PROPOSED TOWNSHIP SITUATED ON PORTION 488 OF THE FARM TOWNLANDS OF LYDENBURG 31JT ENGINEERING SERVICES REPORT

February 2021

TABLE OF CONTENTS

1	INTRO	DDUCTION AND BACKGROUND	3
	1.1	Introduction	3
	1.2	Study area	3
	1.3	Other Contextual Information	4
2	SITE	DESCRIPTION	4
	2.1	Topography and Drainage	4
	2.2	Geology	4
	2.3	Hydrology	4
	2.4	Land Use	5
	2.5	Engineering Services Required	5
3	WATE	ER SUPPLY (POTABLE AND FIRE)	6
	3.1	Existing Infrastructure	6
	3.2	Design Layout	6
	3.3	Water Design Criteria	6
	3.4	Water Demand Calculations	8
	3.5	Fire flow under peak	8
4	SEWE	ER DRAINAGE	9
	4.1	Existing Infrastructure	9
	4.2	Design Layout	9
	4.3	Sewer Design Criteria	9
	4.4	Sewer Outflow Calculations1	1
5	STOR	MWATER 1	2
	5.1	Existing stormwater1	2
	5.2	Design Layout	2

	5.3	Storm water infrastructure:	12
	5.4	Pre-Development Runoff	13
	5.5	Post Development Runoff	14
	5.6	Major System	14
	5.7	Attenuation Pond	14
6	ROAD	DS, ACCESS AND PARKING	. 15
	6.1	Access	16
	6.2	Internal Network	16
7	SERV	ICES AGREEMENTS	. 16

APPENDICES

- Appendix A: Town Planner's Layout
- Appendix B: Site and General Layout of Proposed Services
- Appendix C: Hydrology/ Flood Peak Calculations
- Appendix D: Pond Sizing
- Appendix E: Traffic Study

1 INTRODUCTION AND BACKGROUND

1.1 Introduction

This report provides an overview of the engineering services (i.e. roads and civil engineering services) to be constructed for the proposed development on Portion 488 of Portion 453 of the farm Lydenburg 32– JR, in Lydneburg/Mashishing town.

The report is aimed only at providing scoping level detail for inclusion in each of:

- The environment scoping report, and
- The planning approval application process being prepared by town planners

1.2 Study area

The development falls inside the jurisdiction of the Thaba Chewu Local Municipality. The site is situated on Portion 488 of Portion 453 of the farm Lydenburg 32– JR, south of Lydenburg Town. The site is 17 hectares in size. The co-ordinates of the site are 25° 6'32" South and 30°26'21" East.

Figure 1: Locality Plan

1.3 Other Contextual Information

The report is to be read in the context of the following information.

- Town Planner Layout Elmon Consulting
- Geotechnical Investigations: Portion 453 Townlands of Lydenburg 31JR MWEM PTY Limited
- Floodlines assessments for the unnamed stream adjacent to the proposed Pentagon Business and Development (PBRD) – Gomelelo Environmental & Management Consulting

2 SITE DESCRIPTION

Based on the available information, the following site characteristics are summarised:

2.1 Topography and Drainage

The site is located between 1455 masl and 1380 masl. The site slopes down in a southern direction towards Dorpsrivier stream. Existing natural drainage is in the form of sheetflow or overland flow.

2.2 Geology

The geotechnical investigation indicate that the site is typically underlain by sandy clay classified as ML (Silt), MH (Silt of high plasticity and elastic silt) and SM (Silty sand).

2.3 Hydrology

No development is allowed below the 1:100 year flood line. The flood line study (done by others) confirmed the position of the 1:100 year flood line. The delineated 1:100 year floodlines indicates that the project boundary for the proposed development lies outside the delineated floodlines. Thus the proposed development poses no risk on the adjacent water resource in terms of flooding while the development the development itself will also not be exposed to the risk of flooding during high rainfall events.

2.4 Land Use

The land use table for the proposed township is indicated on table and figure below:

Land Use-Zoning	Erven	Area (Ha)
Dwelling Houses	251	7.36
Dwelling Units/Flats	1	1.22
Shopping Center, Commercial Uses and other Business	2	0.90
Uses		
School	1	0.33
Parks, Sports Field and other recreational or related uses	2	2.98
Clinic	1	0.76
Filing Station	1	0.35
Streets & Roads	N/A	4.80

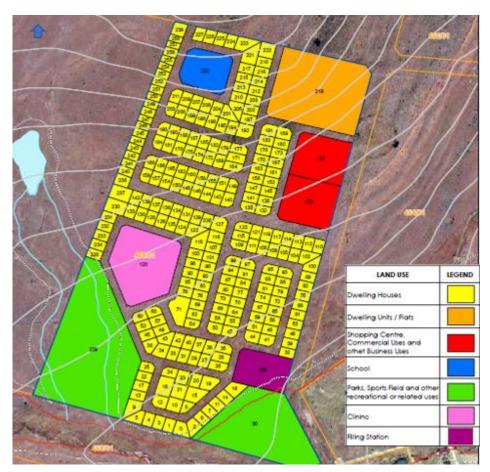


Figure 2: Proposed Site Plan

2.5 Engineering Services Required

Annexure B provided an overview of the site and a general layout of the services proposed for the overall development.

The services are to be designed to standards similar to those adopted at Lydenburg Town. In general, these are to be typical of most up-market developments and are guided by the standards adopted by the Thaba Chewu Local Municipality.

All roads and services infrastructure will be signed off in accordance with Municipal requirements, and SANS 10400 where applicable, by the design Engineer concerned.

Construction of the roads and services will be done by medium to large, experienced specialist contractors, with construction monitoring by the respective Professional Engineer for each discipline.

3 WATER SUPPLY (POTABLE AND FIRE)

3.1 Existing Infrastructure

The property to be developed is currently vacant land. The site is currently undeveloped, and no water services have been installed on the site. The only existing water related infrastructure is the existing pipeline connecting to the houses on 5th Street about 2km from the proposed development.

3.2 Design Layout

Pipelines will largely run within road reserves. **Appendix B** indicates a preliminary system layout with pipelines following the road network.

3.3 Water Design Criteria

The following standards will be used in the design of the water reticulation:

• Average annual daily demand (AADD)

0	Dwelling Houses	: 0.8 kl/unit
0	Dwelling Units/Flats	: 0.6 kl/unit
0	Business, Commercial and schools	: 50 kl per hectare
0	Clinic	:500l/day for 100m ² of gross floor
	area	
0	Street	: N/A
Pea	k hour demand	
0	Peak hour factor (PHF)	: 4.6

- Peak hour demand : PHF x AADD
- System heads
 - Maximum static head (no demand) : 90 m
 - Minimum residual head under conditions of peak hour demand at erf boundary : 24 m
- Fire fighting
 - Fire risk category : Category C (residential)
 - Total fire flow : 15 ℓ/s
 - o Flow at any one hydrant
 : 15 ℓ/s
 - Minimum pressure at fire : 8 m
 - Minimum pressure rest of system : 5 m
 - Spacing of fire hydrants : 240 m max
- Linear pipeline velocity
 - Maximum under conditions of peak hour : 1.8 m/s
 - Maximum under conditions of firefighting : 2.2 m/s
- uPVC ring main feeding the various residential areas, and providing fire fighting supply (110mm 160mm diameter)
- Pipe material for pipes and fittings < 50 mm Ø: HDPE PE 100 to SANS ISO 4427 reticulation pipework and house connection
 - Minimum pipe class : PN 12 (or higher-pressure class if required)
 - Supply lengths : 12 m minimum
 - Joints : Butt-welded to SANS 10268
- Boundary roughness (k-value) : 0.1 mm
 Flow formula : D'Arcy Weissbach
- Depth of cover below final ground level
- On sidewalks : 1.0 m(min) 1.5 m(max)
 - Across streets (min) 1.5 m(max)
- Placement of pipes inside 13 m to 25 m road reserves
 - 2.2 m from erf boundary on high side of road (16 m road reserves)
 - 1.8 m from erf boundary on high side of road (13 m road reserves)
- Placement of isolating valves
 - Opposite splay corner pegs in networks so that not more than 4 valves have to be shut off to isolate any part of the network.
- Placement of hydrants
 - Fire Department to specify type and placement
 - Opposite the communal erf pegs and between 0.3 m and 0.5 m away from them not closer than one erf length to any intersection

3.4 Water Demand Calculations

Land Use-Zoning	Erven	Area (m²)	Units	% of Township	Measuring unit/day	Unit Water Consumption (kl)	ADD * (kl/day)	Peak hourly factor	Peak Domestic Consumpt ion (I/s)
Shopping Center, Commercial Uses and other Business Uses	2	9 000	2	6%	kl per hectare	50	45	4.6	2.3
School (day School)	1	3 300	1	2%	kl per hectare	50	17	4.6	0.8
Dwelling Houses	251	73 600	251	53%	kl per unit	0.8	<u>201</u>	4.6	10.2
Dwelling Units/Flats	1	12 200	60	9%	kl per unit	0.6	<u>36</u>	4.6	1.8
Clinic	1	7 600	1	5%	kl per m2(100m2 per Gross Area)	0.005	38	4.6	1.9
Filing Station	1	3 500	1	3%	kl per m2(100m2 per Gross Area)	0.004	14	4.6	0.7
Park**	1	29 800 (20%= 5 960)	1	21%	kl per hectare	50	30	4.6	1.5
Total (Exclude street/road)	258	139000	258	100%			380		19.2

*AADD: Average annual daily demand

**20% of the total park area of 29 800m² will be watered/irrigated. The reminder of the area will consist of non-watered vegetation.

3.5 Fire flow under peak

Flow Condition	Min/Max. Pressure	Absolute Min/Max. Pressure			
		(m)	(m)		
Peak hour demand-minimum	20 to 24	16 to 20			
Static (no demand) -maximum	90	120			
Fire flow (@peak hour demand)	Fire flow (@peak hour demand)				
Area where fire occurs	Total fire flow (I/s)	Flow at hydrant (I/s)	Min. pressure at fire (m)	Min. pressure rest of system (m)	
Residential 3	15	15	8	5	

4 SEWER DRAINAGE

4.1 Existing Infrastructure

The property to be developed is currently vacant land. The site is currently undeveloped, and no existing sewer reticulation have been installed on the site. The only existing outfall sewer runs along 5th Street and 1st Street about 2km from the proposed development.

4.2 Design Layout

Appendix B shows the proposed wastewater reticulation system layout. The system comprises of a full water borne gravity reticulation system network of 110mm to 200mm uPVC pipelines which collects all flows to the existing network system.

4.3 Sewer Design Criteria

The following standards will be used in the design of the water reticulation:

•	Ave	rage annual daily demand (AADD)					
	0	Dwelling Houses	: 0.6 kl/unit				
	0	Dwelling Units/Flats	: 0.6 kl/unit				
	0	Business, Commercial and schools	s : 30 kl per hectare				
	0	Clinic	:300l/day for 100m ² of gross floor area				
	0	Street	: N/A				
•	Pea	k factor	:2.5				
•	Sew	ver capacity	: Pipes shall be designed to run				
	at 70	% full, measured in terms of flow dep	oth				
•	Prov	vision for stormwater infiltration	: The remaining 10%				
•	Flov	v formula	: Manning with n = 0.013				
•	Mini	imum velocities in sewers	: 0.75 m/s at full flow with				
	absol	ute minimum 0.6 m/s					
•	Fall	through manholes	: 80 mm (for sewers <315mm dia)				
•	Mini	imum pipe size for reticulation pipes	: 145mm internal diameter				

• Sewer erf connections

: 110mm diameter at the lowest

point of each erf in the case of Res 1 erven and to a distance of 500 mm inside the erf boundary and not less than 1m from side boundary.

• Minimum gradients

Nominal Ø (mm)	Minimumgradewithdepth of flow = $1/5$ D andVV = 0.6 m/s	Minimum grade with depth of flow = $\frac{1}{2}$ D and V = 0.82 m/s
160	1/80 (for fewer than 24 dwelling units connected)	1/100
200	1/120	1/200
250	1/160	1/240
315	1/200	1/300

- Depth of sewer
 - In mid-blocks : 1.2m depth to invert
 - In street reserves
 : 1.5m depth to invert
- Sewer system in mid-blocks or street reserves : Mid-block system acceptable if sewers are not installed deeper than 2 m and the main sewer not deeper than 3 m, otherwise a double system may be considered depending on costs.
- Maximum manhole spacing : 110m
- Placement of sewers inside 13 m to 25 m road reserves:
 - o 2.85 m from erf boundary on high side of road (16 m road reserves)
 - o 2.45 m from erf boundary on high side of road (13 m road reserves)
- Placement of sewers inside mid-blocks : 1.2 m from erf boundary
- 110mm-200mm uPVC full waterborne gravity reticulation network
- Supply lengths :12m minimum
- Sewer manholes : Precast concrete rings with "Pro-Struct 687" sealant at joints

Land Use- Zoning	Area (m²)	Units	% of Township	Measuring unit/day	Sewer Flow (kl)	AADD (kl/day)	Instantaneous Peak Factor	Instantaneous Peak (kl/day)
Shopping Center, Commercial Uses and other Business Uses	9000	2	11%	kl per hectare	28	25	3.4	86
School (day School)	3300	1	8%	kl per hectare	40	13	3.4	45
Dwelling Houses	73600	251	40%	kl per unit	0.64	<u>161</u>	3.4	546
Dwelling Units/Flats	12200	1	10%	kl per unit	0.48	<u>29</u>	3.4	98
Clinic	7600	1	5%	kl per m2(100m2 per Gross Area)	0.004	30	3.4	103
Filing Station	3500	1	1%	kl per m2(100m2 per Gross Area)	0.0032	11	3.4	38
Park*	29800	1	1%	kl per hectare				
Total Total (Exclude street/road)	139000	258	100%			269		916

4.4 Sewer Outflow Calculations

*No sewer discharge for the park area. No toilet facilities located at the parking area

5 STORMWATER

5.1 Existing stormwater

The property area to be developed is currently vacant land. The site is currently undeveloped, and no existing stormwater reticulation have been installed on the site. The stormwater runoff is proposed to be discharge to the nearby Dorpsrivier stream.

5.2 Design Layout

Stormwater infrastructure will largely run within road reserves. **Appendix B** indicates a preliminary system layout.

5.3 Storm water infrastructure:

Rainfall:

The rainfall station that are located closed to the site are shown on table below:

Station Name	SAWS	Distance	Record	Latitude	Longitude	MAP	Altitude
	Number	(km)	(Years)	(-) (')	(-) (')	(mm)	(m)
LYDENBURG							
(POL)	0554786_W	2.5	89	25 5	30 27	681	1372
LYDENBURG-							
VIS.	0554816_A	3.6	23	25 6	30 28	670	1423
LEIDENBURG							
111	0554752_W	7.2	62	25 2	30 26	703	1356

Table 1: Rainfall Station Close to the proposed site

a) Design philosophy:

The removal of storm water from the entire development will be via a combination of surface channels, road and pipe network. The discharge of storm water will be into the nearby Dorpsrivier stream.

The proposed stormwater control system aims at:

• Reducing runoff peaks as a result of an increase in hardened across the site such that post-development flows into receiving streams are no higher than pre-

development flows.

• Preventing scour and erosion on steep slopes from flow concentrations.

b) Design Flood Calculations

The following table indicate some of the typical guidelines used for run-off calculations:

Table 2: Design flood frequencies for minor systems					
Design flood frequencies for minor systems					
Land use	Design flood recurrence interval				
Residential	1 - 5 years				
Institutional	2-5 years				
General commercial	5 years				
CBD	5 – 10 years				

The Rational Method using 5 year Design flood recurrence interval would used for the determination of stormwater run-off.

5.4 Pre-Development Runoff

The runoff for the pre-developed site was calculated by using the following hydrological and hydraulic parameters:

- Stormwater modelling using the Rational method. However, during the detailed design the EPA-SWMM would be used for the modeling.
- Design storms: Design Rainfall Depth Grid At grid position 25° 6' South and 30°26' East (closest position to proposed site)

The pre-development stormwater modelling results are provided in Table 3 and calculations are shown in Appendix C.

RETURN PERIOD T (YEARS)	2	5	10	15	20	25	50	100
Q (m³/s)	0.60	1.02	1.32	1.59	1.76	2.13	2.99	4.24

Table 3: Predevelopment stormwater

5.5 Post Development Runoff

The runoff for the post -developed site was calculated by altering the catchment parameters to include for the construction of buildings and surfacing of previously natural ground covered areas.

The impervious areas consist of proposed building footprints, proposed road and parking areas.

The percentage impervious area per catchment is provided with post development results.

The un-attenuated post development stormwater modelling results are provided in Table 4 and calculations are shown in Appendix C.

Table 4: Post Development Stormwater

RETURN PERIOD T (YEARS)	2	5	10	15	20	25	50	100
Q (m³/s)	1.07	1.83	2.36	2.84	3.15	3.81	5.36	7.59

5.6 Major System

The road network would be utilized for the drainage of excess runoff not entering the underground system.

The proposed development allows for overland stormwater to be channelled along the internal road network and discharges into the proposed stormwater management facility such as ponds areas.

The road network makes allowance for stormwater runoff in excess of 1:5 year RI.

5.7 Attenuation Pond

The use of the attenuation pond is an effective means of attenuating flood peaks and reduce further downstream erosion. Furthermore, development of new areas attenuate storm water within the developments, before releasing it into a municipality system or surrounding.

There is one proposed attenuation pond to be located at the lowest point of the development.

The size of the attenuation pond would be calculated in terms of the simple triangular hydrograph and the time of concentration would be used to calculate the volume of runoff in terms of this hydrograph. The detention pond would therefore be sized to retain the 1:50 year rainfall event and the outlet of the detention ponds would discharge the 1:5 year rainfall event. The risk of the proposed development flooding due to pond wall breaking would be mitigated by providing a pond spillway with a capacity of 1 in 50 year return period.

Perform routing calculations

The calculated flood peaks /inflow hydrograph were trouted through the pond system to determine the attenuated flood. The flood peaks/ inflow hydrograph were routed through the pond also spillway and control orifice to confirm the capacity of the ponds. If the routed post-development peak discharge exceeds the required peak discharge, then the storage volume and outlet device was re-sized.

Calculation of detention volume

The calculation of the pond sizing are attached in Appendix D.

The attenuation is achieved with an attenuation pond be located at the lowest point of the development. The volume of the attenuation pond is 3318m³ with outlets of; 1 x 600 mm diameter and an overflow broad crest weir of 7m width and 0.5m high freeboard as a back-up safety overflow. The geometry of the proposed attenuation pond is shown in Appendix D and Table below.

Depth of Pond (m)	2.5
length of pond at base (m)	30
width of pond at base (m)	30
side slope factor (ratio of horizontal to vertical components of side slop	0.4
Maximum area (m ²)	1806

Table 5: Proposed attenuation pond geometry

6 ROADS, ACCESS AND PARKING

The road hierarchy and access to the development would be based on the recommendations covered in the Traffic Impact Assessment.

6.1 Access

Access to the site will be via the existing roads 5th street or 1st street, running adjacent to the site. The proposed access road will be off the existing access road to the proposed development as indicated on the attached drawing see Annexure B.

Alternatively, access will be via the main road with access stream crossing or bridge constructed over Dorpsrivier stream.

The detailed traffic assessment report is attached as Appendix E and detail the proposed access roads.

6.2 Internal Network

The geometric design, cross section and structural design of the roads will be based on accepted standards for the class of road proposed.

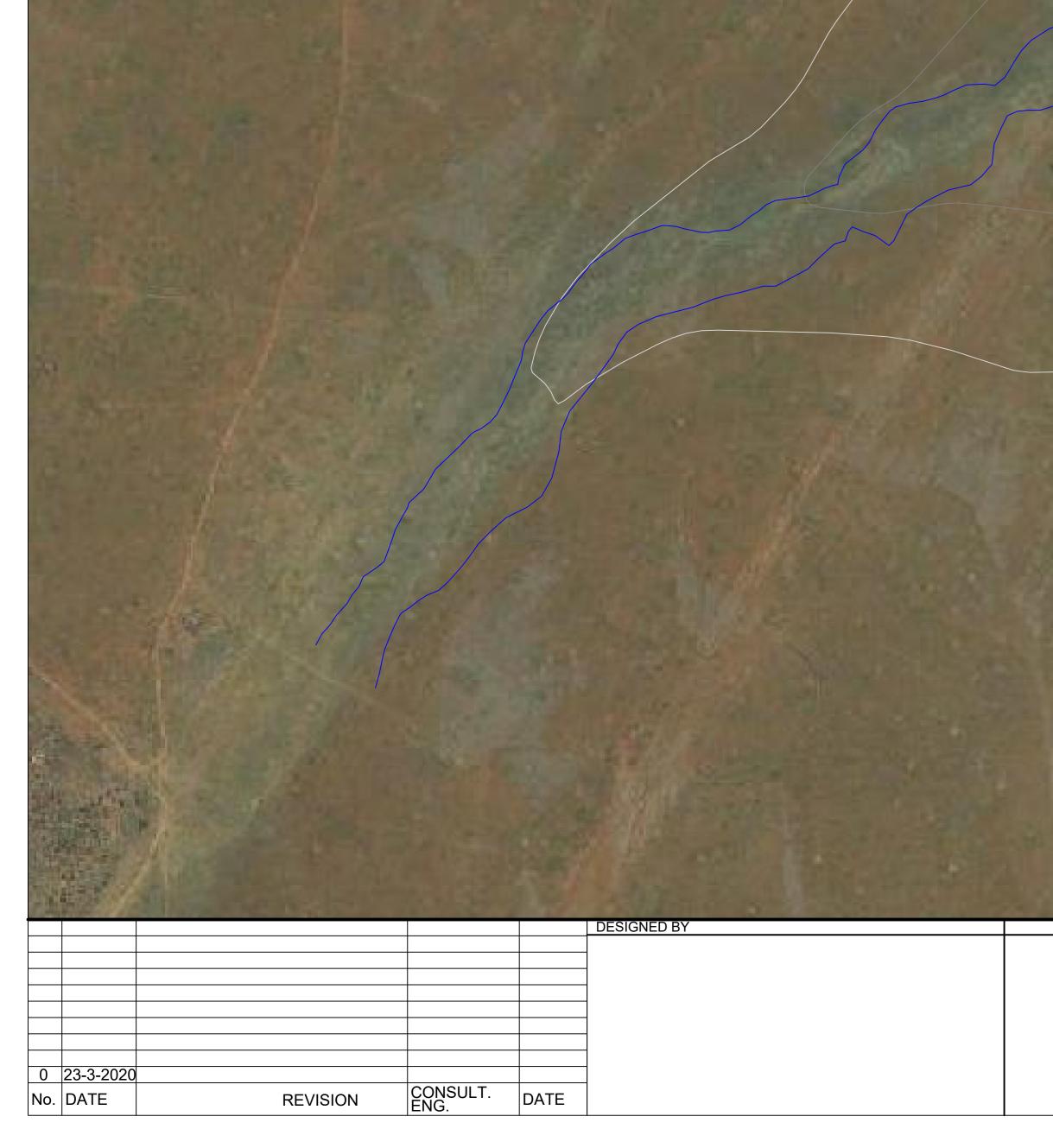
The road layer works will be finalised during the detail design stage of the project.

7 SERVICES AGREEMENTS

Discussions with Municipality indicated an adequate availability of bulk water and sewer from their system. A dedicated bulk connection will be installed by the Municipality on application by the developer. This can only be done once plans or final development are approved for the development.

A formal services agreement may be required between the Developer and the Municipality prior to final development approval. This would be to cover sewer, water supply arrangements, as well as arrangements for fire-fighting infrastructure provisions.

Report by : M Makhabane (Pr Eng No. 20110268)


MLINCO PROJECTS (Pty) Ltd

HAttalenoba

Signed : Date : 15 February 2021 APPENDIX A: TOWN PLANNER'S LAYOUT

APPENDIX B: SITE AND GENERAL LAYOUT OF PROPOSED SERVICES

	LEGEND	
ITEM NO	DESCRIPTION	SYMBOL
1.	BUSINESS/COMMERCIAL	
2.	SCHOOL	
3.	DWELLING HOUSES	
4.	DWELLING UNITS /FLATS	
5.	CLINIC	
6.	FILLING STATION	
7.	PARK	
8.	STREET & ROADS	
9.	100 YEAR FLOODLINE	
10.	HGM 1-FLOODPLAIN	
11.	HGM 2 - HILLSLOPE SEEP	
12.	DRAINAGE LINES	
13.	15m BUFFER	
14.	STORMWATER FLOW DIRECTION	
15.	110mm-160mm Diameter Water Pipeline	
16.	110mm-200mm Diameter Sewer Pipeline	

CLIENT DETAILS:		DESIGNED BY	CONSULTANT APPROVAL
	NAME		Name :
	Prof. Reg. No.		Prof. Reg. No. : Date :
		CHECKED BY	
	NAME		
	Prof. Reg. No.		
		DRAWN BY	
	NAME		

STONE WALLED SITE

ATTENUATION POND

CULTURAL TOOLS PROPOSED BRIDGE CROSSING

ALTERNATIVE ACCESS ROAD TO CONNECT TO MAIN ROAD

PROJECT DESCRIPTION PENTAGON BUSINESS & RESIDENTIAL DEVELOPMENT

ORIGINAL DRAWING SCALE = AS SHOWN APPROVED: CLIENT OR ASSIGNEE: _ CLIENT DRAWING No .:

ORIGINAL DRAWING A0 SHEET SIZE: A0 _ DATE: __ CLIENT REF No .:

E1.5

DRAWING DESCRIPTION LAYOUT PLAN

5m Contour and background Image

CONNECTS TO EXISTING SERVICES

Mashishing Development

No. יש **N**

PROJECT NUMBER

DISTRICT						
DRAWING LOCATION DATA						
DRAWING km DISTANCE	FROM			Т	0	
DRAWING TYPE						
TYPE OF DESIGN						
SHEET	001	С	۶F	001		
CONSULTANT DRAWING No.						VER 1

2001

APPENDIX C: HYDROLOGY/ FLOOD PEAK CALCULATIONS

				RAT	ION	AL ME	ТНО	D-PreDe	evelop	oment									
				((Reco	mmende	ed for	areas <	15km	²)									
DESCRIPTION (Predevelo	pment 1		(CALC	ULATED D.) BY ATE			lakha 2-No						
PHYSICAL CHARACTE	RISTIC	2S		0.187								_							
SIZE OF CATCHMENT	Ok	AREA	REDUCTIO				1.00			TRIBU									
										= 0.0	00	ļ	RURA		URB.			AKE	
											B =	0.0	Я	=	0.0				
DOLOMITIC AREA			=	0			20	% of "C"											
											URBA	N							
SURFACE SLOPE	. ((%)		PERMEABIL	ITY		(%)			GETATIO			(%)			JSE			(%)
VLIE'S & PANS				MEABLE			-	THICK B							NS & PA				0
FLAT AREAS		100 PERM					-	LIGHT B			JANI)S			STRIAL				0
HILLY STEEP AREAS		0 SEMI- 0 IMPEI		IEABLE				GRASS L NO VEGI						STREE	RESIDE	2NTIA	L		0
TOTAL		100 TOTA		BLE				TOTAL	CIAII	UN				TOTA					0
IUIAL			L			1		TOTAL										2	
	0.02	C _h	0.04	Cd	0.000	0.04	Cp	0.000	CI	C ₁	080 0		C ₂	1.0	C	0.45	1 00	Cfinal	
	0.03	0.0000			0.000			0.000			160 0		0.000		of C ₁ of C ₂		1.00 0.00	C C	0.45
	0.08	0.0800			0.000			0.000			210 0		0.000		of C ₃	-	0.00 20	с %	0.00
	0.16	0.0000			0.000			0.210	Ср	0.2	-	0.75	0.000	0.0	01 C ₃	0	20	70	0.00
	0.20	0.0800	0.20		0.160	0.28		0.000		0.4	450	.15	0.000			0.45			0.45
		0.0000			0.100			0.210		0.	150		0.000			0.15			0.45
RAINFALL				r													-		
ROUGHNESS COEFFICIE Tc (OVERLAND FLOW)	0.467	,		0.3	11				CLE	AN SO		UES O	Fr		0.1				
Tc (OVERLAND FLOW) = $0.604 (rL/S^{1/2})^{0.467}$ Tc (WATER COURSE) = $(0.87L^2/1000S)^{0.385}$								0.528		$T_C =$	0.52	28	Hrs	ED AR					0.02
								••••••		TVDIC		1 4							
AV. FLOW VELOCITY $v = L/T_C$ MEAN ANNUAL RAINFALL =								0.368 681	m/s	TYPIC.	AL 0	.1 - 41		RSE GF	E GRA	c c			0.3 0.4
RAINFALL REGION	LL	WINT	ER:		THRO	DUGHOU	T Yr:			SUMME	R: v	res		CK BUS		55			0.4
RETURN PERIOD (YEARS) 2	5	10	15	20	25	50		MAX			NOT						
POINT RAINFALL (mm)		27	41.9		56.5			81.449	95.8			Exclude % artificial areas & pans					ans		
POINT INTENSITY (mm/H		51.2	79.4	94.083977	107	112.3	122	154.26	181			Check & adjust point				nt rainfa			
AREA REDUCTION FACT	TOR	1.00	1.00		1.00	1.00		1.00	1.00										
AVERAGE INTENSITY (n	nm/Hr)	51	79	94	107	112	122	154	181										
RUN-OFF FACTOR												9	FLOW	/ RATE VI	ERSUS RE	TURN PE	RIOD		
RETURN PERIOD T	(YEARS	<i>,</i>	5	10	15	20	25	50		MAX		8]
RURAL C ₁		0.45	0.45		0.45	0.45	0.45	0.45	0.45			7			_				-
URBAN C ₂		0.00	0.00		0.00	0.00	0.00	0.00	0.00			5			-				1
LAKES C ₃		0.00	0.00		0.00	0.00	0.00	0.00	0.00			4	000]
Cfinal		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45			3	5						-
PEAK FLOW			-	10	1.5	20	25	50	100	MAX		2 6 1							1
RETURN PERIOD T PEAK FLOW Q=CIA/3.6 (2	<u> </u>	S) 2 1.20	5 1.85	10 2.20	15 2.50	20 2.63	25 2.84	50 3.61	100 4.24	MAX		0							1
ADJUSTED PEAK (m ³ /	· · · · ·		1.03		1.59				4.24			0	20 	40 .OW RATE	60	80	100	1	20
ADJUSTED PEAK (M /	s) (rt X)																		
RECOMMENDED VALU	JES OF	RUN-OFF	FACT	OR C															
									UI	RBAN (С2								
COMPONENT		CLAS	SIFIC	ATION				VERAGE RA						USE			F	асто	OR
	VIER	& PANS	(<03%	(4)	_	0													
				%) TO 10%)		0.0		0.03		0.05			<u>15</u> Y, FLAT		((<2%)	0.05		0.10
SURFACE	HILLY			TO 30%)		0.0		0.08		0.11			Y, FLAT			<2%) >7%)	0.03		0.10
SLOPE Ch		AREAS	(>30%	· · · · · ·		0.1		0.10		0.20			Y SOIL, F			<2%)	0.13		0.20
	STEEF	ALLAS	(~ 507	•)		0.2	2	0.20	,	0.50			Y SOIL, F			>7%)	0.13		0.17
VEDV DEDMEADI					_	0.0	2	0.0/		0.05			ENTIAL				0		

SLOPE Ch	HILL I		(1070	10 3076)		0.1.	2	0.10	,	0.20	SAND1, STEEF	(~770)	0.15	-	0.20
	STEEP ARE	AS	(>30%	5)		0.22	2	0.20	5	0.30	HEAVY SOIL, FLAT	(<2%)	0.13	-	0.17
										HEAVY SOIL, STEEP	(>7%)	0.25	-	0.35	
	VERY PERM	/IEABI	Æ			0.0	3	0.04	4	0.05	RESIDENTIAL AREAS				
	PERMEABL	E				0.0	6	0.08	8	0.10	HOUSES	0.30	-	0.50	
PERMEABILITY Cd	SEMI-PERM	EABL	E			0.12	2	0.10	5	0.20	FLATS	0.50	-	0.70	
	IMPERMEA	BLE				0.2	1	0.20	5	0.30	INDUSTRY				
]				LIGHT INDUSTRY		0.50	-	0.80				
	THICK BUSH & PLANTATION						0.03		4	0.05	HEAVY INDUSTRY		0.60	-	0.90
VEGETATION	LIGHT BUS	IGHT BUSH & FARM LANDS						0.07 0.11 0.15							
	GRASS LAN	GRASS LANDS						0.2	1	0.25	BUSINESS				
Cp	NO VEGETA	ATION				0.2	6	0.2	8	0.30	CITY CENTRE		0.70	-	0.95
										SUBURBAN		0.50	-	0.70	
RETURN PERIOD (YEARS)		2	5	10	15	20	25	50	100		STREETS		0.70	-	0.95
ADJUSTED FACTOR Ft		0.500	0.550	0.600	0.635	0.670	0.750	0.830	1.000		MAXIMUM FLOOD		1.00		

											elopmen	ıt						
						(Recc	mmer	nded t	for areas	< 15k	(m^2)							
DESCRIPTION	OF CAT		ENT LET						Predevelo	pment 1		CAL	CULATEI D.) ВҮ АТЕ	M N	/lakhabane 2-Nov-2() 	
PHYSICAL CHARACT	ERISTIC	CS																
SIZE OF CATCHMENT			••	=	0.187				REDUCTIO	ON FAC		1.00		REA DISTR		1		
LONGEST WATER COURSE $L = 0.794 \text{ km}$							L _{OF}	=	0.79	L_{WC}	= 0.0	00	RURA		RBAN	LA	KES	
AVERAGE SLOPE			S	=	0.05667506								∝ =	0.0 B	= 1.0	Α =	0.	
DOLOMITIC AREA				=	0	%		20	% of "C"									
					RUI	RAL									URI	BAN		
SURFACE SLOPE (%) PERMEABILITY						ГҮ		(%)			GETATIO		(%)		USE		(%) 2	
VLIE'S & PANS					MEABLE						& PLANTA			LAWNS &				
FLAT AREAS				IEABL							z FARM L	ANDS		INDUSTRI			-	
HILLY					IEABLE				GRASS I					CITY/RES	IDENTIA	L	5	
STEEP AREAS				RMEA	BLE				NO VEG	ETATI	ON			STREETS			2	
TOTAL		100	ΤΟΤΑ	L				100	TOTAL				100	TOTAL			10	
		Ch			Cd			Cp			C ₁		C ₂	C			final	
	0.03		0.0000			0.000			0.000			080 0.1	0.020		1 .	1.00 C	0.5	
	0.08		0.0800			0.000			0.000			60 0	0.000	1.0 of C	2		0.0	
	0.16		0.0000			0.160			0.210	Ср	0.2	210 0.6	0.324	0.0 of C	3 0	20 %	0.0	
	0.26		0.0000	0.26		0.000	0.28		0.000			0.75	0.195					
		0	0.0800			0.160			0.210		0.4	150	0.539		0.54		0.5	
RAINFALL																		
ROUGHNESS COEFFICI	ENT		=		r	6.0.467			0.02						ALUES	OF r		
Tc (OVERLAND FLOW)			=		0.604 (rL/S ¹				0.171		$T_C =$	0.25	Hrs	AN SOIL			0.	
Tc (WATER COURSE)			=		(0.87L ² /1000)S) ^{0.385}			0	Hrs			PAV	ED AREA				
AV. FLOW VELOCITY		v	=		L/T _C				0.882		TYPICA	AL 0.1 - 4		RSE GRASS			0.	
MEAN ANNUAL RAINF.	ALL		=			-			681	mm	a			DERATE GI	RASS		0.	
RAINFALL REGION			WINT				UGHC				SUMMER	R: yes		CK BUSH			0.	
RETURN PERIOD (YEARS) 2 5 10 15						20	25	50		MAX		NOT	TES:					
						39.9 160	41.9 168	45.3 181	57.5293 230.117	67.6 271			E	xclude % ar k & adjust p	tificial are	as & pans	2.6	
AREA REDUCTION FAC	/		1.00	1.00	140.550075		1.00	1.00	1.00	1.00			Chec	k & aujust p		an @ Tig	2.0	
AVERAGE INTENSITY (76	118	140	160	168	181	230	271								
`)	r		-		-												
RUN-OFF FACTOR RETURN PERIOD T	VEAR	<u>s)</u>	2	5	10	15	20	25	50	100	MAX	° 🗖	FLO	W RATE VERSU	IS RETURN P	ERIOD		
RURAL C1	(TLAK	.5)	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	MAA	8				0		
URBAN C ₂			0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54		6						
LAKES C3			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		5					_	
Cfinal			0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54		4	10 0 0 0					
PEAK FLOW					•				•			2						
RETURN PERIOD T) (YEAR	S)	2	5	10	15	20	25	50	100	MAX	1					_	
PEAK FLOW Q=CIA/3.6	(m ³ /s)		2.14	3.32	3.94		4.70	5.09	6.45	7.59		0	20	40 60) 80	100	120	
ADJUSTED PEAK (m	³ /s) (Ft x	Q) .	1.07	1.83	2.36	2.84	3.15	3.81	5.36	7.59		[FLOW RATE				
DECOMMENDED VAL		DUN	OFE	БАСТ														
RECOMMENDED VAL	UES OF	KUN	-OFF		URAL C ₁							-		URR	AN C2			
	<u> </u>							MEAN	AVERAGE I		(I. (mm)	_			ANC ₂			
COMPONENT		(CLAS	SIFIC	ATION		0		600		900	+		USE		FAC	CTOR	
	VLEI'S	5 & PA	NS	(<03%	6)		0.	01	0.03	3	0.05	LAW	NS					
	FLAT .	AREA		-	TO 10%)		0.	06	0.0	3	0.11	SANE	Y, FLAT		(<2%)	0.05 -	0.1	
SURFACE SLOPE Ch	HILLY				TO 30%)		0.		0.1	5	0.20		Y, STEEP		(>7%)	0.15 -	0.2	
SLOPE UI	STEEP	ARE	AS	(>30%	6)		0.	22	0.2	5	0.30	HEAV	Y SOIL, F	LAT	(<2%)	0.13 -	0.1	
												HEAV	YY SOIL, S	TEEP	(>7%)	0.25 -	0.3	
VERY PERMEABLE							0.	03	0.04	1	0.05	RESI	DENTIAL	AREAS				
DEDMEADUUTY	PERM							06	0.0		0.10	HOUS				0.30 -	0.5	
PERMEABILITY Cd	SEMI-	PERM	EABL	Е			0.	12	0.1	5	0.20	FLAT	S			0.50 -	0.7	
Cu	IMPER	RMEAI	BLE				0.	21	0.2	5	0.30	INDU	STRY					
												LIGH	T INDUST	RY 0.50 -			0.8	
					ATION		0.		0.04		0.05	HEAV	Y INDUS	TRY		0.60 -	0.9	
VEGETATION				ARM L	ANDS			07	0.1		0.15		UDGG					
	IGRASS	SLAN	DS				0	17	0.2		0.25	BUST	NESS					

0.17

0.26

 10
 15
 20
 25

 0.600
 0.635
 0.670
 0.750

10

0.21

0.28

50 100

0.830 1.000

BUSINESS

CITY CENTRE

MAXIMUM FLOOD

SUBURBAN

STREETS

0.70 -

0.50 -0.70 -

1.00

0.95

0.70

0.95

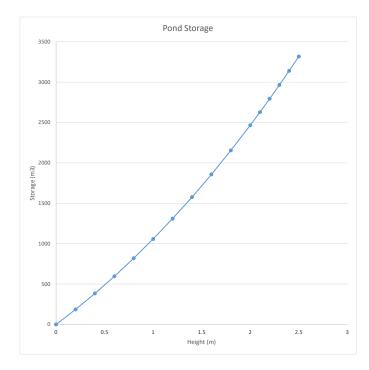
0.25

0.30

Ср

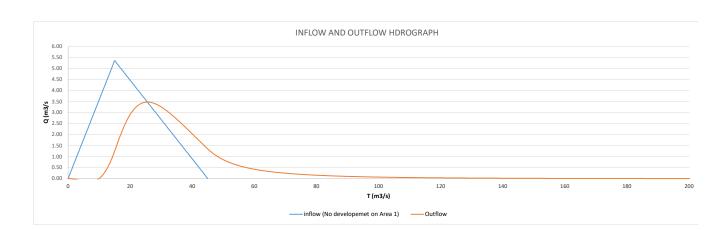
RETURN PERIOD (YEARS) ADJUSTED FACTOR Ft

GRASS LANDS


NO VEGETATION


2 5

0.500 0.550


APPENDIX D: POND SIZING

POND DETAILS	
Rectangular Pond Depth of Pond (m)	2.5
length of pond at base (m)	30
width of pond at base (m)	30
side slope factor (ratio of horizontal to vertical components of side slop	0.4
Circular Outlet Outlet Diamater(m) Number of. Cd Q at Peak	0.6 1 0.6 1.1
Spillway/Broad Crest Weir Spilway Length (m) Freeboard (m)	7 0.5
Spillway Crest Height (m) Cd Avail Qmax (m ³ /s) Pond Volume at Spill	2 1.7 4.21
Height (m ³) time step	2467 0.5
Dam break Height (m)	2.5
Dam break Volume (m ³)	3318.0625

min

APPENDIX E: TRAFFIC STUDY