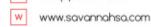

The Proposed Construction of a 15ML concrete reservoir, elevated tower and pump station at the existing Masetjaba View reservoir site, located in Nigel, Gauteng Province


Ecological Impact Assessment Report

info@savannahsa.com

+27 (0)86 684 0547

Prepared for:

City of Ekurhuleni Metropolitan Municipality, Private Bag X1069, Germiston, 1400

Prepared by:

EXECUTIVE SUMMARY

The City of Ekurhuleni proposes to develop additional capacity at their existing Masetjaba water reservoir site (Farm Spaartwater 171), by constructing a new 15ML circular water reservoir, along with associated infrastructure (small scale), adjacent to their existing water reservoir. The development therefore primarily involves erecting a concrete water reservoir, which will occupy a surface area of 1 980m² (0.198 ha), within a broader development area (including the associated infrastructure) of approximately 6 900m² (0.69 ha), all contained within the existing Masetjaba water reservoir site off Springs Road, Masetjaba View. The components of the facility include a 15ML water reservoir, access ladder and cage, inlet and outlet chambers associated with the pipe work, a pump station (12mx18m), a standby generator, stormwater provisions and a single lane gravel access road approximately 170m in length.

The purpose of the project is to improve water supply to certain parts of the community which do not have adequate supply during peak usage periods. The proposed reservoir will also supply the reservoir zone located on the southern boundary of Brakpan and will include most future developments in Tsakane and its extensions excluding Tsakane X17.

The water reservoir facility is located on Portion 107 of the Farm Spaarwater 171, accessible immediately off the tarred Springs Road (R550) situated on the northern boundary of the project site, Masetjaba View. The site is located immediately adjacent Masetjaba View, which is the nearest settlement.

Climate within the broader Johannesburg region is generally subtropical, with mild and sunny winters (and cold nights), and pleasantly warm summers, usually sunny, known for afternoon thunderstorms during the summer. Temperatures generally range from the hottest month (December) of between 14°C and 27°C, to the coldest month of the year (July) with mean minimum and maximum ranges between 2°C and 18°C. Precipitation ranges between 130mm average in December to 3 - 5mm in July.

The overall geology of the site contains mostly Shales, Coal and Arenites derived from the Vryheid Formation, of the Ecca Group and Karoo Supergroup. This formation dates back to the Palaeozoic era (541 to 251 million years ago).

The entire project site is flat with no distinct topographic features, within a broader context of slightly undulating hills with intermittent small valleys in which drainage lines are common (although no drainage lines or surface features are present on site). The elevation of the site is approximately 1 600 m above mean sea level.

The project site is zoned as 'agriculture', but is operated as water supply infrastructure only, having been recently fenced off. Animals were observed to graze immediately adjacent the site (+/- 10m away), the existing fence eliminates current grazing on site, however, historical imagery reveals the site was open for grazing as early as 2016. Apart from the current use of the gravel access road, and reservoir infrastructure, the site is unoccupied. Historical images however show that the existing concrete fencing serving as boundary currently was only erected between the August 2015 and May 2016, prior to which the site was entirely accessible from the road with visible footpaths traversing the site in aerial images prior to August 2015. In addition, illegal dumping in the area is common and occurs at a relatively high level, with dumping sites seen on the aerial imagery in the area (some of which occurred on site) since at least March 2005. Evidence of frequent burning was also observed on site, possibly from the frequent fires associated with burning of the illegally dumped waste adjacent to the site boundaries.

According to the Mucina and Rutherford (2012) classification, the project site is occupied by Tsakane Clay Grassland, which occurs mainly in the Gauteng and Mpumalanga provinces, with patches extending in a narrow band between Springs and Soweto, southwards towards Nigel and as far as Vereeniging. The grassland also occurs north of the Vaal Dam, and between Balfour and Standerton, and preferentially occurs at altitudes ranging from 1 480 – 1 680 m (Mucina and Rutherford, 2012).

This vegetation type occurs predominantly on flat to slightly undulating plains and low hills, and is short and dense in structure. Tsakane Clay Grassland is dominated by a mixture of common highveld grasses such as Themeda triandra, Heteropogon contortus, Elionurus muticus and a variety of Eragrostis species (Mucina and Rutherford, 2012). The forbs most common are of the families Asteraceae, Rubiaceae, Malvaceae, Lamiaceae and Fabaceae. Disturbance in this vegetation group allows for an increase in abundance of Hyparrhenia hirta and Eragrostis chloromelas (Mucina and Rutherford, 2012).

According to Mucina and Rutherford (2012), the conservation status of Tsakane Clay Grassland is Endangered (EN), with only 1.5% of the 24% conservation target conserved in 2012, mainly in the Suikerbosrand, Olifantsvlei, Klipriviersberg and Marievale Nature Reserves, with some minor patches in private reserves. The main threats to this vegetation type are transformation by cultivation, mining, dam-building and road development and operation. Large portions of Alberton, Springs, Tsakane and part of Soweto (all south and east of Johannesburg) were built in the area of this vegetation unit. Erosion across this vegetation unit is generally very low or low.

Furthermore, according to the Gauteng C-Plan, which delineates Critical Biodiversity Areas (CBA's), and Ecological Support Area (ESA) for the entire province, the project site is partially located within a Critical Biodiversity Area (CBA), while the remainder of the side occurs within an Ecological Support Area (ESA).

Field survey results indicated that only one vegetation unit was identified within the project area, that of "highly degraded Tsakane Clay Grassland".

This vegetation unit covered the entire site uniformly, and consisted of predominantly grass species, with no tree or shrub forms present. The species composition identified onsite conformed to a minor degree to that of the Mucina & Rutherford (2012) descriptions, and therefore represented Tsakane Clay Grassland, albeit in a highly degraded condition. In particular, the relatively high abundance of *Hyparrhenia hirta* (thatching grass) and low species richness indicated the high levels of disturbance experienced on site historically.

At present, the site is fenced (concrete palisading), with one entrance and a small gravel road leading to the existing water infrastructure. Evidence of disturbance was evident throughout the site, with illegal dumping observed adjacent to the site (1-10m away), as well as along the boundary fence. In addition, grazing was observed nearby (approximately 2m away from site). As the fence was only constructed recently, both grazing and illegal dumping would historically have occurred on site contributing to the existing low species diversity and the historical disturbance of the site (visible from the aerial imagery for approximately 10 years leading up to the fence being erected).

Furthermore, evidence of historical construction (set concrete and trench lines visible), with minor invasive plant species occurrence, was also noted near the far north western corner of the site (facing the current water infrastructure), where the laydown areas for the existing water infrastructure may have been. In

addition, the burning of waste adjacent the site contributes to ongoing fires occurring on site, with evidence of recent burning observed during the site assessment.

Species identification indicated that a total of 17 plant species were identified within the proposed project site, consisting mainly of mixed grass species commonly occurring in the highveld region. All of the species observed were classified as Least Concern (LC) and were not considered to be sensitive species, and as such the ecological value as well as the low species diversity present indicated an overall low conservation status for the vegetation present onsite. No plant Species of Conservation Concern were identified on site. Three invasive plant species were observed onsite, mainly adjacent the existing storage unit where evidence of historical construction was present, while five other invasive species were noted nearby (approximately 60m away from the development site).

Due to the small size and highly frequented nature of the site (i.e. plenty of foot and vehicle traffic daily from the nearby Masetjaba View community), very few animal species were observed on site, with only Trachylepis punctatissima (speckled rock skink), and Trachylepis varia sensu lato (common variable skink) identified on site, both of which are regarded as Least Concern (LC) (SARCA, 2014). Avifaunal species were the exception however, being attracted by the nearby wetland features located further east of the site, and due to their highly mobile nature. Apart from the above two reptiles, 10 bird species were noted on and near the site. None of the bird species observed on site were regarded as sensitive, with all considered as Least Concern (LC) in terms of their conservation status. Along with the small number of observed species on site, the common status for all of the observed species, and the highly disturbed and frequented status of the site, the project area had a low faunal conservation potential. No animal Species of Conservation Concern were identified on site. No animal invasive species were identified on site.

A sensitivity map of the study area was developed based on the site characteristic and results (Figure 7.1 in Chapter 7), which indicated that the entire site was regarded as a low sensitivity zone for floral and faunal species.

The CBA classification of the proposed site was also found to not correspond to the real-world condition of the plant and animal species observed on site, and thus the site contributes poorly to the ecological function of the broader area. As such, the site is not deemed a functional CBA zone, as confirmed by the site assessment results, and thus the proposed development will not significantly impact the overall quantity and quality of the remaining CBA areas in the broader study area, should it be implemented. The project may thus commence with little to no lasting negative impact on the current CBA classification of the immediate site and broader study area.

Furthermore, while the vegetation type deemed to be present on site has a high conservation value, the highly degraded real-world condition of the vegetation unit observed on site confirmed a minimal overall conservation contribution. The vegetation unit on site resembles Tsakane Clay Grassland through the species composition, but is highly degraded, with poor ecological functioning and a low conservation contribution, and as such does not represent a good conservation opportunity and does not currently contribute to the overall health and conservation status of the Tsakane Clay Grassland vegetation type. Should the development proceed, the loss of the highly degraded Tsakane Clay Grassland vegetation unit on site will not significantly reduce the conservation potential and current distribution of the vegetation type as a whole, due primarily to the servery degraded nature of the vegetation unit on site.

The impact assessment identified no impacts for the design phase, six impacts for the construction phase relating predominantly to the clearance of vegetation and the destruction of habitat, as well as one impact for the operational phase, and one for the decommissioning phase. Two impacts were determined for the no-go alternative, and three cumulative impacts determined, all related to the issue of loss of biodiversity. Table 1 below shows the summary of impacts identified before and after mitigation.

Table 1: Summary of impacts identified in this assessment.

Table 1: Summary of impacts identif	PRE-MITIGATION	POST-MITIGATION		
DESIGN PHASE	TRE MINISTRUCTOR	T Get Allie, well		
No impacts were determined for this phase				
CONSTRUCTION PHASE	- 1,			
Loss of highly degraded Tsakane	Medium (30)	Low (20)		
Clay Grassland	. ,	` '		
Loss of Species of Conservation	Low (12)	Low (8)		
Concern				
Loss of floral and faunal	Low (25)	Low (12)		
biodiversity leading to a				
disruption of ecosystem function				
and processes				
Poor control of alien plant species	Medium (30)	Low (15)		
during construction leading to				
increasing invasive species				
presence	(0.4)	(20)		
Increased erosion due to	Low (24)	Low (10)		
vegetation clearing for				
infrastructure	1 /10)	1 (10)		
Loss of areas classified as CBA	Low (18)	Low (12)		
due to vegetation clearance.				
OPERATION PHASE	Ada direce (20)	1004/101		
Poor control of alien plant species during construction leading to	Medium (30)	Low (10)		
increasing invasive species				
presence				
DECOMISSIONING PHASE				
Loss of floral and faunal	Low (25)	Low (4)		
biodiversity from poor	20 (20)			
rehabilitation efforts during				
closure, leading to a disruption of				
ecosystem function and				
processes				
Increased erosion due to	Low (21)	Low (10)		
vegetation clearing for				
infrastructure.				
CUMULATIVE IMPACTS				

Reduced ability to meet conservation obligations and targets.	Low (18)	Medium (36)	
Impacts on Critical Biodiversity Areas and Broad-Scale Ecological Processes.	Low (18)	Medium (36)	
Cumulative impacts due to similar infrastructure developments - Large-scale disturbance of indigenous vegetation.	Medium (30)	Medium (36)	
NO-GO ALTERNATIVE			
Control of alien plant species	Medium (40)		
Loss of biodiversity and species richness from frequent fires	Medium (40)		

^{*} Impacts are rated here based on isolation (i.e. project only), or in combination with other projects in the surrounding areas, as opposed to pre-mitigation and post-mitigation.

Based on the results of the site assessment, the sensitivity analysis and the impact assessment, none of the anticipated impacts were deemed insurmountable, as all the pre-mitigation medium impacts were easily mitigated. Ecological areas have been mapped in terms of sensitivity for the project area and recommendations in chapter 8 in this report provide mitigation measures to reduce the severity of the impacts. Overall, it was determined that the identified ecological impacts associated with the facility can be affectively mitigated.

Cumulative impacts were also determined for the project, with medium severity identified for all three cumulative impacts relating to the issue of a loss of biodiversity. Mitigation measures have been provided for the management of these impacts in the context of the broader study region. Considering the existing water infrastructure (i.e., the existing Masetjaba water reservoir), other development infrastructure (Masetjaba View community, roads, power lines), and that this project acts as an expansion of the current facility, the development will not set a further development precedent in the broader Tsakane area. Some loss of biodiversity is inevitable, and cannot be avoided, however the vegetation on site has a low sensitivity and conservation value, and contributes very little to no ecological function (and CBA area) to the broader study area. Cumulative loss of conservation potential is thus regarded as medium taking into account other likely developments within the broader study region. The cumulative impacts are deemed acceptable considering the existing poor condition of the site, and the broader character of the area (i.e. already developed and highly degraded).

The ecological impacts of all aspects for the proposed project were assessed and considered to be ecologically acceptable (i.e. **no fatal flaws** were determined), provided that the mitigation measures provided in this report are implemented. Implementation of recommended mitigation measures is an important element of the mitigation strategy and will reduce all identified impacts to low negative.

No alternatives, apart from the no-go option, were considered for this project. However, the no-go option allows for two ongoing impacts of medium severity, which may be reduced to low via management intervention should this project proceed. As such, this development proposal represents a means to reduce invasive species presence and improve fire management of the site (provided mitigation measures are

strictly and effectively implemented) and may thus serve to preserve the current poor ecological functioning of the site in the long term. Cumulative impacts from this development proposal were all deemed low or negligible in the context of ecological functioning and contribution of the development site.

PROJECT DETAILS

Title : Ecological Impact Assessment Report for the Proposed 15ML concrete water

reservoir, elevated tower and pump station at the existing Masetjaba View

reservoir site, Nigel, Gauteng Province

Authors : Savannah Environmental (Pty) Ltd

Gideon Raath Jo-Anne Thomas

Client : Naidu Consulting Engineers (Pty) Ltd

Report Revision: Revision 1.4

Date : January 2019

When used as a reference this report should be cited as: Savannah Environmental (2019). Ecological Impact Assessment Report for the Proposed 15Ml concrete water reservoir, elevated tower and pump station at the existing Masetjaba View reservoir site, Nigel, Gauteng Province.

COPYRIGHT RESERVED

This technical report has been produced for Naidu Consulting Engineers (Pty) Ltd. The intellectual property contained in this report remains vested in Savannah Environmental (Pty) Ltd. No part of the report may be reproduced in any manner without written permission from Savannah Environmental (Pty) Ltd or Naidu Consulting Engineers (Pty) Ltd.

SPECIALIST CONTACT DETAILS AND DECLARATION OF INTEREST

Specialist Company	Savannah Environmental Pty Ltd				
Name:					
B-BBEE	Contribution level	2	Percent	age	-
	(indicate 1 to 8 or non-		Procure	ment	
	compliant)		recogni	tion	
Specialist name:	Gideon Raath				
Specialist Qualifications:	M.Sc. Geography and Environmental Studies (SUN), B.Sc. (Hons) Ecology,				
	conservation and the environment (WITS), B.Sc. Environmental Management			ental Management	
	(UJ)				
Professional	Pr.Sci.Nat. (SACNASP) – Member No. 117178				
affiliation/registration:					
Physical address:	First Floor, Block 2, 5 Woodlands Drive Office Park, Woodlands Drive,				
	Woodmead, 2191				
Postal address:	PO Box 148, Sunninghill				
Postal code:	2157	C	Cell:	Not suppli	ed
Telephone:	011 656 3237	F	ax:	086 684 05	547
E-mail:	gideon@savannahsa.com				

I, Gideon Raath, declare that -

- » I act as the independent specialist in this application.
- » I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant.
- » I declare that there are no circumstances that may compromise my objectivity in performing such work.
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity.
- » I will comply with the Act, Regulations and all other applicable legislation.
- » I have no, and will not engage in, conflicting interests in the undertaking of the activity.
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority.
- » All the particulars furnished by me in this form are true and correct.
- » I realise that a false declaration is an offence in terms of Regulation 48 and is punishable in terms of section 24F of the Act.

Gideon	
Name	Signature
January 2019	Savannah Environmental Pty Ltd
Date	Name of Company

SHORT SUMMARY OF SPECIALIST EXPERTISE

Gideon holds an MSc (Geography and Environmental Management; SU), a BSc Honours (Ecology and Environmental Studies - Cum laude; Wits) and a BSc (Geography and Environmental Management; UJ). His MSc thesis focused on the hydrological impact on the spatial distribution of invasive Eucalyptus trees along the Breede River, while his honours thesis evaluated ethnobotanical relationships around the Rio Tinto copper mine in Phalaborwa. Most recently he has worked as an Environmental Consultant at EOH Coastal and Environmental Services (EOH CES), conducting environmental authorisations applications (NWA, NEMA, MPRDA), Public Participation Processes, GIS specialisation as well as Ecological and Wetland specialist studies. Previously, Gideon worked as the Monitoring & Evaluation Project Manager for the City of Cape Town's invasive species unit (Environmental Resources Management Department).

Gideon's GIS background includes the management of the City of Cape Town invasive species GIS database, involving the storage, management, recall and quality control off all sightings, clearance visits and known infestations. Further experience include mapping for various consulting projects, boundary verification through ground-truthing and the spatial mapping and delineation component of this MSc research. Gideon has further attended public participation workshops, and has been involved with IAP identification, translation, public meetings and engagement for a variety of projects, mainly within the Afrikaans speaking Northern Cape. Gideon is interested in invasion ecology, treatment of groundwater pollution through phytoremediation, botanical and wetland specialist studies, GIS application for ecology and environmental management, and the EIA processes in general. Lastly, Gideon has undertaken several ecological impact assessments for various developments.

A selection of recent specialist ecological studies undertaken, include the following:

Project Name & Location	Client Name	Role
City of Johannesburg nature reserve	City of Johannesburg SOC	Botanical specialist
proclamation (Phase II), Johannesburg,	Ltd	
Gauteng		
SANRAL Bierspruit R510 road upgrade Water Use	SANRAL SOC Ltd & Royal	Ecological specialist
Licence, Basic Assessment, Thabazimbi,	Haskoning DHV South	
Limpopo Province	Africa	
Kibler Park Church Development Ecological	Riverside Community	Ecological specialist
Assessment, Johannesburg, Gauteng	Church	
SANRAL Caledon N2 Section 3 road upgrade	JG Afrika Engineering	Ecological specialist
project Basic Assessment, Water Use Licence		
and Specialist reports, Caledon, Western Cape		
Province		
iGas integrated biodiversity screening,	Central Energy Fund - iGas	Faunal specialist
Saldanha, Western Cape	(subsidiary)	(assistant)
Bloekombos (Kraaifontein) botanical baseline	Western Cape Provincial	Botanical specialist
and impact assessment, Cape Town, Western	Government (PGWC)	/
Cape		

A full curriculum vitae (CV) is attached as **Appendix C.**

EIA REGULATIONS: APPENDIX 6 – SPECIALIST REPORT REQUIREMENTS

As per Appendix 6 of the EIA regulations (2017), the following aspects must be addressed in a specialist report. These aspects are indicated in the table below along with the corresponding sections where these are addressed in this report.

Description	Section in report where this aspect has been addressed
(a) details of—	Page vii above, as well as Appendix C
(i) the specialist who prepared the report; and	
(ii) the expertise of that specialist to compile a specialist report	
including a curriculum vitae;	
(b) a declaration that the specialist is independent in a form as	Page vi above
may be specified by the competent authority;	
(c) an indication of the scope of, and the purpose for which, the	Section 2.1
report was prepared;	
(cA) an indication of the quality and age of base data used for	Section 2.2
the specialist report;	
(cB) a description of existing impacts on the site, cumulative	Chapter 8
impacts of the proposed development and levels of	
acceptable change;	
(d) the duration, date and season of the site investigation and	Section 2.2
the relevance of the season to the outcome of the assessment;	
(e) a description of the methodology adopted in preparing the	Section 2.2 – 2.5
report or carrying out the specialised process inclusive of	
equipment and modelling used;	
(f) details of an assessment of the specific identified sensitivity of	Chapter 7
the site related to the proposed activity or activities and its	
associated structures and infrastructure, inclusive of a site plan	
identifying site alternatives;	
(g) an identification of any areas to be avoided, including	Section 7.2
buffers;	
(h) a map superimposing the activity including the associated	Section 7.2
structures and infrastructure on the environmental sensitivities of	
the site including areas to be avoided, including buffers;	
(i) a description of any assumptions made and any uncertainties	Section 2.5
or gaps in knowledge;	
(j) a description of the findings and potential implications of such	Chapter 6 (specifically) and Chapter 7
findings on the impact of the proposed activity or activities	
(k) any mitigation measures for inclusion in the EMPr;	Chapter 8, and Section 9.3
(I) any conditions for inclusion in the environmental authorisation;	Section 9.3
(m) any monitoring requirements for inclusion in the EMPr or	Section 9.3.4
environmental authorisation;	
(n) a reasoned opinion— (i) whether the proposed activity,	Section 9.3 & Section 9.4
activities or portions thereof should be authorised;	

(iA) regarding the acceptability of the proposed activity or activities; and	
(ii) if the opinion is that the proposed activity, activities or portions	
thereof should be authorised, any avoidance, management	
and mitigation measures that should be included in the EMPr,	
and where applicable, the closure plan;	
(o) a description of any consultation process that was	No formal public participation was
undertaken during the course of preparing the specialist report;	conducted for the Ecological Impact
(p) a summary and copies of any comments received during	Assessment. Please refer to the
any consultation process and where applicable all responses	associated Basic Assessment
thereto; and	documentation (which this report will
	form part of as an Appendix) for a
	complete
(q) any other information requested by the competent	None requested
authority.	

TABLE OF CONTENTS

		PAGE
	VE SUMMARY	
	DETAILS	
	ST CONTACT DETAILS AND DECLARATION OF INTEREST	
	UMMARY OF SPECIALIST EXPERTISE	
	JLATIONS: APPENDIX 6 – SPECIALIST REPORT REQUIREMENTS	
	F CONTENTS	
	IGURES	
	ABLES	
	LATES	
	(MS	
	ODUCTION	
	oject Description	
	oject Location	
	ructure of this report	
	HODOLOGY AND APPROACH OF THE STUDY	
	bjectives and Terms of Reference	
-	oproach to the Study	
2.3. Sa 2.3.1.	Impling protocol	
2.3.1.	Vegetation	
	efinitions	
	nitations and Assumptions	
	SLATIVE FRAMEWORK	
	onstitution of the Republic of South Africa (1996)	
	ational Environmental Management Act (No. 107 of 1998) (NEMA)	
	ational Environmental Management: Biodiversity Act (No. 10 of 2004)	
	CRIPTION OF THE BIOPHYSICAL ENVIRONMENT	
	imate	
	eology	
	pography	
	oning and current land use	
	CRIPTION OF THE ECOLOGICAL ENVIRONMENT	
5.1. Re	egional context	14
	NNBI vegetation classification: Tsakane Clay Grassland (GM9)	
5.2.1.	Distribution	
5.2.2.	Vegetation & Landscape Features	16
5.2.3.	Geology & Soils	16
5.2.4.	Climate	16
5.2.5.	Important Taxa	16
5.2.6.	Conservation status	17
5.3. G	auteng Conservation Plan (C-Plan)	18
5.3.1.	Critical Biodiversity Areas (CBAs)	18
5.3.2.	Ecological Support Areas (ESAs)	18
5.4. Gr	rassland Ecosystem Guidelines	19

5.5.	Gauteng Provincial Environmental Management Framework (GPEMF)	19
5.5.1	. Zone 3 – High control zone (outside the urban development zone)	19
5.5.2	Zone 4 – Normal Control Zone	19
5.6.	Animal species that may occur on site	22
5.6.1	. Mammals	22
5.6.2	Reptiles	22
5.6.3	. Frogs	22
5.6.4	. Birds	22
6. SIT	E OBSERVATIONS AND DESCRIPTION	24
6.1. \	Vegetation unit and description	24
6.2.	Current land use and site disturbance	26
6.3. \	Vegetation species observed	27
6.3.1	. Plant Species of Conservation Concern	27
6.3.2	. Plant alien invasive species observed	27
6.4.	Animal species observed	28
6.4.1	. Animal Species of Conservation Concern	28
6.4.2	. Animal alien invasive species observed	28
7. SIT	E SENSITIVITY ANALYSIS	29
7.1.	Categorisation	29
7.2.	Sensitivity map	31
8. IM	PACT ASSESSMENT	33
8.1. I	Planning and Design Phase	33
8.2.	Construction Phase	33
8.2.1	\mathbf{c}	
8.2.2	,	
8.2.3	lssue 3: Control of alien plant species	36
8.2.4		
8.2.5	, , , ,	
8.3.	Operational Phase	
8.3.1	. Issue 6: Control of alien plant species	39
8.4. I	Decommissioning Phase	39
8.4.1	. Issue 7: Poor rehabilitation	40
8.4.2		
8.5.	Cumulative Impacts	
8.5.1	,	
	'No-go' option	
8.6.1	· ·	
8.6.2		
	PACT STATEMENT, CONCLUSION AND RECOMMENDATIONS	
	Comparison of impacts	
	Current status	
	Conditions for approval and mitigation measures to be included into the EMPr	
9.3.1	•	
9.3.2		
9.3.3		
9.3.4	·	
9.3.5	. Monitoring requirements	49

9.4.	Environmental statement and specialist opinion		
10.	REFERENCES		
11.	APPENDIX A: COMPREHENSIVE SPECIES LISTS FOR FAUNAL AND FLORAL SPECIES THAT MAY OCCUR ON		
SITE 12.	54 APPENDIX B: IMPACT ASSESSMENT METHODOLOGY	60	
13.	APPENDIX C: SPECIALIST CV		
LIST	OF FIGURES		
Figure	e 1.1: Locality map of the Masetjaba water reservoir project site	3	
Figure	e 1.2. Layout map of the proposed development	4	
Figure	e 4.1: Average temperatures and precipitation found within the Tsakane region	11	
Figure	e 5.1: Mucina and Rutherford (2012) vegetation map of the study site	15	
Figure	e 5.2: Gauteng C-Plan classification of the project site	20	
Figure	e 5.3: Gauteng C-Plan areas description of the project site	21	
Figure	e 6.1: Vegetation map of the single vegetation unit present onsite	25	
Figure	e 7.1: Ecological sensitivity map of the project site	32	
	• 5.1: Important Taxa (Mucina and Rutherford, 2012) of the Tsakane Clay Grassland	14	
	s 5.1. Important taxa (Mucina and Rumertora, 2012) of the isakane Clay Grassiana s 5.2: Mammalian species with conservation status other than Least Concern, which may occu		
	he project region (ADU, 2019).		
	5.3: Frog species that may occur in the project site, with conservation status other than Least C		
	5.4: Bird species that may be present on site, with conservation status other than Least Conce		
Table	e 6.1: Plant species identified within the proposed project site	27	
Table	e 6.2: Invasive plant species observed on site	27	
Table	e 6.3: Bird species observed on or near the project site	28	
Table	e 7.1: Criteria used to inform the sensitivity analysis for the proposed project (blue highlight	ed cells	
C	applicable to this project)	29	
Table	8.1: Issues identified from the sensitivity analysis.	33	
Table	9.1: Impact severity summary pre- and post-mitigation for all phases	46	
Table	9.2: Monitoring protocol for invasive alien plant species during construction and operation	50	
Table	e 11.1: Full species list of reptiles that may occur on the project site	54	
Table	11.2: Full species list of frogs that may occur on the project site.	54	
	e 11.3: Full species list of mammals that may occur on the project site		
Table	e 11.4: Full species list of scorpions that may occur on the project site	55	

Table 11.5: Full species list of spiders that may occur on the project site	
LIST OF PLATES	
Plate 4.1: Topography of the project site, showing flat terrain features throughout the project site	12
Plate 6.1: Highly disturbed Tsakane Clay Grassland present onsite	24
Plate 6.2: Evidence of current and historic disturbance on site.	26

ACRONYMS

ADU Animal Demography Unit

BA Basic Assessment

CBA Critical Biodiversity Areas

CITES Convention on International Trade in Endangered Species

CoE City of Ekurhuleni

C-Plan Gauteng Conservation Plan Version 3

CR Critically Endangered

DEA Department of Environmental Affairs

DWA Department of Water Affairs

DWAF Department of Water Affairs and Forestry
DWS Department of Water and Sanitation

EA Environmental Authorisation
ECO Environmental Control Officer
EIA Environmental Impact Assessment

EMPr Environmental Management Programme

EN Endangered

ESA Ecological Support Area
ESO Environmental Site Officer

GDARD Gauteng Department of Agriculture and Rural Development

GN. R Government Notice Regulation

GPEMF Gauteng Province Environmental Management Framework

GPS Global Positioning System

Ha Hectare

IBA Important Birding Area

IUCN International Union for Conservation of Nature

km Kilometre
LC Least Concern
LM Local Municipality

ML Megalitre

NEM:BA National Environmental Management: Biodiversity Act
NEMA National Environmental Management Act (No. 107 of 1998)

NT Near Threatened

NWA National Water Act, 1998 (Act No. 36 of 1998)

PPP Public Participation Process

QDS Quarter Degree Square

RE Resident Engineer

SACNASP South African Council for Natural and Scientific Professions

SANBI South African National Biodiversity Institute

SARCA Southern African Reptile Conservation Assessment

SCC Species of Conservation Concern

VU Vulnerable

WWF Worldwide Fund for Nature

1. INTRODUCTION

Naidu Consulting (Pty) Ltd has been appointed by City of Ekurhuleni (CoE) for the design and construction supervision of a 15ML concrete reservoir, elevated tower and pump station at the existing Masetjaba View reservoir location in Nigel, Gauteng Province. The site falls within an area zoned for public services with a low ecological sensitivity rating (City of Ekurhuleni Bioregional Plan, 2014). However, the site may contain the endangered Tsakane Clay Grassland vegetation, as per the Mucina and Rutherford (2012) classification. Furthermore, based on the Gauteng Conservation Plan (C-Plan), a Critical Biodiversity Area (CBA) is located to the north of the site and this may be impacted should the footprint of the proposed infrastructure be moved to the north of the existing Masetjaba View site.

There is a non-perennial pan about 350m to the north of the proposed development site. There are various other surface water resources to the east and south of the site as well. It is assumed that none of these would be impacted by the proposed development. The area is generally intended for agricultural development land uses.

In terms of the Environmental Impact Assessment (EIA) Regulations, clearance of more than 300m² vegetation within a sensitive environment, such as a CBA or endangered vegetation type requires Environmental Authorisation. As the listed activities fall within Listing Notice 3 of the EIA Regulations of 2014, as amended, the application for Environmental Authorisation is required to be supported by a Basic Assessment (BA) process. This report subsequently informs the Basic Assessment report by considering the ecological (faunal and floral) impacts of the proposed development within the environmental authorisation process.

1.1. Project Description

The CoE proposed to develop additional capacity at their existing Masetjaba water reservoir site (Farm Spaartwater 171), by constructing a new 15ML circular water reservoir, along with associated infrastructure (small scale), adjacent to their existing water reservoir. The development therefore primarily involves erecting a concrete water reservoir, which will occupy a surface area of 1 980m² (0.198 ha), within a broader development area (including the associated infrastructure) of approximately 6 900m² (0.69 ha), all contained within the existing Masetjaba water reservoir site off Springs Road, Masetjaba View.

The components of the facility will include the following:

- » 15ML Water Reservoir approximately 8m in height (15 000m³);
- » Cage and ladder attached to the reservoir for ease of access during maintenance;
- » Inlet and outlet chambers with associated pipe work;
- » 2ML concrete water tower approximately 32m in height (2 000m3);
- » Pump Station (12m x 18m);
- » Standby Generator;
- » Interconnecting pipework and chambers;
- » Stormwater provisions;
- » A single lane, gravel access road approximately 170m in length.

The purpose of the project is to improve water supply to certain parts of the community that do not have adequate supply during peak usage periods. The proposed reservoir will also supply the reservoir zone

located on the southern boundary of Brakpan and will include planned future developments in Tsakane and its extensions excluding Tsakane X17.

1.2. Project Location

The water reservoir facility will occupy approximately 6 900m² (0.69 ha) in extent and will be located on Farm Spaarwater 171, hereafter referred to as the project 'site', accessible immediately off the tarred Springs Road (R550) situated on the northern boundary of the project site, Masetjaba View (Figure 1.1 &

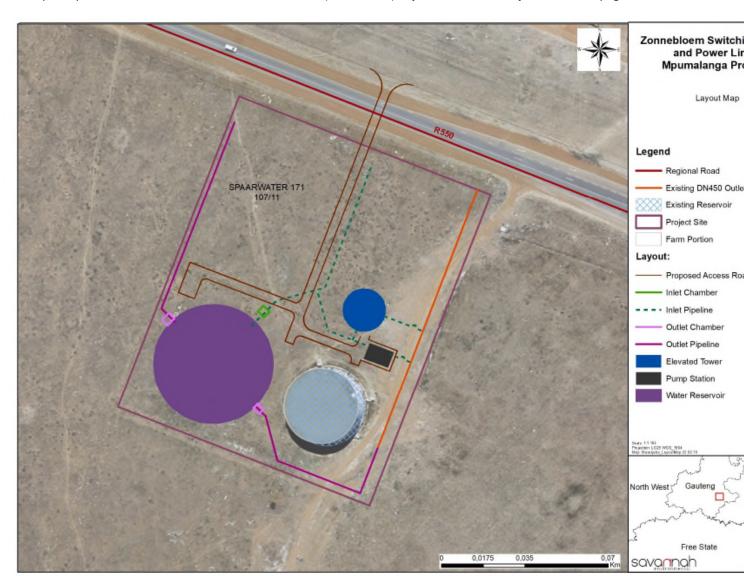


Figure 1.2). The site is located immediately adjacent Masetjaba View, which is the nearest settlement.

1.3. Structure of this report

This Ecological Impact Assessment report has been structured as follows:

- » Chapter 1 provides an introduction to the project long with the location and project description.
- » **Chapter 2** provides an overview of the methodology, objectives, approach and limitations and assumptions utilised in preparing this report.

- » **Chapter 3** provides an overview of the legislative framework applicable to the proposed development from an ecological perspective.
- » Chapter 4 provides the description of the biophysical environment within which the project occurs.
- » Chapter 5 provides a description of the ecological environment within the project occurs.
- » Chapter 6 provides the biodiversity and sensitivity assessment criteria and results.
- » Chapter 7 provides the impact identification and assessment related to the proposed development.
- » Chapter 8 provides the impact statement, conclusions and recommendations.

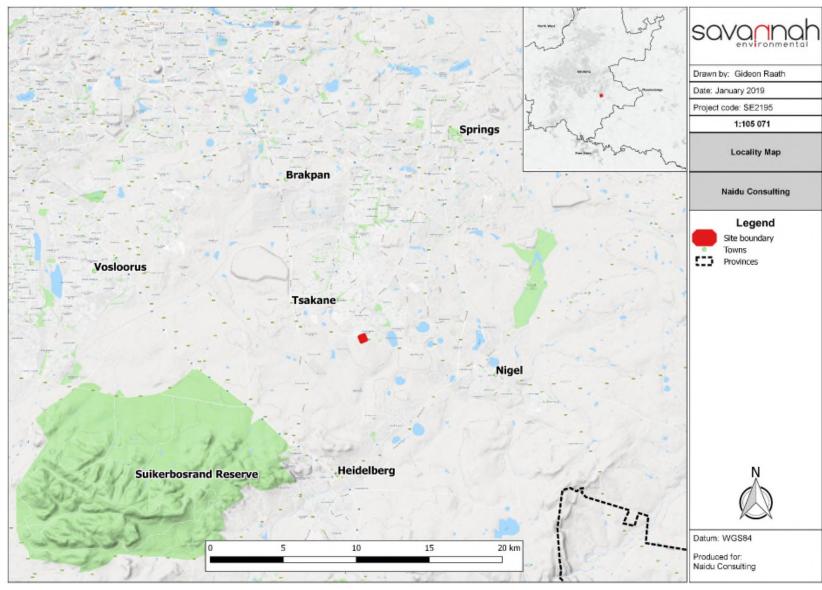


Figure 1.1: Locality map of the Masetjaba water reservoir project site.

Ecological Impact Assessment Report Page 4

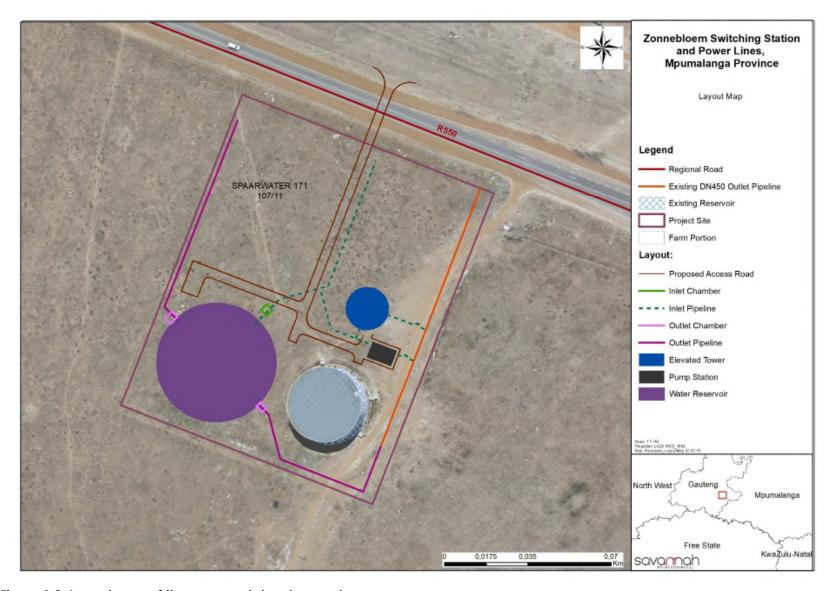


Figure 1.2. Layout map of the proposed development.

Ecological Impact Assessment Report Page 5

2. METHODOLOGY AND APPROACH OF THE STUDY

This Ecological Impact Assessment Report has been prepared at the request of the CoE for the purpose of determining the current ecological condition and sensitivity of the site, as well as the impacts and severity of the proposed development, along with any mitigation measures that emanate from their management.

2.1. Objectives and Terms of Reference

The objectives and terms of reference for this report include:

- » An indication of the methodology used in determining the significance of potential environmental impacts;
- » A description of all environmental issues that were identified during the environmental impact assessment process;
- An assessment of the significance of direct, indirect and cumulative impacts in terms of the following criteria:
 - * the nature of the impact, which shall include a description of what causes the effect, what will be affected and how it will be affected
 - * the extent of the impact, indicating whether the impact will be local (limited to the immediate area or site of development), regional, national or international
 - * the duration of the impact, indicating whether the lifetime of the impact will be of a short-term duration (0–5 years), medium-term (5–15 years), long-term (> 15 years, where the impact will cease after the operational life of the activity) or permanent
 - * the probability of the impact, describing the likelihood of the impact actually occurring, indicated as improbable (low likelihood), probable (distinct possibility), highly probable (most likely), or definite (impact will occur regardless of any preventative measures)
 - * the severity/beneficial scale, indicating whether the impact will be very severe/beneficial (a permanent change which cannot be mitigated/permanent and significant benefit, with no real alternative to achieving this benefit), severe/beneficial (long-term impact that could be mitigated/long-term benefit), moderately severe/beneficial (medium- to long-term impact that could be mitigated/medium- to long-term benefit), slight or have no effect
 - * the significance, which shall be determined through a synthesis of the characteristics described above and can be assessed as low, medium or high
 - * the status, which will be described as either positive, negative or neutral
 - * the degree to which the impact can be reversed
 - * the degree to which the impact may cause irreplaceable loss of resources
 - * the degree to which the impact can be mitigated
- » A description and comparative assessment of all alternatives identified during the environmental impact assessment process;
- » Recommendations regarding practical mitigation measures for potentially significant impacts, for inclusion in the Environmental Management Programme (EMPr);
- » An indication of the extent to which the issue could be addressed by the adoption of mitigation measures;
- » A description of any assumptions, uncertainties and gaps in knowledge;
- » An environmental impact statement which contains:
 - * a summary of the key findings of the environmental impact assessment;

* an assessment of the positive and negative implications of the proposed activity.

2.2. Approach to the Study

The study site and surrounding areas were described using a two-phased approach. Firstly, a desktop assessment of the site was conducted in terms of current vegetation classifications, faunal databases and biodiversity programmes & plans. This included the consideration of:

- The South African Vegetation Map (Mucina and Rutherford, 2012 revision);
- Gauteng Conservation Plan (C-Plan) (2011);
- Grassland Ecosystem Guidelines (2013);
- Ekurhuleni Bioregional Plan (2014);
- Gauteng Environmental Management Framework (2011);
- Faunal databases regarding the presence or absence of Species of Conservation Concern (SCC), including:
 - Animal species listed in the Endangered or Vulnerable categories in the revised South African Red Data Books (Amphibians, du Preez and Carruthers, 2009; Reptiles, Branch 1988; Birds, SA Birding, 2008);
 - o Endangered Wildlife Trust mammal red list (2016);
 - Animal Demographic Unit (ADU) databases for frogs, birds, mammals and reptiles (2019);
 - International Union for Conservation of Nature (IUCN) red list of threatened species (2018);
 and
 - SANBI Threatened Species Programme (red list of threatened species) for South Africa (2017).

Further to the above, one site visit was conducted (Thursday, 22 November 2018) in order to assess the actual ecological state, current land-use, identify potential sensitive ecosystems and identify sensitive plant and animal species associated with the proposed project activities. The site visit also served to identify potential impacts of the proposed project and how significantly it would impact on the surrounding ecological environment. The site visit was conducted within the wet season, with many seasonally flowering plants in full show, and as such was considered a suitable time to conduct the site assessment.

It is not the aim of this study to produce a complete list of all animal and plant species occurring in the region, but rather to examine a representative sample. It is however, important to note that areas of high sensitivity as well as SCC have been identified as far as possible, either from records from the site or a review of their habitat requirements, and whether or not these habitats occur within the site. Species that are afforded special protection, which are protected by CITES (Convention on International Trade in Endangered Species of Wild Flora and Fauna) are also regarded as SCC (see http://www.cites.org/).

2.3. Sampling protocol

2.3.1. Vegetation

The entire project site was inspected to evaluate the vegetation of the study area and to provide more detailed information on the plant communities present. The site inspection took into account the amount of time available for the study and limitations such as the seasonality of the vegetation.

2.3.2. **Animals**

The assessment of animals was based on a general observation of species noted onsite during the site assessment, but with particular consideration of known potential animal Species of Conservation Concern (SCC).

2.4. Definitions

Where applicable, the following definitions were used based on the conservation status classification of the SANBI red data list (floral), or IUCN red data list (faunal):

- » Critically Endangered (CR) A taxon is Critically Endangered when the best available evidence indicates that it meets any of the criteria A to E for Critically Endangered (see Section V of the Red Data List), and it is therefore considered to be facing an extremely high risk of extinction in the wild.
- » Endangered (EN) A taxon is Endangered when the best available evidence indicates that it meets any of the criteria A to E for Endangered (see Section V of the Red Data List), and it is therefore considered to be facing a very high risk of extinction in the wild.
- » Vulnerable (VU) A taxon is Vulnerable when the best available evidence indicates that it meets any of the criteria A to E for Vulnerable, and it is therefore considered to be facing a high risk of extinction in the wild.
- » Near Threatened (NT) A taxon is Near Threatened when it has been evaluated against the criteria but does not qualify for Critically Endangered, Endangered or Vulnerable now, but is close to qualifying for or is likely to qualify for a threatened category in the near future.
- » **Sensitive species** Species not falling in the categories above but listed in: Appendix 1 or 2 of the Convention of International Trade in Endangered Species (CITES).
- » Endemic species Species endemic to South Africa, and more specifically the province.
- » Least concern (LC) A taxon is of Least Concern when it does not qualify for any of the other categories. Widespread and abundant taxa are typically listed in this category.

2.5. Limitations and Assumptions

The following assumptions and limitations are applicable:

- The report is based on a project description taken from design specifications for the proposed infrastructure which is likely to undergo a number of further refinements before it can be regarded as definitive;
- » Species of Conservation Concern are difficult to find and difficult to identify, thus species described in this report do not comprise an exhaustive list, however this is highly unlikely due to the small size of the proposed development footprint and project site.
- » Once-off sampling only was conducted. Consequently, some plant species may therefore have gone undetected.

3. LEGISLATIVE FRAMEWORK

The applicable legislative framework plays an important role in contextualising the proposed development from an ecological perspective. In this regard, a key component of the legislative context is to assess the proposed development in terms of the suitability with regards to key legislation.

The following key pieces of legislation were reviewed as part of this review process:

National Legislative Context:

- » Constitution of the Republic of South Africa (1996).
- » National Environmental Management Act (No. 107 of 1998) (NEMA); and
- » National Environmental Management: Biodiversity Act (No. 10 of 2004);

3.1. Constitution of the Republic of South Africa (1996)

The Constitution of the Republic of South Africa, 1996 is the supreme law of South Africa, and forms the foundations for a democratic society in which fundamental human rights are protected. The Bill of Rights contained in Chapter 2 of the Constitution enshrines the rights of all people in South Africa, and affirms the democratic values of human dignity, equality and freedom. Section 24 of the Constitution pertains specifically to the environment. It states that:

24. Everyone has the right -

- (a) To an environment that is not harmful to their health or well-being; and
- (b) To have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that:
 - (i) Prevent pollution and ecological degradation.
 - (ii) Promote conservation.
 - (iii) Secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

The Constitution also however outlines the need to promote social and economic development. Section 24 of the Constitution therefore requires that development be conducted in such a manner that it does not infringe on an individual's environmental rights, health, or well-being and to have the environment protected. This is relevant with regards to wetland environments, which are protected under national legislation in South Africa (see section below).

3.2. National Environmental Management Act (No. 107 of 1998) (NEMA)

The National Environmental Management Act (No. 107 of 1998) (NEMA) is South Africa's key piece of environmental legislation, and sets the framework for environmental management in South Africa. It provides for co-operative environmental governance by establishing principles for decision-making on matters affecting the environment. NEMA is founded on the principle that everyone has the right to an environment that is not harmful to their health or well-being as contained within the Bill of Rights. In accordance with this, it states that:

The State must respect, protect, promote and fulfil the social, economic and environmental rights of everyone and strive to meet the basic needs of previously disadvantaged communities.

- » Sustainable development requires the integration of social, economic and environmental factors in the planning, implementation and evaluation of decisions to ensure that development serves present and future generations.
- » Everyone has the right to have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that prevent pollution and ecological degradation; promote conservation; and secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

In addition, the National environmental management principles contained within NEMA state that:

- » Development must be socially, environmentally and economically sustainable;
- » Sustainable development requires the consideration of all relevant factors including the following:
 - o That the disturbance of ecosystems and loss of biological diversity are avoided, or, where they cannot be altogether avoided, are minimised and remedied;
 - o That pollution and degradation of the environment are avoided, or, where they cannot be altogether avoided, are minimised and remedied; and
 - o That negative impacts on the environment and on people's environmental rights be anticipated and prevented, and where they cannot be altogether prevented, are minimised and remedied.
- The costs of remedying pollution, environmental degradation and consequent adverse health effects and of preventing, controlling or minimising further pollution, environmental damage or adverse health effects must be paid for by those responsible for harming the environment; and
- » Sensitive, vulnerable, highly dynamic or stressed ecosystems, such as coastal shores, estuaries, wetlands, and similar systems require specific attention in management and planning procedures, especially where they are subject to significant human resource usage and development pressure.

Sensitive ecosystems are specifically mentioned with regards to requiring specific attention in management and planning procedures, and therefore need to be identified when planning developments, such that adequate management procedures can be put in please to ensure negative impacts are avoided, minimised or remedied appropriately.

3.3. National Environmental Management: Biodiversity Act (No. 10 of 2004)

The objectives of the National Environmental Management: Biodiversity Act include inter alia, to provide for:

- The management and conservation of biological diversity within the Republic and of the components of such biological diversity;
 - The use of indigenous biological resources in a suitable manner;
 - The fair and equitable sharing of benefits arising from bio-prospecting of genetic material derived from indigenous biological resources; an
 - To give effect to ratified international agreements relating to biodiversity which are binding on the Republic.
- » To provide for co-operative governance in biodiversity management and conservation; and
- To provide for a South African National Biodiversity Institute to assist in achieving the objectives of the Act.

Threatened or protected ecosystems and species

Sections 50 - 62 further provide details relating to the protection of threatened or protected ecosystems and species. A person may not carry out a restricted activity involving a specimen of a listed threatened or

protected species without a permit (Section 56 - 1).

Alien and invasive species

Sections 63 - 77 provide details relating to the alien and invasive species with the purpose of preventing the introduction and spread, managing and controlling, and eradicating alien and invasive species.

The implications of this act for the proposed development include the need to develop an invasive species monitoring, control and eradication plan for land/activities under their control should invasive species be found on site, as part of their environmental plans in accordance with section 11 of NEMA.

4. DESCRIPTION OF THE BIOPHYSICAL ENVIRONMENT

4.1. Climate

Climate within the broader Johannesburg region is generally subtropical, with mild and sunny winters and pleasantly warm, sunny summers. The area is known for afternoon thunderstorms during the summer. Due to the high elevation of the broader area, the climate is tempered by altitude, with average temperature ranging from 10 °C in June and July, to 21 °C in January. Figure 4.1 below illustrates the average temperatures and precipitation found within the Tsakane region, which is approximately 5km from the project site.

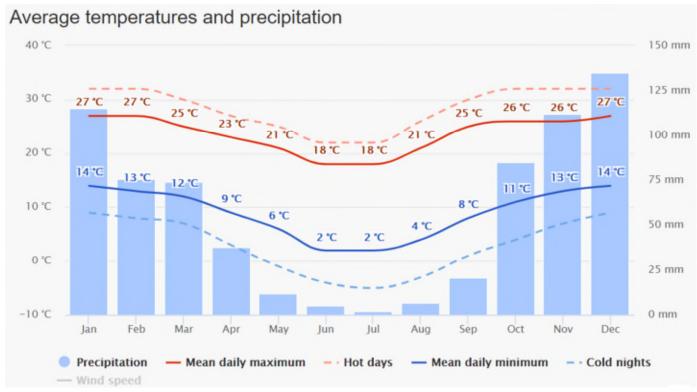


Figure 4.1: Average temperatures and precipitation found within the Tsakane region.

(Source: <u>www.meteoblue.com</u>. Accessed 13 December 2018).

The immediate project site experiences mean daily minimum and maximum temperatures ranging from the hottest month (December) of 14°C and 27 °C, to the coldest month of the year (July) with mean minimum and maximum ranges between 2 °C and 18 °C. Precipitation ranges between 130mm average in December to 3 - 5mm in July.

4.2. Geology

The overall geology of the site contains mostly Shales, Coal and Arenites derived from the Vryheid Formation, of the Ecca Group and Karoo Supergroup. This formation dates back to the Paleozoic era (541 to 251 million years ago).

4.3. Topography

The entire site is flat with no distinct topographical features, within a broader context of slightly undulating hills with intermittent small valleys in which drainage lines are common. Plate 4.1 below illustrates the overall topography of the site. The elevation of the site is approximately 1 600 m above mean sea level.

Plate 4.1: Topography of the project site, showing flat terrain features throughout the project site.

4.4. Zoning and current land use

The entire site is zoned as 'agriculture', however currently the site is entirely fenced and only utilised for the operation of the existing water supply infrastructure. According to the Grand Open Space Plan of the CoE (2013), the entirety of the site is located on "Primary Open Space", which reflects the land use of the site well. Apart from the current use of the gravelaccess road, and reservoir infrastructure, the site is unoccupied. Historical images however show that the existing concrete fencing visible in Plate 1.1 above was only erected between the August 2015 and May 2016, prior to which the site was entirely accessible from the road with visible footpaths traversing the site in aerial images prior to August 2015. In addition, illegal dumping in the area is common and occurs at a relatively high level, with dumping sites seen on the aerial imagery in the area (some of which occurred on site) since at least March 2005. Since the concrete fencing was erected in 2016, no further visible illegal dumping is visible from the aerial imagery on the proposed project site, however ongoing illegal dumping within 2m of the fence line is visible. Evidence of frequent

burning was also observed on site (burn evidence within the proposed development footprint), possibly from the frequent fires associated with burning of the illegally dumped waste adjacent to the site boundaries (within 1m of the proposed project site fence line).

5. DESCRIPTION OF THE ECOLOGICAL ENVIRONMENT

5.1. Regional context

The project occurs entirely within the Grassland Biome (Mucina & Rutherford, 2012) (Figure 5.1), which occurs from just north of Bisho in the Eastern Cape, to the Free-State border near Kimberley, to Pretoria in the north and Pietermaritzburg in the East. The bioregion within this biome – the Mesic Highveld Grassland Bioregion – furthermore occurs mainly in eastern, wetter areas of the Highveld, reaching towards the northern escarpment, straddling the border of the Grassland and Savanna Biome in the north. This Bioregion are comprised of 'sour' grasslands, with the various vegetation units generally distinguished by geology and substrate, elevation, topography and rainfall characteristics.

5.2. SANBI vegetation classification: Tsakane Clay Grassland (GM9)

Mucina and Rutherford (2012) developed the National Vegetation map as part of a South African National Biodiversity Institute (SANBI) funded project, to provide floristically based vegetation units of South Africa, Lesotho and Swaziland at a greater level of detail than was available prior to their work. A national map was developed using large quantities of data from several contributors and has allowed for the best national vegetation map to date, the last being that of Acocks, developed over 50 years ago. The SANBI Vegetation map informs finer scale bioregional plans such as STEP and had two main aims:

- "to determine the variation in and units of southern African vegetation based on the analysis and synthesis of data from vegetation studies throughout the region, and
- » to compile a vegetation map. The aim of the map was to accurately reflect the distribution and variation on the vegetation and indicate the relationship of the vegetation with the environment. For this reason, the collective expertise of vegetation scientists from universities and state departments were harnessed to make this project as comprehensive as possible."

The result of the abovementioned work described each vegetation type in detail, showing the most important taxa, endemic species and any species that carry bioregional importance, and represents that most comprehensive dataset for vegetation types in South Africa to date. The Tsakane Clay Grassland occupies the entirety of the site according to the vegetation classification, and is described in greater detail below.

5.2.1. Distribution

Tsakane Clay Grassland occurs mainly in the Gauteng and Mpumalanga provinces, with patches extending in a narrow band between Springs and Soweto, southwards towards Nigel and as far as Vereeniging. The grassland also occurs north of the Vaal Dam, and between Balfour and Standerton, and preferentially occurs at altitude ranging from 1 480 – 1 680 m (Mucina and Rutherford, 2012).

Figure 5.1: Mucina and Rutherford (2012) vegetation map of the study site.

5.2.2. Vegetation & Landscape Features

This vegetation type occurs predominantly on flat to slightly undulating plains and low hills, and is short and dense in structure. Tsakane Clay Grassland is dominated by a mixture of common highveld grasses such as Themeda triandra, Heteropogon contortus, Elionurus muticus and a variety of Eragrostis species (Mucina and Rutherford, 2012). The forbs most common are of the families Asteraceae, Rubiaceae, Malvaceae, Lamiaceae and Fabaceae. Disturbance in this vegetation type allows for an increase in abundance of Hyparrhenia hirta and Eragrostis chloromelas (Mucina and Rutherford, 2012).

5.2.3. Geology & Soils

This vegetation unit is contained generally on regions where the most dominant rock is basaltic lava of the Klipriviersberg Group (Ventersdorp Supergroup), together with the sedimentary rocks of the Madzaringwe Formation of the Karoo Supergroup. Soils are typical of the Ba and Bb land types (Mucina and Rutherford, 2012).

5.2.4. Climate

Climate within the regions where this vegetation type occurs is strongly seasonal, with summer rainfall and very dry winters. Mean annual precipitation ranges between 630–720 mm, with a mean annual temperature of 15°C indicating the transitional nature between a cool-temperate and warm-temperate climate (Mucina and Rutherford, 2012).

5.2.5. Important Taxa

According to Mucina and Rutherford (2012), the following important taxa are characteristic of this vegetation type (Table 5.1):

Table 5.1: Important Taxa (Mucina and Rutherford, 2012) of the Tsakane Clay Grassland.

Growth Form	Taxon name	Family
Graminoids	Brachiaria serrata	POACEAE
Graminoids	Cynodon dactylon	POACEAE
Graminoids	Cynodon hirsutus	POACEAE
Graminoids	Digitaria ternata	POACEAE
Graminoids	Elionurus muticus	POACEAE
Graminoids	Eragrostis chloromelas	POACEAE
Graminoids	Eragrostis patentipilosa	POACEAE
Graminoids	Eragrostis plana	POACEAE
Graminoids	Eragrostis racemosa	POACEAE
Graminoids	Heteropogon contortus	POACEAE
Graminoids	Hyparrhenia hirta	POACEAE
Graminoids	Microchloa caffra	POACEAE
Graminoids	Setaria sphacelata	POACEAE
Graminoids	Themeda triandra	POACEAE
Graminoids	Trachypogon spicatus	POACEAE
Graminoids	Abildgaardia ovata	CYPERACEAE

Graminoids	Andropogon schirensis	POACEAE
Graminoids	Cymbopogon caesius	POACEAE
Graminoids	Diheteropogon amplectens	POACEAE
Graminoids	Melinis nerviglumis	POACEAE
Graminoids	Panicum gilvum	POACEAE
Graminoids	Setaria nigrirostris	POACEAE
Herbs	Acanthospermum australe	ASTERACEAE
Herbs	Ajuga ophrydis	LAMIACEAE
Herbs	Eriosema salignum	FABACEAE
Herbs	Euryops transvaalensis subsp. transvaalensis	ASTERACEAE
Herbs	Gerbera viridifolia	ASTERACEAE
Herbs	Helichrysum nudifolium var. nudifolium	ASTERACEAE
Herbs	Helichrysum rugulosum	ASTERACEAE
Herbs	Hermannia depressa	MALVACEAE
Herbs	Lotononis macrosepala	FABACEAE
Herbs	Nidorella hottentotica	ASTERACEAE
Herbs	Pentanisia prunelloides subsp. latifolia	RUBIACEAE
Herbs	Peucedanum caffrum	APIACEAE
Herbs	Rotheca hirsuta	LAMIACEAE
Herbs	Selago paniculata	SCROPHULARIACEAE
Herbs	Senecio coronatus	ASTERACEAE
Herbs	Senecio inornatus	ASTERACEAE
Herbs	Sonchus nanus	ASTERACEAE
Herbs	Vernonia oligocephala	ASTERACEAE
Geophytic Herbs	Aspidoglossum ovalifolium	APOCYNACEAE
Geophytic Herbs	Hypoxis rigidula var. pilosissima	HYPOXIDACEAE
Semiparasitic Herb	Striga asiatica	OROBANCHACEAE
Low Shrubs	Anthospermum rigidum subsp. pumilum	RUBIACEAE
Low Shrubs	Chaetacanthus setiger	ACANTHACEAE
Low Shrubs	Tephrosia capensis var. acutifolia	FABACEAE
Semiparasitic Shrub	Thesium impeditum	SANTALACEAE

5.2.6. Conservation status

According to Mucina and Rutherford (2012), the conservation status of Tsakane Clay Grassland is Endangered (EN), with only 1.5% of the 24% conservation target conserved in 2012, mainly in the Suikerbosrand, Olifantsvlei, Klipriviersberg and Marievale Nature Reserves, with some minor patches in private reserves. The main threats to this vegetation type are transformation by cultivation, which had transformed approximately 60% of the distribution already, along with mining, dam-building and road development and operation. Large portions of Alberton, Springs, Tsakane and part of Soweto (all south and east of Johannesburg) were built in the area of this vegetation unit. Increasing urbanisation, especially in the south of Johannesburg and near the East Rand (Brakpan district) will increase pressure on the remaining vegetation. Erosion across this vegetation unit is generally very low or low.

5.3. Gauteng Conservation Plan (C-Plan)

The Gauteng C-Plan is based on the systematic conservation protocol developed by Margules and Pressey (2000) and is based on the principles of complementarity, efficiency, defensibility and flexibility, irreplaceability, retention, persistence and accountability. Ultimately, the tool resulted in systematic classification and mapping of the Gauteng region, taking a vast array of ecological and land use factors into account.

The main purposes of the C-Plan are:

- » To serve as the primary decision support tool for the biodiversity component of the Environmental Impact Assessment (EIA) process;
- » To inform protected area expansion and biodiversity stewardship programmes in the province;
- » To serve as a basis for development of Bioregional Plans in municipalities within the province.

As such, the plan delineates Critical Biodiversity Areas (CBA's), and Ecological Support Area (ESA) for the entire province, to be used by private and public entities to guide land use decisions within Gauteng.

Critical Biodiversity Areas are areas required to meet biodiversity targets for ecosystems, species and ecological processes, while Ecological Support Areas are not essential for meeting biodiversity targets but play an important role in supporting the ecological functioning of Critical Biodiversity Areas and/or in delivering ecosystem services. Critical Biodiversity Areas and Ecological Support Areas may be terrestrial or aquatic.

The Gauteng C-Plan shows that the project area partially falls within a Critical Biodiversity Area (Figure 5.2), with the northern portion of the site occurring on the CBA area – approximately 0.9ha in size (75x110m). As such, approximately 50% of the site occurs on CBA. In addition, the C-Plan areas description deem the CBA zone occurring on site as an "Irreplaceable Area" (Figure 5.3).

5.3.1. Critical Biodiversity Areas (CBAs)

CBAs include natural or near-natural terrestrial and aquatic features that were selected based on biodiversity characteristics, spatial configuration and requirement for meeting both biodiversity pattern and ecological process targets. CBAs include irreplaceable sites where no other options exist for meeting targets for biodiversity features, as well as best-design sites which represent an efficient configuration of sites to meet targets in an ecologically sustainable way that is least conflicting with other land uses and activities. These areas need be maintained in the appropriate condition for their category (GDARD C-Plan Technical Report, 2014). Despite the classification of CBA for the northern region of the site, the historical disturbance has severely degraded this area, making it highly degraded and no longer functionally contributing to the critical biodiversity. As such, this area is not deemed as a functioning CBA any. The current on-site condition is expanded upon further below in Chapter 6.

5.3.2. Ecological Support Areas (ESAs)

ESA areas include natural, near-natural, degraded or heavily modified areas that are required to be maintained in an ecologically functional state to support Critical Biodiversity Areas and/or Protected Areas. ESAs maintain the ecological processes on which Critical Biodiversity Areas and Protected Areas depend. Some ESAs are irreversibly modified, but are still required as they still play an important role in supporting

ecological processes (GDARD C-Plan Technical Report, 2014). No areas classified as ESA's were located on the project footprint, and as such ESA's are not applicable to the development proposal.

5.4. Grassland Ecosystem Guidelines

The South African National Biodiversity Institute (SANBI) determined Grassland Ecosystem Guidelines, for land use planning used by both developers and authorities, to inform developments located near or within sensitive grassland regions. Based on the results, only the Blaauwpan and Kaalfontein grassland features are located in the broader region, however both are located at a great distance from the proposed site (in excess of 10km). As such, these grasslands do not contribute to any environmental sensitivity of the proposed site.

5.5. Gauteng Provincial Environmental Management Framework (GPEMF)

The Gauteng Provincial Environmental Management Framework (GPEMF) delineated various environmental management zones throughout the province, which take into account biodiversity sensitivity, land use planning objectives and the current status of these sites as far as possible, and provide clear development instruction regarding the various zones. The GPEMF indicated that the project falls within "Normal Control Zone (Zone 4)" (on the southern portion of the site, approximately 0.8ha or 50%) and the "High Control Zone (outside the urban development zone) (Zone 3)" in the norther portion of the site (covering approximately 50% of the site, or 0.9ha).

5.5.1. Zone 3 – High control zone (outside the urban development zone)

According to the GPEMF, this zone is sensitive to development activities and in several cases also have specific values that need to be protected. Conservation and related tourism and recreation activities should dominate development in this zone.

5.5.2. Zone 4 – Normal Control Zone

This zone is dominated by agricultural uses outside the urban development zone. Agricultural and rural development that support agriculture should be promoted.

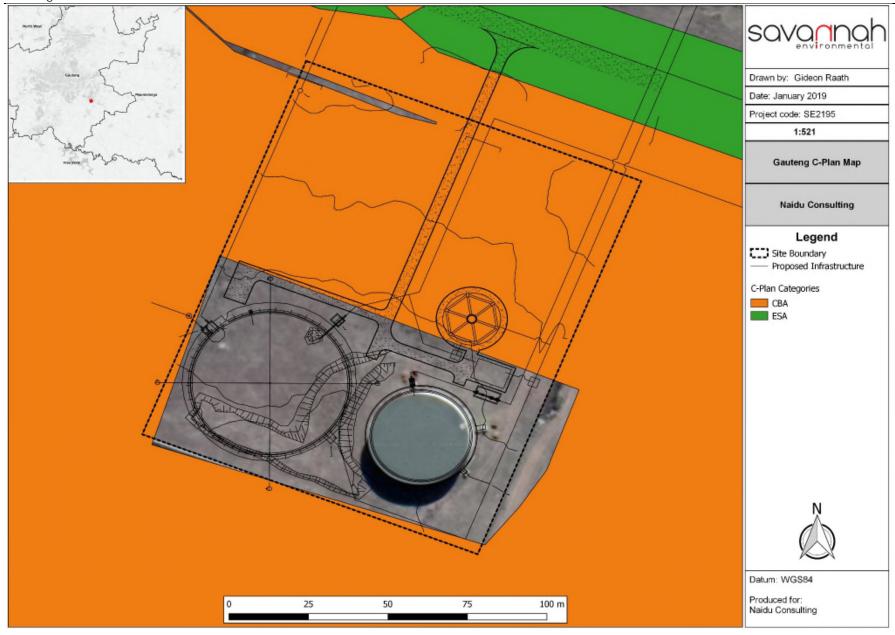


Figure 5.2: Gauteng C-Plan classification of the project site.

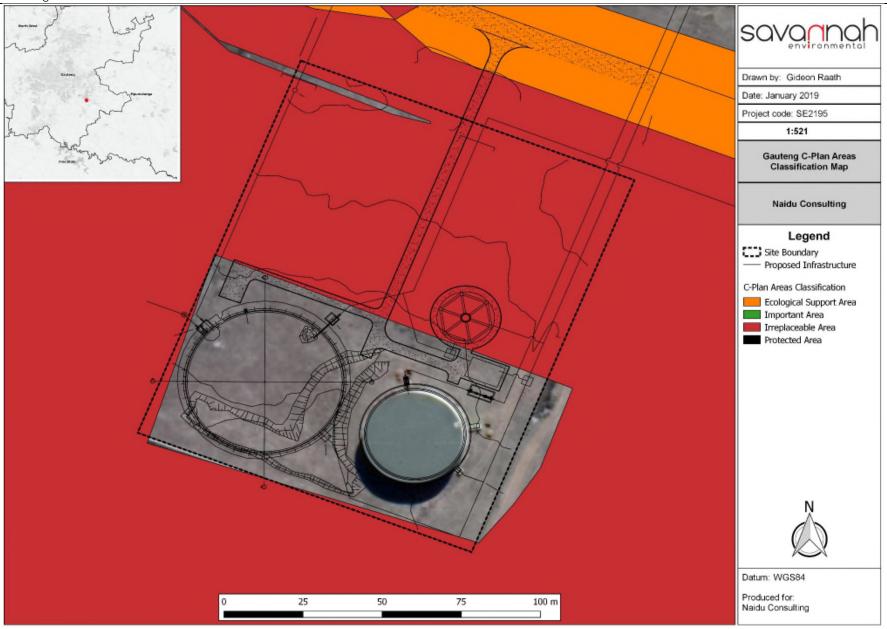


Figure 5.3: Gauteng C-Plan areas description of the project site.

5.6. Animal species that may occur on site

The following list of potential animal SCC were derived from current literature found for the quarter degree square (QDS) surrounding the site, as well as the international IUCN Red Data list, the South African Red Data List, and CITES. The results are summarised (i.e. potential SCC only) in the tables below, while a full species list appears in Appendix A along with conservation status for each species.

5.6.1. Mammals

No potential SCC are expected to occur within the QDS (Table 5.2), with all mammal species expected to occur on site being listed as either Least Concern (LC) or Near-Threatened (NT), neither of which are deemed SCC. The table below indicates the potential Near-Threatened mammal species that may occur on site. None of these species were however observed on site.

Table 5.2: Mammalian species with conservation status other than Least Concern, which may occur within the project region (ADU, 2019).

Family	Scientific name	Common name	Red list category
Muridae	Otomys auratus	Southern African Vlei Rat	NT
Mustelidae	Aonyx capensis	African Clawless Otter	NT
Mustelidae	Poecilogale albinucha	African Striped Weasel	NT
Soricidae	Crocidura mariquensis	Swamp Musk Shrew	NT

5.6.2. Reptiles

A wide variety (26 different species) of reptiles are known to occur within the QDS (ADU, 2019), all of Least Concern conservation status (amongst the evaluated ones) (SARCA, 2014), and are thus not considered to be SCC. A full listing is provided in Appendix A. None of these species were however observed on site.

5.6.3. Frogs

Of the ten frog-species that may occur on site (ADU, 2019), all were classified as either Least Concern (9) (IUCN, 2019), with only one being classified as Near-Threatened (Table 5.3), and are thus not regarded as SCC. A full listing is provided in Appendix A. None of these species were however observed on site.

Table 5.3: Frog species that may occur in the project site, with conservation status other than Least Concern.

Family	Scientific name	Common name	Red list category
Pyxicephalidae	Pyxicephalus adspersus	Giant Bull Frog	NT

5.6.4. Birds

The project site is located halfway between the Suikerbosrand Nature Reserve Important Birding Area (IBA), and the Blesbokspruit IBA, both sub regional IBAs of the Gauteng Province. Approximately 148 different bird species may occur on site (SABAP2, 2007). Although there are no water features on the project site, a large wetland (Spaarwater Pan) exists approximately 1.5km east of the project site, and water birds are thus common in the region. A summary of the species that may be present on site, with a conservation status

other than Least Concern, is shown below in Table 5.4 (Eskom, 2015; IUCN, 2019). Species that were regarded as Least Concern are not included in the table below.

Table 5.4: Bird species that may be present on site, with conservation status other than Least Concern.

Spp.	Taxon Name	Common name	Red List (Eskom, 2015)	IUCN Red List
Flamingo	Phoenicopterus minor	Lesser	Not evaluated	NT
Duck	Oxyura maccoa	Массоа	NT	VU
Sandpiper	Calidris ferruginea	Curlew	LC	NT
Pratincole	Glareola nordmanni	Black-winged	NT	NT

Based on the Red List, all bird species that may be present on site are classified regionally as either Least Concern, with only two Near-Threatened species possible. As such, no bird SCC are expected to occur on site.

6. SITE OBSERVATIONS AND DESCRIPTION

6.1. Vegetation unit and description

Due to the small size of the site (1.6 ha), only one vegetation unit was identified within the project area - highly degraded Tsakane Clay Grassland (Plate 6.1, and Figure 6.1 below).

Plate 6.1: Highly disturbed Tsakane Clay Grassland present onsite.

This vegetation unit covered the entire site uniformly, and consisted of predominantly grass species, with no tree or shrub forms present. The species composition identified onsite conformed to a minor degree to that of the Mucina & Rutherford (2012) descriptions, and thus represented the Tsakane Clay Grassland vegetation type described in the SANBI Vegetation Map, albeit in a highly degraded condition. In particular, the relatively high abundance of *Hyparrhenia hirta* (thatching grass) and low species richness indicated the high levels of disturbance experienced on site historically.

Figure 6.1: Vegetation map of the single vegetation unit present onsite.

6.2. Current land use and site disturbance

The site is fenced (concrete palisading), with one entrance and a small gravel road leading to the existing water infrastructure. Evidence of disturbance (Plate 6.2) was evident throughout the site with illegal dumping observed adjacent to the site as well as along the boundary fence. In addition, grazing was observed nearby (2m away from the existing fence line, and surrounding the proposed site). As the fence was only constructed recently, both grazing and illegal dumping would historically have occurred on site contributing to the low species diversity and the disturbance of the site (visible from the aerial imagery for approximately 10 years leading up to the fence being erected).

Burning and litter along the fencelines

Set concrete, building material and packaging present on site

Illegal dumping adjacent to the site

Grazing adjacent to the site

Plate 6.2: Evidence of current and historic disturbance on site.

Evidence of historical construction (set concrete and trench lines visible), with minor invasive species occurrence, was also noted near the north western corner of the site (facing the current water infrastructure), where the laydown areas for the existing water infrastructure may have been. The burning of waste adjacent the site contributes to ongoing fires occurring on site, with evidence of recent burning observed during the site assessment. As the site is presently fenced, no other land use occurs apart from the operation of the existing water infrastructure.

6.3. Vegetation species observed

A total of 17 species were identified within the proposed site, consisting mainly of mixed grass species commonly occurring in the highveld region. All of the species observed were classified as Least Concern (LC) and were not considered to be sensitive species. Taking into account the small diversity of species occurring on site, and the low conservation classification (LC) of those present, the site was deemed to have an overall low conservation status for the vegetation component. Table 6.1 indicates the plant species observed during the field visit.

Table 6.1: Plant species identified within the proposed project site.

Growth Form	Taxon name	Family	SANBI red data list
Graminoids	Brachiaria serrata	POACEAE	LC
Graminoids	Cynodon dactylon	POACEAE	LC
Graminoids	Elionurus muticus	POACEAE	LC
Graminoids	Eragrostis chloromelas	POACEAE	LC
Graminoids	Hyparrhenia hirta	POACEAE	LC
Graminoids	Themeda triandra	POACEAE	LC
Herbs	Acanthospermum australe	ASTERACEAE	LC
Herbs	Gerbera viridifolia	ASTERACEAE	LC
Herbs	Helichrysum rugulosum	ASTERACEAE	LC
Herbs	Hermannia depressa	MALVACEAE	LC
Herbs	Nidorella hottentotica	ASTERACEAE	LC
Herbs	Sonchus nanus	ASTERACEAE	LC
Herbs	Vernonia oligocephala	ASTERACEAE	LC
Geophytic Herbs	Hypoxis rigidula var. pilosissima	HYPOXIDACEAE	LC

6.3.1. Plant Species of Conservation Concern

No plant Species of Conservation Concern were identified on site.

6.3.2. Plant alien invasive species observed

Four invasive species were observed onsite (Table 6.2), mainly adjacent the existing storage unit where evidence of historical construction was present, while five other invasive species were noted nearby.

Table 6.2: Invasive plant species observed on site.

Growth Form	Taxon name	Family NEMBA Category Listing (2016) CARA Listing (1		CARA Listing (1983)
Herbs	Sonchus oleraceus	ASTERACEAE	Not listed	Not listed
Graminoids	Pennisetum clandestinum	POACEAE	1b in Protected Areas and wetlands in which it does not already occur.	Not listed
Herbs	Alternanthera pungens	AMARANTHAC EAE	Not listed	Not listed
Tall tree	Eucalyptus cladocalyx*	MYRTACEAE	Category 1b in Fynbos, Grassland, Savanna, Albany Thicket,	Category 2

			Forest and Indian Ocean Coastal	
			Belt biomes	
Shrub	Canna indica*	CANNACEAE	Not listed	Category 1
Tall tree	Populus ×	SALICACEAE	Not listed	Category 2
	canescens*			
Tree	Salix babylonica*	SALICACEAE	Not listed	Category 2
Tree	Acacia mearnsii	FABACEAE	Category 2	Category 2

^{*} found adjacent the project site, not within the proposed development area.

6.4. Animal species observed

Due to the small size and highly frequented nature of the site, very few animal species were observed on site, with only *Trachylepis punctatissima* (speckled rock skink), and *Trachylepis varia sensu lato* (common variable skink) identified on site, both of which are considered as Least Concern (LC) (SARCA, 2014). Avifaunal species were the exception however, being attracted by the nearby wetland located further east of the site (approximately 1.6km), and due to their mobile nature. Apart from the above two reptiles, only birds were noted on and near site, as indicated by Table 6.3 below.

Table 6.3: Bird species observed on or near the project site.

Spp	Taxon Name	Common Name	Red List (ESKOM, 2015)	IUCN Red List
Kite	Elanus caeruleus	Black-shouldered	-	LC
Lapwing	Vanellus coronatus	Crowned	-	LC
Turtle-dove	Streptopelia capicola	Cape	-	LC
Palm-swift	Cypsiurus parvus	African	-	LC
Bulbul	Pycnonotus tricolor	Dark-capped	-	-
Wagtail	Motacilla capensis	Cape	-	LC
Pipit	Anthus cinnamomeus	African	-	LC
Myna	Acridotheres tristis	Common	-	LC
Sparrow	Passer melanurus	Cape	-	LC
Widowbird	Euplectes progne	Long-tailed	-	LC

None of the bird species observed on site were regarded as sensitive, with all considered Least Concern (LC) in terms of their conservation status. Along with the small number of observed species on site, the common status for all of the observed species, and the highly disturbed and frequented status of the site, the project site had a low faunal conservation potential.

6.4.1. Animal Species of Conservation Concern

No animal Species of Conservation Concern were identified on site.

6.4.2. Animal alien invasive species observed

No animal invasive species were identified on site.

7. SITE SENSITIVITY ANALYSIS

As no project layout, infrastructure or location alternatives were feasible, only the preferred alternative and the 'no-go' alternative was assessed in the sensitivity analysis and impacts assessment for this study. Please refer to the associated Basic Assessment report (to which this report forms an Appendix) for a detailed motivation regarding the various alternatives and their selection.

7.1. Categorisation

The various biodiversity tools, maps and guidelines available and discussed in the previous chapters, along with the results of the fieldwork was combined to determine the various areas of the site that are deemed sensitive, classified into three categories:

» **High sensitivity** including:

- o Process areas, such as all surface water bodies and drainage areas, including dams, wetlands, drainage systems, rivers and streams;
- o Areas with a high species richness;
- o Areas that are not significantly impacted, transformed or degraded by current land use; and
- Areas that contain the majority of species of conservation concern and which may contain high numbers of globally important species, or comprise part of a globally important vegetation type.

» Moderate sensitivity:

- o Intact natural vegetation with moderate levels of disturbance, and that still provide a valuable contribution to biodiversity and ecosystem functioning despite being degraded;
- o Degraded areas that still have a relatively high species richness; and
- o Degraded areas that still contain species of special concern.

» Low sensitivity:

- Areas that are highly impacted by current or historical land use, including dumping, mowing, frequent fire, ground or surface water alteration, as well as earthworks or soil disturbance, and which thus provide little value to the ecosystem; and
- o Highly degraded areas that are unlikely to harbour any species of special concern.

The combined faunal and floral sensitivity for the site was then categorised into one of those three categories, taking the following aspects into account (Table 7.1):

Table 7.1: Aspects informing the sensitivity analysis for the proposed project (bolded cells applicable to this project).

INDICATOR	Biodiversity Indicators							
ASPECT	Conservation	Species	of	Habitat		Biodiversity	CBA & ESA	
	status	Conservation						
		Concern						
DESCRIPTION	Fauna, flora and	Presence	and	Viable		Species	Presence	or
	habitat	quantity	of	population	size	composition	absence	of
	conservation	Species	of	and		and richness	Critical	
	status						Biodiversity	and

		Conservation	fragmentation	contribution	Ecological
		Concern	effects	to biodiversity	Support Areas
		SENS	ITIVITY	-	
Low	Well conserved, independent of conservation value	None, although occasional regional endemics may be present.	Extensive areas of preferred habitat present elsewhere in region less susceptible to fragmentation.	Low diversity or species richness.	No CBA or ESA within project region
Medium	Not well conserved, moderate conservation value.	No endangered or vulnerable species, some indeterminate or rare endemics	Reasonably extensive areas of preferred habitat elsewhere and habitat susceptible to fragmentation	Moderate diversity, and moderately high species richness	ESA found within project region
High	Not conserved – has a high conservation value	One or more endangered and vulnerable species, or more than 2 endemics or rare species	Limited areas of this habitat, susceptible to fragmentation in currently occupied regions	High species diversity, complex plant and animal communities	CBA zone classified in project region.
INDICATOR			physical Indicator		
ASPECT	Topography	Vegetation	Erosion Potential	Rehabilitation	Disturbance
DESCRIPTION	The distribution of parts or features	Extent and spatial distribution of habitat type in the broader study area	Soil stability and exposure	Degree to which the site may be rehabilitated	Degree of degradation from anthropogenic or other influences
		SENS	ITIVITY		
Low	Even	Extensive	Very stable, low soil exposure or soil erosion potential.	Site is easily rehabilitated.	Site is very disturbed or degraded.
Medium	Undulating; fairly steep slopes	Restricted to a particular region.	Some possibility of erosion or change due to episodic events.	There is some degree of difficulty in rehabilitation of the site.	There is some degree of disturbance of the site.
High	Complex and uneven with steep slopes	Restricted to a specific locality	Large possibility of erosion, change to the	Site is difficult to rehabilitate	The site is hardly or very slightly impacted upon

	or site (i.e. 'site	site or	due to the	by human
	specific'	destruction due	terrain, type	disturbance.
		to climatic or	of habitat or	
		other factors.	species	
			required to	
			reintroduce.	
INDICATOR	Hydrological Indicator			
ASPECT	Water Bodies*			
DESCRIPTION	Presence or absence of surface water features, including wetlands and rivers, estuaries			
	SENSITIVITY			
Low	No water bodies are present on site.			
High	Includes one or more of all water bodies (e.g. wetlands, perennial rivers, non-perennial			
	rivers, drainage systems etc.)			

^{*}Water bodies are either Low or High sensitivity, based solely on the presence or absence of hydrological features on site.

Although classified as a CBA, the entire site was deemed to have a **LOW** ecological sensitivity. This was due to the following aspects:

- i. The very low ecological function of the site presently;
- ii. The highly degraded nature of the site (refer to section 6.2 above);
- iii. The low species richness observed on site;
- iv. The low conservation classification of plant and animal species that may occur on site;
- v. The low conservation classification of plant and animal species that were actually observed on site;
- vi. The very small footprint of the site and thus limited habitat types available for faunal groups;
- vii. The complete absence of water features on site;
- viii. The low erosion potential and ease with which the site may be rehabilitated, and the highly disturbed and degraded nature of the site currently.

The CBA classification for the proposed site thus does not correspond to the real-world condition of the plant and animal species observed on site, and therefore contributes poorly to the ecological function of the broader area. As such, the site is not deemed a functional CBA zone, as confirmed by the site assessment results. Furthermore, while the vegetation type deemed to be present on site has a high conservation value, the highly degraded real-world condition of the vegetation unit observed on site confirmed a minimal overall conservation contribution. The vegetation unit on site resembles Tsakane Clay Grassland through the species composition, but is highly degraded, with poor ecological functioning and a low conservation contribution, and as such does not represent a good conservation opportunity and does not currently contribute to the overall health and conservation status of the Tsakane Clay Grassland vegetation type.

7.2. Sensitivity map

A sensitivity map was developed based on the allocations made in Sections 7.1 above, for the entire project site (Figure 7.1). As indicated, no regions of high or moderate sensitivity was determined for this assessment. As such, no areas are deemed no-go zones, and no buffer zones are required for implementation on site. This is primarily due to the poor ecological condition of the site, and the absence of highly sensitive features such as drainage lines or other surface water features.

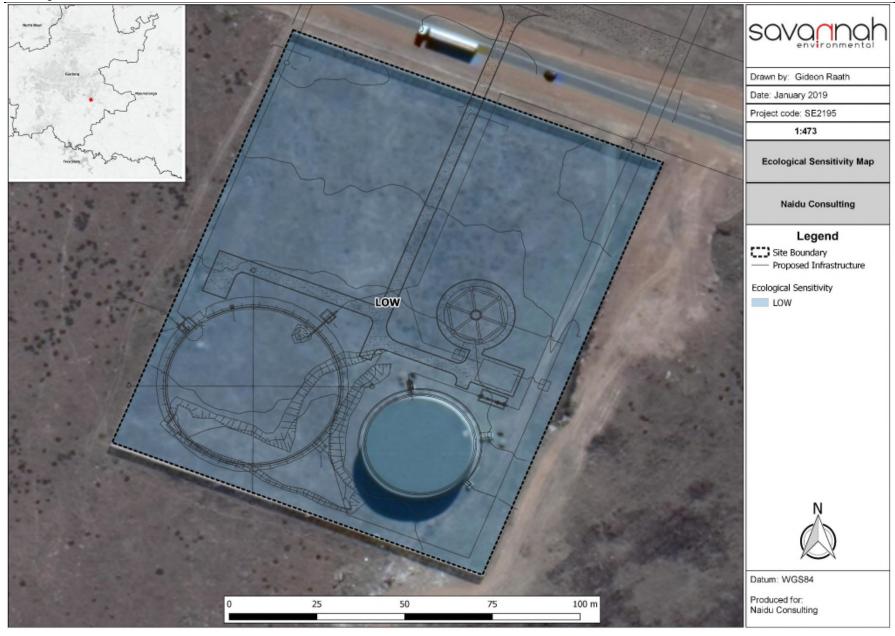


Figure 7.1: Ecological sensitivity map of the project site.

Ecological Impact Assessment Report

8. IMPACT ASSESSMENT

The study that has been undertaken provides the necessary information to assess the impacts of the project on the fauna and flora at various spatial and temporal scales.

The individual impacts have been grouped together as a series of key environmental issues (Table 8.1). All of the issues relate to the loss of the existing vegetation cover and faunal habitat as a result of project activities. At the spatial scale of the project site the impacts described below will not be considerable, but these need to be considered in the context of the project site as a whole or at a still larger spatial scale. The main issues identified with the existing impacts are discussed below for each phase of the project.

Table 8.1: Issues identified from the sensitivity analysis.

ISSUES IDENTIFIED	DESCRIPTION OF IMPACTS		
Loss of vegetation communities	The clearing of natural vegetation will lead to the permanent loss of		
Loss of vegetation continuorities	highly degraded Tsakane Clay Grassland within the project site.		
Loss of biodiversity & Ecosystem	The clearing of natural vegetation for the proposed development may		
Function and Process	lead to the destruction of habitats and the loss of unidentified plant		
Tonchorrana Process	SCC, disrupting ecosystem function and processes.		
Control of alien plant species	The lack of an effective alien vegetation management plan may lead		
Control of dilett plant species	to alien plant invasion following construction earthworks.		
Erosion	During construction, there will be a lot of disturbed and loose soil at the		
	site which will render the area vulnerable to erosion.		
Loss of Critical Biodiversity Area	Although small (0.9ha), the region classified as CBA will be partially		
	cleared during construction, resulting in a loss of CBA area.		
Rehabilitation of disturbed areas	Poor rehabilitation of disturbed areas after construction may lead to		
	the permanent degradation of ecosystems as well as allow invading		
	alien vegetation species to expand.		
Cumulative impacts: loss of	Cumulative impacts may result from similar development types in the		
biodiversity and conservation	broader region. These impacts are addressed below in conjunction		
potential	with their associated impacts.		

8.1. Planning and Design Phase

Activities associated with the design and pre-construction phase pertains mostly to a feasibility assessment which is done at a desktop level. As such, no planning and design phase ecological impacts are expected.

8.2. Construction Phase

This section contains the assessment of all impacts associated with the construction phase, as they relate to the proposed development.

8.2.1. Issue 1: Loss of vegetation communities

Impact 1.1: Loss of highly degraded Tsakane Clay Grassland

Nature:

The clearing of natural vegetation within the project footprint will lead to the permanent loss of highly degraded Tsakane Clay Grassland which is considered to be an endangered vegetation type by SANBI.

	\A(!)	\AP\ \\
	Without mitigation	With mitigation
Extent	Local (1)	Local (1)
Duration	Medium-term (3)	Medium-term (3)
Magnitude	Minor (2)	Small (0)
Probability	Definite (5)	Definite (5)
Significance	Medium (30)	Low (20)
Status (positive or negative)	Negative	Negative
Reversibility	High	High
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » Since this vegetation type is listed as endangered, impacts must be kept to a minimum through the development and implementation of an EMPr, and the employment of an Environmental Control Officer (ECO) for the duration of construction.
- » Laydown areas and turning areas must be located in areas that have already been impacted or show evidence of degradation, such as the far-left corner of the property (facing the existing storage unit). The ECO must identify such areas.
- » Vegetation clearing for the establishment of infrastructure must be kept to a minimum, by only clearing what is absolutely needed in order to further construction.
- » Vegetation impacted during the construction phase must be restored.
- » Topsoil must be stockpiled separately to subsoil. This is done to conserve the existing seedbank and aid in the restoration of natural grasslands during rehabilitation.

Cumulative impacts:

Due to the small extent of this project, the highly degraded nature of the existing site, as well as no other projects known or planned within the area, the cumulative impact of this development is deemed low to negligible.

Residual Risks:

The loss of highly degraded Tsakane Clay Grassland is inevitable for the construction of the proposed infrastructure; however, the highly disturbed and low conservation value on site contribute to a low residual risk remaining following the implementation of mitigation measures.

Impact 1.2: Loss of Species of Conservation Concern

Nature:

Although improbable, SCC that were not identified during the site assessment may still be present on site. As such, the clearing of natural vegetation within the project footprint may lead to the loss of Species of Conservation Concern (SCC).

	Without mitigation	With mitigation
Extent	Local (1)	Local (1)

Duration	Medium-term (3)	Medium-term (3)
Magnitude	Minor (2)	Small (0)
Probability	Improbable (2)	Improbable (2)
Significance	Low (12)	Low (8)
Status (positive or negative)	Negative	Negative
Reversibility	Low	Low
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » Should any SCC be identified during excavation, thesemust be relocated or removed from the construction footprint by a qualified specialist prior to commencement of further activities.
- » In the event that SCC are identified during construction works, the relevant permits must be obtained from the relevant departments in order to remove such species prior to commencement of further activities.

Cumulative impacts:

Due to the small extent of this project, the highly improbable occurrence of SCC within the limited footprint of this project, as well as no other projects known or planned within the region, the cumulative impact from the loss of SCC is deemed negligible.

Residual Risks:

The loss of SCC during the construction of the proposed infrastructure is highly unlikely, and as such the residual risk following the implementation of mitigation measures was deemed low to negligible.

8.2.2. Issue 2: Loss of biodiversity and ecosystem function

Impact 2.1: Loss of floral and faunal biodiversity leading to a disruption of ecosystem function and processes

Nature:

The removal of natural vegetation and faunal habitats within the project footprint may lead to a loss of biodiversity and ecosystem function and processes.

steart etsiry and decays error enter and processes.			
	Without mitigation	With mitigation	
Extent	Local (1)	Local (1)	
Duration	Short (2)	Short (2)	
Magnitude	Minor (2)	Small (0)	
Probability	Definite (5)	Highly probable (4)	
Significance	Low (25)	Low (12)	
Status (positive or negative)	Negative	Negative	
Reversibility	High	High	
Irreplaceable loss of	No	No	
resources?			
Can impacts be mitigated?	Yes	Yes	

Mitigation:

- » Prohibit all employees from harvesting wild plants or hunting any animals on site;
- » Prohibit open fires;
- » Rehabilitate laydown areas immediately after they are no longer required;

- » Develop a short invasive management plan and implement during construction to ensure alien species do not invade disturbed or cleared areas;
- » An ECO must be employed during construction;
- » Laydown areas and turning areas must be located in areas that have already been impacted or show evidence of degradation, such as the far-left corner of the property (facing the existing storage unit). The ECO or EO must identify such areas.
- » Vegetation clearing for the establishment of infrastructure must be kept to a minimum, by only clearing what is absolutely needed in order to further construction.
- » Vegetation impacted must be restored and the area rehabilitated. It is likely that this will occur naturally but given the presence of alien species active rehabilitation and the removal of alien species will be required to ensure that only indigenous species remain.
- » Topsoil must be stockpiled separately to subsoil.

Cumulative impacts:

Due to the small extent of this project, the highly degraded nature of the existing site, as well as no other projects known or planned within the region, the cumulative impact of is deemed low to negligible.

Residual Risks:

The loss of faunal and floral biodiversity during the construction of the proposed infrastructure is likely, however the small extent of the site, and the low conservation status of each of the identified species on site contribute to a low to negligible residual risk following the implementation of mitigation measures.

8.2.3. Issue 3: Control of alien plant species

Impact 3.1: Poor control of alien plant species during construction leading to increasing invasive species presence

Nature:

The lack of an effective alien vegetation management plan may lead to alien plant invasion following construction earthworks.

	Without mitigation	With mitigation
Extent	Local (1)	Local (1)
Duration	Medium (3)	Short (2)
Magnitude	Moderate (6)	Minor (2)
Probability	Probable (3)	Probable (3)
Significance	Medium (30)	Low (15)
Status (positive or negative)	Negative	Negative
Reversibility	Moderate	High
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes
	·	· · · · · · · · · · · · · · · · · · ·

Mitigation:

- » An Alien Plant Monitoring and Management Plan must be developed and implemented during the construction phase to reduce the establishment and spread of undesirable alien plant species.
- » Alien plants must be removed from the site through appropriate methods for the specific species of concern such as hand pulling, application of chemicals, cutting etc., on a regular basis during construction. Removal must occur prior to plants developing seeds.

Cumulative impacts:

Due to the already moderately invaded nature of the site and broader project area, the cumulative impact of increasing invasive species abundance in the region is deemed low. Regardless, effective alien invasive species management through the implementation of the alien management plan is required to reduce introduction and establishment of novel invasive species.

Residual Risks:

Due to the already moderately invaded nature of the site and broader project region, the residual risk following implementation of mitigation measures is deemed low.

8.2.4. Issue 4: Erosion

Impact 4.1: Increased erosion due to vegetation clearing for infrastructure.

N	~	tı i	re	٠.
N	u	ıu		•

During construction, there will be a lot of disturbed and loose soil at the site which will render the area vulnerable to erosion.

	Without mitigation	With mitigation
Extent	Local (1)	Local (1)
Duration	Medium (3)	Short (2)
Magnitude	Low (4)	Minor (2)
Probability	Probable (3)	Improbable (2)
Significance	Low (24)	Low (10)
Status (positive or negative)	Negative	Negative
Reversibility	High	High
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » Any erosion observed as a result of the construction works should be rectified immediately and monitored thereafter to ensure interventions are successful.
- » All bare areas, affected by the development, should be re-vegetated with locally occurring species, to bind the soil and limit erosion potential.
- » Reinstate as much of the eroded area to its pre-disturbed, "natural" levels
- The gravel access road and other disturbed areas (laydown areas) should be regularly monitored for erosion occurrences and must receive follow-up monitoring by the EO to assess the success of the erosion management.
- » Topsoil should be removed and stored separately from subsoil and should be reapplied where appropriate as soon as possible in order to encourage and facilitate rapid regeneration of the natural vegetation on cleared areas.
- » Where feasible, phased development and vegetation clearing should be practiced so that cleared areas are not left denuded and vulnerable to erosion for extended periods of time.

Cumulative impacts:

Cumulative impact relating to erosion are regarding as low, due to the limited extent of vegetation clearing proposed and the general level topography of the site.

Residual Risks:

With appropriate avoidance and mitigation, residual impacts will be very low and may be limited little potential to spread beyond the point of origin.

8.2.5. Issue 5: Loss of Critical Biodiversity Area (CBA)

Impact 5.1: Loss of areas classified as CBA due to vegetation clearance.

Nature:

Although small (0.9ha), the region classified as CBA will be partially cleared during construction, resulting in a loss of CBA area.

	Without mitigation	With mitigation
Extent	Local (1)	Local (1)
Duration	Medium (3)	Medium (3)
Magnitude	Minor (2)	Minor (2)
Probability	Probable (3)	Improbable (2)
Significance	Low (18)	Low (12)
Status (positive or negative)	Negative	Negative
Reversibility	Low	Moderate
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » Prohibit all employees from harvesting wild plants or hunting any animals on site or in the surrounding areas;
- » Prohibit open fires;
- » Rehabilitate laydown areas immediately after they are no longer required;
- » Develop a short invasive management plan and implement during construction to ensure alien species do not invade disturbed or cleared areas;
- » An ECO must be employed during construction;
- » Laydown areas and turning areas must be located in areas that have already been impacted or show evidence of degradation, such as the far-left corner of the property (facing the existing storage unit). The ECO or EO must identify such areas.
- » Vegetation clearing for the establishment of infrastructure must be kept to a minimum, by only clearing what is absolutely needed in order to further construction.
- Vegetation impacted must be restored and the area rehabilitated. It is likely that this will occur naturally but given the presence of alien species active rehabilitation and the removal of alien species will be required to ensure that only indigenous species remain.
- » Topsoil must be stockpiled separately to subsoil.

Cumulative impacts:

Due to the already highly degraded nature of the project site, the cumulative impact of a loss of CBA area is deemed low.

Residual Risks:

Due to the already moderately invaded nature of the site and broader project region, the residual risk following implementation of mitigation measures is deemed low.

8.3. Operational Phase

This section contains the assessment of all impacts associated with the operational phase, as they relate to the proposed development.

8.3.1. Issue 6: Control of alien plant species

Impact 6.1: Poor control of alien plant species leading to increasing invasive species presence.

Nature:

The lack of an effective alien vegetation management plan (and implementation thereof during operation) may lead to increasing alien plant communities on site.

	Without mitigation	With mitigation
Extent	Local (1)	Local (1)
Duration	Medium (3)	Medium (3)
Magnitude	Moderate (6)	Minor (2)
Probability	Probable (3)	Improbable (2)
Significance	Medium (30)	Low (10)
Status (positive or negative)	Negative	Negative
Reversibility	Moderate	High
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » An Alien Plant Monitoring and Management Plan must be developed and implemented during the operational phase to reduce the establishment and spread of undesirable alien plant species.
- » Ongoing monitoring should be conducted by the site manager to ensure problem-areas are identified where alien species are proliferating, and to inform the control efforts throughout the operational phase.
- » Alien plants must be removed from the site through appropriate methods for the species of concern (such as hand pulling, application of chemicals, cutting etc)., on a regular basis during operation. Removal must occur prior to plants developing seeds.

Cumulative impacts:

Due to the already moderately invaded nature of the site and broader project region, the cumulative impact of increasing invasive species abundance in the region is deemed low. Regardless, effective alien invasive species management through the implementation of the alien management plan is required to reduce introduction and establishment of novel invasive species.

Residual Risks:

Due to the already moderately invaded nature of the site and broader project region, the residual risk following implementation of mitigation measures is deemed low.

8.4. Decommissioning Phase

The decommissioning of the project could have a positive impact on the natural vegetation and faunal habitats on site, if the low sensitivity areas are appropriately rehabilitated to a near-natural state. This section furthermore contains the assessment of all impacts associated with the decommissioning phase, as they relate to the proposed development.

8.4.1. Issue 7: Poor rehabilitation

Impact 7.1: Loss of floral and faunal biodiversity from poor rehabilitation efforts during closure, leading to a disruption of ecosystem function and processes.

Nature:

During the decommissioning phase, project infrastructure will be removed. The removal process may result in the clearance of natural vegetation adjacent to the project infrastructure. In addition, there are likely to be large areas of bare ground where the project infrastructure was located. Without vegetation cover, these areas are sensitive to erosion and invasion by alien plant species.

	Without mitigation	With mitigation	
Extent	Local (1)	Local (1)	
Duration	Short (2)	Very short (1)	
Magnitude	Minor (2)	Small (0)	
Probability	Definite (5)	Highly probable (4)	
Significance	Low (25)	Low (4)	
Status (positive or negative)	Negative	Negative	
Reversibility	High	High	
Irreplaceable loss of	No	No	
resources?			
Can impacts be mitigated?	Yes	Yes	

Mitigation:

- » Design and implement a rehabilitation plan for the decommissioning phase;
- » Implement an alien invasive monitoring and management plan for the decommissioning phase;
- » If laydown areas and turning areas are required, these must be sited in areas that have already been impacted or show evidence of degradation;

Cumulative impacts:

Due to the small extent of this project, the highly degraded nature of the existing site, as well as no other projects known or planned within the region, the cumulative impact of is deemed low to negligible.

Residual Risks:

The loss of faunal and floral biodiversity during the decommissioning of the proposed infrastructure is unlikely, and taken into consideration the small extent of the site, and the low conservation status of each of the identified species on site, a low to negligible residual risk following the implementation of mitigation measures was deemed appropriate for the decommissioning phase.

8.4.2. Issue 8: Erosion

Impact 8.1: Increased erosion due to vegetation clearing for infrastructure.

Nature:				
During decommission	ning, removal of site infrastructure v	vill expose soil and increase the potent	tial for erosion.	
Without mitigation With mitigation				
Extent	Local (1)	Local (1)		
Duration	Short (2)	Short (2)		
Magnitude	Low (4)	Minor (2)		
Probability	Probable (3)	Improbable (2)		

Significance	Low (21)	Low (10)
Status (positive or negative)	Negative	Negative
Reversibility	High	High
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » Any erosion observed should be rectified immediately and monitored thereafter to ensure interventions are successful.
- » All bare areas, affected by the development, should be re-vegetated with locally occurring species, to bind the soil and limit erosion potential.
- » Reinstate as much of the eroded area to its pre-disturbed, "natural" levels
- » The gravel access road and other disturbed areas (laydown areas) should be regularly monitored for erosion occurrences and must receive follow-up monitoring by the EO to assess the success of the remediation.
- » Topsoil should be removed and stored separately and should be reapplied where appropriate as soon as possible in order to encourage and facilitate rapid regeneration of the natural vegetation on cleared areas.
- » Where feasible, phased development and vegetation clearing should be practiced so that cleared areas are not left denuded and vulnerable to erosion for extended periods of time.

Cumulative impacts:

Cumulative impact relating to erosion are regarding as low, due to the limited extent of vegetation clearing proposed and the general level topography of the site.

Residual Risks:

With appropriate avoidance and mitigation, residual impacts will be very low and may be limited little potential to spread beyond the point of origin.

8.5. Cumulative Impacts

8.5.1. Issue 9: Loss of biodiversity and conservation potential

Impact 9.1: Reduced ability to meet conservation obligations and targets.

_	_	-	
A	Ici	tı ı	-
- 11	u	ıu	ı e

The loss of sensitive vegetation types on a cumulative basis in the broader context impacts the ability to meet stated conservation targets for Tsakane Clay Grassland in particular.

	Overall impact of the proposed project	Cumulative impact of the project and other projects in the area	
	considered in isolation		
Extent	Local (1)	Regional (3)	
Duration	Medium (3)	Medium (3)	
Magnitude	Minor (2)	Moderate (6)	
Probability	Probable (3)	Probable (3)	
Significance	Low (18)	Medium (36)	
Status (positive or negative)	Negative	Negative	
Reversibility	High	Moderate	

Irreplaceable loss of	No	Likely
resources?		
Confidence in findings	High	Moderate
Can impacts be mitigated?	Yes	Yes

Mitigation:

- » The development footprints of similar or related facilities in the area must be kept to a minimum and natural vegetation should be encouraged to return to disturbed areas.
- » Reduce the footprint of facilities within proven sensitive habitat types as much as possible.

Residual Risks:

Considering the existing water infrastructure (existing Masetjaba water reservoir) and that this project acts as an expansion of that facility, the development will not set a further precedent of development in the broader Tsakane area. Some loss of vegetation is inevitable, and cannot be avoided, however the vegetation on site has a low sensitivity and conservation value, and contributes very little to no ecological function to the broader study area. Cumulative loss of conservation potential is thus regarded as medium taking into account other likely developments within the broader study region.

Impact 9.2: Impacts on Critical Biodiversity Areas and Broad-Scale Ecological Processes.

Nature:

Although small (0.9ha), the region classified as CBA will be partially cleared during construction, resulting in a loss of CBA area. This loss will contribute to a loss of conserved CBA's within the broader study region.

	Overall impact of the	Cumulative impact of the project and other		
	proposed project	projects in the area		
	considered in isolation			
Extent	Local (1)	Regional (3)		
Duration	Medium (3)	Medium (3)		
Magnitude	Minor (2)	Moderate (6)		
Probability	Probable (3)	Probable (3)		
Significance	Low (18)	Medium (36)		
Status (positive or negative)	Negative	Negative		
Reversibility	Low	Moderate		
Irreplaceable loss of	No	Probable		
resources?				
Confidence in findings	High	Low		
Can impacts be mitigated?	Yes	Yes		

Mitigation:

- » The development footprints of similar or related facilities in the area must be kept to a minimum and natural vegetation should be encouraged to return to disturbed areas.
- » Reduce the footprint of facilities within proven sensitive habitat types as much as possible.
- » Conserve the aquatic features (Spaarwater pan and riparian zones) in the broader landscape by allocating sufficient buffers to these and reducing development within those buffers as far as possible.

Residual Risks:

Considering the existing water infrastructure (existing Masetjaba water reservoir) and that this project acts as an expansion of that facility, the development will not set a further precedent of development in the broader Tsakane area. Some loss of CBA areas is inevitable, and cannot be avoided, however the vegetation on site has a low sensitivity and conservation value, and contributes very little to no ecological function to the broader

study area. Cumulative loss of CBA regions is thus regarded as medium taking into account other likely developments within the broader study region.

Impact 9.3: Cumulative impacts due to similar infrastructure developments - Large-scale disturbance of indigenous vegetation.

Nature:

The loss of sensitive vegetation types on a cumulative basis in the broader context impacts the ability to meet stated conservation targets for Tsakane Clay Grassland in particular.

	Overall impact of the	Cumulative impact of the project and other		
	proposed project	projects in the area		
	considered in isolation			
Extent	Local (1)	Regional (2)		
Duration	Medium-term (3)	Long Term (4)		
Magnitude	Minor (2)	Moderate (6)		
Probability	Definite (5)	Probable (3)		
Significance	Medium (30)	Medium (36)		
Status (positive or negative)	Negative	Negative		
Reversibility	Moderate	Low		
Irreplaceable loss of	No	No		
resources?				
Confidence in findings				
Can impacts be mitigated?	Yes	Yes		

Mitigation:

- » The development footprints of various facilities in the area must be kept to a minimum and natural vegetation should be encouraged to return to disturbed areas.
- » An open space management plan should be developed for each individual development which must include management of biodiversity within the fenced area, as well as that in the adjacent rangeland.
- » Reduce the footprint of facilities within sensitive habitat types as much as possible.

Residual Risks:

Considering the existing water infrastructure (existing Masetjaba water reservoir) and that this project acts as an expansion of that facility, the development will not set a further precedent of development in the broader Tsakane area. Some loss of vegetation is inevitable, and cannot be avoided, however the vegetation on site has a low sensitivity and conservation value, and contributes very little to no ecological function to the broader study area. Cumulative loss of conservation potential is thus regarded as medium taking into account other likely developments within the broader study region.

8.6. 'No-go' option

A viable alternative, the 'no-go' option, which essentially refers to the indefinite continuation of the current land use and operational management of the area, must also be assessed. This section thus assesses the impact of carrying on with the current activities on site, in terms of their ecological impact.

8.6.1. Issue 10: Control of alien plant species

Impact 10.1: Poor control of alien plant species during operation of the existing facility will lead to an increasing invasive species presence on site, as well as regulatory liability for their control

Nature:

The lack of an effective alien vegetation management plan (and implementation thereof) will lead to increasing alien plant communities on site.

	Without mitigation	
Extent	Local (1)	
Duration	Medium (3)	
Magnitude	Moderate (6)	
Probability	Highly probable (4)	
Significance	Medium (40)	
Status (positive or negative)	Negative	
Reversibility	Moderate	
Irreplaceable loss of	No	
resources?		
Can impacts be mitigated?	Yes – provided an alien monitoring and management plan is developed and	
	implemented for the ongoing operation of the facility.	

Mitigation:

- » An Alien Monitoring and Management Plan must be developed and implemented during the operational phase to reduce the establishment and spread of undesirable alien plant species.
- » Ongoing monitoring should be conducted by the site manager to ensure problem-areas are identified where alien species are proliferating, and to inform the control efforts throughout the operational phase.
- » Alien plants must be removed from the site through appropriate methods such as hand pulling, application of chemicals, cutting etc., on a regular basis during operation. Removal must occur prior to plants developing seeds.

Cumulative impacts:

Due to the already moderately invaded nature of the site and broader project region, the cumulative impact of increasing invasive species abundance in the region is deemed low. Regardless, effective alien invasive species management through the implementation of the alien management plan is required to reduce introduction and establishment of novel invasive species.

Residual Risks:

Not applicable

8.6.2. Issue 11: Loss of biodiversity and species richness from frequent fires

Impact 11.1: Poor control of fires on site, initiated by the ongoing burning of waste adjacent to the site, will alter the species composition and richness of the existing vegetation and continue to degrade the ecological function and processes on site.

Nature:

The lack of an effective fire control mechanisms on site will promote the frequent burning of site (initiated by the adjacent waste burning), which in turn will lead to a loss in species richness and biodiversity represented by the site.

	Without mitigation
Extent	Local (1)
Duration	Medium (3)

Magnitude	Moderate (6)
Probability	Highly probable (4)
Significance	Medium (40)
Status (positive or negative)	Negative
Reversibility	Low
Irreplaceable loss of resources?	No
Can impacts be mitigated?	Yes

Mitigation:

» Prepare seasonal firebreaks around the facility to reduce incidences of fire spreading onto the property.

Cumulative impacts:

Due to the high occurrence of fires within the broader Gauteng region in the winter months, and the low likelihood of initiating fires within the project boundaries, poor fire control measures are not anticipated to have a cumulate effect on the nearby ecology (that is not currently present).

Residual Risks:

Not applicable.

9. IMPACT STATEMENT, CONCLUSION AND RECOMMENDATIONS

9.1. Comparison of impacts

The following table (Table 9.1) summarises the change in impacts from pre- to post- mitigation for proposed development.

Table 9.1: Impact severity summary pre- and post-mitigation for all phases.

SEVERITY	PRE-MITIGATION (or in isolation – for cumulative impacts)					
	Construction	Operational	Decommissioning	Cumulative*	TOTAL	No-go**
LOW	4	0	2	2	8	0
MEDIUM	2	1	0	1	4	2
HIGH	0	0	0	0	0	0
SEVERITY	POST-MITIGATION (or broader context – for cumulative impacts)					
					e*** TOTAL	
	Construction	Operational	Decommissioning	Cumulative***	TC	OTAL
LOW	Construction 6	Operational	Decommissioning 2	Cumulative***	TC	9
LOW	Construction 6 0	Operational 1 0	Decommissioning 2 0	Cumulative*** 0 3	TO	9 3

^{*} Cumulative impacts rated in isolation in this section.

Based on the results of the site assessment, the sensitivity analysis and the impact assessment, none of the anticipated impacts were deemed insurmountable, as all the pre-mitigation medium impacts were easily mitigated, and no high severity impacts were identified. Ecological areas have been mapped in terms of sensitivity for the project area and recommendations in chapter 8 in this report provide mitigation measures to reduce the severity of the impacts. Overall, it was determined that the identified ecological impacts associated with the facility can be affectively mitigated.

9.2. Current status

At present, the site is deemed highly disturbed due to ongoing disturbance through fires, invasive species, adjacent grazing and illegal dumping. The site has only recently been fenced, and has also historically been subject to grazing and frequent fires, as well as footpaths and other impacts due to the close proximity of the site to nearby human settlements. No sensitive Species of Conservation Concern were observed on site, with the remainder of the species observed regarded as Least Concern (LC) in terms of their conservation status. Overall the ecological contribution of the site was deemed to be low, with no sensitive species observed and few ecological process areas and habitat due to the small size and highly disturbed character of the proposed site.

The CBA classification for the proposed site thus does not correspond to the real-world condition of the plant and animal species observed on site, and therefore contributes poorly to the ecological function of the broader area. As such, the site is not deemed a functional CBA zone, as confirmed by the site assessment results, and thus the proposed development will not significantly impact the overall quantity and quality of the remaining CBA areas in the broader study area, should it be implemented. The project may thus

^{**}No-go impacts are represented here for comparison only.

^{***} Cumulative impacts rated in combination with other projects in the broader region, in this section.

commence with little to no lasting negative impact on the current CBA classification of the immediate site and broader study area.

Furthermore, while the vegetation type deemed to be present on site has a high conservation value, the highly degraded real-world condition of the vegetation unit observed on site confirmed a minimal overall conservation contribution. The vegetation unit on site resembles Tsakane Clay Grassland through the species composition, but is highly degraded, with poor ecological functioning and a low conservation contribution, and as such does not represent a good conservation opportunity and does not currently contribute to the overall health and conservation status of the Tsakane Clay Grassland vegetation type. Should the development proceed, the loss of the highly degraded Tsakane Clay Grassland vegetation unit on site will not significantly reduce the conservation potential and current distribution of the vegetation type as a whole, due primarily to the servery degraded nature of the vegetation unit on site.

There are a number of alien and invasive plant species present onsite, particularly near the existing water facility where vehicle ingress and egress, parking and previous construction activities have degraded the immediate environment. Alien and invasive plant species found on site as well as their category according to the NEMBA Alien and Invasive Species Regulations (published 1 August 2014) are presented in Chapter 6 of this report.

As alien and invasive plants are found onsite, it is advised that an alien and invasive management plan is drafted and implemented during the construction phase and that active management of alien and invasive species is carried out during construction, operation and decommissioning phases.

Cumulative impacts were also determined for the project, with medium severity identified for all three cumulative impacts relating to the issue of a loss of biodiversity. Mitigation measures have been provided for the management of these impacts in the context of the broader study region. Considering the existing water infrastructure (i.e., the existing Masetjaba water reservoir), other development infrastructure (Masetjaba View community, roads, power lines), and that this project acts as an expansion of the current facility, the development will not set a further development precedent in the broader Tsakane area. Some loss of biodiversity is inevitable, and cannot be avoided, however the vegetation on site has a low sensitivity and conservation value, and contributes very little to no ecological function (and CBA area) to the broader study area. Cumulative loss of conservation potential is thus regarded as medium taking into account other likely developments within the broader study region. The cumulative impacts are deemed acceptable considering the existing poor condition of the site, and the broader character of the area (i.e. already developed and highly degraded).

9.3. Conditions for approval and mitigation measures to be included into the EMPr

All mitigation measures as supplied for the construction, operational and decommissioning phases in Chapter 8 of this report must be implemented as a condition of the environmental authorisation. These measures are summarised below for convenience.

9.3.1. Construction phase

» Alien plants must be removed from the site through appropriate methods such as hand pulling, application of chemicals, cutting etc., on a regular basis during construction. Removal must occur prior to plants developing seeds.

- » All bare areas, affected by the development, should be re-vegetated with locally occurring species, to bind the soil and limit erosion potential.
- » An Alien Monitoring and Management Plan must be developed and implemented during the construction phase to reduce the establishment and spread of undesirable alien plant species. The Alien Management Plan must be approved by the ECO prior to implementation.
- » An ECO must be employed to demarcate areas for use during construction, and to ensure that the construction activities remain within the designated area and that no unauthorised activities occur.
- » Any erosion observed should be rectified immediately and monitored thereafter to ensure interventions are successful.
- » Develop a short invasive management plan and implement during construction to ensure alien species do not invade disturbed or cleared areas;
- » In the event that SCC are identified during construction works, the relevant permits must be obtained from the relevant departments in order to remove animal SCC prior to commencement of further activities.
- » Laydown areas and turning areas must be located in areas that have already been impacted or show evidence of degradation, such as the far-left corner of the property (facing the existing storage unit). The ECO or EO must identify such areas.
- » Prohibit all employees from harvesting wild plants or hunting any animals on site;
- » Prohibit open fires;
- » Rehabilitate laydown and cleared areas immediately after they are no longer required;
- » Reinstate as much of the eroded area to its pre-disturbed, "natural" levels;
- » Should any SCC be identified during excavation, all animal and plant SCC must be relocated or removed from the construction footprint by a qualified specialist prior to commencement of further activities.
- » Since this vegetation type is listed as endangered, impacts must be kept to a minimum through the development and implementation of an EMPr, and the employment of an Environmental Control Officer (ECO) for the duration of construction.
- » The gravel access road and other disturbed areas (laydown areas) should be regularly monitored for erosion occurrences and must receive follow-up monitoring by the EO to assess the success of the remediation.
- » Topsoil must be stockpiled separately to subsoil. This is done to conserve the existing seedbank and aid in the restoration of natural grasslands during rehabilitation.
- » Topsoil should be removed and stored separately and should be reapplied where appropriate as soon as possible in order to encourage and facilitate rapid regeneration of the natural vegetation on cleared areas.
- » Vegetation clearing for the establishment of infrastructure must be kept to a minimum, by only clearing what is absolutely needed in order to further construction.
- » Vegetation impacted must be restored and the area rehabilitated. It is likely that this will occur naturally but given the presence of alien species active rehabilitation and the removal of alien species will be required to ensure that only indigenous species remain.
- » Where feasible, phased development and vegetation clearing should be practiced so that cleared areas are not left denuded and vulnerable to erosion for extended periods of time.

9.3.2. Operational phase

» Alien plants must be removed from the site through appropriate methods such as hand pulling, application of chemicals, cutting etc., on a regular basis during operation. Removal must occur prior to plants developing seeds.

- » An Alien Monitoring and Management Plan must be developed and implemented during the operational phase to reduce the establishment and spread of undesirable alien plant species.
- » Ongoing monitoring should be conducted by the site manager to ensure problem-areas are identified where alien species are proliferating, and to inform the control efforts throughout the operational phase.

9.3.3. Decommissioning phase

- » All bare areas, affected by the development, should be re-vegetated with locally occurring species, to bind the soil and limit erosion potential.
- » Any erosion observed should be rectified immediately and monitored thereafter to ensure interventions are successful.
- » Design and implement a rehabilitation plan for the decommissioning phase;
- » If laydown areas and turning areas are required, these must be sited in areas that have already been impacted or show evidence of degradation;
- » Implement an alien invasive monitoring and management plan for the decommissioning phase;
- » Reinstate as much of the eroded area to its pre-disturbed, "natural" levels.
- » The gravel access road and other disturbed areas (laydown areas) should be regularly monitored for erosion occurrences and must receive follow-up monitoring by the EO to assess the success of the remediation.
- » Topsoil should be removed and stored separately and should be reapplied where appropriate as soon as possible in order to encourage and facilitate rapid regeneration of the natural vegetation on cleared areas.
- » Where feasible, phased development and vegetation clearing should be practiced so that cleared areas are not left denuded and vulnerable to erosion for extended periods of time.

9.3.4. Cumulative impacts

Should the project be implemented, the following mitigation measures will reduce the cumulative impact of the project, in combination with all other anticipated projects within the broader study region:

- An open space management plan should be developed for each individual development which must include management of biodiversity within the fenced area, as well as that in the adjacent rangeland.
- » Conserve the aquatic features (Spaarwater pan and riparian zones) in the broader landscape by allocating sufficient buffers to these and reducing development within those buffers as far as possible.
- » Reduce the footprint of facilities within proven sensitive habitat types as much as possible.
- The development footprints of similar or related facilities in the area must be kept to a minimum and natural vegetation should be encouraged to return to disturbed areas.

9.3.5. Monitoring requirements

Two primary aspects emanating from the impact assessment require monitoring:

- » Invasive alien plant species; and
- » Decommissioning and rehabilitation.

Invasive alien plant species:

The earthworks associated with construction activities, combined with the deposition of cut and fill material (including soil) from various locations allows for the proliferation of invasive species through the spread of seed via transported material into novel environments. In addition, the presence of known invasive species on site further necessitate the monitoring and control of invasive alien plant species, so as to ensure no further spread and establishment of the current populations is allowed. The following monitoring protocol must be employed specifically to (Table 9.2):

- i. Identify plant species on site that require control action; and
- ii. Identify the location of invasive plant communities on site;

Table 9.2: Monitoring protocol for invasive alien plant species during construction and operation.

PHASE	FREQUENCY	PERSON RESPONSIBLE	
CONSTRUCTION			
Monitoring of ongoing construction activities or site condition to ensure no new species have established on site, and to identify effective control measures for such invasive plant communities	Every four months	Site manager (operational manager)	
Monitoring of ongoing construction activity and earthworks to identify species and locations of new occurrences of invasive alien plants Monitoring of soil stockpiles for Alien Invasive Species growth	Once monthly Once monthly	Environmental Control Officer/Environmental Site Officer/Resident Engineer Environmental Site Officer/Resident Engineer	
OPERATION			
Monitoring of ongoing operational and maintenance activities or site condition to ensure no new species have established on site, and to identify effective control measures for such invasive plant communities	Every four months	Site manager (operational manager)	

Decommissioning and rehabilitation:

Rehabilitation measures conducted during rehabilitation of the site must ensure that the low sensitivity areas are appropriately restored to a near-natural state prior to site closure. As such, a rehabilitation plan for the decommissioning phase must be designed and implemented prior to the commencement of decommissioning. The implementation of this plan must be monitored by a suitable representative (Environmental Site Officer, Resident Engineer or Contractors Representative) and in accordance with the frequency and method as determined by the rehabilitation plan.

9.4. Environmental statement and specialist opinion

The ecological impacts of all aspects for the proposed project were assessed and considered to be ecologically acceptable (i.e. **no fatal flaws** were determined), provided that the mitigation measures provided in this report are implemented. Implementation of recommended mitigation measures is an important element of the mitigation strategy and will reduce all identified impacts to low negative.

No alternatives, apart from the no-go option, were considered for this project. However, the no-go option allows for two ongoing impacts of medium severity, which may be reduced to low via management intervention should this project proceed. As such, this development proposal represents a means to reduce invasive species presence and improve fire management of the site (provided mitigation measures are strictly and effectively implemented) and may thus serve to preserve the current poor ecological functioning of the site in the long term. Cumulative impacts from this development proposals were all deemed low or negligible in the context of ecological functioning and contribution of the project site.

10. REFERENCES

- ADU, 2019. Animal Demography Unit, Virtual Museum Records [online]. Available from http://vmus.adu.org.za/vm_projects.php [Accessed 04 January 2019].
- and Endangered Wildlife Trust, South Africa
- Branch WR (ed), 1998. South African red data book Reptiles and Amphibians [online]. Available from file:///C:/Users/Gideon/Desktop/Downloads/Branch%20WR1 1988.pdf [Accessed 04 January 2019].
- CARA, 1983. Conservation of Agricultural Resource Act 1983 (Act 43 of 1983), list of invasive alien plants [online]. Available from file:///C:/Users/Gideon/Desktop/Downloads/CARA%20Invasive%20Plant%20Lists%202001%20(1).pdf [Accessed 04 January 2019].
- Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT. 2017. Mammal
- C-Plan, 2011. Gauteng Department of Agriculture and Rural Development (GDARD) Gauteng Conservation Plan Version 3 [online]. Available from http://bgis.sanbi.org/SpatialDataset/Detail/405 [Accessed 04 January 2019].
- Du Preez, L. H., and V. C. Carruthers. 2009. A Complete Guide to the Frogs of Southern Africa. Cape Town: Struik Nature.
- EIA Regulations, 2017. EIA Regulations 2014, as amended 2017. GNR 326, No. 40772 Government Gazette, Republic of South Africa.
- Gauteng C-Plan Technical Report, 2014. Gauteng Conservation Plan Version 3.3 (C-Plan 3.3) Technical Report [online]. Available from https://www.gekco.co.za/wp-content/uploads/2013/07/Gauteng_Cplan33.pdf [Accessed 04 January 2019].
- GPEMF, 2014. Gauteng Provincial Environmental Management Framework [online]. Available from http://www.gauteng.gov.za/government/departments/agriculture-and-rural-development/Documents/Gauteng%20Provincial%20Environmental%20Management%20Framework/2014%20GPEMF%20Section%20A%20Introduction%20and%20Status%20Quo.pdf [Accessed 04 January 2019].
- Holness S & Skowno A, 2011. Bioregional Plan for the Ekurhuleni Metropolitan Municipality [online]. Available from http://www.gauteng.gov.za/government/departments/agriculture-and-rural-development/Documents/Biodiversity%20Management/Bioregional%20Plan/2014%20Ekurhuleni%20Bioregional%20Plan.pdf [Accessed 04 January 2019].
- IUCN, 2019. Red list of threatened species [online]. Available from https://www.iucnredlist.org/ [Accessed 04 January 2019].
- Margules CR & Pressey RL, 2000. Systematic conservation planning. Nature 405, 243-253.
- Mucina, L & Rutherford, M. C., 2006. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria.
- NEMBA, 2016. National list of invasive specis n terms of sections 70(1), 71(3) and 71A [online]. Available from file:///C:/Users/Gideon/Desktop/Downloads/NEMBA%20Invasive%20Species%20Lists%20@%2029%20July%202016%20-%20List%201%20-%20National%20list%20of%20Invasive%20Terrestrial%20and%20Freshwater%20Plant%20Species.pdf [Accessed 04 January 2019].
- Red List 2016: Introduction and Methodology. South African National Biodiversity Institute
- SANBI, 2019. SANBI Threatened Species Programme red list of threatened species [online]. Available from http://redlist.sanbi.org/ [Accessed 04 January 2019].

- SANBI. 2013. Grasslands Ecosystem Guidelines: landscape interpretation for planners and managers. Compiled by Cadman, M., de Villiers, C., Lechmere-Oertel, R. and D. McCulloch. South African National Biodiversity Institute, Pretoria. 139 pages.
- SARCA, 2014. Atlas and Red list of the reptiles of South Africa, Lesotho and Swaziland. Bated, MF, Branch WR, Bauer AM, Burger M, Marais J, Alexander GJ & de Villiers MS (eds). Suricata 1. South African National Biodiversity Institute, Pretoria.
- South African Bird Atlas project 2 (SABAP2), 2007. The Southern African Bird Atlas Project Monitoring into the future [online]. Available from http://sabap2.adu.org.za/ [Accessed 02 January 2019].
- Taylor Mr, Peacock F & Wanless RM, 2015. The 2015 Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. Birdlife South Africa, Johannesburg.

11. APPENDIX A: COMPREHENSIVE SPECIES LISTS FOR FAUNAL AND FLORAL SPECIES THAT MAY OCCUR ON SITE

Table 11.1: Full species list of reptiles that may occur on the project site.

Family	Scientific name Common name		Red list category
			(SARCA, 2014)
Agamidae	Agama aculeata distanti	Distant's Ground Agama	LC
Agamidae	Agama atra	Southern Rock Agama	LC
Colubridae	Crotaphopeltis hotamboeia	Red-lipped Snake	LC
Colubridae	Dasypeltis scabra	Rhombic Egg-eater	LC
Cordylidae	Cordylus vittifer	Common Girdled Lizard	LC
Cordylidae	Pseudocordylus melanotus melanotus	Common Crag Lizard	LC
Elapidae	Hemachatus haemachatus	Rinkhals	LC
Gekkonidae	Pachydactylus affinis	Transvaal Gecko	LC
Gekkonidae	Pachydactylus capensis	Cape Gecko	LC
Gerrhosauridae	Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	LC
Lacertidae	Nucras Ialandii	Delalande's Sandveld Lizard	LC
Lamprophiidae	Aparallactus capensis	Black-headed Centipede-eater	LC
Lamprophiidae	Boaedon capensis	Brown House Snake	LC
Lamprophiidae	Lamprophis aurora	Aurora House Snake	LC
Lamprophiidae	Lycodonomorphus rufulus	Brown Water Snake	LC
Lamprophiidae	Lycophidion capense capense	Cape Wolf Snake	LC
Lamprophiidae	Prosymna sundevallii	Sundevall's Shovel-snout	LC
Lamprophiidae	Psammophis crucifer	Cross-marked Grass Snake	LC
Lamprophiidae	Psammophylax rhombeatus	Spotted Grass Snake	LC
Lamprophiidae	Pseudaspis cana	Mole Snake	LC
Leptotyphlopidae	Leptotyphlops scutifrons	Eastern Thread Snake	Unlisted
	conjunctus		
Scincidae	Panaspis wahlbergi	Wahlberg's Snake-eyed Skink	LC
Scincidae	Trachylepis punctatissima	Speckled Rock Skink	LC
Scincidae	Trachylepis varia sensu lato	Common Variable Skink Complex	LC
Viperidae	Bitis arietans arietans	Puff Adder	LC
Viperidae	Causus rhombeatus	Rhombic Night Adder	LC

Table 11.2: Full species list of frogs that may occur on the project site.

Family	Scientific name	Common name	Red list category
Bufonidae	Schismaderma carens	Red Toad	Least Concern
Bufonidae	Sclerophrys capensis	Raucous Toad	Least Concern
Bufonidae	Sclerophrys gutturalis	Guttural Toad	Least Concern
Hyperoliidae	Kassina senegalensis	Bubbling Kassina	Least Concern
Pipidae	Xenopus laevis	Common Platanna	Least Concern
Pyxicephalidae	Amietia delalandii	Delalande's River Frog	Least Concern
Pyxicephalidae	Amietia fuscigula	Cape River Frog	Least Concern

Pyxicephalidae	Cacosternum boettgeri	Common Caco	Least Concern
Pyxicephalidae	Pyxicephalus adspersus	Giant Bull Frog	Near
			Threatened
Pyxicephalidae	Tomopterna cryptotis	Tremelo Sand Frog	Least Concern

Table 11.3: Full species list of mammals that may occur on the project site.

•	-	. ,		
Family	Scientific name	Common name	Red list category	
Bathyergidae	Cryptomys hottentotus	Southern African Mole-rat	Least Concern (2016)	
Bovidae	Alcelaphus buselaphus	Hartebeest	Least Concern	
Bovidae	Antidorcas marsupialis	Springbok	Least Concern (2016)	
Bovidae	Connochaetes gnou	Black Wildebeest	Least Concern (2016)	
Bovidae	Damaliscus pygargus phillipsi	Blesbok	Least Concern (2016)	
Bovidae	Raphicerus campestris	Steenbok	Least Concern (2016)	
Bovidae	Redunca arundinum	Southern Reedbuck	Least Concern (2016)	
Bovidae	Sylvicapra grimmia	Bush Duiker	Least Concern (2016)	
Bovidae	Taurotragus oryx	Common Eland	Least Concern (2016)	
Canidae	Canis mesomelas	Black-backed Jackal	Least Concern (2016)	
Emballonuridae	Taphozous (Taphozous)	Mauritian Tomb Bat	Least Concern	
	mauritianus			
Equidae	Equus quagga	Plains Zebra	Least Concern (2016)	
Hystricidae	Hystrix africaeaustralis	Cape Porcupine	Least Concern	
Leporidae	Lepus saxatilis	Scrub Hare	Least Concern	
Muridae	Aethomys namaquensis	Namaqua Rock Mouse	Least Concern	
Muridae	Gerbilliscus leucogaster	Bushveld Gerbil	Least Concern (2016)	
Muridae	Mastomys sp.	Multimammate Mice		
Muridae	Mus (Nannomys) minutoides	Southern African Pygmy Mouse	Least Concern	
Muridae	Otomys auratus	Southern African Vlei Rat	Near Threatened (2016)	
Muridae	Rhabdomys pumilio	Xeric Four-striped Grass Rat	Least Concern (2016)	
Mustelidae	Aonyx capensis	African Clawless Otter	Near Threatened	
			(2016)	
Mustelidae	Poecilogale albinucha	African Striped Weasel	Near Threatened	
			(2016)	
Soricidae	Crocidura mariquensis	Swamp Musk Shrew	Near Threatened	
			(2016)	
Soricidae	Myosorex varius	Forest Shrew	Least Concern (2016)	
Vespertilionidae	Myotis welwitschii	Welwitsch's Myotis	Least Concern (2016)	

Table 11.4: Full species list of scorpions that may occur on the project site.

Family	Scientific name	Common name	Red list category
BUTHIDAE	Pseudolychas ochraceus	Plain Pygmy-thicktail	unlisted

Table 11.5: Full species list of spiders that may occur on the project site.

Family	Scientific name	Common name	Red list category
Araneidae	Neoscona sp.	Neoscona hairy field spiders	Unlisted

Oxyopidae	Oxyopes sp.	Grass lynx spiders Unlisted	
Philodromidae	FAMILY Philodromidae	Running spiders	Unlisted
Pholcidae	FAMILY Pholcidae	Daddy longlegs spiders	Unlisted
Pisauridae	Rothus sp.	Crowned pisaurids	Unlisted
Scytodidae	Scytodes sp.	spitting spiders	Unlisted
Sparassidae	FAMILY Sparassidae	Huntsman spiders	Unlisted
Sparassidae	Palystes sp.	Rain spiders	Unlisted
Theraphosidae	Harpactira hamiltoni		Unlisted
Theridiidae	Theridion sp.	comb-footed or cobweb spiders	Unlisted
Theridiidae	Theridion purcelli	Common false house button spiders	Unlisted
Thomisidae	Thomisus sp.	Flower crab spiders	Unlisted
Trochanteriidae	Platyoides sp.	scorpion spiders	Unlisted
Uloboridae	FAMILY Uloboridae	Hackled orb-web spiders	Unlisted
Uloboridae	Uloborus sp.	hackled orb-web spiders	Unlisted

Table 11.6: Full species list of birds that may occur on the project site.

Spp	Taxon Name	Common Name	Red List (ESKOM, 2015)	IUCN Red List
Grebe	Podiceps cristatus	Great Crested	-	LC
Grebe	Podiceps nigricollis	Black-necked	-	LC
Grebe	Tachybaptus ruficollis	Little	-	LC
Cormorant	Phalacrocorax carbo	White-breasted	-	LC
Cormorant	Phalacrocorax africanus	Reed	-	LC
Darter	Anhinga rufa	African	-	LC
Heron	Ardea cinerea	Grey	-	LC
Heron	Ardea melanocephala	Black-headed	-	LC
Heron	Ardea goliath	Goliath	-	LC
Heron	Ardea purpurea	Purple	-	LC
Egret	Egretta alba	Great	-	LC
Egret	Egretta garzetta	Little	-	LC
Egret	Bubulcus ibis	Cattle	-	LC
Heron	Ardeola ralloides	Squacco	-	LC
Heron	Egretta ardesiaca	Black	-	LC
Bittern	Ixobrychus minutus	Little	-	LC
Night-Heron	Nycticorax nycticorax	Black-crowned	-	LC
Hamerkop	Scopus umbretta	Hamerkop	-	LC
Ibis	Threskiornis aethiopicus	African Sacred	-	LC
Ibis	Plegadis falcinellus	Glossy	-	LC
Ibis	Bostrychia hagedash	Hadeda	-	LC
Spoonbill	Platalea alba	African	-	LC
Flamingo	Phoenicopterus ruber	Greater	-	LC
Flamingo	Phoenicopterus minor	Lesser	-	NT
Goose	Plectropterus gambensis	Spur-winged	_	LC
Goose	Alopochen aegyptiacus	Egyptian	-	LC
Shelduck	Tadorna cana	South African	-	LC

Shoveler	Anas smithii	Cape	-	LC
Duck	Anas sparsa	African Black	-	LC
Duck	Anas undulata	Yellow-billed	-	LC
Teal	Anas erythrorhyncha	Red-billed	-	LC
Teal	Anas capensis	Cape	-	LC
Teal	Anas hottentota	Hottentot	-	LC
Duck	Dendrocygna viduata	White-faced	-	LC
Duck	Dendrocygna bicolor	Fulvous	-	LC
Pochard	Netta erythrophthalma	Southern	-	LC
Duck	Oxyura maccoa	Массоа	NT	VU
Falcon	Falco amurensis	Amur	-	LC
Kite	Elanus caeruleus	Black-shouldered	-	LC
Francolin	Scleroptila levaillantoides	Orange River	-	LC
Spurfowl	Pternistis swainsonii	Swainson's	_	LC
Quail	Coturnix coturnix	Common	_	LC
Guineafowl	Numida meleagris	Helmeted	_	LC
Rail	Rallus caerulescens	African	_	LC
Crake	Amaurornis flavirostris	Black	_	LC
Flufftail	Sarothrura rufa	Red-chested	_	LC
Swamphen	Porphyrio madagascariensis	African Purple	_	-
Moorhen	Gallinula chloropus	Common	_	LC
	•		-	LC
Coot	Fulica cristata	Red-knobbed	-	LC
Plover	Charadrius pecuarius	Kittlitz's	-	LC
Plover	Charadrius tricollaris	Three-banded	-	LC
Lapwing	Vanellus coronatus	Crowned		LC
Lapwing	Vanellus armatus	Blacksmith	-	LC
Lapwing	Vanellus senegallus	African Wattled		LC
Snipe	Gallinago nigripennis	African	LC	NT
Sandpiper	Calidris ferruginea	Curlew	LC	LC
Stint	Calidris minuta	Little	-	LC
Ruff	Philomachus pugnax	Ruff	-	
Sandpiper	Actitis hypoleucos	Common	-	LC LC
Sandpiper	Tringa stagnatilis	Marsh	-	
Greenshank	Tringa nebularia	Common	-	LC
Sandpiper	Tringa glareola	Wood	-	LC LC
Avocet	Recurvirostra avosetta	Pied	-	
Stilt	Himantopus himantopus	Black-winged	-	LC
Thick-knee	Burhinus capensis	Spotted	- N.I.T.	LC
Pratincole	Glareola nordmanni	Black-winged	NT	NT
Gull -	Larus cirrocephalus	Grey-headed	-	LC
Tern	Chlidonias leucopterus	White-winged	-	LC
Tern	Chlidonias hybrida	Whiskered	-	LC
Pigeon	Columba guinea	Speckled	-	LC
Dove	Streptopelia semitorquata	Red-eyed	-	LC
Turtle-dove	Streptopelia capicola	Cape	-	LC
Dove	Streptopelia senegalensis	Laughing	-	LC

Cuckoo	Chrysococcyx caprius	Diderick	-	LC
Owl	Asio capensis	Marsh	-	LC
Swift	Apus caffer	White-rumped	-	LC
Swift	Apus affinis	Little	-	LC
Palm-swift	Cypsiurus parvus	African	-	LC
Mousebird	Colius striatus	Speckled	-	LC
Mousebird	Urocolius indicus	Red-faced	-	LC
Kingfisher	Ceryle rudis	Pied	-	LC
Ноорое	Upupa africana	African	-	-
Barbet	Lybius torquatus	Black-collared	-	LC
Lark	Mirafra cheniana	Melodious	-	LC
Lark	Mirafra africana	Rufous-naped	-	LC
Lark	Chersomanes albofasciata	Spike-heeled	_	LC
Lark	Calandrella cinerea	Red-capped	_	LC
Swallow	Hirundo rustica	Barn	-	LC
Swallow	Hirundo albigularis	White-throated	-	LC
Swallow	Hirundo cucullata	Greater Striped	-	LC
Swallow			_	LC
Cliff-swallow	Hirundo abyssinica	Lesser Striped South African	-	LC
	Hirundo spilodera			<u>-</u>
Martin	Hirundo fuligula	Rock	-	LC
Martin	Riparia riparia	Sand	-	LC
Martin	Riparia paludicola	Brown-throated	-	
Martin	Riparia cincta	Banded	-	LC
Crow	Corvus albus	Pied	-	LC
Bulbul	Pycnonotus tricolor	Dark-capped	-	-
Wheatear	Oenanthe monticola	Mountain	-	LC
Wheatear	Oenanthe pileata	Capped	-	LC
Chat	Myrmecocichla formicivora	Anteating	-	LC
Stonechat	Saxicola torquatus	African	-	LC
Swamp-	A oro o o b alus ara oilirostris	Lossor	-	LC
warbler	Acrocephalus gracilirostris	Lesser		LC
Reed-warbler	Acrocephalus baeticatus Acrocephalus	African	-	
Warbler	schoenobaenus	Sedge	-	LC
Rush-warbler	Bradypterus baboecala	Little	-	LC
Cisticola	Cisticola juncidis	Zitting	-	LC
Cisticola	Cisticola aridulus	Desert	-	LC
Cisticola	Cisticola textrix	Cloud	-	LC
Cisticola	Cisticola ayresii	Wing-snapping	-	LC
Neddicky	Cisticola fulvicapilla	Neddicky	-	LC
Cisticola	Cisticola tinniens	Levaillant's	-	LC
Prinia	Prinia subflava	Tawny-flanked	-	LC
Prinia	Prinia flavicans	Black-chested	-	LC
Wagtail	Motacilla capensis	Cape	-	LC
Pipit Pipit	Anthus cinnamomeus	African	_	LC
Pipit	Anthus leucophrys	Plain-backed	-	LC
Longclaw	Macronyx capensis	Cape	_	LC

Fiscal	Lanius collaris	Common (Southern)	-	LC
Bokmakierie	Telophorus zeylonus	Bokmakierie	-	LC
Myna	Acridotheres tristis	Common	-	LC
Starling	Creatophora cinerea	Wattled	-	LC
Starling	Lamprotornis nitens	Cape Glossy	-	LC
Starling	Spreo bicolor	Pied	-	LC
Sparrow- weaver	Plocepasser mahali	White-browed	-	LC
Sparrow	Passer domesticus	House	-	LC
Sparrow	Passer melanurus	Cape	-	LC
Masked- weaver	Ploceus velatus	Southern	-	LC
Weaver	Amblyospiza albifrons	Thick-billed	-	LC
Quelea	Quelea quelea	Red-billed	-	LC
Bishop	Euplectes orix	Southern Red	-	LC
Bishop	Euplectes afer	Yellow-crowned	-	LC
Widowbird	Euplectes ardens	Red-collared	-	LC
Widowbird	Euplectes albonotatus	White-winged	-	LC
Widowbird	Euplectes axillaris	Fan-tailed	-	LC
Widowbird	Euplectes progne	Long-tailed	-	LC
Waxbill	Amandava subflava	Orange-breasted	-	LC
Waxbill	Estrilda astrild	Common	-	LC
Quailfinch	Ortygospiza atricollis	African	-	LC
Whydah	Vidua macroura	Pin-tailed	-	LC
Canary	Crithagra atrogularis	Black-throated	-	LC
Canary	Crithagra flaviventris	Yellow	-	LC
Dove	Columba livia	Rock	-	LC
Korhaan	Afrotis afraoides	Northern Black	-	LC
Thrush	Turdus smithi	Karoo	-	LC
White-eye	Zosterops virens	Cape	-	LC
Coucal	Centropus burchellii	Burchell's	-	-
Sparrow	Passer diffusus	Southern Grey- headed	-	LC

12. APPENDIX B: IMPACT ASSESSMENT METHODOLOGY

Impact Assessment methodology:

Direct, indirect and cumulative impacts of the issues identified through the EIA process, as well as all other issues identified due to the amendment must be assessed in terms of the following criteria:

- » The nature, which shall include a description of what causes the effect, what will be affected and how it will be affected.
- The extent, wherein it will be indicated whether the impact will be local (limited to the immediate area or site of development) or regional, and a value between 1 and 5 will be assigned as appropriate (with 1 being low and 5 being high):
- The duration, wherein it will be indicated whether:
 - * the lifetime of the impact will be of a very short duration (0-1 years) assigned a score of 1;
 - * the lifetime of the impact will be of a short duration (2-5 years) assigned a score of 2;
 - * medium-term (5–15 years) assigned a score of 3;
 - * long term (> 15 years) assigned a score of 4; or
 - * permanent assigned a score of 5;
- The consequences (magnitude), quantified on a scale from 0-10, where 0 is small and will have no effect on the environment, 2 is minor and will not result in an impact on processes, 4 is low and will cause a slight impact on processes, 6 is moderate and will result in processes continuing but in a modified way, 8 is high (processes are altered to the extent that they temporarily cease), and 10 is very high and results in complete destruction of patterns and permanent cessation of processes.
- » The **probability** of occurrence, which shall describe the likelihood of the impact actually occurring. Probability will be estimated on a scale of 1–5, where 1 is very improbable (probably will not happen), 2 is improbable (some possibility, but low likelihood), 3 is probable (distinct possibility), 4 is highly probable (most likely) and 5 is definite (impact will occur regardless of any prevention measures).
- * the significance, which shall be determined through a synthesis of the characteristics described above and can be assessed as low, medium or high; and
- » the **status**, which will be described as either positive, negative or neutral.
- » the degree to which the impact can be reversed.
- » the degree to which the impact may cause irreplaceable loss of resources.
- » the degree to which the impact can be mitigated.

The **significance** is calculated by combining the criteria in the following formula:

S = (E+D+M)P

S = Significance weighting

E = Extent

D = Duration

M = Magnitude

P = Probability

The **significance weightings** for each potential impact are as follows:

» < 30 points: Low (i.e. where this impact would not have a direct influence on the decision to develop in the area),
</p>

- » 30-60 points: Medium (i.e. where the impact could influence the decision to develop in the area unless it is effectively mitigated),
- » > 60 points: High (i.e. where the impact must have an influence on the decision process to develop in the area).

Assessment of impacts must be summarised in the following table format. The rating values as per the above criteria must also be included. The table must be completed and associated ratings for **each** impact identified during the assessment should also be included.

Example of Impact table summarising the significance of impacts (with and without mitigation):

Nature:

[Outline and describe fully the impact anticipated as per the assessment undertaken]

	Without mitigation	With mitigation
Extent	High (3)	Low (1)
Duration	Medium-term (3)	Medium-term (3)
Magnitude	Moderate (6)	Low (4)
Probability	Probable (3)	Probable (3)
Significance	Medium (36)	Low (24)
Status (positive or negative)	Negative	Negative
Reversibility	Low	Low
Irreplaceable loss of	Yes	Yes
resources?		
Can impacts be mitigated?	Yes	Yes

Mitigation:

"Mitigation", means to anticipate and prevent negative impacts and risks, then to minimise them, rehabilitate or repair impacts to the extent feasible.

Provide a description of how these mitigation measures will be undertaken keeping the above definition in mind.

Cumulative impacts:

"Cumulative Impact", in relation to an activity, means the past, current and reasonably foreseeable future impact of an activity, considered together with the impact of activities associated with that activity, that in itself may not be significant, but may become significant when added to existing and reasonably foreseeable impacts eventuating from similar or diverse activities¹.

Residual Risks:

"Residual Risk", means the risk that will remain after all the recommended measures have been undertaken to mitigate the impact associated with the activity (Green Leaves III, 2014).

Ecological Impact Assessment Report

 $^{^{1}}$ Unless otherwise stated, all definitions are from the 2014 EIA Regulations (as amended on 07 April 2017), GNR 326.

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

13. APPENDIX C: SPECIALIST CV

CURRICULUM VITAE OF GIDEON RAATH

Profession: Environmental and Permitting Consultant

Specialisation: Environmental Impact Assessments, Water Use Licencing, Waste

Licencing, Environmental Compliance Officer, Ecological Specialist, Wetland Specialist, GIS, MPRDA

permitting

Work Experience: 4.5 years' experience in environmental management, National Water Act, Mineral and

Petroleum Resources Development Act, ECO and compliance auditing, wetland and

ecological specialist reporting

VOCATIONAL EXPERIENCE

Gideon holds an MSc (Geography and Environmental Management; SU), a BSc Honours (Ecology and Environmental Studies - Cum laude; Wits) and a BSc (Geography and Environmental Management; UJ). His MSc thesis focused on the hydrological impact on the spatial distribution of invasive Eucalyptus trees along the Breede River, while his honours thesis evaluated ethnobotanical relationships around the Rio Tinto copper mine in Phalaborwa. Most recently he has worked as an Environmental Consultant at EOH Coastal and Environmental Services (EOH CES), conducting environmental authorisations applications (NWA, NEMA, MPRDA), Public Participation Processes, GIS specialisation as well as Ecological and Wetland specialist studies. Previously, Gideon worked as the Monitoring & Evaluation Project Manager for the City of Cape Town's invasive species unit (Environmental Resources Management Department).

Gideon's GIS background includes the management of the City of Cape Town invasive species GIS database, involving the storage, management, recall and quality control off all sightings, clearance visits and known infestations. Further experience include mapping for various consulting projects, boundary verification through ground-truthing and the spatial mapping and delineation component of this MSc research. Gideon has further attended public participation workshops, and has been involved with IAP identification, translation, public meetings and engagement for a variety of projects, mainly within the Afrikaans speaking Northern Cape. Gideon is interested in invasion ecology, treatment of groundwater pollution through phytoremediation, botanical and wetland specialist studies, GIS application for ecology and environmental management, and the EIA processes in general.

SKILLS BASE AND CORE COMPETENCIES

- Environmental Management
- GIS data manipulation, storage, management and mapping
- EIA Impact Assessments and Basic Assessment
- Environmental Management Programmes
- Environmental Compliance Monitoring
- Mining Rights, Mining Permits, Prospecting Rights (and renewal) applications (MPRDA & NEMA)
- Public and Stakeholder Engagement (NEMA)
- Ecological/Botanical Specialist Studies

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

- Wetland Delineation, Functional and Impact Assessment studies
- Water Use Licence Applications (NWA)
- General Authorisations (NWA)

EDUCATION AND PROFESSIONAL STATUS

Degrees:

- M.Sc. Geography and Environmental Science (2014), Stellenbosch University (2014)
- B.Sc. (Hons) Ecology, Environment and Conservation (Cum Laude), University of the Witwatersrand (2011)
- B.Sc. Life and Environmental Sciences, University of Johannesburg (2010)

Short Courses:

- GroundTruth SASS5 competency course, GroundTruth Aquatic Consulting (2017)
- DWS 21C&I GA training workshop, Department of Water and Sanitation (2016)
- IAIAsa Public Participation Process Workshop, IAIA South Africa (2016)
- EIA Theory and application, EOH Coastal and Environmental Services (2015)
- Water Safety Training, City of Cape Town Environmental Resources Department (2014)
- Herbicide safety and application for weed control, City of Cape Town Environmental Resources Department (2014)
- Snake awareness training, City of Cape Town Environmental Resources Department (2014)
- Habitable Planet Workshop, Applied Centre for Climate & Earth Systems Science, Cape Town (2011)

Professional Society Affiliations:

- Golden Key International Honour Society University of the Witwatersrand Chapter
- South African Council for Scientific Natural Professionals (SACNASP): Certified Natural Scientist Pr.Sci.Nat. (Membership No.: 117178)
- IAIAsa (Membership No.: 3619)

Other Relevant Skills:

GPS use, spatial data capturing and ground truthing

EMPLOYMENT

Date	Company	Roles and Responsibilities
October 2018 - Current:	Savannah Environmental (Pty) Ltd	Environmental and Permitting Consultant
		Tasks include: Undertaking environmental impact assessments, basic assessments, environmental management programmes (EMPrs), environmental amendments, water use license applications, general authorisations, wetland assessments, botanical/ecological assessments, mining rights and permit applications, prospecting rights applications, environmental compliance officer audits and reporting, Ensuring
		environmental compliance on permitting processes, client liaison and relationship management.

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

Date	Company	Roles and Responsibilities
February 2015 –	EOH Coastal and Environmental	Senior Environmental Consultant
September 2018	Services (Pty) Ltd	Tasks included: Undertaking environmental impact assessments, basic assessments, environmental management programmes (EMPrs), environmental amendments, water use license applications, general authorisations, wetland assessments, botanical/ecological assessments, mining rights and permit applications, prospecting rights applications, environmental compliance officer audits and reporting, Ensuring environmental compliance on permitting processes, client liaison and relationship management, public participation processes for environmental authorisations.
March 2014 - February 2015	Invasive Species Unit (ISU), Environmental Resources Management Department (ERMD), City of Cape Town	Professional Officer Tasks included: Managed the Monitoring & Evaluation project portfolio, entailing the establishment of an invasive species monitoring & evaluation system for the ISU, as well as GIS database management, quality assurance and reporting thereof. Position required managing a small staff compliment (dealing directly with GIS database management), managing time and budgets for the monitoring division, conducting monitoring trials and research, writing species management plans as well as handling the GIS database, quality control, verification and integrity for the ISU.
January 2012 – March 2014	University of Stellenbosch	Departmental Assistant Tasks included: Technical editing of academic reports. Formatting of PhD and MSc reports on a weekly basis, with short turnaround time and good quality feedback.
January 2011 – January 2012	University of the Witwatersrand	Departmental Assistant Tasks included: Responsible for practical tutorials and marking of 1st year medical students. Included zoology and botany.
January 2006 – November 2010 (part time)	Codeon Networking CC	Co-founder and web developer <u>Tasks included:</u> Small business owner, responsible for all facets of the business. Self-taught HTML, CSS,

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

Date	Company	Roles and Responsibilities		
		PHP and MySQL. Won and produced two medium		
		enterprise websites serving the gaming		
		community. Websites required user profiles &		
		permissions, CMS system and automated		
		payment options as functionality. Development		
		and maintenance of a user database and		
		account management system.		

PROJECT EXPERIENCE

Project experience includes project management, EIA, BA and EMPr documentation development, integrated water use license applications, general authorisations, specialist botanical and ecological impact assessments, specialist wetland delineation and impact assessments, GIS applications and mapping, compliance auditing and monitoring, vegetation rehabilitation and monitoring plans, integrated waste management plans and waste licencing, mining right & permits, as well as prospecting rights applications.

Industry experience includes the waste sector (IWMP's and waste licencing), road and rail infrastructure (BAR, S&EIR, WUL/GA, Waste Licence), ports and harbours (management plans), private sector clients across varying industries (various permits), mining sector (BAR, S&EIR, mining permits and rights, prospecting rights), conservation sector (biodiversity plans), renewable energy industry (BAR, S&EIR) as well as the gas and oil industry (biodiversity reports).

RENEWABLE POWER GENERATION PROJECTS: SOLAR ENERGY FACILITIES

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
Enel Paleisheuwel Solar compliance auditing,	Enel Green Power RSA (EGP	Environmental consultant
Paleisheuwel, Northern Cape	RSA)	

RENEWABLE POWER GENERATION PROJECTS: WIND ENERGY FACILITIES

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
G7 Brandvalley S&EIR, Matjiesfontein, Northern Cape	G7 Renewable Energy (Pty)	Environmental consultant
	Ltd	
G7 Rietkloof S&EIR, Matjiesfontein, Northern Cape	G7 Renewable Energy (Pty)	Environmental consultant
	Ltd	

Basic Assessments

Proj	ect Name & Lo	cation					Client Name	Role
G7	Renewable	Energy	132kV	BAR	&	EMPr,	G7 Renewable Energy (Pty)	Project Manager,
Ма	tjiesfontein, No	rthern Ca	ре				Ltd	Environmental consultant,
								Public Participation

Compliance Advice and ESAP reporting

Project Name & Location	Client Name	Role

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

Biotherm Energy Golden Valley Wind Energy Facility	Biotherm Energy Pty Ltd	Environmental consultant
ESAP, Bedford, Eastern Cape		

Amendments

Project Name & Location	Client Name	Role
Mosselbay Energy EA Amendment, Moss	selbay, Mosselbay Energy IPP (Pty) Ltd	Environmental consultant
Western Cape		

GAS PROJECTS

Screening Studies

Project Name & Location	Client Name	Role
iGas integrated biodiversity screening, Saldanha,	Central Energy Fund - iGas	Environmental consultant,
Western Cape	(subsidiary)	Faunal specialist (assistant)

MINING SECTOR PROJECTS

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Triton Minerals Limited Ancuabe and Nicanda Hills	Triton Minerals Ltd	Environmental consultant
EPDA, Ancuabe, Cabo Del Gado Province,		
Mozambique		
Ancuabe graphite mine Environmental and Social	Grafex Limitada Mozambique	Environmental consultant
Impact Assessment (ESIA), Cabo Del Gado Province,		
Mozambique		

Basic Assessments

Project Name & Location	Client Name	Role
SANRAL material sourcing BAR (DMR), Hendrina,	SANRAL SOC Ltd & Leo	Project Manager,
Mpumalanga Province	consulting engineers	Environmental consultant,
		Public Participation
SANRAL Bierspruit R510 Borrow Pit authorisation,	SANRAL SOC Ltd & Royal	Project Manager,
Thabazimbi, Limpopo Province	HaskoningDHV South Africa	Environmental consultant,
		Ecological specialist, Public
		Participation
Almenar tin prospecting BAR, Carnarvon, Northern	Almenar Property Investments	Environmental consultant
Cape	(Pty) Ltd	

Rehabilitation Studies

Project Name & Location	Client Name	Role
Ancuabe baseline vegetation monitoring assessment	Grafex Limitada Mozambique	Botanical specialist
and programme, Ancuabe, Cabo Del Gado		
Province, Mozambique		/
Prospecting pit rehabilitation programme, Ancuabe,	Grafex Limitada Mozambique	Botanical specialist,
Cabo Del Gado Province, Mozambique		Environmental consultant
Mayfield Quarry rehabilitation plan, Grahamstown,	Mayfield Quarry	Environmental consultant
Eastern Cape		

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
Construction monitoring and DMR environmental	SANRAL SOC Ltd & Leo	Project Manager, ECO,
authorisation, Hendrina, Mpumalanga Province	consulting engineers	
SANRAL Caledon N2 Section 3 road upgrade ECO	JG Afrika Engineering	Project Manager, ECO
Audits and Reporting, Caledon, Western Cape		
Province		

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
VMC Mining permit renewal application, Rust De	Vergenoeg Mining Company	Environmental consultant
Winter, Gauteng	(Pty) Ltd	
Zirco Resources Kamiesberg heavy mineral sand	Zirco Roode Heuwel (Pty) Ltd	Environmental consultant
mine water use licence, Kamiesberg, Northern Cape		

INFRASTRUCTURE DEVELOPMENT PROJECTS (BRIDGES, PIPELINES, ROADS, WATER RESOURCES, STORAGE, ETC.)

Environmental Impact Assessments and Environmental Management Programmes

	•	
Project Name & Location	Client Name	Role
S&EIR authorisation for the SANRAL Zandkraal-	SANRAL SOC Ltd & SMEC	Project Manager,
Windburg N1 road upgrade, Windburg, Free State	Consulting Engineers	Environmental consultant,
Province		Public Participation
Thabazimbi Local Municipality Integrated Waste	Thabazimbi Local Municipality	Environmental consultant,
Management Plan, Thabazimbi, Limpopo Province	& Anglo American Plc	Public Participation

Basic Assessments

Project Name & Location	Client Name	Role
SANRAL Masekwaspoort N1 Road Upgrade BA, Louis	SANRAL SOC Ltd & Knight	Project Manager,
Trichardt, Limpopo Province	Piésold Consulting	Environmental consultant,
		Public Participation
SANRAL Polokwane N1 Ring Road Upgrade Basic	SANRAL SOC Ltd & KBK	Environmental consultant
Assessment, Polokwane, Limpopo Province	Engineers	
Boshoek Loop Rail Upgrade BAR, Rustenburg, North-	Transnet SOC Ltd	Project Manager,
West Province		Environmental consultant,
		Wetland specialist, Public
		Participation
Heysterkrand Loop Rail Upgrade BAR, Rustenburg,	Transnet SOC Ltd	Project Manager,
North-West Province		Environmental consultant,
		Public Participation
SANRAL Bierspruit R510 road upgrade Basic	SANRAL SOC Ltd & Royal	Project Manager,
Assessment, Thabazimbi, Limpopo Province	HaskoningDHV South Africa	Environmental consultant,
		Ecological specialist, Public
		Participation

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

Barberton IAPS Waste Water Treatment Works	Umjindi Local Municipality	Project	Manager,
development BAR, Barberton, Mpumalanga	and Rhodes University	Environmental	consultant,
Province		Public Participati	on
SANRAL Caledon N2 Section 3 road upgrade project	JG Afrika Engineering	Project	Manager,
Basic Assessment, Caledon, Western Cape Province		Environmental	consultant,
		Ecological specie	alist, ECO

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
Construction Monitoring and DMR environmental	SANRAL SOC Ltd & Leo	Project Manager,
authorisation, Hendrina, Mpumalanga Province	consulting engineers	Environmental consultant,
		ECO

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
Water use licence for the SANRAL Zandkraal-	SANRAL SOC Ltd & SMEC	Project Manager,
Windburg N1 road upgrade and quarrying,	Consulting Engineers	Environmental consultant,
Windburg, Free State Province		Public Participation
SANRAL Masekwaspoort N1 road upgrade water use	SANRAL SOC Ltd & Knight	Project Manager,
licence application, Louis Trichardt, Limpopo	Piésold Consulting	Environmental consultant,
Province		Public Participation
Boshoek Loop Rail Upgrade water use licence	Transnet SOC Ltd	Project Manager,
application, Rustenburg, North-West Province		Environmental consultant,
		Wetland specialist, Public
		Participation
SANRAL Bierspruit R510 road water use licence,	SANRAL SOC Ltd & Royal	Project Manager,
Thabazimbi, Limpopo Province	HaskoningDHV South Africa	Environmental consultant,
		Ecological specialist, Public
		Participation
Barberton IAPS Waste Water Treatment Works water	Umjindi Local Municipality	Project Manager,
use licence and SASS 5 assessment, Barberton,	and Rhodes University	Environmental consultant,
Mpumalanga Province		Aquatic specialist, Public
		Participation
SANRAL Caledon N2 Section 3 road upgrade water	JG Afrika Engineering	Project Manager,
use licence and specialist reports, Caledon, Western		Environmental consultant,
Cape Province		Ecological specialist, Public
		Participation

HOUSING AND URBAN PROJECTS

ENVIRONMENTAL IMPACT ASSESSMENTS AND ENVIRONMENTAL MANAGEMENT PROGRAMMES

Project Name & Location	Client Name	Role

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

Scoping and EIR authorisation, Water Use Licence, for	Frances	Baard	Local	Project	Manager,
the Ganspan tourism facility development, Jan	Municipality			Environmental	consultant,
Kempdorp, Northern Cape				Public Participat	ion

Basic Assessments

Project Name & Location	Client Name	Role
Basic Assessment for the office complex	South African National	Project Manager,
development within the Pretoria National Botanical	Biodiversity Institute (SANBI)	Environmental consultant,
Gardens, Pretoria, Gauteng		Public Participation, ECO
Corner Berg and Drooge Street township	Ramotshere Moiloa Local	Project Manager,
development BAR, Zeerust, North-West Province	Municipality	Environmental consultant,
		Public Participation
Corner Kort and Bree Street township development	Ramotshere Moiloa Local	Project Manager,
BAR, Zeerust, North-West Province	Municipality	Environmental consultant,
		Public Participation
Hope Village township development BAR,	Door of Hope Charity	Project Manager,
Johannesburg, Gauteng	Organisation	Environmental consultant,
		Public Participation
ACSA Jones Road Filling Station Basic Assessment,	Airports Company South	Project Manager,
Johannesburg, Gauteng	Africa SOC Ltd	Environmental consultant,
		Public Participation

Screening Studies

Project Name & Location	Client Name	Role
Kibler Park Church Development ecological	Riverside Community Church	Project Manager, Ecological
assessment, Johannesburg, Gauteng		specialist
DEA Quoin Point dune specialist assessments,	Department of Environmental	Project Manager,
Gansbaai, Western Cape	Affairs (national)	Environmental consultant

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
Transnet Depot and Siding compliance auditing	Transnet SOC Ltd	ECO
programme, Johannesburg, Gauteng & Rustenburg,		
North-West Province		!
Environmental compliance monitoring for the office	South African National	Project Manager,
complex development within the Pretoria National	Biodiversity Institute (SANBI)	Environmental consultant,
Botanical Gardens, Pretoria, Gauteng		Public Participation, ECO

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role	
Atmospheric Emissions Licence, Section 24G for the	ER Galvanizers Pty Ltd	Project	Manager,
ER Galvanizing plant and operations, Johannesburg,		Environmental	consultant,
Gauteng		Public Participa	tion
City of Johannesburg nature reserve proclamation	City of Johannesburg SOC Ltd	Project	Manager,
(Phase II), Johannesburg, Gauteng		Environmental	consultant,

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

		Public Participation,
		Botanical specialist
Hope Village township development water use	Door of Hope Charity	Project Manager,
licence, Johannesburg, Gauteng	Organisation	Environmental consultant,
		Public Participation
Diamond Park Township Development Section 24G,	Sol Plaatje Local Municipality	Project Manager,
Kimberley, Northern Cape		Environmental consultant,
		Public Participation
Boschendal Wine Estate hydro-electric power station	Boschendal Wine Estate	Environmental consultant
Water Use Licence and S24G application,		
Stellenbosch, Western Cape		
City of Johannesburg nature reserve proclamation	City of Johannesburg SOC Ltd	Environmental consultant
boundary verification (Phase I), Johannesburg,		
Gauteng		
PRDW Cape Town harbour breakwater rehabilitation	PRDW Engineering	Project Manager,
EMPr, Cape Town, Western Cape		Environmental consultant
PRDW Bushman's Estuary dune encroachment	PRDW Engineering	Environmental consultant
project management, Kenton-on-sea, Eastern Cape		
Corner Berg and Drooge Street township	Ramotshere Moiloa Local	Project Manager,
development water use licence application, Zeerust,	Municipality	Environmental consultant
North-West Province		
Corner Kort and Bree Street township development	Ramotshere Moiloa Local	Project Manager,
water use licence, Zeerust, North-West Province	Municipality	Environmental consultant
Bloekombos (Kraaifontein) hospital water use licence	Western Cape Provincial	Project Manager,
application, Cape Town, Western Cape	Government (PGWC)	Environmental consultant,
		Botanical specialist,
		Wetland specialist

SPECIALIST STUDIES

Project Name & Location	Client Name	Role
Boshoek Loop Rail Upgrade BAR and Water Use	Transnet SOC Ltd	Wetland specialist
Licence, Rustenburg, North-West Province		
City of Johannesburg nature reserve proclamation	City of Johannesburg SOC Ltd	Botanical specialist
(Phase II), Johannesburg, Gauteng		
SANRAL Bierspruit R510 road upgrade Water Use	SANRAL SOC Ltd & Royal	Ecological specialist
Licence, Basic Assessment, Thabazimbi, Limpopo	HaskoningDHV South Africa	
Province		
Kibler Park Church Development Ecological	Riverside Community Church	Ecological specialist
Assessment, Johannesburg, Gauteng		
Barberton IAPS Waste Water Treatment Works	Umjindi Local Municipality	Aquatic specialist
development BAR, water use licence and SASS 5	and Rhodes University	/
assessment, Barberton, Mpumalanga Province		/
Wijnberg Trust Dam 2 expansion Aquatic Impact	Wijnberg Trust	Aquatic specialist
Assessment, Greyton, Western Cape		

Email: gideon@savannahsa.com

Tel: +27 (11) 656 3237

SANRAL Caledon N2 Section 3 road upgrade project	JG Afrika Engineering	Ecological specialist
Basic Assessment, Water Use Licence and Specialist		
reports, Caledon, Western Cape Province		
City of Johannesburg nature reserve proclamation	City of Johannesburg SOC Ltd	GIS specialist
boundary verification (Phase I), Johannesburg,		
Gauteng		
iGas integrated biodiversity screening, Saldanha,	Central Energy Fund - iGas	Faunal specialist (assistant)
Western Cape	(subsidiary)	
Bloekombos (Kraaifontein) botanical baseline and	Western Cape Provincial	Wetland specialist
impact assessment, Cape Town, Western Cape	Government (PGWC)	Botanical specialist