SCOPING AND ENVIRONMENTAL IMPACT ASSESSMENT FOR THE PROPOSED HYPERION SOLAR DEVELOPMENT 2 AND ASSOCIATED INFRASTRUCTURE NEAR KATHU, NORTHERN CAPE:

FAUNA & FLORA SPECIALIST EIA PHASE REPORT

PRODUCED FOR SAVANNAH ENVIRONMENTAL

BY

EXECUTIVE SUMMARY

Hyperion Solar Development 2 (Pty) Ltd is proposing the establishment of a 75MW commercial Photovoltaic (PV) solar energy facility (SEF) and associated infrastructure, called Hyperion Solar Development 2 (proposed development), on the Remainder of the Farm Lyndoch 432, situated in the Gamagara Local Municipality in the Northern Cape Province. Three additional 75MW SEFs and associated infrastructure are proposed within the same property (project site) and will be submitted as separate projects. This report has been compiled specifically for the Hyperion Solar Development 2 including associated infrastructure. The proposed development is currently in the EIA Phase and 3Foxes Biodiversity Solutions has been appointed to provide a specialist terrestrial biodiversity EIA study of the project site as part of the Scoping and Environmental Impact Assessment (EIA) process.

A field assessment over different seasons as well as a desktop review of the available ecological information for the area was conducted in order to identify and characterise the ecological features of the project site. The vegetation of the Hyperion project site consists of Kathu Bushveld which is a relatively restricted vegetation type, but which is currently not threatened as it is still largely intact despite an increasing development footprint due to mining and solar PV development in the area. Within the context of the site, the area east of the Vlermuisleegte River is considered more sensitive than the area to the west of the river. As a result, the developer has restricted the development to the western portion of the property which is considered relatively low sensitivity and suitable for development.

The site has a relatively high abundance of Vachellia erioloba and Vachellia haematoxylon and the loss of relatively high numbers of individuals of these species cannot be avoided. These species are however very abundant in the area and the local populations would not be compromised to any degree by their loss from the development footprint. Given that the site is not exceptional in terms of the size or density of trees present, the loss of the affected individuals should be seen as being secondary to the loss of habitat. Although the number of individuals lost would exceed the suggested DAFF thresholds for offsets, for ecological purposes, a threshold for habitat loss of 500ha is given as being a reasonable threshold above which an offset could potentially be considered. An offset is not recommended for the current development, but for that facility or facilities that result in the overall footprint within the site exceeding 500ha, the consideration of an offset should come into effect. An offset is not considered to be definitively required above 500ha, but that above this threshold, the need and manner in which an offset could be implemented should be investigated in detail, with input from DAFF and based on both ecological considerations and the mandate of DAFF to ensure sustainable development.

In terms of fauna, there are few species of conservation concern that are likely to be present or abundant at the site and the primary impact of the development on fauna would

be some habitat loss for the more common resident species. As such, no high long-term post-mitigation impacts on fauna are expected to occur as a result of the Hyperion 2 development. Overall, and despite the abundance of *Vachellia erioloba* and *V.haematoxylon* on the site, there are no potential impacts associated with the proposed development that are considered to be of high significance and which cannot be mitigated to an acceptable level. As such, there are no fatal flaws or other major impediments from an ecological perspective that should prevent the development from going ahead.

Impact Statement

The development footprint of the Hyperion Solar 2 facility is restricted to low and moderate sensitivity habitat common in the Kathu-Hotazel-Kuruman area. The affected area is considered suitable for development and there are no impacts associated with the Hyperion Solar 2 facility that cannot be mitigated to a low level. Although cumulative impacts in the wider Kathu area are currently on the increase due to the expansion of the mines and the proliferation of solar facilities in the area, these still occupy a small proportion of the Kathu Bushveld vegetation type and the contribution of the current development to cumulative impact would be low and considered acceptable. As such there are no fatal flaws or high post-mitigation impacts that should prevent the development from proceeding. Based on the layout provided for the assessment, the Hyperion Solar 2 facility can be supported from a terrestrial ecology point of view.

CONTENTS

Executive Summary2						
Contents4						
Compliance with Appendix 6 of the 2014 EIA Regulations, as Amended						
Short CV/Summary of Expertise – Simon Todd7						
Specia	Specialist Declaration					
1	INT	RODUCTION9				
Scope of Study9						
1.1	Ass	sessment Approach & Philosophy11				
1.2	Rel	evant Aspects of the Development14				
2	METHODOLOGY15					
2.1	Dat	ta Sourcing and Review15				
2.2	-	TE VISITS & FIELD ASSESSMENT				
2.3		nsitivity Mapping & Assessment17				
2.4		npling Limitations and Assumptions18				
3		SCRIPTION OF THE AFFECTED ENVIRONMENT- BASELINE				
3.1	Bro	pad-Scale Vegetation Patterns				
3.2	Hat	pitats & Plant Communities20				
3.3	List	ted and Protected Plant Species23				
3.4	Fau	Inal Communities				
3.4	.1	Mammals25				
3.4	.2	Reptiles				
3.4	.3	Amphibians				
3.5	Crit	tical Biodiversity Areas & Broad-Scale Processes				
3.6	Cur	rrent Baseline & Cumulative Impact28				
3.7	Site	e Sensitivity Assessment				
4	IDE	NTIFICATION & NATURE OF IMPACTS				
4.1	Ide	ntification of Potential Impacts and Damaging Activities				
5	ASS	SESSMENT OF IMPACTS				
5.1	Hyp	perion Solar Development 2				
5.1	.1	Planning & Construction Phase35				
5.1.2 Operational Phase Impacts		Operational Phase Impacts				
5.1	.3	Decommissioning Phase				
5.1	.4	Cumulative Impacts41				

	5.1.5 Comparative Assessment of Access Road Alternatives	43
6	CONCLUSION & RECOMMENDATIONS	43
7	Activities for Inclusion the Draft EMPr	45
8	REFERENCES	49
9	Annex 1. List of Plant Species	50
10	Annex 2. List of Mammals	54
11	Annex 2. List of Reptiles	56
12	Annex 3. List of Amphibians	58

COMPLIANCE WITH APPENDIX 6 OF THE 2014 EIA REGULATIONS, AS AMENDED

Require	ements of Appendix 6 – GN R326 2014 EIA Regulations, 7 April 2017	Addressed in the Specialist Report
1. (1) A	specialist report prepared in terms of these Regulations must contain-	
	details of-	
,	i. the specialist who prepared the report; and	6
	ii. the expertise of that specialist to compile a specialist report including a	
	curriculum vitae;	
b)	a declaration that the specialist is independent in a form as may be specified	_
2)	by the competent authority;	7
c)	an indication of the scope of, and the purpose for which, the report was	
0)	prepared;	Section 1
	(cA) an indication of the quality and age of base data used for the specialist	
	report;	Section 2
		Section 2
	(cB) a description of existing impacts on the site, cumulative impacts of the	
	proposed development and levels of acceptable change;	Section 3
d)	the date and season of the site investigation and the relevance of the season	
u)	to the outcome of the assessment;	Section 2.3
e)	a description of the methodology adopted in preparing the report or carrying	
e)		Section 2
f)	out the specialised process inclusive of equipment and modelling used;	
f)	details of an assessment of the specific identified sensitivity of the site related	O setting O
	to the proposed activity or activities and its associated structures and	Section 3
	infrastructure, <u>inclusive of a site plan identifying site alternatives;</u>	o : o
<u>g)</u>	an identification of any areas to be avoided, including buffers;	Section 3
h)	a map superimposing the activity including the associated structures and	
	infrastructure on the environmental sensitivities of the site including areas to be	Section 3
	avoided, including buffers;	
i)	a description of any assumptions made and any uncertainties or gaps in	Section 2.3
	knowledge;	00000112.0
j)	a description of the findings and potential implications of such findings on the	Section 3
	impact of the proposed activity or activities;	
k)	any mitigation measures for inclusion in the EMPr;	Section 5
I)	any conditions for inclusion in the environmental authorisation;	Section 5
m)	any monitoring requirements for inclusion in the EMPr or environmental	Section F
	authorisation;	Section 5
n)	a reasoned opinion-	
	i. whether the proposed activity, <u>activities</u> or portions thereof should be	
	authorised;	
	(iA) regarding the acceptability of the proposed activity or activities and	
		Section 6
	ii. if the opinion is that the proposed activity, <u>activities</u> or portions thereof	
	should be authorised, any avoidance, management and mitigation	
	measures that should be included in the EMPr, and where applicable,	
	the closure plan;	
o)	a description of any consultation process that was undertaken during the	Can Mair Damant
,	course of preparing the specialist report;	See Main Report
p)	a summary and copies of any comments received during any consultation	0 11 5
F7	process and where applicable all responses thereto; and	See Main Report
q)	any other information requested by the competent authority.	
1	re a government notice gazetted by the Minister provides for any protocol or	
	n information requirement to be applied to a specialist report, the requirements	N/A
		1 10/73

SHORT CV/SUMMARY OF EXPERTISE – SIMON TODD

Simon Todd is Director and principal scientist at 3Foxes Biodiversity Solutions and has over 20 years of experience in biodiversity measurement, management and assessment. He has provided specialist ecological input on more than 200 different developments distributed widely across the country. This includes input on the Wind and Solar SEA (REDZ) as well as the Eskom Grid Infrastructure (EGI) SEA and Karoo Shale Gas SEA. He is on the National Vegetation Map Committee as representative of the Nama and Succulent Karoo Biomes. Simon Todd is a recognised ecological expert and is a past chairman and current deputy chair of the Arid-Zone Ecology Forum. He is registered with the South African Council for Natural Scientific Professions (No. 400425/11).

A selection of recent work is as follows:

Strategic Environmental Assessments

Co-Author. Chapter 7 - Biodiversity & Ecosystems - Shale Gas SEA. CSIR 2016.
Co-Author. Chapter 1 Scenarios and Activities – Shale Gas SEA. CSIR 2016.
Co-Author – Ecological Chapter – Wind and Solar SEA. CSIR 2014.
Co-Author – Ecological Chapter – Eskom Grid Infrastructure SEA. CSIR 2015.
Contributor – Ecological & Conservation components to SKA SEA. CSIR 2017.

Recent Specialist Ecological Studies in the Vicinity of the Current Site

- Kathu Solar PV Facility. Fauna and Flora EIA Process. Cape EAPrac 2015.
- Mogobe Solar PV Facility. Fauna and Flora EIA Proces. Cape EAPrac 2015.
- Logoko Solar PV Facility. Fauna and Flora EIA Proces. Cape EAPrac 2015.
- RE Capital 10 Solar Power Plant, Postmasburg. Fauna and Flora EIA Proces. Cape EAPrac 2015.
- Walk-through study of Kumba Iron Ore expansion area at Dingleton, Northern Cape. MSA Group. 2017.
- Adams PV Project EIA process and follow-up vegetation survey. Aurora Power Solutions. 2016.
- Mamatwane Compilation Yard. Fauna and Flora EIA process. ERM. 2013.
- Olifantshoek-Emil 132kV power line. Fauna and Flora BA process. Savannah Environmental 2017.

SPECIALIST DECLARATION

I, ..Simon Todd....., as the appointed independent specialist, in terms of the 2014 EIA Regulations, hereby declare that I:

- I act as the independent specialist in this application;
- I perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- regard the information contained in this report as it relates to my specialist input/study to be true and correct, and do not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work performed in terms of the NEMA, the Environmental Impact Assessment Regulations, 2014 and any specific environmental management Act;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I have no vested interest in the proposed activity proceeding;
- I undertake to disclose to the applicant and the competent authority all material information in my
 possession that reasonably has or may have the potential of influencing any decision to be taken
 with respect to the application by the competent authority; and the objectivity of any report, plan or
 document to be prepared by myself for submission to the competent authority;
- I have ensured that information containing all relevant facts in respect of the specialist input/study
 was distributed or made available to interested and affected parties and the public and that
 participation by interested and affected parties was facilitated in such a manner that all interested and
 affected parties were provided with a reasonable opportunity to participate and to provide comments
 on the specialist input/study;
- I have ensured that the comments of all interested and affected parties on the specialist input/study were considered, recorded and submitted to the competent authority in respect of the application;
- all the particulars furnished by me in this specialist input/study are true and correct; and
- I realise that a false declaration is an offence in terms of regulation 48 and is punishable in terms of section 24F of the Act.

Roda.

Signature of the specialist:

Name of Specialist: ____Simon Todd______

Date: _____20 March 2019______

1 INTRODUCTION

Hyperion Solar Development 2 (Pty) Ltd is proposing the establishment of a 75MW commercial Photovoltaic (PV) solar energy facility (SEF) and associated infrastructure, called Hyperion Solar Development 2 (proposed development), on the Remainder of the Farm Lyndoch 432, situated in the Gamagara Local Municipality in the Northern Cape Province. Three additional 75MW SEFs and associated infrastructure are proposed within the same property (project site) and will be submitted as separate projects. This report has been compiled specifically for the Hyperion Solar Development 2 including associated infrastructure. The proposed development is currently in the EIA Phase and 3Foxes Biodiversity Solutions has been appointed to provide a specialist terrestrial biodiversity EIA phase study of the project site as part of the Scoping and Environmental Impact Assessment (EIA) process.

The purpose of the Hyperion Solar Development 2 Terrestrial Biodiversity Scoping Report is to describe and detail the ecological features of the project site, provide an assessment of the ecological sensitivity of the project site, and identify the likely impacts that would be associated with the proposed development area as a SEF. Two site visits as well as a desktop review of the available ecological information for the area was conducted in order to identify and characterise the ecological features of the project site. This information is used to derive an ecological sensitivity map which has been used to inform the layout of the development. Impacts are assessed for the pre-construction, construction, operation, and decommissioning phases of the development. A variety of avoidance and mitigation measures associated with each identified impact are recommended to reduce the likely impact of the development, which should be included in the EMPr for the development. The full scope of study is detailed below.

SCOPE OF STUDY

The scope of the study includes the following activities:

- a description of the environment that may be affected by the activity and the manner in which the environment may be affected by the proposed development
- a description and evaluation of environmental issues and potential impacts (incl. using direct, indirect and cumulative impacts) that have been identified
- a statement regarding the potential significance of the identified issues based on the evaluation of the issues/impacts
- an indication of the methodology used in determining the significance of potential environmental impacts
- an assessment of the significance of direct, indirect and cumulative impacts in terms of the following criteria:

- the nature of the impact, which shall include a description of what causes the effect, what will be affected, and how it will be affected
- the extent of the impact, indicating whether the impact will be local (limited to the immediate area or site of the proposed development), regional, national or international
- the duration of the impact, indicating whether the lifetime of the impact will be of a short-term duration (0-5 years), medium-term (5- 15 years), longterm (> 15 years, where the impact will cease after the operational life of the activity), or permanent
- the probability of the impact, describing the likelihood of the impact actually occurring, indicated as improbable (low likelihood) probable (distinct possibility), highly probable (most likely), or definite (impact will occur regardless of any preventable measures)
- the severity/beneficial scale indicating whether the impact will be very severe/beneficial (a permanent change which cannot be mitigated/permanent and significant benefit with no real alternative to achieving this benefit), severe/beneficial (long-term impact that could be mitigated/long-term benefit), moderately severe/beneficial (medium- to long-term impact that could be mitigated/ medium- to long-term benefit), slight, or have no effect
- the significance which shall be determined through a synthesis of the characteristics described above and can be assessed as low medium or high
- \circ the status which will be described as either positive, negative or neutral
- the degree to which the impact can be reversed
- the degree to which the impact may cause irreplaceable loss of resources
- the degree to which the impact can be mitigated
- a description and comparative assessment of all alternatives
- recommendations regarding practical mitigation measures for potentially significant impacts, for inclusion in the Environmental Management Programme (EMPr)
- an indication of the extent to which the issue could be addressed by the adoption of mitigation measures
- a description of any assumptions uncertainties and gaps in knowledge
- an environmental impact statement (EIS) which contains:
 - \circ a summary of the key findings of the EIA;
 - an assessment of the positive and negative implications of the proposed development;
 - a comparative assessment of the positive and negative implications of identified alternatives.

General Considerations:

- Disclose any gaps in information or assumptions made.
- Identify recommendations for mitigatory measures to minimise impacts.
- Outline additional management guidelines.
- Provide monitoring requirements, mitigation measures and recommendations in a table format as input into the EMPr for faunal related issues.

A description of the potential impacts of the development and recommended mitigation measures are to be provided, which will be separated into the following project phases:

- Preconstruction
- Construction
- Operational Phase

1.1 Assessment Approach & Philosophy

This assessment is conducted according to the 2014 EIA Regulations, as amended (Government Notice Regulation 326) in terms of the National Environmental Management Act (Act 107 of 1998) as amended (NEMA), as well as best-practice guidelines and principles for biodiversity assessment as outlined by Brownlie (2005) and De Villiers et al. (2005). This includes adherence to the following broad principles:

- That a precautionary and risk-averse approach be adopted towards projects which may
 result in substantial detrimental impacts on biodiversity and ecosystems, especially the
 irreversible loss of habitat and ecological functioning in threatened ecosystems or
 designated sensitive areas: i.e. Critical Biodiversity Areas (as identified by systematic
 conservation plans, Biodiversity Sector Plans or Bioregional Plans) and Freshwater
 Ecosystem Priority Areas.
- Demonstrate how the proponent intends complying with the principles contained in section 2 of the National Environmental Management Act, 1998 (Act No. 107 of 1998), as amended (NEMA), which, amongst other things, indicates that environmental management should:
 - In order of priority aim to: avoid, minimise or remedy disturbance of ecosystems and loss of biodiversity;
 - Avoid degradation of the environment;
 - Avoid jeopardising ecosystem integrity;
 - Pursue the best practicable environmental option by means of integrated environmental management;

- Protect the environment as the people's common heritage;
- Control and minimise environmental damage; and
- Pay specific attention to management and planning procedures pertaining to sensitive, vulnerable, highly dynamic or stressed ecosystems.

These principles serve as guidelines for all decision-making concerning matters that may affect the environment. As such, it is incumbent upon the proponent to show how the proposed development would comply with these principles and thereby contribute towards the achievement of sustainable development as defined by the NEMA.

In order to adhere to the above principles and best-practice guidelines, the following approach forms the basis for the study approach and assessment philosophy:

The study will include data searches, desktop studies, site walkovers / field survey of the property and baseline data collection, describing:

 A description of the broad ecological characteristics of the site and its surrounds in terms of any mapped spatial components of ecological processes and/or patchiness, patch size, relative isolation of patches, connectivity, corridors, disturbance regimes, ecotones, buffering, viability, etc.

In terms of **pattern**, the following will be identified or described:

Community and ecosystem level

- The main vegetation type, its aerial extent and interaction with neighbouring types, soils or topography
- Threatened or vulnerable ecosystems (*cf. SA vegetation map/National Spatial Biodiversity Assessment, fine-scale systematic conservation plans, etc*)

Species level

- Red Data Book (RDB) species (giving location if possible using GPS)
- The viability of an estimated population size of the RDB species that are present (include the degree of confidence in prediction based on availability of information and specialist knowledge, i.e. High=70-100% confident, Medium 40-70% confident, Low 0-40% confident)
- The likelihood of other RDB species, or species of conservation concern, occurring in the vicinity (include degree of confidence)

Fauna

- Describe and assess the terrestrial fauna present in the area that will be affected by the proposed development.
- Conduct a faunal assessment that can be integrated into the ecological study.
- Describe the existing impacts of current land use as they affect the fauna.

- Clarify species of special concern (SSC) and that are known to be:
 - endemic to the region;
 - that are considered to be of conservational concern;
 - that are in commercial trade (CITES listed species);
- or, are of cultural significance.
- Provide monitoring requirements as input into the EMPr for faunal related issues.

Other pattern issues

- Any significant landscape features or rare or important vegetation associations such as seasonal wetlands, alluvium, seeps, quartz patches or salt marshes in the vicinity.
- The extent of alien plant cover of the project site, and whether the infestation is the result of prior soil disturbance such as ploughing or quarrying (alien cover resulting from disturbance is generally more difficult to restore than infestation of undisturbed sites).
- The condition of the project site in terms of current or previous land uses.

In terms of **process**, the following will be identified or described:

- The key ecological "drivers" of ecosystems on the project site and in the vicinity, such as fire.
- Any mapped spatial component of an ecological process that may occur at the project site or in its vicinity (i.e. *corridors* such as watercourses, upland-lowland gradients, migration routes, coastal linkages or inland-trending dunes, and *vegetation boundaries* such as edaphic interfaces, upland-lowland interfaces or biome boundaries).
- Any possible changes in key processes, e.g. increased fire frequency or drainage/artificial recharge of aquatic systems.
- Furthermore, any further studies that may be required during or after the EIA process will be outlined.
- All relevant legislation, permits and standards that would apply to the proposed development will be identified.
- The opportunities and constraints for proposed development will be described and shown graphically on an aerial photograph, satellite image or map delineated at an appropriate level of spatial accuracy.

1.2 RELEVANT ASPECTS OF THE DEVELOPMENT

Hyperion Solar Development 2 is proposed on the Remaining Extent of the Farm Lyndoch 432 (the project site), which is located approximately 16km north of Kathu in the Gamagara Local Municipality (LM) and within the greater John Taolo Gaetsewe District Municipality (DM), in the Northern Cape Province. Each project will be designed to have a contracted capacity of up to 75MW, and will make use of either fixed-tilt, single-axis tracking, or dual-axis (double-axis) tracking photovoltaic (PV) solar technology for the generation of electricity.

The proposed project will comprise the following key infrastructure and components:

- Arrays of PV panels (static or tracking PV system) with a contracted capacity of up to 75MW.
- Mounting structures to support the PV panels.
- On-site inverters (to convert the power from Direct Current (DC) to Alternating Current (AC)), and distribution power transformers.
- An on-site substation to facilitate the connection between the project and the Eskom electricity grid.
- A new 132kV power line between the on-site substation and the existing Ferrum Substation/or other. This is however not assessed as part of the current development.
- Cabling between the project's components (to be laid underground where practical).
- Battery storage mechanism with a storage capacity of up to 300MWh.
- Water purification plant.
- Site Offices and Maintenance Buildings, including workshop areas for maintenance and storage.
- Batching plant.
- Temporary laydown area.
- Main access road to the site, internal access roads and fencing around the development area.

Based on the outcome of the meeting and consultations with affected landowners during the Scoping Phase, the following four access road alternatives were identified for consideration for Hyperion Solar Development 2 within the EIA studies (refer to Figure 3.2):

Alternative 1:

This alternative formed part of the Scoping Phase and entails the upgrade of approximately 3.6km of the existing T26 gravel road situated between the project site and the N14 national road. The existing road will be upgraded from approximately 5m to 9m in width

and will traverse four properties; the Remaining Extent of the Farm Lyndoch 432; Portion 1, 2 and the Remaining Extent of the Farm Cowley 457.

Alternative 2:

This is a new alternative identified for consideration in the EIA process. Alternative 2 entails the establishment of a new access road approximately 3.6km in length and 9m in width. The new access road is proposed to be located adjacent to the existing T26 gravel road and will traverse four properties; the Remaining Extent of the Farm Lyndoch 432, Portion 1, 2 and the Remaining Extent of the Farm Cowley 457.

Alternative 3:

Alternative 3 entails the establishment of a new access road approximately 5.1km in length and 9m in width and the upgrade of approximately 10.3km of the existing T25 gravel road from approximately 5m in width to 9m in width. This alternative was previously known as Alternative 2 in the Scoping Phase and was realigned in order to avoid the protected Kathu Forest. Alternative 3 will traverse five properties; the Remaining Extent of the Farm Lyndoch 432, Portion 1 of the Farm Selsden 464, the Remaining Extent of the Farm Kathu 465, Portion 1 of the Farm Halliford 466 and the Remaining Extent of the Farm Marsh 467.

Alternative 4:

Access Road Alternative 4 entails the establishment of a new access road approximately 6.2km in length and 9m in width situated between the western boundary of the project site and the R380 regional road. This alternative was proposed by the DAFF as an additional alternative which will traverse four properties; the Remaining Extent of the Farm Lyndoch 432, Portion 1 and the Remaining Extent of the Farm Selsden 464 and the Remaining Extent of the Farm Halliford 466.

A 20m wide corridor for each of the four alternatives has been considered and assessed during the EIA Phase in order to determine the most preferred route from an environmental perspective.

2 METHODOLOGY

2.1 DATA SOURCING AND REVIEW

Data sources from the literature consulted and used where necessary in the study includes the following:

Vegetation:

• Vegetation types and their conservation status were extracted from the South African National Vegetation Map (Mucina & Rutherford 2006 and 2012 Powrie

update) as well as the National List of Threatened Ecosystems (2011), where relevant.

- Information on plant species recorded for the broad area around the site was
 extracted from the SANBI POSA database hosted by SANBI. The species list was
 derived from a considerably larger area than the project site, but this is
 necessary to ensure a conservative approach as well as counter the fact that the
 project site itself or the immediate area has not been well sampled in the past.
- The IUCN conservation status of the species in the list was also extracted from the database and is based on the Threatened Species Programme, Red List of South African Plants (2018).

Ecosystem

- Critical Biodiversity Areas (CBAs) were extracted from the Northern Cape Critical Biodiversity Areas Map (Oosthuysen & Holness 2016).
- Freshwater and wetland information was extracted from the National Freshwater Ecosystem Priority Areas assessment (NFEPA) (Nel et al. 2011).
- Important catchments and protected areas expansion areas were extracted from the National Protected Areas Expansion Strategy 2008 (NPAES).

Fauna

- Lists of mammals, reptiles and amphibians which are likely to occur at the project site were derived based on distribution records from the literature and Animal Demography Unit (ADU) Virtual Museum spatial database (http://vmus.adu.org.za/).
- Literature consulted includes Branch (1988) and Alexander and Marais (2007) for reptiles, Du Preez and Carruthers (2009) for amphibians, Friedmann and Daly (2004) and Skinner and Chimimba (2005) for mammals.
- Apart from the literature sources, additional information on fauna was extracted from the Animal Demography Unit (ADU) web portal <u>http://vmus.adu.org.za</u>
- The faunal species lists provided are based on species which are known to occur in the broad geographical area, as well as a preliminary assessment of the availability and quality of suitable habitat at the project site.
- The conservation status of mammals is based on the IUCN Red List Categories (EWT/SANBI 2016), while reptiles are based on the South African Reptile Conservation Assessment (Bates et al. 2013) and amphibians on Minter et al. (2004) as well as the IUCN (2018).

2.2 SITE VISITS & FIELD ASSESSMENT

The site was visited on the 21^{st} of July 2018 as well as on the 29^{th} , 30^{th} and 31^{st} of January 2019 and then the 26^{th} of February. During the site visits, the different biodiversity

features, habitat, and landscape units present at the site were identified and mapped in the field. Specific features visible on the satellite imagery of the site were also marked for field inspection and were verified and assessed during the site visit. Walk-through-surveys were conducted within representative areas across the different habitat units identified and all plant and animal species observed were recorded. Active searches for reptiles and amphibians were also conducted within habitats likely to harbour or be important for such. The presence of sensitive habitats such as stands of large trees, pans or rocky outcrops were noted in the field where present and recorded on a GPS.

As the density of tree species of conservation concern is an issue at the site, specific measures to sample and estimate the density of protected trees was taken. A total of 11 sample plots, each approximately 1ha in extent were distributed across the site and all protected tree species within these plots were recorded. In the case of *Vachellia erioloba*, the height and canopy width was also estimated and recorded for each tree. This was not done for *Vachellia haematoxylon* as all the individuals present on the site are of the shorter shrubby type and no large trees of this species are present.

2.3 SENSITIVITY MAPPING & ASSESSMENT

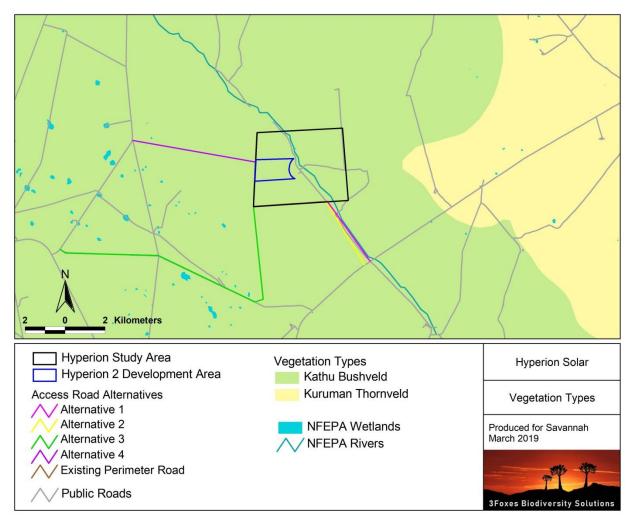
An ecological sensitivity map of the site was produced by integrating the available ecological and biodiversity information available in the literature and various spatial databases with mapping based on the satellite imagery as well as personal knowledge of the project site. This includes delineating different habitat units identified on the satellite imagery and assigning likely sensitivity values to the units based on their ecological properties, conservation value and the potential presence of species of conservation concern. The ecological sensitivity of the different units identified in the mapping procedure was rated according to the following scale:

- Low Areas of natural or transformed habitat with a low sensitivity where there is likely to be a negligible impact on ecological processes and terrestrial biodiversity. Most types of development can proceed within these areas with little ecological impact.
- **Medium** Areas of natural or previously transformed land where the impacts are likely to be largely local and the risk of secondary impact such as erosion low. These areas usually comprise the bulk of habitats within an area. Development within these areas can proceed with relatively little ecological impact provided that appropriate mitigation measures are taken.
- **High** Areas of natural or transformed land where a high impact is anticipated due to the high biodiversity value, sensitivity or important ecological role of the area. These areas may contain or be important habitat for faunal species or provide

important ecological services such as water flow regulation or forage provision. Development within these areas is undesirable and should only proceed with caution as it may not be possible to mitigate all impacts appropriately.

 Very High/No-Go – Critical and unique habitats that serve as habitat for rare/endangered species or perform critical ecological roles. These areas are essentially no-go areas from a developmental perspective and should be avoided as much as possible.

2.4 SAMPLING LIMITATIONS AND ASSUMPTIONS


The current study included a field assessment which took place across different seasons as well as a desktop study. This serves to significantly reduce the limitations and assumptions required for the study. For the current assessment, the vegetation was in a reasonably good condition for sampling at the time of the field assessment as there had been some late season rainfall prior to the initial field assessment as well as some early summer rain prior to the summer season site visits. Although it is likely that some forbs and annuals were missed during the field assessment, there are few species of concern within the area and this is not seen as a significant limitation of the current study. Overall, the information collected on-site is considered reliable and there are few limitations with regards to the vegetation sampling and the timing of the site visits.

In terms of fauna, detailed studies were not conducted for the Scoping study, but several factors reduce the uncertainty associated with the assessment. Apart from the active searches that were conducted for reptiles and amphibians during the current study, additional species presence is inferred based on results obtained from the previous studies the consultant has conducted on the numerous study areas, in the Kathu area. Many remote areas have not been well-sampled in the past with the result that the species lists derived from the available spatial databases for the area do not always adequately reflect the actual fauna present at the project site. This is acknowledged as a limitation of the study, however, it is substantially reduced given the previous experience in the area. In order to further reduce this limitation, and ensure a conservative approach, the species lists derived for the project site from the literature were obtained from an area significantly larger than the project site. This is a cautious and conservative approach which takes the study limitations into account.

3 DESCRIPTION OF THE AFFECTED ENVIRONMENT- BASELINE

3.1 BROAD-SCALE VEGETATION PATTERNS

According to the national vegetation map (Mucina & Rutherford 2006), the project site is restricted to the Kathu Bushveld vegetation type. This vegetation unit occupies an area of 7 443 km² and extends from around Kathu and Dibeng in the south through Hotazel and to the Botswana border between Van Zylsrus and McCarthysrus. In terms of soils the vegetation type is associated with aeolian red sand and surface calcrete and deep sandy soils of the Hutton and Clovelly soil forms. The main land types are Ah and Ae with some Ag. The Kathu Bushveld vegetation type is still considered largely intact and less than 2% has been transformed by mining activity and other development, and it is classified as Least Threatened. However, there has been a recent increase in mining as well as solar development within this vegetation type with the result that it has experienced significant recent habitat loss as well as become increasingly fragmented. It is also poorly conserved and does not currently fall within any formal conservation areas apart from the recently declared Kumba Iron Ore offset areas west of Kathu. Although no endemic species are restricted to this vegetation type, a number of Kalahari endemics are known to occur in this vegetation type such as Vachellia luederitzii var luederitzii, Anthephora argentea, Megaloprotachne albescens, Panicum kalaharense and Neuradopsis bechuanensis. It is more fully described as it occurs at the project site in the next section. Other vegetation types that occur in the wider area include Kuruman Thornveld to the east and Kuruman Mountain Bushveld to the south and east, neither of which is of conservation concern or occur within the project site.

Figure 1. Broad-scale overview of the vegetation in and around the Hyperion site. The vegetation map is an extract of the national vegetation map as produced by Mucina and Rutherford (2006/2012), and also includes drainage lines and wetlands delineated under the NFEPA assessment (Nel et al. 2011).

3.2 HABITATS & PLANT COMMUNITIES

The vegetation of the project site consists of Bushveld with a well-developed tree layer and a variable-density grass layer. Three broad vegetation communities can be identified, the area west of the Vlermuisleegte River, the river itself and the area east of the Vlermuisleegte River. The area west of the river is largely dominated by *Tarchonanthus camphoratus* and *Vachellia haematoxylon* with a few areas where *Vachellia erioloba* and/or *Vachellia mellifera* become dominant. In the area east of the river, the vegetation is generally more open and largely dominated by *Vachellia erioloba* with some localised areas dominated by *Vachellia mellifera* or *Terminalia sericea*. The Vlermuisleegte River does not flow on a regular basis and has largely been in-filled with sand. It is characterised by a high

density of large *Vachellia erioloba* trees. The area east of the Vlermuisleegte River was identified during the scoping phase as unsuitable for development and excluded from the PV development. As a result, the development has been restricted to the western portion of the farm which is considered broadly less sensitive than the east.

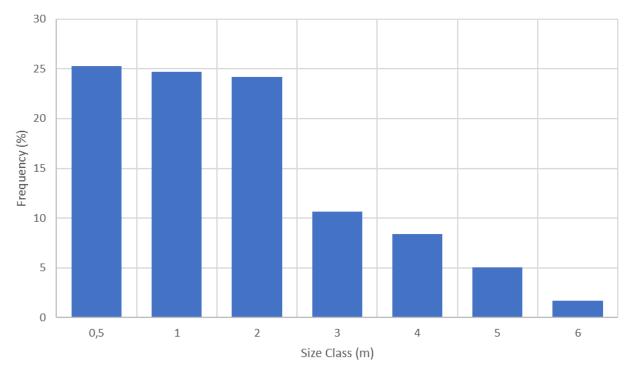
Within the eastern section of the property, which would be affected by the development, there is some variation in the woody component of the vegetation due firstly to a fire which affected the area in 2012 and secondly due to natural variation in species dominance associated with subtle changes in soil depth and texture. The density of *Vachellia haematoxylon* across the site is relatively homogenous, but there is significant variation in the density of *Vachellia erioloba* and large shrubs such as *Tarchonanthus camphoratus*, *Grewia flava* and *Vachellia mellifera*.

Apart from the above dominant trees other common woody species present at the site include Zizyphus mucronata, Gymnosporia buxifolia, Vachellia mellifera subsp. detinens, Searsia ciliata, Ehretia rigida subsp. rigida, Diospyros lycioides subsp. lycioides and Grewia flava. The grass layer is dominated by Schmidtia pappophoroides, Aristida meridionalis, Aristida stipitata subsp. stipitata, Stipagrostis uniplumis var. uniplumis, Stipagrostis obtusa, Cynodon dactylon, Enneapogon desvauxii, Eragrostis lehmanniana and Aristida congesta subsp. congesta. The density and diversity of shrubs is fairly low but includes Asparagus laricinus, Asparagus retrofractus, Felicia muricata subsp. cinerascens, Pentzia calcarea, Vachellia hebeclada, Hermannia tomentosa, Gnidia polycephala and Lantana rugosa. Forbs included Dicoma schinzii, Geigeria ornativa, Elephantorrhiza elephantina, Indigofera daleoides var. daleoides and Gisekia pharnacioides var. pharnacioides.

Figure 2. The typical vegetation within the proposed development footprint is dominated by *Tarchonanthus camphoratus, Grewia flava, Vachellia haematoxylon* with occasional *Vachellia erioloba*.

Figure 3. Looking north from the low gravelly area along the southern boundary of the PV 2 area. This is considered to be a medium sensitivity area within the development footprint that was not previously affected by fire, with a relatively high density of mature *Vachelia erioloba* trees.

Figure 4. Vegetation of the Vlermuisleegte River, showing the large *Vachelia erioloba* trees that characterise the river bed. This area would not be affected by the development, but is illustrated to show the variety of habitats present on the site.


3.3 LISTED AND PROTECTED PLANT SPECIES

Three NFA-protected tree species occur at the site, *Boscia albitrunca, Vachelia erioloba* and *Vachelia haematoxylon*. No *Boscia albitrunca* were observed within the development footprint and this species appears to be restricted to the area east of the Vlermuisleegte River. The density of both *Vachelia* species is fairly high across the site and it would not be possible to avoid impact on these species. Apart from the above species it is possible that Devils' Claw *Harpagophytum procumbens* is present at the site, although it was not observed during the site visit. This is a provincially protected species that is common within certain Kalahari veld types and is widespread and common in the area with the result that the presence of this species at the site would not be of high significance.

The density of *Vachellia erioloba* at the site varies between 2.5 and 70 trees/ha, with an average density of 22 trees/ha. Based on a footprint area of 180ha, the Hyperion 2 project would result in the loss of approximately 3928 *Vachellia erioloba* trees. The height, size, and class distribution of the trees is illustrated below in Figure 5. There is a high proportion of young trees, with almost 75% of the trees present being less than 2m in height. This is related to the fire that affected the site and the subsequent recruitment of a new cohort of young trees and resprouting of existing trees that that were not killed by the fire. As

Vachellia haematoxylon is a dominant shrub within the study area, relatively large numbers of this species would be affected. This species occurs at an average density of 107 trees/ha, resulting in an estimated total of 19 298 shrubs within the Hyperion PV2 footprint area. Although this seems like a very large number, these are low shrubs, the vast majority of which are less than 2m in height and, unlike in areas where there are fewer trees and where *V. haematoxylon* can grow into a substantial tree, these are not of high ecological value within the context of the site and likely play a similar role to other dominant large shrubs present such as *Grewia flava* and *Tarchonanthus camporatus*. As such, there is not a particular concern with the loss of these individuals from the development footprint as compared to the loss of the other dominant shrub species present. Consequently, the major issue associated with the development, regarding its impact on *V. haematoxylon* should be seen as habitat loss within a favourable environment for this species, with the determination of precisely how many plants would be lost being of lesser significance.

For both Vachellia erioloba and V.haematoxylon, the development would contribute to cumulative impact on habitat availability for these species in the area. Should all four Hyperion plants be built, this would result in approximately 900ha of habitat loss for these species. Although the Kathu Bushveld vegetation type is still largely intact, it is experiencing increased levels of habitat loss in the Kathu area due to both mining and solar energy development. Furthermore, not all areas of Kathu Bushveld should be considered to have equal value and those areas dominated by either Vachellia mellifera or Tarchonanthus camphoratus are most likely the result of degradation and have lower ecological value. As such, characteristic examples of Kathu Bushveld with Vachellia erioloba and V.haematoxylon dominant should be seen as having relatively high ecological and conservation value. Although the total potential loss of 900ha of habitat from the area due to the development of all four Hyperion projects sounds potentially significant, this represents 0.12% of the total extent of Kathu Bushveld. Assuming that only 50% of this vegetation type is in a good condition, then this still represents only 0.24% additional habitat loss resulting from the whole development, with the contribution of the Hyperion PV2 development at less than 0.026% of this. From a purely ecological point of view, for both Vachellia erioloba and *V.haematoxylon*, it is clear that this extent of habitat loss does not justify the imposition of an offset for the development of a single PV plant at the site. Thresholds that should potentially be of concern are discussed in more detail in Section 3.6 where the overall cumulative impacts associated with the Hyperion development are covered.

Figure 5. Size class distribution of *Vachellia erioloba* within the development area of the Hyperion site, showing that this is skewed towards young trees less than2m tall.

3.4 FAUNAL COMMUNITIES

3.4.1 Mammals

The mammalian community at the project site is likely to be of moderate diversity; although more than 50 species of terrestrial mammals are known from the wider area, the extent and habitat diversity of the project site is too low to support a very wide range of mammals. Species observed or otherwise confirmed present in the area include Aardvark, Cape Porcupine, Springhare, South African Ground Squirrel, Scrub hare, Vervet Monkey, Small-spotted Genet, Yellow Mongoose, Slender Mongoose, Black-Backed Jackal, Steenbok, Duiker and Kudu. Small mammals trapped in the area include Desert Pygmy Mouse *Mus indutus*, Multimammate Mouse *Mastomys coucha*, Bushveld Gerbil *Tatera leucogaster*, Hairy footed Gerbil *Gerbillurus paeba*, Pouched Mouse *Saccostomus campestris* and Grey Climbing Mouse *Dendromus melanotis*.

Five listed terrestrial mammal species potentially occur in the area; these are the Brown Hyaena *Hyaena brunnea* (Near Threatened), Black-footed Cat *Felis nigripes* (Vulnerable), Leopard *Panthera pardus* (VU), Ground Pangolin *Smutsia temminckii* (Vulnerable) and South African Hedgehog *Atelerix frontalis* (Vulnerable). The Leopard and Brown Hyaena are not

likely to occur in the area on account of the agricultural land-use in the area which is not usually conducive to the persistence of large carnivores. The Black-footed Cat is a secretive species which would be likely to occur in the wider area and possibly at the project site given that it occurs within arid, open country. The Hedgehog and Ground Pangolin may also occur in the area at typically low density. Given the extensive national ranges of these species, the impact of the proposed development on habitat loss for these species would be minimal and a long-term impact on these species would be unlikely.

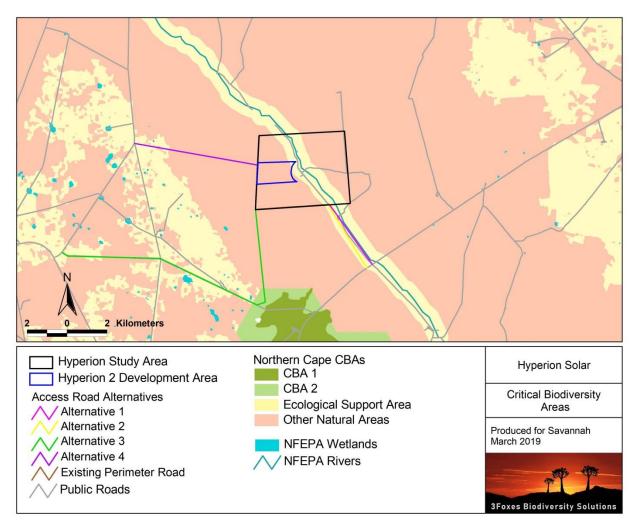
3.4.2 Reptiles

The project site lies in or near the distribution range of more than 50 reptile species, although many of these are unlikely to occur at the project site as it is restricted largely to sandy substrate and does not include rocky habitat or other habitats that are important for reptiles (Appendix 3). No species of conservation concern are known to occur in the area. The habitat diversity within the study area is relatively low with the result that the number of reptile species present within the project site is likely to be relatively low and only a proportion of the species known from the area are likely to be present on the project site itself.

Species observed on the site of in the immediate area in the past include Serrated Tent Tortoise *Psammobates oculifer*, Cape Cobra *Naja nivea*, Ground Agama *Agama aculeata*, Spotted Sand Lizard *Pedioplanis lineoocellata*, Variable Skink *Trachylepis varia*, Bibron's Blind Snake *Afrotyphlops bibronii*, Western Rock Skink *Mabuya sulcata sulcata*, Kalahari Tree Skink Trachylepis spilogaster, Cape Gecko *Lygodactylus capensis capensis*, Speckled Rock Skink *Trachylepis punctatissima*, Striped Skaapsteker *Psammophylax tritaeniatus* and Boomslang *Dispholidus typus typus*. Impacts on reptiles are likely to be restricted largely to habitat loss within the development footprint. This is likely to be of local significance only as there are no very rare species or specialised habitats present within the footprint area.

3.4.3 Amphibians

The project site lies within or near the range of 10 amphibian species, indicating that the project site potentially has a moderately diverse frog community for an arid area. There is no natural permanent water or artificial earth dams within the project site that would represent suitable breeding habitat for most of these species. The pans which are present at the site would occasionally contain sufficient water for breeding purposes for those species which do not require permanent water. Given the paucity of permanent water at the site, only those species which are relatively independent of water are likely to occur in the area. Species observed in the area include Eastern Olive Toad *Amietophrynus garmani* and Bushveld Rain Frog *Breviceps adspersus*, both of which are likely to occur at the project


site. There is no standing water on the project site that could be used by amphibians for breeding purposes.

The only species of conservation concern which occurs in the wider area is the Giant Bullfrog *Pyxicephalus adspersus*. The project site lies at the margin of the known distribution of this species and it has not been recorded from any of the quarter degree squares around the project site, suggesting that it is unlikely to occur there. Impacts on amphibians are however likely to be low and restricted largely to habitat loss during construction.

3.5 CRITICAL BIODIVERSITY AREAS & BROAD-SCALE PROCESSES

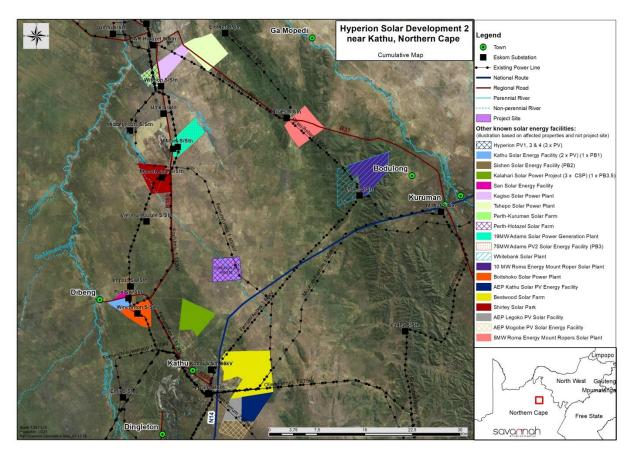
An extract of the Northern Cape Critical Biodiversity Areas map for the study area is depicted below in Figure 6. The majority of the project site lies within an area classified as "Other natural areas" and is not classified as a CBA or Ecological Support Area (ESA). The Vlermuisleegte River corridor is however classified as an ESA and would be marginally impacted by the proposed development. There are no CBAs in close proximity to the project site, indicating that the proposed development does not pose a threat to any CBAs or other areas considered to be of significance from a broad-scale conservation planning perspective.

In terms of the access road options, Alternative 1, the existing access route runs adjacent to the Vlermuisleegte river, which is a potential concern as this area is an ESA, but the existing road is already used by heavy vehicles and any required upgrades would be minor in nature and not likely to generate significant additional impact to the affected ESA. Alternative 2, a new road through this area is not highly desirable as it would also run through the ESA and result in some habitat loss. Alternative 3 is both the longest route and also impinges a little on a CBA 2 associated with the Camelthorn Forest north of Kathu. As a result, this the least desirable route in terms of impacts on CBAs. Alternative 4, the route from the west, is mostly within other natural areas, except towards the Kathu-Hotazel road, where there are some areas of ESA that would be affected. The use of the existing road, Alternative 1 is preferred in terms of potential impacts on CBAs and broad scale ecological processes, followed by Alternative 4 and then Alternative 2.

Figure 6. Extract of the Northern Cape Critical Biodiversity Areas map for the study area, showing that there are no CBAs in close proximity to the site, but access road Alternative 2 does go through a short area of CBA 1 and CBA 2.

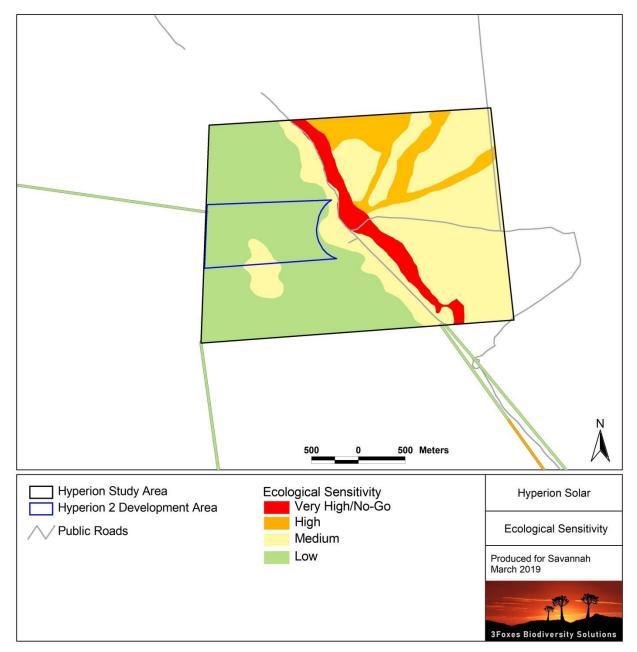
3.6 CURRENT BASELINE & CUMULATIVE IMPACT

There are numerous other proposed PV facilities in the wider area surrounding the project site (Figure 7). There are several existing solar projects in the Kathu area including the already built Kalahari Solar (CSP), Kathu Solar (PV), Sishen Solar (PV) and Adams Solar (PV). The existing plants occupy an area of about 950ha and are considered to form part of the existing baseline for the area. The footprint of these are however relatively low in comparison with the footprint of the iron and manganese mines in the area, which is estimated at 12 000ha and are currently the major driver of habitat loss and transformation in the Hotazel-Kuruman-Kathu area. There are several authorised developments in the general vicinity to the project site, which would potentially add an area of about 1000ha to the baseline. All these developments raise the potential for cumulative impact in the area,


especially within the Kathu Bushveld vegetation type. However, the overall development pressure in the wider area is still relatively low and while the Vlermuisleegte River is considered to represent an important movement corridor for fauna, the development area is relatively homogenous, suggesting that the affected area is not likely to be of high significance for landscape connectivity. As discussed in Section 3.3, the cumulative impact on protected tree species is a potential concern given the relatively high numbers of trees that would be affected. However, both Vachellia erioloba and V.haematoxylon are widespread species across the Kalahari and the loss of the affected individuals would not pose a threat of any kind to the local or regional populations of these species. As pointed out in Section 3.3, the real issue is around the loss of habitat and the implications of this for ecological functioning and landscape connectivity in the area. In terms of ecological considerations, there is no clear threshold of habitat loss above which an offset can be objectively defined as being necessary, especially given that the affected area is not within a CBA. However, the loss of the affected individuals of protected tree species exceeds the thresholds that DAFF has defined as being necessary to trigger an offset. Given that the site is not exceptional in terms of the size or density of trees present, the loss of the affected individuals should be seen as being secondary to the loss of habitat and for these purposes, a threshold of 500ha is given as being a reasonable threshold above which an offset could potentially be considered. In other words, until such time as the footprint of the Hyperion development exceeds 500ha, an offset is not recommended, but for that facility or facilities that result in the overall footprint within the site exceeding 500ha, that should trigger a consideration of an offset. That is not to say that an offset is definitively required above 500ha, but that above this threshold, the need and manner in which an offset could be implemented should be investigated in detail, with input from DAFF and based on both ecological considerations and the mandate of DAFF to ensure sustainable development.

In terms of the comments received from DAFF following the site inspection, DAFF has indicated that Hyperion 2 can possibly proceed without the need for an offset. Based on the analysis presented here, this recommendation is supported by the current study and no offset is considered necessary for the Hyperion 2 development, but any further development of the site may require a more detailed offset study and analysis.

In terms of mitigation requirements to reduce the impact of the development on protected tree species, DAFF has indicated that off-site mitigation would be required, potentially in the form of urban greening or similar contribution to environmental enhancement where this otherwise would be unlikely to occur. In terms of the DAFF guidelines a ratio of 3:1 should be used, indicating that for every tree destroyed, 3 seedlings should be planted. The number of affected trees within Hyperion 2 is estimated at almost 4000 *Vachellia erioloba* trees and almost 20 000 *Vachellia haematoxylon* trees. As such, this would require 72 000 seedlings to be supplied. However, there are some additional considerations that should be


taken into account such as small stature of most of the *Vachellia haematoxylon* trees present on the site as well as the lower desirability of this species for use in greening projects. As this species is less suitable for greening type projects and is likely to be shorter-lived in this situation as well, it is recommended that substitution of *Vachellia haematoxylon* with *Vachellia erioloba* be allowed to occur and that since *Vachellia erioloba* is significantly larger than *Vachellia haematoxylon*, that a ratio of 4:1 be used for such substitution. The following guidelines are provided here and which can be used as stipulations for the EA:

- The total number of trees to be provided for greening projects should comply with the DAFF guidelines but with the stipulation that, if desired, *Vachelia haematoxylon* can be substituted with *Vachelia erioloba* at a ratio of 4:1. As such for every 4 *Vachelia haematoxylon* destroyed, at least 1 *Vachelia erioloba* seedling should be planted.
- The numbers of seedlings required to meet the said mitigation would thus be a total of 12 000 *Vachelia erioloba* seedlings and up to 60 000 *Vachelia haematoxylon* seedlings which can be substituted wholly or partly by *Vachellia erioloba* at a ratio of 4:1, giving rise to a maximum number of *Vachelia erioloba* seedlings of 15 000 for a full substitution.
- The seedlings should be supplied at a size suitable for transplant with a high likelihood of survival. Although some input or negotiation with DAFF in this regard should take place, a minimum height of seedlings of 50cm is provided here as a guideline.
- The seedlings should be supplied for greening projects in Kathu as well as other surrounding towns including but not limited to Olifantshoek, Kuruman, Postmasburg and Deben.
- Contracts for the supply of the seedlings should be signed before construction commences and the full quota of seedlings should be supplied within 5 years of the commencement of construction.

Figure 7. Map of renewable energy development facilities as well as current applications for the wider study area. It is important to note that the map indicates the affected properties and not the extent of the facilities themselves.

3.7 SITE SENSITIVITY ASSESSMENT

Figure 8. Sensitivity map for the Hyperion Solar Development 2 development area and the wider Hyperion site.

The sensitivity map for the project site and development area associated with Hyperion Solar Development 2 is illustrated above in Figure 8. The main sensitive feature of the project site is the Vlermuisleegte River which is considered to be unsuitable for development and is therefore considered to be a no-go area for all project components apart from the

existing access road which impinges marginally into this area. The majority of the area east of the Vlermuisleegte River has a moderate to high *Vachellia erioloba* density and is considered Medium or High sensitivity. This part of the site is considered to have significantly higher sensitivity than the area west of the Vlermuisleegte River due firstly to the high abundance of protected tree species, but also due to the higher habitat diversity and associated value of this part of the site for fauna. Due to these results which informed the Scoping Phase of the development, the developer has chosen to restrict the development to the western portion of the property.

The majority of the western half of the project site is considered low sensitivity due to the lower abundance of protected tree species and dominance of *Tarchonanthus camphoratus* across large parts of this area, which is generally an indicator of poor veld condition. Although the density of protected trees west of the river is much lower than the areas to the east, the overall number trees that are likely to be affected by the development is still relatively high. There is a low ridge in the central part of this half of the project site which is considered to be medium sensitivity as it has higher plant diversity and is a relatively uncommon habitat in context of the site. However, no species of high conservation concern were observed in this area and it is considered potentially suitable for development. However, even within the generally lower sensitivity western part of the site, the abundance of the protected tree species *Vachellia erioloba* and *V.haematoxylon* is still relatively high and the impact of the development on these species is considered to represent the most significant impact associated with the development.

In terms of the access road options, Alternative 1, upgrading the existing access route is considered to represent the most favourable alternative for the development as it would result in the least overall habitat loss and additional disturbance. Alternative 2, the creation of a new access route adjacent to the existing access is considered acceptable and would generate relatively low overall impact, although the density of protected trees is relatively high along some parts of the route. Alternative 3 is the longest access road alternative and is considered the least desirable as it would generate the greatest extent of habitat loss and also goes through several areas with relatively high densities of *Vachellia erioloba*. Alternative 4 provides access the site from the west and is also considered to represent an acceptable alternative as there are no features of significance in this area and it traverses typical low and medium sensitivity thornveld and some lower sensitivity areas dominated by *Vachellia mellifera*.

4 IDENTIFICATION & NATURE OF IMPACTS

In this section, the potential impacts and associated risk factors that may be generated by the proposed development are identified. In order to ensure that the impacts identified are broadly applicable and inclusive, all the likely or potential impacts that may be associated with the proposed development are listed. The relevance and applicability of each potential impact to the current situation are then examined in more detail in the next section.

4.1 IDENTIFICATION OF POTENTIAL IMPACTS AND DAMAGING ACTIVITIES

Potential ecological impacts resulting from the proposed development of the Hyperion Solar Development 2 and associated infrastructure and access roads would stem from a variety of different activities and risk factors associated with the preconstruction, construction and operational phases of the project including the following:

Impacts on vegetation and protected plant species

Several protected species occur at the project site which may be impacted by the proposed development and the upgrading of access roads, most notably *Vachellia erioloba* and *A.haematoxylon*. Vegetation clearing during construction will lead to the loss of currently intact habitat within the proposed development footprint and is an inevitable consequence of the proposed development. As this impact is certain to occur it will be assessed for the construction phase as this is when the impact will occur, although the consequences will persist for a long time after construction.

Direct faunal impacts

Increased levels of noise, pollution, disturbance and human presence during construction will be detrimental to fauna. Sensitive and shy fauna would move away from the area during the construction phase as a result of the noise and human activities present, while some slow-moving species would not be able to avoid the construction activities and might be killed. Some impact on fauna is highly likely to occur during construction as well as operation and this impact will therefore be assessed for the construction phase and operational phase.

Impact on CBAs and broad-scale ecological processes

Transformation of intact habitat on a cumulative basis would contribute to the fragmentation of the landscape and would potentially disrupt the connectivity of the landscape for fauna and flora and impair their ability to respond to environmental fluctuations. Due to the presence of a number of other renewable energy and mining developments in the area, this is a potential cumulative impact of the development that is assessed.

5 ASSESSMENT OF IMPACTS

The various identified potential impacts are assessed below for the different phases of the proposed development.

5.1 Hyperion Solar Development 2

The following is an assessment of the Hyperion Solar Development 2 and associated infrastructure including access roads, for the planning and construction and operational phase of the proposed development.

5.1.1 Planning & Construction Phase

Impact 1. Impacts on vegetation and listed or protected plant species resulting from construction activities

Impact Nature: Impacts on vegetation will occur due to disturbance and vegetation clearing associated with the construction of the facility. In addition, there will be significant loss of individuals of protected tree species.

	Without Mitigation	With Mitigation	
Extent	Local (1)	Local (1)	
Duration	Long-term (4)	Long-term (4)	
Magnitude	Moderate (6)	Moderate (5)	
Probability	Definite (5)	Definite (5)	
Significance	Medium (55)	Medium (50)	
Status	Negative	Negative	
Reversibility	Moderate	Moderate	
Irreplaceable loss of resources	Low	Low	
Can impacts be mitigated?	Lindividuals of protected tree species is unavoidable and is a certa		
Mitigation	 locate species of conservation of well as comply with the Norther DENC/DAFF permit conditions. Search and rescue for iden construction. Vegetation clearing to common search and rescue has been obtained. Pre-construction environmental site to ensure that basic environmental site to ensure that basic environmental site includes awareness of not provide the search of the search of the search of the search and the search	f the facility's final layout in order to concern that can be translocated as n Cape Nature Conservation Act and tified species of concern before ence only after walk-through and conducted and necessary permits induction for all construction staff on conmental principles are adhered to. b littering, appropriate handling of avoiding fire hazards, minimising	

	wildlife interactions, remaining within demarcated construction areas
	etc.
	Contractor's Environmental Officer (EO) to provide supervision and
	oversight of vegetation clearing activities within sensitive areas such as near the pans.
	 Vegetation clearing to be kept to a minimum. No unnecessary
	vegetation to be cleared.
	All construction vehicles should adhere to clearly defined and
	demarcated roads. No off-road driving to be allowed outside of the
	construction area.
	• Temporary laydown areas should be located within previously
	transformed areas or areas that have been identified as being of low
	sensitivity. These areas should be rehabilitated after use.
	The development will contribute to cumulative impacts on habitat loss
Cumulative Impacts	and transformation in the area. Although large numbers of protected
Cumulative Impacts	trees would be affected, these are the dominant trees of the area and
	cumulative impacts on their populations would be low.
	As the loss of currently intact vegetation is an unavoidable consequence
	of the development, the habitat loss associated with the development
Residual Risks	remains a moderate residual impact even after mitigation and avoidance
	of more sensitive areas.
	1

Impact 2. Direct Faunal Impacts Due to Construction Activities

Impact Nature: Disturbance, transformation and loss of habitat will have a negative effect on resident fauna during construction. Due to noise and operation of heavy machinery, faunal disturbance will extend well beyond the footprint and extend into adjacent areas. This will however be transient and restricted to the construction phase.

	Without Mitigation	With Mitigation
Extent	Local (1)	Local (1)
Duration	Short-term (2)	Short-term (2)
Magnitude	Low to Medium (5)	Low (4)
Probability	Highly Probable (4)	Highly Probable (4)
Significance	Medium (32)	Low (28)
Status	Negative	Negative
Reversibility	Moderate	Moderate
Irreplaceable loss of resources	No	No
Can impacts be mitigated?	Although the large amounts of noise and disturbance generated at the site during construction is largely unavoidable, impacts such as those	

	resulting from the presence of construction personnel at the site can be	
	easily mitigated.	
Mitigation	 to fauna and, in particular, awareness about not harming or collecting species such as snakes, tortoises and owls, which are often persecuted out of superstition. Any fauna threatened by the construction activities should be removed to safety by an appropriately qualified environmental officer. All construction vehicles should adhere to a low speed limit (30km/h for heavy vehicles and 40km/h for light vehicles) to avoid collisions with susceptible species such as snakes and tortoises. All hazardous materials should be stored in the appropriate manner to prevent contamination of the site. Any accidental chemical, fuel and oil spills that occur at the site should be cleaned up in the appropriate manner as related to the nature of the spill. If trenches need to be dug for electrical cabling or other purpose, these should not be left open for extended periods of time as fauna may fall in and become trapped in them. Trenches which are standing open should have places where there are soil ramps allowing fauna to escape the trench. 	
Cumulative Impacts	During the construction phase the activity would contribute to cumulative fauna disturbance and disruption in the area, but as there are still tracts of intact habitat in the area, it is likely that displaced fauna will have space to move about the site to avoid areas of high activity.	
Residual Risks	It is probable that some individuals of susceptible species will be lost to construction-related activities despite mitigation. However, this is not likely to impact the viability of the local population of any fauna species.	

5.1.2 Operational Phase Impacts

Impact 1. Faunal Impacts due to Operation

Impact Nature: The operation and presence of the facility may lead to disturbance or persecution of			
fauna within or adjacent to the	fauna within or adjacent to the facility.		
Without Mitigation With Mitigation			
Extent	Local (1)	Local (1)	
Duration	Long-term (4)	Long-term (4)	
Magnitude	Low (4)	Minor (2)	
Probability	Probable (3)	Probable (3)	

Significance	Low (27) Low (21)		
Status	Negative	Negative	
Reversibility	Moderate	Moderate	
Irreplaceable loss of resources	No	No	
Can impacts be mitigated?	To a large extent, but some low-level residual impact due to noise and human disturbance during maintenance is likely.		
Mitigation	 Any potentially dangerous fauna such as snakes or fauna threatened by the maintenance and operational activities should be removed to a safe location. If the site must be lit at night for security purposes, this should be done with downward-directed low-UV type lights (such as most LEDs), which do not attract insects. All hazardous materials should be stored in the appropriate manner to prevent contamination of the site. Any accidental chemical, fuel and oil spills that occur at the site should be cleaned up in the appropriate manner as related to the nature of the spill. All vehicles accessing the site should adhere to a low speed limit (30km/h max for heavy vehicles and 40km/h for light vehicles) to avoid collisions with susceptible species such as snakes and tortoises. If the facility is to be fenced, then no electrified strands should be placed within 30cm of the ground as some species such as tortoises are susceptible to electrocution from electric fences because they do not move away when electrocuted but rather adopt defensive behaviour and are killed by repeated shocks. Alternatively, the electrified strands should be placed on the inside of the fence and not the outside as is the case on the majority of already constructed PV plants. 		
Cumulative Impacts	The development would contribute to cumulative disturbance for fauna, but the contribution would be low for most species and is not considered highly significant.		
Residual Risks	Disturbance from maintenance activities will occur at a low level with the result that disturbance would be largely restricted to the site.		

5.1.3 Decommissioning Phase

Decommissioning Phase Impact 1. Habitat Degradation due to Erosion and Alien Plant Invasion

Impact Nature: Disturbance created during decommissioning will leave the site vulnerable to erosion		
and alien plant invasion for several years.		
	Without Mitigation	With Mitigation

Extent	Local (1) Local (1)		
Duration	Long-term (4) Long-term (3)		
Magnitude	Medium (4) Low (3)		
Probability	Likely (4)	Likely (3)	
Significance	Medium (32)	Low (21)	
Status	Negative	Negative	
Reversibility	Low	High	
Irreplaceable loss of resources	Moderate	Low	
Can impacts be mitigated?	mitigated to a low level.	Yes, with proper management and avoidance, this impact can be mitigated to a low level.	
Mitigation Cumulative Impacts	 Erosion management at the site should take place according to the Erosion Management Plan and Rehabilitation Plan. This should make provision for monitoring of the site for at least 5 years after decommissioning. All erosion problems observed should be rectified as soon as possible, using the appropriate erosion control structures and revegetation techniques. There should be follow-up rehabilitation and revegetation of any remaining bare areas with indigenous perennial shrubs, grasses and trees from the local area. Alien management at the site should take place according to the Alien Invasive Management Plan. This should make provision for alien monitoring and management for at least 5 years after decommissioning. Regular (annual) monitoring for alien plants during operation to ensure that no erosion problems have developed as result of the disturbance, as per the Alien Management Plan for the project. Woody aliens should be controlled on at least an annual basis using the appropriate alien control techniques as determined by the species present. This might include the use of herbicides where no practical manual means are available. 		
	Erosion and alien plant invasion would contribute to degradation in the area, but as this can be well-mitigated, the contribution can be minimised.		
Residual Risks	Some erosion and alien plant invasion is likely to occur even with the implementation of control measures, but would have a low impact if effectively managed.		

Decommissioning Phase Impact 2. Direct Faunal Impacts Due to Decommissioning Activities

Impact Nature: Due to disturbance, noise and the operation of heavy machinery, faunal disturbance due to decommissioning will extend beyond the footprint and impact adjacent areas to some degree. This will however be transient and restricted to the period while machinery is operational. In the long term, decommissioning should restore the ecological functioning and at least some habitat value to the affected areas.

Can impacts be mitigated? decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg. to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • Any fauna threatened by the decommissioning activities should removed to safety by an appropriately qualified environme officer. • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. • All hazardous materials should be stored in the approprior		Without Mitigation	With Mitigation	
Magnitude Low (4) Low (3) Probability Highly Probable (4) Probable (3) Significance Low (28) Low (18) Status Negative Negative Reversibility Moderate Moderate Irreplaceable loss of resources No No Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. Mitigation • All hazardous materials should be stored in the appropriately should be stored in the appropristely should be stored in the appropristely should be	Extent	Local (1)	Local (1)	
Probability Highly Probable (4) Probable (3) Significance Low (28) Low (18) Status Negative Negative Reversibility Moderate Moderate Irreplaceable loss of resources No No Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • Any fauna threatened by the decommissioning activities should removed to safety by an appropriately qualified environme officer. • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. • All hazardous materials should be stored in the approprintiper proper proper proper proper proper proper proper proprint the approprint proper p	Duration	Short-term (2)	Short-term (2)	
Significance Low (28) Low (18) Status Negative Negative Reversibility Moderate Moderate Irreplaceable loss of resources No No Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg, to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • Any fauna threatened by the decommissioning activities should removed to safety by an appropriately qualified environme officer. • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises.	Magnitude	Low (4)	Low (3)	
Status Negative Negative Reversibility Moderate Moderate Irreplaceable loss of No No Can impacts be mitigated? Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg, to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. Mitigation All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. Mitigation All hazardous materials should be stored in the appropriately should be stored in the appropristely should be stored in the appropriately should be	Probability	Highly Probable (4)	Probable (3)	
Reversibility Moderate Moderate Irreplaceable loss of No No Can impacts be mitigated? Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. Mitigation • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises.	Significance	Low (28)	Low (18)	
Irreplaceable loss of No No No Can impacts be mitigated? Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • Any fauna threatened by the decommissioning activities should removed to safety by an appropriately qualified environme officer. Mitigation • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. • All hazardous materials should be stored in the appropriately should be stored in the approprise should be stored in the approprise should be store	Status	Negative	Negative	
No No Can impacts be mitigated? Although the noise and disturbance generated at the site du decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg. to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • Any fauna threatened by the decommissioning activities should removed to safety by an appropriately qualified environme officer. • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. • All hazardous materials should be stored in the appropriately control of the persecutive store in the appropriately should be stored in the appropriately control of the persecutive store in the approprise store in the persecut	Reversibility	Moderate	Moderate	
Can impacts be mitigated? decommissioning is probably largely unavoidable, this will be trans and ultimately the habitat should be restored to something useable the local fauna. • All personnel should undergo environmental induction with reg. to fauna and, in particular, awareness about not harming collecting species such as snakes, tortoises and owls, which often persecuted out of superstition. • Any fauna threatened by the decommissioning activities should removed to safety by an appropriately qualified environme officer. • All vehicles should adhere to a low speed limit to avoid collis with susceptible species such as snakes and tortoises. • All hazardous materials should be stored in the approprior	-	No	No	
 Mitigation MITIGATION MITIGATION MITIGATION Any fauna threatened by the decommissioning activities should adhere to a low speed limit to avoid colliss with susceptible species such as snakes and tortoises. All hazardous materials should be stored in the appropriate should be stored in the approprise should be s	Can impacts be mitigated?	Although the noise and disturbance generated at the site during decommissioning is probably largely unavoidable, this will be transient and ultimately the habitat should be restored to something useable by the local fauna.		
chemical, fuel and oil spills that occur at the site should be clea up in the appropriate manner as related to the nature of the sp	Mitigation	 All personnel should undergo environmental induction with regards to fauna and, in particular, awareness about not harming or collecting species such as snakes, tortoises and owls, which are often persecuted out of superstition. Any fauna threatened by the decommissioning activities should be removed to safety by an appropriately qualified environmental officer. All vehicles should adhere to a low speed limit to avoid collisions with susceptible species such as snakes and tortoises. All hazardous materials should be stored in the appropriate manner to prevent contamination of the site and ultimately removed from the site as part of decommissioning. Any accidental chemical, fuel and oil spills that occur at the site should be cleaned up in the appropriate manner as related to the nature of the spill. The site should be rehabilitated with locally occurring species to 		
	Cumulative Impacts	contribute to cumulative fauna disturbance and disruption in the area,		

	Although some components of disturbance cannot be avoided, the site	
Residual Risks	itself would have low faunal abundance at decommissioning and no	
	significant residual impacts are likely.	

5.1.4 Cumulative Impacts

The following are the cumulative impacts that are assessed as being a likely consequence of the development of the Hyperion PV 1 Facility. This is assessed in context of the extent of the current site, other developments in the area as well as general habitat loss and transformation resulting from mining, agriculture and other activities in the area.

Cumulative Impact 1. Reduced ability to meet conservation obligations & targets due to cumulative habitat loss

Nature: The development of the Hyperion PV 1 project will contribute to cumulative habitat loss and other cumulative impacts in the wider Kathu area.

	Overall impact of the proposed project considered in isolation the area	
Extent	Local (1) Local (2)	
Duration	Long-term (4) Long-term (4)	
Magnitude	Low (3)	
Probability	Improbable (2) Probable (3)	
Significance	Low (16)	Medium (30)
Status	Negative Negative	
Reversibility	Moderate	Moderate
Irreplaceable loss of resources	Low	
Can impacts be mitigated	To some degree, but the majority of the impact results from the presence of the facility which cannot be mitigated.	

Mitigation:

- Ensure that impact to the Vlermuisleegte River corridor is minimised and that connectivity of the landscape through this area is maintained. There should also not be any further development within the eastern section of the property.
- Ensure that the fencing around each facility is friendly with fauna and avifauna. This includes not having any electrified strands within 30cm of the ground as well as implementing a design that

prevents fauna and avifauna from becoming trapped between the inner and out layer of the fence as this has been demonstrated to be a common impact associated with existing PV plants.

• Ensure that an alien management plan and erosion management plan compiled for each project are effectively implemented at the site.

7 1	
	Once present, the facility and its' immediate environment will not be
	available for meeting conservation targets for at least 20 years and
Residual Risks	thereafter, even when rehabilitated, it would have low conservation
	value. As such, the development would result in some permanent loss of
	conservation value for the affected area.

Cumulative Impact 2. Negative impact on broad-scale ecological processes.

Impact Nature: Development of the Hyperion PV 1 plant may impact on broad-scale ecological processes such as the ability of fauna to disperse.

The development would potentially contribute to habitat degradation and the loss of landscape connectivity and ecosystem function within the area, but this is likely to be relatively low as most species are likely to be able to avoid the facility as there are still relatively large intact corridors present in the area.

	Overall impact of the proposed project considered in isolation	Cumulative impact of the project and other projects in the area		
Extent	Local (1)	Local (1)		
Duration	Long-term (4)	Long-term (4)		
Magnitude	Low (3)	Low (4)		
Probability	Improbable (2) Probable (3)			
Significance	Low (16) Low (27)			
Status	Negative Negative			
Reversibility	Moderate Moderate			
Irreplaceable loss of resources	Low	Low		
Can impacts be mitigated?	Only partly as a significant proportion of the impact results from the presence and operation of the facility which cannot be well mitigated.			
Mitigation	 Ensure that known faunal movement corridors such as the Vlermuisleegte River are not developed and remain accessible to fauna. Ensure that the mitigation hierarchy is applied with a particular emphasis on reducing the development footprint, rehabilitating disturbed areas and minimising degradation around the site. An open space management plan should be developed for the site, which should include management of biodiversity within the affected areas, as well as that in the adjacent bushveld. 			

Residual Risks	The presence of the various facilities will represent an obstacle for some
Residual RISKS	fauna which would contribute to fragmentation in the area.

5.1.5 Comparative Assessment of Access Road Alternatives

A comparative assessment of the access road alternatives is detailed below and includes the identification of the preferred alternative.

Alternative	Preference	Reasons (incl. potential issues)
ACCESS ROAD OPTION		
Alternative 1	Preferred	Alternative 1, upgrading the existing access route is considered to represent the most favourable alternative for the development as it would result in the least overall habitat loss and additional disturbance.
Alternative 2	Favourable	Alternative 2, the creation of a new access route adjacent to the existing access is considered acceptable and would generate relatively low overall impact, although the density of protected trees is relatively high along some parts of the route.
Alternative 3	Least Preferred	Alternative 3 is the longest access road alternative and is considered the least desirable as it would generate the greatest extent of habitat loss and also goes through several areas with relatively high densities of <i>Vachellia</i> <i>erioloba</i> and also impinges a little on a CBA. This is considered the least preferred alternative.
Alternative 4	Favourable	Alternative 4 provides access the site from the west and is also considered to represent an acceptable alternative as there are no features of significance in this area and it traverses typical low and medium sensitivity thornveld and some lower sensitivity areas dominated by <i>Vachellia</i> <i>mellifera</i> .

6 CONCLUSION & RECOMMENDATIONS

The vegetation of the Hyperion Solar Development 2 project site consists of Kathu Bushveld which is a relatively restricted vegetation type, but which is currently not threatened as it is still largely intact despite an increasing development footprint due to mining and solar PV development in the area. Within the context of the site, that area east of the Vlermuisleegte River is considered more sensitive than the area to the west of the river. As a result, the developer has restricted the development to the western portion of the property which is considered relatively low sensitivity and suitable for development.

The whole site has a relatively high abundance of *Vachellia erioloba* and *Vachellia haematoxylon* and the loss of relatively high numbers of individuals of these species cannot be avoided. These species are however very abundant in the area and the local populations would not be compromised to any degree. Given that the site is not exceptional in terms of the size or density of trees present, the loss of the affected individuals should be seen as being secondary to the loss of habitat. Although the number of individuals lost would exceed the suggested DAFF thresholds for offsets, for ecological purposes, a threshold for habitat loss of 500ha is given as being a reasonable threshold above which an offset could potentially be considered. As such, an offset is not recommended for the current Hyperion 2 development, but for that facility or facilities that result in the overall footprint within the site exceeding 500ha, that should trigger at least the consideration of an offset. That is not to say that an offset is definitively required above 500ha, but that above this threshold, the need and manner in which an offset could be implemented should be investigated in detail, with input from DAFF and based on both ecological considerations and the mandate of DAFF to ensure sustainable development.

In terms of fauna, there are few species of conservation concern that are likely to be present or abundant at the site and the primary impact of the development on fauna would be some habitat loss for the more common resident species. As such, no high long-term post-mitigation impacts on fauna are expected to occur as a result of the Hyperion development. Overall, and despite the abundance of *Vachellia erioloba* and *V.haematoxylon* on the site, there are no potential impacts associated with the proposed development that are considered to be of high significance and which cannot be mitigated to an acceptable level. As such, there are no fatal flaws or other major impediments that should prevent the development from going ahead.

Impact Statement

The development footprint of the Hyperion Solar Development 2 facility is restricted to low and moderate sensitivity habitat common in the Kathu-Hotazel-Kuruman area. The affected area is considered suitable for development and there are no impacts associated with the facility that cannot be mitigated to a low level. Although cumulative impacts in the wider Kathu area are currently on the increase due to the expansion of the mines and the proliferation of solar PV facilities in the area, these still occupy a small proportion of the Kathu Bushveld vegetation type and the contribution of the current development to cumulative impact would be low and considered acceptable. As such there are no fatal flaws or high post-mitigation impacts that should prevent the development from proceeding. Based on the layout provided for the assessment, the Hyperion Solar Development facility can be supported from a terrestrial ecology point of view. Access Road Alternative 1 is considered to be the preferred access road alternative.

7 Activities for Inclusion the Draft EMPr

An Environmental Management Programme (EMPr) provides a link between the predicted impacts and mitigation measures recommended within the EIA and the implementation and operational activities of a project. As the construction and operation of the Hyperion PV plant may impact the environment, activities which pose a threat should be managed and mitigated so that unnecessary or preventable environmental impacts do not result. The primary objective of the EMPr is to detail actions required to address the impacts identified in the EIA during the establishment, operation and rehabilitation of the proposed infrastructure. The EMPr provides an elaboration of how to implement the mitigation measures documented in the EIA. As such the purpose of the EMPr can be outlined as follows:

- To outline mitigation measures and environmental specifications which are required to be implemented for the planning, establishment, rehabilitation and operation/maintenance phases of the project in order to minimise and manage the extent of environmental impacts.
- To ensure that the establishment and operation phases of the wind farm do not result in undue or reasonably avoidable adverse environmental impacts, and ensure that any potential environmental benefits are enhanced.
- To identify entities who will be responsible for the implementation of the measures and outline functions and responsibilities.
- To propose mechanisms for monitoring compliance, and preventing long-term or permanent environmental degradation.
- To facilitate appropriate and proactive response to unforeseen events or changes in project implementation that were not considered in the EIA process

Below are the ecologically-orientated measures that should be implemented as part of the EMPr for the development to reduce the significance or extent of the above impacts. The measures below do not exactly match with the impacts that have been identified, as certain mitigation measures, such as limiting the loss of vegetation may be effective at combating several different impacts, such as erosion, faunal impact etc.

Objective: Limit disturbance of vegetation and loss of protected flora during construction					
Potential Impact	Potential Impact Loss of plant cover leading to erosion as well as loss of faunal habitat and loss of specimens of protected plants.				
Activity/risk source	 Vegetation clearing for the following Clearing for infrastructure establishment. Access roads. Laydown areas. Construction Camps. 				
Mitigation: Target/Objective	» Low footprint and low impact on ter» Low impact on protected plant spec				
Mitigation: Action/cont	rol	Responsibility	Timeframe		
 road footprints information to Rescue opera >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	the permits from the Department of prestry and Fisheries (DAFF) and the e Department of Environment and Nature (DENC) prior to any construction activities duals of selected (ie those that are of high value or which have a high probability of slocation) protected species which cannot ould be translocated to a safe area on the instruction. This does not include woody cannot be translocated and where these by DAFF and permit for their destruction	Management/EO	Construction & Operation		
 Performance Indicator Permit obtained to destroy or translocate affected individuals of protected species. 					
Monitoring EO to monitor construction to ensure that: * Vegetation is cleared only within essential areas. * Erosion risk is maintained at an acceptable level through flow regulation structures where appropriate and the maintenance of plant cover wherever possible.			-		

Construction Phase Activities

Objective: Limit direct and indirect terrestrial faunal impacts during construction			
Project component/s Construction activities especially the followi > Vegetation clearing. > Human presence. > Operation of heavy machinery.		ng:	
Potential Impact	Disturbance of faunal communities due to hunting risk from construction staff.	construction as well	as poaching and
Activity/risk source	 Habitat transformation during cons Presence of construction crews. Operation of heavy vehicles. 	truction.	
Mitigation: Target/Objective	Low faunal impact during construction.		
Mitigation: Action/cont	rol	Responsibility	Timeframe
 Environmental induction for all construction staff. EO to monitor and enforce ban on hunting, collecting etc. of all plants and animals or their products. Any fauna encountered during construction should be removed to safety by the EO or other suitably qualified person, or allowed to passively vacate the area. 		Management/EO	Construction
Performance Indicator>>Low mortality of fauna due to construction machinery and activities. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			

Operational Phase Activities

OBJECTIVE: Limit the ecological footprint of the PV Plant			
	Presence and operation of the facility including		
Project component/s	» Movement of vehicles to and from the site.		
	» Presence of the PV infrastructure and site fencing.		
	» Alien plant invasion		
Potential Impact	» Erosion		
	» Pollution		

	» Faunal Impacts			
Activity/risk source	 Alien plant invasion in and around the road. Unregulated runoff from the access road. Human presence during road maintenance activities Pollution from maintenance vehicles due to oil or fuel leaks etc. Maintenance activities which may lead to negative impacts such as pollution, herbicide drift etc. 			
Mitigation: Target/Objective	Low ecological footprint of the PV Plant duri	ng operation.		
Mitigation: Action/cont	rol	Responsibility	Timeframe	
Vegetation control should be by manual clearing and herbicides should not be used except to control alien plants in the prescribed manner. Management/ Contractor Operation				
Annual monitoring for alien plant species - with follow up clearing as needed – or as per the frequency stated in the alien invasive management plan to be developed for the site.				
	on for erosion or water flow regulation w up remedial action where problems are	Management/ Contractor	Operation	
Performance Indicator	» No erosion problems at the site.» Low abundance of alien plants.			
Monitoring	 Annual monitoring with records of alien species presence and clearing actions. Annual monitoring with records of erosion problems and mitigation actions taken with photographs. 			

8 **REFERENCES**

- Alexander, G. & Marais, J. 2007. *A Guide to the Reptiles of Southern Africa*. Struik Nature, Cape Town.
- Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J. & de Villiers, M. S. 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. Strelitzia 32. SANBI, Pretoria.
- Branch W.R. 1998. *Field guide to snakes and other reptiles of southern Africa*. Struik, Cape Town.
- Du Preez, L. & Carruthers, V. 2009. *A Complete Guide to the Frogs of Southern Africa*. Struik Nature., Cape Town.
- EWT & SANBI, 2016. Red List of Mammals of South Africa, Lesotho and Swaziland. EWT, Johannesburg.
- Marais, J. 2004. *Complete Guide to the Snakes of Southern Africa*. Struik Nature, Cape Town.
- Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., Van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L. and Nienaber, S. (2011). Technical Report for the National Freshwater Ecosystem Priority Areas project. WRC Report No. K5/1801.
- Minter LR, Burger M, Harrison JA, Braack HH, Bishop PJ & Kloepfer D (eds). 2004. Atlas and Red Data book of the frogs of South Africa, Lesotho and Swaziland. SI/MAB Series no.9. Smithsonian Institution, Washington, D.C.
- Mucina L. & Rutherford M.C. (eds) 2006. *The Vegetation of South Africa, Lesotho and Swaziland*. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Oosthuysen, E. & Holness, S. 2016. Northern Cape Critical Biodiversity Areas (CBA) Map. Northern Cape Department of Environment and Nature Conservation & Nelson Mandela Metropolitan University. Available at SANBI BGIS <u>http://bgis.sanbi.org/</u>.
- Skinner, J.D. & Chimimba, C.T. 2005. The mammals of the Southern African Subregion. Cambridge University Press, Cambridge.

9 ANNEX 1. LIST OF PLANT SPECIES

List of plant species confirmed present at the Hyperion site during the course of the field assessment.

Family	Species	IUCN Status
ACANTHACEAE	Barleria rigida	LC
ACANTHACEAE	Justicia puberula	LC
AIZOACEAE	Plinthus sericeus	LC
AMARANTHACEAE	Gomphrena celosioides	LC
AMARANTHACEAE	Hermbstaedtia odorata var. odorata	LC
AMARANTHACEAE	Pupalia lappacea var. lappacea	LC
AMARYLLIDACEAE	Boophone disticha	LC
ANACARDIACEAE	Searsia ciliata	LC
APOCYNACEAE	Raphionacme velutina	LC
ASPARAGACEAE	Asparagus laricinus	LC
ASPARAGACEAE	Asparagus retrofractus	LC
ASPHODELIACEAE	Bulbine narcissifolia	LC
ASTERACEAE	Chrysocoma ciliata	LC
ASTERACEAE	Dicoma schinzii	LC
ASTERACEAE	Felicia muricata subsp. cinerascens	LC
ASTERACEAE	Gazania krebsiana subsp. krebsiana	LC
ASTERACEAE	Geigeria ornativa	LC
ASTERACEAE	Helichrysum zeyheri	LC
ASTERACEAE	Hertia pallens	LC
ASTERACEAE	Nolletia ciliaris	LC
ASTERACEAE	Osteospermum muricatum	LC
ASTERACEAE	Pegolettia retrofracta	LC
ASTERACEAE	Pentzia calcarea	LC
ASTERACEAE	Pentzia sphaerocephala	LC
ASTERACEAE	Pteronia incana	LC
ASTERACEAE	Rosenia humilis	LC
ASTERACEAE	Senecio inaequidens	LC
ASTERACEAE	Tarchonanthus camphoratus	LC
ASTERACEAE	Verbesina encelioides	LC
BORAGINACEAE	Ehretia rigida subsp. rigida	LC
BORAGINACEAE	Heliotropium ciliatum	LC
CAPPARACEAE	Cleome rubella	LC
CELASTRACEAE	Gymnosporia buxifolia	LC
COMMELINACEAE	Commelina africana var. africana	LC
CUCURBITACEAE	Acanthosicyos naudinianus	LC
CUCURBITACEAE	Coccinia sessilifolia	LC
CUCURBITACEAE	Cucumis africanus	LC

CYPERACEAEKylling albaLCEBENACEAEDisspyros lycioides subsp. lycioidesLCEBENACEAEDisspyros lycioides subsp. lycioidesLCEUPHORBIACEAETragia dioicaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia hematoxylonLCFABACEAEVachellia haronoLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAECyamopsis serrataLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEMelolobium exudansLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia burchelliiLCFABACEAEGisekia phanacioides var. longipesLCGERANIACEAEDipcadi virideLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAEDipcadi virideLCMALVACEAEGrewin flavaLCMALVACEAEGrewin flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia facobelfoliaLCMALVACEAEHermannia facobelfoliaLCMALVACEAEHermannia facobelfoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia t	CYPERACEAE	Cyperus margaritaceus var. margaritaceus	LC
EBENACEAEDiospyros lycioides subsp. lycioidesLCERIOSPERMACEAE <i>Friospermum sp.</i> LCEUPHORBIACEAE <i>Tragia dioca</i> LCFABACEAEVachellia hebecladaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia harrooLCFABACEAEVachellia martonylonLCFABACEAEVachellia karrooLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAEVachellia mellifera subsp. adetinensLCFABACEAEElephantorrhiza elephantinaLCFABACEAEElephantorrhiza elephantinaLCFABACEAEMelolobium exudansLCFABACEAEMelolobium exudansLCFABACEAEMelolobium exudansLCFABACEAETephrosia longipes subsp. anchidesLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGISEKIACEAEDipcadi virideLCGISEKIACEAEDipcadi virideLCHYACINTHACEAEDipcadi virideLCMALVACEAEGrewia flotaLCMALVACEAEGrewia flotaLCMALVACEAEHermannia incobelfoliaLCMALVACEAEHermannia inconosaLCMALVACEAEHermannia inconosaLCMALVACEAEHermannia incohelfoliaLCMALVACEAEHermannia incohelfoliaLCMALVACEAEHermannia incohelfoliaLCMALVACEAEHermannia inoneoides			-
ERIOSPERMACEAEEriospermum sp.LCEUPHORBIACEAETragia dioicaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia riolobaLCFABACEAEVachellia inaematoxylonLCFABACEAEVachellia karrooLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEIndigofera daleoides var. macrocalyxLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAEGisekia pharnacioides var. pharnacioidesLCGISEKIACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCLMIACEAEAcrotome inflataLCLAMIACEAEGerwia flavaLCMALVACEAEHermannia innaeoidesLCMALVACEAEHermannia inacobieliaLCMALVACEAEHermannia inoneoidesLCMALVACEAEHermannia inoneoidesLCMALVACEAEHermannia inoneoidesLCMALVACEAEHermannia inoneoidesLCMALVACEAEHermannia inoneoidesLCMALVACEAEHermannia inoneoidesLC			
EUPHORBIACEAETragia dioicaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia hebecladaLCFABACEAEVachellia hematoxylonLCFABACEAEVachellia karrooLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAECyamopsis serrataLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELeedeouria ovatifoliaLCIRIDACEAEAcrotome inflataLCMALVACEAEGrewin flavaLCMALVACEAEHermannia innaeoidesLCMALVACEAEHermannia linaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia linaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHoronia burchelliiLC <t< td=""><td>ERIOSPERMACEAE</td><td></td><td>LC</td></t<>	ERIOSPERMACEAE		LC
FABACEAEVachellia hebecladaLCFABACEAEVachellia eriolobaLCFABACEAEVachellia eriolobaLCFABACEAEVachellia karrooLCFABACEAEVachellia karrooLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAECyamopsis serrataLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCLAMIACEAEAcrotome inflataLCMALVACEAEGrewia flavaLCMALVACEAEGrewia flavaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHoroina burchelliiLCMALVACEAE<	EUPHORBIACEAE		LC
FABACEAEVachellia haematoxylonLCFABACEAEVachellia karrooLCFABACEAEVachellia karrooLCFABACEAEVachellia rellifera subsp. detinensLCFABACEAECyamopsis serrataLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia longipes var. longipesLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCLAMIACEAEAcrotome inflataLCLAMIACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia liacobelfoliaLCMALVACEAEHermannia lianaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAELimeum argute carinatum var argute carinatumLCMALVACEAEHibiscus pavillusLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMOLLUGINACEAELimeum	FABACEAE	-	LC
FABACEAEVachellia karrooLCFABACEAEVachellia mellifera subsp. detinensLCFABACEAECyamopsis serrataLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEHermannia icomosaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHoiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHeineum fenestratum var. intermediumLCMOLLUGINACEAELimeum arthiopicum var. intermediumLCMOLLUGINACEAELimeum sulcatum var. sulcatum<	FABACEAE	Vachellia erioloba	LC
FABACEAEVachellia mellifera subsp. detinensLCFABACEAECyamopsis serrataLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAEMelolobium exudansLCFABACEAEMelolobium exudansLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCLAMIACEAEAcrotome inflataLCMALVACEAEGrewia flavaLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHavonia burchelliiLCMALVACEAEHoiscus pusillusLCMALVACEAELimeum aethiopicum var. intermediumLCMALVACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum flata subsp. bilabiataLCMOLLUGINACEAELimeum flata subsp. LCMALVACEAEMOLLUGINACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMOLLUGINACEAELimeu	FABACEAE	Vachellia haematoxylon	LC
FABACEAECyamopsis serrataLCFABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCMALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus pusillusLCMALVACEAEHypertelis salsoloidesLCMALVACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum gaute carinatum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAELimeu	FABACEAE	Vachellia karroo	LC
FABACEAEElephantorrhiza elephantinaLCFABACEAEIndigofera daleoides var. daleoidesLCFABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCLAMIACEAEBabiana bainesiiLCLAMIACEAEEdebouria ovatifoliaLCLAMIACEAEEcacas capensisLCMALVACEAEGrewia flavaLCMALVACEAEHermannia iacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum finesitatus var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum finesitatus var. fenestrat	FABACEAE	Vachellia mellifera subsp. detinens	LC
FABACEAEIndigofera daleoides var. daleoidesLCFABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCLAMIACEAEBabiana bainesiiLCLAMIACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia iacobeifoliaLCMALVACEAEHermannia tomosaLCMALVACEAEHibiscus mariothianusLCMALVACEAEHibiscus mariothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum f	FABACEAE	Cyamopsis serrata	LC
FABACEAELessertia pauciflora var. paucifloraLCFABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCLAMIACEAEBabiana bainesiiLCLAMIACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHeineum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatu	FABACEAE	Elephantorrhiza elephantina	LC
FABACEAEMelolobium exudansLCFABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAEDipcadi virideLCIRIDACEAEBabiana bainesiiLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia inaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum aficostatum var. fenestratumLCMOLLUGINACEAELimeum aficostatum var. fenestratumLCMOLLUGINACEAELimeum aficostatum var. fenestratumLCMOLLUGINACEAELimeum aficostatum var. fenestratumLC<	FABACEAE	Indigofera daleoides var. daleoides	LC
FABACEAEMelolobium macrocalyx var. macrocalyxLCFABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus pusillusLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMOLLUGINACEAELimeum arghiopicum var. intermediumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEKirga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLC	FABACEAE	Lessertia pauciflora var. pauciflora	LC
FABACEAESenna italica subsp. arachoidesLCFABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia innaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum argute carinatum var. intermediumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEKiriga bilabiata subsp. bilabiataLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEStriga bilabiata subsp. bilabiataLC	FABACEAE	Melolobium exudans	LC
FABACEAETephrosia burchelliiLCFABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHumannia tomentosaLCMALVACEAEHupertelis salsoloidesLCMALVACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum agute carinatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAELime	FABACEAE	Melolobium macrocalyx var. macrocalyx	LC
FABACEAETephrosia longipes subsp. longipes var. longipesLCGERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAELeucas capensisLCLAMIACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus marlothianusLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum argute carinatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEStriga bilabiata subsp. bilabiataLC	FABACEAE	Senna italica subsp. arachoides	LC
GERANIACEAEMonsonia angustifoliaLCGISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tinnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum angute carinatum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabi	FABACEAE	Tephrosia burchellii	LC
GISEKIACEAEGisekia pharnacioides var. pharnacioidesLCHYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAEGrewia flavaLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAELineum aethiopicum var. intermediumLCMOLLUGINACEAELineum argute carinatum var argute carinatumLCMOLLUGINACEAELineum sulcatum var sulcatumLCMOLLUGINACEAELineum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUACEAEStriga bilabiata subsp.	FABACEAE	Tephrosia longipes subsp. longipes var. longipes	LC
HYACINTHACEAEDipcadi virideLCHYACINTHACEAELedebouria ovatifoliaLCHYACINTHACEAEBabiana bainesiiLCIRIDACEAEBabiana bainesiiLCLAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHypertelis salsoloidesLCMALVACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLC	GERANIACEAE	Monsonia angustifolia	LC
HYACINTHACEAELedebouria ovatifoliaLCIRIDACEAEBabiana bainesiiLCLAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLC	GISEKIACEAE	Gisekia pharnacioides var. pharnacioides	LC
IRIDACEAEBabiana bainesiiLCLAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLC	HYACINTHACEAE	Dipcadi viride	LC
LAMIACEAEAcrotome inflataLCLAMIACEAELeucas capensisLCMALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia linnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAEMollugo cervianaLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	HYACINTHACEAE	Ledebouria ovatifolia	LC
LAMIACEAELeucas capensisLCMALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia innaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum fenestratum var fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLC	IRIDACEAE	Babiana bainesii	LC
MALVACEAECorchorus pinnatipartitusLCMALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia linnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHupertelis salsoloidesLCMALVACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCMOLLUGINACEAEStriga bilabia	LAMIACEAE	Acrotome inflata	LC
MALVACEAEGrewia flavaLCMALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia linnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum fenestratum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	LAMIACEAE	Leucas capensis	LC
MALVACEAEHermannia comosaLCMALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia linnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum sulcatum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var. sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Corchorus pinnatipartitus	LC
MALVACEAEHermannia jacobeifoliaLCMALVACEAEHermannia linnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Grewia flava	LC
MALVACEAEHermannia linnaeoidesLCMALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Hermannia comosa	LC
MALVACEAEHermannia tomentosaLCMALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Hermannia jacobeifolia	LC
MALVACEAEHibiscus marlothianusLCMALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Hermannia linnaeoides	LC
MALVACEAEHibiscus pusillusLCMALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Hermannia tomentosa	LC
MALVACEAEPavonia burchelliiLCMOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Hibiscus marlothianus	LC
MOLLUGINACEAEHypertelis salsoloidesLCMOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEMollugo cervianaLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Hibiscus pusillus	LC
MOLLUGINACEAELimeum aethiopicum var. intermediumLCMOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEStriga bilabiata subsp. bilabiataLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MALVACEAE	Pavonia burchellii	LC
MOLLUGINACEAELimeum argute carinatum var argute carinatumLCMOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEMollugo cervianaLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MOLLUGINACEAE	Hypertelis salsoloides	LC
MOLLUGINACEAELimeum fenestratum var. fenestratumLCMOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEMollugo cervianaLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MOLLUGINACEAE	Limeum aethiopicum var. intermedium	LC
MOLLUGINACEAELimeum sulcatum var sulcatumLCMOLLUGINACEAEMollugo cervianaLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MOLLUGINACEAE	Limeum argute carinatum var argute carinatum	LC
MOLLUGINACEAEMollugo cervianaLCOROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MOLLUGINACEAE		LC
OROBANCHACEAEStriga bilabiata subsp. bilabiataLCOXALIDACEAEOxalis depressaLC	MOLLUGINACEAE	Limeum sulcatum var sulcatum	LC
OXALIDACEAE Oxalis depressa LC	MOLLUGINACEAE	Mollugo cerviana	LC
,		Striga bilabiata subsp. bilabiata	LC
OXALIDACEAE Oxalis lawsonii LC	OXALIDACEAE		LC
	OXALIDACEAE	Oxalis lawsonii	LC

PEDALIACEAE	Sesamum triphyllum	LC
PHYLLANTHACEAE	Phyllanthus maderaspatensis	LC
POACEAE	Aristida adscensionis	LC
POACEAE	Aristida congesta subsp. congesta	LC
POACEAE	Aristida meridionalis	LC
POACEAE	Aristida stipitata subsp. graciliflora	LC
POACEAE	Aristida stipitata subsp. stipitata	LC
POACEAE	Brachiaria marlothii	LC
POACEAE	Cenchrus ciliaris	LC
POACEAE	Cymbopogon popischilli	LC
POACEAE	Cynodon dactylon	LC
POACEAE	Enneapogon cenchroides	LC
POACEAE	Enneapogon desvauxii	LC
POACEAE	Eragrostis biflora	LC
POACEAE	Eragrostis lehmanniana var. chaunantha	LC
POACEAE	Eragrostis nindensis	LC
POACEAE	Eragrostis obtusa	LC
POACEAE	Fingerhuthia africana	LC
POACEAE	Melinis repens subsp. repens	LC
POACEAE	Oropetium capense	LC
POACEAE	Pogonarthria squarrosa	LC
POACEAE	Schmidtia pappophoroides	LC
POACEAE	<i>Stipagrostis obtusa</i>	LC
POACEAE	Stipagrostis uniplumis var. uniplumis	LC
POACEAE	Tragus berteronianus	LC
POLYGALACEAE	Polygala seminuda	LC
PORTULACACEAE	Portulaca kermesina	LC
PORTULACACEAE	Talinum arnotii	LC
RANUNCULACEAE	Clematis brachiata	LC
RHAMNACEAE	Ziziphus mucronata subsp. mucronata	LC
RUBIACEAE	Kohautia caespitosa subsp. brachyloba	LC
SCROPHULARIACEAE	Aptosimum albomarginatum	LC
SCROPHULARIACEAE	Aptosimum elongatum	LC
SCROPHULARIACEAE	Aptosimum lineare var. lineare	LC
SCROPHULARIACEAE	Chaenostoma halimifolium	LC
SCROPHULARIACEAE	Jamesbrittenia atropurpurea subsp. atropurpurea	LC
SCROPHULARIACEAE	Peliostomum leuchorhizum	LC
SCROPHULARIACEAE	Selago mixta	LC
SCROPHULARIACEAE	Sutera griquensis	LC
SOLANACEAE	Datura stramonium	LC
SOLANACEAE	Lycium hirsutum	LC
THYMELAEACEAE	Gnidia polycephala	LC
VAHLIACEAE	Vahlia capensis subsp. vulgaris var. vulgaris	LC
VERBENACEAE	Chascanum pinnatifidum var. pinnatifidum	LC

VERBENACEAE	Lantana rugosa	LC
ZYGOPHYLLACEAE	Tribulus terrestris	LC

10 ANNEX 2. LIST OF MAMMALS

List of mammals which have been observed or which are likely to occur in the vicinity of the Hyperion site. Conservation status is from 2016 EWT/SANBI Red List.

East: lo		6	Red list	Number of
Family	Scientific name	Common name	category	records
Bathyergidae	Bathyergus janetta	Namaqua Dune Mole-rat	Least Concern (2016)	1
Bathyergidae	Cryptomys hottentotus	Southern African Mole-rat	Least Concern (2016)	6
Bathyergidae	Fukomys damarensis	Damara Mole-rat	Least Concern (2016)	12
Bovidae	Antidorcas marsupialis	Springbok	Least Concern (2016)	7
Bovidae	Oreotragus oreotragus	Klipspringer	Least Concern (2016)	6
Bovidae	Oryx gazella	Gemsbok	Least Concern (2016)	16
Bovidae	Raphicerus campestris	Steenbok	Least Concern (2016)	9
Bovidae	Sylvicapra grimmia	Bush Duiker	Least Concern (2016)	8
Bovidae	Tragelaphus strepsiceros	Greater Kudu	Least Concern (2016)	12
Canidae	Canis mesomelas	Black-backed Jackal	Least Concern (2016)	10
Canidae	Otocyon megalotis	Bat-eared Fox	Least Concern (2016)	5
Canidae	Vulpes chama	Cape Fox	Least Concern (2016)	7
Cercopithecidae	Papio ursinus	Chacma Baboon	Least Concern (2016)	8
Erinaceidae	Atelerix frontalis	Southern African Hedgehog	Near Threatened (2016)	9
Felidae	Caracal caracal	Caracal	Least Concern (2016)	1
Felidae	Felis nigripes	Black-footed Cat	Vulnerable (2016)	3
Felidae	Felis silvestris	Wildcat	Least Concern (2016)	1
Felidae	Panthera pardus	Leopard	Vulnerable (2016)	4
Gliridae	Graphiurus platyops	Flat-headed African Dormouse	Data deficient	1
Herpestidae	Cynictis penicillata	Yellow Mongoose	Least Concern (2016)	2
Herpestidae	Herpestes sanguineus	Slender Mongoose	Least Concern (2016)	2
Herpestidae	Suricata suricatta	Meerkat	Least Concern (2016)	3
Hyaenidae	Hyaena brunnea	Brown Hyena	Near Threatened	12
Hyaenidae	Proteles cristata	Aardwolf	Least Concern (2016)	6
Hystricidae	Hystrix africaeaustralis	Cape Porcupine	Least Concern	16
eporidae	Lepus capensis	Cape Hare	Least Concern	18
Leporidae	Lepus saxatilis	Scrub Hare	Least Concern	16

Leporidae	Pronolagus rupestris	Smith's Red Rock Hare	Least Concern (2016)	14
Macroscelididae	Elephantulus intufi	Bushveld Elephant Shrew	Least Concern (2016)	1
Macroscelididae	Elephantulus myurus	Eastern Rock Elephant Shrew	Least Concern (2016)	29
Macroscelididae	Elephantulus rupestris	Western Rock Elephant Shrew	Least Concern (2016)	37
Macroscelididae	Macroscelides proboscideus	Short-eared Elephant Shrew	Least Concern (2016)	1
Manidae	Smutsia temminckii	Ground Pangolin	Vulnerable (2016)	23
Muridae	Aethomys chrysophilus	Red Veld Aethomys	Least Concern (2016)	3
Muridae	Aethomys namaquensis	Namaqua Rock Mouse	Least Concern	171
Muridae	Desmodillus auricularis	Cape Short-tailed Gerbil	Least Concern (2016)	38
Muridae	Gerbilliscus brantsii	Highveld Gerbil	Least Concern (2016)	4
Muridae	Gerbilliscus leucogaster	Bushveld Gerbil	Least Concern (2016)	103
Muridae	Gerbilliscus paeba	Paeba Hairy-footed Gerbil	Least Concern (2016)	2
Muridae	Gerbilliscus vallinus	Brush-tailed Hairy-footed Gerbil	Least Concern (2016)	4
Muridae	Mastomys coucha	Southern African Mastomys	Least Concern (2016)	56
Muridae	Mus (Nannomys) minutoides	Southern African Pygmy Mouse	Least Concern	27
Muridae	Otomys auratus	Southern African Vlei Rat	Near Threatened (2016)	3
Muridae	Parotomys brantsii	Brants's Whistling Rat	Least Concern (2016)	1
Muridae	Rhabdomys pumilio	Xeric Four-striped Grass Rat	Least Concern (2016)	41
Mustelidae	Ictonyx striatus	Striped Polecat	Least Concern (2016)	2
Mustelidae	Mellivora capensis	Honey Badger	Least Concern (2016)	4
Nesomyidae	Saccostomus campestris	Southern African Pouched Mouse	Least Concern (2016)	45
Orycteropodidae	Orycteropus afer	Aardvark	Least Concern (2016)	4
Pedetidae	Pedetes capensis	South African Spring Hare	Least Concern (2016)	23
Procaviidae	Procavia capensis	Cape Rock Hyrax	Least Concern (2016)	15
Sciuridae	Xerus inauris	South African Ground Squirrel	Least Concern	16
Soricidae	Crocidura cyanea	Reddish-gray Musk Shrew	Least Concern (2016)	3
Soricidae	Crocidura hirta	Lesser Red Musk Shrew	Least Concern (2016)	12
Suidae	Phacochoerus africanus	Common Warthog	Least Concern (2016)	11

11 ANNEX 2. LIST OF REPTILES

List of reptiles which are likely to occur at the proposed Hyperion site, based on the ReptileMap database. Conservation status is from Bates et al. (2014).

F '		•	Red list	Number of
Family	Scientific name	Common name	category	records
Agamidae	Agama aculeata aculeata	Common Ground Agama	Least Concern (SARCA 2014)	41
Agamidae	Agama atra	Southern Rock Agama	Least Concern (SARCA 2014)	17
Amphisbaenidae	Monopeltis mauricei	Maurice's Worm Lizard	Least Concern (SARCA 2014)	1
Amphisbaenidae	Zygaspis quadrifrons	Kalahari Dwarf Worm Lizard	Least Concern (SARCA 2014)	4
Chamaeleonidae	Chamaeleo dilepis dilepis	Common Flap-neck Chameleon	Least Concern (SARCA 2014)	8
Colubridae	Dasypeltis scabra	Rhombic Egg-eater	Least Concern (SARCA 2014)	2
Colubridae	Dispholidus typus typus	Boomslang	Least Concern (SARCA 2014)	3
Colubridae	Philothamnus semivariegatus	Spotted Bush Snake	Least Concern (SARCA 2014)	1
Colubridae	Telescopus semiannulatus semiannulatus	Eastern Tiger Snake	Least Concern (SARCA 2014)	9
Cordylidae	Karusasaurus polyzonus	Karoo Girdled Lizard	Least Concern (SARCA 2014)	7
Elapidae	Aspidelaps scutatus scutatus	Speckled Shield Cobra	Least Concern (SARCA 2014)	4
Elapidae	Dendroaspis polylepis	Black Mamba	Least Concern (SARCA 2014)	1
Elapidae	Naja nigricincta woodi	Black Spitting Cobra	Least Concern (SARCA 2014)	2
Elapidae	Naja nivea	Cape Cobra	Least Concern (SARCA 2014)	4
Gekkonidae	Chondrodactylus angulifer	Giant Ground Gecko	Least Concern (IUCN 2009)	4
Gekkonidae	Chondrodactylus angulifer angulifer	Common Giant Ground Gecko	Least Concern (SARCA 2014)	9
Gekkonidae	Chondrodactylus bibronii	Bibron's Gecko	Least Concern (SARCA 2014)	3
Gekkonidae	Lygodactylus bradfieldi	Bradfield's Dwarf Gecko	Least Concern (SARCA 2014)	1
Gekkonidae	Lygodactylus capensis capensis	Common Dwarf Gecko	Least Concern (SARCA 2014)	8
Gekkonidae	Pachydactylus capensis	Cape Gecko	Least Concern (SARCA 2014)	14
Gekkonidae	Pachydactylus rugosus	Common Rough Gecko	Least Concern (SARCA 2014)	1
Gekkonidae	Pachydactylus wahlbergii wahlbergii	Kalahari Ground Gecko	Least Concern (SARCA 2014)	12
Gekkonidae	Ptenopus garrulus garrulus	Common Barking Gecko	Least Concern (SARCA 2014)	12
Gerrhosauridae	Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	Least Concern (SARCA 2014)	1
Lacertidae	Heliobolus lugubris	Bushveld Lizard	Least Concern (SARCA 2014)	23
Lacertidae	Meroles squamulosus	Common Rough-scaled Lizard	Least Concern (SARCA 2014)	3
Lacertidae	Nucras intertexta	Spotted Sandveld Lizard	Least Concern (SARCA 2014)	14

Lacertidae	Pedioplanis lineoocellata lineoocellata	Spotted Sand Lizard	Least Concern (SARCA 2014)	37
Lacertidae	Pedioplanis namaquensis	Namaqua Sand Lizard	Least Concern (SARCA 2014)	4
Lamprophiidae	Aparallactus capensis	Black-headed Centipede-eater	Least Concern (SARCA 2014)	1
Lamprophiidae	Atractaspis bibronii	Bibron's Stiletto Snake	Least Concern (SARCA 2014)	4
Lamprophiidae	Atractaspis duerdeni	Duerden's Stiletto Snake	Least Concern (SARCA 2014)	1
Lamprophiidae	Boaedon capensis	Brown House Snake	Least Concern (SARCA 2014)	9
Lamprophiidae	Lycophidion capense capense	Cape Wolf Snake	Least Concern (SARCA 2014)	4
Lamprophiidae	Prosymna sundevallii	Sundevall's Shovel-snout	Least Concern (SARCA 2014)	6
Lamprophiidae	Psammophis brevirostris	Short-snouted Grass Snake	Least Concern (SARCA 2014)	9
Lamprophiidae	Psammophis notostictus	Karoo Sand Snake	Least Concern (SARCA 2014)	1
Lamprophiidae	Psammophis trinasalis	Fork-marked Sand Snake	Least Concern (SARCA 2014)	10
Lamprophiidae	Pseudaspis cana	Mole Snake	Least Concern (SARCA 2014)	7
Lamprophiidae	Xenocalamus bicolor bicolor	Bicoloured Quill-snouted Snake	Least Concern (SARCA 2014)	1
Leptotyphlopidae	Leptotyphlops scutifrons scutifrons	Peters' Thread Snake		6
Pelomedusidae	Pelomedusa subrufa	Central Marsh Terrapin	Least Concern (SARCA 2014)	4
Pythonidae	Python natalensis	Southern African Python	Least Concern (SARCA 2014)	1
Scincidae	Acontias kgalagadi kgalagadi	Striped Blind Legless Skink	Least Concern (SARCA 2014)	6
Scincidae	Panaspis wahlbergi	Wahlberg's Snake-eyed Skink	Least Concern (SARCA 2014)	1
Scincidae	Trachylepis occidentalis	Western Three-striped Skink	Least Concern (SARCA 2014)	12
Scincidae	Trachylepis punctatissima	Speckled Rock Skink	Least Concern (SARCA 2014)	12
Scincidae	Trachylepis punctulata	Speckled Sand Skink	Least Concern (SARCA 2014)	1
Scincidae	Trachylepis spilogaster	Kalahari Tree Skink	Least Concern (SARCA 2014)	38
Scincidae	Trachylepis sulcata sulcata	Western Rock Skink	Least Concern (SARCA 2014)	15
Scincidae	Trachylepis variegata	Variegated Skink	Least Concern (SARCA 2014)	49
Testudinidae	Psammobates oculifer	Serrated Tent Tortoise	Least Concern (SARCA 2014)	10
Testudinidae	Stigmochelys pardalis	Leopard Tortoise	Least Concern (SARCA 2014)	3
Typhlopidae	Rhinotyphlops lalandei	Delalande's Beaked Blind Snake	Least Concern (SARCA 2014)	1
Varanidae	Varanus albigularis albigularis	Rock Monitor	Least Concern (SARCA 2014)	13
Viperidae	Bitis arietans arietans	Puff Adder	Least Concern (SARCA 2014)	10

12 ANNEX 3. LIST OF AMPHIBIANS

List of amphibians which are likely to occur in the vicinity of the Hyperion Site, according to the Southern African Atlas of Frogs. Conservation is from Minter et al. (2004).

Family	Genus	Species	Common name	Red list category
Brevicepitidae	Breviceps	adspersus	Bushveld Rain Frog	Least Concern
Bufonidae	Amietophrynus	gutturalis	Guttural Toad	Least Concern
Bufonidae	Amietophrynus	poweri	Power's Toad	Least Concern
Bufonidae	Amietophrynus	rangeri	Raucous Toad	Least Concern
Bufonidae	Poyntonophrynus	vertebralis	Southern Pygmy Toad	Least Concern
Bufonidae	Vandijkophrynus	gariepensis	Karoo Toad	Least Concern
Pipidae	Xenopus	laevis	Common Platanna	Least Concern
Pyxicephalidae	Amietia	angolensis	Common or Angola River Frog	Least Concern
Pyxicephalidae	Cacosternum	boettgeri	Common Caco	Least Concern
Pyxicephalidae	Pyxicephalus	adspersus	Giant Bull Frog	Near Threatened
Pyxicephalidae	Tomopterna	cryptotis	Tremelo Sand Frog	Least Concern