Quarry 11



Figure 40: Sloping of Quarry 12

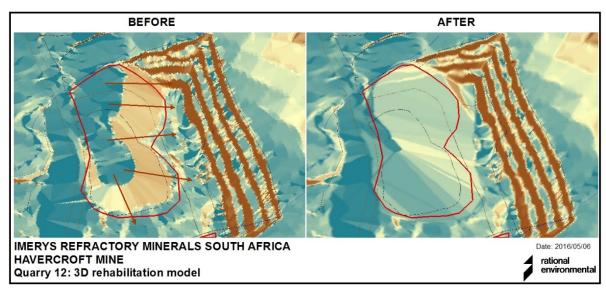


Figure 41: 3D rehabilitation model of Quarry 12

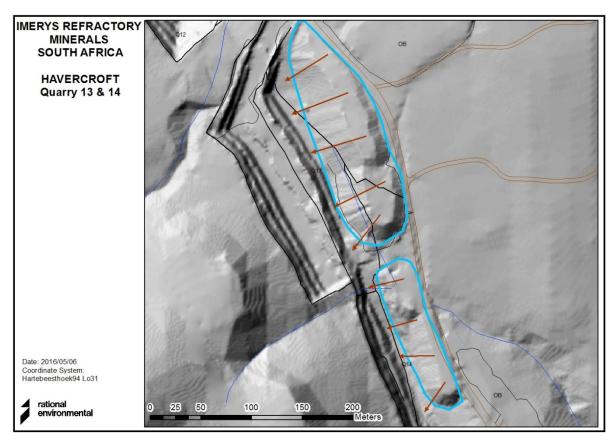


Figure 42: Sloping of Quarry 13 & 14

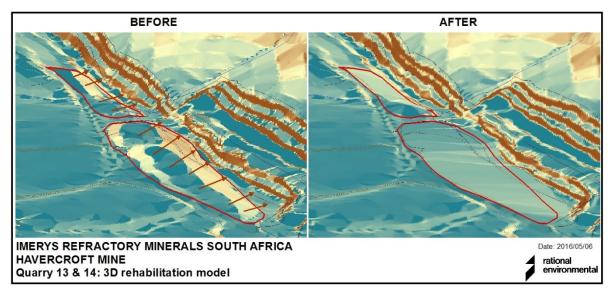


Figure 43: 3D rehabilitation model of Quarry 13 & 14

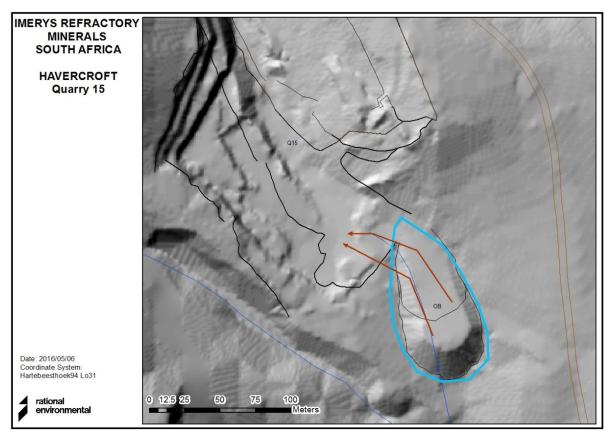


Figure 44: Sloping of Quarry 15

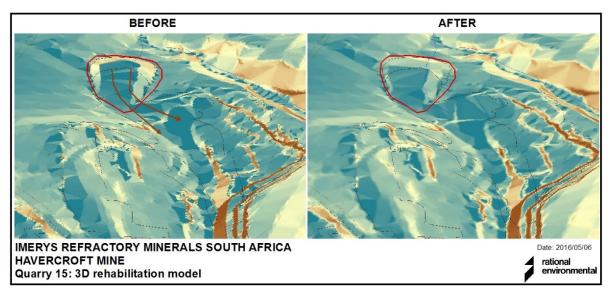


Figure 45: 3D rehabilitation model of Quarry 15

5 Primary and secondary access roads

Remove all hydrocarbon spillages and dispose as hazardous waste. Rip all roads. Ripping is done by using a dozer with one or two ripper tines. Ripping must penetrate through soil into the underlying overburden materials in order to ensure free drainage and to ensure root penetration.

6 Revegetation

- 6.1 Preparation for re-vegetation
- 6.1.1 Landform re-creation shaping

The following was extracted from the Guidelines for the Rehabilitation of Mined Land (Chamber of Mines of South Africa/Coaltech, 2007).

Once the earthworks are finished as per the Earthworks Report, the shaping of the area must take place. The three primary slope forms are concave, convex and rectilinear. The action of a bulldozer tends to produce convex or rectilinear slopes. **Concave slope** form is most stable, is least affected by erosion, and yields the least amount of sediment to streams. Convex slopes erode most rapidly, yield most sediment and tend to change shape fastest. Rectilinear slopes are intermediate in behaviour, although long rectilinear slopes can be severely eroded in a single heavy rain-storm (Schaefer et. al., 1979). Therefore, the mine must aim to create concave slopes as far as possible. Large stones/rocks should as far as possible be buried below the final level of graded spoil to permit ripping and scarifying operations

Erosion on newly rehabilitated slopes is always a major concern. The idea is to avoid the construction of drainage channels on the rehabilitated ground. However, this is frequently not the case and erosion control structures have to be inserted into the rehabilitated profile to control runoff water flow and minimise erosion. The eventual drainage pattern of a mined-out area will be a function of original topography, mining method, and regrading strategy. Contour systems and grassed waterways are antierosion measures designed to shorten the hydraulic length of slopes by intercepting overland flow (contour structure) and to conduct the latter to a safe discharge point (waterways). It should be emphasised that the two are complementary and that waterways must be provided if contour bank is installed. Refer to Figure 46 below for an illustration of two typical cross-sectional shapes of a channel. Another drainage structure that can be used is a toe berm. This is a berm or bench of compacted and vegetated soil constructed at the toe of the outer slope for reducing the velocity of run-off and trapping sediment. It is useful to control excessive erosion until the slope has been stabilised by vegetation. The width of the berm should be 1m for every 10m of slope length. The bench section of the berm should be sloped a minimum of 1% and a maximum of 3% away from the slope and its outer slope should be 1v:2h or flatter. It should be compacted and vegetated immediately. Refer to Figure 47 for an illustration of three different toe berms.

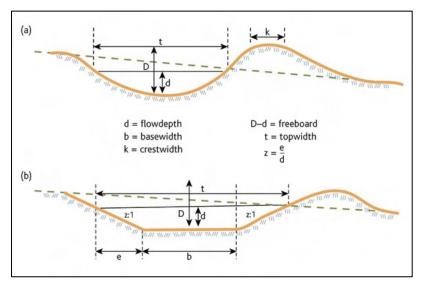


Figure 46: Two typical cross-sectional shapes of a channel

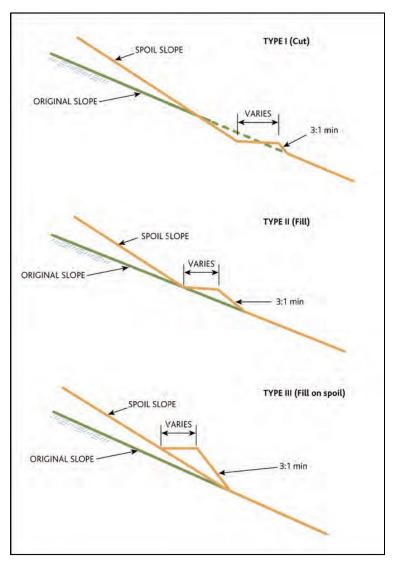


Figure 47: Sections illustrating toe berm construction (Reclamation Manual for Coal Surface Mining, State of Virginia, USA)

6.1.2 Soil replacement

The following was extracted from the Guidelines for the Rehabilitation of Mined Land (Chamber of Mines of South Africa/Coaltech, 2007).

Soil compaction is caused by the techniques and equipment used in the stripping, transport, stockpiling and replacement of soil materials during the mining and rehabilitation processes. Additional compaction occurs during the leveling of the replaced soil and during its preparation for planting. Apart from compaction of the replaced soil, compaction also occurs in the overburden materials that are handled and thus disturbed during the mining process. Once the final landform has been created, soil replacement can begin. Compaction should be minimised by use of appropriate equipment and replacing Soils to the greatest possible thickness in single lifts. Soils should be moved when dry to minimise compaction. If they must be moved when wet, shovel and truck should be used as bowl scrapers create massive compaction when moving wet soils. Minimise compaction during smoothing of replaced soils by using dozers rather than graders as tracks exert a lower bearing pressure and therefore compact less than wheeled systems. Following placement, all soils should be ripped to full rooting depth. Where natural revegetation is not possible, the soils should be tilled to produce a seedbed suitable for the plant species selected for seeding. Break and loosen the soil crust with hand tools e.g. garden rakes for broadcast sowing or break and loosen the soil crust with sharp-pointed hoes or forks for row sowing.

This section was compiled using the information from the Rehabilitation Recommendations after Alien Plant Control' (Campbell, 2001).

Fertilizers necessary for the re-establishment of vegetation will be determined as necessary. It is very important to note that during the application, the dry fertilizer may not come into contact with the grass seed. To ensure this, the seed must be covered with soil before the application of fertilizer. Further, please note, the application should take place before or after good rains. Steps to be followed:

- 1. Broadcast the fertilizers over the sown area.
- 2. If the planting method is using sods, the fertilizer should be placed in holes.
- 3. If the planting method is using runners or tufts, the fertilizer should be placed in furrows.
- 4. Divide the fertilizer into two equal parts and use each portion to cover the entire area. Please remember, fertilizers should not come into direct contact with the seeds.

Phosphorous is important in root development and seedling establishment; the application may be needed. Nitrogen is needed in the largest amounts by grass species. The following reduce the amount of nitrogen in the soil:

- 1. Soils with low organic carbon content as with soils occurring on site;
- 2. Leached and eroded soils; and
- 3. Intense burns.

Potassium increases the cold tolerance of plants. The presence of wood ash after a fire adds some potassium to the soil in the form of potash. Manure supplies all of the three above minerals / organic matter to the soils. Organic matters improve physical attributes of soil including water infiltration, water holding capacity, aeration, tilth, a decrease in soil compaction, and chemical attributes such as cation exchange, etc. Poultry manure is three times higher in nitrogen and phosphorous than cattle manure. The following should be done in regards to applying manure to soil:

- 1. Spread and work the manure into the soil to prevent loss of nitrogen to the air.
- 2. For cattle manure, 8t/ha for grass establishment must be applied.
- 3. For chicken manure, 2t/ha for grass establishment must be applied.
- 4. Chicken litter should be thinly spread. A high concentration can damage or even kill germinating grass seedlings.
- 5. Store manure in heaps and only for short periods to prevent loss of nutrients.
- 6. As manure may lead to bad odors, it is advised to use commercial fertilizers as well.

Organic matter is most important for the amelioration of the topsoil. Organic material must be applied to the topsoil as well as worked into the entire depth of the rooting zone.

6.2 Re-vegetation and alien control

When considering which vegetation to use in rehabilitation, it is important to consider the natural vegetation of the site before mining (if known) and the natural and/or indigenous vegetation of the surrounding properties. This will guide the selection of vegetation species to ensure that vegetation used in rehabilitation is similar to that of the original vegetation and/or similar to surrounding properties. By using species indigenous to the area in which the mine is located, it will also facilitate the creation of habitats similar to those that should occur on the mining site. This will facilitate the re-colonization of the site by indigenous fauna.

6.2.1 Veld types

Veld types were delineated per Mucina & Rutherford's "The Vegetation of South Africa, Lesotho and Swaziland". The area is situated within the Sekhukhune Plains Bushveld vegetation unit. This vegetation type includes specific species compositions and vegetation structure. Seeds obtained from the mining area can be used for revegetation of the slimes dam as well as the quarries, however, please note, it is unclear whether these seeds will germinate and whether these seeds are all natural vegetation species. It is therefore suggested that seeds are planted using either a rehabilitation (revegetation) specialist or the species described below.

6.2.2 Grass species

The selection of grass species to be used in the rehabilitation of the mining area has been compiled using the information from Mucina & Rutherford's "The Vegetation of South Africa, Lesotho and

Swaziland' and the Grab-a-Grass Dial provided by the ARC with the supporting document 'Rehabilitation Recommendations after Alien Plant Control' (Campbell, 2001). This dial provides guidance with regards to the selection of grass species based on the characteristics of the grass species, the conditions in which they would be planted and the purpose of the vegetation cover (in this case for soil stability and soil cover). Per Mucina & Rutherford, these vegetation types include grass cover; therefore, rehabilitation will focus on the establishment of grass cover, with the species selected being determined by several factors. Based on the information provided on the Grab-a-Grass Dial, selection criteria have been identified for use in the selection of grass species. The list provided below gives the selection criteria.

- 1. The first step is to decide on the final land use of the area. This includes the type of soil-binding the grass provides.
- It is important to know how easily the grass can establish together with the lifespan of the grass, whether it is annual or perennial grass species. This may enhance the establishment of a grass species and help reduce the invasiveness of a grass species.
- 3. The third step is to consider whether the grass is indigenous and the invasiveness of nonindigenous grasses.
- 4. The climatic conditions of the site
 - I. What is the minimum MAR needed for successful grass establishment?
 - II. Is the grass tolerant to drought?
 - III. Is the grass tolerant to frost?
- 5. Soil types where vegetation will be planted.
 - I. What type of soil fertility is needed for the grass to grow?
 - II. What type of texture is the soil?
 - III. Is the grass tolerant to waterlogging?
- 6. What type of planting method should be used?
- 7. What is the planting time of the grass species?

The grass species suitable for use in rehabilitation in this area and the characteristics of each species have been extracted from the reference material (the Grab-a-Grass Dial) and presented in Table 33. Commercial grasses are commercially available species. Veld grasses are not usually commercially available and are harvested from the veld. Therefore, only small amounts are available. Veld seeds are also usually dormant that requires a period of after-ripening or has a low percentage viability. These grasses are more difficult to establish. It is also important to note that in the veld, grasses do not occur isolated, but are mixed with other seeds. To reduce the chances of mixing the selected seeds with other seeds, choose patches that are dominated by the chosen grass for seeds. All grass seeds bought should be accompanied by a certificate. Livestock should be excluded from rehabilitation site as far as possible.

End land use aims

It is necessary to decide what the end land use will be after rehabilitation. The end land-use has been identified as grazing. At present, the aim is to control soil erosion and obtain a vegetation cover. For the controlling of soil erosion, creepers are better than tufts, however, creepers are usually invasive. *Urochloa mosambicensis* was identified as a creeper to be used and this plant has a low invasiveness. Species that establish easily are *Panicum maximum* and *Urochloa mosambicensis*. *Cenchrus ciliaris, Panicum maximum*, and *Urochloa mosambicensis* have a high grazing value. These grasses will be suitable for grazing as part of end land use. *Enneapogon cenchroides* has a low grazing value and should be used on an area such as the Slimes Dam to prevent grazing as much as possible.

Tolerance to local climate

The mean monthly rainfall of the area is 559mm, which is higher than that of the surrounding area because of the microclimate (topography and aspect) (approved EMP, 1999). *Enneapogon cenchroides* might be affected by the amount of rainfall. As South Africa is prone to drought and the site is situated within a drought-prone area, the ability of selected species to endure drought periods is very important. All species can tolerate drought, except *Panicum maximum* which can tolerate drought on a medium level.

Tolerance to soil characteristics

Topsoil is minimal and in many areas absent. Topsoil that does occur will have low soil fertility. *Cenchrus ciliaris, Enneapogon cenchroides, and Cenchrus ciliaris & Enneapogon cenchroides* mix can grow on soil with low soil fertility. Soils are mostly stony, *Enneapogon cenchroides* and *Cenchrus ciliaris & Enneapogon cenchroides* mix can grow in this texture. None of these species can easily grow in water-logged areas. This might pose a problem in some of the quarries if the overburden being sloped becomes waterlogged. The quarries might only have a stony substrate with minimal to no topsoil.

Indigenous and invasiveness

All grasses are indigenous with low invasive status except *Panicum maximum* with medium invasive status.

Seed harvesting of veld grasses

The following is extracted from Agri-Facts (Brooks et al., nd).

Grasses need 20-30 days after flowering for seeds to properly mature. This will vary because the period of flowering and seed development lasts from several days to two weeks. Thus, seed heads emerge at different times, which cause uneven ripening. Hot, dry weather shortens the ripening time. The ideal time to swath is when the seed is at the medium to hard dough stage and still firmly attached. Moisture testing of the entire seed head (35-50%) is also a useful indicator of when to swath. Most grasses will hold their seed for 10-15 days, but the time from medium dough to seed shatter can be as short as three or four days. Seed shattering will depend on the grass species, stage of maturity, the variety, the degree of lodging, and wind, rain or hail.

Check fields often to determine when the crop is ready to harvest. A crop is ready to harvest when the seed is at the medium to hard dough stage (moderate to hard pressure with a thumbnail will dent the seed of large-seeded species). Swath when 75% of the seed heads have matured. Grass seed heads generally ripen from the top down. When the tips begin to shatter, the crop is ready to harvest. Harvest immediately if seed heads shatter when gently struck against the palm. A crop is ready to swath if seed heads shatter when roughly struck against the palm.

Table 33: Grass	species [•]	to be	used
-----------------	----------------------	-------	------

Scientific	Com	Soil	Us	Grazin	Establis	Life	Indigenou	Invasiv	MAR	Toleranc	Toleranc	Toleranc	Soil	Soil	Plantin	Plantin
name	m /	bindin	е	g value	h	spa	s	е	require	e to	e to frost	e to	fertilit	textur	g	g time
	Veld	g			easily?	n			d	drought		water	у	е	method	
												logging	neede			
													d			
Cenchrus	Com	Tuft	Р	High	No	Per	Yes	Low	250-900	Yes	Med	No	Low	S-C	S	Spr-Aut
ciliaris	m															
Panicum	Com	Tuft	Р	High	Yes	Per	Yes	Med	500+	Med	Med	No	Med	S-C	S	Spr-Aut
maximum	m															
Enneapogon	Veld	Tuft		Low	Med	Ann	Yes	Low	150-400	Yes	Yes	No	Low	S-	S	Spr
cenchroides														Stony		
Urochloa	Veld	Creep		High	Yes	WP	Yes	Low	350+	Yes	Med	No	Med	L-C	S	Spr
mosambicensi																
s																
Cenchrus	Veld	Tuft		Med	Med	Per	Yes	Low	250-600	Yes	Med	No	Low	S-L,	S	Spr
ciliaris &														Stony		
Enneapogon																
cenchroides																
mix																

Soil texture: NA = non-acidic; S = sand; SL = sandy loam; L = loam; LC = loamy clay; C = clay

Life span: Ann = annual (lives 1 year), WP = Weak perennial, Per = perennial (lives many years)

Planting time:

Planting method = S = seeds

Use: P = pasture

Planting time: Spring = Spring+ Summer (Plant after first reliable rains); Spring/Autumn = Plant during Spring+ Summer+ Autumn

In most cases, a conventional grain combine can be used to harvest either a standing or swathed grass crop. Adjust the combine as recommended by the manufacturer and thoroughly clean the combine before harvest. Air intake should be based on seed weight. Shut off the air intake when harvesting light chaffy seed, such as orchard grass. For heavier seeds, air intake can be increased slightly. It is important that an even continuous flow of material is fed into the combine. Be careful to prevent seed being carried through the combine in the straw and chaff.

Swath easily shattered grasses in the early morning or in the evening when air humidity is higher. Under low humidity, drying in the swath from 5 to 10 days will usually allow the seed to dry enough for harvest and safe storage.

Time of sowing

Moisture is the most important factor for germination of seed. Seed should be planted after the first reliable rains. All the grasses should be planted in spring. The first rains in the area occur in September; therefore, grass seeds would most likely be planted in September after the first rains. Seed must not be planted in December or January, as this time of the year is too hot for the germination of seeds. *Cenchrus ciliaris* and *Panicum maximum* can also be planted in autumn. This must be done at least ten weeks before the expected frost. When grasses are established vegetatively, planting should be done from spring to mid-summer preferably soon after the soils are wetted by good rains. Planting should be done directly after removal of alien plants. Bare soil may lead to erosion, etc. It is also important to keep on with alien control.

Most indigenous grasses have a dormancy period before seeds germinate. Seeds should usually be left to rest for a whole season if obtained from the veld. Seeds purchased from a seed merchant can usually be sowed immediately. Seed should not be stored for more than three years. Seed should be stored in a cool dry place below 25°C away from direct sunlight.

Planting Methods

There are different types of planting methods and plant uses. As the Grab-a-Grass Dial include many types of planting and uses; which has no reference to the grass species chosen, only those relevant to the grasses to be used will be described.

1. Seeds

Melinis repens and *Setaria sphacelata* can be planted by using this method. When planting grasses using seed, the seeds should be mixed with river sand or lime to make it bulkier. Lime also acts as a marker to indicate where sowing has taken place. The type of sowing depends on the terrain. The bulking of seeds is also advantageous for sowing rate is low or if the seed is easily blown by the wind. Generally, all seeds must be covered with a thin layer of soil. This will not be possible on the mine residues. Sowing should take place to a depth of 0.5cm. Compaction results in the close contact between seeds and soil. This leads to maximum moisture retaining and optimal seedling establishment.

a. Broadcast Sowing

This type of sowing is suitable for flat ground and gentle slopes of 0% to 10%. This type of sowing involves the evenly spreading of seeds over an area. Steps to take for sowing:

- Spread either by hand or cyclone seeder.
- To ensure that the seed is evenly applied, the seed must be divided into two even portions.
- Two seeders (seeders being by hand or cyclone seeder) move in the opposite direction with seeds.
- Areas where indigenous grasses are already established, seed should only be applied to bare soil patches.
- Control the depth of the seeds by using hand tools. The back of garden rakes can be used to cover seeds or by sweeping with small branches.

b. Row Sowing

This type of sowing is suitable for shorter, gentle to steep slopes. Sharp-pointed hoes or forks must be used to make shallow furrows. Rows of grass seed will help trap silt and therefore help stabilize the area. The furrows must be space approximately 30-50cm apart on the natural contours. Please be advised, contours should be made parallel with the horizon and not vertical.

- Seed must be divided into two equal portions.
- Cover all furrows with each of these portions. Short sticks should be used to cover the seed. Rows can also be scuffed with the shoe.
- As with broadcast sowing, only sow in bare areas.

c. Hydroseeding

The mixture is prepared by mixing the mulch, seed, fertiliser, pigment, and water in the specified proportions. All ingredients shall be thoroughly mixed to form a homogenous slurry. Seed must be uniformly sown over all areas to be planted.

2. Barrier lines

Barrier lines are necessary on slopes. This is to prevent soil loss due to water flow. The aim is not to divert water flow but to merely slow it. There are two types of barrier lines that can be used. The first is using loose non-vegetative material and secondly, planting of vegetation. Stumps form invasive plants can be used as vegetation barrier lines. This should be sowed in three lines of 15cm apart. This is followed by 3 rows of another indigenous grass species also sowed 15cm apart. Barrier lines should be established horizontally as with contour lines. The following type of material can be used for non-vegetative barrier line:

- Brushwood;
- Branches;
- Thatch; or

• Stones.

Barrier lines using non-vegetative material depend on the slope of the area and the length of the slope. The following calculations must be done to find the slope percentage:

- 1. Measure the length of the slope from the top to the bottom (a).
- 2. Measure the difference in altitude from the top to the bottom (b).
- 3. Divide (a) into (b) and multiply by 100. This will be the slope percentage.

Refer to Figure 48 for the calculations of barrier lines.

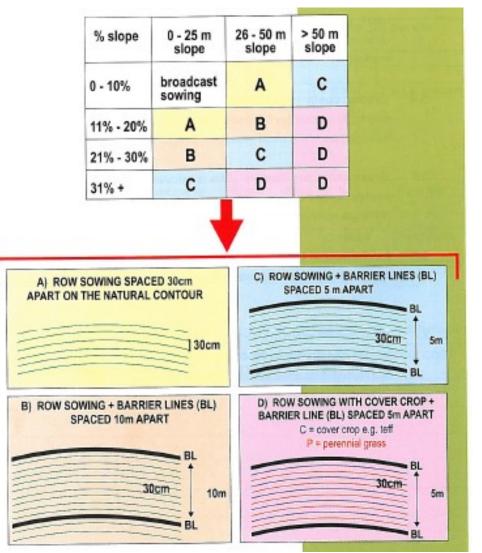


Figure 48: Calculating barrier spacing (Taken by Campbell, 2001)

3. Brushwood

Brushwood helps to prevent the loss of topsoil and seeds after heavy rains or during strong winds. The area is characterised by hot summers and late afternoon showers during this period. Wind is mild, except for short periods during thunderstorms when strong winds may occur. Therefore, brushwood is

necessary on the site. Brushwood also breaks down and helps add organic carbon to the soil. Steps to take in placing brushwood on site:

- 1. Brushwood; which is twigs and small branches should be cut and placed evenly over the area.
- 2. The brushwood should be trampled to get good contact with the soil. Please be advised not to disturb seeds or soil covering the seeds.
- 3. Brushwood should be approximately 0.5-1m high. Too large heaps of brushwood will kill seeds.
- 4. As the placement of brushwood is labour intensive, only use it in areas where practical.

When placing branches against a slope to control erosion, the broad end of the branches (crown part) must be put uphill. This wider area of twigs and leaves will ensure that more soil and silt will be trapped. Steps to take on steep slopes:

- 1. Place brushwood horizontal with soil (parallel with natural contours).
- 2. Fasten brushwood with iron pegs or stabilize by using big rocks and branches.

6.2.3 Alien control

Information for this section was obtained from 'Rehabilitation Recommendations after Alien Plant Control' (Campbell, 2001) as well as from Bromilow (2010). The control of alien plants is a very important part of the rehabilitation of the site. Alien control should take place before and during the establishment of vegetation on site. There are three phases included in the control of alien plants. These phases are as follow:

- 1. The initial control. This is a very drastic reduction or eradication of the existing alien plant species on site.
- 2. The follow-up control. This phase will take place during the planting of vegetation. Alien vegetation seedlings, root suckers, and coppice regrowth must be removed.
- 3. Maintenance control. This phase occurs when re-vegetation has already taken place and the alien infestation will no longer be a significant problem. This phase will take place two to three times each year during spring, mid-summer and autumn.

1. Alien vegetation control methods

Control strategies depend on a different factor. These factors are:

- The type of alien plant species;
- The growth habit of these alien species;
- The density of alien plants;
- The terrain;
- The rehabilitation requirements;
- The availability of resources; and
- The urgency/speed of alien control necessary.

Alien species observed on the site are given below. Please note, this list will be extended once rehabilitation is underway.

Table 34: Alien species occurring on site

Scientific name	Common name	Plant type	NEMBA Category*
Nicotiana glauca	Wild tobacco	Tree	1b
Senna didymobotrya	Peanut butter cassia	Shrub	1b

1b – Spreading or allowing to spread prohibited

Table 35: Alien vegetation control methods

Alien Species Description	Method of
	Eradication
Nicotiana glauca	There is no
It is a slender, evergreen shrub or small tree up to 6m in height. It is blue-green all over	chemical control for
and sometimes with purplish tints. It can form dense stands along riverbeds after floods.	this plant.
The leaves are blue-green and leathery on long petioles. Blades up to 200mm long x	Mechanical
120mm wide on young growth. Flowers are yellow and tubular in shape from 30 – 50mm	removal includes
long in terminal dropping clusters all year. Fruits are brown and four-valved.	hand pull and felling
http://www.agis.agric.za/wip/CategoryList.jsp?category=389	of plants.
	Campbell, 2001
Senna didymobotrya	There is no
Evergreen, rounded shrub or small tree 1-3(-6) m high; young shoots softly downy;	chemical control for
flowers and cut stems smell of peanut butter. Leaves: dark green, with 8-21 pairs of ovate-	this plant.
oblong leaflets 20-50 mm long, bases asymmetric, tips shortly pointed; stipules ovate,	Mechanical
with a tapering point, persistent. Flowers: bright yellow, buds dark brown, in narrow, erect	removal includes
racemes up to 450 mm long, all year. Fruits: Pods, green turning dark brown, softly	hand pull of plants.
downy, flattened, ± 100 mm long x 20 mm wide, long-beaked.	Campbell, 2001
http://www.agis.agric.za/wip/	

2. Disposal of alien vegetation

Small amounts of cut material can be left on the site to and add to organic material provision, however, please note, if seeds are left with the cut material, the infestation will occur. Most of the plant material will be used as part of mulching of the tailings dam.

3. Follow-Up Control

It is very important to do a follow-up control after the initial alien control programme as alien vegetation will re-establish very easily. For the follow-up control, the re-establishment must be evaluated to see if there is a dense regrowth or low-medium dense regrowth. Dense regrowth is usually in the form of seedlings, root suckers or stump coppice.

a. Chemical Control - Foliar Applications

Use knapsack sprayers with flat fan nozzles if the regrowth is uniform and less than 1m tall. This must be done as quickly as possible with enough people. If there are large assessable areas, a

tractor-mounted tractor can be used. See, if there are indigenous species occurring in the same area, use selective registered herbicides only.

b. Mechanical Control

If plants are uprooted, it will result in soil erosion. It is advised to cut the plant so that coppice growth can take place. The coppice growth can then be sprayed with herbicides. Plant grass after the area has been cleared of alien plants to prevent more regrowth.

Areas that only have a low-medium dense regrowth must be a high priority to control. If such areas are left uncontrolled, high dense regrowth will take place.

c. Chemical Control

Plant cut and control: Plants should be cut to a height of less than 15cm tall. Herbicide should be applied to the stumps by using hand sprayers, paint brushes or knapsack sprayers. Dye the stumps that are sprayed. This way it is easy to see what plants have been treated. Please note the herbicide should be applied to the cut area of the stump and not on the sides of the stump. Spray on coppice regrowth: Regrowth can be sprayed to a height of 1m tall. Use knapsack sprayers.

d. Mechanical Control

Hand pull of seedling can take place in wet soils. Please ensure that workers wear gloves for protection as some of the plants are irritants or poisonous.

7 Rehabilitation schedule

The rehabilitation schedule provides detail on which specific activities should be undertaken to effect closure in identified mine areas or zones. The conceptual closure plan provides high level detail on the schedule for the LOM, with more detailed focussed on the construction and first year operational phase. As operations continue the closure schedule will be adjusted and become more detailed. The closure schedule should describe timeframes for:

- Planned mine infrastructure construction period;
- Commissioning of pollution control infrastructure;
- The rehabilitation schedule (refers to the rate of rehabilitation and typically includes levelling, topsoiling and revegetation);
- Timeframes for selected specialist studies expected; and
- Socio economic interactions

The schedule for rehabilitation must be discussed with the community. Once this has been finalised, it will be included.

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) 176 Basic Assessment Report

(d) Explain why it can be confirmed that the rehabilitation plan is compatible with the closure objectives

This BAR is for rehabilitation of the area.

(e) Calculate and state the quantum of the financial provision required to manage and rehabilitate the environment in accordance with the applicable guideline

Refer to Part A(s) for a complete description of the financial provision.

(f) Confirm that the financial provision will be provided as determined

Refer to Part A(s) for a complete description of the financial provision.

j) Mechanisms for monitoring compliance with and performance assessment against the environmental management programme and reporting thereon

i) Monitoring of impact management actions

Monitoring of any rehabilitation is absolutely necessary to ensure that the integrity and performance of the rehabilitation method are still in line with the original objectives and purposes of the method. It is very important that monitoring takes place continuously throughout and after rehabilitation. The main goals behind a monitoring program are (van Deventer, 2009):

- To meet legal requirements. In the EMP, a description of methods to be followed to monitor compliance with the approved rehabilitation plan is included. Closure application should also be substantiated with adequate monitoring data. Closure objectives must be specified upfront and accepted by all parties. Objectives must be prescribed for at least the following:
 - Topographical reshaping
 - Erosion (surface stability);
 - Vegetation cover (species diversity, abundance);
 - Surface water drainage systems;
 - Surface water quality
 - Groundwater quality
 - Miner residue characteristics with respect to plant growth (soil quality)
- 2. Evaluating mine residue and vegetation quality. Dynamic assessment requires a monitoring system to provide a regular surveillance of mine residue and vegetation quality attributes or indicators.
- 3. Land management. The annual results of the monitoring program will determine the actions to be taken for the following year to ensure the site is improving in the direction of the stipulated end result.
- Improving our understanding of new ecosystems. For the new ecosystem, the biological productivity, stocks and exchange of nutrients, and the regulation of other ecological processes need to be characterized, quantified and modeled.

Refer below for the parameters of monitoring. This includes an explanation of the approach that will be taken to analyse monitoring results and how these results will be used to inform adaptive or corrective management and/or risk reduction activities.

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
Topographical reshaping				
After reshaping the resultant topography must	Once after	Once after	Mine	Deviations from plan must be documented, and the final reshaped surface should
be surveyed to determine the degree to which	reshaping	reshaping	surveyor	be signed off by the responsible person prior to the replacement of topsoil.
the final topography meets planned objectives,				
particularly in terms of surface drainage and in				
terms of slope required to meet land capability				
objectives.				
Erosion monitoring		L	L	
The primary objective of the closure of any	Monthly	Five years	Mine	It is much simpler, and cheaper, to treat this type of erosion in the early stages of
sloped area is to create a rehabilitated surface		after	manager	formation than to try to repair the damage once a deep gulley has formed. Small
and topography that has the capacity to be		rehabilitation		ruts that are just starting to open up can be easily controlled by filling them with
stabilised under all environmental conditions				brush, straw, manure or even stones.
e.g. severe rain events, veld fires, droughts etc.				
Erosion status of the rehabilitated land should				Treatments should be concentrated in areas of clearly active soil erosion, rather
be monitored and zones with excessive erosion				than relatively stable (vegetated) gulleys).
should be identified for remedial action. Erosion				
can be quantified by insertion of marked stakes				An extremely important principle with any soil erosion control method is that when
into the rehabilitated profile and recording the				natural materials are gathered for use in control structures, care must be taken to
rate at which the stakes are uncovered.				ensure that the removal (for example, of stones) does not become the cause of a
However, the norm is simply the recording of				new erosion problem at the source of the material. Stones, for example, should
the existence of erosion in a particular location.				only be collected along roads, where they are displaced during road-making, or
Key objectives to improve surface stability are;				from piles of stones cleared off irrigation lands. Similarly, natural vegetation should
• Minimisation of surface erosion (wind and				not be destroyed by vehicles collecting or delivering materials for gulley control.
water)				(http://www.ostrichsa.co.za/downloads/bio_diversity/rehabilitation.pdf)
• Establishment of a plant community that is				
self-sustaining or any other cover material				
which complies to surface stability				
Achievement of these objectives should be				
demonstrated by monitoring of the rehabilitated				

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
areas. The key objective of surface stability				
monitoring lies in being able to demonstrate in				
a quantified manner the stability of surface				
rehabilitation works. The monitoring				
programme should be developed such that loss				
of soil can be quantified and the stability of the				
vegetated areas be assessed.				
Vegetation monitoring				
Vegetation establishment on new ecosystems	Refer to	Five years	Mine	Refer to step 4 and 5 in parameters to be monitored
or on disturbed systems should yield a self-	Figure 49	after	manager	
sustaining community that is dynamic and able	below.	rehabilitation		
to change as the rehabilitated site ages and				
matures. The success of re-established plant				
community must be demonstrated through				
appropriate monitoring. The monitoring				
program must quantify the established plant				
community in terms of:				
1. Species abundance (diversity)				
a. Improvement on contact				
cover				
b. Canopy cover				
c. Rooting depth				
d. Reproductive				
performance - Sexual				
reproduction				
2. Asexual reproduction				
a. Microbial activity and				
biomass				

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
b. Frequency – once a year				
c. Remarks				
The vegetation-monitoring programme must be				
developed for each case of implementation,				
without compromising the integrity of data				
gathered. A qualified ecologist with experience				
in assessment of rehabilitated plant				
communities must design the monitoring				
programme.				
The rehabilitation of grass species will				
potentially take place over 5 years depending				
on the progress of the rehabilitation plan. After				
this initial monitoring, a less comprehensive				
monitoring will be done. Refer to Figure 49 for				
a diagram of the vegetation monitoring to be				
done on the site. It is important to note that				
throughout all the monitoring phases, alien				
vegetation should be noted and included in an				
Alien Invasive Vegetation Control Programme.				
It is the objective to eradicate all alien plants				
during the control programme; however, it is				
very likely that alien vegetation will re-occur				
after such initial control. To combat this, an				
Alien Invasive Vegetation Control Programme				
is set out. There are five steps to this control				
programme. They are as follows: Please note,				
this alien vegetation monitoring must also be				

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
done after concurrent rehabilitation and the re-				
vegetation and removal of plants during				
concurrent rehabilitation have taken place.				
Step 1: Information gathering				
This first step is done to create a map,				
indicating the different infestation areas on the				
site. The following should be done to create				
such a map:				
1. Alien plant infestations should be divided				
into control areas. To do this, natural or				
man-made barriers can be used. These				
barriers include roads, rivers, and fences.				
These barrier areas should be numbered				
for record purposes.				
2. A detailed alien plant survey should be				
done in each area. The following should				
be recorded -				
All alien plant species present				
and their growth habit (shrubs,				
trees, coppice, saplings,				
seedlings),				
Percent density of each alien				
plant species (75-100% is very				
dense, 50-75% is dense, 25-				
50% is medium dense, 5-25%				
is sparse and 0-5% is				
scattered),				
• The terrain.				

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
3. Rank the areas into high, medium and lo	w			
priority areas. This depends on t	he			
biodiversity; water yield and carryi	ng			
capacity.				
4. Identify suitable grass species f	or			
establishment and availability, per la	nd			
use aims.				
5. Place all above information on a 1:1 0	00			
maps.				
Step 2: Planning				
This step is to establish integrated contract	rol			
strategies in each control (barrier) area	as			
identified in Step 1. The following should	be			
done:				
1. List the required resources for each high	gh			
priority control area (e.g. labo	ur,			
herbicides, and equipment) and t	he			
current management practices on the	ne			
property.				
2. Evaluated and select appropriate cont	rol			
methods, using registered herbicides.				
3. Calculate the costs for the high prior	ity			
control areas.				
4. Secure a long-term commitment	to			
rehabilitation.				
Step 3: Management				
1. Draw up an Annual Plan of Operatio	ns			
(APO) for high priority control areas. Th	nis			

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
plan must be updated each year. It				
includes a budget for the required				
resources for control strategies during the				
first year. This determines the scale of				
work.				
a. 75% for follow-up work and				
rehabilitation of previously				
cleared areas'				
b. 20% for initial control of new				
area' and				
c. 5% for an emergency.				
2. Establish an emergency fund to cope with				
catastrophes such as mass seeding				
generation, fire, flood, etc.				
3. Allocate resources to high priority control				
areas.				
4. Draw up timetables for control operations,				
including a "catch-up" for in case				
operations fall behind.				
5. The plan must be flexible and adjusted as				
progress is made.				
Step 4: Implementation				
Train the labourers incorrect control and grass				
planting methods.				
Step 5: Record keeping				
1. Keep simple records of daily operations,				
e.g. record of labour days, herbicide used,				
and volumes and equipment used.				

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit				
	of	monitoring	person	results and schedule				
	monitoring							
2. Monitor progress with the control work								
(after the first year) by recording								
information on maps.								
3. The information from these records must								
be fed back into the budget to update and								
amend the APO for the following year.								
Surface water drainage systems								
Surface water drainage systems	During rain:	Eivo voor	Mino	Papair drainage structures that are not functioning officiently				
The functionality of the surface water drainage systems should be checked annually.	During rainy season	Five years after	Mine	Repair drainage structures that are not functioning efficiently.				
5	season		manager					
preferably after the first major rains of the		rehabilitation						
season, and then after any major storm. This is								
both to ensure that the drainage of the re-								
created profile matches the plan, and to permit								
early repair of drainage structures that are not								
functioning efficiently.								
Surface water quality								
Surface water upstream and downstream of the	Monthly	Five years	Mine	If water results from the mine indicate quality above the acceptable limits, this will				
Olifants and Mogomotsi Rivers must be		after	manager	be discussed with DWS and the users of the Spekboom River.				
monitored to assess the quality of the water		rehabilitation						
from the mining area.								
Groundwater quality								
The mine has no current groundwater	Quarterly	Five years	Mine	If water results from the mine indicate quality above the acceptable limits, this will				
monitoring. It is advised that groundwater		after	manager	be discussed with DWS and the groundwater users in the area.				
monitoring take place downslope from the		rehabilitation						
WRD and the slimes dams.								
The mine will drill two BHs to monitor								
groundwater qualities.								
Mine residue characteristics with respect to plant growth (soil quality)								

Parameters to be monitored	Frequency	Period of	Responsible	Explanation of the approach that will be taken to address and close out audit
	of	monitoring	person	results and schedule
	monitoring			
Soil quality monitoring will only be done if			Mine	
necessary and until natural vegetation is in			manager	
place.				

ii) Monitoring and reporting frequency

Refer above

iii) Responsible persons

Refer above

iv) Time period for implementing impact management actions

Refer above

v) Mechanism for monitoring compliance

Refer above

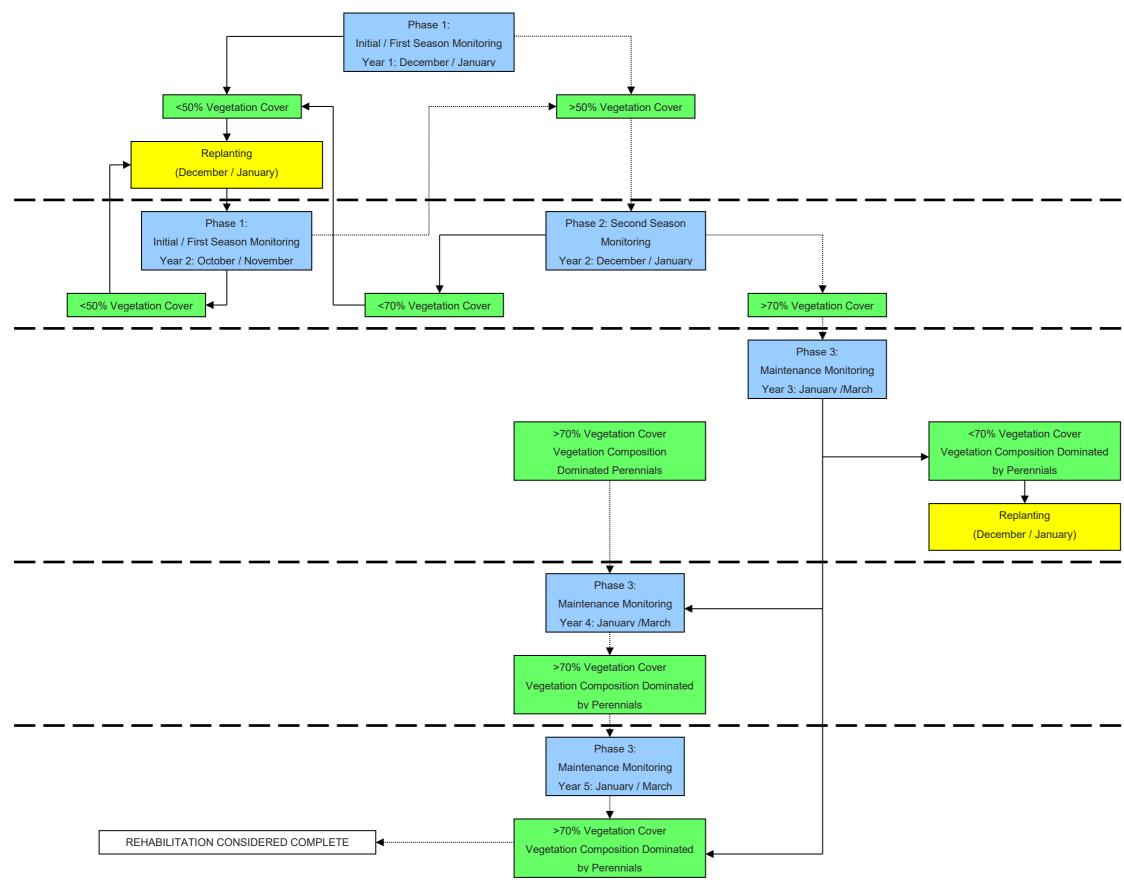


Figure 49: Summary of vegetation monitoring

I) Indicate the frequency of the submission of the performance assessment / environmental audit report

The monitoring plan will be audited to ensure effective implementation. The Health Safety and Environmental Manager will conduct internal audits and an EAP will conduct external audits. This will be done annually.

m) Environmental awareness plan

This section includes:

- 1. Manner in which the applicant intends to inform his or her employees of any environmental risk which may result from their work; and
- 2. The manner in which risks will be dealt with in order to avoid pollution or the degradation of the environment.

The following was extracted from the Environmental training procedure (BECS Environmental, 2016) and is an awareness for the entire mine therefore both Havercroft and Annesley Operations.

i) Induction training

- Induction training is relevant to all new employees and contractors (including any employee and/or contractor that has not yet been trained on the environmental induction material) as well as all visitors to Annesley Andalusite Mine.
- 2. Training will be repeated every 18 months.
- 3. Induction training will include the following:
 - a. Relevant impacts and management as per the approved and operational EMP of Annesley Andalusite Mine (these will be site- and job specific);
 - b. Environmental procedures; and
 - c. Environmental emergency procedure.
- 4. The trainee will after completion of induction:
 - a. Sign the necessary induction form/book; and
 - b. Have all relevant PPE necessary for the specific job.

ii) General environmental awareness training

- 1. Management will identify environmental awareness needs and related environmental topics.
- 2. The environmental awareness will include:
 - a. The significant environmental impacts, actual or potential, of their work activities and the benefits of improved personal performance; and
 - b. The potential consequences of departure from specified operating procedures.

- 3. Environmental awareness training will form part of the safety talks prior to each shift.
- 4. Visual aids will be used, where applicable to help with awareness training. These could be in the form of posters displayed at specific work areas after training was done.

iii) Competency training

- 1. Management will identify job-related training needs for all employees who have or can have a significant impact on the environment.
- 2. A training needs matrix will be completed for Annesley Andalusite Mine.
- Job specific training will convey the importance of conformance with the environmental procedures. Simplified summaries of these procedures may be used to ensure better understanding at lower levels of the organisation.
- 4. Management will identify specialised training needs. for personnel performing tasks, which can cause significant environmental impacts or personnel who needs specialised environmental knowledge for areas of responsibility. These courses will be sourced externally.
- 5. Management will undergo legal training from time to time. A summary of this training will also is given to employees of Annesley Andalusite Mine.

iv) Development of training material

- The Health and Safety Officer will develop and maintain training material for induction training, general environmental awareness and competency training. This excludes specialised competency training which will be externally sourced.
- 2. This training material will be based on the approved and operational EMP as well as environmental procedures. Additional topics will also be included for general environmental awareness.
- 3. Training material will be reviewed using results from audits, changes to plant/operation, competency assessments and new significant aspects.

v) Scheduling of training

1. Once training topics and material have been compiled, the Health and Safety Officer will ensure employees are scheduled according to the needs identified.

vi) Training records

- 1. Upon completion of training, a training record will be completed. This may be in the following formats:
 - a. Attendance registers;
 - b. Sign off on procedure to demonstrate understanding of procedure; and/or

- c. Certificates of attendance/completion.
- 2. All training records will be kept for the period of employment plus an additional 5 years.

vii) Reconciliation to determine gaps in attendance

 All employees and contractors must undergo all training as identified (as per training needs analysis). Reconciliation will be done on all training attendance registers, against the training schedules, to identify any shortcomings in training performed and reschedule if necessary.

viii) Competency assessment

- 1. An evaluation will be conducted on all employees and contractors. The aim is to identify both the effectiveness of training as well as the competence in performing the job.
- 2. Competency evaluation records will be completed by the approved training assessor and will be included in the attendance records.

n) Specific information required by the Competent Authority

1 Financial provision

The financial provision will be reviewed on an annual basis.

2 Potential risk of acid mine drainage

According to the Geohydrological Evaluation (Aurecon, 2010):

'It was proven at the Havercroft Andalusite Mine that the stable & inert nature of the andalusite and gangue increases the water quality by absorbing certain elements'.

It can, therefore, be assumed that the risk of AMD or potential groundwater contamination associated with the mineral to be mined is therefore minimal to zero.

2) Undertaking

The EAP herewith confirms

- a) the correctness of the information provided in the reports
- b) the inclusion of comments and inputs from stakeholders and I&APs
- c) the inclusion of inputs and recommendations from the specialist reports where relevant

d)	the acceptability	of the project in	relation to the	finding of the	assessment and	level of mitiga	ition
propose	ed 🔀						

 \times

Full names and surname of the EAP	Salome Beeslaar
Signature of the EAP	
Name of Company	BECS Environmental
Date	

-END-

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 191 Assessment Report

References

Acocks, J.P.H., 1975: Veld Types of South Africa

Aquatico Scientific, 2017: Waste Assessment Report, Tailings & Waste Rock Streams

Aurecon, 2010: Geohydrological Evaluation for the Water Use Licence Application

Avmin Ltd, 1997: Havercroft Andalusite Mine EMP

BECS Environmental, 2015: Environmental Management Programme Performance Assessment Report

BECS Environmental, 2016: AAM-EP-01-Waste management procedure

BECS Environmental, 2016: AAM-EP-02-Spill handling procedure

BECS Environmental, 2016: AAM-EP-03-Hazardous substance procedure

BECS Environmental, 2016: AAM-EP-04-Environmental training procedure

BECS Environmental, 2016: AAM-EP-05-Environmental emergencies procedure

BECS Environmental, 2016: Final Closure Plan and Rehabilitation Plan: As part of Closure Application, *draft*

BECS Environmental, 2016: Quarterly Water Quality Monitoring Report - Havercroft Mine

BECS Environmental, 2016: Schematic water balance for Annesley Mine

Department of Environmental Affairs and Tourism, 2002: Information Series 5: Impact Significance of the Integrated Environmental Management Information Series

Department of Minerals and Energy, 20005: Guideline document for the evaluation of the quantum of closure-related financial provision provided by a mine

Department of Water Affairs, 1996: South African Water Quality Guidelines for South Africa

Department of Water Affairs and Forestry, 2005: A practical field procedure for identification and delineation of wetlands and riparian areas, Edition 1 September 2005

Department of Water Affairs and Forestry, 2005: Environmental Best Practice Specifications: Construction Integrated Environmental Management

Department of Water Affairs and Forestry, 2005: A level I river Ecoregional classification system for South Africa, Lesotho, and Swaziland- final.

Department of Water Affairs and Forestry, 2006: Best Practice Guideline No. G3: Water Monitoring Systems.

Department of Water Affairs, Department of Health, Water Research Commission 2000: Quality of Domestic Water Supplies" Volume 2: Sampling Guide, Department of Water Affairs and Forestry

Geological Survey. 2430 Pelgrims Rest published 1:250 000 Geological Map

Greater Tubatse Local Municipality, 2016: Greater Tubatse Local Municipality Integrated Development Plan Imerys Refractory Minerals South Africa, 2013: Annesley Andalusite Mine - Mandatory Code of Practice for

Mine Residue Deposits

Imerys Refractory Minerals South Africa, 2013: Social and Labour Plan

- Imerys Refractory Minerals South Africa, 2017: Annesley Andalusite Mine Annual Report (March 2016 February 2017)
- Letaba Environmental Services, 2016: Feedback on email letter
- Letaba Environmental Services, 2016: Procedure for Microbiology Samples; Handling, Collection and Transport
- Mucina, L. & Rutherford, M.C. (eds), 2006: The vegetation map of South Africa, Lesotho and Swaziland. *Strelitzia 19,* South African National Biodiversity Institute
- nd. nd: Environmental Management Programme
- Ollis, D. J., Snaddon, C. D., Job, N. M. & Mbona, N., 2013. Classification system for wetlands and other aquatic ecosystems in South Africa. User Manual: Inland Systems. Pretoria: South African National Biodiversity institute
- Parsons, R., 1993: A South African Aquifer System Management Classification
- Rational Environmental, 2016: Diversion Storm Water Management Plan
- Rational Environmental, 2016: Earthworks Report
- Shangoni AquiScience, August 2014: Geohydrological and waste characterisation study as input to the IWULA
- Shangoni AquaScience, 2017: Geohydrological impact assessment as input to the Section24G Rectification
- Shangoni Management Services, 2006: Environmental Management Programme
- Shangoni Management Services, 2012: Integrated Water and Waste Management Plan
- Shangoni Management Services, 2014: Atmospheric Impact Report for Dryer
- Shangoni Management Services, 2015: Mine Closure Liability Update (Havercroft)
- Shangoni Management Services, 2016: Mine Closure Liability Update (Annesley)
- Shangoni Management Services, 2016: Air Emission License
- Shangoni Management Services, 2016: Fugitive dust emission management plan draft
- Shangoni Management Services, 2016: Annesley Andalusite Mine Ambient Air quality monitoring programme

Shangoni Management Services, 2017: Section 24G Technical Supporting Document: Construction and Operation of Pollution Control Dam, Silt Traps and Overflow Dams

SJN Development Planning Consultants, 2007: Spatial development framework for Greater Tubatse Local Municipality

Van Wyk, B-E. & Wink, M. 2004. Medicinal Plants of the World. Briza Publications, Pretoria

(http://www.ostrichsa.co.za/downloads/bio_diversity/rehabilitation.pdf)

'South African Air Quality Information System – Air quality priority areas (http://www.saaqis.org.za/Priority%20Areas.aspx)

- Alien and invasive species list, GN 599 of 2014 i.t.o. National Environmental Management Biodiversity Act No 10 of 2004 (as amended)
- Alien and invasive species regulations, GN 598 of 2014 i.t.o. National Environmental Management Biodiversity Act No 10 of 2004 (as amended)

Asbestos Regulations, GN 155 of 2011 i.t.o. The Occupational Health and Safety Act No 85 of 1993

- Declaration of Group II Hazardous Substances, GN 1382 of 1994 i.t.o. The Hazardous Substances Act No 15 of 1973
- Environmental Conservation Act No 73 of 1989 (as amended)
- Environmental Impact Assessment Regulations, GN 982 of 2014 i.t.o. the National Environmental Management Act No 107 of 1998 (as amended)
- Environmental Impact Assessment Regulations: Listing Notice 1, GN 983 of 2014 i.t.o. the National Environmental Management Act No 107 of 1998 (as amended)
- Environmental Impact Assessment Regulations: Listing Notice 2, GN 984 of 2014 i.t.o. the National Environmental Management Act No 107 of 1998 (as amended)
- Environmental Impact Assessment Regulations: Listing Notice 3, GN 985 of 2014 i.t.o. the National Environmental Management Act No 107 of 1998 (as amended)
- Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act No 36 of 1947
- Financial Provisioning Regulations, GN 1147 of 2015 i.t.o. National Environmental Management Act No 107 of 1998 (as amended)
- Group IV Hazardous Substances: Exclusions and Exemptions, GN 246 of 1993 i.t.o. The Hazardous Substances Act No 15 of 1973
- Hazardous Chemical Substances Regulations, GN 1179 of 1995 i.t.o. The Occupational Health and Safety Act No 85 of 1993
- Hazardous Substances Act No 15 of 1973 (as amended)
- List of Activities Which Result in Atmospheric Emissions which have or may have a Significant Detrimental Effect on the Environment, Including Health, Social Conditions, Economic Conditions, Ecological Conditions or Cultural Heritage, GN 248 of 2010 i.t.o. National Environmental Management Air Quality Act No 39 of 2004 (as amended)
- List of Activities Which Result in Atmospheric Emissions which have or may have a Significant Detrimental Effect on the Environment, Including Health, Social Conditions, Economic Conditions, Ecological Conditions or Cultural Heritage, GN 893 of 2013 i.t.o. National Environmental Management Air Quality Act No 39 of 2004 (as amended)
- List of Waste Management Activities that have, or are Likely to have, a Detrimental Effect on the Environment, GN 718 of 2009 i.t.o. National Environmental Management Waste Act 59 of 2009 (as amended)

List of Waste Management Activities that have, or are Likely to have, a Detrimental Effect on the Environment, GN 921 of 2013 i.t.o. National Environmental Management Waste Act 59 of 2009 (as amended)

Mine Health and Safety Act No 29 of 1996 (as amended)

Minerals Act No 50 of 1991

Mineral and Petroleum Resources Development Act No 28 of 2002 (as amended)

Mineral and Petroleum Resources Development Regulations, GN 527 of 2004 (as amended) i.t.o. the Mineral and Petroleum Resources Development Act No 28 of 2002 (as amended)

National Ambient Air Quality Standards, GN 1210 of 2009 i.t.o. The National Environmental Management Air Quality Act No 39 of 2004

National ambient air quality standard for PM less than 2.5 micron metres, GN 486 of 2012 i.t.o. National Environmental Management Air Quality Act No 39 of 2004 (as amended)

National Dust Control Regulations, GN 827 of 2013 i.t.o. National Environmental Management Air Quality Act No 39 of 2004 (as amended)

National Environmental Management Act No 107 of 1998 (as amended)

National Guideline on Minimum Information of 2018, GN 86 in terms of the NEMA.

National Environmental Management Air Quality Act No 39 of 2004 (as amended)

National Environmental Management Biodiversity Act No 10 of 2004 (as amended)

National Environmental Management Waste Act 59 of 2009 (as amended)

National Forest Act No 84 of 1998

National Heritage Resources Act No 25 of 1999

National Road Traffic Act No 93 0f 1996

National Road Traffic Regulations, GN 255 of 2000 i.t.o. The National Road Traffic Act No 93 of 1996

National Veld and Forest Fire Act No 101 of 1998

National Water Act No 36 of 1998 (as amended)

Noise Control Regulations, GN 154 of 1992 i.t.o. The Environmental Conservation Act No 73 of 1989

Occupational Health and Safety Act No 85 of 1993 (as amended)

- Publication of national list of invasive species, GN 507 of 2013 i.t.o. National Environmental Management Biodiversity Act No 10 of 2004 (as amended)
- Publication of prohibited alien species, GN 508 of 2013 i.t.o. National Environmental Management Biodiversity Act No 10 of 2004 (as amended)
- Publication of exempted alien species, GN 509 of 2013 i.t.o. National Environmental Management Biodiversity Act No 10 of 2004 (as amended)

Regulations, GN 453 of 1977 i.t.o. The Hazardous Substances Act No 15 of 1973 (as amended)

Regulations, GN 1048 of 1984 i.t.o. Conservation of Agricultural Resources Act No 43 of 1983 (as amended)

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 195 Assessment Report

- Regulations Concerning the Control of Noxious or Offensive Gases Emitted by Diesel-Driven Vehicles, GN 1651 of 1974 i.t.o. The Atmospheric Pollution Prevention Act No 45 of 1965
- Regulations for the Prohibition of the Use, Manufacturing, Import and Export of Asbestos and Asbestos Containing Materials, GN 341 i.t.o. The Environmental Conservation Act No 73 of 1989
- Regulations on Use of Water for Mining and Related Activities Aimed at the Protection of Water Resources, GN 704 of 1999 i.t.o. National Water Act No 36 of 1998 (as amended)
- Regulations regarding the phasing-out and management of ozone- depleting substances, GN 351 of 2014 i.t.o. National Environmental Management Air Quality Act No 39 of 2004 (as amended)
- Regulations Relating to Group III Hazardous Substances, GN 697 of 1989 i.t.o. The Hazardous Substances Act No 15 of 1973
- Regulations Relating to Group IV Hazardous Substances, GN 247 of 1993 i.t.o. The Hazardous Substances Act No 15 of 1973
- Regulations Relating to Surveying, Mapping and Mine Plans, GN 447 of 2011 2011 i.t.o. the Mine Health and Safety Act No 29 of 1996 (as amended)
- Regulations to Phase-out the use of PCB Materials and PCB Contaminated Materials, GN 549 of 2014 i.t.o. National Environmental Management Act No 107 of 1998 (as amended)
- Waste classification and management regulations, GN 634 of 2013 i.t.o. National Environmental Management Waste Act 59 of 2009 (as amended)
- Waste Tyre Regulations, GN 149 of 2009 i.t.o. National Environmental Management Waste Act 59 of 2009 (as amended)

Convention on Biological Diversity, ratified by RSA on 2 November 1995

- UN Framework on Climate Change and Kyoto Protocol, ratified by RSA on 29 August 1997
- Stockholm Convention on Persistent Organic Pollutants, ratified by RSA on 4 September 2002
- Vienna Convention on the Protection of the Ozone Layer, and the Montreal Protocol, ratified by RSA on 15 January 1990

SABS 072 - Code of Practice for the Safe Handling of Pesticides

SABS 0228 - Code of Practice for the Identification and Classification of Dangerous Substances and Goods SABS 0229 - Code of Practice for Packaging of Dangerous Goods for Road and Rail Transportation in South Africa

SANS 241:2006 - Drinking Water Quality Requirements, Edition 6.1

SANS 10234:2008 - Globally Harmonized System of classification and labelling of chemicals

SANS 10286:1998 - Mine Residue

SANS 10400-P:2010 - The application of the National Building Regulations (Part P of the National Building Regulations, issued in terms of the National Building Regulations and Building Standards Act No 103 of 1977)

Imerys Refractory Minerals South Africa (Pty) Ltd – Annesley Andalusite Mine (Havercroft Operations) Basic 196 Assessment Report

Nd, 2002: Environmental Management Programme

Author unknown, nd: Reclamation Manual for Coal Surface Mining, State of Virginia, USA

BECS Environmental, 2016: Quarterly Water Quality Monitoring Report

Bromilow, C., 2010: Problem Plants and Alien Weeds of South Africa, Briza Publications

Brooks, H.N., Barrhead, K.L., Bjorge, M. & Lacombe, B.W, nd: Agri-Facts

Campbell, P.L., 2000: Rehabilitation Recommendations after Alien Plant Control. Plant Protection Research Institute. Agricultural Research Council. Hilton

Chamber of Mines of South Africa/Coaltech, 2007: Guidelines for the Rehabilitation of Mined Land

Environomics Environmental Consultants, 2009: Environmental Management Framework for the Olifants and Letaba Rivers Catchment Areas

Gauteng Department of Agriculture and Rural Development – GDARD, 2009: Conceptual study on reclamation of mine residue areas for development purposes. (Authors: P.W. van Deventer, A.M. Hattingh, F. Botha, F. du Plessis) Prepared by Northwest University for GDARD, Johannesburg

Greater Tubatse Local Municipality, 2016: Final integrated development plan 2016/17-2020/21

Mucina, L. & Rutherford M.C. 2006: The Vegetation of South Africa, Lesotho and Swaziland. Sterlitzia 19, South African National Biodiversity Institute, Pretoria.

Rational Environmental: Sloping and Earthworks

Schaefer, M; Elifrits, D and Barr, D J, 1979: Sculpturing reclaimed land to decrease erosion

Shangoni Management Services, 2013: Hydrogeological Report

SJN Development Planning Consultants, 2007: Spatial Development Framework for Greater Tubatse Local Municipality

http://www.agis.agric.za/wip/CategoryList.jsp?category=389

National list of ecosystems that are threatened and in need of protection, GN 1002, 2011 under the National Environmental Management Act no 107 of 1998 as amended