ENGEOLAB (PTY) LTD

Reg. No. 2017/536405/07

VAT Reg. No. 4710205925

Branches: Gauteng_Pretoria / KZN_Mtunzini / Mpumalanga_eMalahleni

Contact: Enquiries - info@engeolabcc.co.za

Finances - finance@engeolabcc.co.za / 082 800 2245

Sales - paul@engeolabcc.co.za / 082 881 5370

VOLUME 1

Report on a Geohydrological Investigation General Waste (Witkoppies) Landfill Site, ESKOM Majuba Power Station

PROJECT: LL3821

VERSION: 1

DATE: **June 2022**

BY: P.G. Hansmeyer Pr.Sci.Nat.

B. Vermeulen Pr. Sci. Nat.

Report Type: Geohydrological Report

Project Title: Geohydrological Investigation - Majuba General Waste Landfill Site,

ESKOM Majuba Power Station

Compiled for: Savannah Environmental (Pty)Ltd

Compiled by: P.G. Hansmeyer & B. Vermeulen

Engeolab Reference: LL3821

Version: Version 1

Date: June 2022

Distribution List: Ms. Mmakoena Mmola

Disclaimer:

The results, conclusions and recommendations of this report are limited to the Scope of Work agreed between Engeolab (Pty)Ltd (Consultant) and the Client who requested this investigation. All assumptions made, and all information contained within this report, and its attachments including maps depend on accessibility to and reliability of information obtained. All work conducted by Engeolab (Pty)Ltd is done in accordance with the Engeolab Standard Operating Procedures.

Copyright:

This report and its findings are copyright protected and remain the property of the author; the company (Engeolab (Pty)Ltd and its representatives, unless where referenced to external sources. No part may be used or re-produced without written consent. This document must be referenced if any information contained in it is used in any other document or presentation.

Limit of Liability

The Client agrees that any claims against Consultant pertaining to this Project shall be limited to the claims related to, or attributable to, proven negligence by Consultant in the performance of its services, provided that any claims must be brought within 12 months from the earlier of the date of the last service performed by Consultant, or the date of substantial completion of the work.

The amount of claim payable by Consultant shall be limited to the amount that can be claimed under the applicable insurance policy pertaining to the Project, or 50% of the value of engineering fees paid to Consultant on the Project, whichever is less.

In no event shall Consultant (Engeolab (Pty)Ltd liable, whether in contract or tort, for:

- loss or damage occasioned by any event beyond Consultant's control; or
- consequential damage including without limitation, loss of earnings, loss of production, or loss of use, howsoever caused.

Declaration:

I hereby declare:

- 1. I have no vested interest (now or in the future) in this project and that I have no personal interest with respect to the parties involved in this project.
- 2. I have not been offered, nor have I received any significant form of inappropriate reward for compiling this report.
- 3. I have no bias with regard to this project or towards the various stakeholders involved in this project.

Date: <u>27 June 2022</u>

P. G. Hansmeyer *Pr.Sci.Nat.*

EXECUTIVE SUMMARY

A geohydrological investigation was carried out for the Majuba General Waste Landfill Site at Majuba Power Station located within the jurisdiction of the Gert Sibande District Municipality. The site is located on Portions 1 and 6 of the farm Witkoppies 81 HS located on the southern side of Majuba Power Station.

The field work comprised the water sampling of open water resources within a 1km radius of the site at five locations, drilling of three monitor boreholes, yield testing thereof and analyses of borehole water samples by a SANAS accredited water laboratory located in Empangeni.

The initial approach was to decommission the existing landfill site and develop a new site adjacent to the access road along the eastern boundary thereof. An additional 'Alternative Site' to the south of the existing landfill site has also been included and a combined area of 10ha had to be considered.

The site is underlain by sediments – that is shale and sandstone of the Vryheid Formation, intruded by Post-Karoo dolerite as sheets or sills, often capping the low hills in the area. The lithologies of the recently drilled boreholes were dominated by carbonaceous shale and to a lesser extent by sandstone with a dolerite sill in the top 3m, thickening to 14m in a southerly direction. Elsewhere, the bedrock is blanketed by transported soils – that is hillwash and alluvium.

Several hillslope seepage wetlands were identified which ostensibly emanate at the dolerite/sedimentary bedrock contact zones to form spring lines at various elevations below the landfill terrain, draining away to form wetlands covered by thick stands of hydrophilic grasses and shrubs.

The area surrounding the site is characterised by historically cultivated areas which had been turned over to pastures with thick stands of hip-high Eragrostes grass. Towards the swampy, lower-lying areas, the soggy ground is covered by thick, short stands of hydrophyllic grass and - shrubs with a characteristic rusty colour. The closed landfill site is partially overgrown with short Kikuyu grass, alien shrubs and a single Acacia Karoo sapling.

Rainfall and evaporation data from Meteorological Station No. C1E007, located approximately 50km north-northwest of the Majuba Power Station for the period 1980 to 2017 (38 years) was used.

Regarding air quality problems, no odours from the closed landfill site were detected during the 2018 and 2022 site visits and gas and odour generation are regarded as negligible.

During the day the wind is predominantly from the west, with a secondary component from the east, with fairly strong wind speeds and little calms. During the night the wind field shifts to be mainly from the east and southeast. The wind is generally stronger during the day with more frequent calms during the night.

The yield range for BH1 is unknown. However, the three most recently drilled boreholes recorded yields ranging from dry to <1l/s. The potential application of BH2, BH3 and BH4 is for stock watering only and in terms of aquifer classification, these monitor boreholes comply with a 'Low' type of aquifer. The aquifer will never be utilised except for monitoring purposes of the groundwater regime associated with the landfill site.

Clearly defined rating and rankings scales were used to assess the impacts associated with the proposed activities which include the construction, operational and closure and decommissioning phases of the landfill site. Based on the impact assessment determined from a hydrogeological perspective it can be concluded that all impacts identified have a medium to high negative significance, however with implementation of mitigation measures the impact can be decreased between low and medium.

A groundwater quality monitoring programme is to be implemented once the site is operational to ensure water remains compliant with the DWAF Minimum Requirements for Waste Disposal by Landfill (2nd Edition, 1998). Boreholes to be monitored include BH1, BH2, BH3 & BH4.

The proposed landfill site to the east of the closed landfill site - that is Alternative A - should be developed, mainly due to non-interference with the uppermost springline and sufficient cover soils available for interlayering and capping. Given the potential hydrogeological impacts detailed in this report, the development of the Alternative A site, can only be viable if the mitigation measures are implemented and adhered to. Based on this, the project can be granted environmental authorization.

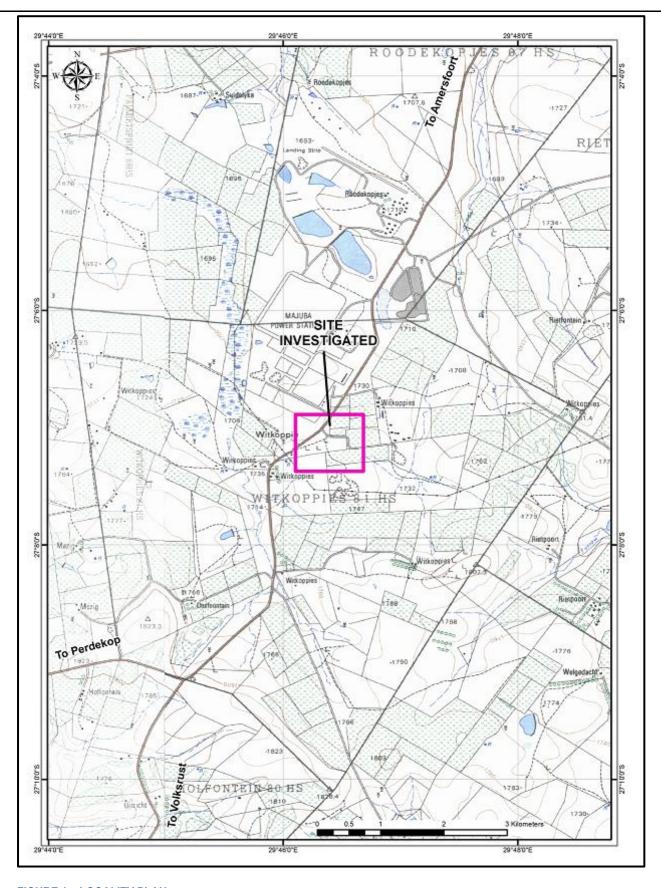


FIGURE 1 – LOCALITY PLAN

Table of Contents

1. II	NTRODUCTION AND TERMS OF REFERENCE	9
2. <i>A</i>	AVAILABLE INFORMATION	10
3. S	SITE ASPECTS	10
4. N	METHODS OF INVESTIGATION	10
4.1	Walk-Over Survey	10
4.2	Drilling of Three Monitor Boreholes	11
4.3	Yield Testing of Three Monitor Boreholes	12
4.4	Water Sampling & Laboratory Analyses	12
4.5	Surveying Boreholes and Sampling Points	14
4.5	Historic Geophysical Surveys	14
4.6	Historic Borehole and Spring Census	14
5. 0	GEOLOGY AND SITE SOILS	14
6. SI	URFACE HYDROLOGY	15
7. V	EGETATION	15
8. CI	LIMATE	16
8.1	Rainfall	16
8.2	Surface Wind Field	16
9.	INFRASTUCTURE and MAN-MADE FEATURES	17
10. G	EOHYDROLOGICAL APPRAISAL	17
10.	1 Aquifer, Groundwater Phreatic Surface and Seasonal Fluctuations	17
10.	2 Aquifer Characteristics	18
10.	3 Storm Water Management & Site Drainage	19
10.	4 Potential for Landfill Gas and Air Quality Problems	19
11. IA	MPACTS AND MITIGATION	19
11.	1 Construction Phase	20
11.	2 Operational Phase	20
11.	3 Closure & Decommissioning Phase	21
11.	4 Cumulative Impacts	21
11.	5 Preferred Alternative	22
11.	6 Sensitive Receptors	22
12. M	NONITORING PROGRAMME	23
13. PI	ROPOSED REHABILITATION PLAN	23
14. RI	EASONED OPINION & CONDITIONS FOR AUTHORIZATION	24
15. D	ISCUSSIONS & DEVELOPMENT RECOMMENDATIONS	24

15.1	General	24
15.2	General Status of Closed Waste Landfill Site	24
15.3	Surface Hydrology, Phreatic Surface, Drainage and Monitoring	24
15.4	Water Quality	25
15.5	Aquifer Characteristics, Groundwater Usage and Sub-surface Issues	25
16. GEN	NERAL	25
17. APP	PENDICES	25
• ,	Appendix A Monitor Borehole Profiles with Photographs Appendix B Pump Test Data with Recommendations Appendix C Water Laboratory Test Data Appendix D Water Quality Data Appendix E CV's & Notable Experience	
	Figures	C

FIGURE 8.2.1 – PERIOD & DIURNAL WIND ROSES FOR THE ESKOM MAJUBA AQMS, 2016 - 2019......17

ENGEOLAB (PTY) LTD

Reg. No. 2017/536405/07

VAT Reg. No. 4710205925

Branches: Gauteng_Pretoria / KZN_Mtunzini / Mpumalanga_eMalahleni

Contact: Enquiries - info@engeolabcc.co.za Finances - finance@engeolabcc.co.za / 082 800 2245

Sales - paul@engeolabcc.co.za / 082 881 5370

VOLUME 1

Geohydrological Investigation

Majuba General Waste (Witkoppies) Landfill Site, ESKOM Majuba **Power Station**

1. INTRODUCTION AND TERMS OF REFERENCE

Engeolab (Pty)Ltd was appointed by Savannah Environmental (Pty)Ltd of Woodmead, Johannesburg to conduct a geohydrological investigation for the Majuba General Waste Landfill Site at Majuba Power Station. The site is located on Portions 1 and 6 of the farm Witkoppies 81 HS on the southern side of Majuba Power Station and within the jurisdiction of the Gert Sibande District Municipality – refer to the Locality Plan, Figure 1 in the beginning of the report.

The investigation's aim is to establish the geohydrological aspects of the proposed landfill site which will form part of the EIA phase for the closure of the existing landfill site and the Scoping and Environmental Impact Report for the proposed general landfill site which is located adjacent to the closed landfill site. This will essentially demonstrate that the geohydrology associated with the site is such that a landfill can safely be developed and operated in the environment under consideration.

The scope of work was outlined by Engeolab (Pty)Ltd's quotation, Q210903_REV_LL3821_PH, dated 12 April 2022. The appointment was confirmed by Ms. Mmakoena Mmola, representative of Savannah Environmental (Pty)Ltd on the 8th of March 2022 under their reference SE3357.

The field work comprised the water sampling of open water resources within a 1km radius of the site at five locations, drilling of three monitor boreholes, yield testing thereof and analyses of borehole water samples by a SANAS accredited water laboratory located in Empangeni.

The report is based on field observations, profiling of borehole drill chips, water sample analyses of nine water samples as well as the yield testing of three monitor boreholes.

The report and its appendices are presented as Volume 1 and the drawings are contained in Volume 2.

2. AVAILABLE INFORMATION

The following available information includes:

- Site plan showing layout of the proposed development and boundaries of the site as provided by Savannah Environmental (Pty)Ltd;
- ❖ A 1:250 000 scale geological series, Sheet 2728 Frankfort, as compiled by South African Geological Survey, 1988;
- Garmap Africa 2008 series;
- Google Earth imagery of the site;
- Map showing Majuba Power Station monitor boreholes;
- Majuba Power Station Ash Disposal: Groundwater Scoping Study by Lidwala Consulting Engineers, October 2012;
- Climatic information was provided by Savannah Environmentalists (Pty) Ltd;
- Report presented by Engeolab (Pty)Ltd on the findings of a geotechnical investigation carried out on the site in 2018 Report no. LL3034.

3. SITE ASPECTS

LANDFILL SITE STATUS AND PLANNED DEVELOPMENTS:

The initial approach was to decommission the existing landfill site and develop a new site adjacent to the access road along the eastern boundary thereof – refer to the Site Plan, Figure 2, Volume 2. As of late, an additional 'Alternative Site' to the south of the existing landfill site has been included.

The proposed new waste landfill site is a Category B listed activity which entails the disposal of general waste to land covering an area of some 50,100m² with the total capacity of 25,000 tons which equates to 970 tons per year and an expected lifespan of 45 years. The landfill site will be constructed with associated infrastructure with sorting and storage facilities, plant and machinery, security parking and servicing area and an access road. The facility will also be secured with an all-round palisade, access control gate and a guard house.

ACCESS: The site can be accessed by the D979 gravel district road from Amsterdam to Volksrust and is located at co-ordinates 27° 07′ 09.4″ S and 29° 46′ 18.93″E. The site is bounded in the north by the gravel district road which passes close to the security fence along the southern portion of Majuba Power Station.

The combination of the district road, an overhead Eskom powerline and steep topography in the south, confines the site to a sidehill fill covering an area of some 50,100m² along the sloping northerly face of a local hillock, some 1769m above mean sea level.

4. METHODS OF INVESTIGATION

4.1 Walk-Over Survey

A walk-over survey was conducted to establish drainage features, access and to obtain a general overview of the site. An aerial photograph was used during the walk-over survey to assist in the site orientation, to determine the boundaries and its general outlay. This also assisted in identifying areas where surface water could be sampled in relation to the landfill site.

4.2 Drilling of Three Monitor Boreholes

Pollard Drilling of Vryheid (a level 1 BBEEE service provider) drilled three monitor boreholes on the site. The drill sites were selected where access was possible as well as where geophysical anomalies were prominent – refer to the Geotechnical Report, LL3034, 2018 by Engeolab (Pty)Ltd and the Site Plan, Figure 2, Volume 2.

The three 165mm diameter monitor boreholes were drilled using the rotary air flush percussion drilling method. Each borehole was drilled to 20m with the top 6m of the boreholes reamed to 219mm and subsequently sleeved from surface to 6m depth with solid mild steel casing – refer to Plate 1 below and Appendix A – Borehole Profiles. To ensure the long term serviceability of the boreholes, 140mm diameter uPVC casing was installed from surface to the end of the hole (with the lower 3m perforated) and the borehole annulus backfilled with graded filter sand. A lockable lid was welded onto the steel casing and a concrete collar was cast around the casing. To ensure that the borehole position is visible, a 2,5m high yellow and black steel marker was installed as close as possible to the borehole refer to Plate 2 below. The master key of the lockable borehole lids was handed over to ESKOM's Environmental Manager at Majuba Power Station.

PLATE 1

PLATE 2

The drilling results are summarised in Table 4.2.1. Note that BH1 is an existing monitor borehole and BH3 was dry. Although a static water table of 17,5m was recorded in the latter after 24 hours, the yield was so low that the small submersible pump could not lift the water to surface. Water samples were taken of the historic borehole, BH1 as well as the three recently drilled monitor boreholes.

TABLE 4.2.1: DRILLING RESULTS

BH No.	BH Depth (m)	Water Strike Depth (m)	Blow Yield (I/h)	Static Water Level (m)
BH 2	20	7,0	400	3,7
BH 3	20	dry	N/A	17,5
BH 4	20	13,0	720	4,4

4.3 Yield Testing of Three Monitor Boreholes

Using a submersible pump capable of pumping small volumes of water, the yields of the boreholes BH2, BH3 and BH4 were tested – refer to Plate 3.

PLATE 3

The yield tests were carried out in accordance with SANS 10299-4:2003: PART 4 – Test-pumping of Water Boreholes. The data was captured and analysed using Theiss and Cooper methods. Copies of the field test data and analyses are attached as Appendix B and for convenience, a summary of the results is presented by Table 4.3.1.

TABLE 4.3.1: YIELD TESTING DATA & RECOMMENDATIONS

BH No.	Blow Yield	Static Water Level	Recommended Pumping yield
	(l/h)	(m)	(l/h)
BH 2	400	3,7	To low yield
BH 3	dry	17,5 (after 24 hrs)	Dry borehole
BH 4	720	4,4	720

4.4 Water Sampling & Laboratory Analyses

- **Historic Sampling (2018)**: Three of the hillslope seepage wetlands, a single monitor borehole and a small leachate dam were sampled and analysed during the geotechnical investigation carried out in 2018 refer to the report LL3034, Appendix D.
- Recent Sampling (2022): Nine water samples were taken five from surrounding surface water impoundments (mainly small excavations) and four from the monitor boreholes where BH1 is a historical borehole and boreholes BH2, BH3 and BH4 were recently drilled.

The five surface water samples were submitted for analyses on Friday, 13 May 2022 to Integral Laboratories (Pty)Ltd, a SANAS accredited water laboratory located in Empangeni. The drilling and yield testing commenced the next week and four additional samples were submitted on Thursday, 19 May 2022 – the same day of sampling. A summary of the laboratory test data is presented by Table 4.4.1 and copies of the laboratory tests are attached as Appendix C to the report.

TABLE 4.4.1: SUMMARY OF LABORATORY TEST DATA

Sample Identification			KW-22-97868 S4 (Marshy) - 10H58	S5 (Dam) - 11h09	S7 (Dam) - 11h25	S8 (Dam) - 10h01	S9 (Spring) - 09h37	Existing Mon BH - 1	Prop Mon BH - 2	Prop Mon BH - 3	Prop Mon BH - 4
Lab / Sampl	Lab / Sample No. & Date Tested			KW-22-97869 (13/05/2022)	KW-22-97870 (13/05/2022)	KW-22-97871 (13/05/2022)	KW-22-97872 (13/05/2022)	KW-22-98166 (19/05/2022)	KW-22-98167 (19/05/2022)	KW-22-98168 (19/05/2022)	KW-22-98169 (19/05/2022)
Parameter	Unit	Method	Result	Result	Result	Result	Result	Result	Result	Result	Result
Aluminium as Al3+	μg/L	M38	100	100	100	100	100	100	100	100	100
Ammonia as N	mg/L	M32	0.2	0.2	0.2	0.2	0.2	0.56	0.2	0.21	0.2
Arsenic as As	μg/L	M16	3	3	3	3	3	3	3	198	3
Boron as B	μg/L	M16	100	100	100	100	100	100	100	100	100
Cadmium as Cd	μg/L	M16	1	1	1	1	1	1	1	1	1
Chemical Oxygen Demand (Unfiltered)	mg/L		106	60	39	29	69	28	241	34	70
Chromium as Cr	μg/L	M16	5	5	5	5	5	5	5	5	5
Chromium as Cr6+	μg/L	M44	3	3	3	3	3	3	3	3	3
Copper as Cu	μg/L	M16	20	20	20	20	20	20	20	20	20
Cyanide as CN-	μg/L	M55	10	10	27	8	13	10	10	10	10
Dissolved Organic Carbon	mg/L	M20	21.4	12.3	4.68	4.57	5.09	2.62	3.12	1.16	1.06
Dissolved Oxygen	mg/L	M57	7.62	7.77	8.28	8.29	8.48	5.97	6.59	6.2	6.69
E. coli	MPN/100mL	M9	10	1	72	44	12	0	68	0	8
Electrical Conductivity @ 25°C	mS/m	M4	56.8	51.2	31.2	45	56.7	118	63.6	29	60.8
Fats, Oils & Grease	mg/L		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Fluoride as F-	mg/L	M32	0.53	0.5	0.5	0.5	0.5	0.5	0.5	1.42	1.28
Free Chlorine	mg/L	On Site	0.52	0.47	0.1	0.1	0.12	0.25	0.05	0.05	0.1
Lead as Pb	μg/L	M16	2	2	2	2	2	2	2	2	2
Manganese as Mn	μg/L	M70	922	84	88	39	91	109	74	10	178
Mercury as Hg	μg/L	M16	1	1	1	1	1	1	1	1	1
Nickel as Ni	μg/L	M16	5	5	5	5	5	5	5	5	5
Orthophosphate as P	mg/L	M32	1	1	1	1	1	1	1	1	1
Oxygen Absorbed	mg/L	M73	24.5	5.9	6.2	6.4	17.7	6.4	24.1	5.7	24.5
рН @ 25°C	pH units	M6	7.19	7.5	7.38	7.93	7.99	7.28	7.8	8.64	7.62
Phenols	μg/L	M34	10	10	10	10	10	10	10	10	10
Potassium as K	mg/L	M18	7.59	17.7	2.41	6.57	4.25	2.57	2.39	10.4	3.13

Sample	S4 (Marshy) - 10H58	S5 (Dam) - 11h09	S7 (Dam) - 11h25	S8 (Dam) - 10h01	S9 (Spring) - 09h37	Existing Mon BH - 1	Prop Mon BH - 2	Prop Mon BH - 3	Prop Mon BH - 4		
Lab / Sample No. & Date Tested			KW-22-97868 (13/05/2022)	(13/05/2022)	(13/05/2022)	KW-22-97871 (13/05/2022)	(13/05/2022)	KW-22-98166 (19/05/2022)	KW-22-98167 (19/05/2022)	KW-22-98168 (19/05/2022)	KW-22-98169 (19/05/2022)
Parameter	Unit	Method	Result	Result	Result	Result	Result	Result	Result	Result	Result
Selenium as Se	μg/L	M16	20	20	20	20	20	20	20	20	20
Sodium as Na	mg/L	M18	29.2	13.2	16.8	18.5	36.2	65.3	98.3	19	35.7
Somatic Coliphages	Count/10mL	M39	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detect ed	Not Detect ed
Sulphide (as S)	mg/L	M18	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Temperature	°C		20	20	20	20	20	22	22	22	22
Total Sus-pended Solids	mg/L	M8	92	5	7	9	6	20	2128	26	212
Zinc as Zn	mg/L	M16	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05

4.5 Surveying Boreholes and Sampling Points

These features were surveyed using a Garmin Oregon 650 hand-held GPS and plotted on the drawings.

4.5 Historic Geophysical Surveys

Three geophysical traverses were conducted alongside the proposed landfill site during the geotechnical survey carried out in 2018 – refer to Report LL3034 Appendix C. Two prominent electromagnetic anomalies were recorded on Traverses Majuba PS-1 and PS-3 which were carried out parallel to each other and were used as a guide to locate drilling positions of monitor boreholes BH2, BH3 and BH4.

4.6 Historic Borehole and Spring Census

Five hillslope seepage wetlands were recorded on the site and another hillslope seepage along the toe of the closed landfill site. A 44.2m deep monitor borehole (BH1) with a static water level recorded at 9.7m below ngl located near a small leachate dam on the north-western corner of the closed landfill site was also inspected and vital information recorded – refer to Figure 2, the Site Plan, Volume 2, Report LL3034.

5. GEOLOGY AND SITE SOILS

The site is underlain by sediments – that is shale and sandstone of the Vryheid Formation, intruded by Post-Karoo dolerite as sheets or sills, often capping the low hills in the area – see Figure 3A, Regional Geology, Figure 3B, the Site Geology and Figure 3C, the Cross Section contained in Volume 2 and Table 5.1.

Shallow weathered and intensely fractured dolerite is exposed along the southern fringes of the closed landfill site as well as within the deeply eroded access road along the northern slope of the hillock on which the proposed and historic landfill sites are located. The lithologies of the recently

drilled boreholes were dominated by carbonaceous shale and to a lesser extent by sandstone with a dolerite sill in the top 3m of BH's 3 & 4, thickening southwards to 14m in BH2.

Elsewhere, the bedrock is blanketed by transported soils – that is hillwash and alluvium. The latter covers the area along the toe of the closed landfill site, extending across the district road in a north-westerly direction. Scattered sandstone outcrops further to the east as well as along the steeper southerly slope of the hillock.

TABLE 5.1: STRATIGRAPHIC SEQUENCE OF THE SITE

Lithology	Sub-Group	Group	Sequence
Dolerite	Intrusive		Post-Karoo
Shale and sandstone	Vryheid	Ecca	Karoo Super Group

The site falls within a region with a Weinert N-Value of 1.3 indicating that chemical decomposition is the dominant mode of weathering.

A north-west trending structural lineament concealed by cover-rocks – thought to be a fault line - was inferred from the geophysical data but was not intersected by the recent drilling. However, dolerite was intersected in all three of the 20m deep monitor boreholes drilled recently.

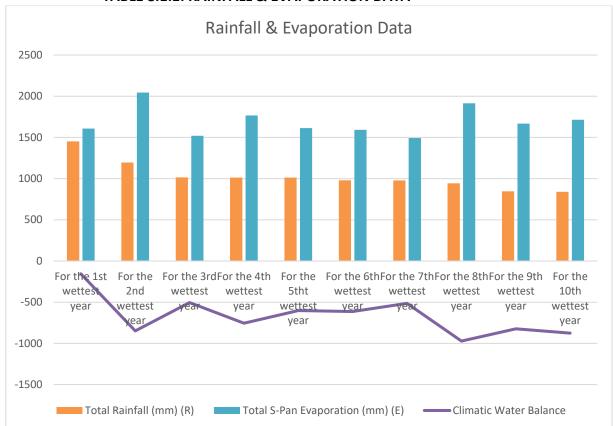
6. SURFACE HYDROLOGY

The southern boundary of the landfill site more or less runs along the ridge line with an average elevation of 1769m amsl. The site slopes towards the northern boundary along the gravel district road, some 200m downhill. Several hillslope seepage wetlands were identified – refer to Figure 4, Surface Hydrology, Volume 2. These wetlands ostensibly emanate at the dolerite/sedimentary bedrock contact zones to form spring lines at various elevations below the landfill terrain, draining away to form wetlands covered by thick stands of hydrophilic grasses and - shrubs.

The uppermost spring line is about 18m below the crest of the hillock and about 13m below the phreatic surface seemingly present at an elevation of 1765m amsl, followed further downhill at irregular intervals by another two spring lines at 1737m and 1732m amsl.

7. VEGETATION

The area surrounding the site is characterised by historically cultivated areas which had been turned over to pastures with thick stands of hip-high Eragrostes grass – a favourite among cattle breeders.


At the time of the investigation, the proposed site was covered by tall stands of Eragrostes grass which made observations and moving about the site very difficult. Towards the swampy, lower-lying areas, the soggy ground is covered by thick, short stands of hydrophyllic grass and - shrubs with a characteristic rusty colour.

The closed landfill site is partially overgrown with short Kikuyu grass, alien shrubs and a single Acacia Karoo sapling. The current site drainage precautions and grass cover had prevented erosion of the closed waste landfill site but the access road was badly eroded with deep ruts in the weathered bedrock.

8. CLIMATE

8.1 Rainfall

Rainfall and evaporation data from Meteorological Station No. C1E007, located approximately 50km north-northwest of the Majuba Power Station for the period 1980 to 2017 (38 years) is presented below – refer to Table 8.1.1. The data is based on the six-month period in which the most rainfall occurred.

TABLE 8.1.1: RAINFALL & EVAPORATION DATA

8.2 Surface Wind Field

The wind field for the study area is described with the use of wind roses. Wind roses comprise 16 spokes which represent the directions from which winds blew during the period. The period and diurnal for the Eskom Majuba AQMS for the period 2016 to 2019 are shown in Figure 8.2.1. The colours reflect the different categories of wind speeds; the yellow area for example, representing winds of 4 m/s to 5 m/s. The dotted circles provide information regarding the frequency of occurrence of wind speed and direction categories. The figure given for calm conditions represents the frequency with which the calms occurred, i.e. periods during which the wind speed was below 0.5 m/s.

During the day the wind is predominantly from the west, with a secondary component from the east, with fairly strong wind speeds and little calms. During the night the wind field shifts to be mainly from the east and southeast. The wind is generally stronger during the day with more frequent calms during the night.

FIGURE 8.2.1: PERIOD & DIURNAL WIND ROSES FOR THE ESKOM MAJUBA AQMS, 2016 - 2019

9. INFRASTUCTURE and MAN-MADE FEATURES

The main access road to the closed landfill site which turns off the gravel district road will most probably also be used to access the proposed site. The closed landfill site has been fenced off but at the time of the investigation the 2.5m high security fence was in a state of disrepair and the main gate was broken. The closed landfill site is blanketed by a layer of soil which was imported during the routine maintenance by the contractor. Top soil had been stripped off over quite a large area to the south and to the east of the site, leaving some areas barren with exposed bedrock which had been eroded in places.

Several abandoned borrow pits in close proximity to the site are indicated on the Locality Plan, Figure 1 in the beginning of the report. It is presumed that the borrow materials were imported to the power station at the time of its construction and also used for pavement construction, wearing courses and backfill.

10. GEOHYDROLOGICAL APPRAISAL

10.1 Aguifer, Groundwater Phreatic Surface and Seasonal Fluctuations

The water strike depths, blow yields, phreatic surface and general groundwater flow direction have been established and are presented on the Geological Cross Section, Figure 3C, Volume 2.

The phreatic surface is at an average depth of 4m below surface and seemingly emulates the topography in a NNE direction towards Majuba Power Station with a low groundwater gradient of some < 0.5%. A summary of the water strikes, blow yield and static water levels are presented by Table 10.1.1. As indicated, the static water level of the historic borehole BH1 has receded with 5,1m

over the last four years. Seasonal fluctuations of monitor boreholes BH2, BH3 and BH4 are unknown but will be able to be measured within six months and compared with BH1's recorded variation.

TABLE 10.1.1: SUMMARY OF GROUNDWATER MORPHOLOGY

BH No.	Blow Yield (I/h)	Static Water Level (m) with Dates	Water Strike Depth (m)
BH 1	unknown	9,7 (2018) 14,8 (2022)	unknown
BH 2	400	3,7 (2022)	7,0
BH 3	dry	17,5 (2022) After 24 hrs	Dry borehole
BH 4	720	4,4 (2022)	13

10.2 Aquifer Characteristics

Aquifers are to be classified in terms of their existing and/or potential value as a resource, and hence their sensitivity to pollution. The criteria for classification are potential yield, significance and water quality.

- ❖ Potential Yield: The yield range for BH1 is unknown. However, the three most recently drilled boreholes recorded yields ranging from dry to <1l/s. The potential application of BH2, BH3 and BH4 is for stock watering only and in terms of aquifer classification, these monitor boreholes comply with a 'Low' type of aquifer.
- ❖ Aquifer Significance: The potential significance of the site aquifer is assessed as being an insignificant yielding aquifer which will never be utilised except for monitoring purposes in accordance with the following criteria: -

TABLE 10.2.1 POTENTIAL AQUIFER SIGNIFICANCE

Aquifer	Assessment	Site Aquifer
Sole source aquifer	Aquifer used to supply 50% or more of urban domestic water for a given area	N/A
Major aquifer	High – yielding aquifer	N/A
Minor aquifer	Moderately yielding aquifer	N/A
Non-aquifer	Insignificantly yielding aquifer which will never be utilised except for monitoring purposes	Site aquifer
Special aquifer	Designated aquifer	N/A

❖ Groundwater Quality: The background quality of the surface and groundwater, both up- and downslope from the landfill site were determined. The groundwater quality is based on historical (2018) and more recent (2022) water analyses data. The Chemical Oxygen Demand (COD) and E. coli concentrations of the historical borehole (BH1), the more recently drilled monitor boreholes (BH2, BH3 & BH4) and five surface water sites were used to indicate that except for BH2 with its high COD value (241mg/I), the site and immediate surroundings are seemingly unpolluted – refer to Table 10.2.2 and Appendix C, Water Laboratory Data.

In terms of drinking water quality, all the samples submitted inclusive of the historical borehole BH1 comply with Class 1 type water (SANS 241:2015) – the only exception being the high Arsenic

concentration of BH3 which is deemed unsuitable for human consumption. The water quality data is attached as Appendix D to the report.

TABLE 10.2.2: WATER QUALITY ITO COD & E. coli

SAMPLE ID	S4	S5	S7	S8	S9	BH1	BH2	вн3	BH4
OD (mg/l)	106	60	39	29	69	28	241	34	70
E. coli (MPN/ml	10	1	72	44	12	0	68	0	8

Unfortunately, historic data is inadequate and could therefore not be used to compare with the more recent data to assess the impact of the landfill has had on the groundwater quality and will have to be used as future background information.

- Groundwater Usage: The borehole and spring census did not record any existing boreholes or wells – that is with the exception of monitor BH1 which was drilled in the past.
- ❖ Sensitive Areas: The landfill site is not located within an area characterised by aquifers with a potentially strategic value, or where groundwater is or may be used in the future.

❖ Sub-Surface Issues:

- i) Undermined Areas & Future Mining: the area is not undermined and ESKOM confirmed that future mining will not take place – personal communication, Ms. M. Mmola, Savannah Environmental.
- ii) Sinkholes and Surface Subsidence: the site is underlain by sedimentary and intrusive bedrock types and unlike dolomite, are not prone to sinkhole formation.

10.3 Storm Water Management & Site Drainage

A storm water management system should be designed to remove all surface water from the site and direct it to natural drainage lines. It is emphasised that the storm water system has to accommodate the removal of any accumulated surface water and it should also conform to drainage requirements of landfill sites in general.

10.4 Potential for Landfill Gas and Air Quality Problems

During the process of waste decomposition, landfill gases are generated and usually comprise a major component of methane. Where the methane concentrations reach between 5 and 15% of atmospheric gas, landfill gas represents an explosion hazard, as well as a potential risk.

It must be taken into account that the area is rather wind-swept (see Chapter 8.2) and although there are calm tendencies during the night, there are no structures on site or in close proximity to which the gas can migrate to where it could accumulate and represent an explosion hazard. Typical methane gas migration paths such as through porous rock — which do not occur on site as the sediments and intrusive dolerite are solid and the absence of subsurface services which may create paths make gas migration highly unlikely.

Regarding air quality problems, no odours from the closed landfill site were detected during the 2018 and 2022 site visits and gas and odour generation are regarded as negligible.

11. IMPACTS AND MITIGATION

This section details the environmental impacts of the proposed development would have on the groundwater. This includes the two designated alternatives, namely A and B located adjacent to the closed landfill site.

11.1 Construction Phase

Nature of Impact: Groundwater contamination during fuel spillages from construction machinery and vehicle movement.

	Alteri	native A	Alteri	native B
	Without mitigation	With mitigation	Without mitigation	With mitigation
Extent	Local (2)	Site (1)	Local (2)	Site (1)
Duration	Short (1)	Very Short (1)	Short (1)	Very Short (1)
Magnitude	Minor (2)	Small (0)	Moderate (6)	Low (4)
Probability	Probable (3)	Improbable (2)	Probable (3)	Probable (3)
Significance	Medium (40)	Low (20)	Medium (40)	Medium (40)
Status	Negative	Negative	Negative	Negative
Reversibility	Low	Medium	Low	Low
Irreplaceable loss of resources?	No	No	No	No
Can impacts be mitigated?	Yes	-	Yes	-

Mitigation/Enhancement Measures:

- i) containment of fuel storage facility;
- ii) implement groundwater monitoring programme;
- iii) accurate fuel records to be kept;
- iv) clean-up protocols adhered to;
- v) excavate to 3m depth only to safeguard phreatic surface;
- vi) overburden soil stockpiled for re-use as interlayer material;
- vii) install clay liner;
- viii) rehabilitate areas where soil has been stripped;
- ix) good drainage and stormwater control.

11.2 Operational Phase

Nature of Impact: groundwater contamination during fuel spillages from construction machinery and refuse trucks.

	Alterna	tive A	Alternati	ve B
	Without mitigation	With mitigation	Without mitigation	With mitigation
Extent	Local (2)	Site (1)	Local (2)	Site (1)
Duration	Medium (3)	Short (3)	Medium (3)	Short (3)
Magnitude	Moderate (6)	Low (4)	Moderate (6)	Low (4)
Probability	Highly Probable (4)	Improbable (2)	Highly Probable (4)	Probable (3)
Significance	Medium (40)	Low (20)	Medium (40)	Low (20)
Status	Negative	Negative	Negative	Negative
Reversibility	Low	Medium	Low	Low
Irreplaceable loss of resources?	yes	No	yes	No
Can impacts be mitigated?	Yes	-	Yes	-

Mitigation/Enhancement Measures:

- i) implement groundwater monitoring programme;
- ii) accurate fuel records to be kept;
- iii) clean-up protocols adhered to;
- iv) implement inter layering with soil lenses;
- v) good drainage and stormwater control.

Nature of Impact: Groundwater contamination due to leakages/spillages.

	Alterna	Alternative A		Alternative B	
	Without mitigation	With mitigation	Without mitigation	With mitigation	
Extent	Local (2)	Site (1)	Local (2)	Site (1)	
Duration	Medium (3)	Short (3)	Medium (3)	Short (3)	
Magnitude	Moderate (6)	Low (4)	Moderate (6)	Low (4)	
Probability	Highly Probable (4)	Improbable (2)	Highly Probable (4)	Probable (3)	
Significance	Medium (40)	Low (20)	Medium (40)	Low (20)	
Status	Negative	Negative	Negative	Negative	
Reversibility	Low	Medium	Low	Medium	
Irreplaceable loss of resources?	Yes	No	Yes	No	
Can impacts be mitigated?	Yes	-	Yes	-	

Mitigation/Enhancement Measures:

- i) implement groundwater monitoring programme;
- ii) ensure adequate lining and drainage systems are installed;
- iii) ensure surface run-off is contained and treated before disposal;
- iv) implement inter layering with soil lenses;
- y) good drainage and storm water control.

11.3 Closure & Decommissioning Phase

Nature of Impact: Groundwater contamination due to leakages/spillages

	Alternative A		Alternati	ve B
	Without mitigation	With mitigation	Without mitigation	With mitigation
Extent	Local (2)	Site (1)	Local (2)	Site (1)
Duration	Permanent (5)	Very Short (1)	Permanent (5)	Very Short (1)
Magnitude	Moderate (6)	Low (4)	Moderate (6)	Moderate (6)
Probability	Highly Probable (4)	Improbable (2)	Highly Probable (4)	Probable (3)
Significance	Medium (40)	Low (20)	Medium (40)	Medium (40)
Status	Negative	Negative	Negative	Negative
Reversibility	Low	Medium	Low	Medium
Irreplaceable loss of resources?	Yes	No	Yes	No
Can impacts be mitigated?	Yes	-	Yes	-

Mitigation/Enhancement Measures:

- ensure adequate lining and drainage systems as well as leachate pits are installed;
- ii) ensure that surface run-off is contained and treated before disposal;
- iii) adequate storm water measures are implemented;
- iv) groundwater monitoring to ensure early detection of pollution;
- v) capping material to be grassed over.

11.4 Cumulative Impacts

From a hydrogeological perspective, it can be concluded that all impacts identified have a medium to low significance; however, with implementation of mitigation measures, the impact can be decreased to low.

	Overall Impact of the proposed project considered in isolation	Cumulative impact of the project in the area
Extent	Site (1)	Local (2)
Duration	Permanent (4)	Permanent (5)
Magnitude	Low (4)	Low (4)
Probability	Improbable (2)	Improbable (2)

	Overall Impact of the proposed project considered in isolation	Cumulative impact of the project in the area
Significance	Low (20)	low (20)
Status	Negative	Negative
Reversibility	Medium	Low
Irreplaceable loss of resources?	No	No
Can impacts be mitigated?	Yes	Yes

11.5 Preferred Alternative

The summary of the preferred alternative to be developed as a general waste disposal site is presented in Table 15.6.1.

TABLE 15.6.1: PREFERRED ALTERNATIVE

Alternative Site	Preference	Reasons
Alternative A	Preferred	The uppermost spring-line is some 9m below the crest of the proposed site and the 3m deep excavation for the landfill is sufficiently shallow to prevent interference with the phreatic line; sufficient interlayer and capping material available on site; mitigation measures will reduce risk of contamination between low and medium.
Alternative B	Discard	This site intersects the spring line and is partially stripped of cover soils required for interlayering and capping; pollution of groundwater sources is highly probable over the long term.

It can be concluded that all impacts identified on the Alternative site A have a medium to low significance; however, with implementation of mitigation measures, the impact can be decreased to low.

Mitigation measures to be implemented for inclusion in the EMPr include the following: -

- implement groundwater monitoring programme to ensure early detection of pollution;
- accurate fuel records to be kept;
- clean-up protocols adhered to;
- implement inter layering with soil lenses;
- good drainage and stormwater control.
- Top soils to be stockpiled for re-use;
- ensure adequate lining and drainage systems as well as leachate pits/dams are installed;
- ensure surface run-off is contained and treated before disposal;
- capping material to be grassed over;

11.6 Sensitive Receptors

There are no potential receptors downstream of the landfill site and at most the water use will be for stock watering.

12. MONITORING PROGRAMME

It is recommended that groundwater quality monitoring be implemented once the site is operational to ensure water remains compliant with the DWAF Minimum Requirements for Waste Disposal by Landfill (2nd Edition, 1998) Boreholes to be monitored includes BH1, BH2, BH3 & BH4.

TABLE12-1: MONITORING BOREHOLE DETAILS

Borehole No.	Southings	Eastings	Monitoring Frequency
BH1	S27° 07′ 05.4′′	E029° 46′ 14.8′′	
BH2	S27° 07′ 21.6′′	E029° 46′ 16.0′′	Quarterly
BH3	S27° 07′ 17.1′′	E029° 46′ 29.4′′	ζω,
BH4	S27° 07′ 03.4′′	E029° 46′ 27.5′′	

The suggested parameters for detection monitoring are tabulated below and should be compiled on a quarterly basis.

TABLE 12-2: SUGGESTED PARAMETERS FOR DETECTION MONITORING (DWAF, 1998)

Alkalinity (Total Alkalinity)	Calcium (Ca)	
Ammonia (NH3) as N	Fluoride as F	
Chemical Oxygen Demand (COD)	Magnesium (Mg)	
Chloride as Cl	Sodium as Na	
Electrical Conductivity	Sulphate as SO4	
Nitrate (NO₃) as N		
Nitrite (NO2) as N		
pH – Value		
Potassium (K)		·
Total Dissolved Solids		

These results will be used for comparison purposes during all future monitoring events, in an effort to determine any effects on the environment as a result of the landfill construction, the operational activities and eventually the decommissioning and the landfill site closure.

13. PROPOSED REHABILITATION PLAN

The following rehabilitation plan can be utilized should any contamination be detected during monitoring.

❖ Source

- Identify the source of contamination;
- Identify the nature and extent of contamination;
- Eliminate or control source of contamination (if possible).

Exposure Pathways

- Establish preferential flow paths;
- * Receptor (current receptors include animals and plants.)
 - Identify risk to potential receptors;
 - Ensure end-users are aware of potential contamination;
 - Conduct quality analysis to ensure water remains within quality guidelines for intended use.

Routine maintenance of stormwater canals and catch pits, leachate dams, monitoring boreholes etc. should be conducted on a regular basis. Any potential contamination detected should be reported. If present, down gradient users should be notified of the potential concern and remedial measures should be implemented.

14. REASONED OPINION & CONDITIONS FOR AUTHORIZATION

- ❖ The proposed landfill site to the east of the closed landfill site that is Alternative A should be developed and not the alternative site to south thereof. The reasons being: easy access, known excavation classes and depths as well as cover soil material qualities and distribution. In addition, the Alternative A or 'northerly' site is at least 9m above the spring line whereas the 'southerly' site's development (stripped from most of the overburden soils) will interfere with the spring line refer to Figure 4, Surface Hydrology, Volume 2.
- ❖ Given the potential hydrogeological impacts detailed in this report, the development of the Alternative site A can only be viable if the mitigation measures, included in Section 11 are implemented and adhered to;
- Groundwater monitoring is imperative and necessary, in order to detect groundwater contamination before impacting nearby receptors;
- ❖ Based on this, the project can be granted environmental authorization.

15. DISCUSSIONS & DEVELOPMENT RECOMMENDATIONS

15.1 General

The closed - and proposed landfill sites (both alternatives) are underlain by sedimentary bedrock intruded by a dolerite sill which is in various stages of decomposition. The bedrock is sequentially blanketed by residuum and transported soils.

Whether the inferred north-west trending structural lineament referred to in Chapter 5 has created groundwater compartments or possibly acts as a channel-way connecting elevated water sources within the landfill site with the lower-lying wetlands is unknown and can only be determined by drilling additional boreholes on a small grid to assess the structural tendencies, to monitor seeps and boreholes frequently and to model the groundwater regime of the site.

15.2 General Status of Closed Waste Landfill Site

The closed waste landfill site appears to be well-constructed and the routine maintenance has seemingly been done thoroughly. Erosion, settlement, tension cracks and downhill creep were not observed, thereby indicating negligible to low failure hazard potential.

The seepage emanating along the toe of the fill with some of it draining into the small leachate dam is attributed to natural groundwater drainage rather than leachate from the landfill site.

The site is odourless and methane gas concentrations are seemingly < 5%.

15.3 Surface Hydrology, Phreatic Surface, Drainage and Monitoring

Several perennial and non-perennial hillslope seeps ostensibly emanating at the dolerite/sedimentary bedrock contact zones form spring lines at various elevations on and below the landfill site, draining away to form wetlands – refer to Figure 4, Surface Hydrology, Volume 2.

The phreatic surface is present at 4m below surface level and the landfill design should take this into consideration, allowing for a buffer zone of at least 1m, exclusive of the impermeable clay liner.

In addition to these design precautions, minimal surface water infiltration into the fill and good management of surface run-off are pre-requisites. However, this will also require continuous interlayering and good fill - as well as site drainage management.

15.4 Water Quality

Generally, the water quality of sampling points that are scattered around the site are, with the exception of two data points, currently indicative of an unpolluted water regime. This will however have to be monitored regularly so that a comprehensive data base can be established and fluctuations identified and compared.

15.5 Aquifer Characteristics, Groundwater Usage and Sub-surface Issues

- The landfill site is characterised by an aquifer of low significance and can only be used for monitoring purposes, confirming the fact that the site is not located in an area characterised by aquifers with a potentially strategic value. Furthermore, the surrounding area is seemingly devoid of groundwater boreholes and stock watering is not an issue as there is sufficient surface sources available.
- ❖ The area is not undermined and no future mining is planned.
- The site is underlain by sedimentary and intrusive bedrock types and unlike dolomite, are not prone to sinkhole formation.

16. GENERAL

Variances in groundwater, soil and rock quality and quantity from those predicted may be encountered during construction and these should be recorded, however no warranty against these variations is expressed or implied, due to the geological changes that can occur over time due to natural processes, or human activity.

However, it is impossible under the constraints of an investigation of this nature to guarantee that zones of poorer geological materials or deeper excavation or better quality water were not identified that could have had a significant bearing on the outcomes thereof. The investigation has therefore attempted, through interpolation and extrapolation at known test locations, to identify problem issues of a geotechnical and groundwater nature on which this report is based.

Every effort was made during the feasibility study to ensure that generally accepted practices of our profession were used in the sub-surface evaluation of the site, and that the sampling and testing was representative of the water conditions observed on-site.

17. APPENDICES

- Appendix A Monitor Borehole Profiles with Photographs
- Appendix B Pump Test Data with Recommendations
- Appendix C Water Laboratory Test Data
- Appendix D Water Quality Data
- Appendix E CV's & Notable Experience

APPENDIX A

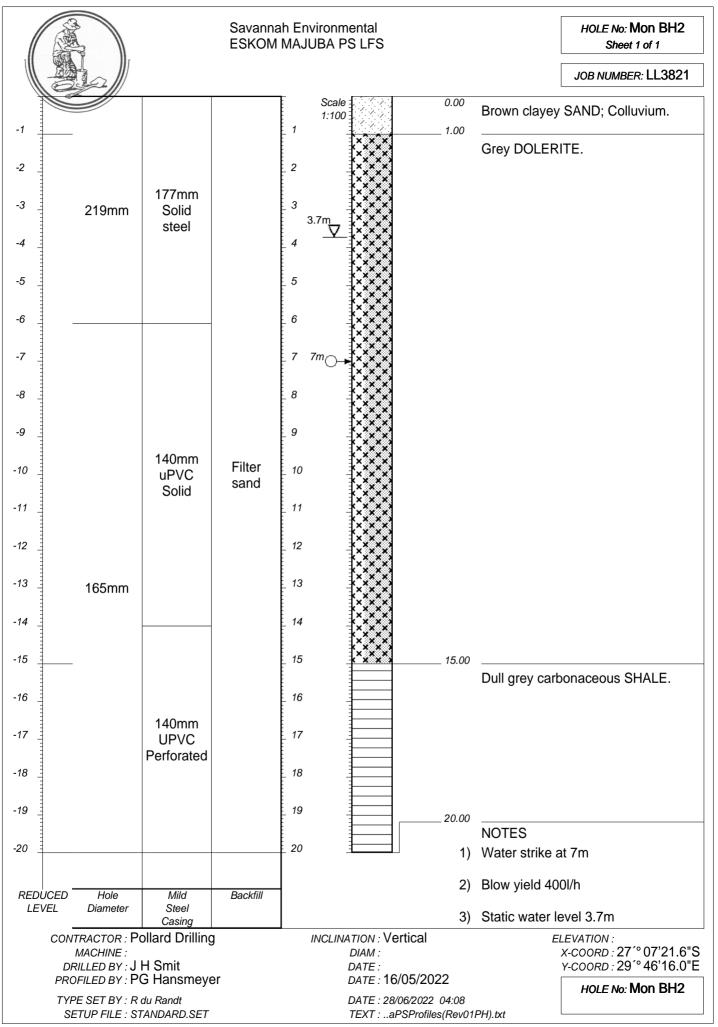
BOREHOLE PROFILES & PHOTOGRAPHS

CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL3821	HOLE No.	Existing Mon Borehole - BH1
X-COORD:	S 27 07'5.41"	Y-COORD:	E 029 46'14.80"

EXISTING MON BOREHOLE - BH1

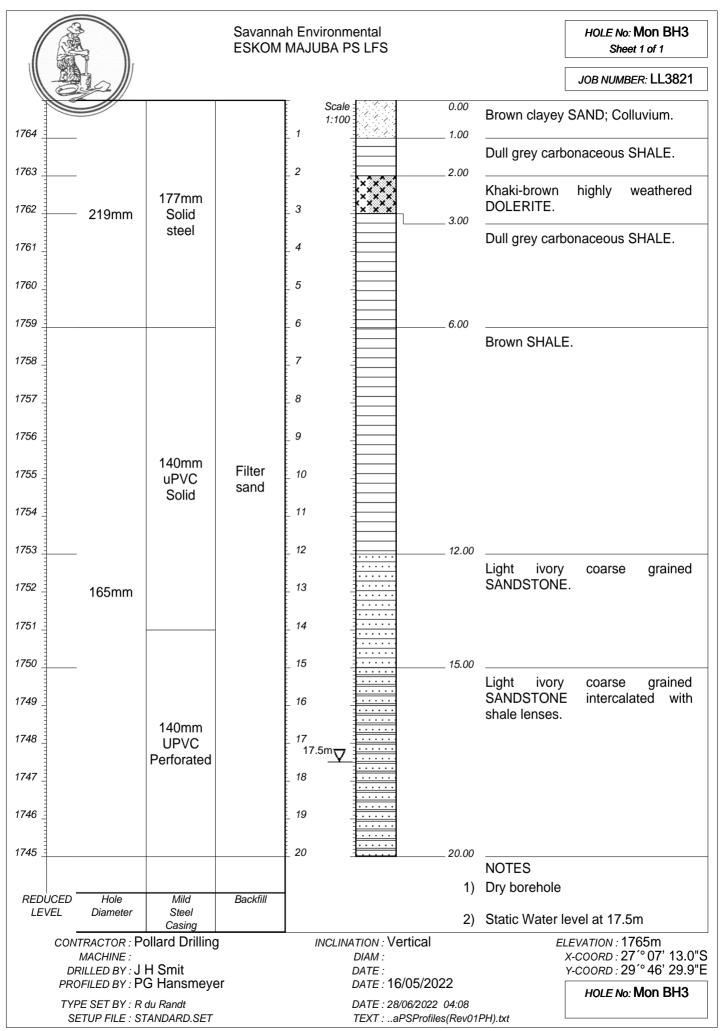
CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL38121	HOLE No.	Prop Mon Borehole - BH2
X-COORD:	S 27 07' 21.6"	Y-COORD:	E 029 46' 16.0"

PROP MON BOREHOLE - BH2



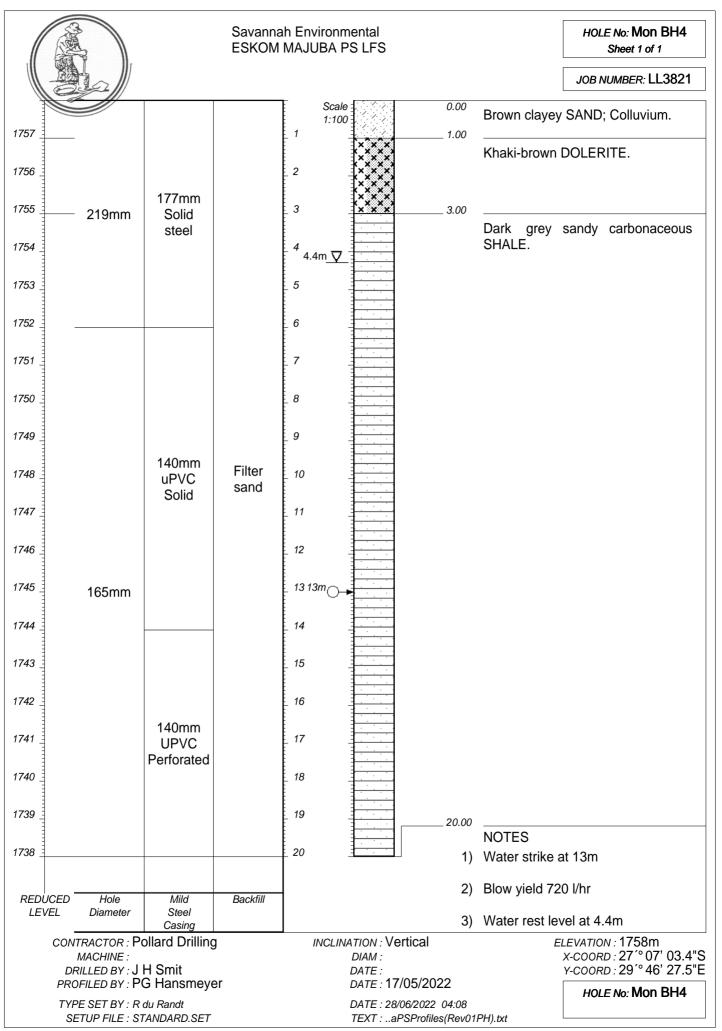
CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL38121	HOLE No.	Prop Mon Borehole - BH3
X-COORD:	S 27 07' 17.1"	Y-COORD:	E 029 46' 29.4"

PROP MON BOREHOLE - BH3



CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL38121	HOLE No.	Mon BH2
X-COORD:	S 27 07'21.6"	Y-COORD:	E 029 46'16.0"

BOREHOLE _ Mon BH2



CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL38121	HOLE No.	Mon BH3
X-COORD:	S 27 07' 13.0"	Y-COORD:	E 029 46' 29.9"

BOREHOLE _ Mon BH3

CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL3821	HOLE No.	Mon BH4
X-COORD:	S 27 07' 03.4"	Y-COORD:	E 029 46' 27.5"

BOREHOLE _ Mon BH4

CLIENT:	Savannah Environmental	PROJECT NAME:	ESKOM MAJUBA PS LFS
PROJECT REF:	LL38121	HOLE No.	Mon BH4A
X-COORD:	S 27 07' 03.4"	Y-COORD:	E 029 46' 27.5"

CAPPED BOREHOLE _ Mon BH4

PROFILED BY:

Savannah Environmental ESKOM MAJUBA PS LFS

LEGEND Sheet 1 of 1

JOB NUMBER: LL3821

	SAND	{SA04}
	SANDY	{SA05}
	CLAYEY	{SA09}
	SANDSTONE	{SA11}
	SHALE	{SA12}
	DOLERITE	{SA18}{SA42}
6.5	WATER SEEPAGE/water strike	{CH50}
	STATIC WATER / REST LEVEL	{SA35}

CONTRACTOR: INCLINATION: ELEVATION:

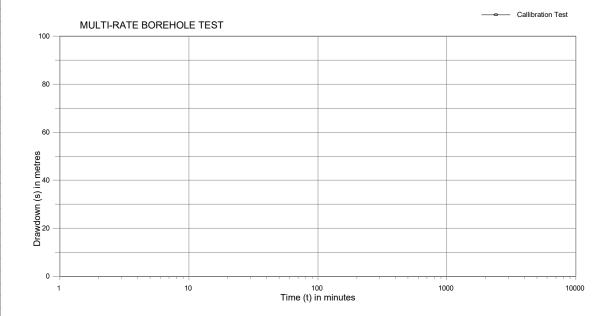
MACHINE: DIAM: X-COORD:

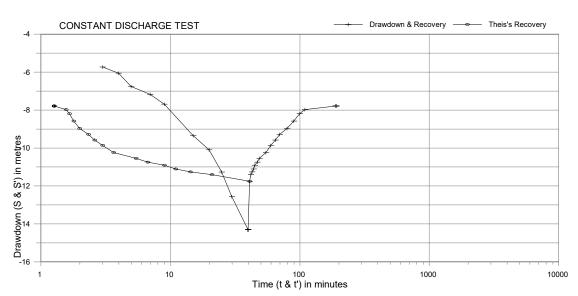
DRILLED BY: DATE: Y-COORD:

DATE:

TYPE SET BY: R du Randt DATE: 28/06/2022 04:08
SETUP FILE: STANDARD.SET TEXT: ..aPSProfiles(Rev01PH).txt

LEGEND SUMMARY OF SYMBOLS




APPENDIX B

PUMP TEST DATA

				-				-		
BORE	HOLE TEST R	RECORD SHEET								
REQUES	T NO. :		MAP REF	ERENCE:	•	•	0	REGION :	•	0
BOREHO	DLE NO.:	BH 02	COORDIN	ATES	(DD-MM-SS)	Lo:	0	DISTRICT:		
ALT. BH.	NO.:		LATITUDE	:	S27 07 21.6		0	SITE NAME:	MAJUBA	
ALT. BH.	NO.:	-	LONGITUI	DE:	E29 46 16.0		0	FARM NAME:		
BOREHO	DLE DEPTH (m):				L ABOVE CASING	(m):			EXISTING PUMP:	
WATER	LEVEL (mbgl):		3,70	CASING HEI	GHT (magl):			0,00		
DEPTH (OF PUMP (m):		18,00	BH DIAM. (P	UMP INLET) (mm):			165	CONTRACTOR:	Pollard Drilling
		CONSTANT RATE DISCH	HARGE TEST	AND RECOVER	Y	•	•	-		•
	TEST STAR	ΓED	-		TEST COMPLETE	D		DURATION (min):	190
DATE:	18/05/2022	TIME:		DATE:	18/05/2022	TIME:		TYPE OF PUMP	:	0
* NOTE	*	Distance between discharge			OBSERVATION H	IOLE 1	OBSERVA	TION HOLE 2	OBSERVATION HOLE 3	
		and observation holes in m.			Nr :	-	Nr :	-	Nr :	-
	DISCHAR	GE BOREHOLE			Distance m:	-	Distance:	-	Distance:	-
TIME	DRAWDOWN	YIELD	TIME	RECOVERY	TIME	DRAWDOWN	TIME	DRAWDOWN	TIME	DRAWDOWN
(min)	(m)	(l/s)	(min)	s' (m)	(min)	(m)	(min)	(m)	(min)	(m)
1	5,06	0,08	1	11,75	1		1		1	1
2	5,52	0,08	2	11,40	2		2		2	
3	5,73	0,08	3	11,25	3		3		3	
4	6,05	0,08	4	11,10	4		4		4	
5	6,75	0,08	5	10,90	5		5		5	
7	7,17	0,08	7	10,74	7		7		7	
9	7,68	0,08	9	10,54	9		9		9	1
15	9,34	0,08	15	10,23	15		12		12	
20	10,09	0,08	20	9,86	20		15		15	
25	11,26	0,08	25	9,58	25		20		20	
30	12,56	0,08	30	9,28	30		25		25	
40	14,30	0,08	40	8,96	40		30		30	
50	14,50	0,00	50	8,58	50		40		40	+
60			60	8,19	60		50		50	+
70			70	7,97	70		60		60	
150			150	7,78	70		70	+	70	
180			180	7,76	80		80	+	80	
210			210		90		90	+	90	
240			240		120		120	+	120	
300			300		150		150	+	150	
360			360		180		180		180	
420			420		210		210		210	
480			480		240		240		240	
540			540		270		270		270	
600			600		300		300		300	
720			720		360		360		360	
840			840		420		420		420	+
960			960		480		480		480	+
1080			1080		540		540		540	+
1200			1200		600		600		600	
1320			1320		660		660	+	660	
1440			1440		780		780		780	
1320			1140		900		900		900	
1440			1200		1020		1020	<u> </u>	1020	
1440			1260		1140		1140		1140	
			1320		1260		1260	+	1260	
			1380		1380		1380	+	1380	
			1440		1440		1440	1	1440	
TOTAL T	I IME PUMPED (m	:	1440		1440					
17	E YIELD (I/s):	11 100	t	0,08				ne since pumping s nce pumping stopp		
COMME			1.	2,00			2 011	, , <u>. ,</u> ,		

REGION:		BOREHOLE NO:	BH 02	MAP REFERENCE	:	
DISTRICT:		DEPTH:	20	LATITUDE :		S27 07 21.6
SITE NAME :	Mahikeng Provincial Hospital	WATER LEVEL:	3,7	LONGITUDE:		E29 46 16.0
VILLAGE:		DEPTH OF PUMP:	18	Lo SYSTEM :		
MULTI-RATE BOREHOLE TEST				DATE TESTED :	18/05/2022	
TEST Nr	YIELD	DURATION	DRAWDOWN	RECOVERY	RECOVERY	Q/st
	(l/s)	(min)	(m)	(min)	(m)	(l/s/m)
1						
2						
3						
4						
5						
CALIBRATION	0,00/0,00					
CONSTANT-RATE DISCHARGE TEST				DATE TESTED :	18/05/2022	
AVE. YIELD	DURATION	DRAWDOWN	RECOVERY	RECOVERY	kD	S
(l/s)	(min)	(m)	(min)	(m)	(m^2/day)	
0,08	40	14,30	150	7,78	0,0	1,00E-03
OBS. HOLE 1						
OBS. HOLE 2						
OBS. HOLE 3						

			Theis Method		EQUIPMENT
В	OREHOLE:	BH 02		0,0	TYPE
DISCHA	RGE RATE		20 hr/day 20 hr/day	ERR I/s ERR m3/d	MOTORISED
LAT	S27 07 21.6	Max Q	8 hr/day 8 hr/day	ERR I/s ERR m3/d	MOTORISED
LONG	E29 46 16.0		24 hr/day 24 hr/day	ERR I/s ERR m3/d	MOTORISED
	20 Hr Cycle		vater level	18,0 mbgl ERR mbgl	
	8 Hr Cycle 24 Hr Cycle		vater level vater level	ERR mbgl ERR mbgl 18,0 m	
		Берш огр	ишр	10,0 111	
	Т	0,	00 m2/day		
	h	11,	30 m	Depth to s	trike / boundary =
	u		RR		
	w(u)		RR		
	Theis Rest WL		RR m3/day 3,7 m		
	Critical h		14 m		

Recommendations

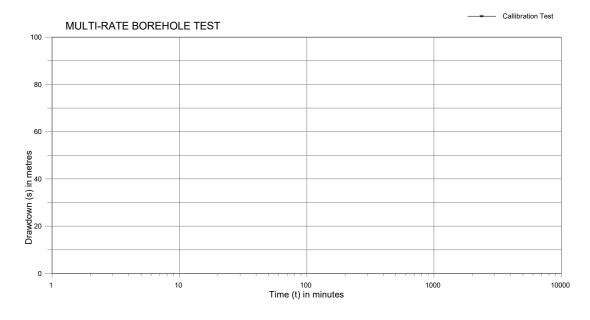
1.) The maximum abstraction rate for the borehole yield is not indicated since the borehole does not have enough water or it was not test pumped long enough.

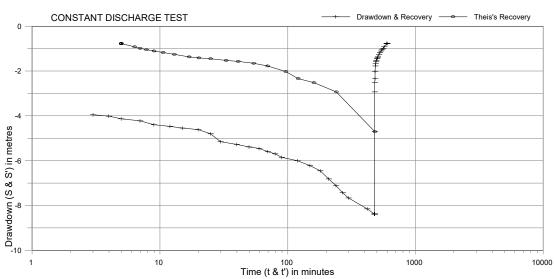
2.) The borehole should either be resited or must be test pumped for longer.

Recovery Check		
CD Yield (I/s)	0,1	
CD Duration (hr)	40,0	
Rec Duration (hr)	150,0	
Total (CD + Rec)		190,0
Drawdown (CD)	14,3	
Rec	7,8	
% Rec		45,6
Airlift Yield	(l/s)	
Inflow on a 24 hr/day	0,0 (l/s)	

MAX YIELD FOR GIVEN PERIOD: Q/st Method

Q/st	ERR	24 hR
Drawdown	11,30	
Q max	ERR	
		,


Q/st	ERR	20 hR
Drawdown	11,30	
Q max	ERR	


Q/st	ERR	8 Hr
Drawdown	11,30	
Q max	ERR	

NOTE: A monitoring facility must be installed in all equipped boreholes.

BOREH	OLE TEST R	ECORD SHEET								
REQUES	T NO .		MAP REFE	DENCE.				REGION :	0	-
i –		DII 04	COORDIN		(DD-MM-SS)	li	0	-	0	
BOREHO		BH 04				LO:		1	Matricka	
ALT. BH.			LATITUDE		S27 07 03.1		0	1	Majuba	
ALT. BH.	LE DEPTH (m):	-			E29 46 27.6 EL ABOVE CASING	(m):	U	FARIVI NAIVIE.	EXISTING PUMP:	
11	EVEL (mbgl):		4,43	1		(111).		0,00	EXISTING POWP.	
11	FPUMP (m):		18,00	1	GHT (magl): UMP INLET) (mm):			165	CONTRACTOR:	Pollard Drilling
DEPTHO	FPUMP (III).	CONSTANT RATE DISCHA						100	CONTRACTOR.	Pollard Drilling
	TEST START		INGE TEST	I RECOVER	TEST COMPLETE	<u> </u>		DURATION (min)		600
DATE:	17/05/2022	TIME:		DATE:	17/05/2022	TIME:		TYPE OF PUMP		000
* NOTE		Distance between discharge		DATE.	OBSERVATION H		OBSERVA-	TION HOLE 2	OBSERVATION HOLE 3	
NOIL		and observation holes in m.			Nr :	-	Nr :	-	Nr :	-
	DISCHARG	E BOREHOLE			Distance m:		Distance:	-	Distance:	. -
TIME	DRAWDOWN	YIELD	TIME	RECOVERY	TIME	DRAWDOWN	TIME	DRAWDOWN	TIME	DRAWDOWN
(min)	(m)	(I/s)	(min)	s' (m)	(min)	(m)	(min)	(m)	(min)	(m)
1	3,85	0,18	1	4,70	1	()	1	(111)	1	()
2	3,90	0,18	2	2,93	2		2		2	
3	3,95	0,18	3	2,51	3		3		3	
4	4,01	0,18	4	2,33	4		4		4	
5	4,13	0,18	5	2,02	5		5		5	
7	4,22	0,18	7	1,77	7		7		7	
9	4,39	0,18	9	1,65	9		9		9	
12	4,47	0,18	12	1,57	12		12		12	
15	4,47	0,18	15	1,52	15		15		15	
20	4,61	0,18	20	1,45	20		20		20	
25	4,80	0,18	25	1,45	25		25		25	
30	5,15	0,18	30	1,36	30		30		30	
40	5,13	0,18	40	1,25	40		40		40	
50	5,38	0,18	50	1,17	50		50		50	
60	5,45	0,20	60	1,10	60		60		60	
70	5,59	0,20	70	1,04	70		70		70	
80	5,69	0,20	80	0,98	80		80		80	
90	5,85	0,20	90	0,91	90		90		90	
120	6,00	0,20	120	0,77	120		120		120	
150	6,22	0,20	150	0,77	150		150		150	
180	6,45	0,20	180		180		180		180	
210	6,81	0,20	210		210		210		210	
240	7,11	0,20	240		240		240		240	
270	7,43	0,20	270		270		270		270	
300	7,43	0,20	300		300		300		300	
420	8,15	0,20	420		360		360		360	
480	8,38	0,20	480		420		420		420	
960	0,50	0,20	960		480		480		480	
1080			1080		540		540		540	
1200			1200		600		600		600	
1320			1320		660		660		660	
1440			1440		780		780		780	
1320			1140	 	900		900		900	
1440			1200	 	1020		1020		1020	
1440			1260	†	1140		1140		1140	
-			1320	 	1260		1260		1260	
				 			1380		1380	
			1380	 	1380		1440		1440	
TOTAL TI	ME DI IMPED /:	nM	1440	1	1440	l .		l no cinco numnina c		I
	ME PUMPED (mi E YIELD (I/s):	i iiu	H	0,20	1			ne since pumping sonce pumping stoppe		
COMMEN			<u> </u>	0,20			ı – ume sır	te pumping stoppe	su.	
COMMEN	110. 1).									

BH 04

REGION:		BOREHOLE NO :	BH 04	MAP REFERENCE	:	
DISTRICT:		DEPTH:	20	LATITUDE :		S27 07 03.1
SITE NAME :	Mahikeng Provincial Hospital	WATER LEVEL :	4,43			E29 46 27.6
VILLAGE:	maimong r rotmolar r loopitar	DEPTH OF PUMP:				220 10 27 10
	-					1
MULTI-RATE BOREHOLE TEST				DATE TESTED :	25/02/2022	
TEST Nr	YIELD	DURATION	DRAWDOWN	RECOVERY	RECOVERY	Q/st
	(l/s)	(min)	(m)	(min)	(m)	(I/s/m)
1						
2						
3						
4						
5						
CALIBRATION	0,00/0,00					
CONSTANT-RATE DISCHARGE TEST	•		•	DATE TESTED :	26/02/2022	
AVE. YIELD	DURATION	DRAWDOWN	RECOVERY	RECOVERY	kD	S
(I/s)	(min)	(m)	(min)	(m)	(m^2/day)	
0,20	480	8,38	120	0,77	2,5	1,00E-03
OBS. HOLE 1						
OBS. HOLE 2						
OBS. HOLE 3						

Recommendations

В	OREHOLE:	BH 04	Theis Method	0,0		EQUIPMENT TYPE
DISCHA	RGE RATE		20 hr/day 20 hr/day	0,084 6,0	l/s m3/d	MOTORISED
LAT	S27 07 03.1	Max Q	8 hr/day 8 hr/day	0,20 5,7	l/s m3/d	MOTORISED
LONG	E29 46 27.6		24 hr/day 24 hr/day	0,07 6,0	l/s m3/d	MOTORISED
	20 Hr Cycle 8 Hr Cycle 24 Hr Cycle	Critical wa Dynamic v Dynamic v Dynamic v Depth of p	vater level vater level vater level	7,6 11,4	mbgl mbgl mbgl mbgl m	

2,50 m2/day 5,38 m h u 1,9E-09 19,5230 w(u) 8,66 m3/day Rest WL 4,43 m Critical h 8 m

Depth to strike / boundary =

Recommendations

- 1.) A monitoring facility must be installed for this borehole and the waterlevel of the borehole must be measured regularly.
- 2.) The maximum abstraction rate for the borehole is the yield indicated for the 8 hour pumping cycle resting for the remainder of the time (16 hours).
- 3.) It is recommended that the 8 hour pumping cycle be used and the borehole be allowed to recover 16 hours.
 4.) If the demand is more than 5,7m3/d the borehole can be pumped using the 8hour pump cycle twice a day, resting 4 hours between cycles.
- 5.) Do not over pump initially!!
- 6.) Water quality monitoring should take place to ensure good water quality.

Recovery Check		
CD Yield (I/s)	0,2	
CD Duration (hr)	480,0	
Rec Duration (hr)	120,0	
Total (CD + Rec)		600,0
Drawdown (CD)	8,4	
Rec	0,8	
% Rec		90,8
Airlift Yield	(l/s)	
Inflow on a 24 hr/day	0,1 (l/s)	

Q/st

Drawdown 5,38 Q max 0,14 Q/st 0,03 20 hR

MAX YIELD FOR GIVEN PERIOD: Q/st Method

24 hR

0,03

Drawdown 5,38 0,14 Q max

Q/st 0,03 8 Hr Drawdown 5,38 0,16 Q max

NOTE: A monitoring facility must be installed in all equipped boreholes.

APPENDIX C

WATER LABORATORY ANALYSES

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

Contact:

18 Cleopatra Ave

Paul Hansmeyer

, 1034,

18 Cleopatra Ave

Date of Sampling:

Date of Certificate:

Date Completed:

Service Request Number:

KW-2022-48663 09-June-2022

09-June-2022

12-May-2022

Date of Receival at Lab: 13-May-2022

Sample Identification:			S4 (Ma	arshy) - 10H58		
Sample Number:	KW-22-97868	Sample Condition:	Room Temperature	Remark:		
Microbiological Parameters	3	Method	Unit	Limit	Result	Analysis Date
E. coli		M9	MPN/100mL		10	2022-05-13
Somatic Coliphages*		M39	Count/10mL		Not Detected	2022-05-24
Physical / Aesthetic Param	eters	Method	Unit	Limit	Result	Analysis Date
Dissolved Oxygen*		M57	mg/L		7.62	2022-05-16
Electrical Conductivity @ 2	5°C	M4	mS/m		56.8	2022-05-13
Oxygen Absorbed*		M73	mg/L		24.5	2022-05-16
pH @ 25°C		M6	pH units		7.19	2022-05-13
Temperature*		On Site	°C		20.0	2022-05-13
Total Suspended Solids		M8	mg/L		92.0	2022-05-16
Chemistry (Macro) Parame	eters	Method	Unit	Limit	Result	Analysis Date
Ammonia as N		M32	mg/L		<0.20	2022-05-13
Fluoride as F-		M32	mg/L		0.53	2022-05-13
Orthophosphate as P		M32	mg/L		<1.00	2022-05-13
Potassium as K		M18	mg/L		7.59	2022-05-20
Sodium as Na		M18	mg/L		29.2	2022-05-20
Sulphide (as S)*		M18	mg/L		<0.10	2022-05-20
Zinc as Zn		M16	mg/L		<0.05	2022-05-25
Chemistry (Micro) Parame	ters	Method	Unit	Limit	Result	Analysis Date
Aluminium as Al3+*		M38	μg/L		<100	2022-05-13
Arsenic as As*		M16	μg/L		<3.00	2022-06-08
Boron as B		M16	μg/L		<100	2022-05-25
Cadmium as Cd		M16	μg/L		<1.00	2022-05-25
Chromium as Cr		M16	μg/L		<5.00	2022-05-25
Chromium as Cr6+		M44	μg/L		<3.00	2022-05-24
Copper as Cu		M16	μg/L		<20.0	2022-05-25
Cyanide as CN-*		M55	μg/L		<10.0	2022-05-13
Lead as Pb*		M16	μg/L		<2.00	2022-05-25

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48663

Date of Certificate:

09-June-2022

Date Completed: 09-June-2022

Date of Sampling:

12-May-2022

Date of Receival at Lab:

13-May-2022

Contact: Paul Hansmeyer			Date of Necesival at Lab.	10-Way-2022	
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Manganese as Mn*	M70	μg/L		922	2022-05-13
Mercury as Hg*	M16	μg/L		<1.00	2022-05-25
Nickel as Ni	M16	μg/L		<5.00	2022-05-25
Selenium as Se*	M16	μg/L		<20.0	2022-05-25
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		106	2022-05-13
Dissolved Organic Carbon	M20	mg/L		21.4	2022-05-24
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-05-26
Phenols*	M34	μg/L		<10.0	2022-06-09
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.52	2022-05-13

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48663

Date of Certificate:

09-June-2022

Date Completed:

09-June-2022

Date of Sampling:

12-May-2022

Date of Receival at Lab:

13-May-2022

Sample Identification: S5 (Dam) - 11h09						
Sample Number: KW-22-97869	Sample Condition:	Room Temperature	Remark:			
Microbiological Parameters	Method	Unit	Limit	Result	Analysis Date	
E. coli	М9	MPN/100mL		1	2022-05-13	
Somatic Coliphages*	M39	Count/10mL		Not Detected	2022-05-24	
Physical / Aesthetic Parameters	Method	Unit	Limit	Result	Analysis Date	
Dissolved Oxygen*	M57	mg/L		7.77	2022-05-16	
Electrical Conductivity @ 25°C	M4	mS/m		51.2	2022-05-13	
Oxygen Absorbed*	M73	mg/L		5.90	2022-05-16	
pH @ 25°C	M6	pH units		7.50	2022-05-13	
Temperature*	On Site	°C		20.0	2022-05-13	
Total Suspended Solids	М8	mg/L		<5.00	2022-05-16	
Chemistry (Macro) Parameters	Method	Unit	Limit	Result	Analysis Date	
Ammonia as N	M32	mg/L		<0.20	2022-05-13	
Fluoride as F-	M32	mg/L		<0.50	2022-05-13	
Orthophosphate as P	M32	mg/L		<1.00	2022-05-13	
Potassium as K	M18	mg/L		17.7	2022-05-20	
Sodium as Na	M18	mg/L		13.2	2022-05-20	
Sulphide (as S)*	M18	mg/L		<0.10	2022-05-20	
Zinc as Zn	M16	mg/L		<0.05	2022-05-25	
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date	
Aluminium as Al3+*	M38	μg/L		<100	2022-05-13	
Arsenic as As*	M16	μg/L		<3.00	2022-06-08	
Boron as B	M16	μg/L		<100	2022-05-25	
Cadmium as Cd	M16	μg/L		<1.00	2022-05-25	
Chromium as Cr	M16	μg/L		<5.00	2022-05-25	
Chromium as Cr6+	M44	μg/L		<3.00	2022-05-24	
Copper as Cu	M16	μg/L		<20.0	2022-05-25	
Cyanide as CN-*	M55	μg/L		<10.0	2022-05-13	
Lead as Pb*	M16	μg/L		<2.00	2022-05-25	

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48663 09-June-2022

Date Completed:

09-June-2022

Date of Sampling:

Date of Certificate:

12-May-2022

Date of Receival at Lab:

13-May-2022

			Limit		
Chemistry (Micro) Parameters	Method	Unit		Result	Analysis Date
Manganese as Mn*	M70	μg/L		84.0	2022-05-13
Mercury as Hg*	M16	μg/L		<1.00	2022-05-25
Nickel as Ni	M16	μg/L		<5.00	2022-05-25
Selenium as Se*	M16	μg/L		<20.0	2022-05-25
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		60.0	2022-05-13
Dissolved Organic Carbon	M20	mg/L		12.3	2022-05-24
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-05-26
Phenols*	M34	μg/L		<10.0	2022-06-09
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.47	2022-05-13

KW-2022-48663

09-June-2022

09-June-2022

Integral Laboratories (Pty) Ltd Unit 11A + B, 11 Platina Road, Kuleka Empangeni, Kwazulu-Natal, 3880 Tel: 035 787 0062

T0477

Certificate Of Analysis

Engeolab CC Company: Address:

Contact:

Lead as Pb*

18 Cleopatra Ave

Paul Hansmeyer

, 1034,

18 Cleopatra Ave

Service Request Number:

Date of Certificate:

Date Completed:

Date of Sampling: 12-May-2022

Date of Receival at Lab: 13-May-2022

Sample Identification: S7 (Dam) - 11h25 Sample Number: KW-22-97870 Sample Condition: Remark: Room Temperature Microbiological Parameters Method Unit Result **Analysis Date** MPN/100mL 2022-05-13 E. coli М9 72 Somatic Coliphages* M39 Count/10mL 2022-05-24 Not Detected Limit Physical / Aesthetic Parameters Method **Analysis Date** Unit Result Dissolved Oxygen* M57 8.28 2022-05-16 mg/L 2022-05-13 Electrical Conductivity @ 25°C M4 mS/m 31.2 Oxygen Absorbed* M73 mg/L 6.20 2022-05-16 pH @ 25°C М6 pH units 2022-05-13 7.38 Temperature* On Site °C 20.0 2022-05-13 2022-05-16 **Total Suspended Solids** M8 mg/L 7.00 Limit Chemistry (Macro) Parameters Method Unit Result **Analysis Date** Ammonia as N M32 2022-05-13 mg/L <0.20 Fluoride as F-M32 mg/L <0.50 2022-05-13 Orthophosphate as P M32 mg/L <1.00 2022-05-13 Potassium as K M18 mg/L 2.41 2022-05-20 2022-05-20 Sodium as Na M18 mg/L 16.8 Sulphide (as S)* 2022-05-20 M18 mg/L <0.10 Zinc as Zn < 0.05 2022-05-25 M16 mg/L Limit Chemistry (Micro) Parameters Method Unit **Analysis Date** Result Aluminium as Al3+* M38 μg/L <100 2022-05-13 2022-06-08 Arsenic as As* M16 μg/L <3.00 2022-05-25 Boron as B M16 μg/L <100 2022-05-25 Cadmium as Cd M16 μg/L <1.00 Chromium as Cr 2022-05-25 M16 μg/L < 5.00 Chromium as Cr6+ 2022-05-24 M44 μg/L <3.00 Copper as Cu M16 <20.0 2022-05-25 μg/L Cyanide as CN-* M55 27.0 2022-05-13 μg/L

2022-05-25

<2.00

μg/L

M16

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48663

Date of Certificate:

09-June-2022

Date Completed: 09-June-2022

Date of Sampling: 12-May-2022

Date of Receival at Lab: 13-May-2022

Contact: Paul Hansmeyer			Date of Necelval at Lab.	13-IVIAY-2022	
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Manganese as Mn*	M70	μg/L		88.0	2022-05-13
Mercury as Hg*	M16	μg/L		<1.00	2022-05-25
Nickel as Ni	M16	μg/L		<5.00	2022-05-25
Selenium as Se*	M16	μg/L		<20.0	2022-05-25
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		39.0	2022-05-13
Dissolved Organic Carbon	M20	mg/L		4.68	2022-05-24
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-05-26
Phenols*	M34	μg/L		<10.0	2022-06-09
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.10	2022-05-13

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48663

Date of Certificate:

09-June-2022

Date Completed:

Date of Sampling:

09-June-2022 12-May-2022

Date of Receival at Lab:

13-May-2022

Sample Identification:	Sample Identification: S8 (Dam) - 10h01							
Sample Number:	KW-22-97871	Sample Condition:	Room Temperature	Remark:				
Microbiological Paramete	ors	Method	Unit	Limit	Result	Analysis Date		
E. coli		M9	MPN/100mL		44	2022-05-13		
Somatic Coliphages*		M39	Count/10mL		Not Detected	2022-05-24		
Physical / Aesthetic Paral	meters	Method	Unit	Limit	Result	Analysis Date		
Dissolved Oxygen*		M57	mg/L		8.29	2022-05-16		
Electrical Conductivity @	25°C	M4	mS/m		45.0	2022-05-13		
Oxygen Absorbed*		M73	mg/L		6.40	2022-05-16		
pH @ 25°C		M6	pH units		7.93	2022-05-13		
Temperature*		On Site	°C		20.0	2022-05-13		
Total Suspended Solids		M8	mg/L		9.00	2022-05-16		
Chemistry (Macro) Param	neters	Method	Unit	Limit	Result	Analysis Date		
Ammonia as N		M32	mg/L		<0.20	2022-05-13		
Fluoride as F-		M32	mg/L		<0.50	2022-05-13		
Orthophosphate as P		M32	mg/L		<1.00	2022-05-13		
Potassium as K		M18	mg/L		6.57	2022-05-20		
Sodium as Na		M18	mg/L		18.5	2022-05-20		
Sulphide (as S)*		M18	mg/L		<0.10	2022-05-20		
Zinc as Zn		M16	mg/L		<0.05	2022-05-25		
Chemistry (Micro) Parame	eters	Method	Unit	Limit	Result	Analysis Date		
Aluminium as Al3+*		M38	μg/L		<100	2022-05-13		
Arsenic as As*		M16	μg/L		<3.00	2022-06-08		
Boron as B		M16	μg/L		<100	2022-05-25		
Cadmium as Cd		M16	μg/L		<1.00	2022-05-25		
Chromium as Cr		M16	μg/L		<5.00	2022-05-25		
Chromium as Cr6+		M44	μg/L		<3.00	2022-05-24		
Copper as Cu		M16	μg/L		<20.0	2022-05-25		
Cyanide as CN-*		M55	μg/L		8.00	2022-05-13		
Lead as Pb*		M16	μg/L		<2.00	2022-05-25		

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48663 09-June-2022

Date Completed:

09-June-2022

Date of Sampling:

Date of Certificate:

12-May-2022

Date of Receival at Lab:

13-May-2022

Contact. Faul nansmeyer							
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date		
Manganese as Mn*	M70	μg/L		39.0	2022-05-13		
Mercury as Hg*	M16	μg/L		<1.00	2022-05-25		
Nickel as Ni	M16	μg/L		<5.00	2022-05-25		
Selenium as Se*	M16	μg/L		<20.0	2022-05-25		
Organic Parameters	Method	Unit	Limit	Result	Analysis Date		
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		29.0	2022-05-13		
Dissolved Organic Carbon	M20	mg/L		4.57	2022-05-24		
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-05-26		
Phenols*	M34	μg/L		<10.0	2022-06-09		
On-Site	Method	Unit	Limit	Result	Analysis Date		
Free Chlorine*	On Site	mg/L		0.10	2022-05-13		

KW-2022-48663

09-June-2022

13-May-2022

Integral Laboratories (Pty) Ltd Unit 11A + B, 11 Platina Road, Kuleka Empangeni, Kwazulu-Natal, 3880 Tel: 035 787 0062

T0477

Certificate Of Analysis

Engeolab CC Company: Address: 18 Cleopatra Ave

, 1034,

18 Cleopatra Ave

Date of Sampling:

Contact: Paul Hansmeyer Date Completed: 09-June-2022 12-May-2022

Service Request Number:

Date of Receival at Lab:

Date of Certificate:

Sample Identification:	Sample Identification: S9 (Spring) - 09h37						
Sample Number: KW-22-97872	Sample Condition:	Room Temperature	Remark:				
Microbiological Parameters	Method	Unit	Limit	Result	Analysis Date		
E. coli	M9	MPN/100mL		12	2022-05-13		
Somatic Coliphages*	M39	Count/10mL		Not Detected	2022-05-24		
Physical / Aesthetic Parameters	Method	Unit	Limit	Result	Analysis Date		
Dissolved Oxygen*	M57	mg/L		8.48	2022-05-16		
Electrical Conductivity @ 25°C	M4	mS/m		56.7	2022-05-13		
Oxygen Absorbed*	M73	mg/L		17.7	2022-05-16		
pH @ 25°C	M6	pH units		7.99	2022-05-13		
Temperature*	On Site	°C		20.0	2022-05-13		
Total Suspended Solids	M8	mg/L		6.00	2022-05-16		
Chemistry (Macro) Parameters	Method	Unit	Limit	Result	Analysis Date		
Ammonia as N	M32	mg/L		<0.20	2022-05-13		
Fluoride as F-	M32	mg/L		<0.50	2022-05-13		
Orthophosphate as P	M32	mg/L		<1.00	2022-05-13		
Potassium as K	M18	mg/L		4.25	2022-05-20		
Sodium as Na	M18	mg/L		36.2	2022-05-20		
Sulphide (as S)*	M18	mg/L		<0.10	2022-05-20		
Zinc as Zn	M16	mg/L		<0.05	2022-05-25		
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date		
Aluminium as Al3+*	M38	μg/L		<100	2022-05-13		
Arsenic as As*	M16	μg/L		<3.00	2022-06-08		
Boron as B	M16	μg/L		<100	2022-05-25		
Cadmium as Cd	M16	μg/L		<1.00	2022-05-25		
Chromium as Cr	M16	μg/L		<5.00	2022-05-25		
Chromium as Cr6+	M44	μg/L		<3.00	2022-05-24		
Copper as Cu	M16	μg/L		<20.0	2022-05-25		
Cyanide as CN-*	M55	μg/L		13.0	2022-05-13		
Lead as Pb*	M16	μg/L		<2.00	2022-05-25		

T0477

Certificate Of Analysis

Engeolab CC Company: Address: 18 Cleopatra Ave

Contact:

18 Cleopatra Ave

, 1034,

Paul Hansmeyer

Service Request Number:

KW-2022-48663 Date of Certificate: 09-June-2022

Date Completed: 09-June-2022

Date of Sampling: 12-May-2022

Date of Receival at Lab: 13-May-2022

Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Manganese as Mn*	M70	μg/L		91.0	2022-05-13
Mercury as Hg*	M16	μg/L		<1.00	2022-05-25
Nickel as Ni	M16	μg/L		<5.00	2022-05-25
Selenium as Se*	M16	μg/L		<20.0	2022-05-25
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		69.0	2022-05-13
Dissolved Organic Carbon	M20	mg/L		5.09	2022-05-24
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-05-26
Phenols*	M34	μg/L		<10.0	2022-06-09
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.12	2022-05-13

KW-2022-48663

09-June-2022

09-June-2022

Integral Laboratories (Pty) Ltd Unit 11A + B, 11 Platina Road, Kuleka Empangeni, Kwazulu-Natal, 3880 Tel: 035 787 0062

T0477

Certificate Of Analysis

Company: Engeolab CC Service Request Number: Address: 18 Cleopatra Ave Date of Certificate:

18 Cleopatra Ave Date Completed: , 1034,

Date of Sampling: 12-May-2022

Date of Receival at Lab: 13-May-2022
Contact: Paul Hansmeyer

- Sampling is outside the laboratory's scope of accreditation. Where applicable, free and total chlorine results are supplied by the sampling officer.
- 2. This report shall not be reproduced except in full, without written approval from the laboratory.
- 3. Uncertainties of Measurement, Limits of Detection, and Method Descriptions will be provided upon request.
- 4. The organization reports results at the 95% confidence interval with a coverage factor k = 2. The overlying acceptance criteria for method expanded uncertainty is < 5%. Decision Rule Results reflecting on the Certificate of Analysis are actual results as obtained at the time of testing, and do not include any uncertainty considerations. The Laboratory does not issue any statement of conformity, unless by prior arrangement.</p>
- Certificates of Analyses will be reported electronically in a protected format. The laboratory will not be responsible for any unauthorised changes made to results once reported.
- 6. Parameters indicated by an * are not SANAS accredited and are not included in the SANAS Schedule of Accreditation for this laboratory.
- 7. Parameters indicated by ** are subcontracted and are not included in the SANAS Schedule of Accreditation for this laboratory.
- 8. The following has reference:
 - Unless otherwise stated, ICP, HPLC, GC, GC-MS and LC-MS samples have been filtered using a 0.45µm filter prior to analysis.
- 9. In the absence of client specified limits, the limits reflected are based on SANS 241-2015 or General Effluent Standards, as
- 10. The quality and integrity of samples submitted has a direct correlation to the results reported. As such, results reflected on this report relate only to the samples as received.
- 11. Opinions and interpretations expressed herein are outside the scope of SANAS accreditation.

MINS

Technical Signatory

Nolan Africa - Technical Signatory

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48725 14-June-2022

Date Completed:

14-June-2022

Date of Sampling:

Date of Certificate:

19-May-2022

Date of Receival at Lab:

19-May-2022

Sample Identification:			Existing Mon Borehole - 1					
Sample Number:	KW-22-98166	Sample Condition:	Room Temperature	Remark:				
Microbiological Paramete	ors	Method	Unit	Limit	Result	Analysis Date		
E. coli		M9	MPN/100mL		0	2022-05-20		
Somatic Coliphages*		M39	Count/10mL		Not Detected	2022-05-30		
Physical / Aesthetic Para	meters	Method	Unit	Limit	Result	Analysis Date		
Dissolved Oxygen*		M57	mg/L		5.97	2022-05-20		
Electrical Conductivity @	25°C	M4	mS/m		118	2022-05-20		
Oxygen Absorbed*		M73	mg/L		6.40	2022-05-20		
pH @ 25°C		M6	pH units		7.28	2022-05-20		
Temperature*		On Site	°C		22.0	2022-05-24		
Total Suspended Solids		M8	mg/L		20.0	2022-05-20		
Chemistry (Macro) Paran	neters	Method	Unit	Limit	Result	Analysis Date		
Ammonia as N		M32	mg/L		0.56	2022-05-20		
Fluoride as F-		M32	mg/L		<0.50	2022-05-20		
Orthophosphate as P		M32	mg/L		<1.00	2022-05-20		
Potassium as K		M18	mg/L		2.57	2022-05-27		
Sodium as Na		M18	mg/L		65.3	2022-05-27		
Sulphide (as S)*		M18	mg/L		<0.10	2022-05-27		
Zinc as Zn		M16	mg/L		<0.05	2022-05-26		
Chemistry (Micro) Param	eters	Method	Unit	Limit	Result	Analysis Date		
Aluminium as Al3+*		M38	μg/L		<100	2022-05-24		
Arsenic as As*		M16	μg/L		<3.00	2022-05-26		
Boron as B		M16	μg/L		<100	2022-05-26		
Cadmium as Cd		M16	μg/L		<1.00	2022-05-26		
Chromium as Cr		M16	μg/L		<5.00	2022-05-26		
Chromium as Cr6+		M44	μg/L		<3.00	2022-05-27		
Copper as Cu		M16	μg/L		<20.0	2022-05-26		
Cyanide as CN-*		M55	μg/L		<10.0	2022-05-24		
Lead as Pb*		M16	μg/L		<2.00	2022-05-26		

T0477

Certificate Of Analysis

Engeolab CC Company: Address:

18 Cleopatra Ave

, 1034,

18 Cleopatra Ave

Date of Sampling:

Date of Receival at Lab:

Date of Certificate:

Date Completed:

Service Request Number:

14-June-2022 19-May-2022

KW-2022-48725

14-June-2022

19-May-2022

Contact: Paul Hansmeyer								
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date			
Manganese as Mn*	M70	μg/L		109	2022-05-24			
Mercury as Hg*	M16	μg/L		<1.00	2022-05-26			
Nickel as Ni	M16	μg/L		<5.00	2022-05-26			
Selenium as Se*	M16	μg/L		<20.0	2022-05-26			
Organic Parameters	Method	Unit	Limit	Result	Analysis Date			
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		28.0	2022-05-24			
Dissolved Organic Carbon	M20	mg/L		2.62	2022-06-01			
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-06-02			
Phenols*	M34	μg/L		<10.0	2022-06-13			
On-Site	Method	Unit	Limit	Result	Analysis Date			
Free Chlorine*	On Site	mg/L		0.25	2022-05-19			

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

Contact:

18 Cleopatra Ave

Paul Hansmeyer

, 1034,

Service Request Number:

KW-2022-48725

Date of Certificate: 14-June-2022

Date Completed: 14-June-2022

Date of Sampling: 19-May-2022

Date of Receival at Lab: 19-May-2022

Sample Identification:		Prop Mo	n Borehole - 2		
Sample Number: KW-22-98167	Sample Condition:	Room Temperature	Remark:		
Microbiological Parameters	Method	Unit	Limit	Result	Analysis Date
E. coli	М9	MPN/100mL		68	2022-05-20
Somatic Coliphages*	M39	Count/10mL		Not Detected	2022-05-30
Physical / Aesthetic Parameters	Method	Unit	Limit	Result	Analysis Date
Dissolved Oxygen*	M57	mg/L		6.59	2022-05-20
Electrical Conductivity @ 25°C	M4	mS/m		63.6	2022-05-20
Oxygen Absorbed*	M73	mg/L		24.1	2022-05-20
pH @ 25°C	M6	pH units		7.80	2022-05-20
Temperature*	On Site	°C		22.0	2022-05-24
Total Suspended Solids	M8	mg/L		2128	2022-05-20
Chemistry (Macro) Parameters	Method	Unit	Limit	Result	Analysis Date
Ammonia as N	M32	mg/L		<0.20	2022-05-20
Fluoride as F-	M32	mg/L		<0.50	2022-05-20
Orthophosphate as P	M32	mg/L		<1.00	2022-05-20
Potassium as K	M18	mg/L		2.39	2022-05-27
Sodium as Na	M18	mg/L		98.3	2022-05-27
Sulphide (as S)*	M18	mg/L		<0.10	2022-05-27
Zinc as Zn	M16	mg/L		<0.05	2022-05-26
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Aluminium as Al3+*	M38	μg/L		<100	2022-05-24
Arsenic as As*	M16	μg/L		<3.00	2022-05-26
Boron as B	M16	μg/L		<100	2022-05-26
Cadmium as Cd	M16	μg/L		<1.00	2022-05-26
Chromium as Cr	M16	μg/L		<5.00	2022-05-26
Chromium as Cr6+	M44	μg/L		<3.00	2022-05-27
Copper as Cu	M16	μg/L		<20.0	2022-05-26
Cyanide as CN-*	M55	μg/L		<10.0	2022-05-24
Lead as Pb*	M16	μg/L		<2.00	2022-05-26

T0477

Certificate Of Analysis

Engeolab CC Company: Address: 18 Cleopatra Ave

Contact:

, 1034,

18 Cleopatra Ave

Paul Hansmeyer

Service Request Number:

KW-2022-48725

Date of Certificate:

14-June-2022

Date Completed:

14-June-2022

Date of Sampling:

19-May-2022

Date of Receival at Lab:

19-May-2022

Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Manganese as Mn*	M70	μg/L		74.0	2022-05-24
Mercury as Hg*	M16	μg/L		<1.00	2022-05-26
Nickel as Ni	M16	μg/L		<5.00	2022-05-26
Selenium as Se*	M16	μg/L		<20.0	2022-05-26
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		241	2022-05-24
Dissolved Organic Carbon	M20	mg/L		3.12	2022-06-01
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-06-02
Phenols*	M34	μg/L		<10.0	2022-06-13
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.05	2022-05-19

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

Date of Certificate:

KW-2022-48725 14-June-2022

Date Completed: 14-June-2022

Date of Sampling: 19-May-2022

Date of Receival at Lab: 19-May-2022

Sample Identification: Prop Mon Borehole - 3					
Sample Number: KW-22-	98168 Sample Condition:	Room Temperature	Remark:		
Microbiological Parameters	Method	Unit	Limit	Result	Analysis Date
E. coli	M9	MPN/100mL		0	2022-05-20
Somatic Coliphages*	M39	Count/10mL		Not Detected	2022-05-30
Physical / Aesthetic Parameters	Method	Unit	Limit	Result	Analysis Date
Dissolved Oxygen*	M57	mg/L		6.20	2022-05-20
Electrical Conductivity @ 25°C	M4	mS/m		29.0	2022-05-20
Oxygen Absorbed*	M73	mg/L		5.70	2022-05-20
pH @ 25°C	M6	pH units		8.64	2022-05-20
Temperature*	On Site	°C		22.0	2022-05-24
Total Suspended Solids	M8	mg/L		26.0	2022-05-20
Chemistry (Macro) Parameters	Method	Unit	Limit	Result	Analysis Date
Ammonia as N	M32	mg/L		0.21	2022-05-20
Fluoride as F-	M32	mg/L		1.42	2022-05-20
Orthophosphate as P	M32	mg/L		<1.00	2022-05-20
Potassium as K	M18	mg/L		10.4	2022-05-27
Sodium as Na	M18	mg/L		19.0	2022-05-27
Sulphide (as S)*	M18	mg/L		<0.10	2022-05-27
Zinc as Zn	M16	mg/L		<0.05	2022-05-26
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Aluminium as Al3+*	M38	μg/L		<100	2022-05-24
Arsenic as As*	M16	μg/L		198	2022-05-26
Boron as B	M16	μg/L		<100	2022-05-26
Cadmium as Cd	M16	μg/L		<1.00	2022-05-26
Chromium as Cr	M16	μg/L		<5.00	2022-05-26
Chromium as Cr6+	M44	μg/L		<3.00	2022-05-27
Copper as Cu	M16	μg/L		<20.0	2022-05-26
Cyanide as CN-*	M55	μg/L		<10.0	2022-05-24
Lead as Pb*	M16	μg/L		<2.00	2022-05-26

T0477

Certificate Of Analysis

Engeolab CC Company: Address: 18 Cleopatra Ave

, 1034,

18 Cleopatra Ave

Paul Hansmeyer

Service Request Number:

KW-2022-48725 Date of Certificate: 14-June-2022

Date Completed: 14-June-2022

Date of Sampling: 19-May-2022

Date of Receival at Lab: 19-May-2022

Contact: Paul Hansmeyer		_	oate of Nederval at Lab.	13-Way-2022	
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Manganese as Mn*	M70	μg/L		<10.0	2022-05-24
Mercury as Hg*	M16	μg/L		<1.00	2022-05-26
Nickel as Ni	M16	μg/L		<5.00	2022-05-26
Selenium as Se*	M16	μg/L		<20.0	2022-05-26
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		34.0	2022-05-24
Dissolved Organic Carbon	M20	mg/L		1.16	2022-06-01
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-06-02
Phenols*	M34	μg/L		<10.0	2022-06-13
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.05	2022-05-19

T0477

Certificate Of Analysis

Engeolab CC Company: Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number: Date of Certificate:

KW-2022-48725 14-June-2022

Date Completed:

14-June-2022

Date of Sampling: Date of Receival at Lab:

Prop Mon Borehole - 4

19-May-2022 19-May-2022

Contact: Paul Hansmeyer

Sample Identification:

Copper as Cu

Lead as Pb*

Cyanide as CN-*

Sample Number:	KW-22-98169	Sample Condition:	Room Temperature	Remark:		
Microbiological Paramete	ers	Method	Unit	Limit	Result	Analysis Date
E. coli		M9	MPN/100mL		8	2022-05-20
Somatic Coliphages*		M39	Count/10mL		Not Detected	2022-05-30
Physical / Aesthetic Para	ameters	Method	Unit	Limit	Result	Analysis Date
Dissolved Oxygen*		M57	mg/L		6.69	2022-05-20
Electrical Conductivity @	25°C	M4	mS/m		60.8	2022-05-20
Oxygen Absorbed*		M73	mg/L		24.5	2022-05-20
pH @ 25°C		M6	pH units		7.62	2022-05-20
Temperature*		On Site	°C		22.0	2022-05-24
Total Suspended Solids		M8	mg/L		212	2022-05-20
Chemistry (Macro) Parar	meters	Method	Unit	Limit	Result	Analysis Date
Ammonia as N		M32	mg/L		<0.20	2022-05-20
Fluoride as F-		M32	mg/L		1.28	2022-05-20
Orthophosphate as P		M32	mg/L		<1.00	2022-05-20
Potassium as K		M18	mg/L		3.13	2022-05-27
Sodium as Na		M18	mg/L		35.7	2022-05-27
Sulphide (as S)*		M18	mg/L		<0.10	2022-05-27
Zinc as Zn		M16	mg/L		<0.05	2022-05-26
Chemistry (Micro) Param	neters	Method	Unit	Limit	Result	Analysis Date
Aluminium as Al3+*		M38	μg/L		<100	2022-05-24
Arsenic as As*		M16	μg/L		<3.00	2022-05-26
Boron as B		M16	μg/L		<100	2022-05-26
Cadmium as Cd		M16	μg/L		<1.00	2022-05-26
Chromium as Cr		M16	μg/L		<5.00	2022-05-26
Chromium as Cr6+		M44	μg/L		<3.00	2022-05-27
		1440				2000 05 00

2022-05-26

2022-05-24

2022-05-26

<20.0

<10.0

<2.00

μg/L

μg/L

μg/L

M16

M55

M16

T0477

Certificate Of Analysis

Company: Engeolab CC
Address: 18 Cleopatra Ave

18 Cleopatra Ave

, 1034,

Service Request Number:

KW-2022-48725 14-June-2022

Date of Certificate: 14-June-2022

Date Completed: 14-June-2022

Date of Sampling:

19-May-2022

Date of Receival at Lab:

19-May-2022

Contact: Paul Hansmeyer					
Chemistry (Micro) Parameters	Method	Unit	Limit	Result	Analysis Date
Manganese as Mn*	M70	μg/L		178	2022-05-24
Mercury as Hg*	M16	μg/L		<1.00	2022-05-26
Nickel as Ni	M16	μg/L		<5.00	2022-05-26
Selenium as Se*	M16	μg/L		<20.0	2022-05-26
Organic Parameters	Method	Unit	Limit	Result	Analysis Date
Chemical Oxygen Demand (Unfiltered)	M2	mg/L		70.0	2022-05-24
Dissolved Organic Carbon	M20	mg/L		1.06	2022-06-01
Fats, Oils & Grease*	M74	mg/L		<0.50	2022-06-02
Phenols*	M34	μg/L		<10.0	2022-06-13
On-Site	Method	Unit	Limit	Result	Analysis Date
Free Chlorine*	On Site	mg/L		0.10	2022-05-19

T0477

Certificate Of Analysis

Company:Engeolab CCService Request Number:KW-2022-48725Address:18 Cleopatra AveDate of Certificate:14-June-2022

18 Cleopatra Ave Date Completed: 14-June-2022 , 1034,

Date of Receival at Lab: 19-May-2022

19-May-2022

Date of Sampling:

Contact: Paul Hansmeyer

- Sampling is outside the laboratory's scope of accreditation. Where applicable, free and total chlorine results are supplied by the sampling officer.
- 2. This report shall not be reproduced except in full, without written approval from the laboratory.
- 3. Uncertainties of Measurement, Limits of Detection, and Method Descriptions will be provided upon request.
- 4. The organization reports results at the 95% confidence interval with a coverage factor k = 2. The overlying acceptance criteria for method expanded uncertainty is < 5%. Decision Rule Results reflecting on the Certificate of Analysis are actual results as obtained at the time of testing, and do not include any uncertainty considerations. The Laboratory does not issue any statement of conformity, unless by prior arrangement.</p>
- Certificates of Analyses will be reported electronically in a protected format. The laboratory will not be responsible for any unauthorised changes made to results once reported.
- Parameters indicated by an * are not SANAS accredited and are not included in the SANAS Schedule of Accreditation for this laboratory.
- 7. Parameters indicated by ** are subcontracted and are not included in the SANAS Schedule of Accreditation for this laboratory.
- 8. The following has reference:
 - Unless otherwise stated, ICP, HPLC, GC, GC-MS and LC-MS samples have been filtered using a 0.45µm filter prior to analysis.
- 9. In the absence of client specified limits, the limits reflected are based on SANS 241-2015 or General Effluent Standards, as applicable
- 10. The quality and integrity of samples submitted has a direct correlation to the results reported. As such, results reflected on this report relate only to the samples as received.
- 11. Opinions and interpretations expressed herein are outside the scope of SANAS accreditation.

MINS

Technical Signatory

Nolan Africa - Technical Signatory

APPENDIX D

WATER QUALITY DATA

District:

Borehole No.:	S4 (Marshy)	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

INPUT INI	INPUT INFORMATION				
SUBSTANCE	UNIT OF	TEST			
	MEASURE	VALUE			
Aldrin & Dieldrin Alkalinity					
Aluminium		100			
Ammonia (N) **	mg/l NH3	0.02			
Allinonia (N)	ilig/i ivi io	0.02			
Ammonia (NH3)	mg/l NH3				
Appearance	- Ingilian				
Arsenic (As) *	mg/l As	3			
Cadmium (Cd) *	mg/l Cd	1			
Calcium (Ca)	mg/l Ca				
Calcium (CaCo3)	mg/l CaCO3				
Chloride (CI)*	mg/l Cl				
Chlorine (Free)	mg/r or	0.52			
Chlorine (Total)					
Chloroform					
Colour					
Copper(Cu)		20			
Cyanide		10			
Electrical conductivity EC *	mS/m	56.8			
Faecal coliform *	counts/100 ml				
Fluoride (F) *	mg/l F	0.53			
r labride (i)	ilig/i i	0.55			
Iron (Fe) *	mg/l Fe				
Lead		2			
Magnesium (Mg)	mg/l Mg				
Magnesium (MgCo3) *	mg/I MgCO3				
Manganese (Mn) *	mg/l Mn				
Mercury	# N.	1			
Nitrate (as N) * Nitrate (as NO3) *	mg/l N mg/l N				
Nitrite (Soluble)	IIIg/i N				
Odour & Taste					
Organic carbon(sol)		21.4			
pH *	pH units	21.4 7.19			
'	ľ				
Phenols Potassium (K) *		7.59			
Potassium (K)	mg/I K	7.59			
Precipitation Potential					
Selenium		20			
Sodium (Na) *	mg/l Na	29.2			
Otan dand alata a					
Standard plate count	ma/I SO4	+			
Sulphate (SO4) * Total Alkalinity	mg/l SO4	+			
Total Coliforms	mg/l	+			
Total Dissolved Solids (TDS) *	(mg/l)	+			
Total Hardness **	mg CaCO3/I				
Trihalomethanes	9 54550/1				
Turbidity	NTU				
Zinc (Zn) *	mg/l Zn	0.05			
, ,					

DW	AF
СОММ	ENTS
Class 0: Water of an ideal	
quality	
Class 3: Water of an	
unacceptable quality	
Class 3: Water of an unacceptable quality	
and obeptable quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	#VALUE!
	#VALUE!
	#VALUE:
	4\/\\\\\
	#VALUE!
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
-	
Class 0: Water of an ideal quality	

Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	_
Class 1, Acceptable Class 1, Acceptable	
C.C.O. 1, 7 tooptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Olace 1 Acceptable	
Class 1, Acceptable	
Class 1. Acceptable	
Class 1, Acceptable Class 1, Acceptable	
•	
Class II, Maximum	
Allowable for 1 year Class 1, Acceptable	
Class I, Acceptable	
	_
	_
	_
	_
	_
Class 1, Acceptable	

	WATER TREATMEN	Т
Home	Conventional treatment	Advanced
No treatment	Flocculation with an iron	Oxidation, flocculation
available	salt, settlement and	with an iron salt,
	filtration	settlement and filtration
No treatment	No treatment available	lon exchange
available		
	N	
	No treatment available	Desalination by ion
		exchange or reverse osmosis
		03110313
No treatment	No treatment available	lon exchange, Reverse
available		osmosis or Adsorption or
		activated alumina
Neutralization with	pH adjustment by controlled	Controlled addition of a
marble chips	addition of alkali such as	suitable acid/alkali
'	lime sodium carbonate,	
	carbon dioxide	
No treatment	No treatment available	Reverse osmosis,
available	No treatment available	electrolysis, lon
		exchange
No treatment	No treatment available	Desalination by ion
available		exchange or reverse
		osmosis
No treatment	Precipitation settlement,	lon exchange
available	filtration	ion exchange

District:

Borehole No.:	S5 (Dam)	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

INPUT INFORMATION					
SUBSTANCE	UNIT OF	TEST			
Aldrin & Dieldrin	MEASURE	VALUE			
Alkalinity					
Aluminium		100			
Ammonia (N) **	mg/l NH3	0.02			
Ammonia (NH3)	mg/l NH3				
Appearance					
Arsenic (As) *	mg/l As	3			
Cadmium (Cd) *	mg/l Cd	1			
Calcium (Ca)	mg/l Ca				
Calcium (CaCo3)	mg/l CaCO3				
Chloride (CI)*	mg/l Cl				
Chlorine (Free)		0.47			
Chlorine (Total)					
Chloroform					
Colour					
Copper(Cu)		20			
Cyanide		10			
Electrical conductivity EC *	mS/m	51.2			
Faecal coliform *	counts/100 ml				
Fluoride (F) *	mg/l F	0.5			
Iron (Fe) *	mg/l Fe				
Lead		2			
Magnesium (Mg)	mg/l Mg				
Magnesium (MgCo3) *	mg/l MgCO3				
Manganese (Mn) *	mg/l Mn				
Mercury		1			
Nitrate (as N) *	mg/l N				
Nitrate (as NO3) *	mg/l N				
Nitrite (Soluble)					
Odour & Taste					
Organic carbon(sol) pH *	pH units	7.5			
Phenols		10			
Potassium (K) *	mg/l K	17.7			
r otassium (K)	mg/r K	17.7			
Precipitation Potential					
Selenium		20			
Sodium (Na) *	mg/l Na	13.2			
Standard plate count					
Sulphate (SO4) *	mg/l SO4				
Total Alkalinity	mg/l				
Total Coliforms					
Total Dissolved Solids (TDS) *	(mg/l)				
Total Hardness **	mg CaCO3/I				
Trihalomethanes					
Turbidity	NTU				
Zinc (Zn) *	mg/l Zn	0.05			

quality

DWA	F
COMMENTS	
Class 0: Water of an ideal quality	
Class 3: Water of an	
unacceptable quality	
Class 3: Water of an	
unacceptable quality	
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal	#VALUE!
quality	#VALUE!
	#VALUE!
	#VALUE!
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal	

S	ANS 241:2011
	COMMENTS
Class	1 Assentable
Class	1, Acceptable 1, Acceptable
01033	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable 1, Acceptable
Class	1, Acceptable
01	4.4
Class	1, Acceptable
Class	1 Accentable
CIASS	1, Acceptable
Class	1, Acceptable
2.200	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Clear	1 Accentable
Ciass	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
	II, Maximum
Allowa	able for 1 year
Class	1, Acceptable
Class	1, Acceptable
Jidaa	., / loooptable

	WATER TREATMEN	Т
Home	Conventional treatment	Advanced
No treatment	Flocculation with an iron	Oxidation, flocculation
available	salt, settlement and	with an iron salt,
No treatment	filtration No treatment available	settlement and filtration lon exchange
available	No treatment available	lon exchange
	No treatment available	Desalination by ion exchange or reverse osmosis
No treatment available	No treatment available	lon exchange, Reverse osmosis or Adsorption o
		activated alumina
Neutralization with marble chips	pH adjustment by controlled addition of alkali such as lime sodium carbonate, carbon dioxide	Controlled addition of a suitable acid/alkali
No treatment	No treatment available	Reverse osmosis,
available	THO GOUTHON AVAILABLE	electrolysis, lon exchange
No treatment available	No treatment available	Desalination by ion exchange or reverse osmosis
No treatment available	Precipitation settlement, filtration	lon exchange

District:

Borehole No.:	S7 (Dam)	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

INPUT INI	FORMATION	
SUBSTANCE	UNIT OF	TEST
Aldrin & Dieldrin	MEASURE	VALUE
Alkalinity		
Aluminium		100
Ammonia (N) **	mg/l NH3	0.02
()	J	
Ammonia (NH3)	mg/l NH3	
Appearance		
Arsenic (As) *	mg/l As	3
Cadmium (Cd) *	mg/l Cd	1
Cadmidin (Cd)	ilig/i Cu	'
Calcium (Ca)	mg/l Ca	
Calcium (CaCo3)	mg/l CaCO3	
Chloride (CI)*	mg/I CI	
Chlorine (Free)		0.1
Chlorine (Total)		
Chloroform		
Colour		
Copper(Cu)		20
Cyanide	0/	27 31.2
Electrical conductivity EC *	mS/m	31.2
Faecal coliform *	counts/100 ml	
Fluoride (F) *	mg/l F	0.5
ridorido (r)	ing/i	0.0
Iron (Fe) *	mg/l Fe	
Lead		2
Magnesium (Mg)	mg/l Mg	
Magnesium (MgCo3) *	mg/l MgCO3	
Manganese (Mn) *	mg/l Mn	
Mercury Nitrate (as N) *	mag/LNI	1
Nitrate (as NO3) *	mg/l N mg/l N	
Nitrite (Soluble)	Illig/I IN	
Odour & Taste		
Organic carbon(sol)		4.68
pH *	pH units	7.38
	ľ	
Phenols	"11	10
Potassium (K) *	mg/l K	2.41
Precipitation Potential		
Selenium		20
Sodium (Na) *	mg/l Na	16.8
Standard plate count		
Sulphate (SO4) *	mg/l SO4	
Total Alkalinity	mg/l	
Total Coliforms Total Disselved Solida (TDS) *	(mag/I)	
Total Dissolved Solids (TDS) * Total Hardness **	(mg/l)	
Trihalomethanes	mg CaCO3/I	
Turbidity	NTU	
Zinc (Zn) *	mg/l Zn	0.05
\··/		1

СОММ	
COMMENTS	
Class 0: Water of an ideal	
quality	
Class 3: Water of an	
unacceptable quality	
Class 3: Water of an	
unacceptable quality	
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal	#VALUE!
quality	
	#VALUE!
	#VALUE!
	#VALUE!
	#VALUE:
01 0 11 1	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
quanty	
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal	+
quality	1

SANS 241:201	1
COMMENTS	
0	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1 Assentable	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
	_
Class 1, Acceptable	
,	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class II, Maximum	
Allowable for 1 year Class 1, Acceptable	
Class 1, Acceptable	

	WATER TREATMEN	Т
Home	Conventional treatment	Advanced
No treatment	Flocculation with an iron	Oxidation, flocculation
available	salt, settlement and	with an iron salt,
No treatment	filtration No treatment available	settlement and filtration lon exchange
available	No treatment available	lon exchange
	No treatment available	Desalination by ion exchange or reverse osmosis
No treatment available	No treatment available	lon exchange, Reverse osmosis or Adsorption o
		activated alumina
Neutralization with marble chips	pH adjustment by controlled addition of alkali such as lime sodium carbonate, carbon dioxide	Controlled addition of a suitable acid/alkali
No treatment	No treatment available	Reverse osmosis,
available	THO GOUTHON AVAILABLE	electrolysis, lon exchange
No treatment available	No treatment available	Desalination by ion exchange or reverse osmosis
No treatment available	Precipitation settlement, filtration	lon exchange

District:

Borehole No.:	S8 (Dam)	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

INPUT INF	ORMATION	
SUBSTANCE	UNIT OF MEASURE	TEST VALUE
Aldrin & Dieldrin		
Alkalinity		100
Aluminium Ammonia (N) **	mg/l NH3	0.02
Ammonia (N) ***	mg/I NH3	0.02
Ammonia (NH3)	mg/l NH3	
Appearance		
Arsenic (As) *	mg/l As	3
Cadmium (Cd) *	mg/l Cd	1
Calcium (Ca)	mg/l Ca	
Calcium (CaCo3)	mg/l CaCO3	
Chloride (CI)*	mg/l CI	
Chlorine (Free)		0.1
Chlorine (Total)		
Chloroform		
Colour		
Copper(Cu)		20
Cyanide	C/	8
Electrical conductivity EC *	mS/m	45
Faecal coliform *	counts/100 ml	
Fluoride (F) *	mg/l F	0.5
Iron (Fe) *	mg/l Fe	
Lead		2
Magnesium (Mg)	mg/l Mg	
Magnesium (MgCo3) *	mg/l MgCO3	
Manganese (Mn) *	mg/l Mn	
Mercury		1
Nitrate (as N) *	mg/l N	
Nitrate (as NO3) * Nitrite (Soluble)	mg/l N	
Odour & Taste		
Organic carbon(sol)		4.57
pH *	pH units	7.93
Phenols		10
Potassium (K) *	mg/l K	6.57
Precipitation Potential		
Selenium		20
Sodium (Na) *	mg/l Na	18.5
Standard plate count		
Sulphate (SO4) *	mg/l SO4	
Total Alkalinity	mg/l	
Total Coliforms		
Total Dissolved Solids (TDS) *	(mg/l)	ļ
Total Hardness **	mg CaCO3/I	
Trihalomethanes	NITH	
Turbidity Zinc (Zn) *	NTU mg/l Zn	0.05
()	13.1	0.30

DWA	\F
СОММЕ	ENTS
Class 0: Water of an ideal	
quality	
Class 3: Water of an	
unacceptable quality	
Class 3: Water of an	
unacceptable quality	
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal	#VALUE!
quality	
	#VALUE!
	#VALUE!
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal	
quality	

SANS 241:201	1
COMMENTS	
0	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1 Accontable	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
	_
Class 1, Acceptable	
,	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class II, Maximum	
Allowable for 1 year Class 1, Acceptable	
Class 1, Acceptable	

WATER TREATMENT		
Home	Advanced	
No treatment	Flocculation with an iron	Oxidation, flocculation
available	salt, settlement and filtration	with an iron salt, settlement and filtration
No treatment	No treatment available	lon exchange
available		
	No treatment available	Desalination by ion exchange or reverse
		osmosis
NI - 4	No too store out our links	lan anahanan Danama
No treatment available	No treatment available	lon exchange, Reverse osmosis or Adsorption or
		activated alumina
Neutralization with	pH adjustment by controlled	Controlled addition of a
marble chips	addition of alkali such as	suitable acid/alkali
	lime sodium carbonate,	
	carbon dioxide	
No treatment	No treatment available	Reverse osmosis,
available		electrolysis, lon exchange
		exchange
No treatment	No treatment available	Desalination by ion
available		exchange or reverse
		osmosis
No treatment	Precipitation settlement,	lon exchange
available	filtration	

Borehole No.:	S9 (Spring)	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

District: Steelpoort

INPUT INFORMATION			
SUBSTANCE	UNIT OF	TEST	
Aldrin & Dieldrin	MEASURE	VALUE	
Alkalinity			
Aluminium		10	
Ammonia (N) **	mg/l NH3	0.0	
Ammonia (NH3)	mg/l NH3		
Appearance			
Arsenic (As) *	mg/l As		
Cadmium (Cd) *	mg/l Cd		
Calcium (Ca)	mg/l Ca		
Calcium (CaCo3)	mg/l CaCO3		
Chloride (CI)*	mg/l Cl		
Chlorine (Free)		0.1	
Chlorine (Total)			
Chloroform		1	
Colour		1	
Copper(Cu)		2	
Cyanide		1	
Electrical conductivity EC *	mS/m	56.	
Faecal coliform *	counts/100 ml		
Fluoride (F) *	mg/l F	0.	
Iron (Fe) *	mg/l Fe	+	
Lead			
Magnesium (Mg)	mg/l Mg		
Magnesium (MgCo3) *	mg/I MgCO3		
Manganese (Mn) *	mg/l Mn		
Mercury	3		
Nitrate (as N) *	mg/l N		
Nitrate (as NO3) *	mg/l N		
Nitrite (Soluble)		1	
Odour & Taste			
Organic carbon(sol)		5.0	
pH *	pH units	7.9	
Phenols		1	
Potassium (K) *	mg/l K	4.2	
Precipitation Potential			
Selenium		2	
Sodium (Na) *	mg/l Na	36.	
Standard plate count			
Sulphate (SO4) *	mg/l SO4		
Total Alkalinity	mg/l		
Total Coliforms			
Total Dissolved Solids (TDS) *	(mg/l)		
Total Hardness **	mg CaCO3/I		
Trihalomethanes			
Turbidity	NTU		
Zinc (Zn) *	mg/l Zn	0.0	

DWAF COMMENTS	
Class 0: Water of an ideal	
quality	
Class 3: Water of an	
unacceptable quality	
Class 3: Water of an	
unacceptable quality	
	+
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	#VALUE!
	#VALUE!
	#VALUE!
	1
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
01 0 11/1 1	
Class 0: Water of an ideal quality	

SANS 241:20	011
COMMENTS	3
01 1 1 1 1 1 1	
Class 1, Acceptable	9
Class 1, Acceptable	Э
Class 1, Acceptable	Э
Class 1, Acceptable	Э
Class 1 Assentable	
Class 1, Acceptable Class 1, Acceptable	.
Class 1, Acceptable	- <u></u>
,sop.abi	
Class 1, Acceptable	Э
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	Э
Class 1, Acceptable	
olado I, Aldooptabii	
Class 1, Acceptable Class 1, Acceptable	Э
Class 1, Acceptable	Э
Class II, Maximum	
	r
Allowable for 1 yea Class 1, Acceptable	 e
,	
Class 1, Acceptable	• •

Conventional treatment	Advanced
Elecculation with an iron	Oxidation, flocculation
salt, settlement and	with an iron salt,
filtration	settlement and filtration
No treatment available	Ion exchange
No treatment available	Desalination by ion
	exchange or reverse
	osmosis
No treatment available	Ion exchange, Reverse
	osmosis or Adsorption or
	activated alumina
pH adjustment by controlled	
	suitable acid/alkali
carbon dioxide	
No treatment available	Reverse osmosis, electrolysis, lon
	exchange
	,
No treatment available	Desalination by ion
	exchange or reverse
	osmosis
Precipitation settlement, filtration	lon exchange
	Flocculation with an iron salt, settlement and filtration No treatment available No treatment available No treatment available Precipitation settlement,

District:

Borehole No.:	Existing Mon BH1	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

INPUT INI	FORMATION	
SUBSTANCE	UNIT OF	TEST
3323711132	MEASURE	VALUE
Aldrin & Dieldrin Alkalinity		
Aluminium		100
Ammonia (N) **	mg/l NH3	0.50
Ammonia (NH3)	mg/l NH3	
Appearance		
Arsenic (As) *	mg/l As	;
Cadmium (Cd) *	mg/l Cd	
Calcium (Ca)	mg/l Ca	
Calcium (Ca) Calcium (CaCo3)	mg/l CaCO3	+
Chloride (CI)*	mg/l Cl	+
Chlorine (Free)	ing/i oi	0.2
Chlorine (Total)		1
Chloroform		
Colour		
Copper(Cu)		2
Cyanide		1
Electrical conductivity EC *	mS/m	11
Faecal coliform *	counts/100 ml	
Fluoride (F) *	mg/l F	0.
Iron (Fe) *	mg/l Fe	
Lead		
Magnesium (Mg)	mg/l Mg	
Magnesium (MgCo3) *	mg/l MgCO3	
Manganese (Mn) *	mg/l Mn	
Mercury		
Nitrate (as N) *	mg/l N	
Nitrate (as NO3) *	mg/l N	
Nitrite (Soluble)		
Odour & Taste Organic carbon(sol)		0.0
pH *	pH units	7.2
Phenols		1
Potassium (K) *	mg/l K	2.5
Precipitation Potential		
Selenium		2
Sodium (Na) *	mg/l Na	65.
Standard plate count	1,001	
Sulphate (SO4) *	mg/l SO4	
Total Alkalinity	mg/l	
Total Coliforms	(mg/l)	+
Total Dissolved Solids (TDS) * Total Hardness **	(mg/l) mg CaCO3/l	
Trihalomethanes	ilig CaCO3/I	
Turbidity	NTU	+
	1.1.0	

NTU mg/l Zn

Turbidity
Zinc (Zn) '

DWA	F
COMMENTS	
	T T
Class 0: Water of an ideal	
quality	
Class 3: Water of an	
unacceptable quality	
Class 3: Water of an	
unacceptable quality	
Class 1: Water of a good quality	
Class O. Water of an ideal	4\/\\\\
Class 0: Water of an ideal quality	#VALUE!
	#VALUE!
	#VALUE!
Class 0: Water of an ideal	
quality	
Class 0: Water of an ideal quality	
Class 0: Water of an ideal quality	
<u> </u>	
Class 0: Water of an ideal quality	
quanty	<u> </u>

SANS 241:20	11
COMMENTS	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
•	
Class 1, Acceptable	
Class 1 Assentable	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
,	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class II, Maximum	
Allowable for 1 year Class 1, Acceptable	
Class 1, Acceptable	

	WATER TREATMENT		
Home Conventional treatment Advar			
No treatment	Flocculation with an iron	Oxidation, flocculation	
available	salt, settlement and	with an iron salt,	
	filtration	settlement and filtration	
No treatment available	No treatment available	lon exchange	
avaliable			
	No treatment available	Desalination by ion	
		exchange or reverse	
		osmosis	
No treatment	No treatment available	lon exchange, Reverse	
available		osmosis or Adsorption o	
		activated alumina	
Neutralization with	pH adjustment by controlled	Controlled addition of a	
marble chips	addition of alkali such as	suitable acid/alkali	
	lime sodium carbonate,		
	carbon dioxide		
No treatment	No treatment available	Reverse osmosis,	
available		electrolysis, lon	
		exchange	
		Decelination bution	
No treatment	No treatment available	Desalination by ion	
No treatment available	No treatment available	exchange or reverse	
	No treatment available		
	No treatment available	exchange or reverse	
	No treatment available	exchange or reverse	
	No treatment available	exchange or reverse	
	No treatment available	exchange or reverse	
	No treatment available	exchange or reverse	
	No treatment available Precipitation settlement,	exchange or reverse	

QUALITY ANALYSIS

Borehole No.:	Prop Mon BH2	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amajuba LFS	Long:	

District: Steelpoort

INPUT INFORMATION			
SUBSTANCE	UNIT OF	TEST	
	MEASURE	VALUE	
Aldrin & Dieldrin Alkalinity		+	
Aluminium		100	
Ammonia (N) **	mg/l NH3	0.2	
	<u> </u>		
Ammonia (NH3)	mg/l NH3		
Appearance		_	
Arsenic (As) *	mg/l As	3	
Cadmium (Cd) *	mg/l Cd	1	
Calcium (Ca)	mg/l Ca		
Calcium (CaCo3)	mg/l CaCO3		
Chloride (CI)*	mg/l Cl		
Chlorine (Free)		0.05	
Chlorine (Total)			
Chloroform	1		
Colour	1		
Copper(Cu)		20	
Cyanide		10	
Electrical conductivity EC *	mS/m	63.6	
Electrical conductivity EC	IIIO/III	03.0	
Faecal coliform *	counts/100 ml		
Fluoride (F) *	mg/l F	0.5	
	9/	0.0	
Iron (Fe) *	mg/l Fe		
Lead	<u> </u>	2	
Magnesium (Mg)	mg/l Mg		
Magnesium (MgCo3) *	mg/l MgCO3		
Manganese (Mn) *	mg/l Mn		
Mercury	1119/111111	1	
Nitrate (as N) *	mg/l N		
Nitrate (as NO3) *	mg/l N		
Nitrite (Soluble)	ilig/i iv		
Odour & Taste			
Organic carbon(sol)		2 12	
pH *	pH units	7.8	
Phenols		10	
Potassium (K) *	mg/l K	2.39	
Precipitation Potential			
Selenium		20	
Sodium (Na) *	mg/l Na	98.3	
Standard plate count			
Sulphate (SO4) *	mg/I SO4		
Total Alkalinity	mg/l		
Total Coliforms			
Total Dissolved Solids (TDS) *	(mg/l)		
Total Hardness **	mg CaCO3/I		
Trihalomethanes			
Turbidity	NTU		
Zinc (Zn) *	mg/l Zn	0.05	

DWAF		
COMMENTS		
Class 0: Water of an ideal quality		
Class 3: Water of an unacceptable quality		
Class 3: Water of an unacceptable quality		
Class 0: Water of an ideal quality		
Class 0: Water of an ideal quality	#VALUE!	
	#VALUE!	
	#VALUE!	
Class 0: Water of an ideal quality		
Class 0: Water of an ideal quality		
Class 0: Water of an ideal		
quality		
Class 0: Water of an ideal quality		

SANS 241:201	1
COMMENTS	
Class 1, Acceptable	
Class 1, Acceptable	
•	
Class 1, Acceptable	
•	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Class 1, Accentable	
Class 1, Acceptable Class 1, Acceptable	
Class II, Maximum	
Allowable for 1 year Class 1, Acceptable	
Class 1, Acceptable	
Class 1, Acceptable	

	WATER TREATMEN	IT
Home	Conventional treatment	Advanced
No treatment	Flocculation with an iron	Oxidation, flocculation
available	salt, settlement and	with an iron salt,
No treatment	filtration No treatment available	settlement and filtration lon exchange
available	THO GOUTHON GVARADIO	lon exendinge
	No treatment available	Desalination by ion
		exchange or reverse
		osmosis
No treatment	No treatment available	lon exchange, Reverse
available		osmosis or Adsorption or
		activated alumina
Neutralization with	pH adjustment by controlled	Controlled addition of a
marble chips	addition of alkali such as	suitable acid/alkali
	lime sodium carbonate, carbon dioxide	
No treatment available	No treatment available	Reverse osmosis,
avaliable		electrolysis, lon exchange
		,
No treatment	No treatment available	Desalination by ion
available		exchange or reverse
		osmosis
No treatment	Precipitation settlement,	lon exchange
available	filtration	-

QUALITY ANALYSIS

Borehole No.:	Prop Mon BH3	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amaiuba LFS	Lona:	

District: Steelpoort

INPUT INFORMATION		
SUBSTANCE	UNIT OF	TEST
	MEASURE	VALUE
Aldrin & Dieldrin		
Alkalinity Aluminium		100
Ammonia (N) **	mg/l NH3	0.2
Ammonia (N)	ilig/i Nri3	0.2
Ammonia (NH3)	mg/l NH3	
Appearance		
Arsenic (As) *	mg/l As	198
Cadmium (Cd) *	mg/l Cd	
Calcium (Ca)	mg/l Ca	
Calcium (CaCo3)	mg/l CaCO3	
Chloride (CI)*	mg/l Cl	
Chlorine (Free)	Ing/i oi	0.0
Chlorine (Total)		0.0.
Chloroform		+
Colour		+
Copper(Cu)		2
Cyanide		1
Electrical conductivity EC *	mS/m	2
Electrical conductivity EC	IIIO/III	
Faecal coliform *	counts/100 ml	+
Fluoride (F) *	mg/l F	1.4
()		
Iron (Fe) *	mg/l Fe	
Lead		
Magnesium (Mg)	mg/l Mg	
Magnesium (MgCo3) *	mg/l MgCO3	
Manganese (Mn) *	mg/l Mn	
Mercury		
Nitrate (as N) *	mg/l N	
Nitrate (as NO3) *	mg/l N	
Nitrite (Soluble)		
Odour & Taste		
Organic carbon(sol)		1.1
рН*	pH units	8.6
Phenols		1
Potassium (K) *	mg/l K	10.
	lg,	
Precipitation Potential		
Selenium		2
Sodium (Na) *	mg/l Na	1
Standard plate count		
Sulphate (SO4) *	mg/l SO4	
Total Alkalinity	mg/l	
Total Coliforms	1	
Total Dissolved Solids (TDS) *	(mg/l)	
Total Hardness **	mg CaCO3/I	
Trihalomethanes	g caccon	
Turbidity	NTU	
Zinc (Zn) *	mg/l Zn	0.0
(211)	g/, Z	0.0

DWAF		
COMMENTS		
Class 0: Water of an ideal quality		
Class 3: Water of an unacceptable quality		
Class 3: Water of an unacceptable quality		
Class 0: Water of an ideal quality		
Class 1: Water of a good quality	#VALUE!	
	#VALUE!	
	#VALUE!	
Class 0: Water of an ideal quality		
Class 0: Water of an ideal quality		
Class 0: Water of an ideal		
quality		
Class 0: Water of an ideal quality		

S	ANS 241:2011
	COMMENTS
Class	1, Acceptable
Class	1, Acceptable
Unac	ceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Oles	1 Acceptable
Ciass	1, Acceptable
Class	1, Acceptable
CidSS	i, Acceptable
Class	1, Acceptable
0.000	1,7100001000
Class	1, Acceptable
0'	
Class	1, Acceptable 1, Acceptable
Jidas	i, Acceptable
Class	II, Maximum
Allow	able for 1 year 1, Acceptable
Class	1, Acceptable
Class	1, Acceptable

	WATER TREATMEN	Т
Home	Conventional treatment	Advanced
No treatment available	Flocculation with an iron salt, settlement and	Oxidation, flocculation with an iron salt,
avallable	filtration	settlement and filtration
No treatment	No treatment available	lon exchange
available		
	No treatment available	Desalination by ion
		exchange or reverse osmosis
		001110010
No treatment	No treatment available	lon exchange, Reverse
available		osmosis or Adsorption or
		activated alumina
Neutralization with	pH adjustment by controlled	Controlled addition of a
marble chips	addition of alkali such as	suitable acid/alkali
	lime sodium carbonate, carbon dioxide	
	carbon dioxide	
No treatment	No treatment available	Reverse osmosis,
available		electrolysis, lon
		exchange
No treatment	No treatment available	Desalination by ion
available		exchange or reverse osmosis
		031110313
No treatment	Precipitation settlement,	lon exchange
available	filtration	l

QUALITY ANALYSIS

Borehole No.:	Prop Mon BH4	CO-ORDINATES	
Project No.:	LL3821	Lat:	
Project Name:	Eskom Amaiuba LFS	Lona:	

District: Steelpoort

INPUT INFORMATION			
SUBSTANCE	UNIT OF	TEST	
Aldrin & Dieldrin	MEASURE	VALUE	
Alkalinity			
Aluminium		100	
Ammonia (N) **	mg/l NH3	0.02	
Ammonia (NH3)	mg/l NH3		
Appearance Arsenic (As) *		3	
Arsenic (As) "	mg/l As	3	
Cadmium (Cd) *	mg/l Cd	1	
Calcium (Ca)	mg/l Ca		
Calcium (CaCo3)	mg/l CaCO3		
Chloride (CI)*	mg/l Cl		
Chlorine (Free)		0.01	
Chlorine (Total)			
Chloroform			
Colour			
Copper(Cu)		20	
Cyanide		10	
Electrical conductivity EC *	mS/m	60.8	
Faecal coliform *	counts/100 ml		
Fluoride (F) *	mg/l F	1.28	
Iron (Fe) *	mg/l Fe		
Lead		2	
Magnesium (Mg)	mg/l Mg		
Magnesium (MgCo3) *	mg/l MgCO3		
Manganese (Mn) *	mg/l Mn		
Mercury		1	
Nitrate (as N) *	mg/l N		
Nitrate (as NO3) *	mg/l N		
Nitrite (Soluble)			
Odour & Taste			
Organic carbon(sol)		1.06	
pH *	pH units	7.62	
Phenols		10	
Potassium (K) *	mg/l K	3.13	
Precipitation Potential			
Selenium		20	
Sodium (Na) *	mg/l Na	35.7	
Standard plate count			
Sulphate (SO4) *	mg/l SO4		
Total Alkalinity	mg/l		
Total Coliforms			
Total Dissolved Solids (TDS) *	(mg/l)		
Total Hardness **	mg CaCO3/I		
Trihalomethanes		1	
Turbidity	NTU	1	
Zinc (Zn) *	mg/l Zn	0.05	

DWAF					
СОММЕ	NTS				
Class 0: Water of an ideal quality					
Class 3: Water of an unacceptable quality					
Class 3: Water of an unacceptable quality					
Class 0: Water of an ideal quality					
Class 1: Water of a good quality	#VALUE!				
	#VALUE!				
	#VALUE!				
Class 0: Water of an ideal quality					
Class 0: Water of an ideal quality					
Class 0: Water of an ideal					
quality					
Class 0: Water of an ideal quality					

S	ANS 241:2011
	COMMENTS
Class	1, Acceptable
Class	1, Acceptable
Oldoo	1,71000ptablo
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable
-	
Class	1, Acceptable
01	4.4
Class	1, Acceptable
Class	1, Acceptable
Class	1, Acceptable 1, Acceptable
Class	1, Acceptable
Class	II, Maximum
Allowa	able for 1 year
Class	1, Acceptable
٥.	
Class	1, Acceptable

WATER TREATMENT							
Home	Home Conventional treatment Advanced						
No treatment	Flocculation with an iron	Oxidation, flocculation					
available	salt, settlement and	with an iron salt,					
No treatment	filtration No treatment available	settlement and filtration lon exchange					
available	Tro troutmont available	lon exendinge					
	No treatment available	Desalination by ion					
		exchange or reverse					
		osmosis					
No treatment	No treatment available	lon exchange, Reverse					
available		osmosis or Adsorption or					
		activated alumina					
Neutralization with	pH adjustment by controlled	Controlled addition of a					
marble chips	addition of alkali such as	suitable acid/alkali					
	lime sodium carbonate, carbon dioxide						
	carbon dioxide						
No treatment	No treatment available	Reverse osmosis,					
available		electrolysis, lon exchange					
No treatment	No treatment available	Desalination by ion					
available		exchange or reverse					
		osmosis					
No treatment	Precipitation settlement,	lon exchange					
available	filtration]					

APPENDIX E

CV's & Notable Experience

ENGEOLAB (PTY) LTD

Reg. No. 2017/536405/07

VAT Reg. No. 4710205925

Branches: Gauteng_Pretoria / KZN_Mtunzini / Mpumalanga_eMalahleni

Contact: Enquiries - info@engeolabcc.co.za Finances - finance@engeolabcc.co.za / 082 800 2245 Sales - paul@engeolabcc.co.za / 082 881 5370

EXPERT CONFIRMATION						
Name and Surname	Paul G. Hansme	eyer	Dat	te of Birth		21-08-1953
Profession	Geotechnical & Groundwater P		Na	ationality		RSA Citizen
Proposed Position on projects Geological/Geotechnical/Groundwater Key expert						ater Key expert
Membership of Profe	ssional Bodies					
Professional Body & Associations					Mer	mbership/Registration No's
South African Council for Natural Scientific Professions					4000/12/91	
South African Institute for Engineering and Environmental Geologists			22/532			
Borehole Water Association of Southern Africa				631	L	
Name of Employer ENGEO			GEOLAB (PTY) LTD			
Present Position with	the current emp	rent employer CEO / Director				
Qualifications and Da	tes Obtained					
Institution	Course	Course Year of Comp		letion		
University of	B.Sc.			1978		
Stellenbosch						
University of Pretoria	B.Sc. Hono Geology	urs Engineeri	ng	g 1988		

P.G.Hansmeyer Pr. Sci. Nat.

and my qualifications

Certification:

I, the undersigned, certify that, to the best of my knowledge and belief, this data correctly describes me

Paul Hansmeyer

Experience

Paul is a registered scientist _ Earth Science (Professional Natural Scientist and has 44 years of experience and specializes in the field of Geotechnical Engineering, Soil Mechanics, Engineering Geology and Groundwater Development.

Attached herewith a short brochure of ENGEOLAB for more information

ENGEOLAB PTY LTD

2002-Present

Key Expert_Geological; Geotechnical & Groundwater Practitioner

Duties include, but not limited to: -

- Responsible for geotechnical and geohydrological consulting _ civil and groundwater projects.
- Business Development.
- Project Management of Projects.
- Mentoring, training and skill upgrade.
- Developing standard operating practices (SOPs).
- Research.

Recent significant projects include:

2019-2022

- Umgeni Water
- Gabosch Dam
- Road P234 Nongoma
- Tailings facility (TSF) stability evaluation in Rustenburg, South Africa.
- Consulting on bearing capacity and settlement for a gas plant foundation project in Richards Bay, Kwazulu Natal.
- Consulting on a slope stability assessment for a cemetery site in Kwazulu Natal.
- (2019) Tailings facility (TSF) stability evaluation in Rustenburg, South Africa
 - Analysis of CPTu results and dilatometer (DMT) results of three TSF sites;
 - Comprehensive slope stability analysis using different HDPE liners and unlined scenarios;
 - Different material layering scenarios;
 - o Drafting of a review summary of the stability findings.

GROUNDWATER

Continuous appointment since 1994 as geohydrologist consultant to Zululand Regional Council, Umkhanyakudu DM, uThungulu District Municipality. Since 1999 appointed as geohydrological consultants to iNdlovu Regional Council. Tender adjudication; appointment of contractors; community liaison; geophysical borehole siting; drilling and pumptest supervision; design of boreholes in primary and secondary aquifers; pumptest and chemical data analyses and reporting. Other geohydrological consulting appointments: - uThungulu Regional Council for southern and northern Zululand, Mhlathuze Water, Umgeni Water & Zululand DM.

Note attached project list for Geohydrological Investigations for more notable experience

Earth Science Consultant

Qualifications

- University of Pretoria –
 Graduated 1987
 - B.Sc (Hons) degree in Engineering Geology
- University of Stellenbosch
 - Graduated 1976
 - ❖ B.Sc degree

Professional Affiliations

- Registered with SACNASP
 Registration No.
 400012/91
 - Earth Science(Professional Natural Scientist)
- Member SAIEG (South African Institute of Engineering Geologists) Registration No. 22/532

ENGEOLAB (PTY) LTD

Reg. No. 2017/536405/07

VAT Reg. No. 4710205925

Branches: Gauteng_Pretoria / KZN_Mtunzini / Mpumalanga_eMalahleni

Contact: Enquiries - info@engeolabcc.co.za Finances - finance@engeolabcc.co.za / 082 800 2245 Sales - paul@engeolabcc.co.za / 082 881 5370

CONFIRMATION					
CONTINUATION					
Name and Surname	Beate Vermeul	ate Vermeulen Date of E			27-05-1994
Profession	Geohydrologist		Nationality		RSA Citizen
Proposed Position on	posed Position on projects Geohydrologist				
Membership of Profe	Membership of Professional Bodies				
Professional Body & Associations			Membership/Registration No's		
South African Council for Natural Scientific Professions			121349		
Name of Employer			ENGEOLAB (PTY) LTD		
Present Position with the current employer E		External Consultant			
Qualifications and Dates Obtained					
Institution	Course	Course		Year of Completion	
North West University	B.Sc. Environmental and B Sciences (Geol & Botany)		2010		
	B.Sc. Hons (Hydrology)	B.Sc. Hons Environmental Sciences (Hydrology)		2017	

Certification:

I, the undersigned, certify that, to the best of my knowledge and belief, this data correctly describes me and my qualifications

B Vermeulen Pr. Sci. Nat.

Beate Vermeulen

North West University Graduated 2016

B.Sc. 2016

❖ B.Sc. (Hons) 2017 degree in **Environmental** Sciences (Hydrology)

- - **Registered with SACNASP** - Registration No. 121349

 - o Earth Science (Professional Natural Scientist)

Beate is a registered scientist _ Earth Science (Professional Natural Scientist and has 6+ years of experience and specializes in the field of Groundwater Development.

CONSULTANT

MAR 2021 to DATE

Duties include, but not limited to: -

- Responsible for geohydrological consulting and groundwater projects.
- Project Management of Projects.
- Research.
- **Report Writing**
- Hydrocensus Surveys
- GIS

ENGEOLAB PTY LTD

2002-Present

Duties include, but not limited to: -

- Responsible for geohydrological consulting and groundwater projects.
- Project Management of Projects.
- Research.
- Report Writing
- Hydrocensus Surveys

Recent significant projects include:

2019-2022

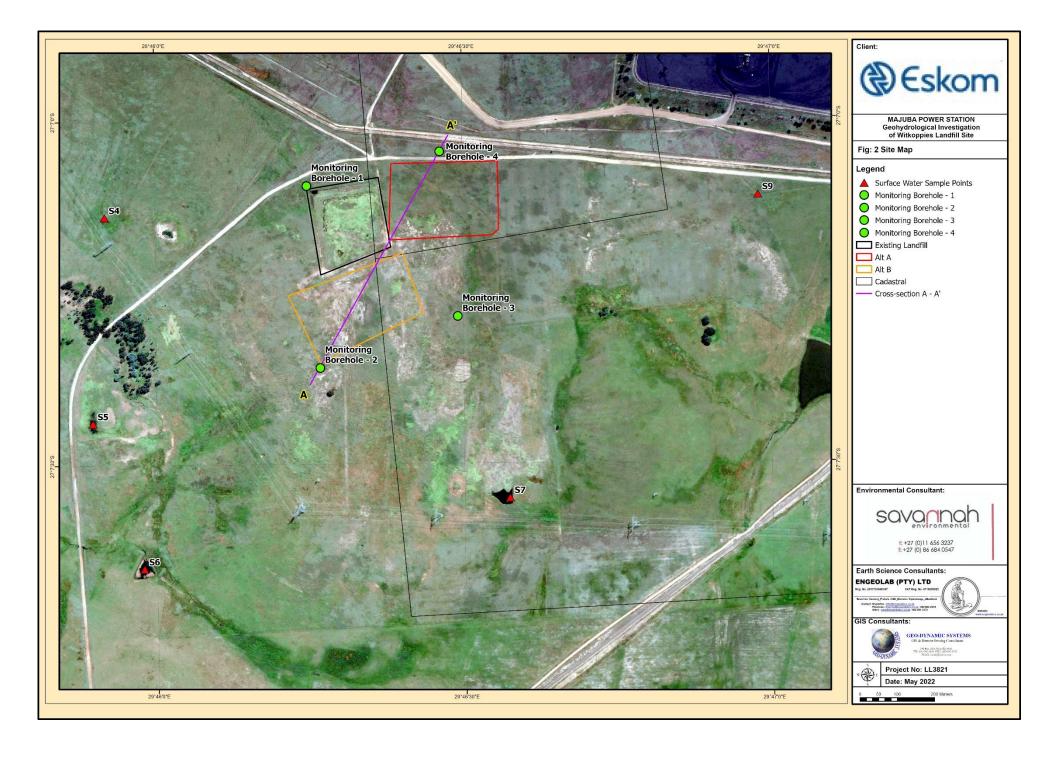
- Umgeni Water
- Gabosch Dam

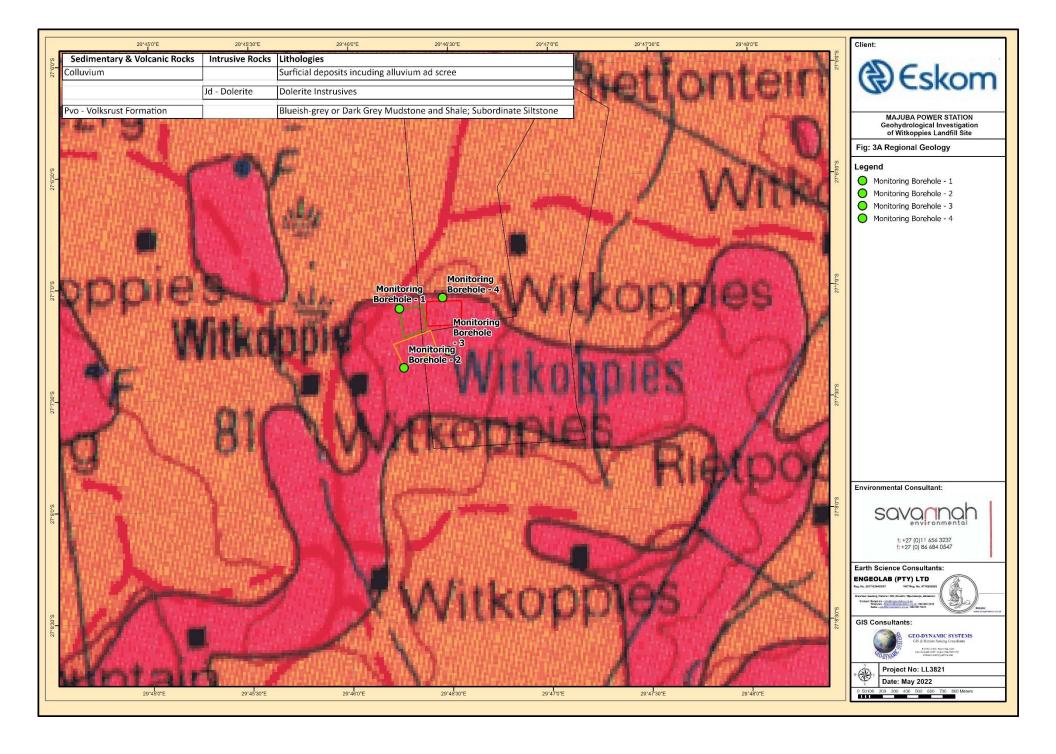
Note attached project list for Geohydrological Investigations for more notable experience

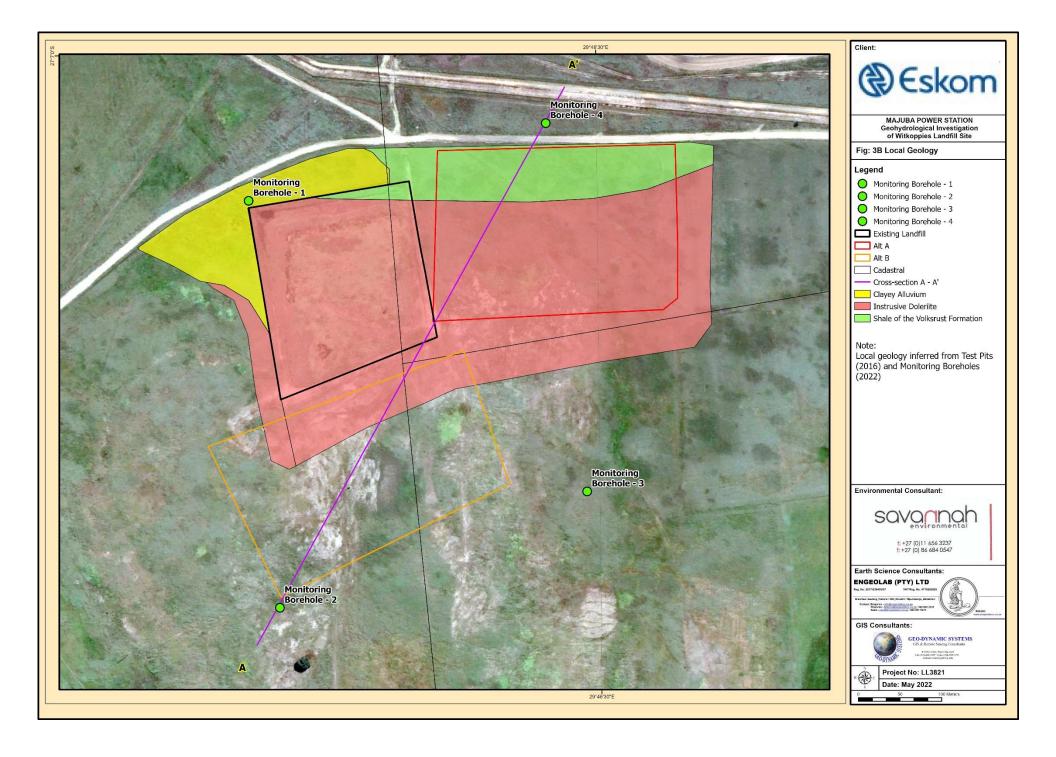
	Notable Professional Experience _ Geohydrological Projects						
Ref	Client / Company	Project Description	Year				
LL3781	Umgeni Water	uThukhela Bulk Water Supply	2021-2022				
LL3754	Margate Retirement Village	Margate Retirement Village Geohydrological Services	2021				
LL3799	VIRTUAL CONSULTING ENGINEERS VCE (PTY) LTD	MAHIKENG PROVINCIAL HOSPITAL _ Geohydrological Inv	2021				
LL3749	Alpha Services & Projects	Rea Vay Selby - Geohydro Inv	2021				
LL3124	Zululand District Municipality	Geohydrological services for period of 3 years	2018-2021				
LL3377	M&D CONSTRUCTION	Geohydrological Services Meje Clinic	2019-2020				
LL3358	SGS Matrolab	Geotech & Geohydro - Luipardsvlei Landfill Site	2019				
LL3326	Bulk Water Designs cc	Geohydrological Inv _ uMzinyathi DM	2019				
LL3325	Ilifa Africa Engineers	Geohydrological Inv _ Nquthu Municipality - Cassino Settlement	2019				
LL3319	Electric & Pump Services	Umgungungdlovu District Municipality _ Geohydrological services	2019				
LL3298	Map Africa Consulting Engineers	Geohydrological Services _ Rietvlei Hospital	2019				
LL3261	Ilifa Africa Engineers (Pty) Limited	Nquthu Municipality Bulk Water Supply	2019				
LL3141	Urban Dynamics	Arbor Settlements_ Geohydro & Geotech	2018				
LL3034	BTW & Associates (Pty) Ltd	20438 - Eskom Majuba Landfill Site	2018				
LL3227	Aquest Colsen	Geohydrological Services _ Glodina Factory - Hammersdale	2018				
LL2903	Aquest Colsen	Geohydrological Services _ Grand West Casino	2017				
LL2997	Zululand DM	Mandlakazi Bulk Water	2017				
LL2557	Ngani Proj (Phiri & Nyoni)	Musukaligwa Municipality _ Warburton Groundwater Dev	2015-2016				
LL2677	Lindokuhle Consulting	Arlington Bulk Geoh	2016				
LL2651	uMgungundlovu District Municipality	UDM Drought Relief (Gulube & Dwengu)	2016				
LL2643	Dept of Agriculture	Geohydrological Inv _ Sibukeni Gardens	2016				
LL2355	Tumber Fourie	Geohydrological Investigation - Maditameng Village	2015				
LL2311	Dept. of Agriculture & Environ Affairs	(DC26)Hydrogeological Cons Serv in the KZN Prov Stock Watering Intervention - ZDM	2014-2015				
LL2305	Holland-Muter & Associates	Geohydrolical Assessment - Ottoshoop	2014				
LL2248	Richards Bay Industrial Development Zone (RBIDZ)	Bid No.: 1F/ENV/002/14 Geohydrological Assessment for RBIDZ Phase 1F	2014				
LL2228	Ilifa Africa Engineers	Waterfall Community New BH Investigation	2014				
LL2191	uMkhanyakude District Municipality	Assessment Status of Water Infra & Sewerage	Jul-05				
LL2189	Holland-Muter & Associates	Geohydrological Investigation - Elandspruit Colliery	2014				
LL2186	Dept. of Agriculture & Environ Affairs	DWA Stretford Farm	2014				
LL2086	PD Naidoo & Ass Consuling Eng	Ingwavuma-Jozini Water Supply Project	2013				
LL2075	Umsimbithi Mining	Groundwater Development at Wonderfontein Mine	2013				
LL2068	Nkangala District Municipality	Spring Valley Water Scheme Project	2013				
LL2066	One Turn/Coalition JV	Makause School: Groundwater Potential & Development	2013				

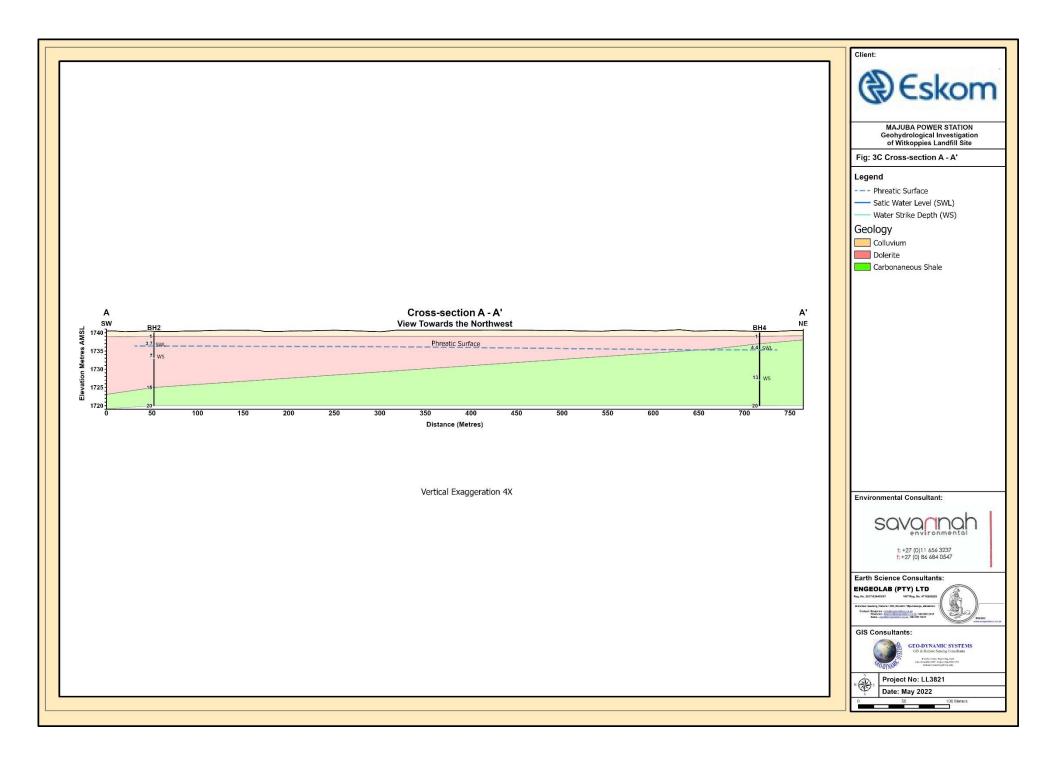
	Notable Professional Experience _ Geohydrological Projects					
Ref	Client / Company	Project Description	Year			
LL2046	Bigen Africa	Groundwater Development at Houtrivier	2013			
LL2042	Mhlathuze Water	MW00202: Geophysical Consulting Serv - Drilling of Boreholes	2012-2013			
LL1974	ECA Consulting	Geohydrological Study into the Feasibility of GW Supply in the Ingwavuma Area - Ingwavuma Magistrate's Court	2012-2013			
LL1929	Uthungulu District Municipality	UDM/28/2011: Geohydrological Services	2012-2014			
LL1879	Zululand District Municipality	Geohydrological services - ZDM953/2010 & ZDM024/2017- ZDM Rudimentary Water Supply Programme	2010-2020			
LL1879	Zululand District Municipality	Provision of Geohydrological Support Services (North)	2011			
LL1876	Nkangala District Municipality	New Elevated Reservoir Emalahleni	2011			
LL1866	WorleyParsons	TCTA Groundwater Dev & Refurbishment Ehlanzeni, Nkangala & Gert Sibande DM	2011-2012			
LL1834	uMgungundlovu District Municipality	Triandra School Geohydrological Investigation	2011			
LL1831	Rand Water	Lesotho Schools Water Supply Project	2011			
LL1796	Electric & Pump Services	Ozwatini Geohydrological Investigation	2011			
LL1785	Nkangala District Municipality	Bulk Water Supply line & Elevated Storage Reservoir	2011			
LL1784	Nkangala District Municipality	10 MI Rietfontein Reservoir	2011			
LL1782	Mhlathuze Water	Schools Sanitation & Water: SSP/B/16.2.2	2011-2012			
LL1680	Umgeni Water	Glendale Heigths Water Development	2009-2011			
LL1654	Msukaligwa Local Municipality	Geohydrological Investigation: Drilling of Boreholes in Msukaligwa Farm Areas Tender LM/186373/09/10	2009-2011			
LL1603	Umgeni Water	Umgeni Schools Water Development Project	2008-2011			
LL1546	Zululand District Municipality	Zululand Rudimentary	2008-2011			
LL1499	Gert Sibande District Municipality	Contract GSDM76/2007 Rudimentary Water Supply	2008-2009			

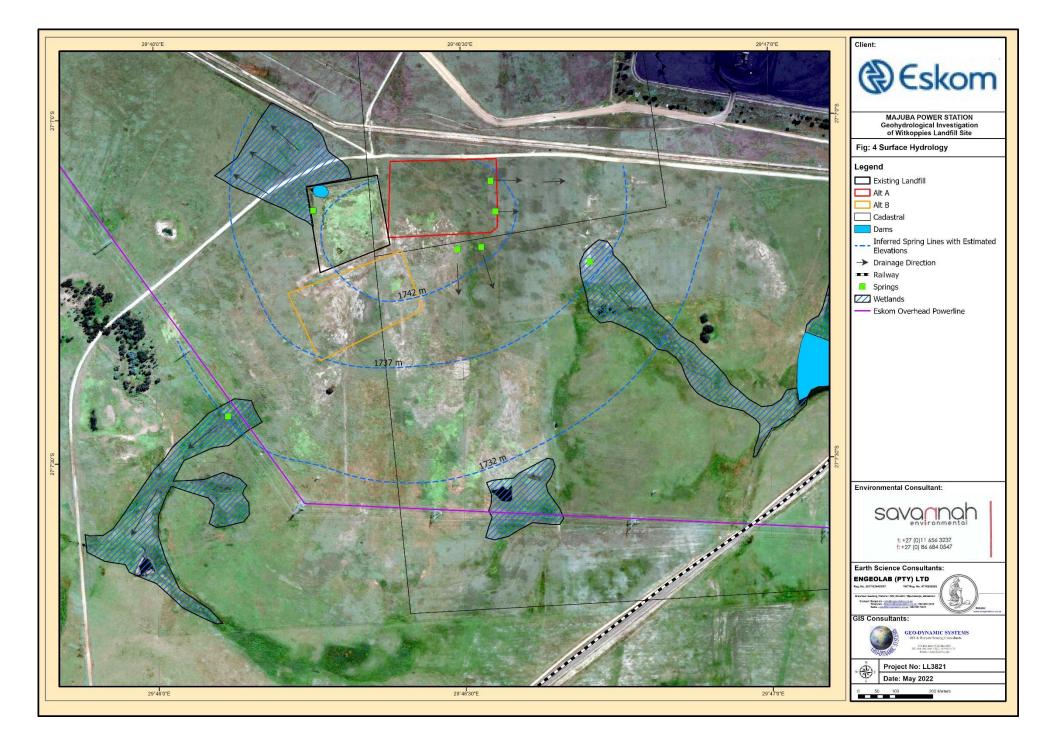
MAJUBA POWER STATION Geohydrological Investigation of Witkoppies Landfill Site


Volume 2


Environmental Consultant:




Project No: LL3821


Date: June 2022

