Draft Environmental Impact Assessment Report Monavoni Extension 44

Gaut: 002/08-09/N0588

RONMEN

October 2013

BOKAMOSO LANDSCAPE ARCHITECTS & ENVIRONMENTAL CONSULTANTS PO BOX 11375 MAROELANA 0161 TEL: (012) 346 3810 FAX: 086 570 5659 E-MAIL: lizelleg@mweb.co.za

RMS BOREHOLE PROFILES (2006) (MONAVONI EXTENSION 31)

Project: MONAVONI EXTENSION 43. Machine: Thor(15 Bar) Contractor: J K DEVELOPMENTS cc Date: 20/06/2009 Hole No. 43/01

Logged: es Date: 27/06/2009

Rest Level: -7m(1475mams1) Date: 22/06/09 Job No: 09124mona43

Chip ize(mm)	Pen. Speed	Depth (m)	Profile	Description
<5	0'25" 0'23"	1 -		Dark brown, silty SAND with scattered fine, manganocrete nodules and some quartz grains; colluvium.
<3 ▼ -7m	0'24" 0'26" 0'30" 0'28" 0'26" 0'36" 0'44"	3 - 4 - 5 - 6 - 7 - 8 -		Dark khaki, slightly sandy SILT with occasional fine, dark brown, manganocrete nodules (contamination); residual syenite.
<10 EOH	1'49" 1'56" 1'58" 2'24" 3'16" 3'09" 3'06" 3'09" 3'10"	9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 -		Grey, weathered, closely fractured(?), slightly altered, hard rock DOLOMITE. Interpreted as solid dolomite below 12m. No visible change in sample composition below 12m.
				NOTES: 1) Hole stopped at 18m after penetrating 6m of "assumed", solid bedrock (as instructed). 2) Ground water not encountered during drilling operations. 3) Water rest level at -7,0m when hole backfilled a few days later.

Coords: Y (29) 91 385 X: 2 863 479 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 43. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc Date: 20/06/2009

Hole No. 43/02

Page 1 of 1

Logged: es Date: 01/07/2009

Rest Level: Dry

Date: 22/06/09 Job No: 09124mon43

Chlp lize(mm)	Pen. Speed	Depth (m)	Profile	Description
<10	0'26" 0'47' 1'50'		10 10 10 10 10 10 10 10 10 10 10 10 10 1	Brown, silty SAND with traces of dark brown, manganocrete nodules and milky white, quartz fragments; colluvium.
<5	0'26* 0'22* 0'26* 0'25* 0'19* 0'20* 0'19*	3 - 4 - 5 - 6 - 7 - 8 - 9 -		Brown to dark brown with some light grey, slightly clayey SILT; residual shale(?). Light brownish khaki, clayey SILT; residual syenite. Dark brown to chocolate brown, silty CLAY with traces of chocolate brown clay(wad); residual dolomite.
еон	0'10" 0'08" 0'09" 1'45" 2'16" 3'04" 3'18" 3'26" 3'20" 3'15"	10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 -		No samples below 10m.
				NOTES: 1) Hole stopped at 20m after penetrating 6m of *assumed*, solid bedrock (as instructed). 2) Ground water not encountered during drilling operations. 3) Hole dry when backfilled a few days later.

Coords: Y (29)91 760 X: 2 863 590 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc

Page 1 of 1 Hole No. 44/03

Logged: es Date: 01/07/2009 Rest Level: Dry

Date: 20/06/09 Job No: 09124monX44

Date: 05/06/2009

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<10	0'20"			Brown, silty SAND with traces of dark brown, manganocrete nodules;
	0'25"	1	TTT	colluvium. Light khaki, slightly sandy SILT ; residual syenite.
	0'23"	2	-	bight when it original owned over the other
		3		
<5	0'26"	4		
	0'20"	5	NI	Dark chocolate brown speckled red, silty CLAY with minor,
	0'18"		XX	chocolate brown clay(wad); residual dolomite.
	0'21"	6	XX	Dark chocolate brown, silty CLAY(WAD) with scattered, dark grey,
		7	· XXX	weathered, dolomite fragments; residual dolomite.
	1'16"	8	44	Dark grey, weathered to slightly weathered, fractured(?), hard
	1'49"	9	22	rock DOLOMITE with scattered, brown clay(wad); residual dolomite (with contamination from above).
	1'40"		41	Grey to light grey, weathered to slightly weathered, fractured(?),
	1'41"	10	47	hard rock DOLOMITE.
	1'33"	11	A	
	0.02223	12	- 44	
	2'11"	13	44	
	3'45"	1888	46	
	1'43"	0e5ast	74	
<10	1'50"	15	7	
	1'34"	16	-	Becoming dark grey below 15m.
	N/72822	17	. 12	
	1'53"	18	22	
	2'35"		44	Some altered, dolomite fragments below 18m. No visible reason for increase in penetration times.
	3'35"	19	44	Scattered, weathered, syenite fragments below 19m.
	3'56"	20	VVVV	Light grey, weathered, slightly altered, hard rock SYENITE.
	257335 V	21	- ****	
	4'03"	22	-	
	4'18"	23	- ****	
	4'35"	SREAV 5	××××	
EOH		24	- plantakak	
			×	
		6	-	NOTES:
		1	2	 Hole stopped at 24m after penetrating 6m of solid sympite
				bedrock (as instructed). 2) Ground water not encountered during drilling operations.
			-	 Hole dry when backfilled a few days later.
			-	
repar	ed by: F	R.M.S P	0 Box 3	2107, GLENSTANTIA 0010 Tel: 012 993 2049 Cell: 082 551 6034

Collar Elevation: 1469m ams1

Coords: Y (29) 91 556 X: 2 862 957 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 43. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc Date: 03/06/2009

Page 1 of 2

Hole No. 43/04

Logged: es Date: 30/06/2009

Rest Level: -7m(1470mams1)

Date: 22/06/09 Job No: 09124mon43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<15	1'20" 0'50" 0'42"	1 - 2 -	3.34	Dark grey weathered brown, weathered, hard rock DOLOMITE fragments in a trace matrix of brown, silty sand; residual dolomite (interpreted as surface slabs of hard rock dolomite).
	0'34"	3 - 4 -	Ð	Matrix more abundant below 3m.
<10	0'43" 0'14"	5 - 6 -		Dark brown, slightly clayey SILT with minor, dark brown silt(wad) and grey weathered brown, dolomite fragments; residual dolomite (boulders of dolomite?).
<15 ▼	0'43"	20 22	19 9	
-7m	0'18"	7 - 8 -	NºK)	Dark chocolate brown, clayey SILT(WAD) with traces of fine, brown, manganocrete nodules; residual dolomite.
<5	0'16" 0'19"	9 -		
	0'34"	10 - 11 -	Kerker	Dark chocolate brown, clayey SILT(WAD) with traces of grey, weathered, dolomite fragments; residual dolomite (interpreted as
	1'26" 1'54"	12 -	22	boulders of dolomite). Grey, weathered, fractured, hard rock DOLOMITE in a trace matrix
	1'51"	13 - 14 -	44	of brown sandy silt(wad). Grey, weathered to slightly weathered, fractured(?), hard rock
	2'36"	14 - 15 -	11	DOLOMITE. Becoming solid between 14m and 18m. No visual change in sample composition.
	3'13" 3'16"	16 -	4	
	3'24"	17 -	17	
	1'56"	18 · 19 ·	44	
<10	1'54"	20	14	
	1'44" 1'48'	21		
	2'40"	22 · 23 ·	34	More graphitic below 22m.
	1'44*	23	11	
	1'51" 1'32"	0.02220	· 4	
	1'52	8352	- #	
	1'38"	27 28	44	
	1'19"	28	- 44	Grey to dark grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE.
	2'11"	30	. 74	

Coords: Y (29) 91 600 X: 2 862 957 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 43. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc Date: 03/06/2009

	Hol	e No.	43	3/04	(Contd.)
Logged:	es	Da	te:	30/0	6/2009
Rest Leve	d:				
Date:		Jol	b N	lo: 09	124mon43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
	1'50" 1'28" 3'06"	31 - 32 -		Grey to dark grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE.
<10	3'14" 3'17"	33 - 34 - 35 -		
-35m	3'21" 3'19" 3'28"	36 - 37 -	11	Dark grey, slightly weathered, hard rock, graphitic SLATE.
EOH		38 -		
l.				NOTES:
		2 2		 Hole stopped at 38m after penetrating 6m of solid bedrock (as instructed). Ground water strike at -35m during drilling operations. Water rest level at -7,0m when hole backfilled a few days later.
		-		
		5 5 5		
		-		
		0 *		
		2 2		

Project: MONAVONI EXTENSION 43. Machine: Thor (15Bar) Contractor: J K DEVELOPMENTS cc

Borehole Profile Hole No. 43/05

Logged: es Date: 30/06/2009 Rest Level: Dry

Date: 08/06/2009

Date: 20/06/09 Job No: 09124mon43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<10	0'21" 0'25"	1 -		Brown to reddish brown, silty SAND with traces of quartz grains, chert fragments and manganocrate nodules; colluvium.
<3	0'32" 0'28" 0'39" 0'56"	2 - 3 - 4 - 5 -		Light khaki to light olive khaki, sandy SILT ; residual syenite.
<10	1'40" 1'57" 2'19" 1'44" 1'53" 1'50" 1'48" 1'54" 1'49" 1'47" 2'09" 3'10"	6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 -		Dark grey, weathered to slightly weathered, fractured(?), hard rock, graphitic DOLOMITE.
<15 EOH	3'14" 3'18" 3'15" 3'09	19 - 20 - 21 - 22 -		
				NOTES: 1) Hole stopped at 22m after penetrating 6m of solid, dolomited bedrock (as instructed). 2) Ground water not encountered during drilling operations. 3) Hole dry when backfilled a few days later.

Coords: Y (29) 91 480 (Hand-held GPS - wgs84)

X:2 863 369

Page 1 of 1

Project: MONAVONI EXTENSION 44. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc Date: 05/06/2009

Logged:	es	Date:	30/06/2009
Rest Leve	l: -7m	(1468ma	amsl)

Date: 20/06/09 Job No: 09124monX43

iize(mm)	Pen. Speed	Depth (m)	Profile	Description
<5	0'25"	1 -	ST I	Reddish brown, silty SAND with minor, dark brown, manganocrete nodules and milky white, quartz fragments; colluvium.
<10	0'30"		1	nodules and milky white, quartz liagments, correviant
<15	0'40"	2 -	出出	
<3	0'43"	3 - 4 -	AND A	Dark brown to chocolate brown speckled red, silty CLAY with minor, chocolate brown clay(wad); residual dolomite.
▼ -7m <10	0'50" 0'58" 2'40" 4'11" 3'42" 3'30" 3'15" 3'10"	0'50" 5 - 0'58" 6 - 2'40" 7 - 4'11" 8 - 3'42" 9 - 3'30" 10 - 3'15" 11 - 3'10" 11 -	 Scattered grey, syenite fragments below 5m. VVVV Grey speckled white, slightly weathered to weathered, VVVV VVVV VVVV VVVV VVVV VVVV Some dolomite fragments below 9m. Grey, weathered, hard rock DOLOMITE. 	Scattered grey, syenite fragments below 5m. Grey speckled white, slightly weathered to weathered, hard rock SYENITE. Some dolomite fragments below 9m.
		NOTES: I) Hole stopped at (as instructed). 2) Ground water not	 Hole stopped at 12m after penetrating 6m of solid bedrock (as instructed). Ground water not encountered during drilling operations. water rest level at -7,0m when hole backfilled a few days 	

Collar Elevation: 1475m ams1

٦

Project: MONAVONI EXTENSION 44. Machine: Thor(15Bar) Contractor: J K DEVELO Date: 05/06/2009

Depth (m)

1

2

Chip Size(mm)

Pen. Speed

0'20"

0'23"

0'25"

Page 1 of 1

Hole No. 44/07

Date: 09/07/2009

Logged: es

ELOPN	AENTS cc Rest Level: -6m (1468mams1) Date: 20/06/09 Job No: 09124monX43
Profile	Description
	Reddish brown, silty SAND with traces of fine, manganocrete nodules; colluvium.
	Light khaki, sandy SILT with scattered fine, dark brown manganocrete nodules; residual syenite.
	Brown to dark brown mottled khaki, clayey SILT with scattered fine, manganocrete nodules and traces of chocolate brown silt(wad); residual dolomite.
	Dark chocolate brown, clayey SILT(WAD) with occasional fine, brown, manganocrete nodules; residual dolomite.
De la	Grey stained light brown, highly weathered to weathered, hard rock DOLOMITE fragments in a trace matrix of light brown, sandy silt; residual dolomite (possibly boulders).
Y.Z	Grey, weathered to slightly weathered, slightly shaly,

<5	10000	3
	0'23"	Brown to dark brown mottled khaki, clayey SILT with scattered
	0'24"	KI silt(wad): residual dolomite.
	0'21"	N Dark chocolate blown, clayey sint (mb), the occurrent,
▼ 6m	0'56"	- Grev stained light brown, highly weathered to weathered, hard ro
om	1065533	7 DOLOMITE fragments in a trace matrix of light brown, sandy silt; residual dolomite (possibly boulders).
	1'58"	8 Grey, weathered to slightly weathered, slightly shaly,
	1'46"	fractured(?), hard rock DOLOMITE.
10	1'40"	9 - 6
1.225	1/30550	10 -
- 1	1'38"	11 - 22
	1'36"	12 - 22
	1'35"	
	1'00"	13 - As above but trace matrix of light brown, slightly waddy silt
1.000		14 - As above but trace matrix of light brown, slightly waddy size
:15	0'58"	15 -
	1'06"	
	1'48"	16 - Grey, weathered to slightly weathered, fractured, hard rock
	41500	17 - DOLOMITE.
	1'56"	18
	1'50"	
	1'36"	
	1'40"	20
10000	1. 0000000	21 - Interpreted as solid dolomite below 21m. No visible change in
<10	2'11"	22 - Zz sample composition.
	3'02"	23 - 77
	3'06"	
	3'04"	24 - 77
		25 - 77
	3'08"	26 - 77
	3'04"	NOTES:
EOH		27 - 1) Hole stopped at 27m after penetrating 6m of solid, dolomi
		bedrock (as instructed).
		Ground water not encountered during drilling operations.
		later.
	1000	A.S P O Box 32107, GLENSTANTIA 0010 Tel: 012 993 2049 Cell: 082 551 6034

Collar Elevation: 1474m ams1

X: 2 863 309 Coords: Y (29) 91 689 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44. Machine: Thor(15Bar) Page 1 of 1 Hole No. 44/08

Logged: es Date: 8/07/2009 Rest Level: Dry

Contractor: J K DEVELOPMENTS cc Date: 08/06/2009

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<3	0'24"	1 -	想	Brown to dark reddish brown, silty SAND with occasional fine, manganocrete nodules; colluvium.
<10	0'57" 1'49"	2 - 3 -		Dark grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE.
	1'25"	4 -		
<15	1'19" 0'18"	5 -	600	Dark brown to chocolate brown, silty CLAY with traces of grey weathered brown, hard rock, dolomite fragments and minor chocolat brown clay(wad); residual dolomite.
<5	0'15"	6 - 7 -	\bigotimes	Dark chocolate brown, silty CLAY(WAD) with occasional fine, brown manganocrete nodules; residual dolomite.
	0'17"	8 -		
<10	0'50"	9 - 10 -	× ×	Olive, sandy SILT with traces of olive, highly weathered, syenite fragments; residual syenite.
	1'20" 1'48"	11 - 12 -		Grey, weathered to highly weathered, fractured(?), hard rock, shaly DOLOMITE in a minor matrix of grey, silty sand.
<15	1'17"	13 - 14 -		Dark grey, weathered, hard rock SLATE.
	0'56" 1'18" 1'54"	15 - 16 - 17 -		Grey, weathered to highly weathered, SHALE fragments, dark grey, SLATE fragments and occasional off-white, highly weathered, GRANITE fragments in a minor matrix of grey, sandy silt; residual shale (contact zone).
<10	1'35" 1'58" 0'56"	18 - 19 -		Light grey, silty SAND with traces of off-white speckled grey, highly weathered, hard rock, granite fragments; residual granite (possibly a fractured rock).
	0'54"	20 - 21 -		Light olive silty SAND with traces of olive, highly weathered, syenite fragments; residual syenite.
	1'49"	22 · 23 ·	$\begin{array}{c c} \cdot & \cdot & \cdot \\ \hline + & + \\ \cdot & + & + \\ \cdot & + & + \end{array}$	Off-white speckled grey, weathered, fractured(?), hard rock GRANITE.
	1'53" 1'29"	24	· + + + + + + + + + + + + + + + + + + +	
	2'34"	25 26	+++	Dark grey speckled white and light grey, hard rock GRANITE.
<15	3'18"	27	- + + +	
	3'10" 3'29"	28	· + + +	NOTES:
	3'34"	29 30	++++	 Hole stopped at 31m after penetrating 6m of solid granite bedrock (as instructed). Ground water not encountered during drilling operations.
EOH	3'28"	30	+ +	 Ground water not encountered during drilling operations. Hole dry when backfilled a few days later.

Project: MONAVONI EXTENSION 44.

Hole No. 44/09

Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc Logged: es Date: 02/07/2009 Rest Level: -9,0m(1455mams1)

Date: 08/06/2009

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<5	0'18" 0'24"	1 -	19.63	Dark brown, silty SAND with scattered dark brown, manganecrete nodules and some quartz grains; colluvium.
<10	0'28" 0'54"	2 - 3 - 4 -	e la	Grey to light grey, weathered, DOLOMITE fragments in a trace matrix of grey, silty sand; residual dolomite. (Interpreted as boulders). Some wad fragments below 3m.
<15	1'51" 1'48" 1'56" 1'38"	4 - 5 - 6 - 7 - 8 -		Grey, weathered to slightly weathered, fractured(?), shaly, hard rock DOLOMITE. Some grey weathered brown, weathered to highly weathered, dolomit fragments below 7m.
♥ -9m	1'49" 2'26"	9 - 10 -		Dark grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE.
<10	3'11" 3'15" 1'41" 1'46"	10 - 11 - 12 - 13 - 14 -		
<15	1'50"	14 -		Dark grey weathered brown, weathered, fractured(?), hard rock DOLOMITE.
<10	1'54" 2'31" 3'06"	16 - 17 -		No compositional change from 16m and 18m. Grev to light grey, highly weathered, SHALE fragments and dark
<15	0'55"	18 -		grey almost black, translucent, QUARTZITE fragments in a trace matrix of light brown to greyish brown, silty sand; residual quartzite (Black Reef Formation?).
<10	0'23"	19 - 20 -	0.01	Light grey, highly weathered, soft rock, SHALE fragments in a trace matrix of grey, sandy silt; residual shale (Black Reef Formation?).
	1'25" 1'28"	21 -	B	Dark grey, weathered and some grey stained brown, weathered, hard rock, graphitic, DOLOMITE fragments in a trace matrix of grey, silty sand; residual dolomite. (Interpreted as horizon of Black Reef Formation).
	1'34" 1'47"	23 - 24 - 25 -		Grey, weathered, hard rock, shaly, DOLOMITE fragments in a trace matrix of grey, sandy silt. Black, slightly weathered, soft rock, graphitic SLATE. (Interpreted as base of Black Reef Formation).
<15	2'25" 3'07"	26	+ + + + + +	Dark grey speckled white, weathered to slightly weathered, hard rock GRANITE.
	3'14" 3'18"	28 29	· + + + + + +	NOTES: 1) Hole stopped at 31m after penetrating 6m of solid granite bedrock (as instructed).
	3'24" 3'21"	30	· + + +	 Ground water not encountered during drilling operations. Water rest level at -9,0m when hole backfilled a few days
EOH		31	+ +	later.

Coords: Y (29) 91 875 X: 2 863 074 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44.

Machine: Thor(15Bar)

Contractor: J K DEVELOPMENTS cc Date: 04/06/2009

Hole No. 44/10

Logged: es Date: 7/07/2009 Rest Level: -9,0m(1462mams1)

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<15	0'44" 0'28"	1 -		Reddish brown to dark reddish brown, silty SAND with minor, dark brown, manganocrete nodules; colluvium.
<15	0'30" 0'25"	3 -		Khaki, silty SAND/sandy SILT with occasional, khaki, highly weathered, syenite fragments; residual syenite.
<10	0'20" 0'35" 0'30"	5 - 6 - 7 -	0	
<15 ♥ -9m	0'36" 1'40" 1'20"	8 - 9 -		Grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE.
0	0'04" 0'08" 0'09"	10 - 11 - 12 -	2	No samples recovered between 10m and 13m.
<10	1'15" 1'10" 1'44" 1'52" 1'38" 1'56" 1'54" 1'50" 2'03" 3'04" 3'16" 3'09" 3'11" 3'17"	13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 -		Dark grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE in a trace matrix of brown sandy silt. Grey to dark grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE. Consistent profile to 27m. Interpreted as solid dolomite below 21m. No visible change in sample composition.
EOH		27 -		 NOTES: 1) Hole stopped at 27m after penetrating 6m of solid, dolomited bedrock (as instructed). 2) Ground water not encountered during drilling operations. 3) Water rest level at -9,0m when hole backfilled a few days later.

Page 1 of 1

Project: MONAVONI EXTENSION 44.

Hole No. 44/11

Logged: es Date: 01/07/2009 Rest Level: -10m (1461mams1)

Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc Date: 04/06/2009

Date: 20/06/09 Job No: 09124monX43

Chip ize(mm)	Pen. Speed	Depth (m)	Profile	Description
<15	0'28" 1'49"	1 - 2 -	1.CCA	Reddish brown, silty SAND with traces of dark brown, manganocrete nodules and translucent, quartz fragments; colluvium.
	1'35" 0'43"	3 - 4 -	1 2 2 2 2	Light khaki olive, sandy SILT; residual syenite.
<3	0'34" 0'35"	5 -		
	0'33" 2'18"	6 - 7 - 8 -		Grey, weathered, fractured, hard rock DOLOMITE.
v	2'44" 3'14"	9 - 10 -		
-10m	1'44" 1'41"	11 -		Consistent profile to end of borehole at 23m.
	1'40" 1'38"	12 - 13 - 14 -		Becoming dark grey below 12m.
<10	1'48" 1'54"	15 -		
	1'57" 2'05" 3'16"	17 - 18 - 19 -	777	Interpreted as solid dolomite bedrock below 17m. No visible change in sample composition.
	3'15" 3'19" 3'10"	20 · 21 ·		
EOH	3'15"	22 · 23 ·		
			•	 NOTES: Hole stopped at 23m after penetrating 6m of solid, dolomite bedrock (as instructed). Ground water not encountered during drilling operations. Water rest level at -10,0m when hole backfilled a few days later.
		8		

Coords: Y (29) 91 425 X: 2 862 973 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44.

Machine: Thor (15Bar)

Contractor: J K DEVELOPMENTS CC

Date: 04/06/2009

Hole No. 44/12 Logged: es Date: 02/07/2009

Rest Level: -7m (1463mams1)

Date: 20/06/09 Job No: 09124monx43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<5	0'24" 0'25*	1 -		Reddish brown to dark reddish brown, silty SAND with traces of dark brown, manganocrete nodules; colluvium.
<10	0'33" 0'48" 0'59" 1'56" 1'44"	3 - 4 - 5 - 6 - 7 -		Reddish brown to dark reddish brown, clayey SILT with minor, dark brown, manganocrete nodules; reworked residual syenite(?). Some grey weathered syenite fragments below 4m. Dark grey to greenish grey, weathered, closely fractured(?), hard rock SYENITE .
-7m	1'49" 3'06" 4'11"	8 · 9 ·		Becoming solid syenite below 8m.
<15	1'28" 0'30" 0'53" 0'58* 1'15"	10 · 11 · 12 · 13 · 14 · 15 ·		Dark grey weathered brown in places, weathered, hard rock, DOLOMITE fragments in a trace matrix of brown, silty sand and trace amounts of brown silt(wad); residual dolomite. (Interpreted as very closely fractured bedrock).
	1'50" 1'53" 1'58" 1'55" 1'50"	16 17		Grey to dark grey, weathered, slightly shaly, fractured(?), hard rock DOLOMITE .
<10	1'48" 2'05" 3'07" 3'15" 3'00" 3'08"	21 22 23 24 25		Interpreted as solid DOLOMITE below 21m. No visible change in sample composition.
EOH	3'05"	26		 NOTES: Hole stopped at 27m after penetrating 6m of solid, dolomit bedrock (as instructed). Ground water not encountered during drilling operations. Water rest level at -7,0m when hole backfilled a few days later.

Collar Elevation: 1470m ams1

Coords: Y (29)91 595 X: 2 863 059 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc

Date: 04/06/2009

Page 1 of 1 Hole No. 44/13

Logged: es Date: 20/06/2009 Rest Level: Dry

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<15	0'40* 1'08"	1 -		Reddish brown, silty SAND with traces of dark brown, manganocrete nodules; colluvium (possibly tends to manganocrete in places).
<3	0'50" 0'22"	2 -		Light brownish khaki, sandy SILT ; residual syenite.
	0'47"	4 - 5 -		Some dolomite fragments below 4m.
	1'49" 1'50"	6 -	1	Grey to dark grey, weathered to slightly weathered, fractured(?), graphitic, hard rock DOLOMITE ,
	1'47'	7 - 8 -	44	Some shale fragments between 7m and 8m and again between 10m and 11m.
	2'14" 3'01"	8 - 9 -	44	
	1'30"	10 -	44	
	2'04"	11 - 12 -	4	Becoming dark grey, slightly weathered below 11m.
<10	1'45" 1'56"	13 -	#	
	1'55'	14 - 15 -	11	
	2'06' 3'17'	16 -	<i>4</i>	 Interpreted as solid dolomite below 16m. No change in sample
	3'13*	17 - 18 -	44	composition.
	3'10" 3'11"	19 -	44	
EOH	3'14"	20 - 21 -	44	
EOH			Endneumhann	
		2		
				NOTES:
				 Hole stopped at 21m after penetrating 6m of solid, dolomit bedrock (as instructed). Ground water not encountered during drilling operations.
				 Hole dry when backfilled a few days later.
		0 13 1		

Coords: Y (29) 91 896 X: 2 862 990 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44.

Machine: Thor(15Bar)

Contractor: J K DEVELOPMENTS cc

Date: 05/06/2009

Hole No. 44/14

Logged: es Date: 07/07/2009 Rest Level: Dry

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
	0'28"		气净	Brown to light brown, silty SAND with traces of translucent quarts
	0'52"	1 •		and brown, manganocrete nodules; colluvium.
<15	0'30"	2 -	निर्में निर्मे	Light khaki, sandy SILT with traces of translucent quartz and
	9152675C0	3 -	· .	fine, olive speckled grey, highly weathered syenite fragments;
	0'41*	4 2	0.	residual syenite.
	0'35*	5 -	1.0.	
<5	0'44"	28	, 61	
1	0'41*	6 - 7 -	6 0	
	0'53*		额	Light olive, silty SAND with minor, olive speckled grey, weathered
	1'07*	8 -		to highly weathered, syenite fragments; residual syenite (possibly as very soft rock).
	SPRAS DestReations	9 -	v v v v	Olive speckled grey, highly weathered to weathered, fractured(?), soft rock SYENITE.
	1'00"	10 +	¥ VVVVV	SOLL TOCK SIGNIE.
	1'13'	11 -		
	1'04"	12 -	****	
<10	1'09"		****	
	1'00*	13 -	VVI V	
	1'03"	14 -	VV V	
	100.25	15 -	VVVV	
	1'33*	16 -	Ŵ	
	1'55"	17 -	× × × ×	
	1'44"	14.10	****	
	1'30"	18 -	**¥*	
<15	1'05"	19 -	2010	
0.0000	0'52"	20 •	¥***	Light olive, highly weathered and grey, weathered, soft rock and hard rock SYENITE fragments in a trace matrix of brown silt;
	0.5765250	21 -	YYYY	residual syenite (fracture zone?)
	1'20"	22 -	3.25	Olive speckled grey, weathered, fractured(?), soft rock SYENITE.
	1'00"	23 -	MVVV	
	0'50"	24 -	VVVV	Dark grey, weathered and grey weathered brown, hard rock, DOLOMITE
	0'40"		OC	fragments and some olive, highly weathered, SYENITE fragments in a minor matrix of light brown, sandy silt; residual dolomite
<10	1'27*	25 -	VV	(contact zone). Grey and dark grey, weathered, fractured(?), hard rock DOLOMITE.
-25m	1'40"	26 -	100	ovey and dark grey, weathered, ifacthrea(i), hard fock ponowith.
		27 -	4	Dark grey, slightly weathered, hard rock DOLOMITE.
	2'06"	28 -	4	ಾಗವಾಯಿ ಆದುಶಕ್ಷಣೆ, ನವರುವಕ್ಷಣೆ, ನವಕ್ಷೆ ಸಂಭವದಿ ಮತ್ತು ಮತ್ತು ನಿಂದಿದೆದೆ. ಇದು ಪ್ರದೇಶದಲ್ಲಿ ಪ್ರತಿದ ನೆಯದ ದಿದ್ದಲ್ಲಿ
	3'04*	29 -	44	
	2'40"	19975	44	
		30 -	Box 32	

Collar Elevation: 1474m ams1

Coords: Y (29) 91 365 X: 2 862 757 (Hand-held GPS - wgs84)

Cont	ine: T ractor: 05/06	JKDE		MENTS cc Logged: es Date: 07/07/2009 Date: Job No: 09124MonX
Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<10 EOH	3'04" 4'00" 4'15"	31 - 32 - 33 -		Dark grey, slightly weathered, hard rock DOLOMITE.
				NOTES: 1) Hole stopped at 33m after penetrating 6m of solid, dolomit bedrock (as instructed). 2) Ground water strike between 25m and 26m during drilling operations. 3) Hole dry when backfilled a few days later.

Project: MONAVONI EXTENSION 44.

Machine: Thor(15Bar)

Contractor: J K DEVELOPMENTS CC

Date: 05/06/2009

Hole No. 44/15

Logged: es Date: 30/06/2009 Rest Level: Dry

Date: 20/06/09 Job No: 09124monX43

Chip ze(mm)	Pen. Speed	Depth (m)	Profile	Description
192	0'25"	1241	1111	Brown to light brown, silty SAND with traces of brown, manganocrete nodules and white stained brown, chert fragments;
<15	0'30"	1 -	1	manganocrete nodules and white stained brown, chert fragments; colluvium.
1200	325575	2 -	13	Light khaki olive, silty SAND with light grey and light khaki,
<10	0'31"	3 -	1. 1. 1. 1. 1.	highly weathered, syenite fragments; residual syenite (possibly present as very soft rock to soft rock).
<15	0'35"	4 -		Careful and an experimentation of the second s
<5	0'31"	5		Light olive, silty SAND; residual syenite.
	0'49"	5 -	Pictor .	
	2'40"			
	3'06"			Grey to light grey speckled white, weathered, hard rock SYENITE.
	20430231419	8 -	vvvv	
	3'10"	9 -	****	
	3'18"		VVVV	
	1'49*		VVVV	
<10	2'14*	11 -	12492	Closely fractured, weathered to highly weathered between 10m and 12m.
	2011/08/2011	12 -	2222	
	3'46*	13 -	VVVV	
	3'04"		V V V V	
	3'00"	1. C.	****	
	3'28"	15 -	VVVV	1
	Gentlemon (16 -		
EOH	3'50"	17 -	XXXX	
		17,000 5		
			5.1 	
			5.	
	a 1		8	
				NOTES:
				 Hole stopped at 17 after penetrating 6m of solid, syenite bedrock (as instructed).
				Ground water not encountered during drilling operations.
	1			 Hole dry when backfilled a few days later.
		0 8	4	
		, I		
			50	
		ľ í		

Project: MONAVONI EXTENSION 44.

Machine: Thor(15Bar)

Collar Elevation: 1460m ams1

Contractor: J K DEVELOPMENTS CC Date: 04/06/2009

> Coords: Y (29) 91 859 X: 2 862 810 (Hand-held GPS - wgs84)

Rest Level: -7m	(1453mams1)
	1 1 11 000001 011110

Date: 20/06/09 Job No: 09124monX43 1

autoro di anti alla

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
	0'27*		10	Light reddish brown, silty SAND with traces of fine, quartz grains; colluvium.
<5	0'38" 0'35"	2 -		Light khaki, sandy SILT with occasional translucent, quartz grains; residual syenite.
<15	0'43" 0'40"	4 ·		Fragments of grey, weathered syenite between 4m and 5m.
	0'35"	5		
<5 ▼ -7.0m	0'37" 2'29"	6 · 7 ·	IX X	Dark chocolate brown almost black speckled red, silty CLAY(WAD); residual dolomite.
-7,0en	1'44" 1'50'	9		Grey, weathered to slightly weathered, fractured(?), hard rock DOLOMITE in a trace matrix of greyish brown sand.
	1'58* 1'41" 1'44*			Grey, slightly weathered to weathered, hard rock DOLOMITE.
<10	1'50" 3'07" 3'33"	15		Some dolomite fragments between 14m and 15m.
	3'40" 4'00" 3'58" 3'50"	17 18 19		
EOH		20	-	
			•	NOTES :
			•	 Hole stopped at 20m after penetrating 6m of solid, syenite bedrock (as instructed). Ground water not encountered during drilling operations. Water rest level at -7,0m when hole backfilled a few days later.
			.e. 20	
			50	
			•	32107, GLENSTANTIA 0010 Tel: 012 993 2049 Cell: 082 551 6034

Hole No. 44/16 Logged: es Date: 27/06/2009

Project: MONAVONI EXTENSION 44. Machine: Thor (15Bar)

Contractor: J K DEVELOPMENTS CC Date: 04/06/2009

Hole No. 44/17 Date: 07/07/2009 Rest Level: -6m(1457mams1) Job No: 09124monX43

Description Chip Profile Pen. Depth Speed Size(mm) (m) 1 Light brown, silty SAND with traces of milky white quartz and <15 0'47" brown, highly weathered, syenite fragments; colluvium. 1 Light olive, sandy SILT with traces of fine, khaki olive speckled 0'42" 2 white, highly weathered, syenite fragments; residual syenite. 0'38" 3 1.00 0'33" 4 24 0'36" 22 5 Svenite fragments becoming olive below 5m (possibly as very soft <3 0'40" 1 rock below 6m). 6 . 0'53" 7 0'52" 8 . 0'57" 9 1. 0'59" 10 VVV Olive grey to khaki olive, highly weathered, soft rock SYENITE. 1'29" <5 11 7 VVV 1'22" 12 ×. v v 1'25* Olive green stained brown, highly weathered, "altered", very soft 13 22 rock, SYENITE fragments and brown, "blocky", WAD fragments in a Ň <15 1'11" minor matrix of chocolate brown, clay(wad); residual syenite with 14 2 lenses of dolomite (contact zone). 1'00" 15 • 0'40" Chocolate brown, clayey SILT(WAD) with minor, olive green, highly <5 16 . lo. weathered, "altered" syenite fragments; residual dolomite with 0'38" stringers of syenite. 2 17 1'30" Grey to light grey, weathered to slightly weathered, fractured(?), 18 . hard rock DOLOMITE. 1'40" 19 1'50" 20 2 1'20" 21 2 1'35" 22 2 1'40' 23 2 <10 1'49" 24 × Consistent profile to 39m. 1'52" 25 2 1'46" -25m 26 1'50" 27 1'53" 28 3'19" 29 4 3'03" 30 . Tel: 012 993 2049 Cell: 082 551 6034 Prepared by: R.M.S P O Box 32107, GLENSTANTIA 0010

Collar Elevation: 1463m ams1

Coords: Y (29) 91 743 X: 2 862 794 (Hand-held GPS - wgs84)

Logged: es

Date: 20/06/09

Borehole Profile Page 2 of 2 Hole No. 44/17 (Contd). Project: MONAVONI EXTENSION 44. Date: 07/07/2009 Logged: es Machine: Thor(15Bar) **Rest Level:** Contractor: J K DEVELOPMENTS CC Job No: 09124monX43 Date : Date: 04/06/2009 Chip Size(mm) Pen. Speed Depth Profile Description (m) Grey to light grey weathered to slightly weathered fractured(?) 1'40" 31 hard rock DOLOMITE. 1'47" 32 1'51" 33 -2'05" Interpreted as solid dolomite below 33m. No visible change in the 34 sample composition. <10 3'03" 35 . 3'14" 36 -3'00" 37 . 3'06" 2 38 3'02" 39 EOH . e. ÷ 5 NOTES: 2 Hole stopped at 39m after penetrating 6m of solid, dolomite 1) bedrock (as instructed). Ground water strike between 25m and 26m during drilling 2) operations. Water rest level at -6,0m when hole backfilled a few days 3) later. 2 -٠ -. . Prepared by: R.M.S P O Box 32107, GLENSTANTIA 0010 Tel: 012 993 2049 Cell: 082 551 6034

Project: MONAVONI EXTENSION 44. Machine: Thor(15Bar) Contractor: J K DEVELOPMENTS cc

Hole No. 44/18 Logged: es Date: 30/06/2009

Page 1 of 1

Date: 05/06/2009

Rest Level: -5m (1457mams1) Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
	0'44"	t -	利約	Reddish brown, silty SAND with traces of dark brown, manganocrete nodules and white, quartz fragments; colluvium.
<15	1'25"	2 -		
	2'40"	3 -	10-10	Possibly tends to manganocrete below 2m.
	0'30"		XX	Dark brown to chocolate brown speckled red, silty CLAY with minor,
<5	0'34"		KID	chocolate brown clay(wad); residual dolomite.
▼ -5m	0'23*		\mathbb{X}	
	1'30*	6 -	XX	Scattered syenite fragments below 6m.
	2'47*	7 -	W.	
	3'40"	8 -		Dark grey speckled white, weathered to slightly weathered, hard rock SYENITE .
<10	3'35"	9 -	vvvv	
<10	010300235	10 -	****	
	3'00"	11 -	****	
	3'13"	12 -	****	
EOH	3'30"	13 -	v v v v	
Lon				
		8		
		8		
		8		
		÷		NOTES:
				 Hole stopped at 13m after penetrating 6m of solid, syenite bedrock (as instructed).
				 Ground water not encountered during drilling operations. Water rest level at -5,0m when hole backfilled a few days
		2 		later.
		÷		
		2		
		1 3		
		8		
1000				

Collar Elevation: 1474m ams1

X: 2 863 309 Coords: Y (29)91 689 (Hand-held GPS - wgs84)

Project: MONAVONI EXTENSION 44.

Machine: Thor (15Bar)

Contractor: J K DEVELOPMENTS CC

Date: 05/06/2009

Page 1 of 1 Hole No. 44/20

Logged: es Date: 27/06/2009 Rest Level: Dry

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<10	0'26" 0'28'	1.		Light khaki, sandy SILT/silty SAND with traces of khaki speckled
<20	0'33"	2 -		grey, highly weathered, syenite fragments; residual syenite (possibly as soft rock in situ).
<10	0'30"	4 -	[1]	
<15	0'36*	5 - 6 -		Tends to silty gravel in places. (Interpreted as very closely fractured, soft rock syenite).
<5	0'55"	7 -		
<0	1'58"	8 - 9 -	¥E¥¥	Grey, weathered to highly weathered, fractured(?), hard rock symmetrie.
	1'43" 2'14"	10 - 11 -	VVVV	Grey, weathered, hard rock SYENITE.
<10	4'11" 4'30"	12 - 13 -	****	
	4'49" 5'06"	14 -		
EOH	5'00*	1.8	***	4
				NOTES:
			00	 Hole stopped at 16m after penetrating 6m of solid, syenite bedrock (as instructed). Ground water not encountered during drilling operations.
			5	3) Hole dry backfilled a few days later.
			4	
			-	
		i e		

Borehole Profile

Project: MONAVONI EXTENSION 44.

Machine: Thor(15Bar)

Contractor: J K DEVELOPMENTS CC

Date: 05/06/2009

Hole No. 44/19

Logged: es Date: 27/06/2009

Rest Level: -8m(1451mams1)

Date: 20/06/09 Job No: 09124monX43

0'25" 0'28"	Ť -	同词	Dark brown, silty SAND with minor, milky white stained dark brown,
0'36" 0'56" 1'29" 0'58" 0'55" 0'50" 0'52"	7 - 8 -	A CONTRACTOR	<pre>Dark brown, site, bills with manganocrete nodules; colluvium. quartz fragments and brown, manganocrete nodules; colluvium. White stained brown, highly weathered, CHERT fragments and subordinate, dark brown, manganocrete nodules in a trace matrix of brown, sandy silt and trace amounts of brown silt(wad); residual dolomite(?). Dark grey, weathered, CHERT fragments in a trace matrix of brown, sandy silt and trace amounts of brown silt(wad); residual dolomite (chert boulders?) Grey, weathered to highly weathered, hard rock, DOLOMITE fragments and some "shaly", dolomite fragments in a trace matrix of grey, sandy silt; residual dolomite (possibly as very closely fractured bedrock).</pre>
0'50" 0'46" 0'41" 0'42" 0'39"	10 · 11 · 12 ·		Grey stained brown, weathered, hard rock, DOLOMITE fragments in a trace matrix of brown, sandy silt(wad); residual dolomite. (Interpreted as very closely fractured dolomite bedrock)
1'50* 4'13* 4'02" 4'28" 4'11* 5'01*	15 16 17 18		
	21	-	NOTES:
			 Hole stopped at 21m after penetrating 6m of solid, syenite bedrock (as instructed). Ground water not encountered during drilling operations. Water rest level at -8,0m when hole backfilled a few days later.
	0'55" 0'50" 0'52" 0'46" 0'41" 0'42" 0'39" 1'50" 4'13" 4'02" 4'13" 4'02" 4'28" 4'11" 5'01" 4'45"	0'58" 6 0'50" 7 0'52" 9 0'50" 10 0'46" 11 0'46" 11 0'46" 13 0'39" 14 1'50" 15 4'13" 16 4'02" 17 4'28" 18 4'11" 19 5'01" 20 4'45" 21	0'58" 6 - 0'50" 7 - 0'52" 9 - 0'50" 10 - 0'46" 11 - 0'46" 11 - 0'46" 11 - 0'41" 12 - 0'39" 14 - 1'50" 15 - 4'13" 16 - 4'02" 17 - 4'13" 18 - 4'11" 19 - 5'01" 20 - 21 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Collar Elevation: 1459m ams1

Coords: Y (29) 91 376 X: 2 862 620 (Hand-held GPS - wgs84) Project: MONAVONI EXTENSION 44.

Machine: Thor (15Bar) Contractor: J K DEVELOPMENT CC Date: 18/04/2008

Coords: Y:	(29)91 740	X: 2	862	721	
(Hand-held	GPS - wgs84)				

spu	100	wj.			-	-	
-			_	-		_	-

Chip ize(mm)	Pen. Speed	Depth (m)	Profile	Description
<10	0'17" 2'46"	1 -	11/11	Brown, silty SAND with scattered, dark brown, manganocrete nodules and milky white, quartz fragments; colluvium. Dark brown, slightly sandy, clayey SILT with traces of dark brown,
<5	2'19"	2 - 3 -	1111	manganocrete nodules and occasional, quartz fragments and trace amounts of dark brown clay(wad); residual dolomite.
<5	2'13" 1'41"	4 - 5 -	$\langle \rangle$	
<10	1'51" 1'50"	6 -		Light grey to grey speckled white in places, weathered, fractured(?), hard rock SYENITE .
	1'17" 1'39"	8 - 9 -		
<15	2'21" 3'26"	10 -	VVVV	
<10	3'32" 3'42" 3'52"	12 - 13 -		
EOH	3'50"	14 · 15 ·	VVVV	
		10		NOTES: 1) Hole stopped at 15m after penetrating 6m of solid, syenite bedrock (as requested). 2) Ground water not encountered during drilling operations.
		3	•	3) No water rest level recorded.
			-	
			1	
			2	
			-	

Borehole Profile

Page 1 of 1

Hole No. 44/21

Project: MONAVONI EXTENSION 44.

Machine: Thor(15Bar)

Contractor: J K DEVELOPMENTS CC

Date: 05/06/2009

Hole No. 44/19

Logged: es Date: 27/06/2009

Rest Level: -8m(1451mams1)

Date: 20/06/09 Job No: 09124monX43

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<15 ▼ -8,0m	0'25" 0'28" 0'36" 0'56" 1'29" 0'58" 0'55" 0'55" 0'50" 0'52"	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -	and the server	Dark brown, silty SAND with minor, milky white stained dark brown, quartz fragments and brown, manganocrete nodules; colluvium. White stained brown, highly weathered, CHERT fragments and subordinate, dark brown, manganocrete nodules in a trace matrix of brown, sandy silt and trace amounts of brown silt(wad); residual dolomite(?). Dark grey, weathered, CHERT fragments in a trace matrix of brown, sandy silt and trace amounts of brown silt(wad); residual dolomite (chert boulders?) Grey, weathered to highly weathered, hard rock, DOLOMITE fragments and some "shaly", dolomite fragments in a trace matrix of grey, sandy silt; residual dolomite (possibly as very closely fractured bedrock).
	0'50* 0'46" 0'41" 0'42*	10 - 11 - 12 - 13 -		Grey stained brown, weathered, hard rock, DOLOMITE fragments in a trace matrix of brown, sandy silt(wad); residual dolomite. (Interpreted as very closely fractured dolomite bedrock)
<10 EOH	0'39" 1'50" 4'13" 4'02" 4'28" 4'11" 5'01" 4'45"	14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 -		
				 NOTES: Hole stopped at 21m after penetrating 6m of solid, syenite bedrock (as instructed). Ground water not encountered during drilling operations. Water rest level at -8,0m when hole backfilled a few days later.

Collar Elevation: 1459m ams1

Coords: Y (29) 91 376 X: 2 862 620 (Hand-held GPS - wgs84)

RMS BOREHOLE PROFILES (2009) (MONAVONI EXTENSIONS 43 AND 44)

Page 1 of 1 Hole No. 6

Project: MONOVANI EXT. 31 Machine: SUPER ROCK (19 Bar; 800cfm) Contractor: H Erwee Drilling Date: 13/12/2006

Logged: es Date: 21/12/2006

Rest Level: Dry

Date: 14/12/06 Job No: 06150Mon31

Chip ize(mm)	Pen. Speed	Depth (m)	Profile	Description
<15	0'17"	া ়		Reddish brown, sandy SILT with occasional fine, manganocrete nodules and some milky white quartz; colluvium.
<5	0'15" 0'18"	2 -		Brown, sandy SILT with scattered dark brown, Manganeouses nodules; reworked residual syenite.
	0'34" 0'27"			Brown to dark brown, slightly clayey SILT with traces of dark grey dolomite and trace amounts of chocolate brown silt (wad);
	1'34" 1'27" 0'43"	6 •	103 41 1	residual dolomite. Grey and dark grey, weathered, DOLOMITE fragments in a trace matrix of greyish brown, sandy silt; residual dolomite (possibly boulders of dolomite).
<10	1'50" 3'44" 4'16" 4'11"	9 10 11 12	- ****	
ЕОН	4'18" 3'04" 3'10"	14 15		Grey to light grey, weathered, hard rock DOLOMITE and some slightly altered DOLOMITE between 13m and 14m.
		1	•	NOTES:
			14 207	 Hole stopped at 15m after penetrating about 6m of solid bedrock (as instructed). Ground water not encountered during drilling operations. Hole dry when backfilled.
			-	
			*	
			2 8	
			-	

Page 1 of 1

Project: MONOVANI EXT. 31 Machine: THOR (16 Bar; 800cfm) Contractor: H Erwee Drilling Date: 06/02/2007 Hole No. 16 Logged: es Date: 09/02/2007 Rest Level: Dry

Date: 9/02/07 Job No: 06150MonX31

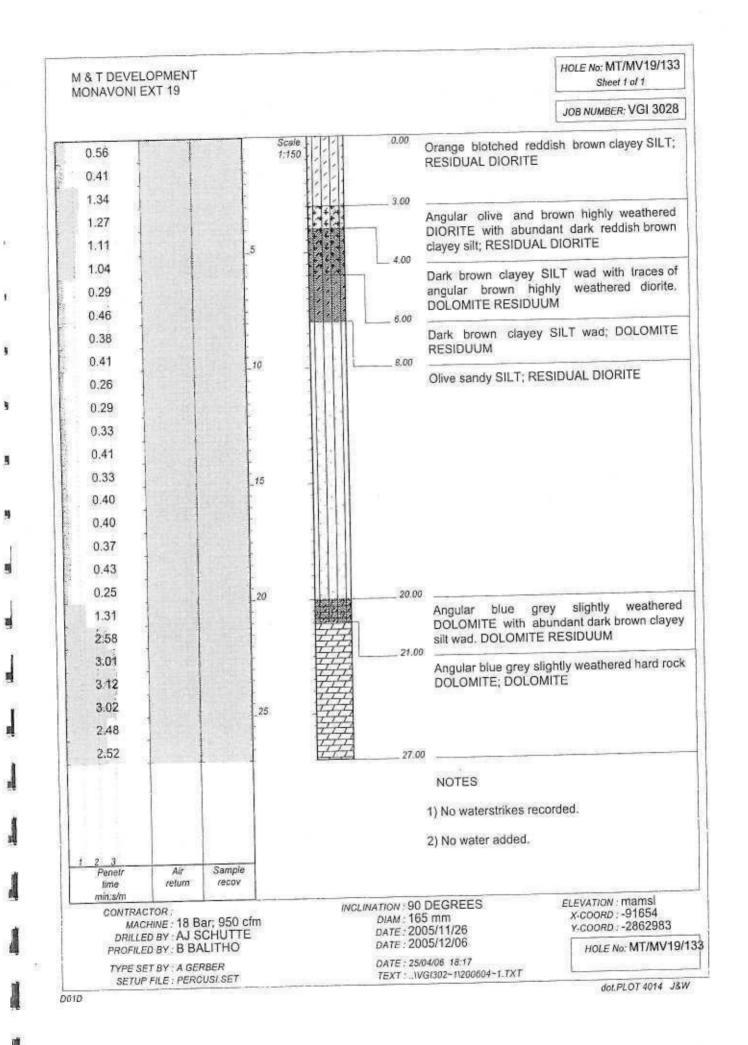
Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description		
<10	0'30"	1 -		Light brown, sandy SILT with some brown, manganocrete nodules colluvium.		
<3	0'39" 0'48"	2 - 3 -		Light olive khaki, sandy SILT; residual syenite.		
<5	0'40"		111			
<10	0'59"	4 -		Olive speckled grey, highly weathered, very closely, fracture syENITE (possibly boulders at contact zone).		
<15	0'40"	5 -	ANVIV	SYENITE (possibly boulders at contact zone).		
<10	3'22" 3'46" 3'39" 3'03"	6 - 7 - 8 - 9 -	Ŧ	Grey and light grey mottled white, weathered, hard rock, slightly altered DOLOMITE.		
<15	3'59"	10 -		Olive, highly weathered, closely fractured, hard rock SYENITE (contact zone).		
<10 EOH	4'13" 5'36"	12 - 13 -		Olive grey speckled white, highly, weathered, hard rock SYENITE		
				 NOTES: Hole stopped at 14m after penetrating about 6m of solid bedrock (as instructed). Ground water not encountered during drilling operations. Hole dry when backfilled a few days later. 		
				3) HOLE GLY WHEN DACKLILLED & LEW DAYS INCOL.		
			-			
8			1.5			

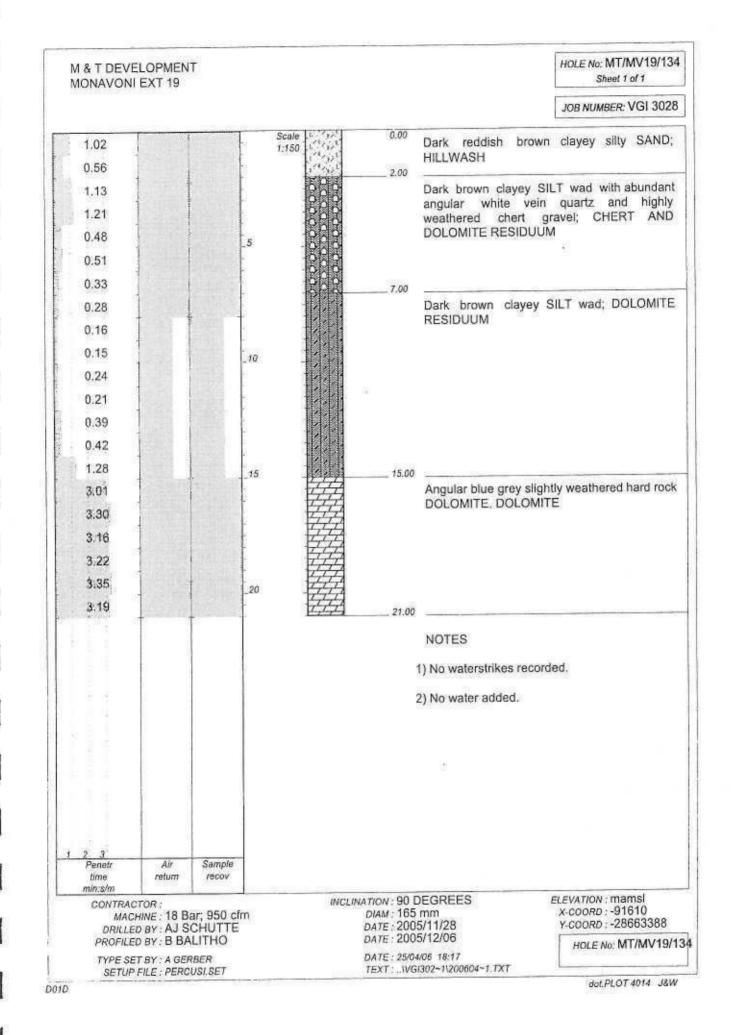
Page 1 of 1 Hole No. 17

Project: MONOVANI EXT. 31 Machine: THOR (16 Bar; 800cfm) Contractor: H Erwee Drilling Date: 06/02/2007

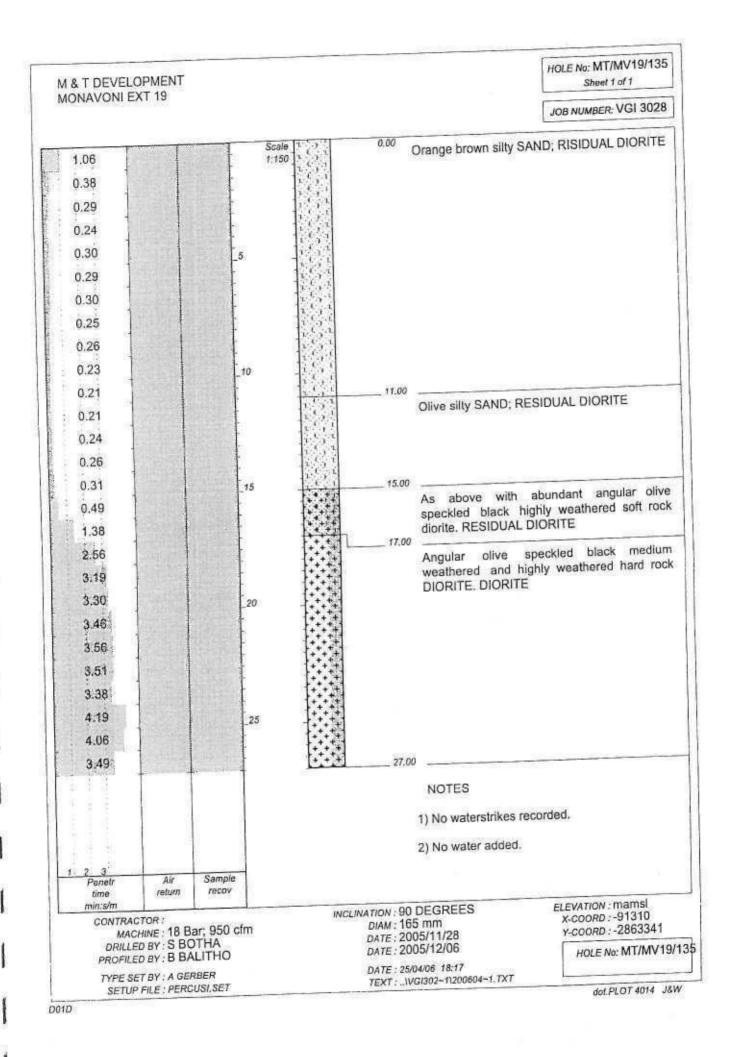
Logged: es Date: 13/02/2007

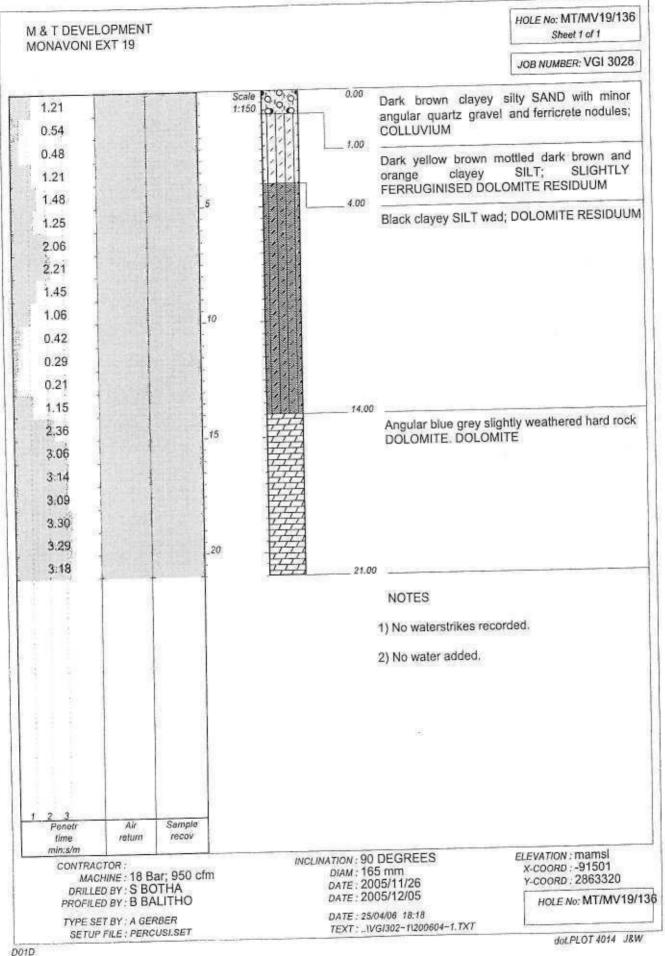
Rest Level: Dry

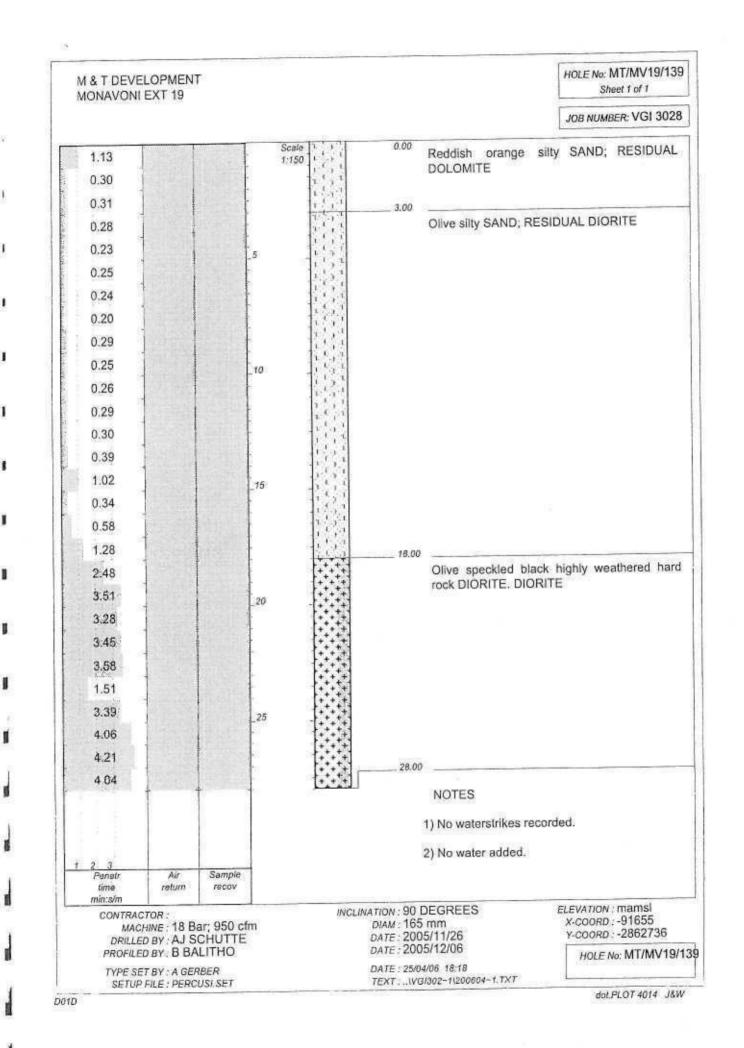

Date: 9/02/07 Job No: 06150MonX31

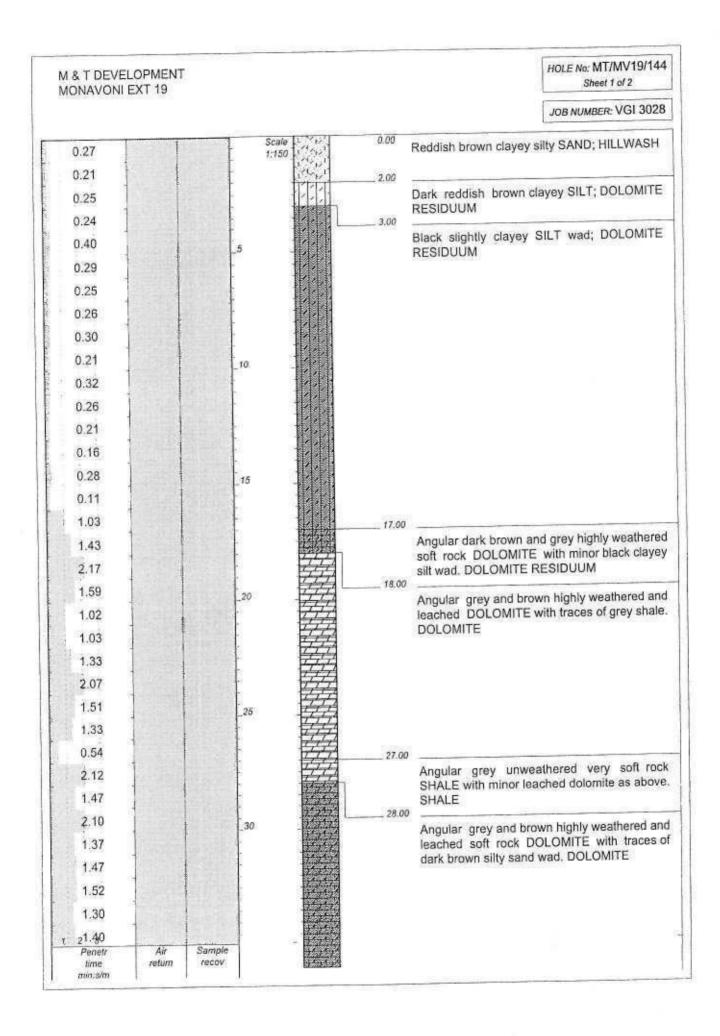

Chip Size(mm)	Pen. Speed	Depth (m)	Profile	Description
<15	0'17"			Brown to khaki brown, silty SAND with scattered, manganocrete concretions and some quartz; colluvium.
0	0'16" 0'19"	1 - 2 - 3 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Olive khaki, sandy SILT; residual syenite.
<10	1'15" 3'59"	4 -		Beige to olive beige speckled black, weathered, closely, fractured, soft rock SYENITE.
<15	1'54" 0'10"	5 - 6 -		Dark chocolate brown, silty CLAY (WAD) with scattered, grey, weathered, dolomite fragments; residual dolomite.
<10	3'14" 3'22" 3'16"	7 - 8 - 9 - 10 -	4	Grey, slightly weathered, hard rock DOLOMITE.
EOH	3'25" 3'29" 3'40"	11 · 12 · 13 ·	#	
		b .		
		10	•	 NOTES: Hole stopped at 13m after penetrating about 6m of solid dolomite bedrock (as instructed). Ground water not encountered during drilling operations. Hole dry when backfilled a few days later.
		<i>a</i>		
		1	•	
			-	

VGI BOREHOLE PROFILES (2005)

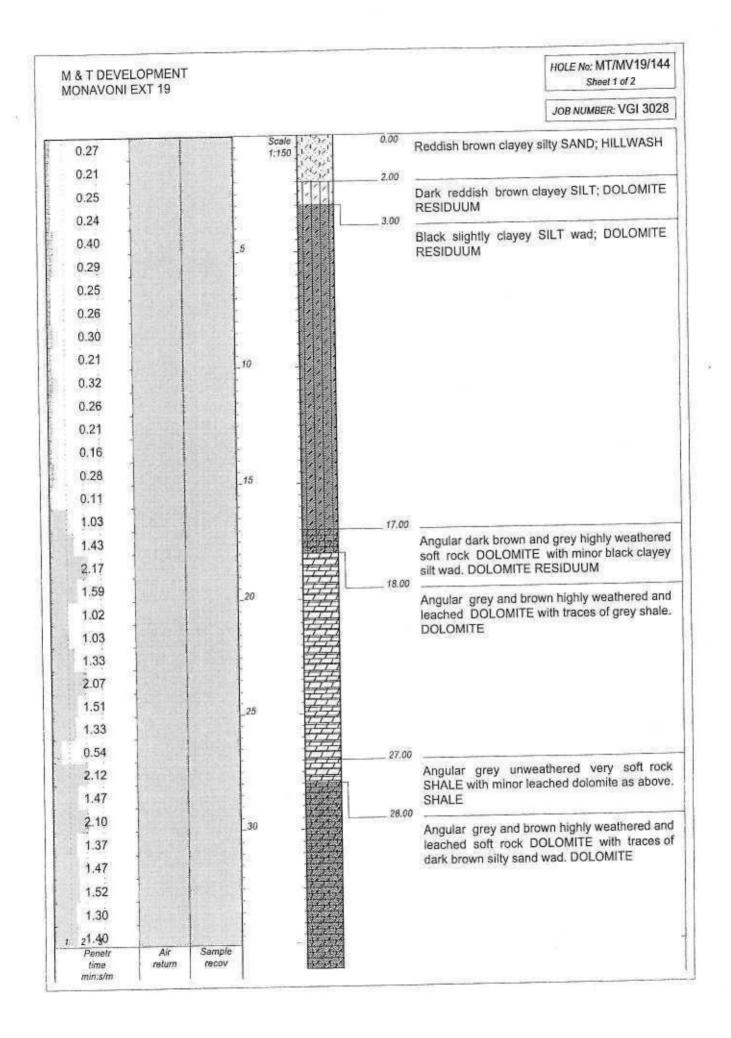

M & T DEVELOPMENT MONAVONI EXT 19			HOLE No: MT/MV19/132 Sheet 1 of 1
			JOB NUMBER: VGI 3028
2.21 3.35	Scale 2/2 1:150 2/2 7/7 7/7	and white h dolomite. DOLC	ly SAND and angular blue grey ighly weathered chert and MITE RESIDUUM
3.41° 3.38 3.24 3.20	5	Angular blue gr DOLOMITE. DO	ey slightly weathered hard rock DLOMITE
3.29		27.00 NOTES	
		1) No waterstrike	s recorded.
		2) No water adde	
	ample ecov		
CONTRACTOR MACHINE : 18 Bar; 1 DRILLED BY : S BOTH PROFILED BY : B BALIT	950 cfm A	NCLINATION : 90 DEGREES DIAM : 165 mm DATE : 2005/11/26 DATE : 2005/12/01	ELEVATION : mamsl x-coord : -91452 y-coord : -2862559 HOLE No: MT/MV19/1
TYPE SET BY : A GERBEI		DATE: 25/04/06 18:17 TEXT:IVG(302-11200604-1.T>	0.11364/141.180.051.1014/001-02.2008

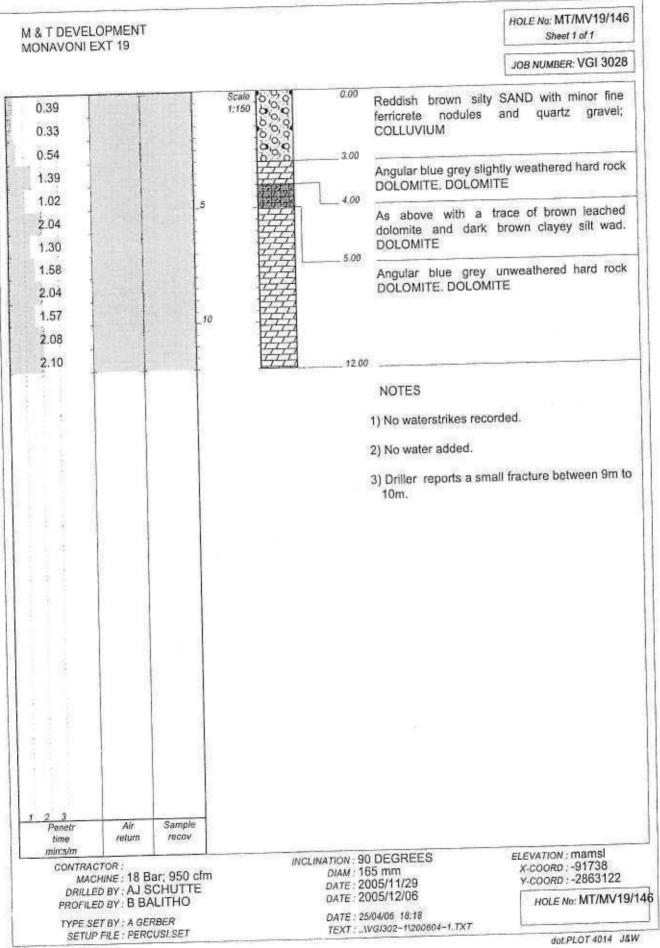

I

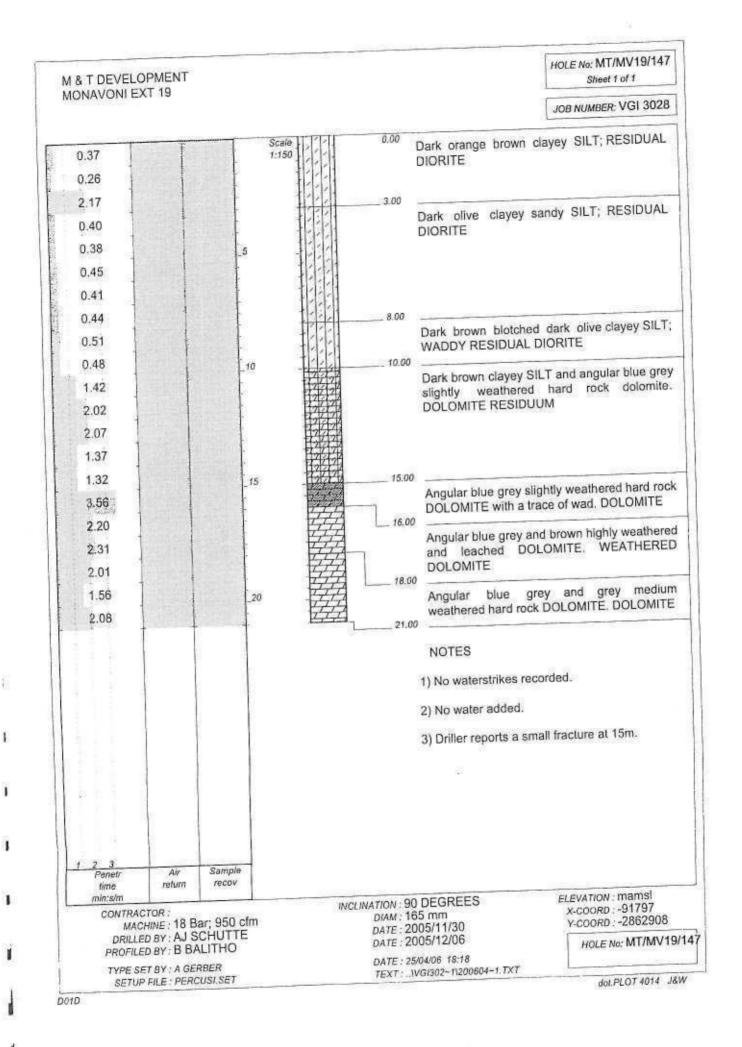


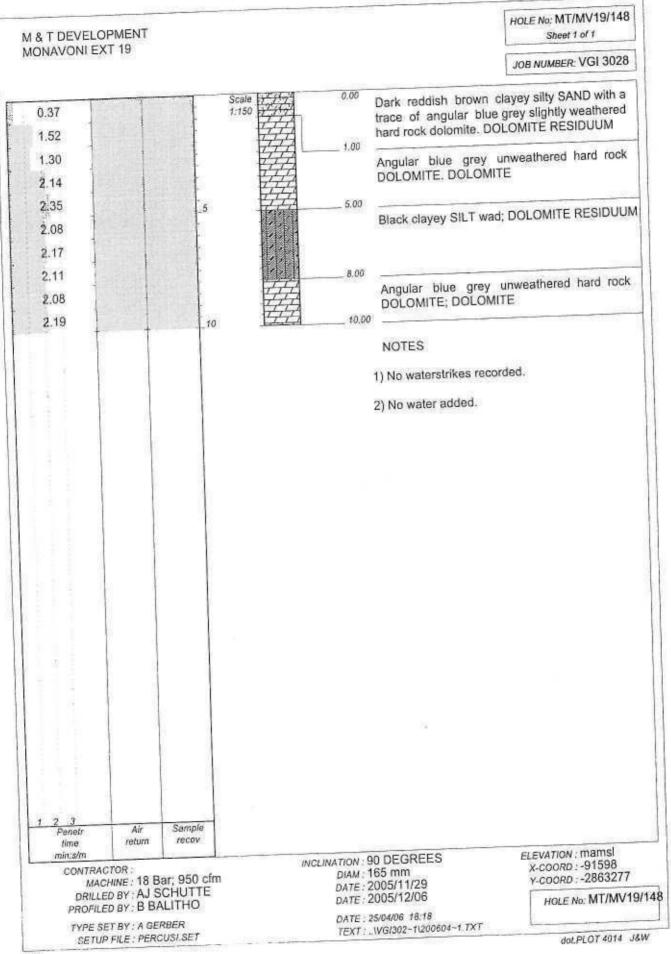

ġ.

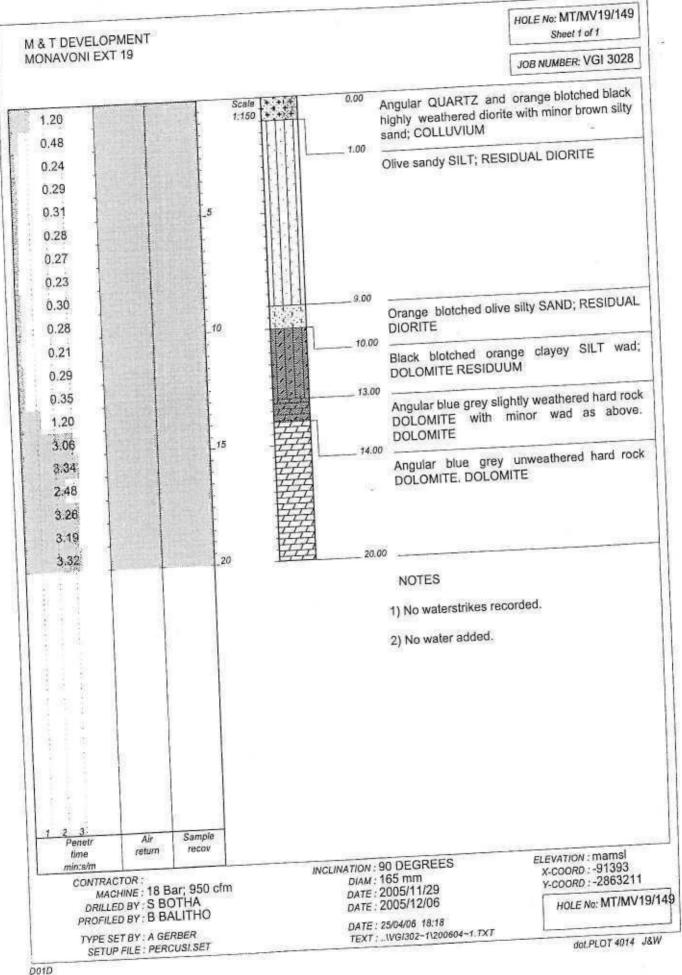
D

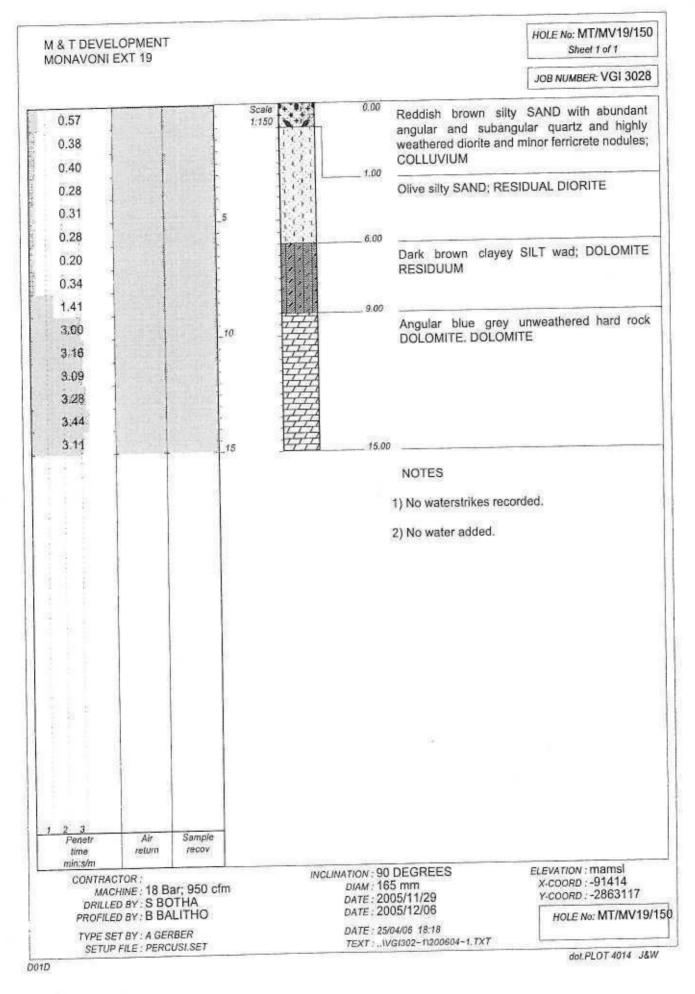


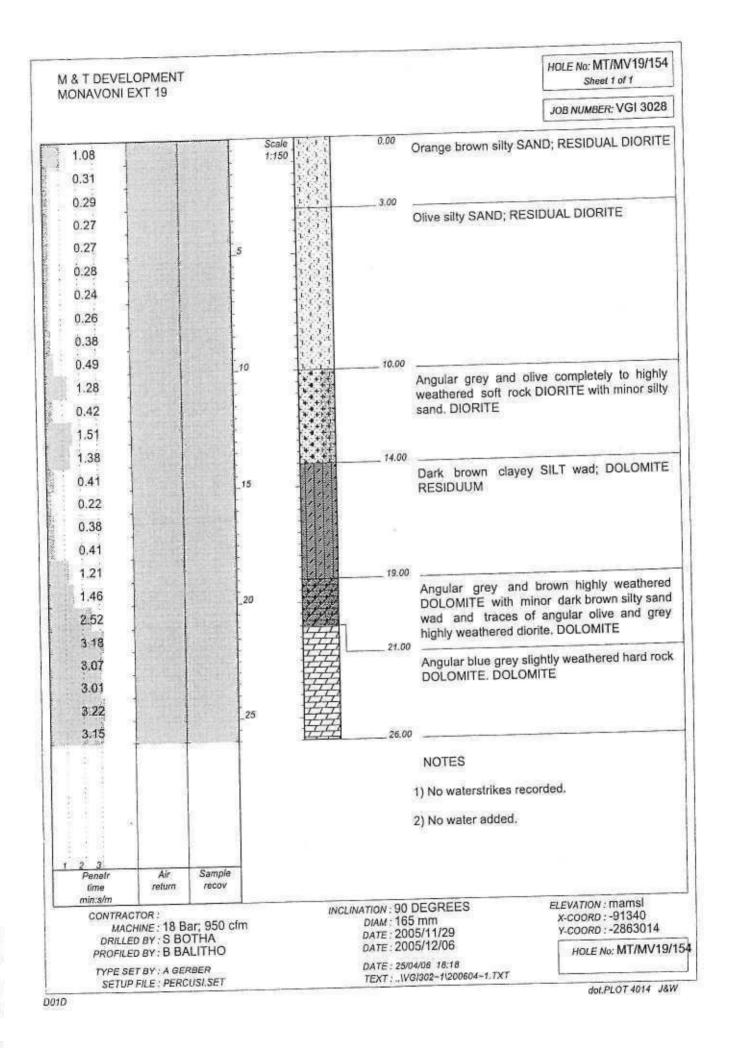

4 & T DEVELOPMENT			HOLE No: MT/MV19/144 Sheel 2 of 2
IONAVONI EXT 19			JOB NUMBER: VGI 3028
terrorite an approximation		36.00	
		NOTES 1) No waterstrikes recor	ded.
		2) No water added.	
			is at 18m and from 25 to
		4) Driller reports possibl	le fracture at 29m to 30m.
72			
1 2 3 Penetr Air	Sample		
Penetr Air time rotum min:s/m	recov		ELEVATION : mamsl
CONTRACTOR : MACHINE : 18 Bar DRILLED BY : AJ SC	: 950 cfm	INCLINATION : 90 DEGREES DIAM : 165 mm DATE : 2005/11/29	x-coord : -91544 y-coord : -2863533
PROFILED BY : B BAL	ITUO	DATE: 2005/12/05	HOLE No: MT/MV19/

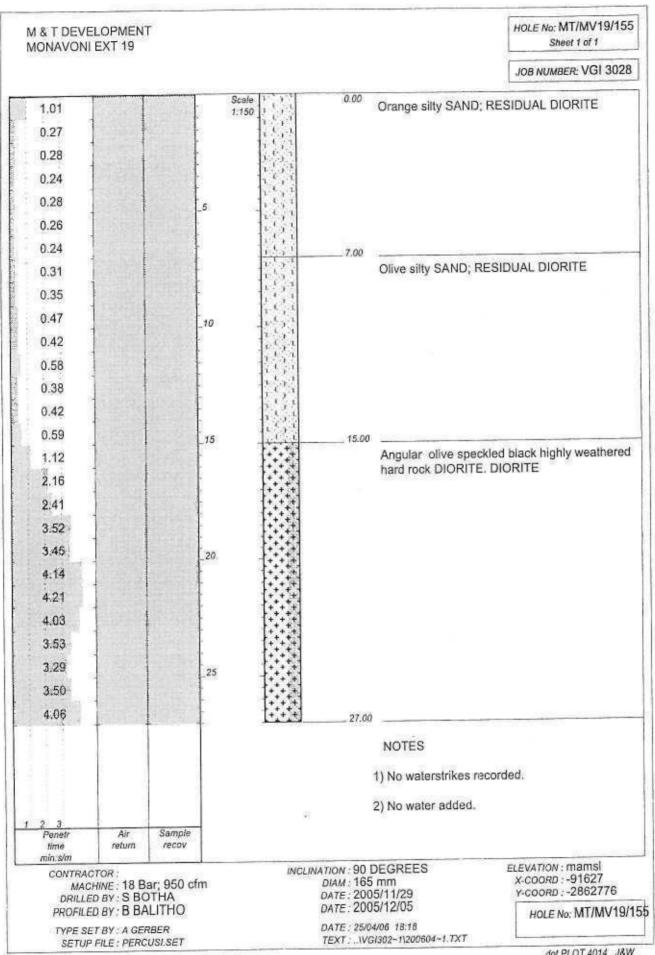

DOID


M & T DEVELOPMENT		HOLE No: MT/MV19/143 Sheet 2 of 2
MONAVONI EXT 19		JOB NUMBER: VGI 3028
	NOTES	
	1) No waterstrikes reco	orded.
	2) No water added.	
	3) Driller reports a sma	all fracture at 18m.
	12	
1 2 3 Penetr Air Sample time return recov		
min:s/m CONTRACTOR : MACHINE : 18 Bar; 950 cfm DRILLED BY : AJ SCHUTTE	INCLINATION : 90 DEGREES DIAM : 165 mm DATE : 2005/11/29	ELEVATION : mamsl X-COORD : -91694 Y-COORD : -2863521
PROFILED BY A SOLITHO TYPE SET BY : A GERBER	DATE : 2005/12/05 DATE : 25/04/06 18:18	HOLE No: MT/MV19/1
SETUP FILE : PERCUSI.SET	TEXT: \VG/302-1\200604-1.TXT	dot.PLOT 4014 J&W


M & T DEVELOPMENT MONAVONI EXT 19			HOLE No: MT/MV19/144 Sheet 2 of 2
			JOB NUMBER: VGI 3028
finise the		36.00	
	-	NOTES	
		1) No waterstrik	es recorded.
• #		2) No water add	
			conditions at 18m and from 25 to
		4) Driller reports	s possible fracture at 29m to 30m
			×
		*	
			2
Penetr Air time return	Sample recov		
min:s/m CONTRACTOR : MACHINE : 18 Bar	• 950 cfm	INCLINATION : 90 DEGREES DIAM : 165 mm	ELEVATION : mamsl X-COORD : -91544
DRILLED BY : AJ SC PROFILED BY : B BAL	HUTTE	DATE: 2005/11/29 DATE: 2005/12/05	Y-COORD :-2863533 HOLE No: MT/MV19
TYPE SET BY : A GERB SETUP FILE : PERCU	ER	DATE: 25/04/06 18:18 TEXT:::/VG/302-11200604~1	







D01D

DOID

dot.PLOT 4014 J&W

DOLOMITE TECHNOLOGY BOREHOLE PROFILES (2005)

PERCUSSION BOREHOLE LOG

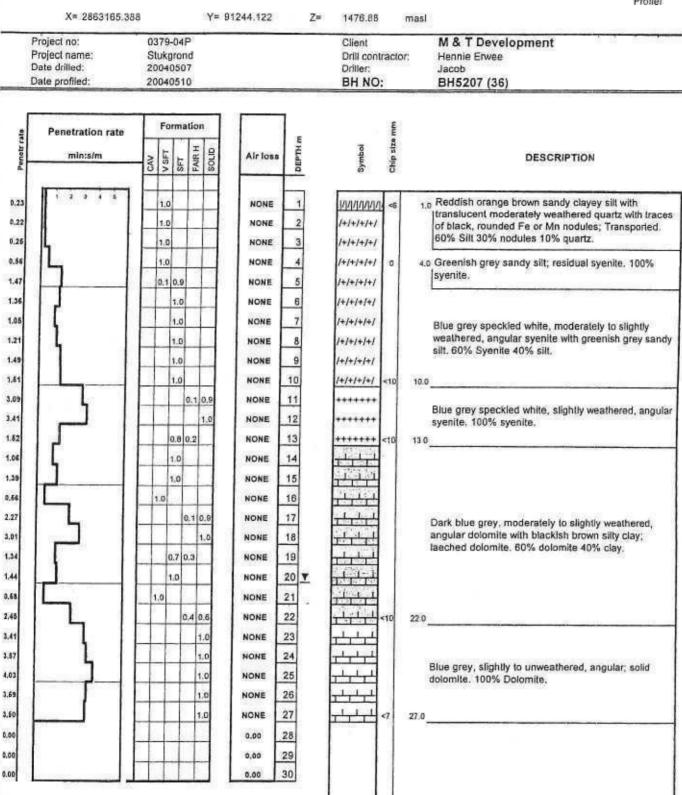
X= 2862648.2	78 Y= s	1538.28	Z=	1460.623		nasl	Profiet
Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040602 20040604		Tit.	Client Drill contr Driller: BH NO:		1	M & T Development Hennie Erwee Jacob BH5127 (47)
Penetration rate min:s/m	Formation CVAN LAS A LAS	Air loss	06PTH m	Symbol	Chip size mm		DESCRIPTION
		NONE NONE NONE NONE NONE			<10	4.0 6.0	Reddish orange brown clayey silt with minor translucent, moderately weathered, angular quartz and black, rounded Fe or Mn nodules; transported, 60%. Silt 20% quartz 20% nodules. Blue grey, unweathered, angular, solid dolomite roc 100% Dolomite. Blue grey, slightly weathered to moderately weathered, angular dolomite with traces of dark brown sandy silt; moderately weathered dolomite. 90% Dolomite 10% silt. Blue grey, unweathered, angular, solid dolomite rock 100% Dolomite.

Notes:

6

Notes (continue):

1. No water encountered.


2. No sample and no air loss.

3 No water was splied during drilling

4. Hammer rate was irregular between 1-2m, 4-5m and 6-7m

Logged by AdB Copyright DOLOMITE TECHNOLOGY

PERCUSSION BOREHOLE LOG

Notes (continue):

Notes:

清

1. Water encountered at depth of 20m.

No sample and no air loss.

3 Water was aplied during drilling between 7m - 8m, 19m - 20m, 25m - 27m,

4. Hammer rate was irregular between 4m - 5m, 10m - 11m, 12m - 13m, 15m - 16m, 18m - 19m and 20m - 21m.

Logged by AdB __ Copyright DOLOMITE TECHNOLOGY

a state

PERCUSSION BOREHOLE LOG

X= 2862838 366 Y= 91452 792 Z= 1468.182 masi Project no: 0379-04P M & T Development Client Project name: Stukgrond Drill contractor: Hennie Erwee Date drilled: 20040507 Driller: Jacob Date profiled: 20040510 BH NO: BH5220 (35) Formation 5 Penetration rate ate E size a π SOLID DEPTH Penetr VSFT min:s/m Air loss FAIR DESCRIPTION Chip CAV SFT 2 3 8 5 0.47 1 |+/+/+/+/ 1.0 NONE 2 0.32 1.0 NONE /+/+/+/+/ Orange brown sandy silt with blackish blue speckled 0.30 10 NONE 3 /+/+/+/+/ white moderately to highly weathered, angular, syenitewith traces of quartz; residual syenite. 80% 0.33 /+/+/+/+/ 1.0 NONE 4 Silt; 15% syenite; 5% quartz. 5 0.35 10 NONE /+/+/+/+/ 6 0.37 1.0 NONE /+/+/+/+/ -3 6.0 Blue grey speckled white, moderately to highly 1.0 7 0.51 NONE 1+1+1+1+1 weathered syenite with orange brown sandy silt. 60% 1.0 0.54 NONE 8 ¥ /+/+/+/+/ 8.0 Syenite 40% silt. <30 Blue grey moderately weathered, angular, dolomite 0.26 0,1 0,9 9 1 NONE 1 with blackish brown silty clay; laeched dolomite, 60% 1.27 0.1 0.9 NONE 10 18.0 dolomite 40% clay. e10 2.45 11 1.0 NONE 12 3.29 1.0 NONE 3.34 1.0 NONE 13 Blue grey, slightly to unweathered, angular; solid dolomite. 100% Dolomite. 3.27 1.0 NONE 14 3,33 1.0 NONE 15 16 3,29 1.0 NONE . 18.0 <10 0.00 17 0.00 18 0.00 0.00 19 0.00 0.00 0.00 20 0.00 21 0.00 0,00 0.00 0.00 22 0.00 23 0.00 24 0.00 0.00 25 0,00 0.00 0,00 26 0.00 27 0.00 0.00 28 0.00 0.00 0,01 0.00 29 0.00 30 0.00

Notes (continue):

Notes:

1. Water encountered at depth of 8m.

2 No sample and no air loss

3. No water was aplied during drilling

4. Hammer rate was irregular between 9m - 10m.

Logged by AdB Copyright DOLOMITE TECHNOLOGY

22

PERCUSSION BOREHOLE LOG

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040602 20040604		Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Jacob BH5317(48)
Penetration rate min:s/m	Formation H H H H H H H H H H H H H H H H H H H	DEPTH m	Symbol Chip size mm	DESCRIPTION
0.16 1 2 3 4 0.22	1.0 NON 0.1 0.9 1.0 NON 1.0 NON 0.1 0.9 1.0 NON 1.0 NON 1.0 NON 1.0 NON 1.0 NON 1.0 NON 0.1 NON 0.1 NON 0.0 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10 E 11 E 12 E 13 E 14 E 15 E 16 I7 I8 I9		1.0 Reddish orange brown clayey silt with minor translucent, moderately weathered, angular quartz and black, rounded Fe or Mn nodules; transported, 70% Silt 20% nodules 10% quartz. Orange brown sandy silt with traces blue black speckeled white highly to moderately weathered syenite; residual syenite. 95% Silt 5% syenite. 6.0 Blue grey, moderately to slightly weathered, angular dolomite with dark reddish brown silty clay; leached so dolomite. 8.0 Blue grey, moderately to slightly weathered, angular dolomite with dark reddish brown silty clay; leached so dolomite. 8.0 Blue grey, moderately to slightly weathered, angular syenite. 9.0 Blue grey, unweathered, angular, solid dolomite rock 100% Dolomite. 11.0 Blue grey, unweathered, angular, solid dolomite rock 100% Dolomite.

Notes:

ii.

法提

1. No water encountered.

2. No sample and no air loss.

3. Water was aplied during drilling between 10-11m.

4 Hammer rate was irregular between 6-7m, 8-9m and 10-11m

bogged by AdB Copyright DOLOMITE TECHNOLOGY Notes (continue):

PERCUSSION BOREHOLE LOG

9/15/2004 8:44 AM 1 Profiel

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040419 20040422		Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Adam BH5406(16)
Penetration rate	Formation Halker Liss N CAN	Air loss	Symbol Chip size mm	DESCRIPTION
		NONE 1 NONE 2 NONE 3 NONE 4 ADNE 5 NONE 6 NONE 7 NONE 7 NONE 10 NONE 11 NONE 12 0.00 14 0.00 14 0.00 17 0.00 17 0.00 15 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 </td <td>3/3/3/3/2/2/3 <5</td> /+/+/+/+// /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/ /+/+/+/+/+/ /+/+/+/+/+/ /+/+/+/+/+/ /+/+/+/+/+/+/+/ /+/+/+/+/+/+/+/+/+/+/ /+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+/+	3/3/3/3/2/2/3 <5	 Black, moderately weathered, rounded, Fe or Mn nodules and translucent white, moderately to slightly weathered iron stained quartz with brown silty sand; transported. 50% Sand 50% transported material. Blue grey brown silty sand with minor blue grey speckeled white, moderately, angular, syenite; residual syenite. 90% Silt 10% syenite. Blue grey speckeled white, moderately weathered is slightly weathered, angular, syenite. 100% Syenite 12.0

Notes:

1. No water encountered.

2. No sample and no air loss.

3. No water was applied during drilling.

4. Hammer rate was irregular between 3m - 4m.

Notes (continue):

.....

PERCUSSION BOREHOLE LOG

9/15/2	004
8:43	AM
	1
Dr	ofic

Pro Dat	ject no: ject name: e drilled: e profiled:	Stu 20	79-0 ukgro 0404 0404	ond 19		_		Client Dritt contr Dritter: BH NO:		M & T Development pr: Hennie Erwee Jacob BH5823(18)
	Penetration rate		L T	natio	800 - E	Airloss	DEPTH m	Pol	Chip size mm	DESCRIPTION
-	min;s/m	CAV	V SFT	FAIRH	SOLID	Airioss	DEP	Symbol	Chip	DESCRIPTION
I	1 2 3 4 5		1.0	1	T	NONE	1	:/:/:/:/:/:/	<8	1.0 Dod brown conductil with blockish blue producted
	1		1.0			NONE	2	(+(+)+)+)		Red brown sandy silt with blackish blue speckeled white, moderately to highly weathered angular syen
			1.0			NONE	3	1+1+1+1+1		and translucent white moderately weathered quartz Transported. 60% Silt 20% quartz 20% syenite
			1.0			NONE	4	+ + + +		Transported, 60% Silt 20% quartz 20% syenite
			1.0	1		NONE	5	/+/+/+/+/		
		П	1.0			NONE	6	1+1+1+1+1		Greyish brown silty sand with blackish blue
			1.0			NONE	7	/+/+/+/+/		specikeled white moderately to highly weathered, angular, syenite; residual syenite. 70% Sand 30%
			1.0			NONE	8	1+1+1+1+1		syenite.
	LI		1.0			NONE	9	/+/+/+/+/	<5	90
			0.1 0	9		NONE	10	/+/+/+/+/		Blue grey speckeled white, moderately to highly
1				1.0		NONE	11	/+/+/+/+/	47	11.0 weathered, angular, syenite with minor greyish brow (sandy sill; residual syenite. 80% Syenite 20% silt.
			1	0		NONE	12	-lalat		sandy silt, residual syenite, 60% Syenite 20% silt.
			1.0			NONE	13	TI III		
1] [0.1 0.	9		NONE	14	The		
			1.	0		NONE	15	The		Blue grey, moderately to sligthly weathered, angula dolomite with traces of dark brown, sandy silty clay.
	1		1.	0		NONE	16	- tota		95% Dolomite 5% clay.
			1.	0		NONE	17	$\frac{1}{1}$		Purpusition of Paral Islandonbary Printer Robert 1480-11
			0	1 0,9		NONE	18	ر الم	<20	18.0
				1	1.0	NONE	19	Thelat		
				L	1.0	NONE	20	- I A I		
					1,0	NONE	21	J. Harris		Blue grey moderately to slightly weathered, angular dolomite. 100% Dolomite.
					1.0	NONE	22	- L		Development of control of the second s
				1	1.0	NONE	23	ليليلي	<15	23.0
ſ						0.00	24			
						0.00	25	. E		
ſ						0.00	26			
						0.00	27			¥2
						0.00	28			
						0,00	29			
			-	1		0.00	30			

Notes:

Notes (continue):

1. No water encountered.

2. No sample and no air loss.

3. No water used during drilling.

4. Hammer rate was irregular between 9m - 10m, 11m - 12m, 13m - 14m and 17m - 18m

PERCUSSION BOREHOLE LOG

	X= 2863135			Y=	91547	Z=	1471.88		masl	
	Project no: Project name; Date drilled: Date profiled;	0379 Stukg 2004 2004	prond 0419				Client Drill contr Driller: BH NO:		r	M & T Development Hennie Erwee Jacob BH6013(17)
Penetr rate	Penetration rate min:s/m	-	rmati		Air loss	рертна	Symbol	Chip size mm		DESCRIPTION
0.11 0.33 0.36 0.21 1.85 3.28 3.21 3.29 3.29 3.20 0.00				7 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	NONE NONE NONE NONE NONE NONE NONE NONE	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		4	10	Blue grey, moderately to slightly weathered, angular, dolomite. 100% Dolomite.
0.00	واستعد مستسل		1		<u> </u>	30				

Notes:

Notes (continue):

1. No water encountered.

2. No sample and no air loss.

3. No water used during drilling

4. Hammer rate was irregular between 0m - 1m and 5m - 6 n

ġ

PERCUSSION BOREHOLE LOG

9/15/2004 9:56 AM 4

Client M & T Development Drilt contractor: Hennie Erwee Drilter: Adam BH NO: BH6127 (60)	16	•	ond 708	0379-0 Stukgr 200407 200407	Project no; Project name: Date drilled: Date profiled;
In the second se	DEРТН ла	Air los	Halion Halion Sorio		Penetration rate min:s/m
/+/+/+/+/ /+/+/+// with traces of translucent slightly weathered angula quartz; Transported with residual syenite. 80% Sar /+/+/+/+/	1 2 3 4 5	NONE NONE NONE NONE		1.0 1.0 1.0 1.0 1.0	
/+/+/+/+/ Greenish brown slity sand with traces of black speckled white moderate to highly weatherd angula syenite; Residual syenite. 95% Sand 5% syenite. /+/+/+/+/	6 7 8 9 10	NONE NONE NONE NONE		1.0 1.0 1.0 1.0 0.1 0.9	
Brown silty clay with black speckled white moderately weathered angular syenite with traces of translucent blue 12.1 green slightly weathered chert; Residual dolomite. 70% Cl 20% syenite 10% chert.	11 12 13 14	NONE NONE NONE NONE		1.0 1.0 0.1	ا نے
Image: style	15 16 17 18	NONE NONE NONE NONE	1.0 1.0 1.0		
	19 20 21 22	0.00			
	3 4 5 6	0,00 0.00			
	8	0.00 2 0.00 2 0.00 2			

Notes:

ł

Notes (continue):

49

1. No water encountered

2 No sample and no air loss.

3. Water used during drilling between 11 - 14m.

4. Hammer rate generally regular, except between 0-1m and 12-13m where it was irregular

PERCUSSION BOREHOLE LOG

9/15/2004 9:11 AM 1 Profiel

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040511 20040512		Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Jacob BH6403 (37)
Penetration rate min:s/m	Formation OITOS	Air loss	Symbol Chip alza mm	DESCRIPTION
		NONE 1 NONE 2 NONE 3 NONE 4 NONE 5 NONE 6 NONE 7 NONE 9 NONE 10 NONE 11 NONE 12 NONE 13 NONE 14 0.00 15 0.00 16 0.00 17 0.00 18 0.00 20 0.00 21 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 29 0.00 30	+ + + + + + + + + + + + + + + +	Reddish orange brown silty clay with minor black, rounded Fe or Mn nodules and translucent slightly weathered, angular, quartz. 70% Clay 25% nodule 5% quartz. Orange brown sandy silt with taces of blackish blu speckled white, highly weathered, angular, syenite and translucent, moderately weathered, angular, quartz; residual syenite. 80% silt 10% syenite 10% quartz. example: Blue grey, slightly to unweathered, angular; solid dolomite. 100% Dolomite.

Notes:

1 No water encountered.

Notes (continue):

2. No sample and no air loss,

3. Water was aplied during drilling between 5m - 11m.

4 Hammer rate was irregular between 0m - 1m, 2m - 3m and 8m - 9m

PERCUSSION BOREHOLE LOG

10

1

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040507 20040510		Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Jacob BH6521 (39)
Penetration rate min:s/m	Formation Harver	Air loss	Symbol Chip size num	DESCRIPTION
		NONE 1 NONE 2 NONE 3 NONE 4 NONE 4 NONE 5 NONE 6 NONE 7 NONE 10 NONE 10 NONE 11 NONE 12 0.00 13 0.00 14 0.00 15 0.00 16 0.00 17 0.00 18 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 28 0.00 29 0.00 30	+ + + + + + + + + + + + + + + +	 Reddish orange brown sandy silly clay with trace of black, rounded Fe or Mn nodules; Transported. 70% Clay 20% quartz 10% nodules. Orange brown sandy sill with traces of blackish blue speckled while, highly to moderately weathered, angular; residual syenite. 90% Silt 10% syenite. Reddish black sandy sill (wad) with blue grey moderately weathered, angular; leached dolomite. 60% Silt 40% dolomite.

Notes:

Notes (continue):

I 1 No water encountered 2. No sample and no air loss

3. No water was aplied during drilling

4. Hammer rate was irregular between 0m - 1m and 4m - 6m.

5

3

Logged by AdB Sopyright DOLOMITE TECHNOLOGY

PERCUSSION BOREHOLE LOG

9/15/2004

9:56 AM 3 X= 2862891.00 Profiel Y≈ 91919.00 Z= 1459.50 masi Project no: 0379-04P Client M & T Development Project name: Stukgrond Drill contractor: Date drilled: Hennie Erwee 20040708 Driller: Date profiled: Jacob 20040714 BH NO: BH6627 (61) Formation rate Penetration rate and the Panetr in a FAIRH Chip size SOLID min:s/m V SFT DEPTH Symbol CAV Air loss SFT DESCRIPTION 2 3 4 5 0.22 1.0 NONE 1 HEERER. Reddish dark brown sitty send with minor black sub angular Fe or 2.0 Mg nodules and trace translucent Fe stained slightly weathered angular quartz; Transported. 80% Send 15% nodules 5% quartz 0.3 1.0 NONE 2 1:1:1:1:1:1 <8 1.17 0.1 0.9 3 NONE 444 1.20 1.0 4 NONE 1 1,1 4.0 Blue grey moderate to slightly weathered angular dolomits with blue c10 0,32 prey sitty sand with traces of reddish brown sitty clay; Residual dolomite, 80% Dotomite 15% sand 5% clay. 0.9 0,1 NONE 5 1+1+1+1+1 0.22 1.0 6 NONE /+/+/+/+/ Greenish grey brown silty sand with traces of black 0.15 1.0 7 NONE speckled white highly to moderately weatherd angular /+/+/+/+/ syenite; Residual syenite. 95% Sand 5% syenite. 0.18 1.0 NONE 8 |+/+/+/+/ 45 8,0 3.57 0.1 0.9 NONE 9 Blue grey speckled white unweathered angular solid ****** 4.03 1.0 NONE syenite. 100% Syenite. 10 ++++++ 10.0 <15 3,2 1.0 NONE 11 T 3,21 1.0 NONE 12 Blue grey unweathered angular solid dolomite. 100% 3.34 1.0 Dolomite. NONE 13 3,27 1,0 NONE 14 4 <5 14.0 0.00 15 0.00 0.00 9,00 16 0.00 17 0.00 0.00 18 0.00 0.00 0.00 19 0.00 0.00 20 0.00 21 0.00 0.00 22 0.00 0.00 23 0,00 24 0.00 25 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00

Notes:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Notes (continue):

1. No water encountered 2. No sample and no air loss

3. Water used during drilling between 10m - 14m

4 Hammer rate generally regular, except between 2-3m, 4-5m and 8-5m where it was irregular

Logged by LvR AdB opyright DOLOMITE TECHNOLOGY

3

14

10

PERCUSSION BOREHOLE LOG

9/15/2004 8:43 AM 1 Profini

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040419 20040422		Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Adam BH6714(19)
Penetration rate	Formation	E	۹.	
min:s/m	CAV V SFT SFT FAIRH SOLID	Air loss	Symbol Chip size mm	DESCRIPTION
1 2 3 4 5	1.0	NONE 1	7/4/4/4	Blue grey, moderately weathered, angular, dolomit
L	1.0	NONE 2	T/4/T/4 <15	with reddish orange dark brown, silty clay, 50% 2.0 Dolomite 50% clay
	10	NONE 3	Thelak	
	1.0	NONE 4	- Litte	
	1.0	NONE 5	The	
	1,0	NONE 6	TTTT.	Blue grey moderately to slightly weathered, angular
	1.0	NONE 7	THE PARTY AND A DECEMBER OF TH	dolomite. 100% Dolomite.
	1.0	NONE 8		
	1.0	NONE 9		
	1.0	NONE 10		10.0
		0.00 11		
		0.00 12		
		0.00 13		
		0.00 14		
		0.00 15		
1		0.00 16		
		0.00 17		
		0.00 18		
		0.00 19		
		0.00 20		
		0.00 21		
		0.00 22		
		0.00 23		
		0.00 24		
		0.00 25		
		0.00 26		
		0.00 27		40)
		0.00 28		
		0.00 29		
		0.00 30		

Notes:

Noles (continue):

No water encountered.
 No sample and no air loss.

n an an Sann an sa mar

3. No water used during drilling

4. Hammer rate was irregular between 0m - 2m.

iged by AdB

PERCUSSION BOREHOLE LOG

X= 2863582	Y=	91620	Z=	1485.01	masi
Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040419 20040426			Client Drill contracto Driller: BH NO:	M & T Development r: Hennie Erwee Adam BH7002(20)
	-	-	-		
Penetration rate	Formation		2	HE .	
Penetration rate min:s/m	CAV V SFT SFT FAIR H SOLID	Air loss	DEPTH m	Symbol Chip size mm	DESCRIPTION
1 2 3 4 5	1.0	NONE	1	עעעעעע	Translucent white, moderately to slighty weathered
	1.0	NONE	2	1/1/1/1/1/	angular, quartz with reddish brown clayey silt; 2.0 colluvium. 60% Quartz 40% silt.
IL I	1.0	NONE	3	AMMANAN	2.0 CONSTRAINT OU /S GUALZ 40% SIL
i la	1,0	NONE	4	INNINNIN	
	1.0	NONE	5	MANANANA	Black rounded Fe or Mn nodules with dark red brow silty clay. 50% nodules 50% clay.
4	1.0	NONE	6	INVAVIANT	sity clay, 50% fiddules 50% clay,
	1.0	NONE	7	WWWWW <10	7.0
	1.0	NONE	8	/+/+/+/+/	
	1.0	NONE	9	1+1+1+1+1	
	1.0	NONE	10	/+/+/+/+/	Greenish brown clayey slit with traces of greenish
	1.0	NONE	11	/+/+/+/	black grey, moderately to highly weathered syenite; residual syenite. 95% Silt 5% syenite.
8 /	1.0	NONE	12	/+/+/+/	
8 1	1.0	NONE	13	/+/+/+/ <3	13.0
	1.0	NONE	14		
	1,0	NONE	15		
1 1	1.0	NONE	16		
4	1.0	NONE	17		Translucent white, moderately to slightly weathered,
K	1.0	NONE	18		angular quartz with dark brown silty clay 90% Quartz
1 1	1.0	NONE	19		10% clay
	1,0	NONE 1	20		
	1.0	NONE 2	n		
4	1.0	NONE 2	2	11111111 <1	22.0
12 11	1.0	a second for	3		
	1.0		4		Blue grey, laminated, moderately to highly weathered,
	1.0	NONE 2	S 2		angular, carbonaceous shale with blue grey silt. 60% shale 40% silt.
	1.0	NONE 2	3Ð (
	0.2 0.8	NONE 2	7	<5	27.0
5	1.0	NONE 2	8	******	Blackish blue encolled
	1.0	NONE 2		*****	Blackish blue speckeled while, moderately to slightly weathered angular, syenite, 100% Syenite.
	1.0	NONE 3		******	

Notes (continue):

Notes:

1. No water encountered

2. No sample and no air loss.

3. Water was applied during drilling at depth of 5m - 7m

4. Hammer rate was irregular between 27m - 28m.

ged by AdB ight DOLOMITE TECHNOLOGY

•

X= 2863582

PERCUSSION BOREHOLE LOG

1485.01

masl

Z≖

Y= 91620

P	roject no: roject name: ate drilled; ate profiled;	S1 20	lukç)04(-04 gron 041 042	nd 9				Client Drill contr Driller: BH NO:		ir:	M & T Development Hennie Erwee Adam BH7002(20)
<u>_</u>	Penetration rate	Т	Fo	rma	tion			1		Ē		
Penetr rate	min:s/m	CAV	VSFT	SFT	FAIR H	SOLID	Air loss	DEPTH m	Symbol	Chip size mm		DESCRIPTION
.22						1.0	NONE	31	+++++++	T		
18						1.0	NONE	32	+++++++			Blackish blue speckeled white, moderately to slightly weathered angular, syenite. 100% Syenite.
36						1.0	NONE	33	******	5	33.0	
20							0.00	34				
00					2		0.00	35				
0							0.00	36				
00							0.00	37				
0							0.00	38				
0	1 D						0.00	39				
0							0.00	40				
0							0.00	41				
							0.00	42				
							0.00	43				
							0.00	44				
							0.00	45	1 1			
							0.00	46				
			1				0.00	47				
							0.00	48	1 1			
							0.00	49				
							0.00	50				
							0.00	51	1			
							0.00	52				
				-	-		0.00	53				
							0.00	54				
							0.00	55				
							0.00	56				2
			1				0.00	57				2
							0.00	58				
							0.00	59				
L							0,00	60				

Notes:

Notes (continue):

I

1. No water encountered, 2. No sample and no air loss.

3. Water was applied during drilling at depth of 5m - 7m,

4. Hammer rate was irregular between 27m - 28m.

PERCUSSION BOREHOLE LOG

M & T Development Hennie Erwee Jacob BH7009 (38)	Client Drill contractor: Driller: BH NO:			nd 07	0379-0- Stukgro 200405 200405	roject no: roject name: ate drilled: ate profiled;
DESCRIPTION	Symbol Chip size mm	oepth m	Air los	IT O	Form	Penetration rate min:s/m
1 c Black, rounded Fe or Mn nodules with reddish ora brown clayey silt. 60% Silt 40% nodules.	//////////////////////////////////////	E 2 I 3	NONE	1.0	1.0	
Blue grey, slightly to unweathered, angular; solid dolomite. 100% Dolomite.		5 6 7	NONE NONE NONE NONE	1.0 1.0 1.0		
10.0		9 10 11	NONE NONE 0.00	1.0		
		12 13 14 15	0.00 0.00 0.00 0.00			
		16 17 18	0.00 0.00 0.00			
		19 20 21	0.00 0.00 0.00			
		22 23 24	0.00 0.00 0.00			
		25 26 27	1 1000 1			
		28 29 30	0.00			

Notes (continue):

Notes:

1. No water encountered.

2. No sample or air loss

3 No water was aplied during drilling.

4. Hammer rate was irregular between 0m - 1m

PERCUSSION BOREHOLE LOG

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040603 20040608		Client Drill contractor Driller: BH NO:	M & T Development Hennie Erwee Jacob BH7017 (49)
2 Penetration rate	Formation]	-	
Penetration rate min:s/m	CAV V SFT SFT FAIRH SOLID	Air loss	Symbol Chip size mm	DESCRIPTION
2 1 2 3 4 5	1,0	NONE 1	T/T/T/T	
	1.0	NONE 2	T/T/T	Baddick and a baddick
4 IL	1.0	NONE 3	T/4/T/4	Reddish orange brown clayey sandy sill with minor black rounded Fe or Mn nodules; residual dolomite
/ J		NONE 4	T/T/T	80% Silt 20% nodules.
		NONE 5	T/1/T/1 3	5.0
	1.0	NONE 6	The second second	
	1.0	NONE 7	- Lite	
	1.0	NONE B	the state	Brownish black clayey silt (wad) with minor black
	1.0	NONE 9	- Indate	highly weathered dolomile; highly weathered dolomite. 80% Silt 20% dolomite.
	1.0	NONE 10	1111	
	1,0	NONE 11	1-1-1- <7	11.0
	1.0	NONE 12	Δ/Δ/Δ/Δ	Dark brown sandy silt with slightly translucent blue, moderately weathered, angular chert; moderately
4	1.0	NONE 13	The	weathered chert. 70% Silt 30% chert.
14	0,1 0,9	NONE 14	The	
- Lang	1,0	NONE 15	++++	
	0,1 0,9	IONE 16	1-1-1-1	Blue grey, unweathered, angular, solid dolomite. 100% dolomite.
	1.0 N	IONE 17		
	1,0 N	IONE 18		18.0
	10 N	IONE 19		
	1.0 N	IONE 20		
5	N	IONE 21		Translucent white, moderately to slightly weathered, angular, quartz with minor brown silly sand; Blackree
	0,10.9 N	ONE 22		quartzite. 90% quartz 10% sand,
	1.0 N	ONE 23		
	1.0 N	ONE 24		24.0
	0.1 0.9 N	ONE 25		
5	1.0 N	ONE 26		
	1.0 N	ONE 27		Translusent blue and white, unweathered, angular
	1.0 Ni	ONE 28		quartz; Blackreef qaurtzite. 100% quartz.
	1,0 N	ONE 29		
	1.0 NO	ONE 30	<11 <11	30.0

Notes:

Notes (continue):

5. Hammer rate was very irregular between 7-8m and 10-11m

1 No water was encountered.

2. No sample and no air loss

3 No water was splied during drilling.

4. Hammer rate was irregular between 3-4m, 6-7m, 9-10m, 13-14m, 15-16m, 17-18m, 21-22m and 24-25m.

Logged by AdB Copyright DOLOMITE TECHNOLOGY

15

H

14

4

PERCUSSION BOREHOLE LOG

Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040419 20040422	Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Adam BH7306(21)
S Penetration rate	Formation Air loss	DEPTH m Symbol Chip size mm	DESCRIPTION
	1.0 NONE 1.0 NONE 0.00	1 $NVNNVNN$ 2 $NVNNVNN$ 3 $NVNNNNN$ 4 $T \searrow \bot \searrow T \checkmark$ 5 $T \searrow \bot \bigtriangledown T \checkmark$ 6 $T \searrow \bot \lor T \lor$ 7 $T \searrow \bot \lor T \lor$ 8 $T \bot \bot T \lor \bot$ 9 $T \bot \bot \bot T \lor \bot$ 10 $T \bot \bot T \lor \bot$ 11 $T \bot \bot T \bot$ 12 $T \bot \bot T \bot$ 13 $T \bot \bot T \bot$ 14 $T \bot \bot T \bot$ 15 $T \land T \to T$ 16 $T \land T$ 17 $T \land T \to T$ 18 $T \to T \to T$ 19 20 21 22 23 24 25 26 27 28	Black rounded Fe or Mn nodules and translucent white, moderately weathered iron stained quartz with reddish brown silty clay; transported. 70% 3.0 Transported material 30% silt. Black to whitish grey highly weathered dolomite with black to very dark brown clayey silt; highly weathered, angular, dolomite. 80% silt 20% dolomite. Blue grey, moderately to slightly weathered, angular, dolomite. 10% silt. Blue grey moderately to slightly weathered, angular dolomite. 100% Dolomite.

Notes:

Notes (continue):

1. No water encountered. 15

2 No sample and no air loss

3. No water used during drilling

4. Hammer rate was irregular between 0m - 5m.

3 Logged by AdB Copyright DOLOMITE TECHNOLOGY

1

PERCUSSION BOREHOLE LOG

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040602 20040604			Client Drill contra Driller: BH NO:	ictor:	M & T Development Hennie Erwee Jacob BH7401 (50)
Penetration rate min:s/m	Formation CGAV FRI FAIRH FAIRH	Air loss	DEPTH m	Symbol	Chip size mm	DESCRIPTION
6 1 2 3 4 5 7 8	1.0 1.0 1.0 1.0	NONE NONE NONE NONE	1	33333353 35553553 355553557 555555555	<7	Blue grey sandy silt with blue moderately to highly weathered, angular shale; residual shale. 70% Silt 30% shale. 3.0
	0.1 0.9 0.2 0.8 0.9 0.1	NONE NONE NONE NONE	5 6 7 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Translucent blue grey, moderately to slightly
	1.0 1.0 1.0 1.0	NONE NONE NONE NONE	9 10 11 12	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ		weathered, angular chert with light orange brown silt clay; residual chert. 70% Chert 30% clay.
	1.0 1.0 1.0	NONE NONE NONE	13 14 15	<u>Δ Δ Δ Δ</u> /+/+/+/+/ /+/+/+/+/	<12	130
	1.0 1.0 1.0	NONE NONE NONE	16 17 18 19	/+/+/+/ /+/+/+/ /+/+/+/+/ /+/+/+/+/		
	1.0 0.1 0.9 1.0		20 21 22	/+/+/+/ /+/+/+/+/ /+/+/+/+/		Light orange yellow sandy silt with blue grey speckled white moderately to highly weathered, angular syenite, Highly weathered syenite. 70% Silt 30% syenite.
	1.0 1.0 1.0		23 24 25 26	+ + + + + + + + + + + + + + + +		
	1.0 5.0 1.0	NONE	27 28 29 30	+ + + + + + + + + + + +		27

Notes:

ŝ

S.

ł

ł

Undersome

Notes (continue):

1. No water was encountered

2. No sample and no air loss

3. Water was aplied during drilling between 4-7m

4. Hammer rate was irregular between 4-5m, 7-8m, 20-21m, 35-36m and 37-38m

Copyright DOLOMITE TECHNOLOGY

ł

- 10

PERCUSSION BOREHOLE LOG

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040602 20040604		Client Drill contracto Driller: BH NO:	M & T Development Hennie Erwee Jacob BH7401 (50)
Penetration rate min:s/m	Formation CAV FAIR FAIR FAIR	Air loss	Symbol Chip size mm	DESCRIPTION
		NONE 31 NONE 32 NONE 33 NONE 34 NONE 35 NONE 36 NONE 37 NONE 39 NONE 40 0.00 41 0.00 42 0.00 43 0.00 46 0.00 46 0.00 47 0.00 46 0.00 50 0.00 50 0.00 51 0.00 52 0.00 53 0.00 54 0.00 55 0.00 56 0.00 58 0.00 58 0.00 59	+ + + + + + + + + + + + + + + +	Light orange yellow sendy silt with blue grey speckled while moderately to highly weathered, angular syenite. Highly weathered syenite. 70% Sit 30% syenite. 35.0 Blue grey speckled white, moderately to slightly weathered, angular syenite with minor brown saindy silt, moderately weathered syenite. 80% Syenite 201 silt.

Notes:

-

1. No water was encountered

Notes (continue):

2 No sample and no air loss

3 Water was aplied during drilling between 4-7m

4 Hammer rate was irregular between 4-5m, 7-8m, 20-21m, 35-36m and 37-38m

Logged by AdB Copyright DOLOMITE TECHNOLOGY

PERCUSSION BOREHOLE LOG

Project no: Project name: Date drilled: Date profiled:	0379-04P Stukgrond 20040602 20040604		Client Drill contractor: Driller: BH NO:	M & T Development Hennie Erwee Jacob BH7401 (50)
Penetration rate min:s/m	Formation Air lo	DEPTH m	Symbol Chip size mm	DESCRIPTION
.6 1 2 3 4 5 7 8	1.0 NONE 1.0 NONE 1.0 NONE	= 2	3333555 3533555 3533555	Blue grey sandy silt with blue moderately to highly weathered, angular shale; residual shale. 70% Silt 30% shale.
	0.1 0.9 NONE 0.2 0.8 NONE 0.9 0.1 NONE	5 6	4)4)4)4)4 4)4)4)4 4)4)4)4 4)4)4)4	
[1.0 NONE 1.0 NONE	8	ΔΙΔΙΔΙΔΙΔ Δ]ΔΙΔΙΔΙΔ Δ]ΔΙΔΙΔΙΔ Δ]ΔΙΔΙΔΙΔ	Translucent blue grey, moderately to slightly weathered, angular chert with light orange brown sill clay; residual chert. 70% Chert 30% clay.
	1.0 NONE 1.0 NONE 1.0 NONE	12	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ <12	130
	1.0 NONE		+ + + + + + + + + + + +	
	1.0 NONE 1.0 NONE 1.0 NONE	NONE 18 /+/+/+/ NONE 19 /+/+/+/+/ NONE 20 /+/+/+/+/		
	0.1 0.9 NONE 1.0 NONE 1.0 NONE	21 22 23	/+/+/+/+/ /+/+/+/+/ /+/+/+/	Light orange yellow sandy silt with blue grey speckled white moderately to highly weathered, angular syenite, Highly weathered syenite, 70% Silt 30% syenite,
	1.0 NONE 24 /+/+/+/+/ 1.0 NONE 25 /+/+/+/+/ 1.0 NONE 26 /+/+/+/+/ 1.0 NONE 27 /+/+/+/+/	22		
	1.0 NONE 1.0 NONE 1.0 NONE	27 28 29	/+/+/+/+/ /+/+/+/+/ /+/+/+/+/	

Notes:

5

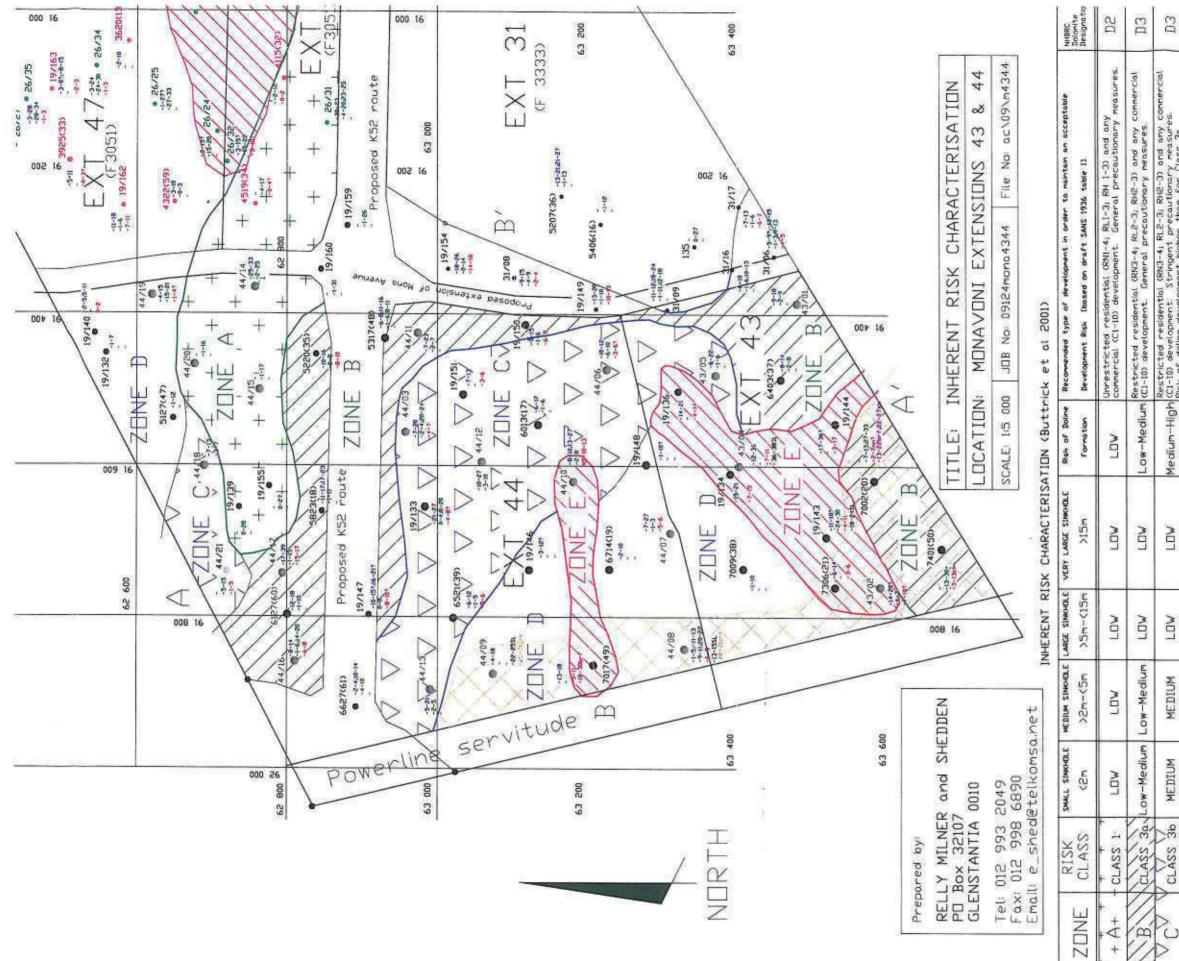
4

ł

Notes (continue):

1. No water was encountered

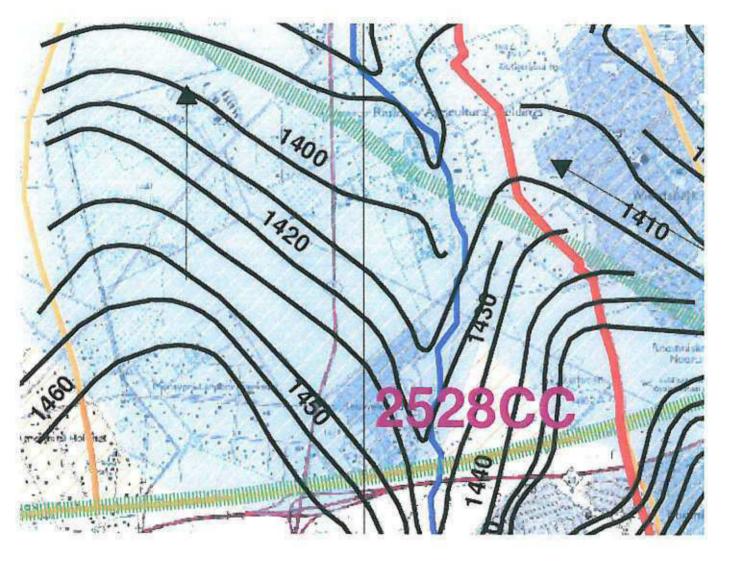
2. No sample and no air loss.


3. Water was aplied during drilling between 4-7m

4. Hammer rate was irregular between 4-5m, 7-8m, 20-21m, 35-36m and 37-38m

Logged by AdB Copyright DOLOMITE TECHNOLOGY APPENDIX D

RISK CHARACTERISATION MAP



	C C C CLASS 3b	MEDIUM	MEDIUM	Lov	NDN	Medium-High	Medium-High (CI-10) development. Stringent precautionary reasures. Risk af doline development régner than for Class 3a.	D3
P	CLASS 5	HIGH	MEDIUM	LOV	787	HIGH	Restricted residential (RN3-4) RH2-3) and most commercial (C1-8 & 10) development. Stringent precautionary measures. Risk of doline development is high.	D3
· MEN	CLASS 6	HIGH	HIGH	MEDIUM	Lov	HIGH	Restricted commercial (C2, 4, 5, 7 & 9) development with stringent precautionary neasures. No residential development uniess additional exploratory work confirms suitability.	D4
) 	LEGEND		
-5-15	Dolomiite bedrock intersected between Sr below the surface (fractured in places).	edrock ir surface	itersecte (fracture	d betweer ed in plac	Dolomiite bedrock intersected between 5m and 15m below the surface (fractured in places).		 Recussion borehole position and numbe (RMS 2009) 	umbe
	Succita intercented between 1m and	opcortor	kotwoon		200 200 200		 Percussion barehole position and number (VGi 2006) 	mber
-1-22	the surface (residual syenite and/or bedrock).	ce (reside	aal syenit	e and/or	bedrock).		 6521(39) Percussion borehole position and number (Dol Tech 2004) 	hber
-2-10	Waddy soil ir the surface	intersec ce.	ted betwo	een Zm ar	Waddy soil intersected between 2m and 10m below the surface.	122	Black Reef Formation or granite at dep	dep.

APPENDIX E

HYDROLOGICAL MAP and REPORT

Monavoni Extensions 43 & 44

Ground water level contour map and flow direction

[Excerpt from DWAF report No: GH3502 by P Hobbs]

[NOT TO SCALE]

November 2004

Dolomite Technology (Pty) Ltd P.O. Box 15147 LYTTELTON 0140

Attention Mr Emiel Kok

COMMENT ON THE GROUNDWATER ENVIRONMENT IN THE VICINITY OF THE FARMS STUKGROND 382 JR AND BRAKFONTEIN 399 JR, GAUTENG PROVINCE

1. INTRODUCTION

Hobbs Consulting was approached by Dolomite Technology (Pty) Ltd to provide comment on the groundwater environment in the vicinity of the original topocadastral farms Stukgrond 382JR and Brakfontein 399JR within the jurisdiction of the Tshwane Metropolitan Council, Gauteng Province. The area, currently characterised by uncultivated farm land bordering on the Monavoni small holdings located to the south, is earmarked for residential development. As a consequence of its location in a dolomitic environment, the need to assess the geohydrology of the area is obviated. The subject area encompasses some ?? ha, and occupies an elevation of between 1420 and 1480 m above sea level on a northnortheasterly slope (Figure 1).

2. APPROACH and METHODOLOGY

This comment has obtained relevant geological and geohydrological information from a variety of available sources including the following:

- The published geological map 2528CC Lyttelton at scale 1:50 000.
- The published hydrogeological map 2526 Johannesburg at scale 1:500 000.
- Various published and unpublished geoscientific reports as referenced.
- The National Groundwater Data Base managed and maintained by the Department of Water Affairs and Forestry (DWAF).
- Site-specific exploration borehole information sourced from geotechnical studies as provided by Dolomite Technology.

The site-specific exploration borehole information provided first-hand knowledge of the ambient groundwater environment. This information was evaluated with information obtained from the other sources to build a conceptual model of groundwater occurrence, movement and temporal (time-related) groundwater level fluctuations in the study area.

hobbs consulting specialists in groundwater science and technology

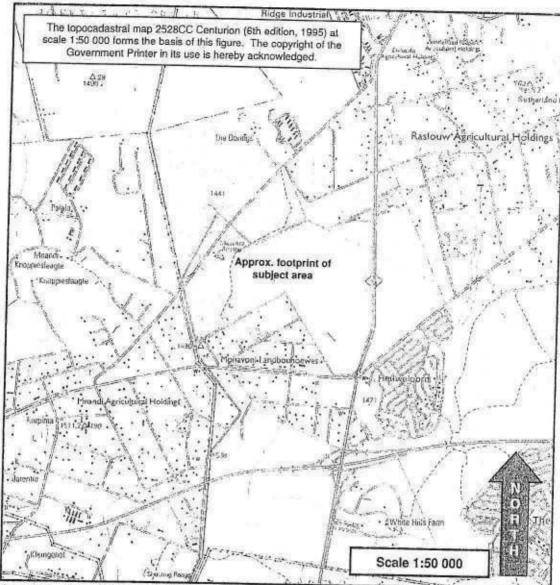


Figure 1. Locality map of the subject area.

3. OVERVIEW DESCRIPTION OF THE GEO-ENVIRONMENT

3.1 Geology

The regional geological setting (Figure 2) indicates that the subject area is located in a dolomitic environment. The dolomitic strata are associated with the Malmani Subgroup within the Chuniespoort Group of the Transvaal Supergroup. These strata are extensively intruded by syenite in the form of subhorizontal sills. Granite associated with the Halfway House Granite Suite builds the more elevated terrain towards the south. Sandwiched between the granite and the dolomite is quartzite of the Black Reef Formation. Prominent structural geological features in the region are represented by faults (Figure 2) and, to a lesser extent, by subvertical intrusions of syenite in the form of dykes.

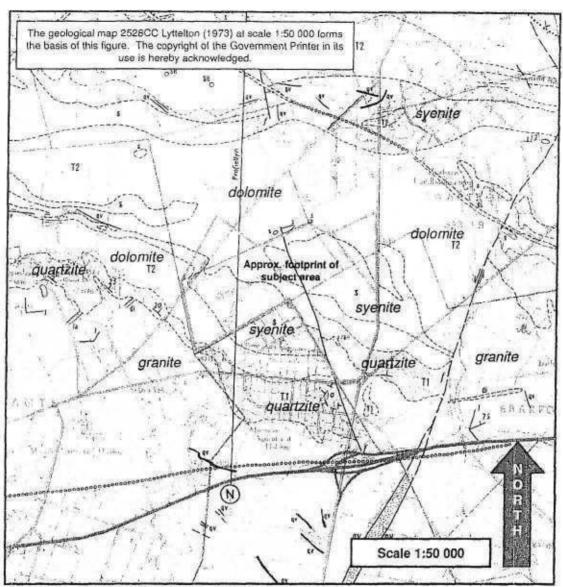


Figure 2. Geological setting of the subject area.

3.2 Geohydrology

The area lies within quaternary catchment A21B of the Crocodile (West) and Marico Water Management Area (WMA). This catchment is drained by the Hennops River and its tributaries to Hartbeespoort Dam. The site itself occurs within groundwater region 10, the Karst Belt region, defined by Vegter (2001) as encompassing the Vaalian strata comprising Chuniespoort dolomite and chert and subordinate Black Reef quartzite, conglomerate and shale.

The existence of high-yielding boreholes in the region testifies to the extraordinary yield potential and general availability of dolomitic groundwater resources in the region. The hydrogeological map 2526 Johannesburg (scale 1:500 000) indicates that the dolomitic strata support a median borehole yield (excluding dry boreholes) in the range >5 L/s.

hobbs consulting specialists in groundwater science and technology

4. DESCRIPTION OF THE GROUNDWATER ENVIRONMENT

4.1 Groundwater Occurrence and Yield

The subject area is shown in Figure 3 to be located in the Erasmia compartment as identified by Hobbs (2004). This compartment is formed by roughly north-south trending groundwater divides of which that forming the western boundary is shown in Figure 3. The divide forming the eastern boundary is located outside the map area.

It might be expected that groundwater occurrence within the geo-environment described in section 3 will be associated with both dolomitic and intrusive (syenite) strata, i.e. groundwater is likely to be encountered in either or both of these formations. Under circumstances where these formations are likely to be characterised by different geohydrological parameters such as hydrostatic head, yield and water chemistry, it is difficult to associate measurements of these parameters with a specific formation in those instances where a borehole intersecting both also encounters groundwater in each. In other words, such boreholes represent a mixed hydrostatic head and groundwater composition that is not uniquely representative of either of the aquifers intersected. Nevertheless, information presented by Hobbs (1988) indicates borehole yields in the order of 0.8 to 1.3 L/s for dolomite, and 0.1 to 0.6 L/s for syenite (Table 1).

4.2 Rest Water Level Depth

The DWAF regional investigation by Hobbs (1988) returned the information presented in Table 1 for the area of interest to this study. The approximate positions of the listed boreholes are shown in Figure 3.

BOREHOLE ID	SURFACE ELEVATION (masl)	DEPTH TO REST WATER LEVEL (mbs)	REST WATER LEVEL ELEVATION (masl)	YIELD (L/s)	DATE	SURFACE GEOLOGY
33	1416	13.5	1402.5		01/1987	dolomite
-34	1397	6.9	1390.1		01/1987	syenite
35	1425	21.9	1403.1		01/1987	dolomite
36	1420	1.6	1398.4		01/1987	dolomite
37	1427	4.9	1422.1	0.8	01/1987	dolomite
38	1420	5.4	1414.6	1.3	07/1986	dolomite
41	1468	22.2	1445.8		01/1987	granite
42	1415	14.8	1400.2		01/1987	dolomite
43	1480	26.9	1453.1	0.1	07/1986	syenite
44	1510	23.5	1486.6	0.6	01/1987	quartzite
61	1440	16.8	1423.2		07/1986	dolomite
62	1470	24.3	1445.7		07/1986	dolomite
72	1472	10.0	1462.0		01/1987	granite
73	1484	21.9	1462.2		01/1987	granite
74	1468	12.3	1455.7		01/1987	granite

Table 1. Relevant regional groundwater information (after Hobbs, 1988).

hobbs consulting specialists in groundwater science and technology

Page 4

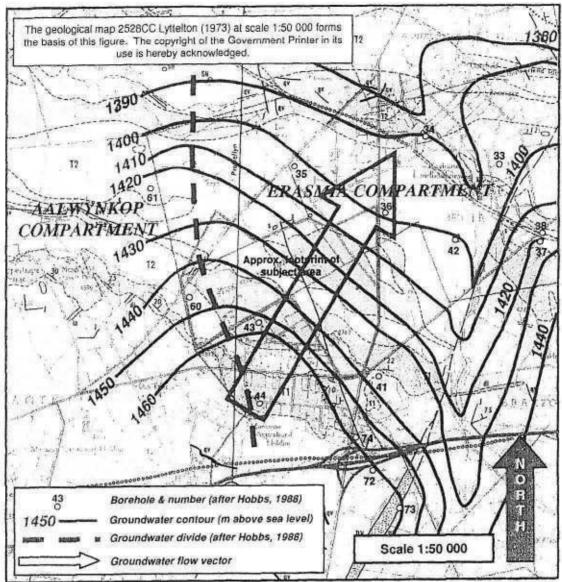


Figure 3. Hydrogeological map of the subject area.

4.3 Groundwater Flow Pattern

The groundwater flow pattern in the subject area is shown by the vector in Figure 3. This indicates that groundwater drainage locally occurs from southwest to northeast, i.e. out of the granitic environment into the dolomitic system. It is also evident, however, that the western margin of the subject area coincides with the groundwater divide that forms the western boundary of the Erasmia compartment. Hobbs (1988) has shown that the regional groundwater flow pattern is centred on the Hennops River. Under these circumstances, the Erasmia compartment drains in a westerly direction, its "decant" position coinciding with the course of the Hennops River.

The groundwater contours across the subject area (Figure 3) describe a hydraulic gradient in the order of 0.020 (1:50). This is slightly shallower than, but similar to, the surface gradient of 0.024 (1:42).

hobbs consulting specialists in groundwater science and technology

Page 5

A

4.4 Water Level Fluctuation

An indication of the possible magnitude of groundwater level fluctuation in the region must be inferred from DWAF monitoring data. The latter are sourced from monitoring boreholes, and the closer such borehole is to the subject area, the more representative its record will be. The nearest DWAF exploration borehole to the subject area is G37842 located in the Zwartkop Nature Reserve close to the intersection of the Hennops River and the R55 road. The position of this borehole has been documented in a number of similar reports to this, e.g. Hobbs (2003 & 2004b).

Borehole G37842 was visited on 30 August 2003 when it was found to be infested by bees, rendering access for water level purposes impossible. Nevertheless, the record for monitoring station G37842 is reproduced, together with the coincident rainfall record, in Figure 4. The rainfall record is associated with the Wierda Park gauging station no. 0513232 8. The water level record indicates a difference of 4.52m between the shallowest (-7.35 m) and deepest (-11.87 m) values in the period June 1986 to July 1996. It also indicates a remarkable constancy of water level in the period June 1986 to January 1993.

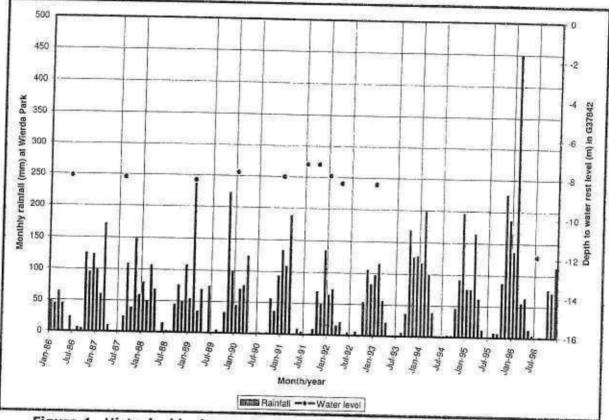


Figure 4. Historical hydrograph of DWAF monitoring borehole G37842.

Although the irregularity of water level measurements militates against a rigorous correlation with the monthly rainfall pattern, it would appear that the rainfall in the period January 1986 to January 1993 did not exhibit any major deviations, i.e. excessively wet or dry periods. The average annual rainfall in this period amounted to 623 mm, which is some 85 mm below the long term average value of 708 mm recorded in the period January 1974 to December 2001.

hobbs consulting specialists in groundwater science and technology

It is also evident that the greater water level depth measured in July 1996 followed an exceptionally wet summer. These circumstances are anomalous in that the opposite response in water level might be expected. As a consequence, not too much significance is afforded this value under circumstances where researching the reason for this anomalous response is beyond the scope of this report.

An additional indication of the magnitude of groundwater rest level fluctuation in the Erasmia compartment is provided by Hobbs (2004a). From a comparison of *circa* 1972 groundwater rest level data reported by Temperley (1978) with 1986 data reported by Hobbs (1988), it is apparent that no change in this parameter was recorded in this 16-year period for three localities to the north-northeast of the subject area.

Within the framework of these discussions, it is considered reasonable to conclude that the natural groundwater level fluctuation in the Erasmia compartment and, therefore, in the vicinity of subject area, did not experience a vertical variation of greater than about 5 m in the 24-year period from 1972 to 1996. Further, it is reasonable to presume that the subsequent period to the present has not witnessed a markedly different response pattern.

4.5 Groundwater Use

A survey of groundwater use in the subject and surrounding area was not within the brief of this report. Nevertheless, groundwater use in the subject area and surrounds is probably limited to domestic water supply, garden irrigation and limited stock watering applications associated with land use activities that are characteristic of small holdings. The conversion of the subject area from agricultural farm land to residential land use will no doubt mitigate even these small scale water uses.

5. CONCLUSION

It is concluded that the dolomitic groundwater rest level in the vicinity of the site has not experienced a natural fluctuation of more than 8 m in the past two decades. These circumstances can be expected to continue for as long as no "new" large scale groundwater abstraction (e.g. for irrigation purposes) is developed in proximity to the subject area.

6. RECOMMENDATION

It is recommended that the routine evaluation of groundwater level monitoring data collected by the DWAF in the subject area should form part of the **risk management plan** that is implemented for the envisaged residential development. Since the DWAF does not routinely evaluate these data, it will be necessary to source this service from a reputable and experienced groundwater scientist. The principal focus in this regard should be directed at borehole G37813. As a consequence, the developers must take every precaution to secure the continued existence of this DWAF monitoring station.

7. REFERENCES

Hobbs, P.J., 1988. Hydrogeology of the Verwoerdburg Dolomite Aquifer. Rep. No. Gh3502. Directorate Geohydrology. Department of Water Affairs & Forestry. Pretoria.

hobbs consulting specialists in groundwater science and technology

Hobbs, P.J., 2003. Assessment of Groundwater Levels in the vicinity of the proposed Eldo Meadows Residential Development, Eldoraigne X53, Zwartkop 356 JR, Centurion. Hobbs Consulting for Porta Property Development (Jhb) (Pty) Ltd, Helderkruin.

Hobbs, P.J., 2004a. Intermediate Groundwater Reserve Determination for Quaternary Catchments A21A and A21B. Project No. 2002-316. Department of Water Affairs & Forestry. Pretoria.

Hobbs, P.J., 2004b. Assessment of the Groundwater Environment in the vicinity of Portion 169 of the farm Zwartkop 356 JR, Centurion, Gauteng Province. Hobbs Consulting for RGM Properties cc, Laudium.

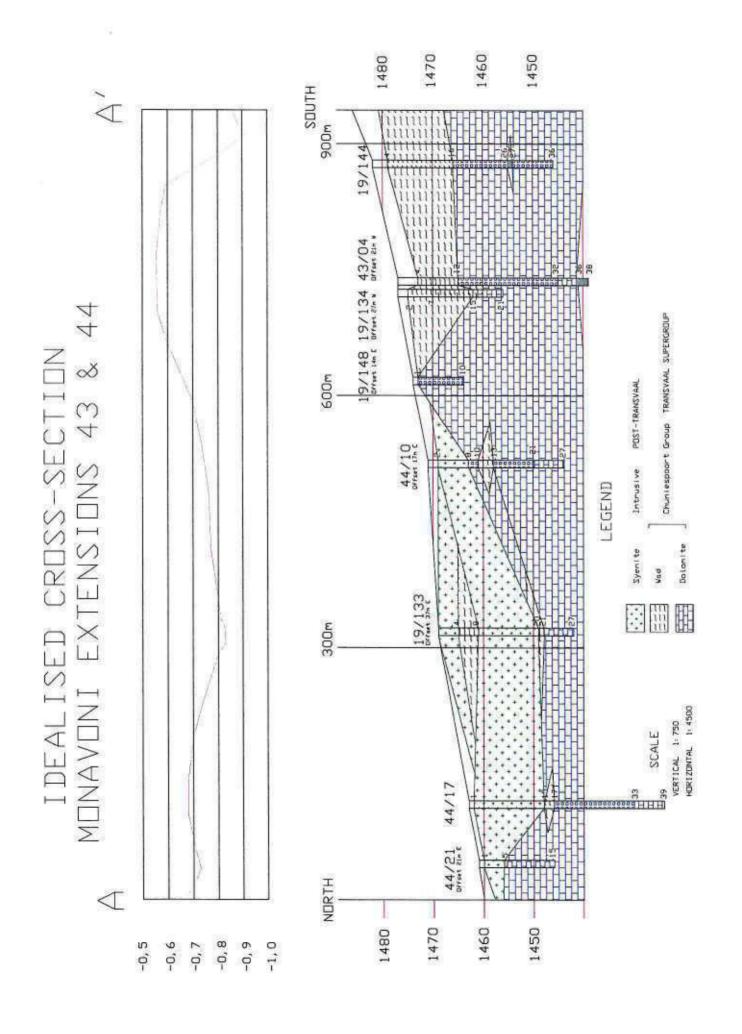
Vegter, J.R., 2001. Groundwater Development in South Africa and an Introduction to the Hydrogeology of Groundwater Regions. Rep. No. TT134/00. Water Research Commission. Pretoria.

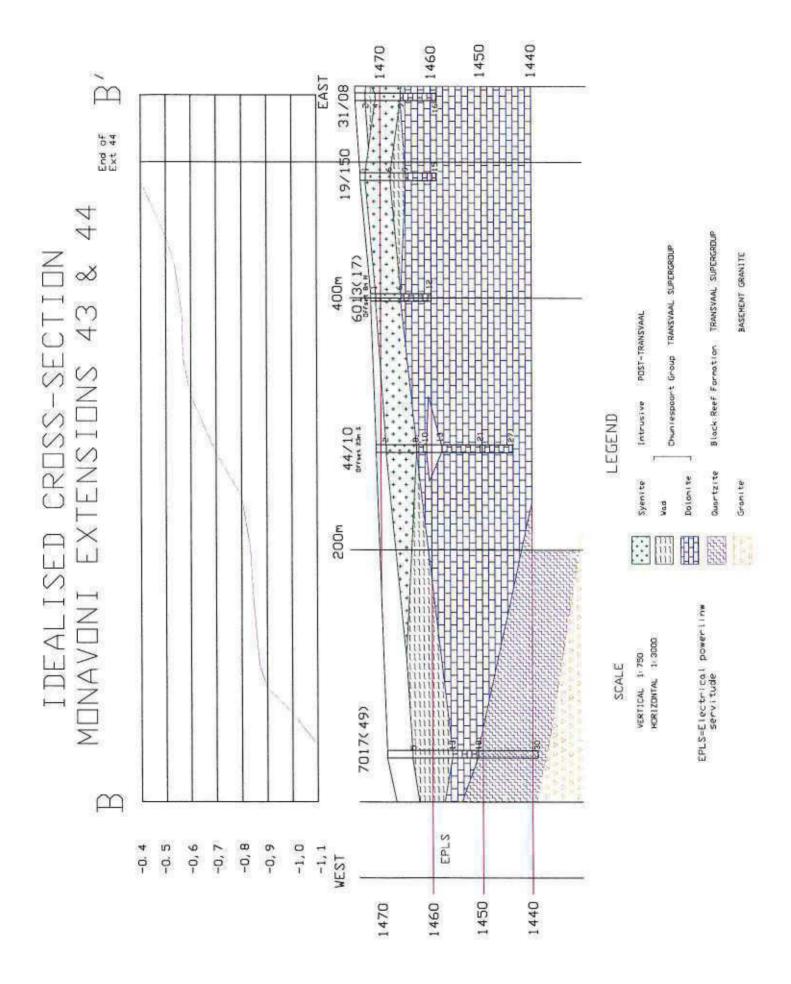
PJ Hobbs (Pr.Sci.Nat.) GROUNDWATER SCIENTIST

ANNEXURE A SITE-SPECIFIC GROUNDWATER REST LEVEL DATA

BOREHOLE ID [after Dolomite Technology	DEPTH TO GROUNDWATER	LITHOLOGY	INTERSECTED
drawing no. 0020-03(C)]	REST LEVEL (m below surface)	Dolomite	
6319	25	Y	N
6107	4	N	Y
4902	9	Y	N
4611	17	Y	Ŷ
5016	10	N	Ŷ
4719	6.1	Y	N
4923	5	Y	N
60	9	Y	Y
4931	5	Y	N
4837	4	Y	N
105G60	6.1	Ŷ	N
3538	10	Y	N
3631	10	Y	Ŷ
3916	25	Y	N
1631	16	Y	N
3805	11	N	Y
2603	46	Y	Y
2005	26.1	Y	N
2610	43	N	Y
2611	44	N	Ŷ
80G26	6.1	Y	N
2828	27	N	Ŷ
23	18.6	Y	N
2140	4	Y	N
2334	8	Y	N
1631	16	Y	N
1236	8	Y	N
634	6	Y	N
1423	16	Ŷ	Y
823	36	N	Ý
328	12	Y	Y
219	22	N	Y
C207	18		N
C316	13	Y	N
Minimum	4		19
Mean	15.9		(*************************************
Median	11.5		
Maximum	46		

Note: Borehole ID numbers as per Dolomite Technology drawing no. 0020-03(C).


hobbs consulting specialists in groundwater science and technology


APPENDIX F

÷.

14

IDEALISED CROSS-SECTIONS

APPENDIX G

PRECAUTIONARY MEASURES

GENERAL PRECAUTIONARY MEASURES

General measures to be implemented on all dolomitic sites (minimum requirements - NHBRC Standards)

1. Wet services of entire development and individual stands

- a. All wet services should be of good quality in order to ensure low maintenance.
- b. Piping materials selected should also be appropriate to local subsurface conditions. If clay pipes are utilized in areas of shallow dolomite, a higher standard of pipe bedding is recommended e.g. stabilized bedding or over-excavation and re-compaction with an approved material (minimum specification to be G7 material) in layers of 150 mm thickness, compacted to 93% mod AASHTO. Some soils may have low pH values, which will render the use of ferrous material for underground services unsuitable. Chapter II in 'A Technical Guide to Good House Construction' NBRI of the CSIR (July 1984) should be consulted concerning the potential corrosion of pipes.
- c. The NHBRC¹ makes the following recommendations: Water piping materials shall be one or more of the following:
 - * High impact PVC pipes with vitualic joints.
 - * Other flexible (as defined in SABS 0102, Part 1) water pipes with flexible, self anchoring connections.

Pipes having a diameter of less than 75 mm.

- * HDPE type IV.
- * Polypropylene.

Pipes should be flexible, while joints should be minimised.

- d. Water pipes entering buildings should either be fitted with flexible couplings or kinked with a Z to allow opportunity for relative movement. A flexible connection at the junction with all outlet pipes should be used, which includes WC pan connections.
- e. Pressure release systems tend to leak after a couple of years. This leaking water must flow directly into the storm- or sewerage water system.
- f. Water reticulation to houses should be kept at a minimum depth of 500 mm up to the structure and above ground wherever possible along the structure.
- g. As many services as possible should be placed within a single trench.
- h. Encasement of pipes in concrete or soilcrete should be avoided. Preferably place pipes in sleeves. If this cannot be achieved, care must be taken to ensure that differential movement can still be accommodated without the pipe breaking.
- All storm water, sewerage and water pipes and channels must be watertight. All laid wet services should be tested for leakage on installation using the air test (see NBRI Info Sheet X/BOU 2-34) for water pipes, and the water test for sewerage pipes.

¹1 National Home Builders Registration Council

- j. Placement of wet services below the footprint of structures must be avoided. No plumbing and drainage pipes should be placed under floor slabs, as far as practicable. Where this situation is unavoidable, reasons must be cited and the pipes must be placed in a sleeve to permit monitoring.
- Where practical, pipes running parallel to structures should be kept at a distance of at least
 5 m from the structure.
- Each stand should have a rodding-eye or some similar access to the sewer connection in addition to the inspection eye.
- m. Each stand/unit should have a water meter at a suitable location so that testing of the stand/unit specific water supply is possible. Water leakage testing must be undertaken regularly, as set out in the risk management system.
- n The roots of trees planted in close proximity to the line of water-bearing services often cause leaks in or malfunctioning of the services. Care should therefore be taken to avoid the unfortunate positioning of trees and other plants.
- Residents should be informed of where services traverse their garden so that accidental puncturing of pipes can be avoided.

2. Entire development

- a. The design of wet services should be governed by the need to create low maintenance systems. Wherever possible keep services above ground to facilitate detection of leaks, maintenance and repair.
- b. The stability of the centre-line of all bulk water services should be considered.
- c. Piping used in mains and communication pipes should be flexible, while joints should be minimised and, where required, self anchoring type (i.e. not reliant on thrust blocks for their anchorage at fittings, except at valves and end caps).
- d. The relevant provision of SABS 1200 DB, L, LB, LC, LD and LE shall be observed in the installation of all underground services.
- e. Water mains shall be laid only in road reserves.
- f. Provision for future connections shall be made in order to minimise the cutting into pipes to provide such connections.
- g. Water pipe entries into the building shall be in accordance with those of the JSD's code of practice ².
- h. The use of pre-manufactured, unjointed manholes are preferred. The manhole should be placed on a properly prepared foundation.
- i. Use flexible couplings on either side of manholes.
- j. Water-borne sewerage reticulation must be installed. French drains are unacceptable.
- k. A detailed sanitation and water reticulation plan should be drawn up for the development

2 JSD Code o

JSD Code of Practice reference

according to the local geological setting and engineering geological characteristics. The plan must be incorporated into the services management system of the local authority.

3. Storm water drainage

- No accumulation of surface water is to be permitted and the <u>entire</u> development must be properly drained.
- b. A minimum gradient of 1:150 should be maintained along storm-water systems.
- c. Brick and pre-cast concrete walls must be so designed as to provide drainage ports at ground level permitting passage of maximum probable volumes of water.
- d. When courtyards are designed the free flow of surface water should be ensured. Where gutter downpipes are to be found in such a courtyard, a lined canal should permit passage of water into a drain or onto the lawn away from the structure. The courtyard should preferably be paved and no garden beds should be created at gutter discharge points. Lawns must be graded in such a way to facilitate drainage.
- e. In order to deal with rainwater run-off from the roofs of structures the following is recommended:
 - Down-pipes should discharge into a lined or pre-cast furrow. This furrow should remove the water from the structure. The storm water should be trained, without ponding, off the property and into the municipal storm water system.
 - If no guttering is to be utilized (not recommended), then a sealed surface with a width of 1,5m should be cast along those walls of the structure where water will be discharged from the roof. Roof water will cascade off this sloping roof onto the apron into a lined or pre-cast furrow. The storm water should be drained, without ponding, off the property and into the municipal storm water system.
 - The ground immediately against the buildings shall be shaped to fall in excess of 75 mm over the first 1,5 m beyond the perimeter of the building, from where it shall drain freely away from housing units. Apron slabs, where provided, shall have the same fall.
- f. All ponds, watercourses and road surfaces shall be rendered impervious.
- g. No trees shall be planted within 1,5 times their eventual height from the line of storm water services.
- The storm water drainage system shall incorporate measures to ensure water tightness of conduits and other compartments. Whenever possible, storm water should be channeled in lined, surface canals.
- Concrete non-pressure pipes should be of the spigot and socket type with rubber ring seals.
 Joints in box culverts, channels etc should be sealed.
- j. Storm water drainage conduits shall be constructed at gradients that will not permit the deposition of silt, or sand, of the type present in the catchment area

4. Trenching

- a. Trenches and excavation works should be opened and closed as rapidly as possible. Avoid leaving trenches open over weekends or holidays. All trenches and excavation works must be properly backfilled and compacted according to specifications given in subclause 5.2.4 of SABS 1200 DA, but specifically to ground surface to prevent them acting as French drains. Once services/cables are installed and backfilling is completed, it must be ensured that ground surface is graded to match the slope of the surrounding area. No rocks in the top layer.
- Berms should be constructed on the up-slope side of trenches to prevent the inflow of water during storms.
- c. The fall of trenches shall be away from buildings. Wherever practical, service trenches shall not be excavated along the length of housing units within the first 3 m beyond the perimeter of such units.
- d. No ponding of surface water is to be permitted over, in, or in the vicinity of trenches and excavations.

5. Roads

- a. Ensure that roadways are in fact placed below the site level so as to facilitate drainage. If the road network is the sole storm water system, in a township, care must be taken that the roads are surfaced.
- b. Ponding of surface water on or next to roads that are not tarred should be avoided.
- c. Roadways which have a gradient of less than 1:80 shall be surfaced/sealed.
- d. The velocity of the 1 in 20 year storm water, flowing along unsurfaced roadways shall not exceed 1,5 m/s.

6. Swimming pools

The following minimum requirements must exist:

Construction:

- a. The design, construction and use of the swimming pool should at all times be to the satisfaction of the local city engineer, who should be aware of the requirements of swimming pools in dolomitic areas.
- b. The swimming pool must be designed as an *independent unit, which will not give way or distort*. The sides or floor of the pool should not crack in the event of any ground movement underneath or nearby the swimming pool.

- c. The swimming pool may be constructed from concrete, metal or any other suitable material on condition that the design conforms to condition (7a) above.
- d. All water pipes, pumps and connections should be installed either in the open, on the surface, or in service canals where these may be inspected or repaired without access problems.
- e. The swimming pool should be built so as to prevent any rain water flowing into or towards the pool.

Maintenance and responsibilities

- f. All back wash water must be discharged *directly* into the main storm water line.
- g. Any abnormal loss of water from the pool as well as any noticeable ground movement (cracks forming in the ground or in the pool) must be reported by the stand owner to the Home Owners Association or Body Corporate and the local council.
- h. It is important to note that the responsibility of checking pipes to and from the pool, the handling of run-off water from the pool as well as the repairing of cracks in the pool and replacing of leaking pipes lies solely with the stand owner. Negligence could result in instability.

APPENDIX H

EXAMPLE OF DOLOMITE RISK MANAGMENT PLAN

GENERALISED DOLOMITE RISK MANAGEMENT PLAN FOR MONAVONI EXTENSIONS 43 and 44, CENTURION (TSHWANE METRO), GAUTENG.

1 INTRODUCTION

Urban development is generally expected to have a negative impact on the metastable conditions prevalent in a karst (dolomitic) environment. Consequently the appropriate design of the development is of importance in ensuring long-term safety and stability. The dolomite stability investigation assists in the appropriate selection of water precautionary measures through the risk characterization of the site. Although appropriate design and the implementation of precautionary measures form the cornerstones of a sustainable development, it is vitally important that the concepts laid out in the water precautionary measures should form part of a risk management system. Such a system should incorporate steps to mitigate risk before, during and after construction.

The results of the investigation enable the consultant to recommend suitable design concepts and the most appropriate water precautionary measures for the development. The consultant must advise the developer on the implementation of water precautionary measures prior to the commencement of construction. Such measures must include the handling of storm water during construction. It is not appropriate for an entire suite of general precautionary measures to be selected, trusting that the developer and engineer will know to implement those measures which are most suitable and eliminate any that are not locally applicable.

The consultant will then also be in a position to design an appropriate risk management plan. It is thus important that the recommendations made by the consultant receive sufficient attention. This plan should, at least, consist of the following: precautionary and remedial measures, monitoring (of structures and infrastructure, as well as ground surface), maintenance, the identification of unacceptable practices, vigilance, emergency procedures and rehabilitation, the assimilation of data (into a databank), continual reassessment and associated responsibilities and governance.

2 MANAGEMENT AT TOWNSHIP LEVEL

During construction it is the responsibility of the developer to ensure that a risk management plan is designed and implemented. Once the development is complete, it becomes the responsibility of that owner (Owners' Association[HOA] or other appointed body [OAB]). For this reason it is very important that a risk management plan exists and has been implemented so that the owners/tenants will be in the position to take over meaningful responsibility. The owner must know if there was any ground movement or suggestions of instability observed during the construction phase. Any potential problem areas identified at the development phase must be highlighted to the HOA/OAB management.

2.1 Precautionary measures

All precautionary measures recommended in the dolomite stability report and any additional measures recommended by the infrastructure (services) engineer during construction must form part of a document representing the foundation of the Risk Management databank.

Precautionary measures must be adhered to throughout the development. Where remedial action is recommended as a precautionary measure, this must be undertaken immediately. Remedial action implies the improvement or remedying of an existing ground condition that may, or may not, exist as a result of poor storm water management but which has not resulted as yet in sinkhole or doline formation. For example, the re-landscaping of an area to promote proper drainage, and/or the compaction of soil to render the ground less pervious may be deemed necessary.

Owners/tenants must be made aware of their responsibility in contributing to the overall stability of the development by their continued implementation of the recommended precautionary measures at individual stand/unit level.

2.2 Responsible Persons

Responsible individuals must be identified by the managing agent for various tasks that need to

be implemented regarding the Risk Management Plan (RMP). Responsibilities include ensuring the monitoring program takes place and information so obtained is properly recorded in the databank. Details of the responsibilities (job descriptions) must be unambiguously indicated to each individual and a record maintained of these responsibilities.

An important appointment is the individual involved in implementing emergency procedures. This person should be properly versed in the procedures to be followed if and when some form of instability occurs. Telephone numbers of various contact persons must be obtained and maintained at an accessible locality.

Services to be contact include

- i) City Emergency services.
- ii) Tshwane Engineer (Centurion division).
- iii) Engineer involved in infrastructure design.
- iv) Engineering geologist involved in stability report (if necessary).

2.3 Monitoring

Certain procedures must be attended to as part of the monitoring schedule (i.e. the frequency of various tasks and the manner in which they will be undertaken). A responsible person must be assigned with the task of co-ordinating this programme.

Storm Water Management Plan

The following should be addressed:

- Storm water should not pond anywhere on the property for lengthy periods.
- 2) An appointed person must appraise the surface drainage of the development immediately after a heavy downpour. Areas of surface ponding must be noted and action must be undertaken to ensure similar problems do not occur in the future. The location of the ponding, the remedial action and date thereof must be recorded and retained in the databank. This process should be undertaken at the beginning of each wet season.
- 3) Surface drainage should preferably take place in open, lined channels that discharge into the storm water canal on the eastern side of the development. Debris in the channels should be cleared before each wet season.

As a crucial part of the Risk Management System, attention must be given to the surface drainage on the entire development. All storm water run-off should drain off the land into the municipal storm water system which in turn must flow into the regional storm water system.

Regional Storm Water Management Plan

The storm water must be integrated into a Regional Storm Water Management Plan, which pertains to the area outside the boundaries of the development. This plan must form part of a Regional Risk Management Strategy (Tshwane Local Council). All concepts of the development's Risk Management Plan must be meshed with those of the Regional Risk Management Strategy.

Monitoring comprises two parts:

- i) Infrastructure monitoring: This entails the inspection of water-bearing bulk services, communal buildings, roads and public open spaces within the township.
- Ground-surface monitoring: This entails the inspection of the ground-surface as it is disturbed and affected by man's activities.

Monitoring practices may differ from stability zone to stability zone within a development. Some higher risk zones may have more stringent precautionary measures imposed on them and might need to be monitored on a more frequent basis. This could be monthly, quarterly or yearly.

i) Infrastructure Monitoring

Seasonal interval basis

- a) Visual checks for debris in open storm water channels at the start of the rainy season and after heavy storms.
- b) Visual checks for water flowing out of storm water pipes (where practical) at the start of the rainy season and after heavy storms. Observation positions should be indicated on the services plan.
- c) Examine buildings for cracks at the start of the rainy season.
- On a short interval basis (monthly)

- d) Visual checks done for outside dripping taps and pressure valves (in parks and open spaces).
- e) Visual checks for damp areas.
- f) Visual checks for water flowing out of sewer manholes.
- g) Visual check for over-wetting of gardens.
- h) Visual check for blocked drainage ports in perimeter walls.

On an intermediate interval basis (annually or less frequently as warranted)

In many instances visual inspections may not be sufficient. It may be necessary to undertake regular air and water tests on services.

- <u>Sewer lines</u> should be inspected using CCTV after the first year of service and then every 4-5 years thereafter. All records of such tests must be contained in the databank.
- <u>Water pipes</u> with a valve where the pipe joins the building will allow testing without too much difficulty. Water meter readings taken when the valve is closed should give an indication if large leaks have developed.

ii) Ground-surface Monitoring

Ground-surface monitoring may be undertaken visually on a regular basis.

- a) Any signs of cracking either in structures or in the ground surface are indicative of some of movement. These cracks are often the precursor to more serious instability. The cause of cracking should be sought without delay. Cracks should be measured at the same place each time. A pencil line across a crack will ensure the same point is measured repeatedly. Dates and amount of movement must be recorded.
- b) Areas of unnaturally vibrant growth may be indicative of excessive moisture in the soil from leaking, buried wet services.
- c) A plan indicating the positions of the appropriate sewer inspection manholes must available in the databank.

2.4 Maintenance

An Infrastructure Maintenance Plan must take cognisance of the type of materials used in the installation of services (e.g. type piping used and trench backfill specifications). High risk zones should receive priority for the repair of any infrastructure. It is important to establish the location of all piping. This should be superimposed on the stability zonation to permit the prioritization of maintenance programmes. It is essential that a copy of this information is always present in the HOA/OAB maintenance (manager's) office and within the databank.

Details of all maintenance tasks, such as routine replacement, repair after damage or instability, the contractor responsible etc must be recorded. These records must be lodged in the databank.

All maintenance should be done pro-actively, i.e. consider when pipes will have to be replaced/considered for replacement before instability is triggered, rather than reactively. This method should go a long way to ensuring stability. All excavated trenches should be inspected and profiled for the identification of potentially poor conditions, which may require immediate investigation.

2.5 Education and vigilance

Environment awareness and understanding should be fostered among all employees. This campaign must be led by management with new employees being briefed. As part of this campaign, people should understand what impact the concentrated infiltration of surface water may have on the stability of the area. This will lead to better vigilance and the timeous reporting of problems. The correct channel of reporting any incident must be clearly understood by all employees. Any responsible person involved in emergency procedures must be readily available.

2.6 Emergency Reaction Plan

A responsible person must be appointed to manage any emergency situation. The person must know, for example, where to cut off the water supply if the rupturing of piping caused, or resulted from, the instability. It must be established when evacuation of a building is justified. Funds should be set aside for these eventualities.

An emergency procedure should include the following

 An area within 20m surrounding the sinkhole (or doline) should be evacuated immediately.

ii) The Tshwane Emergency services (fire services) should be contacted immediately.

iii) The sinkhole (or doline) must be cordoned off to prevent unsuspecting people getting too close to the sinkhole.

iv) The Engineers department of the Tshwane Metro must be informed of the sinkhole immediately.

v) A professional team consisting of an engineering geologist, geotechnical and structural engineers must be appointed to investigate the sinkhole. This should be done as soon as possible to prevent further damage to the affected area.

2.6 Rehabilitation

Rehabilitation or the repairing of damaged land may be required. These activities have the stabilization of the environment as their common goal, and should be undertaken as soon as possible to prevent further damage to the affected area. A maintenance team or a responsible person should be familiar with the practices for the rehabilitation of a sinkhole. It may be prudent to appoint a professional team to manage major rehabilitation.

2.7 Databank

A databank, be it in electronic or hard copy form, is an important part of a risk management system because it allows for meaningful management even when the persons responsible for the initiation of the project, who carry intimate knowledge of the site, no longer form part of the management of the development. This databank must be the responsibility of management. A maintenance manager, if appointed, would be the ideal custodian of the information.

A databank should contain the following:

- the dolomite stability and geotechnical report
- relevant reports and correspondence from Geoscience and Local Authorities
- layout plans with location of all services (water, sewer and storm water). Valve positions must also be indicated
- the zonation map
- records of inspection and testing
- records of maintenance (detailing when, how and what was done)
- a register of damaged structures
- a record of sinkhole and doline occurrences (with rehabilitation taken)

2.8 Reassessment

In order to ensure that the Risk Management Plan is functioning and fully addresses all presently known issues as well as possible future issues, reassessment of the entire Risk Management Plan on a five-yearly basis will be essential. This exercise should involve the evaluation of the present Plan in context of the requirements of the report. Notes should be made of weaknesses in the Plan as well as necessary additions, which may have become evident in the five-year period.

3. MANAGEMENT AT LOCAL COUNCIL LEVEL

A local authority (Tshwane Metro) should have a Risk Management Strategy. The Strategy must give consideration to aspects such as increased run-off from additional developments, stormwater system capacity, contingency plans etc. The strategy must be flexible enough to incorporate the individual risk management plans for various developments.

Inspectors will need to be appointed to undertake the work originating from the requirements of the management system. Maintenance checks of infrastructure, the inspection of buildings, and the detection and repair/remediation of leaking services are amongst the tasks that will need to be undertaken. The inspector should put the findings on record and ensure that it is entered into a database. Inspectors should be aware or educated as to what to look for (ponding of water, cracks in the ground) so that appropriate action can be taken. Inspectors should be aware of the procedures to be followed in the event of an emergency (in the event of sinkhole formation), and should know who to contact and when evacuation is necessary. A member or members at the local authority should be aware of the methods used in the backfilling of sinkholes. Should sinkholes develop, monitoring of any backfilled sinkholes should then be set in place.

E Shedden (Pr Sci Nat) RELLY MILNER AND SHEDDEN

OCTOBER 2009

APPENDIX I

DRAFT SANS 1936-1; PART 1, TABLES 1 & 2

-		Designation	2		A1 Agricult irrigatio	A2 Agricult Botanio ranges, public c	A3 Agricultur irrigation water. Pa that are n pastures.		C1 Places of del hospitals, ho homes for th populations r calculated in A21 of the N Regulations.	C2 Railway	C3 Places sports (instituti univers exhibiti	C4 High ris popular calcula
2	Land usage	Description		a	Agriculture that requires intensive irrigation excluding flood irrigation.	Agriculture that requires limited irrigation Botanical gardens, sports fields driving ranges, golf courses, parkland and public open spaces.	e that does not require in any form or the storage of rkland and public open spaces ot irrigated and grazing	Ŭ	Places of detention, police stations, hospitals, hostels, hotels and institutional homes for the handicapped or aged with populations not exceeding those calculated in accordance with Regulation A21 of the National Building Regulations.	Railway stations, shops, wholesale stores, offices.	Places of worship, theatrical, indoor sports or public assembly venues, other institutional land uses, such as universities, schools, colleges, libraries, exhibition halls and museums.	High rise commercial developments with populations not exceeding those calculated in accordance with Regulation
3	=	1	cultural, recre	olomite area				ommercial ar	8	D2 + FPN	OS TAPI	D2 + FPI
4	herent risk cli	2	ational and p	designation				id miscellane	P	2	~	
5	ass determine	3	Agricultural, recreational and private and public open spaces	Dolomite area designation and footprint investigation	D2	03	6 N	Commercial and miscellaneous pon-residential usages	B3 + FPI		6	
9	od in accorda	4	blic open spa	Investigation		NO.	De la composición de la compos	fential usage:		D3 + FPI	D3 + FPI	D3 + FPI
7	nce with the	5	ces		1	20	D1/D2	8				
8	requirements	9			D3	D3						
0 0	Inherent risk class determined in accordance with the requirements of SANS 1936-2	7			D3	ß			8		8	
9	6-2	60			D3/D4	D3/D4				D4		D4

SANS 1936-1:2009 Edition 1

rable 1 (continued)

-	2	1-1	1936-2	o netrona in port	ce with the c	equirements (of SANS 1936	-2
	Land usage	ŝ	Jerent risk class deteil					
Designation	Description	1	2 3	4	2	9	1	×
S	Light (dry) industrial developments, dry manufacturing, commercial uses such as warehousing, packaging, etc.	D2 + FPI		D3 + FPI	FPI			5
පී	Fuel depots, processing plants or any other areas for the storage of liquids.	D2 + FPI/ D3 + FPI		D3 + FPI	10		D4	
CJ	Outdoor storage facilities, stock yards, container depots, etc.	D2 + FPI		8	Ida			8
8	Waste sites, cemeteries, slimes dams, etc.	D2 + FPI	D32 + FPI in dry areas with deep groundwater levels	evels		۵	D4	
60	Parking areas	D2/D3		8				2
C10	Parking garages	D2/D3	P.C.	D37. FPI			D4	
			Low rise dwelling units	1.1.1.				
RL1	s 3 storeys with 80 to 120 units per hectare evenly distributed and a population not exceeding 600 people per hectare.	D2 + FPI /D3 + FPI	Pillo	2	5			
RL2	S storeys with 40 to 80 units per hectare evenly distributed and a population not exceeding 400 people per hectare.	02 + FPI /03 + FPI	D3 + FPI	12			D4	
RL3	s3 storeys with less than 40 units per hectare evenity distributed, and a population of s 200 people per hectare.	D24 PPI	D3+FPI	F		ц.,	D4	

ų,

SANS 1936-1:2009 Edition 1

Land usage Inherent risk class determined in accordance with the requirements of SANS 1936-2 Designation Description 1 2 3 4 5 6 7 Method Description 1 2 3 4 5 6 7 Method Description 1 2 3 4 5 6 7 No Seto beciption 1 2 3 4 5 6 7 No Seto beciption 1 2 3 0 0 0 7 0 RN3 2 to 05 seto be periments D2/D3 D3 D4 D3 D4 D4 D4 N 2 col peciptic per hectare. D2/D3 D3 D3 D3 D4 D4 D4 KN3 2 col peciptic per hectare. D2/D3 D3 D3 D3 D4 D3	0		
Description 1 Weiling houses per hectare D2/D3 of \$\$ 300 people per hectare D2/D3 weiling houses per hectare D2/D3 an of \$\$ 200 people per D2/D3 not \$\$ 200 people per D2/D3 nds per hectare with 1 000 to D2/D3 nds per hectare D2/D3 inds per hectare D2/D3 ings, <2 stands per hectare D2/FPI ings, <2 stands per hectare D2/D3 i of \$ 800 people per hectare D3 + FPI i of \$ 600 people per hectare D3 + FPI i of \$ 600 people per hectare D3 + FPI	ined in accordance with the requ	irements of SANS 1936-2	
welling houses per hectare D2/D3 welling houses per hectare D2/D3 of \$ 300 people per hectare D2/D3 welling houses per hectare D2/D3 welling houses per hectare D2/D3 a n of \$ 200 people per D2/D3 nds per hectare with 1 000 to D2/D3 tands, and a population of D2/D3 e per hectare D2/D3 ings, <2 stands per hectare D2/D3 s > 4 000 m², and a population of D2/D3 e per hectare. D2/D3 s with a population of \$ 1500 D2 + FPI r hectare. D2 /D3 s with a coverage ratio of D2 + FPI r hectare. D2 /D3 s with a coverage ratio of D2 + FPI r of \$ 800 people per hectare. D2 + FPI s with a coverage ratio of D2 + FPI r of \$ 800 people per hectare. D2 + FPI r of \$ 800 people per hectare. D2 + FPI	4 5	6 7	80
welling houses per hectare D2/D3 s larger than 150 m ² , and a of \$ 300 people per hectare. D2/D3 welling houses per hectare D2/D3 s no smaller than 300 m ² , and on of \$ 200 people per a not \$ 200 people per hectare with 1 000 to a per hectare with 1 000 to tands, and a population of e per hectare. D2/D3 tands, and a population of e per hectare. D2/D3 s >4 000 m ² , and a population ople per hectare. D2/D3 s >4 000 m ² , and a population ople per hectare. D2/D3 s >4 000 m ² , and a population ople per hectare. D2/D3 s with a population of \$ 1500 (D3 + FPI not \$ 800 people per hectare. D3 + FPI s with a coverage ratio of s with a coverage ratio			
welling houses per hectare D2/D3 welling houses per hectare D2/D3 a n of ≤ 200 people per D2/D3 nds per hectare with 1 000 to D2/D3 nds per hectare. D2/D3 ings, <2 stands per hectare	2	D4	
nds per hectare with 1 000 to D2/D3 tands, and a population of e per hectare. ings, <2 stands per hectare s >4 000 m ² , and a population ople per hectare. s with a population of \$ 1 500 D2 + FPI r hectare. s with a coverage ratio of D2 + FPI r hectare. of \$ 800 people per hectare. s with a coverage ratio of D2 + FPI r of \$ 800 people per hectare. s with a coverage ratio of D2 + FPI r of \$ 800 people per hectare. s with a coverage ratio of D2 + FPI r of \$ 600 people per hectare.	B	54	
Ings, <2 stands per hectare s >4 000 m ² , and a population ople per hectare. s with a population of \$ 1 500 D2 + FPI r hectare. s with a coverage ratio of 103 + FPI 103 + FPI 103 + FPI 103 + FPI 104 EXERT 105 & 800 people per hectare. s with a coverage ratio of nigher than 10 storeys, and a n of \$ 600 people per hectare.	D3 + FPN D4	2	
s with a population of s 1 500 D2 + FPI rhectare. s with a coverage ratio of uigher than 10 storeys, and a t of s 800 people per hectare. s with a coverage ratio of s with a coverage ratio of s with a coverage ratio of nigher than 10 storeys, and a n of s 600 people per hectare.	D3+FPIA D4	D4ª	
 3 Storeys with a population of s 1 500 D2 + FPI people per hectare. 3 Storeys with a coverage ratio of s 0,4, no higher than 10 storeys, and a population of s 800 people per hectare. 3 Storeys with a coverage ratio of s 0,3, no higher than 10 storeys, and a population of s 600 people per hectare. 			
 > 3 Storeys with a coverage ratio of \$ 0.4, no higher than 10 storeys, and a population of \$ 800 people per hectare. > 3 Storeys with a coverage ratio of \$ 0,3, no higher than 10 storeys, and a population of \$ 600 people per hectare. 	- D4		
> 3 Storeys with a coverage ratio of \$ 0,3, no higher than 10 storeys, and a population of \$ 600 people per hectare.	D 3+ FPVD4 (preferably with basement)	Z	
1	D 3+ FPI/D4 (preferably with basement) basement)	R	
FPI = a footprint investigation conducted in accordance with the requirements of SANS 1936-2.			
NOTE 1 D1, D2, D3 and D4 have the meanings assigned in table 3. NOTE 2 In D4 areas, establish footprint of inherent risk class 1 to 5 conditions in inherent risk class 6 to 8 areas.	ass 6 to 8 areas.		

Table 1 (concluded)

SANS 1936-1:2009 Edition 1

Table 2 — Permissible infrastructure type based on inherent risk class	
and dolomite area designations	

	1	2	3	4	5	6		7	8
Infrastructure type			ent risk	class de requirem	termin ents of	ed in ac SANS 1	cordar 1936-2	nce witi	1 the
Designation	Description	1 2 3 4 5 6				7	8		
g	Dolor	nite area	a desigr	nation		1.2.20	1.575		
11	Primary and secondary roads, railway lines, power lines.	D2				D3			
12	Bulk pipelines, including water, sewer, fuel and gas lines.	D2	D3						
13	Reservoirs and public swimming pools.		C)3		D3/ D4	D3/ D4	X	D4
14	Attenuation and retention ponds for stormwater management and artificial lakes.	D3		D3/D4	4	6	Ľ	240	>
15	Dams	D3	8			_D4 /	0,0	-	-
16	Runways				D3	UV,	1		-

Table 3 — Dolomite area designations

1	~ 22 (0,2
Dolomite area designation	Description
D1	No precautionary measures are required to support development.
D2	Only general precautionary measures that are intended to prevent the concentrated ingress of water into the ground in accordance with the requirements of SANS 1936-3, are required to support development.
D3	Precautionary measures in addition to those pertaining to the prevention of concentrated ingress of water into the ground are required to support development in accordance with the relevant requirements of SANS 1936-3.
D4	No precautionary measures can reduce the development risk to acceptable limits so as to support development, or the required precautionary measures are impractical to implement.

NOTE Dolomite area/designations indicate the levels of precaded by improve the development risk development. They relate to the precautionary measures required to improve the development risk associated with a parcel of land that has a particular inherent risk class to an acceptable level. In other words, they indicate what needs to be done to a parcel of land to support development.

4.3 Repair of sinkholes

4.3.1 Sinkholes, where they occur on land other than agricultural or undeveloped areas other than recreational areas and public accessible spaces, shall be repaired in accordance with the requirements of SANS 2001-BE4 under the direction of a competent person.

Table 2 — Permissible infrastructure type based on inherent risk class	
and dolomite area designations	

1			3	4	5	6	3	7	8
Infrastructure type			ent risk	class de requirem	ents of	ed in ac SANS	corda 1936-2	nce with	n the
Designation	Description	1	1 2 3 4 5 6				7	8	
		nite area	a desigr	nation					
11	Primary and secondary roads, railway lines, power lines.	D2			2013. SAM	D3			
12	Bulk pipelines, including water, sewer, fuel and gas lines.	D2	D3						
13	Reservoirs and public swimming pools.		٥	3		D3/ D4	D3/ D4	100 B	D4
14	Attenuation and retention ponds for stormwater management and artificial lakes.	D3		D3/D4	(6	<u>S</u>	94))	>
15	Dams	D3	<u></u> D4 ()						
16	Runways		D3 CVV						

Table 3 — Dolomite area designations

1	\sim 2 $(0, >$
Dolomite area designation	Description
D1	No precautionary measures are required to support development.
D2	Only general precautionary measures that are intended to prevent the concentrated ingress of water into the ground in accordance with the requirements of SANS 1936-3, are required to support development.
D3	Precautionary measures in addition to those pertaining to the prevention of concentrated ingress of water into the ground are required to support development in accordance with the relevant requirements of SANS 1936-3.
D4	No precautionary measures can reduce the development risk to acceptable limits so as to support development, or the required precautionary measures are impractical to implement.

NOTE Dolomite area designations indicate the levels of precadulonary measures required to improve the development risk development. They relate to the precautionary measures required to improve the development risk associated with a parcel of land that has a particular inherent risk class to an acceptable level. In other words, they indicate what needs to be done to a parcel of land to support development.

4.3 Repair of sinkholes

4.3.1 Sinkholes, where they occur on land other than agricultural or undeveloped areas other than recreational areas and public accessible spaces, shall be repaired in accordance with the requirements of SANS 2001-BE4 under the direction of a competent person.

Council for Geoscience

Private Bag X112 Pretoria 0001 SOUTHAFRICA 280 Pretoria Street Silverton Pretoria Reception: +27 (0)12 841 1911 Internet: http://www.geoscience.org.za

Our Reference: F3761.1 Monavoni Ext 43 and 44 Your Reference: 091124mana43 Enquiries: S Richardson Tel: (012) 841 1150 Fax: 0866769546 No. of Pages: 5

12 November 2009

Tshwane Metropolitan Municipality Department Roads and Stormwater: Geology Section Centurion Offices P O Box 14013 Lyttelton 0140

Attention: The Deputy Manager: Infrastructure Planning and Management Hannes Claasen

By Fax: 012 358 3361

The Deputy Manager Regional Spatial Planning Lettie van der Berg

By Fax: 012 358 3592

Dear Sir / Madam,

PROPOSED TOWWNSHIPS OF MONAVONI EXTENSIONS 43 AND 44

The firm, Relly, Milner and Shedden Consulting Earth Scientists (RMS) submitted their report: "A dolomite stability investigation for a proposed Townships of Monavoni Extensions 43 and 44 on Portion 1 of Stukgrond 382-JR, Centurion (Tshwane Metro), Gauteng", dated October 2009, on behalf of there client M & T development, to this office for comment on 30 October 2009. This office acts as Agent to your Municipality in auditing the geoscientific work and emanating recommendations.

The purpose of this investigation was to collate existing borehole information from various phases of exploratory drilling over the past 5 years and then to assess the dolomite stability of the site.

Monavoni Extension 43 and 44 occupy a rectangular area of approximately 50ha. The Extensions are bounded by a farm portion in the north, by various holdings in the west and south and by the proposed extension to Mona Avenue in the east. The entire site is undeveloped farmland previously used for cattle grazing.

A composite residual gravity map covering the Greater Monavoni Area was used. The composite map made up of a number of separate surveys undertaken between 2004 and 2006. A total of fifty-nine rotary percussion boreholes were drilled in and immediately adjacent to Extension 43 and 44. Twenty –nine of these boreholes were drilled during the current investigation.

Groundwater strikes occurred at depths of between 25m and 35m below the surface in three of the boreholes drilled during the current investigation (BH's 43/04, 44/14, 44/17), Rest water levels were recorded at depths between 7m and 10m in 11 of the new boreholes. No groundwater strikes were recorded in the previously drilled boreholes nor were any rest water levels recorded. A report by P.Hobbs (2004) of the larger area states that the groundwater rest level is unlikely to experience a natural fluctuation of more then 8m, and a maximum fluctuation of about 5m has taken place over the past 25 years. Natural fluctuations of between 5 and 8m should not effect the stability of the site. The potential for significant dewatering is relatively low as the area is not intensely farmed. Dewatering is not assessed as a significant threat to the overall stability of the site.

Having reviewed the report, we submit that:

- a) RMS has classified the site into 5 zones, namely:
 - Zone A: Inherent Risk Class (IRC) 1; this zone is an elongated area in the northern half of Extension 44. Boreholes intersect residual syenite overlying syenite bedrock. Dolomite bedrock is intersected below 25m in BH 44/14. Four boreholes were terminated in solid syenite bedrock which occurs at depths of between 6m and 18m. There is no restriction on the type of development that may be considered, most types will require additional exploratory work.
 - Zone B: (IRC) 3a; this zone occupies an elongated area immediately south of Zone A and along the eastern boundary and a small portion on the south western corner of the site. In the northern zone portion and south eastern portion, residual syenite is intersected between 6m and 15m overlying a 2m wad layer which in turn overlies dolomite bedrock. The south western corner is characterised by intrusive syenite at depth. The overburden ranges from 13m of chert rubble to shale and quartzite of the black reef formation. Commercial and restricted residential development may be considered provided the

appropriate requirements of the draft SANS 1936 document are implemented including footprint investigations.

- Zone C: (IRC) 3b; this zone is located in the central portion of the site and a pocket occurs in the northern section. The syenite layer encountered in these boreholes is about 2m up to 7m thick. Waddy layers occur between the syenite and dolomite bedrock. In the northern pocket no dolomite bedrock is intersected. Most types of development considered suitable for this zone will require footprint investigations for all structures.
- Zone D: (IRC) 5: this zone occurs along the western boundary and a small portion in the extreme north east. Boreholes intersect dolomite at shallow depths. Any development will require footprint investigations for all structures.
- Zone E: (IRC) 6//7: this zones comprises two elongate portions in the southern and central portion of the site. Boreholes intersect fairly thick layers of wad, dolomite bedrock is intersected below depths ranging from 6m to 17m. Significant dewatering could increase the risk of doline development as a rest level recorded in BH 43/04 indicates ground water to occur within wad-rich residual dolomite. Residential development should not be considered unless additional exploratory work, including detailed footprint investigations, confirms the presence of more favourable ground.

This Office is broadly in agreement with the risk assessment of the site. BH's 44/13 and 6521(39), however, should rather be incorporated into Zone D, IRC5.

- b) RMS has recommended the following development potential for the site:
 - Zone A: Inherent Risk Class (IRC) 1; No restrictions are placed on the types of development that may be considered on IRC 1 land provided spatial framework requirements are met. NHBRC D2.
 - Zone B: (IRC) 3a; certain restrictions are placed on types of residential development. Full title residential (RN3-4) on stands of 1000m² or greater is permissible (SANS 1936- draft), multi-storey low-rise (≤ 3 storeys [RL2-3]) and high –rise (> 3 but <10 [RH2-3]) residential development may be considered provided footprint investigations are undertaken. Most forms of commercial, retail and /or industrial development are permissible (C1 to C10) but all require footprint investigations. NHBRC D3.</p>
 - Zone C: (IRC) 3b; Normal residential development of not less than 1000m² stands and high-rise (> 3 but <10 [RH2-3]) and low rise (≤ 3 storeys [RL2-3]) residential development may be considered provided footprint investigations are undertaken for all muti-storey structures. Commercial, retail and /or industrial development may be considered (C1 to C10) but all require footprint investigations. NHBRC D3.
 - Zone D: (IRC) 5; Normal residential development of not less than 1000m² stands and high rise (> 3 but <10 [RH2-3]) residential development may be considered provided footprint investigations are undertaken for all muti-storey structures. Commercial, retail and /or industrial development may be considered. NHBRC D3.

 Zone E: (IRC) 6//7: Residential development is not recommended unless additional exploratory work, including detailed footprint investigations, confirms the presence of more favourable ground. This zone is best suited for commercial, retail and industrial development. Exploratory work is required to ensure suitable founding conditions.

The residential development types as set out by SANS: 1936:1 2009- draft is as follows:

- RN3- Normal residential: 2 to 10 stands per hectare with 1000 to 4000m² stands, and a population of ≤ 60 people per hectare.
- RN4- normal residential; Small holdings, <2 stands per hectare with stands >4000m², and a population of ≤ 25 people per hectare.
- RL2- Low rise residential: <3 storeys with 40 to 80 units per hectare evenly distributed and a population not exceeding 400 people per hectare.
- RL3- Low rise residential: <3 storeys with less than 40 units per hectare evenly distributed and a population not exceeding 200 people per hectare.
- RH2- high rise residential: > 3 Storeys with a coverage ratio of ≤ 0,4, no higher than 10 storeys, and a population of ≤ 800 people per hectare.
- RH3- high rise residential: > 3 Storeys with a coverage ratio of ≤ 0,3, no higher than 10 storeys, and a population of ≤ 600 people per hectare.

The development potential recommendations and NHBRC designations are supported, however it must be noted that some development types in Zone A: IRC 1 would be D3, rather than D2 and would require footprint investigations. Foot print investigations will be required for normal residential stands (>1000m²) in Zone D, IRC 5.

- b) The implementation of the NHBRC precautionary measures, as attached in Appendix G of the report, is essential.
- c) A Risk Management Plan, as attached in Appendix H of the report, must be drawn up for the specific site and implemented.

This Office supports the proposed Townships of Monavoni Extensions 43 & 44, conditional to the following:

- d) A site development plan must be submitted to this Office for Co-signing.
- e) All footprint investigations must be submitted to this Office.
- f) Any residential development must be enrolled with the NHBRC.
- g) The application of stringent water precautionary measures for this development is essential. The Competent Person must certify those measures implemented.

- h) The Builder must inform the professional team when the service/foundation trenches are open for inspection takes place. The results of these inspections and quality control must be recorded in a construction report (copy to the Local Authority and this Office).
- i) The professional team involved, including RMS, shall carefully consider the appropriate water precautionary measures and then ensure and finally certify that these have been implemented.
- j) Wet services may not be laid below structures. The Builder must certify that they have been placed as such.
- k) The engineer must incorporate guttering, downpipes, channels and adequate paving around the houses, which should always be functional. All stormwater must be discharged in the municipal stormwater system. Roof water may thus not cascade off the apron and directly into the soil. The stand should be landscaped in a way that the stormwater is channeled around the building. The site must be assessed after a heavy rainstorm to check that this water flows off the site properly.
- The Local Authority must implement a risk management system. Commenting on the suitability of stands within its jurisdiction is based on the premise that this system will be implemented.

This letter reflects the Council for Geoscience's view and approach to development on dolomite at this time, as reflected by the above date. These comments may not be viewed as open-ended. If a property changes ownership or land-use changes are made, the comment may in part or wholly no longer apply. This Office should be informed of such changes and the Competent Person responsible for the dolomite stability investigation should be given the opportunity to indicate the influence such changes could have on the overall stability.

For any further queries, please do not hesitate to contact this office.

Yours faithfully,

If you have any further queries, please do not hesitate to contact this office.

Yours faithfully,

G J HEATH ENGINEERING GEOSCIENCE UNIT

CC:

Relly, Milner and Shedden P O Box 32107 Glenstantia

Annexure J

Council for Geoscience

Private Bag X112 Pretoria 0001 SOUTHAFRICA 280 Pretoria Street Silverton Pretoria Reception: +27 (0)12 841 1911 Internet: http://www.geoscience.org.za

> Our Reference: F3761.1 Monavoni Ext 43 and 44 Your Reference: 091124mana43 Enquiries: S Richardson Tel: (012) 841 1150 Fax: 0866769546 No. of Pages: 5

> > 12 November 2009

Tshwane Metropolitan Municipality Department Roads and Stormwater: Geology Section Centurion Offices P O Box 14013 Lyttelton 0140

Attention: The Deputy Manager: Infrastructure Planning and Management Hannes Claasen

By Fax: 012 358 3361

The Deputy Manager Regional Spatial Planning Lettie van der Berg

By Fax: 012 358 3592

Dear Sir / Madam,

PROPOSED TOWWNSHIPS OF MONAVONI EXTENSIONS 43 AND 44

The firm, Relly, Milner and Shedden Consulting Earth Scientists (RMS) submitted their report: "A dolomite stability investigation for a proposed Townships of Monavoni Extensions 43 and 44 on Portion 1 of Stukgrond 382-JR, Centurion (Tshwane Metro), Gauteng", dated October 2009, on behalf of there client M & T development, to this office for comment on 30 October 2009. This office acts as Agent to your Municipality in auditing the geoscientific work and emanating recommendations.

The purpose of this investigation was to collate existing borehole information from various phases of exploratory drilling over the past 5 years and then to assess the dolomite stability of the site.

Monavoni Extension 43 and 44 occupy a rectangular area of approximately 50ha. The Extensions are bounded by a farm portion in the north, by various holdings in the west and south and by the proposed extension to Mona Avenue in the east. The entire site is undeveloped farmland previously used for cattle grazing.

A composite residual gravity map covering the Greater Monavoni Area was used. The composite map made up of a number of separate surveys undertaken between 2004 and 2006. A total of fifty-nine rotary percussion boreholes were drilled in and immediately adjacent to Extension 43 and 44. Twenty –nine of these boreholes were drilled during the current investigation.

Groundwater strikes occurred at depths of between 25m and 35m below the surface in three of the boreholes drilled during the current investigation (BH's 43/04, 44/14, 44/17), Rest water levels were recorded at depths between 7m and 10m in 11 of the new boreholes. No groundwater strikes were recorded in the previously drilled boreholes nor were any rest water levels recorded. A report by P.Hobbs (2004) of the larger area states that the groundwater rest level is unlikely to experience a natural fluctuation of more then 8m, and a maximum fluctuation of about 5m has taken place over the past 25 years. Natural fluctuations of between 5 and 8m should not effect the stability of the site. The potential for significant dewatering is relatively low as the area is not intensely farmed. Dewatering is not assessed as a significant threat to the overall stability of the site.

Having reviewed the report, we submit that:

1

- a) RMS has classified the site into 5 zones, namely:
 - Zone A: Inherent Risk Class (IRC) 1: this zone is an elongated area in the northern half of Extension 44. Boreholes intersect residual syenite overlying syenite bedrock. Dolomite bedrock is intersected below 25m in BH 44/14. Four boreholes were terminated in solid syenite bedrock which occurs at depths of between 6m and 18m. There is no restriction on the type of development that may be considered, most types will require additional exploratory work.
 - Zone B: (IRC) 3a: this zone occupies an elongated area immediately south of Zone A and along the eastern boundary and a small portion on the south western corner of the site. In the northern zone portion and south eastern portion, residual syenite is intersected between 6m and 15m overlying a 2m wad layer which in turn overlies dolomite bedrock. The south western corner is characterised by intrusive syenite at depth. The overburden ranges from 13m of chert rubble to shale and quartzite of the black reef formation. Commercial and restricted residential development may be considered provided the

2

appropriate requirements of the draft SANS 1936 document are implemented including footprint investigations.

- Zone C: (IRC) 3b: this zone is located in the central portion of the site and a pocket occurs in the northern section. The syenite layer encountered in these boreholes is about 2m up to 7m thick. Waddy layers occur between the syenite and dolomite bedrock. In the northern pocket no dolomite bedrock is intersected. Most types of development considered suitable for this zone will require footprint investigations for all structures.
- Zone D: (IRC) 5: this zone occurs along the western boundary and a small portion in the extreme north east. Boreholes intersect dolomite at shallow depths. Any development will require footprint investigations for all structures.
- Zone E: (IRC) 6//7: this zones comprises two elongate portions in the southern and central portion of the site. Boreholes intersect fairly thick layers of wad, dolomite bedrock is intersected below depths ranging from 6m to 17m. Significant dewatering could increase the risk of doline development as a rest level recorded in BH 43/04 indicates ground water to occur within wad-rich residual dolomite. Residential development should not be considered unless additional exploratory work, including detailed footprint investigations, confirms the presence of more favourable ground.

This Office is broadly in agreement with the risk assessment of the site. BH's 44/13 and 6521(39), however, should rather be incorporated into Zone D, IRC5.

b) RMS has recommended the following development potential for the site:

- Zone A: Inherent Risk Class (IRC) 1; No restrictions are placed on the types of development that may be considered on IRC 1 land provided spatial framework requirements are met. NHBRC D2.
- Zone B: (IRC) 3a: certain restrictions are placed on types of residential development. Full title residential (RN3-4) on stands of 1000m² or greater is permissible (SANS 1936- draft), multi-storey low-rise (≤ 3 storeys [RL2-3]) and high –rise (> 3 but <10 [RH2-3]) residential development may be considered provided footprint investigations are undertaken. Most forms of commercial, retail and /or industrial development are permissible (C1 to C10) but all require footprint investigations. NHBRC D3.</p>
- Zone C: (IRC) 3b; Normal residential development of not less than 1000m² stands and high-rise (> 3 but <10 [RH2-3]) and low rise (≤ 3 storeys [RL2-3]) residential development may be considered provided footprint investigations are undertaken for all muti-storey structures. Commercial, retail and /or industrial development may be considered (C1 to C10) but all require footprint investigations. NHBRC D3.
- Zone D: (IRC) 5; Normal residential development of not less than 1000m² stands and high rise (> 3 but <10 [RH2-3]) residential development may be considered provided footprint investigations are undertaken for all muti-storey structures. Commercial, retail and /or industrial development may be considered. NHBRC D3.

 Zone E: (IRC) 6//7; Residential development is not recommended unless additional exploratory work, including detailed footprint investigations, confirms the presence of more favourable ground. This zone is best suited for commercial, retail and industrial development. Exploratory work is required to ensure suitable founding conditions.

The residential development types as set out by SANS: 1936:1 2009- draft is as follows:

215

9670

0.62

- RN3- Normal residential: 2 to 10 stands per hectare with 1000 to 4000m² stands, and a population of ≤ 60 people per hectare.
- RN4- normal residential; Small holdings, <2 stands per hectare with stands >4000m², and a population of ≤ 25 people per hectare.
- RL2- Low rise residential: ≤3 storeys with 40 to 80 units per hectare evenly distributed and a population not exceeding 400 people per hectare.
- RL3- Low rise residential: <3 storeys with less than 40 units per hectare evenly distributed and a population not exceeding 200 people per hectare.
- RH2- high rise residential: > 3 Storeys with a coverage ratio of ≤ 0,4, no higher than 10 storeys, and a population of ≤ 800 people per hectare.
- RH3- high rise residential: > 3 Storeys with a coverage ratio of ≤ 0,3, no higher than 10 storeys, and a population of ≤ 600 people per hectare.

The development potential recommendations and NHBRC designations are supported, however it must be noted that some development types in Zone A: IRC 1 would be D3, rather than D2 and would require footprint investigations. Foot print investigations will be required for normal residential stands (>1000m²) in Zone D, IRC 5.

- b) The implementation of the NHBRC precautionary measures, as attached in Appendix G of the report, is essential.
- c) A Risk Management Plan, as attached in Appendix H of the report, must be drawn up for the specific site and implemented.

This Office supports the proposed Townships of Monavoni Extensions 43 & 44, conditional to the following:

- d) A site development plan must be submitted to this Office for Co-signing.
- e) All footprint investigations must be submitted to this Office.
- f) Any residential development must be enrolled with the NHBRC.
- g) The application of stringent water precautionary measures for this development is essential. The Competent Person must certify those measures implemented.

- h) The Builder must inform the professional team when the service/foundation trenches are open for inspection takes place. The results of these inspections and quality control must be recorded in a construction report (copy to the Local Authority and this Office).
- The professional team involved, including RMS, shall carefully consider the appropriate water precautionary measures and then ensure and finally certify that these have been implemented.
- j) Wet services may not be laid below structures. The Builder must certify that they have been placed as such.
- k) The engineer must incorporate guttering, downpipes, channels and adequate paving around the houses, which should always be functional. All stormwater must be discharged in the municipal stormwater system. Roof water may thus not cascade off the apron and directly into the soil. The stand should be landscaped in a way that the stormwater is channeled around the building. The site must be assessed after a heavy rainstorm to check that this water flows off the site properly.
- The Local Authority must implement a risk management system. Commenting on the suitability of stands within its jurisdiction is based on the premise that this system will be implemented.

This letter reflects the Council for Geoscience's view and approach to development on dolomite at this time, as reflected by the above date. These comments may not be viewed as open-ended. If a property changes ownership or land-use changes are made, the comment may in part or wholly no longer apply. This Office should be informed of such changes and the Competent Person responsible for the dolomite stability investigation should be given the opportunity to indicate the influence such changes could have on the overall stability.

For any further queries, please do not hesitate to contact this office.

Yours faithfully,

If you have any further queries, please do not hesitate to contact this office.

Yours faithfully,

G J HEATH ENGINEERING GEOSCIENCE UNIT

CC:

Relly, Milner and Shedden P O Box 32107 Glenstantia 0010

By Fax: 012 998 6890

69

ATTENTION: Mr Ed Shedden

Annexure K

Fauna and Flora Specialists

PO Box 886 Irene, 0062 Tel: 012-345 4891 Fax: 086 675 6136 Email: <u>Vanessam@lantic.net</u>

Flora and Fauna Habitat Assessment

of

MONAVONI EXTENSION 44

January 2009

GDACE reference number:

Report Compiled and edited by:Ms. Vanessa Marais of Galago EnvironmentalReport authors:Dr. I.L. Rautenbach (Pri.Sci. Nat: Ph.D, T.H.E.D.),Mr. W.D. Haacke (Pri. Sci. Nat: M.Sc), Mr. R.F.Geyser, Mrs. P. Lemmer (Cert. Sci. Nat: B.Sc.)'Dr. I.L. Rautenbach (Pri.Sci. Nat.)

EXECUTIVE SUMMARY

Galago Environmental CC was appointed to undertake a mammal, bird, reptile, amphibian and plant survey for Monavoni Extension 44 on Part of Portion 1 of the farm Stukgrond 382 JR (elsewhere referred to as the study site), scheduled for residential development.

The study site lies in the quarter degree grid square 2528CC (Centurion). Mucina and Rutherford (2006) classified the area as Carletonville Dolomite Grassland. The 35.26 ha study site lies in the north-western corner of the farm Stukgrond 382-JR, on the corner of Monument Drive and Mimosa Avenue. It consists of a northern and a southern portion. The strip of land in-between is probably reserved for a road. The northern portion borders on Monavoni X 50 and the southern portion borders on Monavoni X 43. Corners of both sections culminate against Amsterdam Road to the northwest. A continuous ditch bisects the northern section. Two power lines parallel to Monument Drive form the southwestern border of the southern portion and a model aeroplane airstrip is located near Amsterdam Road.

Four **plant communities** were identified on or within 200 meters of the study site:

- Natural primary grassland;
- Mixed alien and indigenous vegetation;
- Old cultivated fields; and
- Rocky outcrop vegetation.

From the **vegetation** study it was found that no Red-listed plant species were found. The Natural primary grassland (including the Rocky outcrop) on the site was deemed sensitive. The Orange-listed *Hypoxis hemerocallidea* (African potato) was found sparsely scattered in the Natural primary grassland and the Rocky outcrop vegetation habitats. Corridors of Natural primary grassland that have not been disturbed by services trenches should be excluded in all the planned new townships of Monavoni and on the neighbouring sites that are to be developed together with these sites. These corridors should be connected to the rocky outcrop on the study site and on the other portions that are being developed and to the *Acacia karroo* vegetation in the eastern part of Monavoni to facilitate connectivity. These areas must be properly managed throughout the lifespan of the project in terms of fire, eradication of exotics etc. to ensure continuous biodiversity.

The **mammals** study found that most, if not all the terrestrial species listed as potential occupants of the site, will be displaced as a result of the proposed development. This will have no effect on the global conservation status of most of the species. However, the loss of the three Red Listed species is regrettable, although when expressing the magnitude of the loss in statistical terms it would most probably be negligible.

The **avifauna** study found that although the habitat on the study site could still favour White-bellied Korhaan, it is doubtful if they will make use of the open grassland due to the human presence. The open grassland habitat on site offers suboptimal habitat for the Melodious Lark. This species has however been removed from GDACE's list of priority species. The development should not have a negative affect on any of the other Red Data bird species listed above due to the high level of human disturbance on site. In addition, there is a lack of sufficient breeding, foraging and breeding habitat for the mentioned Red Data bird species.

The **herpetological** study found that the site appears suitable for a relatively limited number of amphibian and reptile species. A specimen of the Striped Harlequin Snake (*Homoroselaps dorsalis*), a Red Data Species, has been recorded from the farm Swartkop 383 JR (Jacobsen, 1995), in this quarter degree grid cell. This proves the presence of this species in this area but it is practically impossible to confirm this record as occurring on this site. As this snake tends to live underground in burrows or tunnels, where it feeds exclusively on Thread Snakes (*Leptotyphlops* spp.), it is usually only found accidentally when dead termitaria are destroyed. To attempt to confirm the presence of this species in an area, it would be necessary to destroy a large number of dead termitaria, which would reduce the suitability of the area for the survival of this snake and other reptiles. Since it appears that this species occurs in relatively low densities it is impossible to suggest conservation measures.

Mitigation proposed is that corridors of natural vegetation be conserved and that connectivity be established between the rocky outcrop, natural grassland and the Acacia karoo vegetation to the east. Numerous specific mitigation measures are recommended for the construction phase of the proposed development.

TABLE OF CONTENTS

1.		DDUCTION	
2.	OBJE	CTIVES OF THE HABITAT STUDY	. 6
3.		E OF STUDY	-
4.		Y AREA	
5.		ODS	
5.1		etation survey	
5.2		na survey	
6.		LTS	
6.1	-	etation survey:	
	1.1	Vegetation communities	
	1.2	Medicinal plants	
-	1.3	Alien plants	
-	1.4	Orange-listed species	
-	1.5	Red-listed species	
	1.6	Natural primary grassland	
-	1.7	Mixed alien and indigenous vegetation.	
	1.8	Old cultivated fields	
-	1.9	Rocky outcrop vegetation	
6.2		nmals:	
6.2 6.3		auna:	
0.3 7.	пер	tiles and Amphibians: NGS AND POTENTIAL IMPLICATIONS	3U 24
7.1		a	
7.1		a na	
• • • • •	2.1	Mammals	-
	2.2	Avifauna	-
	2.3	Reptiles and Amphibians	
8.	-	ATIONS, ASSUMPTIONS AND GAPS IN KNOWLEDGE	
9.		MMENDED MITIGATION MEASURES	
10.		CLUSIONS	
11.		ATURE SOURCES	
		A: Sensitivity map	
APPE	NDIX E	B: Red and Orange-listed* plants of the 2528CC q.d.g.s	43
		5 F F F F	-

FIGURES:

Figure 1: Locality map of the study area	7
Figure 2: Vegetation communities	12

TABLES:

Table 1: Number of medicinal species in the various vegetation communities	13
Table 2: Plants recorded in the Natural primary grassland	15
Table 3: Plants recorded in the Old cultivated fields	18
Table 4: Plants recorded in the Rocky outcrop vegetation	20
Table 5: The mammals which were observed or deduced to occupy the site	22
Table 6: Mammal species positively confirmed from the study site.	23
Table 7: Bird species observed and that are likely to occur on the study site	25
Table 8: Red Data bird species recorded for the 2528CC q.d.g.c.	27
Table 9: Red Data bird species assessment for the 2528CC q.d.g.c	29
Table 10: The Reptiles and Amphibians that could occur on the site	30

1. INTRODUCTION

Galago Environmental CC was appointed to undertake a mammal, bird, reptile, amphibian and plant survey for Monavoni Extension 44 on Part of Portion 1 of the farm Stukgrond 382 JR (elsewhere referred to as the study site), scheduled for residential development.

The objective was to determine which species might still reside on the site. Special attention had to be given to the habitat requirements of all the Red Data species, which may occur in the area. This survey focuses on the current status of threatened vertebrate and plant species occurring, or which are likely to occur on the proposed development site, and a description of the available and sensitive habitats on the site.

2. OBJECTIVES OF THE HABITAT STUDY

- To assess the current status of the habitat component and current general conservation status of the property and offers recommendations about the preservation of the sensitive areas on the site;
- To list the perceptible flora of the site and to recommend steps to be taken should endangered, vulnerable or rare species be found;
- To provide lists of mammals, birds, reptiles, and amphibians which occur or might occur, and to identify species of conservation importance;
- To highlight potential impacts of the development on the fauna and flora of the study site; and
- To provide management recommendations to mitigate negative and enhance positive impacts should the proposed development be approved.

3. SCOPE OF STUDY

This report:

- Lists the more noticeable trees, shrubs, suffrutices, herbs, geophytes and grasses observed during the study;
- Indicates medicinal plants recorded and lists alien species;
- Comments on connectivity with natural vegetation on adjacent sites;
- Is a mammal, bird, reptile and amphibian survey based on sightings and literature, with comments on preferred habitats;
- Comments on ecological sensitive areas;
- Evaluates the conservation importance and significance of the site with special emphasis on the current status of resident threatened species;
- Offers recommendations to reduce or minimise impacts, should the proposed development be approved.

4. STUDY AREA

The study site lies in the quarter degree grid square 2528CC (Centurion). Mucina and Rutherford (2006) classified the area as Carletonville Dolomite Grassland, a species-rich grassland with shallow soil and slightly undulating plains on dolomite dissected by prominent rocky chert ridges. This grassland falls within a warm-temperate summer-rainfall region with high summer temperatures and severe frequent winter frosts.

This vegetation unit is considered vulnerable. Its conservation target is 24%. Small parts of this unit are conserved in statutory reserves and a few private conservation areas. Almost a quarter of the unit is already transformed by cultivation, urbanization, mining and the building of two dams.

The 35.26 ha study site lies in the north-western corner of the farm Stukgrond 382-JR, on the corner of Monument Drive and Mimosa Avenue. It consists of a northern and a southern portion. The strip of land in-between is probably reserved for a road. The northern portion borders on Monavoni X 50 and the southern portion borders on Monavoni X 43. Corners of both sections culminate against Amsterdam Road to the northwest. A continuous ditch bisects the northern section, the purpose of which is not apparent. Two power lines parallel to Monument Drive form the southwestern border of the southern portion and a model aeroplane airstrip is located near Amsterdam Road.

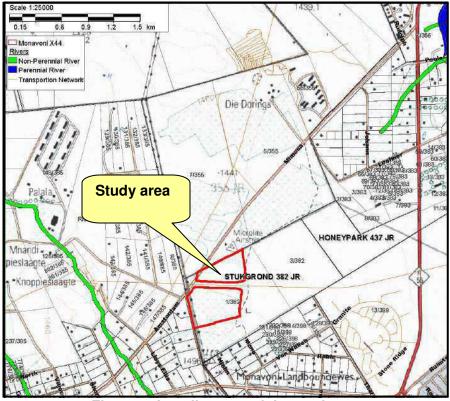


Figure 1: Locality map of the study area

The major portion of the site is undeveloped *albeit* ecologically disturbed. Aerial photo images suggest that portions of the site have been tilled in the distant past, but have been left fallow for a considerable period of time allowing a degree of ecological

succession to take place. It is clear that annual veld fires have taken its toll on the quality of the basal cover, and consequently on biodiversity. The site is not utilized at present.

The substrate is a reddish sandy soil, and termitaria have been recorded.

GPS coordinates 25 52'15" S, 28 05'07" E. Alt.= 1475 m

5. METHODS

5.1 Vegetation survey

Information about the Red Data species that occur in the area was obtained from GDACE. The Guidelines issued by GDACE to plant specialists were consulted to ascertain the habitat of the Red Data species concerned.

The PRECIS list of plants recorded in the 2528CC quarter degree grid square was obtained from SANBI. This list was consulted to verify the record of occurrence of the plant species seen in the study site. The vegetation map published in Mucina and Rutherford (2006) was consulted about the composition of Carltonville Dolomite Grassland. A desktop study of the habitats of the red-listed and orange-listed species known to occur in the area was done before the site visits.

The study area was first visited in February 2005, the vegetation communities identified and the plants in each vegetation community recorded. On 29 December 2007, the area was revisited to determine whether any changes took place since the previous site visit. On 11 December 2008, the present demarcation of the site was visited and the vegetation communities identified (see Figure 2). From each vegetation community one or more plots (depending on the size and composition of the vegetation community) were selected at random for detailed study. Each plot, which measured about 10m x 10m, was surveyed in a random crisscross fashion and the plants recorded. The entire site was searched in a random crisscross manner for the presence of the Red Data species known to occur in the quarter degree grid square. (The names of the Red- and Orange-listed species that occur in the quarter degree grid square appear in Appendix B.). Suitable habitat for red-listed species on the neighbouring properties was examined to a distance of 200 m from the boundaries of the site for the presence of the red-listed plants.

The adjoining agricultural holdings were not surveyed, as their habitat was clearly not suitable for any red-listed or orange listed species.

5.2 Fauna survey

A site visit was conducted on 15 November 2008. During a four-hour visit the observed and derived presence of fauna associated with the recognised habitat types of the study site, were recorded. This was done with due regard to the well-recorded global distributions of Southern African fauna.

The 500 meters of adjoining properties were scanned for important fauna habitats.

5.2.1 Field Surveys

During the site visit mammals, birds, reptiles, and amphibians were identified by visual sightings through random transect walks. In addition, mammals were also identified by means of spoor, droppings or roosting sites. Possible burrows or reptile habitats (stumps or rocks) were inspected for any inhabitants. Amphibians were also identified by their vocalisations. No trapping or mist netting was conducted, as the terms of reference did not require such intensive work.

Birds were identified visually using a 10X42 Bushnell Legend binocular and a 20X-60X Pentax spotting scope and by call and where necessary verified from *Sasol Birds of Southern Africa* (Sinclair *et al.*, 2005) and *Southern African Bird Sounds* (Gibbon, 1991). All sightings of bird species on site were plotted on a PDA using Cyber Tracker as a database, which is connected to an external GPS mouse via blue tooth. Birds were also identified by means of their calls and other signs such as nests and feathers.

Three criteria were used to assess the probability of occurrence of Red Data and other bird species on the study site that will most probably make use of the site and surrounding area for breeding or feeding purposes. These criteria include known distribution range, habitat preference and the presence of suitable habitat on site as well as the presence of food.

5.2.2 Desktop Surveys

As the majority of mammals, reptiles and amphibians are secretive, nocturnal and/or poikilothermic or seasonal, distributional ranges and the presence of suitable habitats were used to deduce the presence or absence of these species based on authoritative tomes, scientific literature, field guides, atlases and databases. This can be done irrespective of season.

The probability of occurrences of **mammal** species was based on their respective geographical distributional ranges and the suitability of on-site habitat. In other words, *high* probability would be applicable to a species with a distributional range overlying the study site as well as the presence of prime habitat occurring on the study site. Another consideration for inclusion in this category is the inclination of a species to be common, i.e. normally occurring at high population densities.

Medium probability pertains to a mammal species with its distributional range peripherally overlapping the study site, or required habitat on the site being sub-optimal. The size of the site as it relates to its likelihood to sustain a viable breeding population, as well as its geographical isolation is also taken into consideration. Species categorised as *medium* normally do not occur at high population numbers, but cannot be deemed as rare. A *low* probability of occurrence will mean that the species' distributional range is peripheral to the study site <u>and</u> habitat is sub-optimal. Furthermore, some mammals categorised as *low* are generally deemed rare.

The occurrence of some key bird species was verified according to the distribution record obtained during the Southern African Bird Atlas period from 1981 to 1993 (Harrison *et al* 1997) as well as records from 1974 to 1987 according to Tarboton *et al* (1987).

The occurrence and historic distribution of these birds, including all Red Data bird species for the 2528CC quarter-degree grid cell were all verified according to Harrison et al (1997) and Tarboton et al (1987). The reporting rate was scored between 0 – 100% and is calculated as follows: Total number of cards on which a species was reported during the Southern African Bird Atlas period X 100 ÷ total number of cards for a particular guarter degree grid cell. The colour codes for each species are represented as follows: YELLOW = VERY LOW, LIGHT ORANGE = LOW, DARK ORANGE = MEDIUM AND RED = HIGH with reference to the specific habitat systems found on site. It is important to note that a quarter-degree grid cell covers a large area. A quarter-degree square, for example 2528CC, covers an area of ±27 X 25 kilometres (±693 km²) and it is possible that suitable habitat will exist for a certain Red Data species within this general and surrounding area. However, the specific habitat found on site will not suit the particular Red Data species although it was recorded for the guarter-degree grid cell. For example, Cape Vulture occurs along the Magaliesberg but will not favour the habitat found within the Pretoria CBD, which are both in the same quarter-degree grid cell. Red Data bird species were categorised according to Barnes (2000).

The biodiversity index gives an indication of which habitat will hold the richest bird diversity on site. This is calculated on the sum of the probability of occurrence: 5 = present on site, 4 = not observed on site but has a high probability of occurring on site, 3 = medium, 2 = low, 1 = very low and 0 = not likely to occur, of bird species within a specific habitat system on site.

Based on the impressions gathered during the visit and records in the Transvaal Museum, as well as the documentation of the herpetofauna of the then Transvaal by Dr N. H. G. Jacobsen (Unpublished Ph.D. thesis, University of Pretoria, 1989) and his internal report for the Gauteng Province (1995), as well as the "*Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland*" (Minter, et al, 2004) the following list of species which may occur on this site was compiled. The latest taxonomic nomenclature is being used. The vegetation type was analysed according to the standard handbook by Mucina and Rutherford (eds) (2006).

5.2.3 Specific Requirements

During the visit the site was surveyed and assessed for the potential occurrence of Red Data or wetland-associated species such as:

- Juliana's golden mole (*Neamblosomus juliana*)
- Rough-haired golden mole (*Chrysospalax villosus*)
- African marsh rat (*Dasymys incomtus*)
- Angoni vlei rat (*Otomys angoniensis*)
- Vlei rat (*Otomys irroratus*)
- African clawless otter (*Aonyx capensis*)
- Spotted-necked otter (Lutra maculicollis)
- Marsh mongoose (*Atilax paludinosus*)
- Forest shrew (*Myosorox varius*)

- White tailed rat (*Mystromys albicaudatus*)
- Highveld golden mole (*Amblysomus septentrionalis*)
- Giant Bullfrogs (*Pyxicephalus adspersus*);
- Cape Vulture (*Gyps coprotheres*)
- Blue Crane (*Anthropoides paradiseus*)
- Lesser Kestrel (Falco naumanni)
- African Grass-Owl (*Tyto capensis*)
- African Marsh-Harrier (*Circus ranivorus*)
- White-backed Night-Heron (*Gorsachius leuconotus*)
- White-bellied Korhaan (*Eupodotis senegalensis*)
- Martial Eagle (*Polemaetus bellicosus*)
- African Finfoot (*Podica senegalensis*)
- Lesser Flamingo (*Phoenicopterus minor*)
- Secretarybird (*Sagittarius serpentarius*)
- Black Stork (*Ciconia nigra*)
- Half-collared Kingfisher (*Alcedo semitorquata*)
- Greater Flamingo (*Phoenicopterus ruber*)

5.2.4 Participating Specialists

This investigation was conducted by the following:

Specialists	Aspect	Qualifications	Prof.	Date of Field
	Investigated		Registration	Survey
Rautenbach, I.L.	Mammalogy review	Ph.D., T.H.E.D.	Pr. Nat. Sci.	15 November 2008
Haacke, W.D.	Herpetology	M.Sc. (Zoology)	Pr. Nat. Sci.	15 November 2008
Lemmer, P.	Botany	B.Sc. (Botany)	Cert. Sci. Nat.	11 December 2008
Geyser, R.	Avifauna		Pending	15 November 2008
Marais, V.	Environmental Impacts and	BL Landscape Architecture		15 November 2008
	maps			

6. **RESULTS**

6.1 Vegetation survey:

6.1.1 Vegetation communities

Four plant communities were identified on or within 200 meters of the study site:

- Natural primary grassland;
- Mixed alien and indigenous vegetation;
- Old cultivated fields; and
- Rocky outcrop vegetation.

Tables 3 to 5 list the trees, shrubs, geophytes, herbs and grasses actually found on each of the surveyed areas on the site.

The vegetation of the adjacent agricultural smallholdings consisted of mixed alien and indigenous vegetation and was not surveyed.

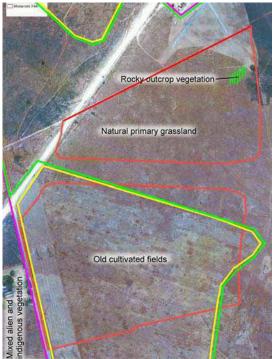


Figure 2: Vegetation communities

6.1.2 Medicinal plants

The names of known medicinal plants are marked with numbers to footnotes in Tables 3 to 5 and the footnotes themselves appear at the end of the last table. Of the 141 plant species recorded on the site, 28 species with medicinal properties were found. Their distribution in the various vegetation communities is as follows:

VEGETATION COMMUNITY	TOTAL NO OF SPECIES IN VEGETATION COMMUNITY	NO OF MEDICINAL SPECIES IN VEGETATION COMMUNITY		
Natural primary grassland	105	21		
Mixed alien and indigenous vegetation	Not surveyed			
Old cultivated fields	34	4		
Rocky outcrop vegetation	52	14		

Table 1: Number of medicinal species in the various vegetation communities

6.1.3 Alien plants

Alien plants are not listed separately, but are included in the lists as they form part of each particular vegetation group. Their names are marked with an asterisk in Tables 3 to 5. Two alien plant species, one of which was a Category 1 Declared weed, were recorded on the study site. The number of alien species in each vegetation community is reflected in table 2.

VEGETATION COMMUNITY	NO. OF ALIEN SPECIES	CAT 1	NOT DECLARED
Natural primary grassland	1	1	0
Mixed alien and indigenous vegetation	Not surveyed		
Old cultivated fields	2	1	1
Rocky outcrop vegetation	0	0	0

The alien plant name printed in **bold** in the plant table is that of a Category 1 Declared Weed and the removal of these plants is *compulsory* in terms of the regulations formulated under "The Conservation of Agricultural Resources Act" (Act No. 43 of 1983), as amended.

6.1.4 Orange-listed species

The habitat of the Natural primary grassland and the Rocky outcrop vegetation was suitable for the Orange-listed *Hypoxis hemerocallidea* (African potato). This species was found sparsely scattered in these two vegetation communities. These plants should be relocated to a safe, suitable area approved by GDACE.

6.1.5 Red-listed species

The habitat of the site was not suitable for any of the Red-listed species known to occur within 5 km of the study site. (See Appendix B for a list of the Red- and Orange-listed species known to occur in the quarter degree grid square.)

6.1.6 Natural primary grassland

6.1.6.1 Compositional aspects and connectivity

The Natural primary grassland comprised the northern part of the site and was dominated by *Themeda triandra* (Red grass). Connectivity with natural grassland on neighbouring portions existed to the north and east of the site. However, these neighbouring portions are also currently being considered for development.

The species diversity of the Natural primary grassland was high. Of the 105 species recorded, 104 were indigenous species, the life forms of which were as follows:

LIFE FORM	NUMBER OF SPECIES
Annual & perennial herbaceous species	48
Tree species	1
Shrubs and dwarf shrubs	3
Grasses	26
Geophytes	21
Sedges	3
Succulents	2
Total No of indigenous species	104

6.1.6.2 Red – and orange-listed species

The Orange-listed *Hypoxis hemerocallidea* (African potato) was found scattered in this vegetation community. The habitat was not suitable for the Red-listed legume species known to occur on subsurface dolomite within 5 km of the site.

6.1.6.3 Medicinal and alien species

Twenty-one of the 28 medicinal species recorded on the site were found in the Natural primary grassland. One alien species, the Category 1 Declared weed, *Campuloclinium macrocephalum* (Pom pom weed) occurred sparsely scattered in this vegetation community.

6.1.6.4 Sensitivity

Because this vegetation community was deemed natural primary grassland, it was considered sensitive.

Photo 1: Themeda triandra-dominated Natural primary grassland on Monavoni 44

Table 3: Plants recorded in the Natural primary grassland		
SCIENTIFIC NAME	COMMON NAMES	
Albuca setosa	Slymuintjie	
Anthephora pubescens	Wool grass / Borseltjiegras	
Anthospermum rigidum subsp pumilum		
Aristida congesta subsp barbicollis	Spreading three-awn grass / Witsteekgras	
Aristida diffusa subsp burkei	Iron grass / Ystergras	
Aristida stipitata subsp graciliflora	Long awned three-awn / Langnaaldsteekgras	
Babiana bainsii	Bobbejaanuintjie	
Barleria macrostegia		
Bewsia biflora	False love grass / Vals eragrostis	
Boophone disticha ^{1,2,3}	Cape poison bulb / Seeroogblom, gifbol	
Brachiaria serrata	Velvet grass / Fluweelgras	
Brachystelma barberae	Platvoetaasblom	
Bulbostylis burchellii	Biesie	
Campuloclinium macrocephalum*	Pom pom weed / Pompombossie	
Chaetacanthus costatus		
Chamaecrista capensis var. capensis		
Chamaecrista comosa var capricornia		
Chascanum hederaceum var hederaceum		
Clematis brachiata ²	Traveler's joy / Klimop	
Commelina livingstonii		
Crabbaea hirsuta ^{2,3}	Prickle head	
Crassula lanceolata subsp transvaalensis		
Crinum graminicola	Graslelie	
Cucumis hirsutus	Wild cucumber / Suurkomkommer	
Cyanotis speciosa	Doll's powder puff / Bloupoeierkwassie	
Cynodon dactylon	Couch grass / Kweek	
Dicoma anomala subsp gerrardii ²	Maagbitterwortel	
Dicoma macrocephala		
Dimorphotheca spectabilis	Blou bietou	
Drimia depressa		
Drimia sanguinea ^{1,2}	Skanama / Slangkop	
Elephantorrhiza elephantina ^{1,2,3}	Elephant's root / Olifantswortel	
Elionurus muticus		

Table 3: Plants recorded in	n the Natural	I primary grassland
-----------------------------	---------------	---------------------

Eragrostis capensis Heartseed love grass / Hartjiesgras Eragrostis lehmanniana var lehmanniana Lehmann's love grass / Knietjiesgras Eragrostis lehmanniana var lehmanniana Lehmann's love grass / Knietjiesgras Eragrostis lehmanniana var trichadenia Lehmann's love grass / Knietjiesgras Erosema burkei var burkei Einosema burkei var burkei Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia muricata subsp muricata ^{17,37} White felicia Gazania krebsiana subsp serrulata ¹⁷ Gazania krebsiana subsp serrulata ¹⁷ Gombnocarpus fruticosus subsp. Milkweed / Melkbos Helichrysum nudifolium var nudifolium ^{1,27} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,27} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,27} Hottentot's tea / Hottentotstee Hermannia cordata Spear grass / Assegaaigras Hypericum lalandii Spindly hypericum / Laland se sintjanskruid Hypoxis fuelica var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Fear flowered Ipomoea / Wildewinde Ipomoea obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild	SCIENTIFIC NAME	COMMON NAMES
Eragrostis chloromelas Curly leaf / Krulbiaar Eragrostis superba Lehmann's love grass / Knietjiesgras Ergorstis superba Eriospermum flagelliforme Euphorbia trichadenia var trichadenia Melkbol Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia muricata subsp muricata ^{12,3} White felicia Gazania krebsiana subsp serrulata ² Gomphocarpus fruticosus subsp. Fulcosus' Milkweed / Melkbos Helichrysum chionosphaerum Hottentot's tea / Hottentotstee Helichrysum nudifolum var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum rugulosum ^{2,3} Common thatching grass / Dekgras Hyperheina hirta Common thatching grass / Dekgras Hyppoxis hemerocalilidea ^{1,2,3} Star flower / Gifbol Hypoxis hemerocalilidea ^{1,2,3} Star flower / Wilde tulp Indigastrum burkeanum Ipomoea zasipes ^{2,3} Ipomoea zasipes ^{2,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea casipes ^{2,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea casipes ^{2,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea casipes ^{2,3} Leafy-flowered Ipomoea / Wildewinde <t< td=""><td>Eragrostis capensis</td><td>Heartseed love grass / Hartjiesgras</td></t<>	Eragrostis capensis	Heartseed love grass / Hartjiesgras
Eragrostis lehmanniana var lehmanniana Lehmann's love grass / Knietjiesgras Eragrostis superba Eriosema burkei var burkei Eriosema burkei var burkei Melkbol Euphorbia trichadenia var trichadenia Melkbol Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia muricata subsp muricata ¹²²³ White felicia Gazania krebsiana subsp serrulata ³ Gomphocarpus fruticosus subsp. Helichrysum rudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Herrapogon contortus Spear grass / Assegaaigras Hypericum lalandii Spindly hypericum / Laland se sintjanskruid Hyperitoria dissoluta "" Yellow thatching grass / Ceeltamboekiegras Hypoxis hemerocallidea"" Star flower / Gibol Hypoxis biglula var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea obscura var obscura Ipomoea obscura var obscura Wild petunia / Wild patat Ipomoea obscura var obscura Wild lettuce Ledebouria marginata Ledebouria marginata Ledebouria marginata Maricus uitenhagensis		
Eragsema burkei var burkei Eriospermum flagellforme Eriospermum flagellforme Melkbol Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia muricata subsp muricata ^{12,3} White felicia Gazania krebsiana subsp serrulata ⁴ Gomphocarpus fruticosus subsp. Mulkweed / Melkbos Helichrysum notifolium var nudifolium ^{1,2} Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Heteropogon contortus Spear grass / Assegaaigras Hibicus microcarpus Filoseus microcarpus Hyparthenia hirta Common thatching grass / Dekgras Hypoxis obtusa Yellow thatching grass / Geeltamboekiegras Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea bathycolpos Ipomoea batycolpos Leafy-flowered Ipomoea / Wildewinde Ipomoea crassipes ^{13/3} Leafy-flowered Ipomoea / Wildewinde Justicia anagalloides Kohautia caespitosa subsp brachyloba Kohautia virgata Eedebouria inquinata Lactuca inermis Wild lettuce Ledebouria inquinata Pincushion grass / Elsgras		Lehmann's love grass / Knietjiesgras
Eriosema burkei var burkei Eriosema burkei var burkei Erioseprimum ilageliiforme Melkbol Euphorbia trichadenia var trichadenia Fan grass / Bruin hoenderspoor Felicia muricata subsp muricata ^{1,2,3} White felicia Gazania krebsiana subsp serrulata ³ Milkweed / Melkbos Gomphocarpus fruticosus subsp. Milkweed / Melkbos Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum rugulosum ^{2,3} Hottentot's tea / Hottentotstee Hermannia cordata Spear grass / Assegaaigras Hypericum lalandii Spindly hypericum / Laland se sintjanskruid Hypericum lalandii Spindly hypericum / Laland se sintjanskruid Hypoxis botusa Star flower / Gifbol Hypoxis botusa Hypoxis volusa Hypoxis botusa Star flower / Gifbol Hypoxis botusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea athycolpos Ipomoea oscupes ^{2,3,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea oscupes ^{2,3,4} Beespatat Justicia anagalioides Beespatat Kohautia virgata Wild lettuce		
Euphorbia trichadenia var trichadenia Melkbol Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia micrata subsp mricata ^{12,3} White felicia Gazania krebsiana subsp serrulata ³ Milkweed / Melkbos Gomphocarpus fruitcosus subsp. Milkweed / Melkbos Helichrysum rugulosus fruitcosus subsp. Milkweed / Melkbos Helichrysum rugulosum ^{7,3} Hottentot's tea / Hottentotstee Heindrysum nudifolium var nudifolium ^{1/2} Hottentot's tea / Hottentotstee Hermannia cordata Spear grass / Assegaaigras Hibiscus microcarpus Common thatching grass / Dekgras Hypericum lalandii Spindly hypericum / Laland se sintjianskruid Hypoxis hemerocallidea ^{12,3} Star flower / Gifbol Hypoxis rigidula var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Indigastrum burkeanum Ipomoea catssipes ¹³ Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Wild petunia / Wild patat Ipomoea obscura var obscura Wild petunia / Wild patat Ipomoea obscura var obscura Milk deltuce Ledebouria inquinata Ledebouria inquinata		
Euphorbia trichadenia var trichadenia Melkbol Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia micrata subsp mricata ^{12,3} White felicia Gazania krebsiana subsp serrulata ³ Milkweed / Melkbos Gomphocarpus fruitcosus subsp. Milkweed / Melkbos Helichrysum rugulosus fruitcosus subsp. Milkweed / Melkbos Helichrysum rugulosum ^{7,3} Hottentot's tea / Hottentotstee Heindrysum nudifolium var nudifolium ^{1/2} Hottentot's tea / Hottentotstee Hermannia cordata Spear grass / Assegaaigras Hibiscus microcarpus Common thatching grass / Dekgras Hypericum lalandii Spindly hypericum / Laland se sintjianskruid Hypoxis hemerocallidea ^{12,3} Star flower / Gifbol Hypoxis rigidula var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Indigastrum burkeanum Ipomoea catssipes ¹³ Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Wild petunia / Wild patat Ipomoea obscura var obscura Wild petunia / Wild patat Ipomoea obscura var obscura Milk deltuce Ledebouria inquinata Ledebouria inquinata	Eriospermum flagelliforme	
Eustachys paspaloides Fan grass / Bruin hoenderspoor Felicia muricata subsp muricata ⁷²³ White felicia Gazania krebsiana subsp serrulata ⁹ Gomphocarpus fruticosus subsp. fruticosus ^{1/2} Milkweed / Melkbos Helichrysum nchionosphaerum Helichrysum nudifolium var nudifolium ^{1/2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1/2} Hottentot's tea / Hottentotstee Helichrysum ruguosum ^{2/3} Hermannia cordata Spear grass / Assegaaigras Hermannia cordata Hypericum lalandli Spindly hypericum / Laland se sintjanskruid Hypoxis hemerocallidea ^{1/2/3} Star flower / Gifbol Hypoxis neurocologa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea data/(Ipomoea orassipes ^{2/3}) Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea ongalloides Mild Nettuce Kohautia caespitosa subsp brachyloba Kohautia caespitosa subsp brachyloba Kohautia virgata Hairy lotononis Lotononis calycina Hairy lotononis Lotononis folicsa Pincushion grass / Elsgras Melichrysing alba Mild lettuce Ledebouria inquinata Eled		Melkbol
Felicia muricata subsp muricata ^{1,2,3} White felicia Gazania krebsiana subsp serulata ³ Gomphocarpus fruticosus subsp. fruticosus ^{1,2} Milkweed / Melkbos Helichrysum nchiolnum var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum nudifolium var nudifolium ^{1,2} Common thatching grass / Dekgras Hypericum latandti Spindly hypericum / Laland se sintjanskruid Hypoxis botusa Silverleaved star flower / Gitbol Hypoxis nigidula var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea obscura var obscura Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Kyllinga alba Lactuca inermis Wild lettuce Ledebouria inguinata Lotononis calycina Lotononis calycina Hairy lotononis	•	Fan grass / Bruin hoenderspoor
Gazania krebsiana subsp serulata ³ Gomphocarpus fruticosus subsp. fruticosus ^{1/2} Milkweed / Melkbos Helichrysum nodiolium varudilolium ^{1/2} Hottentot's tea / Hottentotstee Helichrysum rugulosum ^{3/3} Hettentot's tea / Hottentotstee Helichrysum rugulosum ^{3/3} Hettentot's tea / Hottentotstee Helichrysum rugulosum ^{3/3} Hetteropogon contortus Spear grass / Assegaaigras Hibiscus microcarpus Hyparrhenia hirta Common thatching grass / Dekgras Hypericum lalandii Spindly hypericum / Laland se sintjanskruid Hypoxis hemerocallidea ^{1/2/3} Star flower / Gitbol Hypoxis obtusa Yellow thatching grass / Geeltamboekiegras Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea obscura var obscura Ipomoea consecura var obscura Wild petunia / Wilde patat Ipomoea comanev ^{1/4} Beespatat Justicia anagalloides Kohautia caespitosa subsp brachyloba Kohautia caespitosa subsp brachyloba Kohautia virgata Kylinga alba Ledebouria marginata Ledebouria marginata Ledebouria marginata Lotononis tolicsa Male patientonis Miderleium zeyheri subsp zeyheri ^{2/3} <td></td> <td></td>		
Gomphocarpus fruticosus subsp. fruticosus" Milkweed / Melkbos Helichrysum chionosphaerum Helichrysum rudulolium var nudifolium" Helichrysum ruduosunt" Hottentot's tea / Hottentotstee Hermannia cordata Heteropogon contortus Spear grass / Assegaaigras Hibiscus microcarpus Hyperineina hirta Common thatching grass / Dekgras Hypertineina hirta Common thatching grass / Dekgras Hypertineina hirta Common thatching grass / Geeltamboekiegras Hypertineina birta Star flower / Gifbol Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea tassipes ^{2,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Usticia anagalloides Kohautia caespitosa subsp brachyloba Kohautia virgata Wild lettuce Ledebouria inquinata Lactuca inermis Lotononis Calycina Hairy lotononis Lotononis foliosa Mild vetrononis Melinis repens subsp repens Red top grass Melinis repens subsp repens Red top grass Mildorelia caffra Pincushion grass / Elsgras Mildorelia caffra Nitd vetroena /Sooibrandbossie </td <td>Gazania krebsiana subsp serrulata³</td> <td></td>	Gazania krebsiana subsp serrulata ³	
Helichrysum chionosphaerum Hottentot's tea / Hottentotstee Helichrysum rugulosum ^{7,2} Hottentot's tea / Hottentotstee Hermannia cordata Herreopogon contortus Spear grass / Assegaaigras Hibiscus microcarpus Hyparthenia hirta Common thatching grass / Dekgras Hyperrhenia hirta Common thatching grass / Dekgras Hyperricum lalandii Spindly hypericum / Laland se sintjanskruid Hypersitelia dissoluta Yellow thatching grass / Geeltamboeklegras Hypoxis obtusa Star flower / Gifbol Hypoxis rigidula var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea bathycolpos Ipomoea bathycolpos Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Kohautia virgata Kyllinga alba Lactuca inermis Lactuca inermis Wild lettuce Lotononis foliosa Pincushion grass / Elsgras Melinis nerviglumis Bristle leaf red top / Steekblaarblinkgras Melinis repens subsp repens		
Helichrysum chionosphaerum Hottentot's tea / Hottentotstee Helichrysum rugulosum ^{7,2} Hottentot's tea / Hottentotstee Hermannia cordata Herreopogon contortus Spear grass / Assegaaigras Hibiscus microcarpus Hyparthenia hirta Common thatching grass / Dekgras Hyperrhenia hirta Common thatching grass / Dekgras Hyperricum lalandii Spindly hypericum / Laland se sintjanskruid Hypersitelia dissoluta Yellow thatching grass / Geeltamboeklegras Hypoxis obtusa Star flower / Gifbol Hypoxis rigidula var rigidula Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea bathycolpos Ipomoea bathycolpos Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Kohautia virgata Kyllinga alba Lactuca inermis Lactuca inermis Wild lettuce Lotononis foliosa Pincushion grass / Elsgras Melinis nerviglumis Bristle leaf red top / Steekblaarblinkgras Melinis repens subsp repens	fruticosus ^{1,2}	MIIKWEED / MEIKDOS
Helichrysum nudifolium var nudifolium ^{1,2} Hottentot's tea / Hottentotstee Helichrysum rugulosun ^{7,3} Hottentot's tea / Hottentotstee Hermannia cordata Spear grass / Assegaaigras Hibiscus microcarpus Hibiscus microcarpus Hyperitum latandii Spindly hypericum / Laland se sintjanskruid Hyperthelia dissoluta Yellow thatching grass / Dekgras Hypoxis hemerocallidea ^{12,23} Star flower / Gifbol Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea tarssipes ^{3,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Ususticia anagalloides Kohautia caespitosa subsp brachyloba Kohautia caespitosa subsp brachyloba Kohautia uirgata Kyllinga alba Ledebouria inquinata Ledebouria inquinata Ledebouria inquinata Lotononis foliosa Pincushion grass / Elsgras Midrogensis Bristle leaf red top / Steekblaarblinkgras Microchla caffra Pincushion grass / Elsgras Microchla caffra Pincushion grass / Elsgras Microchla caffra Pincushion grass / Elsgras Micro		
Heilchrysum rugulosum ²⁻³ Hermannia cordata Heteropogon contortus Spear grass / Assegaaigras Hibiscus microcarpus Hyparthenia hirta Common thatching grass / Dekgras Hypericum lalandii Spindly hypericum / Laland se sintjanskruid Hyperthelia dissoluta Yellow thatching grass / Geeltamboekiegras Hypoxis obtusa Yellow thatching grass / Geeltamboekiegras Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ipomoea bathycolpos Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea onmaneyř Beespatat Justicia anagalioides Kohautia virgata Kyllinga alba Kyllinga alba Lactuca inermis Wild lettuce Ledebouria inquinata Ledebouria Lotononis calycina Hairy lotononis Lotononis foliosa Microchlogas Microchloa caffra Pincushion grass / Elsgras Nidorella hottentotica Pincushion grass / Elsgras Nidorella hottentotica Natal panicum / Suurbuffelsgras Panicum natalense Natal panicum / Suurb	Helichrysum nudifolium var nudifolium ^{1,2}	Hottentot's tea / Hottentotstee
Hermannia cordata Peteropogon contortus Spear grass / Assegaaigras Hibiscus microcarpus Pyparrhenia hirta Common thatching grass / Dekgras Hyperrhenia hirta Common thatching grass / Dekgras Hyperthelia dissoluta Yellow thatching grass / Geeltamboekiegras Hypoxis hemerocallidea ^{1,2,3} Star flower / Gifbol Hypoxis obtusa Pellow thatching grass / Geeltamboekiegras Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Indigastrum burkeanum Ipomoea cassipes ²³ Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea ommaneyf Beespatat Justicia anagalloides Kohautia virgata Kyllinga alba Lactuca inermis Lactuca inermis Wild lettuce Ledebouria marginata Ledebouria marginata Lotononis foliosa Mariscus uitenhagensis Melinis nerviglumis Bristle leaf red top / Steekblaarblinkgras Melinis reprise subsp repens Red top grass Microchioa catfra Pincushion grass / Elsgras Nidorella hottentotica Onrithogalum tenuifolium subsp tenuifolium Panicum	Helichrysum rugulosum ^{2,3}	
Hibiscus microcarpus Common thatching grass / Dekgras Hypericum Ialandii Spindly hypericum / Laland se sintjanskruid Hypericum Ialandii Spindly hypericum / Laland se sintjanskruid Hypoxis hemerocallidea ^{1,2,3} Star flower / Gifbol Hypoxis obtusa Hypoxis obtusa Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ileafy-flowered Ipomoea / Wildewinde Ipomoea otassipes ^{6,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea orassipes ^{6,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea onscura var obscura Wild petunia / Wilde patat Ipomoea ommaney ⁷ Beespatat Justicia anagalloides Kohautia virgata Kyllinga alba Lactuca inermis Lactuca inermis Wild lettuce Ledebouria inquinata Ledebouria marginata Lotononis foliosa Bristle leaf red top / Steekblaarblinkgras Melinis repens subsp repens Red top grass Microchla caffra Pincushion grass / Elsgras Nicorchla caffra Pincushion grass / Steps Panicum natalense Natal panicum / Souibandbossie Panicum natalense Natal panicum / Souibrandbossie	Hermannia cordata	
Hibiscus microcarpus Common thatching grass / Dekgras Hypericum Ialandii Spindly hypericum / Laland se sintjanskruid Hypericum Ialandii Spindly hypericum / Laland se sintjanskruid Hypoxis hemerocallidea ^{1,2,3} Star flower / Gifbol Hypoxis obtusa Hypoxis obtusa Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Ileafy-flowered Ipomoea / Wildewinde Ipomoea otassipes ^{6,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea orassipes ^{6,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea onscura var obscura Wild petunia / Wilde patat Ipomoea ommaney ⁷ Beespatat Justicia anagalloides Kohautia virgata Kyllinga alba Lactuca inermis Lactuca inermis Wild lettuce Ledebouria inquinata Ledebouria marginata Lotononis foliosa Bristle leaf red top / Steekblaarblinkgras Melinis repens subsp repens Red top grass Microchla caffra Pincushion grass / Elsgras Nicorchla caffra Pincushion grass / Steps Panicum natalense Natal panicum / Souibandbossie Panicum natalense Natal panicum / Souibrandbossie		Spear grass / Assegaaigras
Hyparrhenia hirtaCommon thatching grass / DekgrasHypericum lalandiiSpindly hypericum / Laland se sintjanskruidHyperthelia dissolutaYellow thatching grass / GeeltamboekiegrasHypoxis obtusaStar flower / GifbolHypoxis rigidula var rigidulaSilverleaved star flower / Wilde tulpIndigastrum burkeanumIndigastrum burkeanumIpomoea bathycolposIpomoea crassipes ^{7,3} Leafy-flowered Ipomoea / WildewindeIpomoea obscura var obscuraWild petunia / Wilde patatBeespatatJusticia anagalloidesKohautia virgataKohautia virgataWild lettuceLedebouria inquinataLedebouria inquinataLedebouria marginataHairy lotononisLotononis foliosaBristle leaf red top / SteekblaarblinkgrasMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis nervigluminaDonkieperskePanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild verbena /SooibrandbossiePollichia campestrisWild persley / WildepietersieliePolygala hottentotta ^{2,3} Small purple broom		
Hypericum IalandiiSpindly hypericum / Laland se sintjanskruidHyperthelia dissolutaYellow thatching grass / GeeltamboekiegrasHypoxis hemerocallidea ^{1,2,3} Star flower / GifbolHypoxis rigidula var rigidulaSilverleaved star flower / Wilde tulpIndigastrum burkeanumIIpomoea bathycolposIIpomoea obscura var obscuraWild petunia / Wilde patatIpomoea obscura var obscuraWild varbena / SooibrandbossieIpotatia virgataIpotatia virgataIcotononis foliosaIpotatia virgataIcotononis foliosaIpotatia virgataMariscus uitenhagensisRed top gra	•	Common thatching grass / Dekgras
Hyperthelia dissoluta Yellow thatching grass / Geeltamboekiegras Hypoxis hemerocallidea Star flower / Gifbol Hypoxis obtusa Image: Silverleaved star flower / Wilde tulp Indigastrum burkeanum Silverleaved star flower / Wilde tulp Ipomoea bathycolpos Ipomoea crassipes ^{2,3} Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Vild petunia / Wilde patat Ipomoea ommaneyř Justicia anagalloides Beespatat Kohautia caespitosa subsp brachyloba Kohautia virgata Kylinga alba Itedebouria inquinata Ledebouria inquinata Hairy lotononis Lotononis calycina Hairy lotononis Mariscus uitenhagensis Red top grass Maleinis repens subsp repens Red top grass Nidorella hottentotica Ornithogalum tenuifolium subsp tenuifolium Poncum natalense Natal panicum / Suurbuffelsgras Pentarnisia angustifolia Wild verbena /Sooibrandbossie Pentarnisia angustifolia Wild verbena /Sooibrandbossie Pentarnisia angustifolia Wild parsley / Wildepietersielie Polichia campestris Waxberry / Teesuikerbossie		
Hypoxis hemerocallidea ^{1,2,3} Star flower / GifbolHypoxis obtusaSilverleaved star flower / Wilde tulpIndigastrum burkeanumSilverleaved star flower / Wilde tulpIpomoea bathycolposLeafy-flowered Ipomoea / WildewindeIpomoea crassipes ^{2,3} Leafy-flowered Ipomoea / WildewindeIpomoea obscura var obscuraWild petunia / Wilde patatIpomoea obscura var obscuraWild petunia / Wilde patatIpomoea ommaneyt ⁷ BeespatatJusticia anagalloidesKohautia caespitosa subsp brachylobaKohautia virgataWild lettuceLedebouria inquinataLedebouria marginataLedebouria marginataHairy lotononisLotononis foliosaBristle leaf red top / SteekblaarblinkgrasMariscus uitenhagensisPincushion grass / ElsgrasMelinis repens subsp repensRed top grassMidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarnisia angustifoliaWild verbena /SooibrandbossiePentarnisia angustifoliaWild verbena /SooibrandbossiePentarnisia angustifoliaWild parsley / WildepietersieliePolichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2,3} Small purple broom		
Hypoxis obtusa Silverleaved star flower / Wilde tulp Indigastrum burkeanum Indigastrum burkeanum Ipomoea bathycolpos Ipomoea crassipes ²³ Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea ommaneyi ⁸ Beespatat Wild petunia / Wilde patat Ipomoea ommaneyi ⁸ Beespatat Justicia anagalloides Kohautia caespitosa subsp brachyloba Kohautia virgata Kohautia virgata Kyllinga alba Usticia anaginata Ledebouria inquinata Ledebouria inquinata Lotononis calycina Hairy lotononis Lotononis foliosa Mariscus uitenhagensis Melinis reryiglumis Bristle leaf red top / Steekblaarblinkgras Microchla caffra Pincushion grass / Elsgras Nidorella hottentotica Ornithogalum tenuifolium subsp tenuifolium Bosui Panicum natalense Pentarisia angustifolia Wild verbena /Sooibrandbossie Pentarisia angustifolia Wild verbena /Sooibrandbossie Pentarisia angustifolia Wild parsley / Wildepietersielie Pentarisia angustifolia Wild parsley / Wildepietersielie Pentark	Hypoxis hemerocallidea ^{1,2,3}	
Hypoxis rigidula var rigidulaSilverleaved star flower / Wilde tulpIndigastrum burkeanumIpomoea bathycolposIpomoea crassipes ^{2,3} Leafy-flowered Ipomoea / WildewindeIpomoea orssipes ^{2,3} Leafy-flowered Ipomoea / WildewindeIpomoea obscura var obscuraWild petunia / Wilde patatIpomoea ommaneyřBeespatatJusticia anagalloidesKohautia caespitosa subsp brachylobaKohautia virgataWild lettuceLactuca inermisWild lettuceLedebouria inquinataLedebouria marginataLedebouria marginataHairy lotononisLotononis calycinaHairy lotononisMariscus uitenhagensisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumPentanisia angustifoliaWild verbena /SourburdfelsgrasPentanisia angustifoliaWild verbena /SourburdfelsgrasPentanisia angustifoliaWild parsley / WildepietersieliePellichia campestrisWaxberry / TeesuikerbossiePollichia campestrisSmall purple broom	Hvpoxis obtusa	
Indigastrum burkeanum Ipomoea bathycolpos Ipomoea bathycolpos Ipomoea crassipes ^{2/3} Leafy-flowered Ipomoea / Wildewinde Ipomoea obscura var obscura Wild petunia / Wilde patat Ipomoea ommaneyř Justicia anagalloides Beespatat Justicia anagalloides Kohautia caespitosa subsp brachyloba Kohautia virgata Kohautia virgata Inomoea ommaneyř Beespatat Lactuca inermis Wild lettuce Inomoea ommaneyř Ledebouria inquinata Inonnis calycina Inonnis calycina Lotononis calycina Hairy lotononis Inomnis Mariscus uitenhagensis Bristle leaf red top / Steekblaarblinkgras Melinis nerviglumis Bristle leaf red top / Steekblaarblinkgras Microchloa caffra Pincushion grass / Elsgras Nidorella hottentotica Ornithogalum tenuifolium subsp tenuifolium Ornithogalum tenuifolium Bosui Panicum natalense Natal panicum / Suurbuffelsgras Pentarisia angustifolia Wild verbena /Sooibrandbossie Pentarisia angustifolia Wild verbena /Sooibrandbossie Pentarisia angustifolia Wild verbena /Sooibrandbossie Pentarisia angustifolia Wild verbena /Soo		Silverleaved star flower / Wilde tulp
Ipomoea bathycolposIpomoea crassipes23Leafy-flowered Ipomoea / WildewindeIpomoea obscura var obscuraWild petunia / Wilde patatIpomoea ommaneyrBeespatatJusticia anagalloidesKohautia caespitosa subsp brachylobaKohautia caespitosa subsp brachylobaKohautia virgataKyllinga albaLactuca inermisLedebouria inquinataLedebouria marginataLedebouris calycinaHairy lotononisLotononis foliosaMariscus uitenhagensisMariscus uitenhagensisBristle leaf red top / SteekblaarblinkgrasMelinis rerviglumisBristle leaf red top / SteekblaarblinkgrasMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumPanicum natalenseNatal panicum / SourbuffelsgrasPentarninum insipidumDonkieperskePeucedanum magalismontanum2Wild verbena /SooibrandbossiePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta2*.3Small purple broom		
Ipomoea crassipes2.3Leafy-flowered Ipomoea / WildewindeIpomoea obscura var obscuraWild petunia / Wilde patatIpomoea ommaneyfBeespatatJusticia anagalloidesKohautia caespitosa subsp brachylobaKohautia caespitosa subsp brachylobaKohautia virgataKyllinga albaLactuca inermisLedebouria inquinataLedebouria marginataLotononis calycinaHairy lotononisLotononis foliosaMacledium zeyheri subsp zeyherf2.3Mariscus uitenhagensisBristle leaf red top / SteekblaarblinkgrasMelinis rerviglumisBristle leaf red top / SteekblaarblinkgrasMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaDonkieperskePentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum2Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta2-3Small purple broom		
Ipomoea obscura var obscuraWild petunia / Wilde patatIpomoea ommaneyřBeespatatJusticia anagalloidesKohautia caespitosa subsp brachylobaKohautia virgataKyllinga albaLactuca inermisWild lettuceLedebouria inquinataLotononis calycinaHairy lotononisLotononis foliosaMariscus uitenhagensisBristle leaf red top / SteekblaarblinkgrasMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelorela hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum2Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta2 ^{2,3} Small purple broom	Ipomoea crassipes ^{2,3}	Leafy-flowered Ipomoea / Wildewinde
İpomoea ommaneyiBeespatatJusticia anagalloidesKohautia caespitosa subsp brachylobaKohautia virgataKyllinga albaLactuca inermisLedebouria inquinataLedebouria marginataLotononis calycinaLotononis foliosaMariscus uitenhagensisMelinis nerviglumisMelinis repens subsp repensMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalensePentanisia angustifoliaPentarrhinum insipidumPonkieperskePeucedanum magalismontanum2Wild parsley / WildepietersieliePollichia campestrisSmall purple broom		
Justicia anagalloidesKohautia caespitosa subsp brachylobaKohautia virgataKyllinga albaLactuca inermisLedebouria inquinataLedebouria marginataLedebouria marginataLotononis calycinaHairy lotononisLotononis calycinaHairy lotononisMacledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMicrochloa caffraNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalensePentanisia angustifoliaPentarrhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2,3}		
Kohautia caespitosa subsp brachylobaKohautia virgataKyllinga albaLactuca inermisLactuca inermisLedebouria inquinataLedebouria marginataLotononis calycinaHairy lotononisLotononis colycinaHairy lotononisMariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMicrochloa caffraNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalensePentanisia angustifoliaPentarrhinum insipidumDonkieperskePeucedanum magalismontanum2Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2,3} Small purple broom		
Kohautia virgataKyllinga albaLactuca inermisWild lettuceLedebouria inquinataLedebouria marginataLotononis calycinaHairy lotononisLotononis foliosaMacledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumPanicum natalensePentanisia angustifoliaPentarrhinum insipidumPolkieperskePeucedanum magalismontanum2Wild parsley / WildepietersieliePolygala hottentotta2Small purple broom		
Kyllinga albaLactuca inermisWild lettuceLedebouria inquinataLedebouria marginataLotononis calycinaHairy lotononisLotononis foliosaMacledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum2Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta2Small purple broom		
Lactuca inermisWild lettuceLedebouria inquinataLedebouria marginataLotononis calycinaHairy lotononisLotononis foliosaMacledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2/3} Small purple broom		
Ledebouria marginataLotononis calycinaHairy lotononisLotononis foliosaMacledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarnisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2,3} Small purple broom		Wild lettuce
Ledebouria marginataLotononis calycinaHairy lotononisLotononis foliosaMacledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarnisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2,3} Small purple broom	Ledebouria inquinata	
Lotononis foliosaMacledium zeyheri subsp zeyheriMariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensMelinis repens subsp repensMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalensePentanisia angustifoliaPentarrhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild parsley / WildepietersieliePolygala hottentotta ^{2,3} Small purple broom		
Lotononis foliosaAcledium zeyheri subsp zeyheri ^{2,3} Mariscus uitenhagensisBristle leaf red top / SteekblaarblinkgrasMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarrhinum insipidumDonkieperskePeucedanum magalismontanum ² Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta ^{2,3} Small purple broom	Lotononis calycina	Hairy lotononis
Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom		
Mariscus uitenhagensisMelinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom	Macledium zeyheri subsp zeyheri ^{2,3}	
Melinis nerviglumisBristle leaf red top / SteekblaarblinkgrasMelinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom		
Melinis repens subsp repensRed top grassMicrochloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².3Small purple broom		Bristle leaf red top / Steekblaarblinkgras
Microchloa caffraPincushion grass / ElsgrasNidorella hottentoticaOrnithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².3Small purple broom		Red top grass
Ornithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom		Pincushion grass / Elsgras
Ornithogalum tenuifolium subsp tenuifoliumBosuiPanicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom	Nidorella hottentotica	
Panicum natalenseNatal panicum / SuurbuffelsgrasPentanisia angustifoliaWild verbena /SooibrandbossiePentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom		Bosui
Pentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom		Natal panicum / Suurbuffelsgras
Pentarrhinum insipidumDonkieperskePeucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta².³Small purple broom	Pentanisia angustifolia	Wild verbena /Sooibrandbossie
Peucedanum magalismontanum²Wild parsley / WildepietersieliePollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta²³Small purple broom		Donkieperske
Pollichia campestrisWaxberry / TeesuikerbossiePolygala hottentotta23Small purple broom		Wild parsley / Wildepietersielie
Polygala hottentotta ^{2,3} Small purple broom	Pollichia campestris	
	Polygala hottentotta ^{2,3}	
ryymaeomannius zeynen vai zeynen 🔰 Sanu appie/ Goorapper	Pygmaeothamnus zeyheri var zeyheri	Sand apple / Goorappel

SCIENTIFIC NAME	COMMON NAMES
Raphionacme hirsuta ²	Khadi root / Khadiwortel
Scabiosa columbaria ^{1,2,3}	Wild scabiosa / Bitterbos
Schizachyrium sanguineum	Red autumn grass / Rooi herfsgras
Searsia lancea	Karee / Karee
Senecio coronatus	Sybossie
Setaria sphacelata var torta	Creeping bristle grass / Kruipmannagras
Sida dregei	Spider-leg
Solanum lichtensteinii	Giant bitter apple / Bitterappel
Sporobolus stapfianus	Fibrous dropseed / Veselfynsaadgras
Striga asiatica	
Striga bilabiata subsp bilabiata	Small witch weed
Tephrosia semiglabra	
Themeda triandra	Red grass / Rooigras
Thesium sp	Besembossie
Tolpis capensis	
Trachypogon spicatus	Giant spear grass / Bokbaardgras
Trichoneura grandiglumis	Small rolling grass / Klein rolgras
Tylosema esculentum	Gemsbok bean / Gemsbokboontjie
Vernonia oligocephala ^{1,2}	Cape vernonia / Blounaaldetee bossie
Wahlenbergia denticulata var transvaalensis	
Xysmalobium undulatum var undulatum ^{1,2}	Uzara / Bitterwortel

6.1.7 Mixed alien and indigenous vegetation

The Mixed alien and indigenous vegetation community was confined to the Monavoni Agricultural Holdings that lay outside the boundaries of the site and this vegetation community was therefore not surveyed. The habitat was not suitable for any of the Redlisted or orange-listed species known to occur in the quarter-degree grid square. This vegetation community was not considered sensitive.

6.1.8 Old cultivated fields

6.1.8.1 Compositional aspects and connectivity

The Old cultivated fields vegetation community comprised secondary grassland, well on its way to recovery and dominated by *Hyparrhenia hirta* (Common thatching grass). Geophytes and perennial herbaceous species occurred scattered throughout the vegetation community.

Connectivity with the natural grassland to the north and east existed, although these areas are also currently being considered for development. The species diversity was low. Of the 34 species recorded, 32 were indigenous species, the life forms of which were as follows:

LIFE FORM	NUMBER OF SPECIES
Annual & perennial herbaceous species	16
Grasses	13
Geophytes	2
Sedges	1
Total No of indigenous species	31

6.1.8.2 Red – and orange-listed species

The Orange-listed *Hypoxis hemerocallidea* (African potato) was found sparsely scattered over the entire vegetation community. These plants should be relocated to a safe, suitable area approved by GDACE. The habitat was not suitable for the Red-listed species known to occur within 5 km of the site.

6.1.8.3 Medicinal and alien species and sensitivity

Four medicinal species were recorded in this vegetation community. Two alien species were recorded, one of which was a Category 1 Declared weed. The Old cultivated fields vegetation community was not considered sensitive.

Photo 2: Old cultivated fields of Monavoni 44 dominated by Hyparrhenia hirta

SCIENTIFIC NAME	COMMON NAMES
Acalypha angustata	Copper leaf / Katpisbossie
Aristida congesta subsp barbicollis	Spreading three-awn grass / Witsteekgras
Aristida congesta subsp congesta	Tassle three-awn grass / Katstertsteekgras
Asparagus suaveolens	Wild asparagus / Katdoring
Barleria macrostegia	
Brachiaria serrata	Velvet grass / Fluweelgras
Campuloclinium macrocephalum*	Pom pom weed / Pompombossie
Chaetacanthus costatus	
Chamaecrista capensis var. capensis	
Cleome monophylla	
Cynodon dactylon	Couch grass / Kweek
Cyperus esculentus var esculentus	Yellow nutsedge / Geeluintjie
Eragrostis barbinodis	
Eragrostis chloromelas	Curly leaf / Krulblaar
Eragrostis curvula	Weeping love grass / Oulandsgras
Eragrostis lehmanniana var lehmanniana	Lehmann's love grass / Knietjiesgras
Eragrostis rigidior	Broadleaved curly leaf / Breëkrulgras
Felicia muricata subsp muricata ^{1,2,3}	White felicia
Helichrysum nudifolium var nudifolium ^{1,2}	Hottentot's tea / Hottentotstee
Helichrysum paronychioides	

Table 4: Plants recorded in the Old cultivated fields

SCIENTIFIC NAME	COMMON NAMES
Helichrysum rugulosum ^{2,3}	
Hyparrhenia hirta	Common thatching grass / Dekgras
Melinis repens subsp repens	Red top grass
Monsonia angustifolia	Crane's bill / Angelbossie
Nemesia fruticans	Wilde leeubekkie
Nidorella hottentotica	
Pentarrhinum insipidum	Donkieperske
Pogonarthria squarrosa	Herring bone grass / Sekelgras
Solanum panduriforme	Poison apple / Gifappel
Striga elegans	Rooiblom
Themeda triandra	Red grass / Rooigras
Tylosema esculentum	Gemsbok bean / Gemsbokboontjie
Vernonia oligocephala ^{1,2}	Cape vernonia / Blounaaldetee bossie
Zinnia peruviana*	Redstar zinnia / Wildejakobregop

6.1.9 Rocky outcrop vegetation

6.1.9.1 Functional aspects and connectivity

A small outcrop of rock with pristine vegetation occurred near the northern corner of the site. Connectivity with natural grassland existed in all directions. The 52 plant species recorded in this vegetation community were all indigenous species, the life forms of which were as follows:

LIFE FORM	NUMBER OF SPECIES
Annual & perennial herbaceous species	23
Tree species	1
Shrubs and dwarf shrubs	2
Grasses	12
Geophytes	12
Sedges	1
Succulents	1
Total No of indigenous species	52

6.1.9.2 Red – and orange-listed species

The Orange-listed *Hypoxis hemerocallidea* (African potato) did not occur in this small vegetation community. The habitat of the Rocky outcrop vegetation community was not suitable for the Red-listed legume species known to occur on subsurface dolomite in the area. The rocks of the outcrop were not of chert and therefore not suitable for the Red-listed fern species that is known to occur on chert within 5 km north of the site.

6.1.9.3 Medicinal and alien species and sensitivity

Fourteen of the 28 medicinal species recorded on the study site were found in this vegetation community. No alien species were recorded. The Rocky outcrop vegetation community was considered sensitive and should be excluded from development. It should be connected to areas of natural vegetation by means of suitable corridors.

Photo 3: Rocky outcrop vegetation on Monavoni 44

Table 5: Plants recorded in the Rocky o	utcrop vegetation
---	-------------------

SCIENTIFIC NAME	COMMON NAMES
Aloe greatheadii var davyana ^{1,2}	Kleinaalwyn
Anthospermum rigidum subsp rigidum	
Aristida congesta subsp congesta	Tassle three-awn grass / Katstertsteekgras
Aster harveyanus	Bloublommetjie
Bonatea speciosa var antennifera	Terrestrial orchid / Grondorgidie
Bonatea speciosa var antennifera Boophone disticha ^{1,2,3}	Cape poison bulb / Seeroogblom, gifbol
Brachiaria serrata	Velvet grass / Fluweelgras
Bulbostylis burchellii	Biesie
Chloris virgata	Feathertop chloris / Witpluim chloris
Commelina livingstonii	
Crabbaea angustifolia ²	
Crabbaea hirsuta ^{2,3}	Prickle head
Dicoma anomala subsp anomala ^{1,2,3}	Maagbitterwortel
Dicoma macrocephala	
Diheteropogon amplectens	Broadleaved bluestem / Breëblaar blougras
Diospyros lycioides subsp guerkei	Bushveld bluebush / Bosveldbloubos
Drimia elata ²	Jeukbol
Elionurus muticus	
Eriosema burkei var burkei	
Eulophia tuberculata	
Helichrysum dasymallum	
Helichrysum nudifolium var nudifolium ^{1,2}	Hottentot's tea / Hottentotstee
Helichrysum paronychioides	
Heteropogon contortus	Spear grass / Assegaaigras
Hyparrhenia hirta	Common thatching grass / Dekgras
Hypoxis hemerocallidea ^{1,2,3}	Star flower / Gifbol
Hypoxis obtusa	
Hypoxis rigidula var rigidula	Silverleaved star flower / Wilde tulp
Ipomoea obscura var obscura	Wild petunia / Wilde patat
Justicia anagalloides	
Ledebouria revoluta ³	Common ledebouria

SCIENTIFIC NAME	COMMON NAMES
Macledium zeyheri subsp zeyheri ^{2,3}	
Melinis nerviglumis	Bristle leaf red top / Steekblaarblinkgras
Melinis repens subsp repens	Red top grass
Monsonia angustifolia	Crane's bill / Angelbossie
Neorautanenia ficifolius	
Nidorella hottentotica	
Panicum natalense	Natal panicum / Suurbuffelsgras
Pearsonia sessilifolia subsp sessilifolia	Silwerertjietee
Pentanisia angustifolia	Wild verbena /Sooibrandbossie
Pollichia campestris	Waxberry / Teesuikerbossie
Pygmaeothamnus chamaedendrum var	Sand apple / Goorappel
chamaedendrum	
Raphionacme hirsuta ²	Khadi root / Khadiwortel
Scabiosa columbaria ^{1,2,3}	Wild scabiosa / Bitterbos
Schizachyrium sanguineum	Red autumn grass / Rooi herfsgras
Senecio coronatus	Sybossie
Senecio venosus	Besembossie
Sida dregei	Spider-leg
Tristachya biseriata	Trident grass / Drieblomgras
Triumfetta sonderi	Maagbossie
Vangueria infausta subsp infausta ²	Wild medlar / Wildemispel
Xerophyta retinervis ^{1,2}	Monkey's tail / Bobbejaanstert

¹⁾Van Wyk, B-E., Van Oudtshoorn, B. & Gericke, N. 2002.

²⁾Watt, J.M. & Breyer-Brandwijk, M.G. 1962.

³⁾ Pooley, E. 1998.

⁴⁾Van Wyk, B. & Van Wyk P. 1997.

6.2 Mammals:

The local occurrences of mammals are closely dependent on broadly defined habitat types, in particular terrestrial, arboreal (tree-living), rupiculous (rock-dwelling) and wetland-associated vegetation cover. It is thus possible to deduce the presence or absence of mammal species by evaluating the habitat types within the context of global distribution ranges. Sight records and information from residents or knowledgeable locals audit such deductions.

From a mammal habitat perspective, only one of the four major types is present on the site, namely terrestrial.

There are no randjies, a very small rocky outcrop and no bat caves on the site.

Observed and Expected Species Richness

All large mammals have disappeared decades ago to benefit farming interests and latterly more intensive land-use practices. More recently many medium-sized mammals have thus also succumbed such as the black-backed jackal and aardvark.

Considering the absence of arboreal, rupiculous and wetland habitats, those mammals closely reliant on these were *a priori* excluded from the list of potential occurrences (Table 6). Range management was geared to cattle farming with little or no attention to wildlife conservation, hence the low species diversity relative to that of historical times.

Of the 28 mammal species expected to occur on the study site (Table 6), only three species were confirmed during the site visit (Table 7).

Table 6 lists the mammals that were observed or deduced to occupy the site, or to be occasional visitors. All feral mammal species expected to occur on the study site (e.g. house mice, house rats, dogs and cats) were omitted from the assessment since these species normally associate with human settlements.

All but three of the species of the resident diversity (Table 7) are generalists / opportunists with wide habitat tolerances and are thus common and widespread in SA.

The bats listed are very common, widespread and ecologically resilient. Given daytime roosts in the form of crevices in structures of civilization in the general area, these animals can be expected to hunt for aerial insects during summer dusks.

Mammal Habitat Assessment

From a mammal perspective, the terrestrial habitat is in poor condition, due to intensive cattle grazing in the past. The study site has suffered from fires during the recent dry season, and basal cover was sprouting during the site visit. As such, it was low and presented poor refuge against predation. Fires are a catastrophic event in the seasonal cycles of small mammal populations and were curtailed for the sake of grazing prior to the removal of cattle herds. Prime terrestrial habitat for small terrestrial mammals is directly linked to good cover rather than the species composition of the vegetative ground cover. Seasonal fires are therefore concluded to have a severe impact on population densities, and possibly mammal diversity. A small rise on the northern section is rocky, but cannot be construed as a rupiculous habitat. The site is thus considered to be devoid of rocky ridges, woodlands or wetlands.

The 500 meters of adjoining properties on all sides (except the Monument Drive and small holdings beyond) are in a similar state of ecological disrepair and although there is a high degree of connectivity, the fact that only three Red Listed species are recognized on the site relegate this ecological mechanism to a low level of importance. Connectivity is in any case a hypothetical concept in this instance since adjoining areas are also scheduled for urban development.

	SCIENTIFIC NAME	ENGLISH NAME
\checkmark	Lepus saxatilis	Scrub hare
\checkmark	Cryptomys hottentotus	African mole rat
*	Rhabdomys pumilio	Four-striped grass mouse
*	Mus minutoides	Pygmy mouse
*	Mastomys natalensis	Natal multimammate mouse
*	Mastomys coucha	Southern multimammate mouse
*	Aethomys ineptus	Tete veld rat
*	Tatera brantsii	Highveld gerbil
?	Saccostomus campestris	Pouched mouse
?	Dendromus melanotis	Grey pygmy climbing mouse
?	Dendromus mesomelas	Brants' climbing mouse
?	Dendromus mystacalis	Chestnut climbing mouse

Table 6: The mammals which were observed or deduced to occupy the site

	SCIENTIFIC NAME	ENGLISH NAME
DD?	Suncus lixus	Greater dwarf shrew
DD?	Suncus infinitesimus	Least dwarf shrew
*	Crocidura cyanea	Reddish-grey musk shrew
*	Crocidura hirta	Lesser red musk shrew
NT?	Atelerix frontalis	Southern African hedgehog
*	Neoromicia capensis	Cape serotine bat
*	Scotophilus dinganii	African yellow house bat
*	Scotophilus viridis	Greenish yellow house bat
?	Genetta genetta	Small-spotted genet
?	Genetta tigrina	SA large-spotted genet
	Cynictis penicillata	Yellow mongoose
*	Galerella sanguinea	Slender mongoose
?	Canis mesomelas	Black-backed jackal
?	Ictonyx striatus	Striped polecat
?	Sylvicapra grimmia	Common duiker
?	Raphicerus campestris	Steenbok
Dofinito	v there or has a <i>high</i> probability to occur.	

 $\sqrt{}$ Definitely there or has a *high* probability to occur;

* Medium probability to occur based on ecological and distributional parameters;

? Low probability to occur.

Red Data species rankings as defined in Friedmann and Daly's S.A. Red Data Book / IUCN (World Conservation Union) (2004) are indicated in the first column: CR= Critically Endangered, En = Endangered, Vu = Vulnerable, LR/cd = Lower risk conservation dependent, LR/nt = Lower Risk near threatened, DD = Data Deficient. All other species are deemed of Least Concern.

Table 7: Mammal species positively	confirmed from the study site.
------------------------------------	--------------------------------

SCIENTIFIC NAME	ENGLISH NAME	OBSERVATION INDICATOR	HABITAT
L. saxatilis	Scrub hare	Faecal pellets	Short grass
C. hottentotus	African mole rat	Tunnel system	Wide tolerance
C. penicillata	Yellow mongoose	Grassland	Wide tolerance

All three species are widespread and common and justifiably called opportunistic generalists. With their proven wide habitat tolerance and/or reticent behaviour patterns, they display a remarkable ability to co-exist in the close proximity of human activities.

Threatened and Red Listed Mammal Species

The two dwarf shrew species are listed as potential occupants. They have a tendency to use dead termite mounds as refuges, and these structures are used as a coarse indicator of their presence. Their assigned "Data Deficient" Red Listed conservation status is, however, indicative of a dearth of field data to ascertain their true global conservation status. Under natural conditions, hedgehogs have no problem with surviving and their "Near Threatened" conservation status is the direct result of human predation. Considering the extent of the site and surrounding undeveloped areas, some individuals must have managed to survive.

It is submitted that no other Endangered species could have survived the ravages of farming and urbanization: the white-tailed rat is extremely sensitive to habitat conditions which are not met on this site, while habitat requirements for rough-haired golden moles or any other golden moles are absent. Other Red Data or sensitive species are deemed

absent from the site since the site is too disturbed, falls outside the distributional ranges of some species, or does not offer suitable habitat(s).

6.2 Avifauna:

Avifaunal Habitat Assessment:

The study site is situated within the Dry Highveld Grassland Bioregion of the Grassland Biome and more specifically within the Carletonville Dolomite Grassland vegetation type according to Mucina and Rutherford (2006). Egoli Granite Grassland runs past the southern edge of the study site and the grassland on the study site can probably be described as a transition area between the two grassland vegetation types. Within this vegetation type one distinct bird habitat systems was identified.

Open grassland:

The entire study site consists of open natural grassland (either primary or secondary) with a few scattered trees and shrubs. Open grassland is the most important habitat type for South Africa's threatened bird species in the region with a proportional importance of 27% (Barnes 2000). The highest diversity of threatened bird species occurs within this grassland habitat of which many are in the highest category of threat (Barnes 2000). The presence and abundance of bird species in this habitat will vary from season to season being lush and green in summer after summer rains and dry and brown or burnt during winter. The area will favour ground living bird species such as lapwings, francolins, pipits, long claws, larks and chats that either hunt for insects or breed on the ground, in burrows in the ground or between the grass. Weavers and widow-birds will make use of this area for feeding (seeds) during late summer and early winter when the grass is not burnt. Widow-birds and cisticolas will also breed in the tall grass during summer. Aerial feeding birds such as martins, swifts and swallows will hunt for insects over the grasslands.

Observed and Expected Species Richness

Of the 314 bird species recorded for the 2528CC q.d.g.c 101 (32.16%) are likely to occur on the study site and 24 (23.7.6%) of these bird species were actually observed on the study site (Table 8).

The bird species listed in Table 8 are in species order according to *Roberts - Birds of Southern Africa* VII th edition (Hockey *et al*, 2005). These were actually observed on site (**in bold**) or are likely to occur within the specific habitat found on site. This does not include overflying birds or rare vagrants. The reporting rate (%) is according to Harrison *et al.* (1997). The habitat preference, **OG = Open Grassland** is indicated next to the reporting rate with their possibility of occurrence in these specific habitats on site rated as 5 = present, 4 = High, 3 = Medium, 2 = Low, 1 = Very low, and 0 = Not likely to occur.

SCIENTIFIC NAME	ENGLISH NAME	R RATE	HABITAT PREFERENCE
SCIENTIFIC NAME		(%)* 2528CC	OG
Peliperdix coqui	Coqui Francolin	4	4
Scleroptila levaillantoides	Orange River Francolin	1	1
Pternistis swainsonii	Swainson's Spurfowl	21	5
Coturnix coturnix	Common Quail	1	4
Numida meleagris	Helmeted Guineafowl	53	5
Jynx ruficollis	Red-throated Wryneck	20	4
Upupa africana	African Hoopoe	76	4
Merops apiaster	European Bee-eater	12	4
Colius striatus	Speckled Mousebird	72	3
Urocolius indicus	Red-faced Mousebird	38	4
Chrysococcyx caprius	Diderick Cuckoo	26	5
Cypsiurus parvus	African Palm-Swift	23	5
Apus affinis	Little Swift	39	4
Apus caffer	White-rumped Swift	19	5
Corythaixoides concolor	Grey Go-away-bird	44	2
Tyto alba	Barn Owl	6	3
Bubo africanus	Spotted Eagle-Owl	4	3
Columba livia	Rock Dove	27	4
Columba guinea	Speckled Pigeon	42	4
Streptopelia senegalensis	Laughing Dove	94	5
Streptopelia capicola	Cape Turtle-Dove	81	4
Streptopelia semitorquata	Red-eyed Dove	32	5
Afrotis afraoides	Northern Black Korhaan	13	5
Eupodotis senegalensis	White-bellied Korhaan (VU)	<1	2
Burhinus capensis	Spotted Thick-knee	36	4
Vanellus armatus	Blacksmith Lapwing	39	3
Vanellus senegallus	African Wattled Lapwing	16	4
Vanellus coronatus	Crowned Lapwing	74	5
Cursorius temminckii	Temminck's Courser	<1	2
Elanus caeruleus	Black-shouldered Kite	47	4
Milvus migrans	Black Kite	14	2
Buteo vulpinus	Steppe Buzzard	5	4
Falco naumanni	Lesser Kestrel (VU)	1	2
Falco rupicolus	Rock Kestrel	<1	1
Falco rupicoloides	Greater Kestrel	5	4
Falco amurensis	Amur Falcon	1	4
Ardea melanocephala	Black-headed Heron	40	5
Bubulcus ibis	Cattle Egret	71	5
Bostrychia hagedash	Hadeda Ibis	86	4
_ cou joina nagoaacii		2	2
Ciconia ciconia	White Stork	2	2
Ciconia ciconia	White Stork Bokmakierie	64	4

Table 8: Bird species observed and that are likely to occur on the study site.

SCIENTIFIC NAME	ENGLISH NAME	R RATE (%)*	HABITAT PREFERENCE
		2528CC	OG
Lanius minor	Lesser Grey Shrike	1	1
Lanius collaris	Common Fiscal	90	5
Riparia cincta	Banded Martin	1	5
Hirundo rustica	Barn Swallow	28	5
Hirundo albigularis	White-throated Swallow	22	4
Hirundo cucullata	Greater Striped Swallow	34	5
Hirundo abyssinica	Lesser Striped Swallow	20	4 4
Hirundo spilodera	South African Cliff-Swallow Rock Martin	10 18	4 4
Hirundo fuligula Delichon urbicum	Common House-Martin	5	4
		5 89	4
Pycnonotus tricolor Cisticola tinniens	Dark-capped Bulbul Levaillant's Cisticola	09 10	4 2
	Neddicky	10	4
Cisticola fulvicapilla Cisticola juncidis	Zitting Cisticola	10	5
Cisticola aridulus	Desert Cisticola	3	5
Cisticola andulus Cisticola textrix	Cloud Cisticola	3	5
		<u> </u>	3
Cisticola ayresii Prinia subflava	Wing-snapping Cisticola Tawny-flanked Prinia	22	3 4
Prinia subilava Prinia flavicans	Black-chested Prinia	22	5
Mirafra cheniana		22 <1	5
Mirafra africana	Melodious Lark (NT) Rufous-naped Lark	21	4
Mirafra fasciolata	Eastern Clapper Lark	5	5
Chersomanes albofasciata	Spike-heeled Lark	2	4
Calandrella cinerea	Red-capped Lark	4	3
Saxicola torquatus	African Stonechat	15	4
Oenanthe pileata	Capped Wheatear	3	4
Cercomela familiaris	Familiar Chat	2	2
Myrmecocichla formicivora	Ant-eating Chat	8	2
Onychognathus morio	Red-winged Starling	23	0
Lamprotornis nitens	Cape Glossy Starling	46	4
Spreo bicolor	Pied Starling	9	2
Creatophora cinerea	Wattled Starling	1	1
Acridotheres tristis	Common Myna (INT)	46	4
Chalcomitra amethystina	Amethyst Sunbird	32	3
Cinnyris talatala	White-bellied Sunbird	37	2
Ploceus capensis	Cape Weaver	22	2
Ploceus velatus	Southern Masked-Weaver	73	5
Quelea quelea	Red-billed Quelea	5	3
Euplectes afer	Yellow-crowned Bishop	5	4
Euplectes orix	Southern Red Bishop	38	4
Euplectes albonotatus	White-winged Widowbird	10	4
Euplectes ardens	Red-collared Widowbird	9	5
Euplectes progne	Long-tailed Widowbird	25	4
Ortygospiza atricollis	African Quailfinch	7	4

SCIENTIFIC NAME	ENGLISH NAME	R RATE (%)* 2528CC	HABITAT PREFERENCE OG
Amadina erythrocephala	Red-headed Finch	3	3
Estrilda astrild	Common Waxbill	10	4
Vidua macroura	Pin-tailed Whydah	18	4
Passer melanurus	Cape Sparrow	91	5
	Southern Grey-headed		
Passer diffusus	Sparrow	24	4
Motacilla capensis	Cape Wagtail	70	3
Macronyx capensis	Cape Longclaw	19	5
Anthus cinnamomeus	African Pipit	14	5
Anthus leucophrys	Plain-backed Pipit	<1	2
Anthus vaalensis	Buffy Pipit	<1	2
Crithagra mozambicus	Yellow-fronted Canary	7	2
Crithagra atrogularis	Black-throated Canary	28	4
Crithagra gularis	Streaky-headed Seedeater	13	4
Emberiza tahapisi	Cinnamon-breasted Bunting	3	3
· · · · ·	Biodiv	ersity Index:	368

*The reporting rate is calculated as follows: Total number of cards on which a species was reported X 100 ÷ total number of cards for a particular quarter degree grid cell. **INT** = Introduced or alien birds species to Southern Africa.

Red Data Species Categories for the birds (Barnes, 2000)

RE = Regionally extinct, **CR** = Critically Endangered **EN** = Endangered, **VU** = Vulnerable, **NT** = Near-threatened.

Threatened and Red Listed Bird Species

The following Red Data bird species were recorded for the 2528CC quarter degree grid cell (q.d.g.c) according to Harrison *et al.* (1997) and Tarboton *et al* (1987) (Table 9).

SCIENTIFIC NAME	ENGLISH NAME	R RATE (%)* 2528CC CENTURION
Nettapus auritus	African Pygmy-Goose (NT)	(T)
Alcedo semitorquata	Half-collared Kingfisher (NT)	1(T)
Tyto capensis	African Grass-Owl (VU)	2(Tb)
Neotis denhami	Denham's Bustard (VU)	(T)
Eupodotis caerulescens	Blue Korhaan (<mark>NT</mark>)	(Tb)
Eupodotis senegalensis	White-bellied Korhaan (VU)	<1(T)
Anthropoides paradiseus	Blue Crane (VU)	3(Tb)
Podica senegalensis	African Finfoot (VU)	<1(T)
Crex crex	Corn Crake (VU)	(T)
Rostratula benghalensis	Greater Painted-snipe (NT)	(T)
Glareola nordmanni	Black-winged Pratincole (NT)	(T)
Gyps coprotheres	Cape Vulture (VU)	<1(T)
Aegypius tracheliotus	Lappet-faced Vulture (VU)	(T)
Circus ranivorus	African Marsh-Harrier (VU)	<1(Tb)
Circus macrourus	Pallid Harrier (NT)	(T)
Aquila ayresii	Ayres's Hawk-Eagle (NT)	<1(T)

Table 9: Red Data bird species recorded for the 2528CC q.d.g.c.

SCIENTIFIC NAME	ENGLISH NAME	R RATE (%)* 2528CC CENTURION
Polemaetus bellicosus	Martial Eagle (VU)	<1(T)
Sagittarius serpentarius	Secretarybird (NT)	(Tb)
Falco naumanni	Lesser Kestrel (VU)	1(T)
Falco biarmicus	Lanner Falcon (NT)	1(Tb)
Gorsachius leuconotus	White-backed Night-Heron (VU)	(T)
Pelecanus onocrotalus	Great White Pelican (NT)	(T)
Pelecanus rufescens	Pink-backed Pelican (VU)	(T)
Mycteria ibis	Yellow-billed Stork (NT)	<1(T)
Ciconia nigra	Black Stork (NT)	<1(T)
Mirafra cheniana	Melodious Lark (NT)	<1(T)
	Very Low :	12
	Low :	2
	Medium :	0
	High :	0
	14	
	Tarboton :	20
	6	
		26

*The reporting rate is calculated as follows: Total number of cards on which a species was reported X 100 + total number of cards for a particular quarter degree grid cell.

Red Data Species Categories for the birds (Barnes, 2000)

RE = Regionally extinct, CR = Critically Endangered EN = Endangered, VU = Vulnerable, NT = Near-threatened.

Twenty-six Red Data bird species have been recorded within the 2528CC q.d.g.c (Table 9). Thirteen of these have disappeared from the area or were not recorded for this quarter degree grid cell during the time of the southern African Bird Atlas project. It is unlikely that they will ever be seen in this region again except maybe on rare occasions in protected areas. Six of these species used to breed within the said q.d.g.c (Tarboton, 1987) and only one, the African Grass-Owl, has been recorded as a breeding species for the q.d.g.c. during the period of the Southern African bird atlas project. This decline in breeding species is probably due to the large extent of development that took place during a short space of time. As with the African Grass-Owl, the Blue Crane also show a low reporting rate but the habitat on site and the level of disturbance will not favour Blue Crane. The rest of the Red Data species that have been recorded shows a very low reporting rate and will more than likely only move through the area on rare occasions.

Summary of the Red Data bird species

Table 10 provides a list of the Red Data bird species recorded for the 2528CC q.d.g.c according to Harrison *et al.* (1997) and an indication of the likelihood of occurring on the study site based on habitat and food availability on site.

Table TO: Red Data bird species assessment for the 2528CC q.d.g.c.		
SCIENTIFIC NAME	PRESENCE OF SUITABLE HABITAT	LIKELIHOOD OF OCCURRENCE ON STUDY SITE
Alcedo semitorquata (Half-collared Kingfisher) (NT)	None. Prefers clear fast-flowing rivers fringed with riparian growth.	Highly unlikely
<i>Tyto capensis</i> (African Grass-Owl) (<mark>VU</mark>)	None. Prefers rank moist grassland bordering vleis.	Highly unlikely
Eupodotis senegalensis (White-bellied Korhaan) (VU)	None. Prefers tall vegetation, typically fairly dense grassland in either open or lightly wooded regions and seems abundant in hilly areas (Barnes, 2000).	Unlikely
Anthropoides paradiseus (Blue Crane) (VU)	None. Prefers more open grassland and Karroid grassland. Might on occasion just move over the area.	Highly unlikely
Podica senegalensis (African Finfoot) (VU)	None. Prefers clear, perennial rivers and streams, lined with reeds, overhanging trees and shrubs.	Highly unlikely.
<i>Gyps coprotheres</i> (Cape Vulture) (VU)	None. Their presence is dependent on the availability of food otherwise they are only likely to move over the area on rare occasions.	Highly unlikely.
<i>Circus ranivorus</i> (African Marsh-Harrier) (VU)	None. Dependent on large permanent wetlands for breeding, roosting and foraging.	Highly unlikely
<i>Aquila ayresii</i> (Ayres's Hawk-Eagle) (NT)	None.	Highly unlikely
Polemaetus bellicosus (Martial Eagle) (VU)	None. It is found in flat country and rarely in suburbia. Rare visitor to the region.	Highly unlikely
Falco naumanni (Lesser Kestrel) (VU)	None. Palaearctic migrant. Prefers open country such as pristine open grassland and pastures for foraging purposes.	Unlikely. Only on rare occasions
<i>Falco biarmicus</i> (Lanner Falcon) (NT)	None.	Highly unlikely.
<i>Mycteria ibis</i> (Yellow-billed Stork) (NT)	None. Prefers extensive systems of wetland, notably pans, marshes, lakes and floodplains.	Highly unlikely
<i>Ciconia nigra</i> Black Stork (NT)	None. Prefers shallow waterbodies such as estuaries and rivers.	Highly unlikely
<i>Mirafra cheniana</i> Melodious Lark (NT)	Yes: Prefers dry open climax grassland dominated by <i>Themeda triandra</i> grass.	Observed on site

Table 10: Red Data bird species assessment for the 2528CC q.d.	g.c.
--	------

6.3 Reptiles and Amphibians:

During the inspection, the site was evaluated for the potential occurrence of Red Data and Near Threatened species, such as the Striped Harlequin Snake, Duerden's Stiletto Snake and the Giant Bullfrog. The two Red Data snake species have not been recorded in this quarter degree grid cell. As only a few active termitaria were noticed along the edge of the site, they are not expected to occur here. The Giant Bullfrog has been recorded from the adjacent quarter degree grid cell to the east, of which the edge is very close to this site (Minter *et al*, 2004). This frog is well known from the general area and although not verified, may very well be present on this site.

SCIENTIFIC NAME	ENGLISH NAME	PROBABILITY OF
		OCCURRENCE
CLASS: AMPHIBIA	AMPHIBIANS	
Order: ANURA	FROGS	
Family: Bufonidae	Toads	
Bufo gutturalis	Guttural Toad	Low
Bufo rangeri	Ranger's Toad	Low
CLASS: REPTILIA	REPTILES	
ORDER: SQUAMATA	SCALE-BEARING REPTILES	
Suborder: LACERTILIA	LIZARDS	
Family: Gekkonidae	Geckos	
Pachydactylus affinis	Transvaal Thick-toed Gecko	Low
Pachydactylus capensis	Cape Thick-toed Gecko	Low
Family: Agamidae	Agamids	
Agama aculeata distanti	Distant's Ground Agama	Low
Family: Scincidae	Skinks	
Panaspis wahlbergii	Wahlberg's Snake-eyed Skink	Low
Acontias percivali occidentalis	Percival's Legless Skink	Low
Trachylepis punctatissimus	Speckled Skink	Medium
Suborder: SERPENTES	SNAKES	
Family: Typhlopidae	Blind Snakes	
Typhlops bibronii	Bibron's Blind Snake	Low
Family: Leptotyphlopidae	Thread Snakes	
Leptotyphlops scutifrons	Peters' Thread Snake	Medium
Leptotyphlops incognitus	?	Low
Family: Atractaspididae	African Burrowing Snakes	
Atractaspis bibronii	Bibron's Stiletto Snake	Low
Aparallactus capensis	Cape Centipede-eater	Low
Family: Colubridae	Typical Snakes	
Lamprophis aurora	Aurora Snake	Low
Lamprophis capensis (=	Brown House Snake	Low
fuliginosus)		
Lycophidion capense	Cape Wolf Snake	Low
Prosymna sundevallii	Sundevall's Shovel-snout	Medium

Table 11: The Reptiles and Amphibians that could occur on the site

SCIENTIFIC NAME	ENGLISH NAME	PROBABILITY OF OCCURRENCE
Dasypeltis scabra	Rhombic Egg-eater	Low
Family: Elapidae	Cobras, Mambas, other Elapids	
Hemachatus haemachatus	Rinkhals	Low
Homoroselaps dorsalis	Striped Harlequin Snake	Low

7. FINDINGS AND POTENTIAL IMPLICATIONS

7.1 Flora

During the most recent visit, the study site was found to be unchanged except for a deep services trench that ran along the eastern boundary of the site. Division of the large area of Natural primary grassland into small townships without corridors of natural vegetation to facilitate connectivity will result in destruction of the natural plant species diversity of the area.

The habitat of the Natural primary grassland and the Rocky outcrop vegetation was suitable for the Orange-listed *Hypoxis hemerocallidea* (African potato). This species was found sparsely scattered in these two vegetation communities. These plants should be relocated to a safe, suitable area approved by GDACE.

Photo 4: Services trench dug through part of the Rocky outcrop vegetation along the eastern boundary of the site

7.2 Fauna

7.2.1 Mammals

The proposed development will not result in a loss of ecological sensitive and important habitat units, ecosystem function (e.g. reduction in water quality, soil pollution), loss of faunal habitat, nor of loss/displacement of threatened or protected fauna.

7.2.2 Avifauna

The open grassland on site offers ideal habitat conditions for Melodious Larks for both breeding and foraging purposes. Several displaying male Melodious Larks were observed on the study site.

The Melodious Lark (Mirafra cheniana)

The Melodies Lark is listed in the *Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland* (Barnes 2000) but has been removed from GDACE's list of priority species.

The Melodious Lark is a southern Africa endemic and is an uncommon resident bird species of which their numbers and range have been greatly reduced due to habitat destruction. It appears to be sensitive to overgrazing (Barnes 2000) and land-use changes in the grasslands may severely impact this species (Stattersfield *et al.* 1998).

This species has a very low reporting rate (<1%) for the 2528CC quarter degree square grid cell as well as most of the central Gauteng area according to Harrison *et al.* (1997). Despite the low reporting rate, several individual male Melodious Larks were observed displaying over the open grassland during this bird habitat survey.

Particular references were made to the possible occurrence of White-bellied Korhaan (*Eupodotis senegalensis*) on the study site:

White-bellied Korhaan (Eupodotis senegalensis)

Criteria for IUCN threatened category: A1c: A2c; C1. Status: Vulnerable

<u>Habitat:</u> According to Barnes (2000) it inhabits relatively tall vegetation, typically fairly dense grassland in either open or lightly wooded regions. It seems to be most abundant in hilly areas at the interface between the grassland and savanna biomes (Tarboton *et al.* 1987). They occur in low abundance in severely grazed and recently burnt sites (Barnes 2000).

<u>Threats:</u> Within Gauteng habitat loss through crop farming, overgrazing, burning and high human densities are the main reasons for the population decline of this species. Even where suitable habitat exits, it is often modified by inappropriate fire regimes and grazing practices (Barnes 2000). The genetic integrity of this species may be threatened because of severely fragmented distribution (Barnes 2000).

<u>On site conclusion</u>: The habitat on the study site is disturbed by human presence. Humans move over the area to the squatter camp that is situated to the north of the study site and a network of human track crisscross most parts of the study site. Although the habitat could still favour White-bellied Korhaan, it is doubtful if they will make use of the open grassland on site due to the human presence.

7.2.3 Reptiles and Amphibians

This study site was originally covered by Carletonville Dolomite Grassland (Mucina *et al*, 2006) on a fairly homogeneous clayey to stony substrate of the Timeball Hill Formation. Apart from a clump of trees on the northeastern border, hardly any woody plants occur. Dolomite does not weather in a way that provides cracks suitable as retreats for reptiles and amphibians. Therefore, this environment has a limited number of niches but conditions are improved in the areas where there is a presence of termitaria. Of those, once in moribund state, they will provide additional suitable retreats for small animals, including dry-land amphibians and reptiles. Species diversity and population densities are not expected to be high.

Photo 5: View across open grassveld with termitaria and exposed rocks of the northern section of Monavoni x 44 towards the Microlite Airstrip

Although the 'Near Threatened' Giant Bullfrog (*Pyxicephalus adspersus*) has been recorded from this quarter degree grid cell (Minter *et al*, 2004), the terrain on this site does not appear suitable as dispersal area as the substrate is not suitable for burrowing. Odd individuals from adjacent areas may occasionally occur but the terrain on the study site is not suitable to form shallow breeding ponds for the full lifecycle. The intensive development in the general area precludes the future presence of the Giant Bullfrog. The Striped Harlequin Snake (*Homoroselaps dorsalis*), a very rarely recorded species (Only 12 recorded for Gauteng, Jacobsen, 1995) and consequently a Red Data species, has been recorded from Farm Swartkop 383JR in this quarter degree grid cell.

8. LIMITATIONS, ASSUMPTIONS AND GAPS IN KNOWLEDGE

None

9. **RECOMMENDED MITIGATION MEASURES**

Mitigation measures proposed by the specialists

- Should hedgehogs be encountered during the construction and operational phase of the development, these should be relocated to natural grassland areas in the vicinity.
- The contractor must ensure that no fauna species are disturbed, trapped, hunted or killed during the construction phase. Conservation-orientated clauses should be built into contracts for construction personnel, complete with penalty clauses for non-compliance.
- It is important to note that the trenches for the water pipeline and even those for sewage lines do not need to be wide, which means that the environmental damage caused by the actual digging can be reduced to a minimum. However, while they are open their presence will mean that wildlife of any size may fall into them, from where it will be difficult to escape and death may be caused by drowning, excessive exposure to the sun or by being buried alive during the final construction work.
- Environmental damage caused by these trenches may be kept to a minimum by good forward planning and thereby reducing the actual length of time that they are open. Possible damage to wildlife is in direct proportion to the time that these trenches are open and may destroy amphibian and reptilian species.
- The design of the stormwater lines is not known. If large diameter cement pipes are used and the trenches are closed again, potential danger become reduced by filling in the trenches. Open stormwater channels are dangerous, as they will continuously contribute to wildlife destruction.

Photo 6: Open trench across grassveld on farm Stukgrond which is a hazardous situation as far as small animals are concerned.

The following mitigation measures were developed by GDACE (Directorate of Nature Conservation, GDACE, 2008) and are applicable to the study site.

- All areas designated as sensitive in a sensitivity mapping exercise (see *Sensitivity Mapping Rules for Biodiversity Assessments*) should be incorporated into an open space system and registered against the title deeds as a conservation servitude. Development should be located on the areas of lowest sensitivity.*
- Development structures should be clustered as close as possible to existing development.*
- An independent suitably qualified individual registered in accordance with the Natural Scientific Professions Act (No. 27 of 2003) should act as the environmental control officer.*
- An appropriate management authority (e.g. the body corporate) that is contractually bound to implement the Environmental Management Plan (EMP) and Record Of Decision (ROD) during the operational phase of the development should be identified.*
- An ecological management plan for the open space system should be compiled by a specialist registered in accordance with the Natural Scientific Professions Act (No. 27 of 2003) in the fields of Botanical / Ecological / Zoological Science. This ecological management plan should form part of the EMP.*
- The ecological management plan should:
- include a fire management programme to ensure persistence of grassland*
- include an ongoing monitoring and eradication programme for all non-indigenous species, with specific emphasis on invasive and weedy species*
- ensure the persistence of all Red and Orange List species*
- include a monitoring programme for all Red and Orange List species*
- facilitate/augment natural ecological processes*
- provide for the habitat and life history needs of important pollinators*
- minimize artificial edge effects (e.g. water runoff from developed areas & application of chemicals)*
- include management recommendations for neighbouring land, especially where correct management on adjacent land is crucial for the long-term persistence of sensitive species present on the development site*
- result in a report back to the Directorate of Nature Conservation on an annual basis*
- investigate and advise on appropriate legislative tools (e.g. the NEMA: Protected Areas Act 57 of 2003) for formally protecting the area (as well as adjacent land where it is crucial for the long-term persistence of sensitive species present on the development site)*
- A copy of the ecological management plan should be provided to all neighbouring landowners.*
- A funding mechanism that will cover the cost of implementing the ecological management plan should be established.*
- All areas earmarked for development should be fenced off from the open space system prior to construction commencing (including site clearing and pegging). All construction-related impacts (including service roads, temporary housing, temporary ablution, disturbance of natural habitat, storing of equipment/building materials/vehicles or any other activity) should be contained within the fenced-off development areas. Access of vehicles to the open space system should be prevented and access of people should be controlled, both during the

construction and operational phases. Movement of all indigenous fauna should however be allowed (i.e. no solid walls, e.g. through the erection of palisade fencing), unless otherwise specified in another condition.*

- Compacting of soil should be avoided in areas to be included in the open space system.*
- Connectivity between the open space system and adjacent natural vegetation / open space systems should be ensured.*
- Only species indigenous to South Africa should be used for landscaping / gardens within 200m of the open space system. Plant species indigenous to the natural vegetation of the area are preferred. As far as possible, plants naturally growing on the development site, but would otherwise be destroyed during clearing for development purposes, should be incorporated into landscaped areas. Forage and host plants required by pollinators should also be planted in landscaped areas.*

General mitigatory measures:

- Where possible, trees naturally growing on the site should be retained as part of the landscaping, with specific emphasis on the following species: *Acacia erioloba, Boscia albitrunca, Combretum imberbe, Pittosporum viridiflorum, Prunus africana, Sclerocarya birrea* subsp. *caffra.* Measures to ensure that these trees survive the physical disturbance from the development should be implemented. A tree surgeon should be consulted in this regard. *
- In order to minimize artificially generated surface storm water runoff, total sealing of paved areas such as parking lots, driveways, pavements and walkways should not be permitted. Permeable material should rather be utilized for these purposes.*

Red Listed Birds

When Red Listed birds occur or potentially occur on site, the following mitigatory measures are recommended:

• Construction activities should be timed to coincide with the period when the Red Listed bird species that could potentially occur on site are unlikely to be breeding.*

Non-Sensitive Sites

When sensitive areas are **not** present on the proposed development site, the following mitigatory measures are recommended:

- A rescue operation for medicinal plants should be undertaken. The Gauteng Directorate of Nature Conservation (Head: Bioregional Planning; Michele.Pfab@gauteng.gov.za) should be contacted with regard to the coordination of such an operation.*
- A surface runoff and stormwater management plan should be compiled.*

Roads Pipelines / Powerlines

- The appropriate agency should implement an ongoing monitoring and eradication programme for all invasive and weedy plant species growing within the servitude.*
- Any post-development re-vegetation or landscaping exercise may only use species indigenous to South Africa. Plant species locally indigenous to the area

are preferred. As far as possible, plants naturally growing along the route, but would otherwise be destroyed during construction, should be used for revegetation / landscaping purposes.*

- Where a road / railway / pipeline/ power line is to traverse a wetland, measures are required to ensure that the road / railway / pipeline/ power line has minimal effect on the flow of water through the wetland, e.g. by using a high level clear-span bridge or box culverts rather than pipes.*
- Prior to construction, fences should be erected in such a manner to prevent access and damage to any sensitive areas identified in a sensitivity mapping exercise (see *Sensitivity Mapping Rules for Biodiversity Assessments*).*
- Sealing of surfaces under a bridge or gabion construction should be avoided.*

The following recommended mitigatory measures only apply to **roads**:

- Appropriate road design and traffic control measures are recommended to reduce air pollution and animal mortality.*
- All storm water structures should be designed so as to block amphibian and reptile access to the road surface.*
- Suitable terrestrial underpasses should be provided to facilitate safe movement
 of animals, specifically where roads traverse ridges or habitat suitable for any
 Red/Orange List amphibian/ reptile/ mammal species. The number and spacing
 of underpasses will need to be determined by a specialist registered in
 accordance with the Natural Scientific Professions Act (No. 27 of 2003) in the
 fields of Ecological / Zoological Science. All underpasses should be dressed with
 a layer of sand (minimum 10cm) and should be a minimum of 1.5m x 1.0m so as
 to facilitate maintenance access. Underpasses should be accessible to
 maintenance staff and should be cleared of accumulated material at least at the
 start of each rainy season.*
- Where roads are associated with power lines and telephone lines (these provide an attraction for species that hunt from perches), road margins should be mowed and/or burned regularly to prevent the accumulation of grass cover that could provide refuge for small mammals.*
- A comprehensive surface runoff and storm water management plan should be compiled, indicating how all surface runoff generated as a result of the road development (during both the construction and operational phases) will be managed (e.g. artificial wetlands / storm water and flood retention ponds) prior to entering any natural drainage system or wetland and how surface runoff will be retained outside of any demarcated buffer/flood zones and subsequently released to simulate natural hydrological conditions. This plan should form part of the EMP.*

The following recommended mitigatory measures only apply to **power lines** / **telephone lines** / **communication masts** / **cell phone towers**:

- Where communication masts / cell phone towers / overhead lines (power lines or telephone lines) are to be constructed within/adjacent to urban open space systems or within rural areas, the Eskom-EWT strategic partnership should advise on appropriate mitigatory measures.*
- The design (including mitigation measures) and location of any proposed power lines (whether new alignments or refurbishment/upgrading of existing lines) should be endorsed by the bird conservation experts of the Eskom-EWT strategic partnership.*

10. CONCLUSIONS

Flora:

No Red-listed plant species were found. The Natural primary grassland on the site was deemed sensitive. The Orange-listed *Hypoxis hemerocallidea* (African potato) was found sparsely scattered in the Natural primary grassland and the Rocky outcrop vegetation habitats. These plants should be relocated to a safe, suitable area approved by GDACE. Corridors of Natural primary grassland that have not been disturbed by services trenches should be excluded in all the planned new townships of Monavoni and on the neighbouring sites that are to be developed together with these sites. These corridors should be connected to the rocky outcrop on the study site and on the other portions that are being developed and to the *Acacia karroo* vegetation in the eastern part of Monavoni to facilitate connectivity. These areas must be properly managed throughout the lifespan of the project in terms of fire, eradication of exotics etc. to ensure continuous biodiversity.

Mammals:

Most, if not all the terrestrial species listed as potential occupants of the site, will be displaced as a result of the proposed development. This will have no effect on the global conservation status of most of the species. However, the loss of the three Red Listed species is regrettable, although when expressing the magnitude of the loss in statistical terms it would most probably be negligible.

Birds:

Although the habitat on the study site could still favour White-bellied Korhaan, it is doubtful if they will make use of the open grassland due to the human presence.

The open grassland habitat on site offers suboptimal habitat for the Melodious Larks. This species has however been removed from GDACE's list of priority species.

The proposed development should not have a negative affect on any of the other Red Data bird species listed above due to the high level of human disturbance on site. In addition, there is a lack of sufficient breeding, foraging and breeding habitat for the mentioned Red Data bird species.

Reptiles and Amphibians:

The site appears suitable for a relatively limited number of amphibian and reptile species. A specimen of the Striped Harlequin Snake (*Homoroselaps dorsalis*), a Red Data Species, has been recorded from the farm Swartkop 383 JR (Jacobsen, 1995), in this quarter degree grid cell. This proves the presence of this species in this area but it is practically impossible to confirm this record as occurring on this site. As this snake tends to live underground in burrows or tunnels, where it feeds exclusively on Thread Snakes (*Leptotyphlops* spp.), it is usually only found accidentally when dead termitaria are destroyed. To attempt to confirm the presence of this species in an area, it would be necessary to destroy a large number of dead termitaria, which would reduce the suitability of the area for the survival of this snake and other reptiles. Since it appears that this species occurs in relatively low densities it is impossible to suggest conservation measures.

11. LITERATURE SOURCES

- Agenbach, L. et al. (Unpublished). Interim assessments (Oct 2007) of the South African Red data plants. Treatened Species Programme (TSP) of the South African Biodiversity Institute, Pretoria.
- Barnes, K.N. (ed.). 1998. The Important Bird Areas of southern Africa. Johannesburg: BirdLife South Africa.
- Barnes, K.N. (ed.). 2000. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg.
- Botha C. 2001. Common weeds of crops and gardens in southern Africa. ARC Grain Crops Institute, Agricultural Research Council, Pretoria.
- Bothalia. 1962. Volume 8, part 1 (The Cucurbitaceae of Southern African). Botanical Research Institute, Department of Agricultural Technical Services, Pretoria.
- Bothalia. 2006. Volume 36, part 1 (Data deficient flags for use in the Red List of South African plants). South African National Biodiversity Institute, Pretoria.
- Bothalia. 2006. Volume 36, part 2 (Cheilanthes deltoidea, a new locality in Gauteng, South Africa). South African National Biodiversity Institute, Pretoria.
- Branch, W.R. (Editor), August 1988. 'South African Red Data Book Reptiles and Amphibians'. S.A.National Scientific Programmes, Report No. 151, 244 pp.
- Branch, W.R. 1998. 'Field Guide to the Snakes and other Reptiles of Southern Africa'. 3rd edition. Struik Publishers, Cape Town. 399 pp., maps, 112 plates.
- Branch, W.R. 2002. 'The Conservation Status of South Africa's threatened Reptiles': 89 – 103..In:- G.H.Verdoorn & J. le Roux (editors), 'The State of Southern Africa's Species', Proceedings of a conference held at the Rosebank Hotel, 4 – 7 September 2001. World Wildlife Fund.

Bromilow, C. 2001. Problem plants of South Africa. Briza Publications, Pretoria

- Bronner, G.N., Hoffmann, M., Taylor, P.J., Chimimba, C.T., Best, P.B., Mathee, C.A. & Robinson, T.J. 2003. A revised systematic checklist of the extant mammals of the southern African subregion. Durban Museum Novitates 28:56-103.
- Burger, M. & J. A Harrison. 2002. 'The State of Southern African Amphibians':117 125. In:- G.H. Verdoorn & J. le Roux (editors), The State of Southern Africa's Species', Proceedings of a conference held at the Rosebank Hotel, 4 – 7 September 2001. World Wildlife Fund.
- Burrows, J.E. 1990. Southern African ferns and fern allies. Frandsen Publishers, Sandton.
- Carruthers, V. 1990. The Magaliesberg. Southern Book Publications, JHB.
- Carruthers, V. 2001. 'Frogs and Frogging in Southern Africa'. 100pp., ill., maps, CD with calls. Struik Publishers, Cape Town.
- Chippendall, L.K.A. et. al. 1955. The grasses and pastures of South Africa. Central News Agency, Cape Times Limited, Parow.
- Department of Environmental Affairs and Tourism. 2007. National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004): Publication of Lists of Critically Endangered, Endangered, Vulnerable and Protected Species. Government Notices.
- Directorate of Nature Conservation, GDACE, 2008 Requirements for Biodiversity Assessments, Version 2.
- Fabian, A. & Germishuizen, G. 1997. Wild flowers of northern South Africa. Fernwood Press, Cape Town.

Flora of Southern Africa. 1980. Vol. 27,4 (Asclepiadaceae: Brachystelma, Ceropegia, Riocreuxia). Botanical Research Institute, Department of Agricultural Technical Services, Pretoria

Friedman, Y. and Daly, B. (editors). 2004. Red Data Book of the Mammals of South Africa: A Conservation Asessment: CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust. South Africa.

Germishuizen, G. & Clarke, B. 2003. Illustruated guide to the Wildflowers of northern South Africa. Briza Publications, Pretoria.

Germishuizen, G. & Meyer, N.L. (eds) 2003. Plants of southern Africa: an annotated checklist. Strelitzia 14, National Botanical Institute, Pretoria.

Gibbs Russell. G.E. et. al. 1990. Grasses of southern Africa. Memoirs of the Botanical survey of South Africa No. 58. National Botanic Gardens/Botanical Research Institute, South Africa.

Gordon-Gray, K.D. 1995. Cyperaceae in Natal. Stelitzia 2. National Botanical Institute, Pretoria.

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.). 1997. The Atlas of Southern African Birds. Vol. 1 & 2. BirdLife South Africa, Johannesburg.

Henderson, L. 2001. Alien weeds and invasive plants. Plant Protection Research Institute, Agricultural Research Council, Pretoria.

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. 2005. Roberts Birds of Southern Africa VII th Edition, The Trustees of the John Voelcker Bird Book Fund, Cape Town.

Jacobsen, N.H.G. Dec.1989. A herpetological survey of the Transvaal. 3 Vols, 1621 pp., 266maps. (Unpublished Ph.D. Thesis).

Jacobsen, N.H.G. 1995. 'The Herpetology of the Gauteng Province, - localities and distribution maps'. Pages not numbered. Internal Report, Chief Directorate of Nature and Environmental Conservation, Gauteng Province.

Keith, S., Urban, E.K. & Fry, C.H. 1992. The Birds of Africa. Vol. 4. Academic Press, London.

Kemp, A.C. & Calburn, S. 1987. The owls of southern Africa. Cape Town: Struik Winchester.

Linder, H.P. & Kurzweil, H. 1999. Orchids of Southern Africa. A.A. Balkema, Rotterdam.

Low, A.B. & Rebelo, A.G. 1996. 'Vegetation Map of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria.

Low, A.E. & Rebelo, A.G. (eds). 1998. Vegetation of South Africa, Lesotho and Swaziland. A companion to the Vegetation Map of South Africa, Lesotho and Swaziland. Department of Environmental Affairs & Tourism, Pretoria.

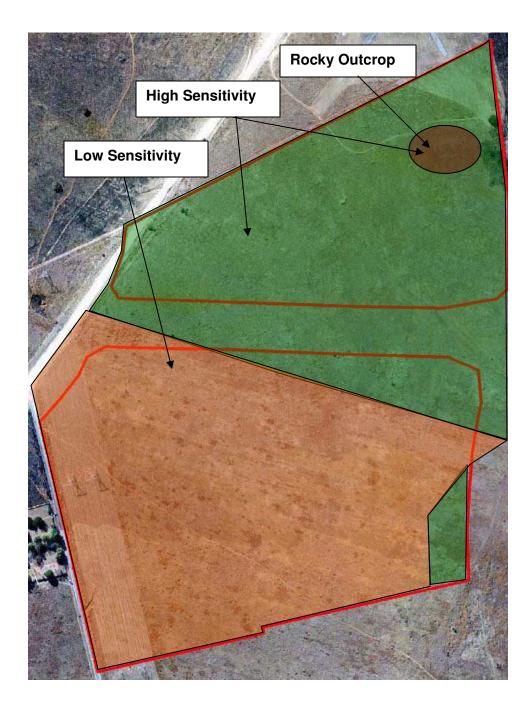
Maclean, G.L., 1990. Ornithology for Africa. University of Natal Press, Pietermaritzburg.

Maclean, G.L., 1993. Roberts' Birds of Southern Africa. John Voelcker Bird Book Fund, Cape Town.

Meester, J.A.J., Rautenbach, I.L., Dippenaar, N.J. & Baker, C.M. 1986. Classification of Southern African Mammals. Transvaal Museum Monograph No. 5. Transvaal Museum, Pretoria, RSA.

Mills, G. & Hes, L. 1997. The complete book of Southern African Mammals. Struik Winchester, Cape Town, RSA.

Minter, L.R., M.Burger, J.A.Harrison, H.H.Braack, P.J.Bishop and D.Kloepfer, eds. 2004. 'Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland'.SI/MAB Series #9. Smithsonian Institution, Washington, DC.


Moteetee, A.N. 2003. A taxonomic study of Melolobium and related African genera of the tribe Genisteae (Fabaceae). Faculty of Natural Sciences, Rand Afrikaans University, Johannesburg.

Mucina, L. & Rutherford, M.C. 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.

- Pfab, M. 2001. Red Data Plant Policy for Environmental Impact Evaluations. Final Draft. Directorate of Nature Conservation, Department of Agriculture, Conservation, Environment and Land Affairs.
- Pfab, M. 2006. GDACE Requirements for Biodiversity assessments. Directorate of Nature Conservation, Department of Agriculture, Conservation and Environment.
- Pfab, M.F. & Victor, J.E. 2002. Threatened plants of Gauteng, South Africa. South African Journal of Botany, Vol 68: 370 375.
- Pfab, M.F. 2002. Priority ranking scheme for Red Data plants in Gauteng, South Africa. South African Journal of Botany, Vol 68: 299 – 303.
- Pooley, E. 1998. A field guide to the wild flowers of Kwazulu-Natal and the eastern region. Natal Flora Publications Trust, Durban.
- Rautenbach, I.L. 1978. A numerical re-appraisal of the southern African biotic zones. Bulletin of the Carnegie Museum of Natural History 6:175-187.
- Rautenbach, I.L. 1982. Mammals of the Transvaal. Ecoplan Monograph No. 1. Pretoria, RSA.
- Retief, E. & Herman, P.P.J. 1997. Plants of the northern provinces of South Africa: keys and diagnostic characters. Strelitzia 6: 1-681, National Botanical Institute, Pretoria.
- Sinclair I., & Hockey P. 2005. The Larger Illustrated Guide to Birds of Southern Africa. Struik, Cape Town
- Sinclair, I., Hockey, P. & Tarboton W. 2002. Sasol Birds of Southern Africa. Struik, Cape Town
- Skinner, J.D. & Chimimba, T.C. 2005. The Mammals of the Southern African Subregion. 3rd edition. Cambridge University Press.
- Skinner, J.D. & Smithers, R.H.N. 1990. The Mammals of the Southern African Subregion. 2nd edition. Pretoria: University of Pretoria.
- Smith, C.A. 1966. Common names of South African plants. Botanical Research Institute, Department of Agricultural Technical Services, Pretoria.
- Smithers, R.H.N. 1983. The Mammals of the Southern African Subregion. Pretoria: University of Pretoria.
- Stewart, J. *et. al.* 1982. Wild orchids of southern Africa. Macmillan South Africa, Johannesburg.
- Steyn, P. 1982. Birds of prey of southern Africa. Claremont, Cape Town: David Philip.
- Tarboton, W., 2001. A Guide to the Nests and Eggs of Southern African Birds. Struik, Cape Town.
- Tarboton, W.R., Kemp, M.I., & Kemp, A.C. 1987. Birds of the Transvaal. Transvaal Museum, Pretoria.
- Urban, E.K., Fry, C.H., & Keith, S., 1986. Birds of Africa. Vol. 2. Academic Press, London
- Van Oudshoorn, F.P. 2002. Guide to grasses of southern Africa. Briza Publications, Pretoria.
- Van Wyk, B. & Malan, S. 1988. Field guide to the wild flowers of the Witwatersrand and Pretoria region. Struik, Cape Town.
- Van Wyk, B. & Van Wyk P. 1997. Field guide to trees of southern Africa. Struik Publishers, Cape Town.
- Van Wyk, B-E., Van Oudtshoorn, B. & Gericke, N. 2002. Medicinal plants of South Africa. Briza Publications, Pretoria.
- Watt, J.M. & Breyer-Brandwijk, M.G. 1962. The medicinal and poisonous plants of southern and eastern Africa. 2nd edition. Livingstone, London.

APPENDIX A

Sensitivity map

APPENDIX B

Red and Orange-listed* plants of the 2528CC q.d.g.s.

Species	Flowering season	Suitable habitat	Priority grouping	Conserva- tion status	PRESENCE ON SITE
Bonatea speciosa var. speciosa	Jan-Mar	Savanna.	N/A	Declining ²	Habitat not suitable
Bowiea volubilis	Sep-Apr	Shady places, steep rocky slopes and in open woodland, under large boulders in bush or low forest.	N/A	Declining ²	Habitat not suitable
Ceropegia decidua subsp. pretoriensis	Nov-Apr	Direct sunshine or shaded situations, rocky outcrops of the quartzitic Magaliesberg mountain series, in pockets of soil among rocks, in shade of shrubs and low trees, can be seen twining around grass spikes.	A1	Vulnerable ¹	Habitat not suitable
Cheilanthes deltoidea	Feb-Jun	Sheltered rock crevices predominantly on granite or gneiss rock formations; on chert outcrops.	A2	Data Deficient ¹	Habitat not suitable
Cleome conrathii	Mar-May	On stony slopes, usually on sandy soil, open to closed deciduous woodland, quartzites, red sandy soil, all aspects, 1515m.	A3	Near Threatened ¹	Habitat not suitable
<i>Eucomis autumnalis</i> subsp. <i>clavata</i>	Nov-Apr	Open grassland, marshes.	NA	Declining ²	Habitat not suitable
Habenaria barbertoni	Feb-Mar	In grassland on rocky hillsides	A2	Vulnerable ¹	Habitat not suitable
Habenaria kraenzliniana	Feb-Apr	Terrestrial in story, grassy hillsides, recorded from 1000 to 1400m.	A3	Near Threatened ¹	Habitat not suitable
Habenaria mossii	Mar-Apr	Open grassland on dolomite or in black sandy soil.	A1	Endangered ¹	Habitat not suitable
Holothrix randii	Sep-Jan	Grassy slopes & rocky ledges.	В	Near Threatened ²	Habitat not suitable
Hypoxis hemerocallidea	Sep-Mar	Grassland and mixed woodland.	N/A	Declining ²	FOUND
Melolobium subspicatum	Oct-May	Grassland.	A1	Vulnerable ¹	Habitat not suitable

¹⁾ global status;
 ²⁾ national status;

* Orange listed plants have no priority grouping and are designated 'N/A'.

Annexure L

IVIANANON 44

Lizelle Gregory

From:
Sent:
To:
Subject:

GDACE Biodiversity Information (GDACE) [GDACE_BiodiversityInfo@gauteng.gov.za] 29 September 2008 04:53 PM Lizelle Gregory RE: Gaut 002/08-09/N0588

twarded

With regard to the above project, specialist biodiversity studies are required to investigate the following aspects:

Birds, with specific reference to White-bellied Korhaan.

Reptiles, with specific reference to Striped Harlequin Snake.

Vegetation

Should a wetland be located during site investigations, a wetland specialist study will also be required. Please note that this information is relevant solely for the study site specified in your request. Red List species information relevant to a wider geographic area can be obtained from Lorraine Mills (Lorraine.Mills@gauteng.gov.za). All specialist studies must comply with GDACE Requirements for Biodiversity Assessments. The most recent version of this document

can be obtained by e-mailing GDACE BiodiversityInfo@gauteng.gov.za or can be downloaded from www.gdace.gpg.gov.za <file://www.gdace.gpg.gov.za/> . Should the environmental consultant be of the opinion that any of the above specialist studies re unnecessary for the site/activity in question, then an ecologically-based motivation justifying why the studies are deemed unnecessary must be submitted to

GDACE as part of the application. This submission will be evaluated and either accepted or returned to the applicant for the completion of the necessary studies. Please do not send follow up inquiries to this message as they will not be processed. For further queries please contact Michele Pfab (Michele.Pfab@gauteng.gov.za).

From: Lizelle Gregory [mailto:lizelleg@mweb.co.za] Sent: Fri 9/19/2008 11:23 AM To: GDACE Biodiversity Information (GDACE) Subject: FW: Gaut 002/08-09/N0588

To Whom It May Concern:

Please find attached the shapefile for the above mentioned project. If you could send us the relevant specialist studies that is required.

ind Regards,

Disclaimer:

This message may contain confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secured or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the content of this message, which arise as a result of e-mail transmission. The Gauteng Provincial Government does not take responsibility for Gauteng Provincial Government users' personal views. Gauteng Provincial Government services available online at: www.gautengonline.gov.za

No virus found in this incoming message. Checked by AVG. Version: 7.5.524 / Virus Database: 270.7.5/1696 - Release Date: 2008/09/28 01:30 PM

Annexure M

Consulting Earth Scientists

E-mail: e_shed@telkomsa.net

Our Ref: 08111gma GLENSTANTIA, 0010 Tel: (012) 993 2049 Fax: (012) 998 6890 Cell: 082 551 6034

P.O. Box 32107

3 February 2009

M & T Development (Pty) Ltd PO Box 39727 FAERIE GLEN 0043

For attention: Mr PW Kruger

Dear Sir

CAVES IN DOLOMITE ON PORTIONS OF HONEYPARK 437-JR, STUKGROND 382-JR AND SWARTKOP 383-JR, CENTURION (TSHWANE METRO).

This letter is written in response to your request to provide information of the possible presence of caves on the above-mentioned site.

There are no known caves of significance on the site. This firm is involved in the assessment of the dolomite stability of portions of various farm (Honeypark 437-JR, Stukgrond 382-JR and Swartkop 383-JR) in the western part of Centurion (Tshwane Metro). The investigation consisted of collating and assessing the results from one hundred and sixty-eight percussion boreholes. The boreholes have been drilled by various consultants over a 4 year period. Limited field mapping of dolomite and syenite outcrops was undertaken by the writer over the site. No evidence of any caves, whether large or small, was observed during the fieldwork. The writer has been involved in dolomite investigations in this general region for the past 30 years and is unaware of any significant caves on or in the immediate vicinity of this site.

We trust the contents of the letter provides the information required but should any additional information be necessary please do not hesitate to contact us.

Yours faithfully

E Shedden (Pr Sci Nat) RELLY MILNER AND SHEDDEN

Annexure N

Heritage impact survey report for the PROPOSED DEVELOPMENT ON VARIOUS HOLDINGS OF THE MONAVONI AGRICULTURAL HOLDINGS AREA OF THE PRETORIA MAGISTERIAL DISTRICT, GAUTENG

THE PROJECT:

Development of urban housing and a filling station.

THIS REPORT:

HERITAGE IMPACT SURVEY REPORT FOR THE PROPOSED DEVELOPMENT ON VARIOUS HOLDINGS OF THE MONAVONI AGRICULTURAL HOLDINGS AREA OF THE PRETORIA MAGISTERIAL DISTRICT, GAUTENG

Report No:	2009/JvS/005
Status:	Final
Revision No:	0
Date:	January 2008

Prepared for: Bokamoso Landscape Architects Representative: Ms L Gregory

Postal Address:	P O Box 11375, MAROELANA, 0161
Tel:	012 346 3810
E-mail:	Lizelleg@mweb.co.zal

Prepared by:

J van Schalkwyk (D Litt et Phil), Heritage Consultant ASAPA Registration No.: 168 Principal Investigator: Iron Age, Colonial Period, Industrial Heritage

Postal Address:	62 Coetzer Avenue, Monument Park, 0181
Mobile:	076 790 6777
Fax:	012 347 7270
E-mail:	jvschalkwyk@mweb.co.za

EXECUTIVE SUMMARY

HERITAGE IMPACT SURVEY REPORT FOR THE PROPOSED DEVELOPMENT ON VARIOUS HOLDINGS OF THE MONAVONI AGRICULTURAL HOLDINGS AREA OF THE PRETORIA MAGISTERIAL DISTRICT, GAUTENG

Development is planned for various Holdings in the Monavoni Agricultural Holdings on Portions of the farms Mooiplaats 355JR aand Stukgrond 382JR southwest of Pretoria. This involves the building of a housing estate as well as a filling station.

An independent heritage consultant was appointed by **Bokamoso Landscape Architects** to conduct a survey to locate, identify, evaluate and document sites, objects and structures of cultural importance found within the boundaries of the area where the different types of development is to take place.

This HIA report forms part of the Environmental Impact Assessment (EIA) as required by the EIA Regulations in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998) and was done in accordance with Section 38 of the National Heritage Resources Act, No. 25 of 1999 and is intended for submission to the South African Heritage Resources Agency (SAHRA).

Very few sites are known to occur in the larger region, mostly informal cemeteries. No sites, features or objects of cultural significance were identified in the study area during the survey. Based on what was found and its evaluation, it is recommended that any development can continue, on condition of acceptance of the following recommendations:

• If construction takes place and archaeological sites are exposed, it should immediately be reported to a museum, preferably one at which an archaeologist is available, so that an investigation and evaluation of the finds can be made.

J A van Schalkwyk Heritage Consultant

TECHNICAL SUMMARY

Property details						
Province	Gau	teng				
Magisterial district	Pret	oria				
Topo-cadastral map	282	BCC				
Closest town	Pret	Pretoria				
Farm name & no.	Moc	Mooiplaats 355JR, Stukgrond 382JR				
Portions/Holdings	Vari	Various				
Average altitude						
Coordinates	Centre point					
	No	Latitude	Longitude	No	Latitude	Longitude
	1	S 25.86870	E 28.09085			

Development criteria in terms of Section 38(1) of the NHR Act	Yes/No
Construction of road, wall, power line, pipeline, canal or other linear	
form of development or barrier exceeding 300m in length	
Construction of bridge or similar structure exceeding 50m in length	
Development exceeding 5000 sq m	Yes
Development involving three or more existing erven or subdivisions	
Development involving three or more erven or divisions that have been	
consolidated within past five years	
Rezoning of site exceeding 10 000 sq m	Yes
Any other development category, public open space, squares, parks,	
recreation grounds	

Development	
Description	Development of urban housing and a filling station
Project name	Monavoni

Land use	
Previous land use	Agriculture
Current land use	Vacant

Heritage sites assessment			
Site type	Site significance	Site grading (Section 7 of NHRA)	
None			
Impact assessm	ent		
Impact	Mitigation	Permits required	
None		None	

TABLE OF CONTENTS

Pa	ge
EXECUTIVE SUMMARY	. II
TECHNICAL SUMMARY	III
TABLE OF CONTENTS	IV
LIST OF FIGURES	IV
GLOSSARY OF TERMS AND ABBREVIATIONS	.v
1. INTRODUCTION	. 1
2. TERMS OF REFERENCE	. 1
3. DEFINITIONS AND ASSUMPTIONS	. 1
4. STUDY APPROACH AND METHODOLOGY	.2
5. DESCRIPTION OF THE AFFECTED ENVIRONMENT	.3
6. SITE SIGNIFICANCE AND ASSESSMENT	.4
7. IDENTIFICATION OF RISK SOURCES	.4
8. RECOMMENDED MANAGEMENT MEASURES	.5
9. RECOMMENDATIONS	.6
10. REFERENCES	.7
APPENDIX 1: CONVENTIONS USED TO ASSESS THE IMPACT OF PROJECTS ON HERITAGE RESOURCES	.8
APPENDIX 2. RELEVANT LEGISLATION	10
APPENDIX 3: SURVEY RESULTS	12
APPENDIX 4: ILLUSTRATIONS	13

LIST OF FIGURES

	Page
Fig. 1. Location of the study area indicated by the red oval	3
Fig. 2. The study area, showing the location of the identified sites	
Fig. 3. View over the site, looking east	13
Fig. 4. View across the site looking north,	13

GLOSSARY OF TERMS AND ABBREVIATIONS

Study area: Refers to the entire study area as indicated by the client in the accompanying Fig. 1.

Stone Age: The first and longest part of human history is the Stone Age, which began with the appearance of early humans between 3-2 million years ago. Stone Age people were hunters, gatherers and scavengers who did not live in permanently settled communities. Their stone tools preserve well and are found in most places in South Africa and elsewhere.

Early Stone Age	2 000 000 - 150 000 Before Present
Middle Stone Age	150 000 - 30 000 BP
Late Stone Age	30 000 - until c. AD 200

Iron Age: Period covering the last 1800 years, when new people brought a new way of life to southern Africa. They established settled villages, cultivated domestic crops such as sorghum, millet and beans, and they herded cattle as well as sheep and goats. These people, according to archaeological evidence, spoke early variations of the Bantu Language. Because they produced their own iron tools, archaeologists call this the Iron Age.

Early Iron Age	AD 200 - AD 900
Middle Iron Age	AD 900 - AD 1300
Late Iron Age	AD 1300 - AD 1830

Historical Period: Since the arrival of the white settlers - c. AD 1840 $\,$ - in this part of the country

LIST OF ABBREVIATIONS

ADRC ASAPA EIA ESA LIA	Archaeological Data Recording Centre Association of Southern African Professional Archaeologists Early Iron Age Early Stone Age Late Iron Age
LSA	Later Stone Age
MSA	Middle Stone Age
NHRA	National Heritage Resources Act
PHRA	Provincial Heritage Resources Agency
SAHRA	South African Heritage Resources Agency

HERITAGE IMPACT SURVEY REPORT FOR THE PROPOSED DEVELOPMENT ON VARIOUS HOLDINGS OF THE MONAVONI AGRICULTURAL HOLDINGS AREA OF THE PRETORIA MAGISTERIAL DISTRICT, GAUTENG

1. INTRODUCTION

Development is planned for various Holdings in the Monavoni Agricultural Holdings on Portions of the farms Mooiplaats 355JR aand Stukgrond 382JR southwest of Pretoria. This involves the building of a housing estate as well as a filling station.

An independent heritage consultant was appointed by **Bokamoso Landscape Architects** to conduct a survey to locate, identify, evaluate and document sites, objects and structures of cultural importance found within the boundaries of the area where the different types of development is to take place.

This HIA report forms part of the Environmental Impact Assessment (EIA) as required by the EIA Regulations in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998) and was done in accordance with Section 38 of the National Heritage Resources Act, No. 25 of 1999 and is intended for submission to the South African Heritage Resources Agency (SAHRA).

2. TERMS OF REFERENCE

The scope of work consisted of conducting a Phase 1 archaeological survey of the site in accordance with the requirements of Section 38(3) of the National Heritage Resources Act (Act 25 of 1999).

This include:

- Conducting a desk-top investigation of the area
- A visit to the proposed development site

The objectives were to

- Identify possible archaeological, cultural and historic sites within the proposed development areas;
- Evaluate the potential impacts of construction, operation and maintenance of the proposed development on archaeological, cultural and historical resources;
- Recommend mitigation measures to ameliorate any negative impacts on areas of archaeological, cultural or historical importance.

3. DEFINITIONS AND ASSUMPTIONS

The following aspects have a direct bearing on the survey and the resulting report:

• *Cultural resources* are all non-physical and physical human-made occurrences, as well as natural occurrences that are associated with human activity. These include all sites, structures and artefacts of importance, either individually or in groups, in the history, architecture and archaeology of human (cultural) development.

- The *significance* of the sites and artefacts are determined by means of their historical, social, aesthetic, technological and scientific value in relation to their uniqueness, condition of preservation and research potential. It must be kept in mind that the various aspects are not mutually exclusive, and that the evaluation of any site is done with reference to any number of these.
- Sites regarded as having low significance have already been recorded in full and require no further mitigation. Sites with medium to high significance require further mitigation.
- The latitude and longitude of archaeological sites are to be treated as sensitive information by the developer and should not be disclosed to members of the public.

4. STUDY APPROACH AND METHODOLOGY

4.1 Extent of the Study

This survey and impact assessment covers the area as presented in Section 5 and as illustrated in Figure 1 - 3.

4.2 Methodology

4.2.1 Preliminary investigation

4.2.1.1 Survey of the literature

A survey of the relevant literature was conducted with the aim of reviewing the previous research done and determining the potential of the area. In this regard, various anthropological, archaeological and historical sources were consulted - see the list of references below.

4.2.1.2 Data bases

The Heritage Atlas Database, the Environmental Potential Atlas and the National Archives of South Africa were consulted.

4.2.1.3 Other sources

Aerial photographs and topocadastral and other maps were also studied - see the list of references below.

4.2.2 Field survey

The field survey was done according to generally accepted archaeological practices, and was aimed at locating all possible sites, objects and structures. The area that had to be investigated, was identified by **Bokamoso** by means of maps. The area was investigated by walking across it in a number of transects. Special attention was given to topographical occurrences such as trenches, holes, outcrops and clusters of trees were investigated.

4.2.3 Documentation

All sites, objects and structures that are identified are documented according to the general minimum standards accepted by the archaeological profession. Coordinates of individual

localities are determined by means of the *Global Positioning System* (GPS)¹ and plotted on a map. This information is added to the description in order to facilitate the identification of each locality.

Map datum used: Hartebeeshoek 94 (WGS84).

4.3 Limitations

In some areas the grass cover was high and very dense, which limited archaeological visibility to some extent.

5. DESCRIPTION OF THE AFFECTED ENVIRONMENT

5.1 Site location

The study area covers various Portions of the farms Stukgrond 382JR and Mooiplaats 355JR, all in the Monavoni Agricultural Holdings area of the Pretoria magisterial district of Gauteng. For more detail please see the Technical Summary presented above.

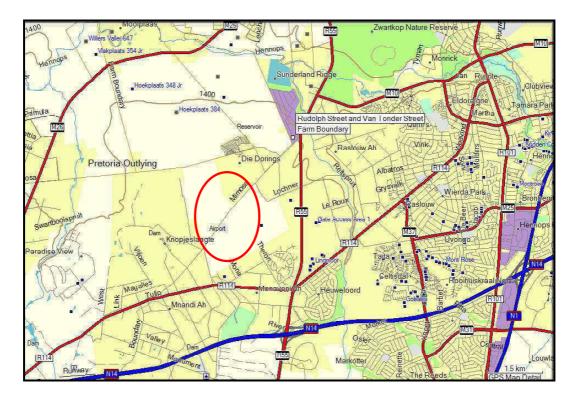


Fig. 1. Location of the study area indicated by the red oval.

¹ According to the manufacturer a certain deviation may be expected for each reading. Care was, however, taken to obtain as accurate a reading as possible, and then to correlate it with reference to the physical environment before plotting it on the map.

5.2 Site description

The geology is made up of dolomite and the original vegetation is classified as Rocky Highveld Grassland. Sections of the study area has been impacted on by the illegal dumping of building material. No features (e.g. hills, outcrops, streams or rock shelters) that usually drew people to settle in its vicinity, occurs in the study area.

5.3 Identified sites

5.3.1 Stone Age

No sites, features or objects dating to the Stone Age were identified.

5.3.2 Iron Age

No such sites, objects or features dating to the Iron Age were identified.

5.3.3 Historic period

No sites, objects or features dating to historic times were identified.

6. SITE SIGNIFICANCE AND ASSESSMENT

6.1 Statement of significance

According to the NHR Act, Section 2(vi), the **significance** of heritage sites and artefacts is determined by it aesthetic, architectural, historical, scientific, social, spiritual, linguistic or technical value in relation to the uniqueness, condition of preservation and research potential. It must be kept in mind that the various aspects are not mutually exclusive, and that the evaluation of any site is done with reference to any number of these.

Sites regarded as having low significance are viewed as been recorded in full after identification and would require no further mitigation. Sites with a medium to high significance would require mitigation. Mitigation, in most cases the excavation of a site, is in essence destructive and therefore the impact can be viewed as high and as permanent.

No sites, features or objects of cultural significance were identified in the study area.

6.2 Impact assessment

Impact analysis of cultural heritage resources under threat of the proposed development, are based on the present understanding of the development.

• As no sites, features or object of cultural significance were identified in the study area, there would be no impact resulting from the proposed development.

7. IDENTIFICATION OF RISK SOURCES

A Heritage Impact Assessment is focused on two phases of a proposed development: **the construction** and **operation phases**. The following project actions may impact negatively on archaeological sites and other features of cultural importance. The actions are most likely to occur during the construction phase of a project.

Construction phase:

Possible Risks	Source of the risk					
Actually identified risks						
- damage to sites	Construction work					
Anticipated risks						
 looting of sites 	Curious workers					

Operation phase:

Possible Risks	Source of the risk					
Actually identified risks						
- damage to sites	Not keeping to management plans					
Anticipated risks						
- damage to sites	Unscheduled construction/developments					
- looting of sites	Visitors removing objects as keepsakes					

8. RECOMMENDED MANAGEMENT MEASURES

Heritage sites are fixed features in the environment, occurring within specific spatial confines. Any impact upon them is permanent and non-reversible. Those resources that cannot be avoided and that are directly impacted by the development can be excavated/recorded and a management plan can be developed for future action. Those sites that are not impacted on can be written into the management plan, whence they can be avoided or cared for in the future.

8.1 Objectives

- Protection of archaeological, historical and any other site or land considered being of cultural value within the project boundary against vandalism, destruction and theft.
- The preservation and appropriate management of new discoveries in accordance with the National Heritage Resources Act (Act No. 25 of 1999), should these be discovered during construction.

8.2.1 Construction phase

General management objectives and commitments:

- To avoid disturbing sites of heritage importance; and
- To avoid disturbing burial sites.

The following shall apply:

- Known sites should be clearly marked in order that they can be avoided during construction activities.
- The contractors and workers should be notified that archaeological sites might be exposed during the construction work.

- Should any heritage artefacts be exposed during excavation, work on the area where the artefacts were discovered, shall cease immediately and the Environmental Control Officer shall be notified as soon as possible;
- All discoveries shall be reported immediately to a museum, preferably one at which an archaeologist is available, so that an investigation and evaluation of the finds can be made. Acting upon advice from these specialists, the Environmental Control Officer will advise the necessary actions to be taken;
- Under no circumstances shall any artefacts be removed, destroyed or interfered with by anyone on the site; and
- Contractors and workers shall be advised of the penalties associated with the unlawful removal of cultural, historical, archaeological or palaeontological artefacts, as set out in the National Heritage Resources Act (Act No. 25 of 1999), Section 51. (1).

9. RECOMMENDATIONS

A survey was conducted to locate, identify, evaluate and document sites, features and objects of cultural significance found within the boundaries of an area in which it is proposed to develop a housing estate as well as a filling station.

Very few sites are known to occur in the larger region, mostly informal cemeteries. No sites, features or objects of cultural significance were identified in the study area during the survey. Based on what was found and its evaluation, it is recommended that any development can continue, on condition of acceptance of the following recommendations:

• If construction takes place and archaeological sites are exposed, it should immediately be reported to a museum, preferably one at which an archaeologist is available, so that an investigation and evaluation of the finds can be made.

10. REFERENCES

10.1 Data bases

Chief Surveyor General

Environmental Potential Atlas, Department of Environmental Affairs and Tourism.

Heritage Atlas Database, Pretoria.

National Archives of South Africa

10.2 Literature

Acocks, J.P.H. 1975. *Veld Types of South Africa*. Memoirs of the Botanical Survey of South Africa, No. 40. Pretoria: Botanical Research Institute.

Holm, S.E. 1966. *Bibliography of South African Pre- and Protohistoric archaeology*. Pretoria: J.L. van Schaik.

Horn, A.C. 1998. *Tshwane, Pretoria, Phelindaba: Structure-agency interaction and the transformation of a South African Region up to 1994, with prospects for the immediate future.* Unpublished D.Phil. Pretoria: University of Pretoria.

10.3 Maps

1: 50 000 Topocadastral maps – 2528CC

APPENDIX 1: CONVENTIONS USED TO ASSESS THE IMPACT OF PROJECTS ON HERITAGE RESOURCES

Significance

According to the NHRA, Section 2(vi) the **significance** of a heritage sites and artefacts is determined by it aesthetic, architectural, historical, scientific, social, spiritual, linguistic or technical value in relation to the uniqueness, condition of preservation and research potential. It must be kept in mind that the various aspects are not mutually exclusive, and that the evaluation of any site is done with reference to any number of these.

Matrix used for assessing the significance of each identified site/feature

1. Historic value			
Is it important in the community, or pattern of history			
Does it have strong or special association with the life or w	ork of a pe	erson,	
group or organisation of importance in history	·	-	
Does it have significance relating to the history of slavery			
2. Aesthetic value			
It is important in exhibiting particular aesthetic characterist	tics valued	by a	
community or cultural group		-	
3. Scientific value			
Does it have potential to yield information that will c	ontribute t	o an	
understanding of natural or cultural heritage			
Is it important in demonstrating a high degree of creat	ive or tecl	nnical	
achievement at a			
particular period			
4. Social value			
Does it have strong or special association with a particula	ar commun	ity or	
cultural group for social, cultural or spiritual reasons			
5. Rarity			
Does it possess uncommon, rare or endangered aspects of r	natural or cu	ultural	
heritage			
6. Representivity			
Is it important in demonstrating the principal characteristics	s of a part	icular	
class of natural or cultural places or objects			
Importance in demonstrating the principal characteristics	of a rang	ge of	
landscapes or environments, the attributes of which ider	ntify it as	being	
characteristic of its class	-		
Importance in demonstrating the principal characteristics of			
(including way of life, philosophy, custom, process, land-use,			
or technique) in the environment of the nation, province, regio			
7. Sphere of Significance	High	Medium	Low
International			
National			
Provincial			
Regional			
Regional Local			
Regional Local Specific community			
Regional Local Specific community 8. Significance rating of feature			
Regional Local Specific community 8. Significance rating of feature 1. Low			
Regional Local Specific community 8. Significance rating of feature			

Significance of impact:

- low where the impact will not have an influence on or require to be significantly accommodated in the project design
- medium where the impact could have an influence which will require modification of the project design or alternative mitigation
- high where it would have a "no-go" implication on the project regardless of any mitigation

Certainty of prediction:

- Definite: More than 90% sure of a particular fact. Substantial supportive data to verify assessment
- Probable: More than 70% sure of a particular fact, or of the likelihood of that impact occurring
- Possible: Only more than 40% sure of a particular fact, or of the likelihood of an impact occurring
- Unsure: Less than 40% sure of a particular fact, or the likelihood of an impact occurring

Recommended management action:

For each impact, the recommended practically attainable mitigation actions which would result in a measurable reduction of the impact, must be identified. This is expressed according to the following:

1 = no further investigation/action necessary

2 = controlled sampling and/or mapping of the site necessary

 $\mathbf{3}$ = preserve site if possible, otherwise extensive salvage excavation and/or mapping necessary

4 = preserve site at all costs

Legal requirements:

Identify and list the specific legislation and permit requirements which potentially could be infringed upon by the proposed project, if mitigation is necessary.

APPENDIX 2. RELEVANT LEGISLATION

All archaeological and palaeontological sites, and meteorites are protected by the National Heritage Resources Act (Act no 25 of 1999) as stated in Section 35:

(1) Subject to the provisions of section 8, the protection of archaeological and palaeontological sites and material and meteorites is the responsibility of a provincial heritage resources authority: Provided that the protection of any wreck in the territorial waters and the maritime cultural zone shall be the responsibility of SAHRA.

(2) Subject to the provisions of subsection (8)(a), all archaeological objects, palaeontological material and meteorites are the property of the State. The responsible heritage authority must, on behalf of the State, at its discretion ensure that such objects are lodged with a museum or other public institution that has a collection policy acceptable to the heritage resources authority and may in so doing establish such terms and conditions as it sees fit for the conservation of such objects.

(3) Any person who discovers archaeological or palaeontological objects or material or a meteorite in the course of development or agricultural activity must immediately report the find to the responsible heritage resources authority, or to the nearest local authority offices or museum, which must immediately notify such heritage resources authority.

(4) No person may, without a permit issued by the responsible heritage resources authority-

(a) destroy, damage, excavate, alter, deface or otherwise disturb any archaeological or palaeontological site or any meteorite;

(b) destroy, damage, excavate, remove from its original position, collect or own any archaeological or palaeontological material or object or any meteorite;

(c) trade in, sell for private gain, export or attempt to export from the Republic any category of archaeological or palaeontological material or object, or any meteorite; or

(d) bring onto or use at an archaeological or palaeontological site any excavation equipment or any equipment which assist in the detection or recovery of metals or archaeological and palaeontological material or objects, or use such equipment for the recovery of meteorites.

In terms of cemeteries and graves the following (Section 36):

(1) Where it is not the responsibility of any other authority, SAHRA must conserve and generally care for burial grounds and graves protected in terms of this section, and it may make such arrangements for their conservation as it sees fit.

(2) SAHRA must identify and record the graves of victims of conflict and any other graves which it deems to be of cultural significance and may erect memorials associated with the grave referred to in subsection (1), and must maintain such memorials.

(3) No person may, without a permit issued by SAHRA or a provincial heritage resources authority-

(a) destroy, damage, alter, exhume or remove from its original position or otherwise disturb the grave of a victim of conflict, or any burial ground or part thereof which contains such graves;

(b) destroy, damage, alter, exhume, remove from its original position or otherwise disturb any grave or burial ground older than 60 years which is situated outside a formal cemetery administered by a local authority; or

(c) bring onto or use at a burial ground or grave referred to in paragraph (a) or (b) any excavation equipment, or any equipment which assists in the detection or recovery of metals.

(4) SAHRA or a provincial heritage resources authority may not issue a permit for the destruction or damage of any burial ground or grave referred to in subsection (3)(a) unless it is satisfied that the applicant has made satisfactory arrangements for the exhumation and reinterment of the contents of such graves, at the cost of the applicant and in accordance with any regulations made by the responsible heritage resources authority.

The National Heritage Resources Act (Act no 25 of 1999) stipulates the assessment criteria and grading of archaeological sites. The following categories are distinguished in Section 7 of the Act:

- **Grade I**: Heritage resources with qualities so exceptional that they are of special national significance;
- **Grade II**: Heritage resources which, although forming part of the national estate, can be considered to have special qualities which make them significant within the context of a province or a region; and
- **Grade III**: Other heritage resources worthy of conservation, and which prescribes heritage resources assessment criteria, consistent with the criteria set out in section 3(3), which must be used by a heritage resources authority or a local authority to assess the intrinsic, comparative and contextual significance of a heritage resource and the relative benefits and costs of its protection, so that the appropriate level of grading of the resource and the consequent responsibility for its management may be allocated in terms of section 8.

Presenting archaeological sites as part of tourism attraction requires, in terms 44 of the Act, a Conservation Management Plan as well as a permit from SAHRA.

(1) Heritage resources authorities and local authorities must, wherever appropriate, coordinate and promote the presentation and use of places of cultural significance and heritage resources which form part of the national estate and for which they are responsible in terms of section 5 for public enjoyment, education. research and tourism, including-

- (a) the erection of explanatory plaques and interpretive facilities, including interpretive centres and visitor facilities;
- (b) the training and provision of guides;
- (c) the mounting of exhibitions;
- (d) the erection of memorials; and
- (e) any other means necessary for the effective presentation of the national estate.

(2) Where a heritage resource which is formally protected in terms of Part I of this Chapter is to be presented, the person wishing to undertake such presentation must, at least 60 days prior to the institution of interpretive measures or manufacture of associated material, consult with the heritage resources authority which is responsible for the protection of such heritage resource regarding the contents of interpretive material or programmes.

(3) A person may only erect a plaque or other permanent display or structure associated with such presentation in the vicinity of a place protected in terms of this Act in consultation with the heritage resources authority responsible for the protection of the place.

APPENDIX 3: SURVEY RESULTS

See Appendix 1 for an explanation of the conventions used in assessing the cultural remains. Map datum used: Hartebeeshoek 94 (WGS84).

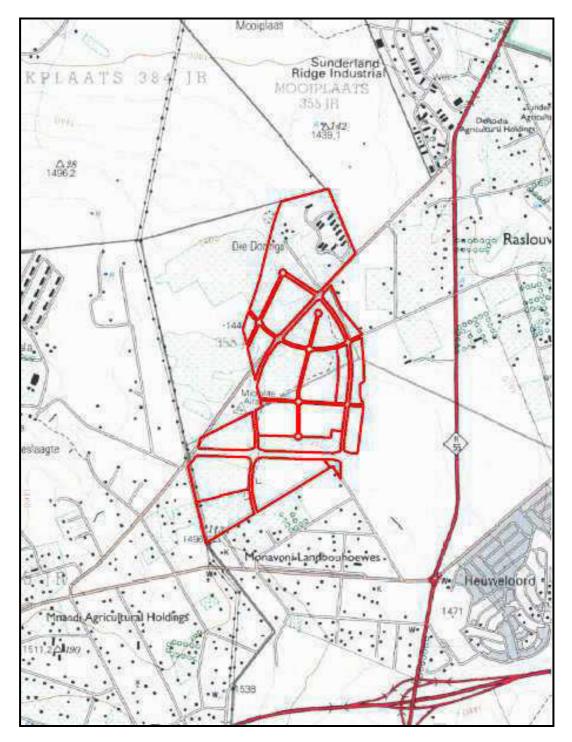
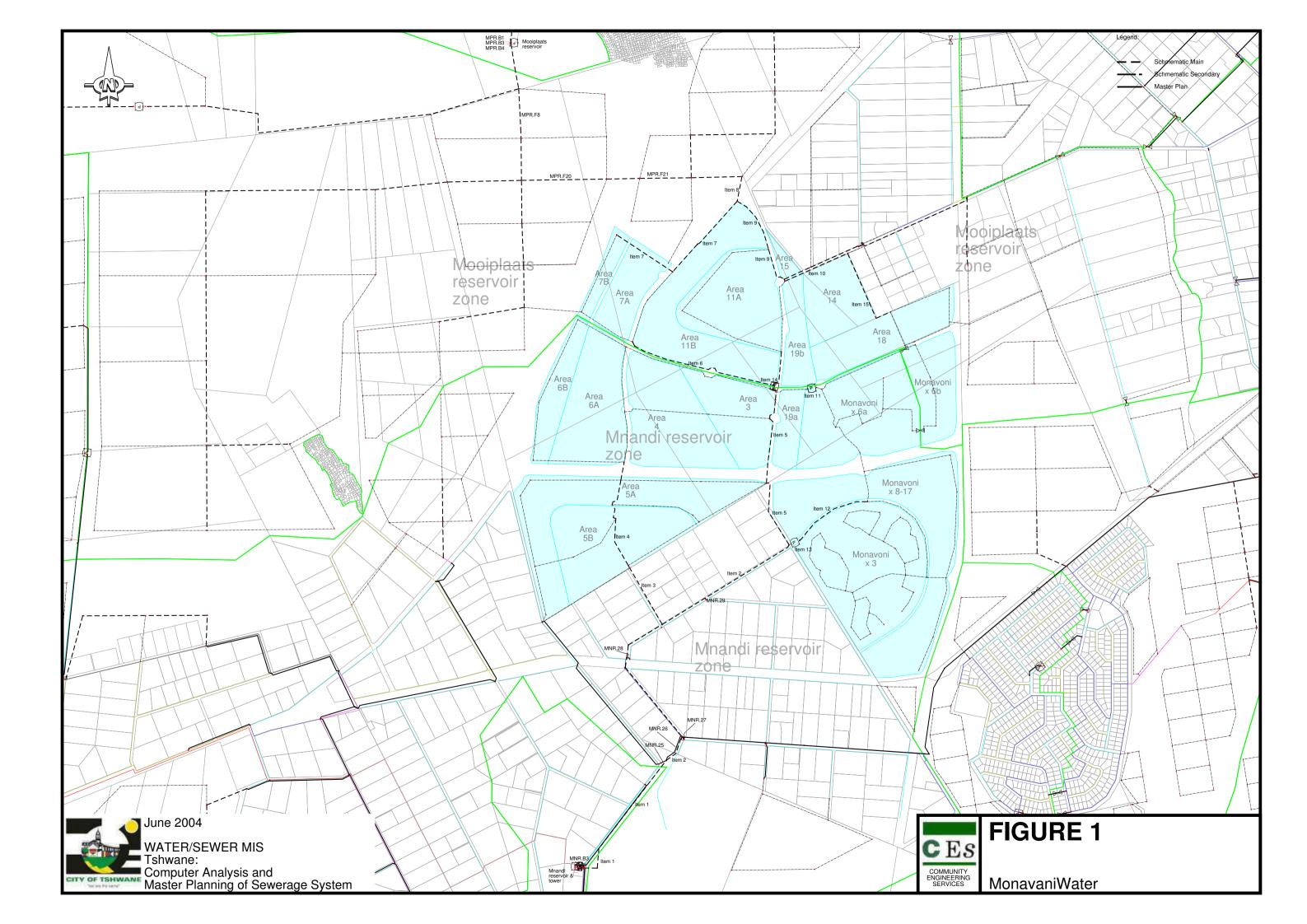
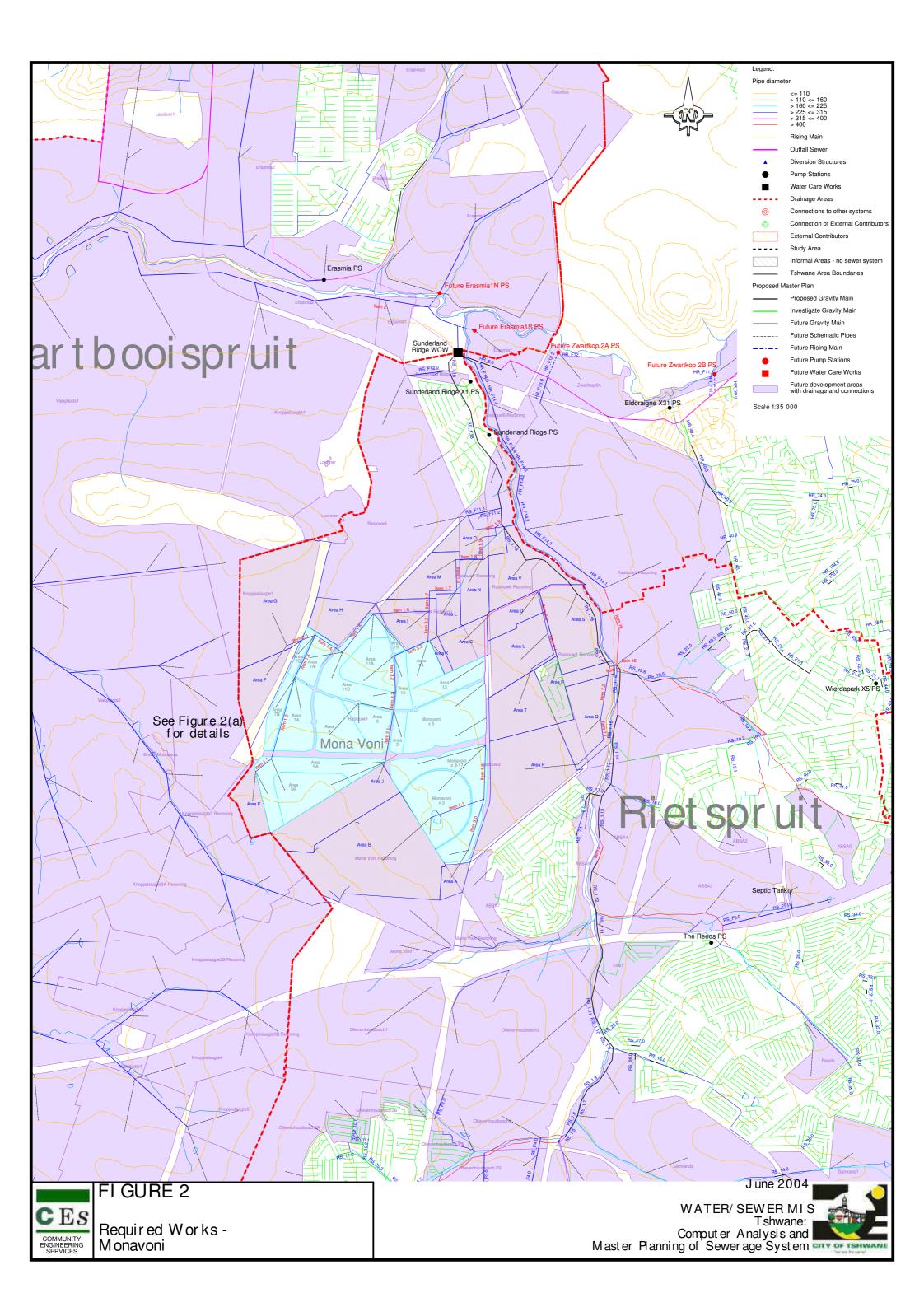


Fig. 2. The study area, showing the location of the identified sites. Map 2528CC: Chief Directorate Survey and Mapping.

Sites identified: Nil

APPENDIX 4: ILLUSTRATIONS




Fig. 3. View over the site, looking east.

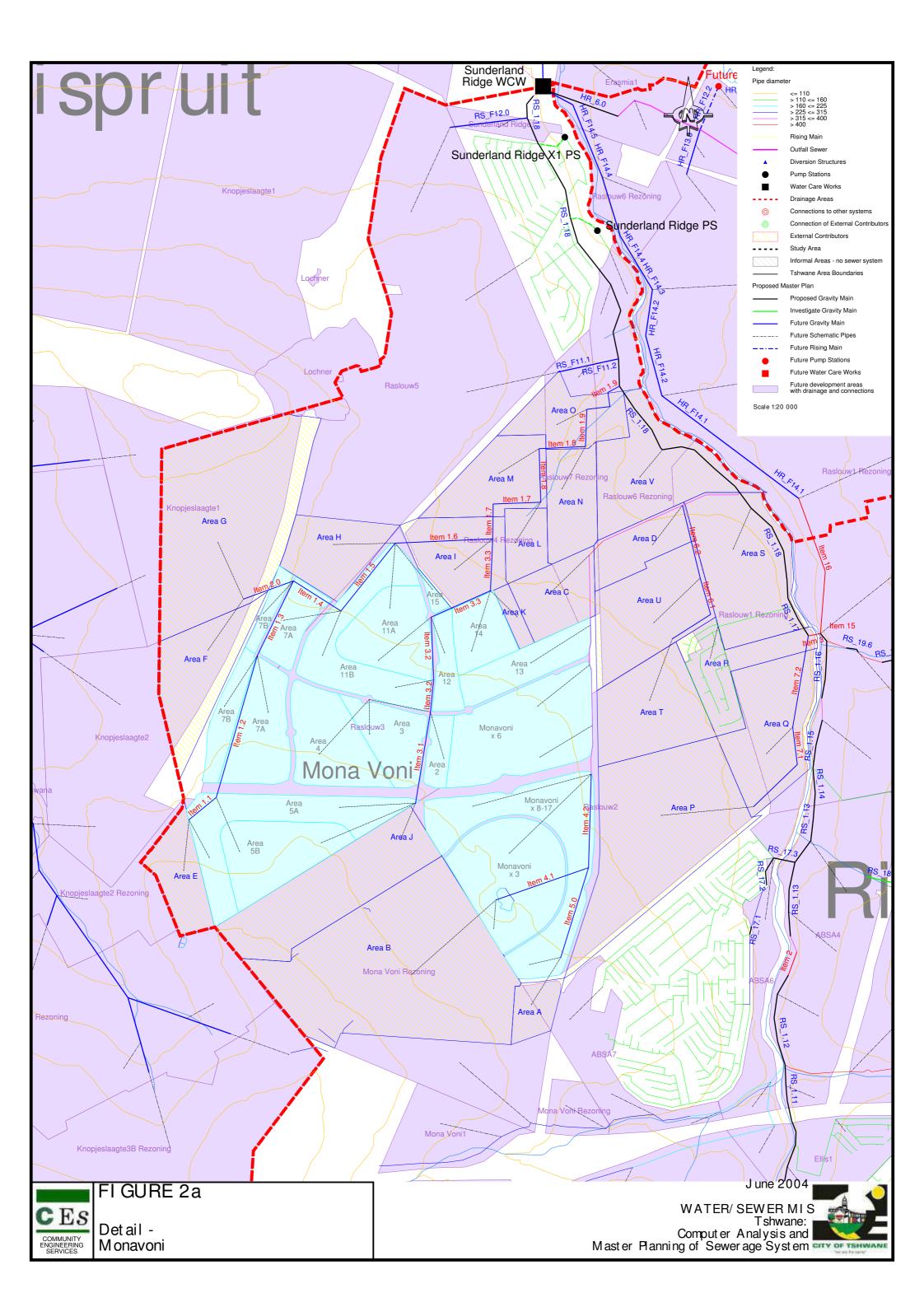


Fig. 4. View across the site looking north,

Annexure O

30 March 2006

The Director : Water & Sanitation Tshwane Metropolitan Municipal Council P O Box 6338 **PRETORIA** 0001

Attention: Mr André Lochner

Dear Sir

DEVELOPMENT OF PROPOSED TOWNSHIP MONAVONI

The request by Dekker & Gelderblom with regards to accommodation of the proposed development in the Centurion sewer network, refers.

This document should be read in conjunction with:

- Computer Analysis and Master Planning Centurion Sewer System (CEs June 2004)
- Ad-hoc Water Report Development of Monavoni (CEs 16 August 2005)

1. SEWER NETWORK

1.1 Drainage area

The proposed development was taken into consideration for the recently completed (June 2005) master plan.

The development falls within the existing Rietspruit drainage area as indicated on Figure 2, showing the master plan items required for this drainage area.

The development is outside the Tshwane sewer priority area and the developer will have to install certain link services and make pro rata contributions for services provided by other developers.

1.2 Sewer flow

The estimated future PDDWF calculated in the master planning study for the proposed development was 3620 kl/d.

For this re-analysis, the PDDWF for the proposed development was calculated at 6726 k ℓ /d.

The following table indicates the anticipated flows for the sub-drainage system which drains towards the proposed development.

Development nar	ne	Anticipated Land use	Area (ha)	No. of Units	PDDWF (kl/d)	IPDWF (I/s)
Mona Voni Rezoning	Area A	MD Residential	9.9	99	78	1.5
Mona Voni Rezoning	Area B	MD Residential	128.1	1281	1013	18.7
Raslouw4 Rezoning	Area C	Industrial	21.4	107	245	4.2
Raslouw6 Rezoning	Area D	Mixed Landuse	18.3	146	164	2.5
Knopjeslaagte2 Rezoning	Area E	Business/Commercial	19.8	99	226	4.1
Knopjeslaagte2	Area F	Business/Commercial	34.6	173	395	7.5
Knopjeslaagte1	Area G	MD Residential	102.8	1028	813	15.7
Raslouw5	Area H	Industrial	25.1	126	287	5.1
Raslouw4 Rezoning	Area I	Industrial	29.4	147	336	5.8
Mona Voni Rezoning	Area J	MD Residential	54.6	546	432	8.0
Raslouw4 Rezoning	Area K	Industrial	4.3	21	49	0.8
Raslouw4 Rezoning	Area L	Industrial	11.7	59	134	2.3
Raslouw4 Rezoning	Area M	Industrial	28.4	142	325	5.6
Raslouw7 Rezoning	Area N	Mixed Landuse	22.0	176	197	3.5
Raslouw7 Rezoning	Area O	Mixed Landuse	23.5	188	210	3.7
Raslouw2	Area P	MD Residential	87.9	527	576	11.4
Raslouw1 Rezoning	Area Q	HD Residential	44.0	881	506	7.9
Raslouw2	Area R	MD Residential	25.7	154	168	3.3
Raslouw1 Rezoning	Area S	HD Residential	52.9	1057	607	9.5
Raslouw2	Area T	MD Residential	38.2	229	250	4.9
Raslouw6 Rezoning	Area U	Mixed Landuse	42.8	343	383	5.9
Raslouw6 Rezoning	Area V	Mixed Landuse	46.2	369	413	6.4
Monavani	Area 2	Cluster housing up to 40 units per hectare	7.1	282	183	2.9
Monavani	Area 3	Cluster housing up to 40 units per hectare	18.3	458	298	4.8
Monavani	Area 4	Cluster housing up to 40 units per hectare	29.0	726	472	7.6
Monavani	Area 5A	Cluster housing up to 40 units per hectare	36.0	900	585	9.4
Monavani	Area 5B	Cluster housing up to 20 units per hectare	29.7	447	407	6.7
Monavani	Area 7A	Cluster housing up to 40 units per hectare	25.5	637	414	6.7
Monavani	Area 7B	Cluster housing up to 40 units per hectare	11.6	463	301	4.8
Monavani	Area 7A1	Cluster housing up to 40 units per hectare	12.5	500	325	5.2
Monavani	Area 7B1	Cluster housing up to 60 units per hectare	4.9	293	172	2.7
Monavani	Area 11A	Cluster housing up to 20 units per hectare	26.6	399	363	6.0
Monavani	Area 11B	Cluster housing up to 40 units per hectare	33.2	830	540	8.7
Monavani	Area 12	Cluster housing up to 40 units per hectare	9.2	369	240	3.9
Monavani	Area 13	Cluster housing up to 20 units per hectare	19.3	290	264	4.3
Monavani	Area 14	Cluster housing up to 20 units per hectare	15.1	227	207	3.4
Monavani	Area 15	Cluster housing up to 40 units per hectare	1.8	72	47	0.8
Monavani	Area MV3	Large sized erf up to 1 500m ²	46.6	327	402	8.0
Monavani	Area MV6	Cluster housing up to 20 units per hectare	50.5	757	689	11.3

1.3 Sewer Master Plan

Adjustments to the proposed master plan items are required to accommodate the development and other developments. The development will have a pro rata effect on the required items downstream of its connections as indicated.

Item		D	escription	1	IPDV	VF	Cost*
Item 1.1	200	mm Ø x	227	m new pipe	9	l/s	R 79,000
Item 1.2	200	mm Ø x	949	m new pipe	13	l/s	R 311,000
Item 1.3	200	mm Ø x	533	m new pipe	24	l/s	R 177,000
Item 1.4	250	mm Ø x	362	m new pipe	47	l/s	R 152,000
Item 1.5	300	mm Ø x	559	m new pipe	54	l/s	R 292,000
Item 1.6	300	mm Ø x	627	m new pipe	62	l/s	R 327,000
Item 1.7	375	mm Ø x	530	m new pipe	112	l/s	R 329,000
Item 1.8	450	mm Ø x	643	m new pipe	118	l/s	R 487,000
Item 1.9	450	mm Ø x	565	m new pipe	124	l/s	R 429,000
Item 2.0	250	mm Ø x	342	m new pipe	22	l/s	R 144,000
Item 3.1	160	mm Ø x	594	m new pipe	15	l/s	R 167,000
Item 3.2	250	mm Ø x	611	m new pipe	36	l/s	R 252,000
Item 3.3	250	mm Ø x	751	m new pipe	47	l/s	R 309,000
Item 4.1	200	mm Ø x	630	m new pipe	24	l/s	R 208,000
Item 4.2	250	mm Ø x	602	m new pipe	31	l/s	R 249,000
Item 5.0	160	mm Ø x	603	m new pipe	7	l/s	R 169,000
Item 6.1	160	mm Ø x	535	m new pipe	6	l/s	R 151,000
Item 6.2	160	mm Ø x	481	m new pipe	11	l/s	R 136,000
Item 7.1	160	mm Ø x	634	m new pipe	12	l/s	R 178,000
Item 7.2	200	mm Ø x	597	m new pipe	19	l/s	R 198,000
Item 3	900	mm Ø x	75	m parallel pipe	2023	l/s	R 46,000
RS_1.17	1,050	mm Ø x	389	m parallel pipe	2054	l/s	R 496,000
RS_1.18	1,200	mm Ø x	4000	m parallel pipe	2462	l/s	R 9,071,000

The Sunderland Ridge WCW is already operating beyond capacity and needs to be upgraded to accommodate this development.

(* Excluding P & G Contingencies, Fees & VAT - Year 2005/06 Rand Value).

As an alternative to the implementation of Items 3, RS_1.17 and RS_1.18, the following items can be installed.

Item		Des	cription		IPDV	VF	Cost*
Item 15	New di	version str	ucture (65% - 35%)	1,287	l/s	R 100,000
Item 16	1,050	mm Ø x	900	m new pipe	1,287	l/s	R 2,172,600
HR_F14.1	1,050	mm Ø x	1,100	m new pipe	1,307	l/s	R 2,655,400
HR_F14.2	825	mm Ø x	700	m new pipe	1,326	l/s	R 1,220,100
HR_F14.3	1,050	mm Ø x	200	m new pipe	1,345	l/s	R 482,800
HR_F14.4	1,050	mm Ø x	900	m new pipe	1,351	l/s	R 2,172,600
HR_F14.5	1,050	mm Ø x	400	m new pipe	1,352	l/s	R 965,600

1.4 Accommodation of the development in the present sewer system

Accommodation of the development in the present system, in the context of the sewer master plan, will require implementation of the following master plan items:

Item		D	escriptior	ı	IPD	WF	Cost*
Item 1.1	200	mm Ø x	227	m new pipe	9	l/s	R 79,000
Item 1.2	200	mm Ø x	949	m new pipe	13	l/s	R 311,000
Item 1.3	200	mm Ø x	533	m new pipe	24	l/s	R 177,000
Item 1.4	250	mm Ø x	362	m new pipe	47	l/s	R 152,000
Item 1.5	300	mm Ø x	559	m new pipe	54	l/s	R 292,000
Item 1.6	300	mm Ø x	627	m new pipe	62	l/s	R 327,000
Item 1.7	375	mm Ø x	530	m new pipe	112	l/s	R 329,000
Item 1.8	450	mm Ø x	643	m new pipe	118	l/s	R 487,000
Item 1.9	450	mm Ø x	565	m new pipe	124	l/s	R 429,000
Item 2.0	250	mm Ø x	342	m new pipe	22	l/s	R 144,000
Item 3.1	160	mm Ø x	594	m new pipe	15	l/s	R 167,000
Item 3.2	250	mm Ø x	611	m new pipe	36	l/s	R 252,000
Item 3.3	250	mm Ø x	751	m new pipe	47	l/s	R 309,000
Item 4.1	200	mm Ø x	630	m new pipe	24	l/s	R 208,000
Item 4.2	250	mm Ø x	602	m new pipe	31	l/s	R 249,000
Item 5.0	160	mm Ø x	603	m new pipe	7	l/s	R 169,000
Item 6.1	160	mm Ø x	535	m new pipe	6	l/s	R 151,000
Item 6.2	160	mm Ø x	481	m new pipe	11	l/s	R 136,000
Item 7.1	160	mm Ø x	634	m new pipe	12	l/s	R 178,000
Item 7.2	200	mm Ø x	597	m new pipe	19	l/s	R 198,000

Pipe sizes should be such that the Instantaneous Peak Dry Weather Flow (IPDWF) can be accommodated in the pipeline whilst flowing 70% or less full, the remaining 30% of the flow area is for the accommodation of stormwater ingress. The above IPDWF'S and the future pipe sizes as proposed in the June 2004 report were calculated with cognizance of all potential upstream future developments. Note that pipes in future development areas are still indicated schematically.

The Sunderland Ridge WCW is already operating beyond capacity and needs to be upgraded to accommodate this and other future developments. According to information, a phased upgrading is currently in progress.

2. PRO RATA LOADS ON THE FUTURE SEWER MASTER PLAN ITEMS

If required, the pro rata loads of the proposed development on the relevant master plan items can be calculated.

Yours sincerely COMMUNITY ENGINEERING SERVICES REG. NO.: 96/13328/07

Douter

Per: DR BF LOUBSER

16 August 2005

The Director : Water & Sanitation Tshwane Metropolitan Municipal Council Centurion Administration P O Box 6338 **PRETORIA** 0001

Attention: Mr Ansen Lamprecht

Dear Sir

DEVELOPMENT OF MONAVANI

The attached request by Dekker & Gelderblom, dated 28 June 2005 with regards to accommodation of the proposed development in the water distribution system, refers.

This document should be read in conjunction with:

- A Strategy and Master Plan Tshwane Bulk Water Supply System (CEs June 2004)
- Computer Analysis and Master Planning Centurion Water Distribution Network (CEs June 2004)

Herewith are the details to provide Bulk water services to the development area.

1. WATER DISTRIBUTION SYSTEM

1.1 Distribution zone

The proposed development was conceptually taken into consideration for the recently completed master plan (June 2004).

The master planning as done for this request indicated that this development area should be accommodated in the Mnandi reservoir and the future Mooiplaats reservoir zones, as shown on Figure 1.

The development is situated outside the water priority area and the developer will have to install/construct certain link services and external bulk services, and make pro rata contributions for services provided by other developers.

1.2 Water demand

The original water analysis for the master plan was done with a total annual average daily demand (AADD) for the development of 6 050 kl/d.

For this re-analysis the AADD for the proposed development was calculated using the areas and densities supplied by Dekker & Gelderblom as follows:

•	Area 2 @ 40 units/ha	=	226 k{/d
•	Area 3 @ 25 units/ha	=	366 k {/d
•	Area 4@ 25 units/ha	=	580 k{/d
•	Area 5A @ 25 units/ha	=	720 k{/d
•	Area 5B @ 15 units/ha	=	536 k {/d
•	Area 7A @ 25 units/ha	=	510 k{/d
•	Area 7B @ 40 units/ha	=	370 k{/d
•	Area 7A @ 40 units/ha	=	400 k{/d
•	Area 7B @ 60 units/ha	=	205 k{/d
•	Area 11A @ 15 units/ha	=	478 k{/d
•	Area 11B @ 25 units/ha	=	664 k{/d
•	Area 12 @ 40 units/ha	=	295 k{/d
•	Area 13 @ 15 units/ha	=	348 k{/d
•	Area 14 @ 15 units/ha	=	272 k{/d
•	Area 15 @ 40 units/ha	=	58 k{/d
•	Monavani x 3 @ 7 units/ha	=	655 k {/d
•	Monavani x 6 @ 15 units/ha	=	908 k{/d
•	Monavani x 8-17 @ 25 units/ha	=	<u>1 003k{/d</u>
	TOTAL		8 596 kł/d

Fire Flow : 15 ℓ/s @ 8 m for density < 30 units/ha : 50 ℓ/s @ 15 m for density ≥ 30 units/ha

1.3 Present situation

The development falls within the existing Mnandi reservoir and future Mooiplaats reservoir zones. As an interim solution, until the Mooiplaats reservoir is constructed, the development can be supplied by the Mnandi reservoir. (It is assumed that the temporary 450 mm / 400 mm \emptyset supply pipe from the Pretoriusrand reservoir site to the Mnandi reservoir is operational).

The following items are required to accommodate the development and to comply with the criteria as set out in the master plan:

٠	MNR.B3	:	15 000 kl Upgraded Mnandi reservoir (Phase 1)	R8	* 003 000
٠	Item 1	:	770 m × 500 mm Ø main pipe	R 1	l 009 000 *
٠	Item 2	:	1 955 m × 315 mm Ø main pipe	R 1	l 423 000 *
٠	Item 3	:	385 m x 250 mm Ø main pipe	R	211 000 *
•	Item 4	:	675 m x 200 mm Ø main pipe	R	260 000 *
•	Item 5	:	985 m × 250 mm Ø main pipe	R	505 000 *
•	Item 6	:	880 m × 200 mm Ø main pipe	R	333 000 *
•	Item 7	:	960 m × 200 mm Ø main pipe	R	362 000 *
٠	Item 9	:	570 m × 450 mm Ø main pipe	R	682 000 *
٠	Item 10	:	405 m × 200 mm Ø main pipe	R	163 000 *
٠	Item 11	:	Install PRV and set @ 71 m, e.g.l ± 1 520 m.asl	R	86 000 *
•	Item 12	:	480 m × 200 mm Ø main pipe	R	190 000 *
•	Item 13	:	Install PRV and set @ 57 m, e.g.l ± 1 520 m.asl	R	86 000 *
•	Item 14	:	Install PRV and set @ 63 m, e.g.l ± 1 513 m.asl	R	109 000 *

(* Excluding P & G, Contingencies, Fees and VAT - Year 2003/04 Rand Value).

When Mooiplaats reservoir is constructed, the following items are required to switch the areas (7A, 7B, 11A, 11B, 12, 13 & 14) below the 1 450 m contour, over from the Mnandi reservoir to the Mooiplaats reservoir:

٠	MPR.B1	:	5 410 m × 700 mm Ø Feeder main	R11 783 000 *
٠	MRP.B3	:	Inlet flow control	R 479 000 *
٠	MPR.B4	:	20 000 kl New Mooiplaats reservoir	R 9 963 000 *
٠	MPR.F8	:	820 m × 700 mm Ø main pipe	R 1620000 *
٠	MPR.F20	:	505 m × 00 mm Ø main pipe	R 888 000 *
٠	MPR.F21	:	500 m × 600 mm Ø main pipe	R 880 000 *
٠	Item 8	:	450 m x 500 mm Ø main pipe	R 612 000 *
٠	Item 14	:	Close PRV	

1.4 Master plan

Adjustments to the proposed master plan items of July 2004 are required to accommodate the development, due to new information regarding land use and township layout supplied by Dekker & Gelderblom. The following master plan items have changed:

- MNR.3 is replaced by Item 1
- MNR.14 is replaced by: MNR.25 $50 \text{ m X} 250 \text{ mm } \emptyset$ pipe link R 76 000 * : **MNR.26** 175 m X 315 mm Ø parallel reinforcement R 211 000 * : MNR.27 25 m x 250 mm Ø parallel reinforcement R 60 000 * : MNR.15 is replaced by Item 2 R275 000 * **MNR.28** : $25 \text{ m} \times 250 \text{ mm} \text{ } \emptyset \text{ pipe link}$ R 60 000 * **MNR.29** $10 \text{ m} \times 160 \text{ mm} \text{ } \emptyset \text{ pipe link}$ R 16 000 * :

Many such applications for township development in the Mooiplaats reservoir zone are being received. It is suggested that priority be given to implementing the bulk water supply infrastructure for this zone.

2. PRO RATA LOADS ON THE FUTURE WATER PLAN ITEMS

If required, the pro-rata loads of the proposed developments on the relevant master plan items can be calculated.

Yours sincerely COMMUNITY ENGINEERING SERVICES REG. NO.: 96/13328/07

Per: DR BF LOUBSER

Annexure P

1. INTRODUCTION/PURPOSE

The purpose of this procedure is to ensure that all waste material generated at within the proposed Monavoni X 44 Development is correctly sorted, stored, handled and where possible recycled or otherwise disposed of in accordance with legislative requirements, SHEQ policy and objectives and targets.

2. <u>APPLICATION/SCOPE</u>

All Erven within the proposed development.

3. <u>Related Documents</u>

SANS 10228 DWA Minimum Requirements Occupational Health and Safety Act

4. <u>SAFETY, HEALTH AND ENVIRONMENT</u>

The procedure includes practices to protect the safety and health of employees and the environment from possible negative impacts of waste handling and disposal.

5. <u>PROCEDURE</u>

A waste is any unwanted or superfluous material generated on site that needs to be disposed of on site or off site.

6.1 Waste Identification

- 6.1.1 The SHE Team will list all waste generated on site in a waste register and shall identify each waste stream as being of the following categories:
 - (a) Hazardous, or
 - (b) Non-hazardous.
- 6.1.2 Hazardous waste is defined as an inorganic or organic element or compound that, because of its toxicological, physical, chemical or persistency properties, may exercise detrimental acute or chronic impacts on human health and the environment.
- 6.1.3 Non-hazardous waste (or general waste) is waste that does not pose an immediate threat to man or to the environment, i.e., household or kitchen waste, garden waste, dry industrial and commercial waste which has not been contaminated by any hazardous waste.
- 6.1.4 When in doubt as to whether a waste stream is hazardous or not, assume that it is hazardous until expert advice has been obtained.

For these purposes, a waste is assumed to be hazardous if it has not been decontaminated and contains:

- Any chemicals or substances from the production process at any site, excluding clean water;
- Packaging from any process chemicals;
- Sludges, scaling or precipitates from any tanks, sumps or drains;
- Laboratory chemicals;
- Oil and solvents;
- Fluorescent tubes.

6.2 Waste Classification

6.2.1 All hazardous waste generated and which is disposed of off site must be classified as per SANS 10228 and the Department of Water Affairs (DWA) Minimum Requirements:

¹ Department of Water Affairs and Forestry; 'Minimum Requirements for Waste Disposal by Landfill'; Second Edition 1998

- (a) SANS Class;
- (b) Hazard Rating, and
- (c) Disposal and treatment options.
- 6.2.2 A waste stream is classified as follows:
 - (a) If no classification is already available to the waste stream, or where uncertainty exists about whether a waste is hazardous or not, the Manager of the facility in question shall instruct the SHEQ Team to collect a representative sample of the waste and send this to approved laboratories for analysis.
 - (b) The Manager shall then determine the information in 6.2.1. in accordance with the Minimum Requirements.
 - (c) External specialist assistance may also be obtained.
 - (d) Records of such analysis and classification shall be recorded in the Waste Register.
- 6.2.3 Following the classification of each stream, the disposal and treatment options shall be identified in accordance with legal requirements. A suitable contractor shall be identified by the SHEQ Team to recycle and/or dispose of the waste. A contract or service level agreement shall be compiled to this effect for each site, stating the treatment and disposal options.
- 6.2.4 In terms of the OHS Act (GNR 1179, reg. 15), the facility shall investigate options for the recycling and re-use of hazardous chemical waste prior to disposal, so long as the options investigated are reasonable and cost-effective.

6.3 Waste Separation

- 6.3.1 The SHEQ Team shall ensure that the appropriately labelled bins are available for waste disposal on site. Each Waste Storage Area shall have a sign describing the waste stream which may be disposed of to that container/area.
- 6.3.2 The SHEQ Team shall therefore ensure that wastes are being separated into the following streams:

General office oins stored nside the office areas and kitchens. Stores	Paper and hazardous office waste to be removed. (Except where such extensive separation is not practical due to the unavailability of waste recyclers and the remoteness of the site) Used PPE may be disposed off as general waste. PPE must be dismantled or cut up to prevent it from being used again	Disposal to Municipal General Landfill Disposal to Municipal General Landfill
Stores	general waste. PPE must be dismantled or cut up to prevent it	
	from being used again.	
Each office ouilding will nave a abelled bin for office paper waste. The paper waste will be recycled.	Ensure that paper waste is not contaminated with oil or chemicals.	Recycled
Boilers		Depending on classification: may be land filled to general
	belled bin for fice paper aste. The aper waste ill be cycled.	belled bin for fice paper aste. The aper waste ill be cycled.

Waste Stream	Sources	Notes	Typical disposal or recycling options
			or hazardous landfill or given/sold to contractors.
Scrap metal	Maintenance	All scrap metal will be inspected for contamination and, if clean, stored in a designated area. Scrap metal must be decontaminated and/or oil prior to being issued to scrap metal dealers. All oil and paint drums and cans must be drained of all oil and paint.	Given/sold to a scrap metal recycler if not contaminated.
Fluorescent Tubes	All	All waste fluorescent tubes will be crushed manually, ensuring that no escape of the dust from the tubes takes place. This drum will be sealed with a tight fitting lid so that no dust may escape during transport.	Landfilled to H:h landfill
Oils	Unknown / Maintenance	To be stored in non-leaking sealed drums.	Recycled.
Medical waste	Clinics or First Aid Stations	All sharps and other surgical blades used at the clinic shall be disposed of by the sister, into the dedicated sharps bin in the clinic.	This waste shall be removed by an approved medical waste contractor for incineration.
Vegetation	Grass cutting, leaves, branches.		Removed and delivered to the appropriate general waste disposal site in the absence of specific garden refuse sites. Or recycled to composters.
Hazardous Maintenance Waste	Maintenance Department	Batteries, Contaminated oil drums and tins, oily rags and contaminated sawdust/absorbent material. Normal amounts of empty pen cartridges, white board markers, tipex, photocopy toner units, inks to be disposed of in general waste.	Class H:h landfill.
Cooking oil	Kitchens	No rancid oils shall be used in the making of any food substances.	Class H:h landfill. NOT to sewer or stormwater.
Building rubble	Maintenance Department	Building rubble has been removed from the exclusions of hazardous waste and has to be classified prior to disposal. Use of building rubble as fill material is prohibited.	Depending on classification.
Asbestos waste	Maintenance	All asbestos waste is to be stored and disposed of according to the	Placed into double- lined plastic bags,

Waste Stream	Sources	Notes	Typical disposal or recycling options
	Department	Asbestos Regulations as per the Occupational Health and Safety Act 85 of 1993.	labelled as "Asbestos Waste" and disposed of to a general landfill permitted to receive asbestos waste.
		Broken asbestos sheeting is to replaced with non asbestos material.	
Chemical Bags and other chemical containers	Process areas	Containers of chemicals are classified according to the chemicals which they contained.	Depending on the classification. Where possible bags and containers are recycled to the supplier.
Laboratory wastes (including containers)	Laboratories	Laboratory waste is to be classified as Class 9 (Miscellaneous waste), unless the containers can be decontaminated and returned to the supplier.	Hazardous waste (H:h landfill) OR returned to supplier if decontaminated.
Process wastes	Process operations	To be identified and classified respectively	Depends on the classification. Process waste is recycled to the process in most cases.

6.4 Site specific waste

- 6.4.1 The waste register and waste classifications for each waste stream unique to each site shall determine the storage and treatment options for those waste streams.
- 6.4.2 Sweepings and waste recovered from processes shall be recycled wherever possible. If they cannot be re-used or recycled in the process, then they shall be stored as per 6.6 until classified, and then disposed of in accordance with the recommendations of the classification.

6.5 Waste Transfer

- 6.5.1 Waste is transferred from the source to a collection skip or drums in such a manner so as not to generate any environmental impacts, such as surface water and soil contamination through spills or leaks.
- 6.5.2 Any spills or leaks shall be addressed immediately through the Spill Response section of the Emergency Response Procedure by containing the spill with absorbent material, and disposing of the absorbent material and any contaminated soil into the same container as the waste stream which was spilt/leaked.
- 6.5.3 Any contaminated soil shall be removed immediately if the spill involved hazardous waste, and this soil and any absorbent material shall be disposed of to the same container as the waste which was spilt.

6.6 Hazardous Waste Storage Areas

- 6.6.1 Access control shall be implemented through the general site security.
- 6.6.2 Unless a specific permit is granted or where the bin is kept indoors, hazardous waste storage shall occur on impervious cement hard standing of good quality, and the area shall be bunded to prevent stormwater ingress. The quality of the cement bund and surface such be inspected regularly and repairs effected if

necessary. Each site owner shall be responsible for specifying the particular waste storage area.

- 6.6.3 The area shall be roofed or all containers and skips shall be covered in such a way that rainwater shall not leak into the waste.
- 6.6.4 The area shall drain to a sump. Any spills or contaminated stormwater shall be treated prior to disposal to effluent sewer. Stormwater or other water which appears clean (i.e. no discolouration or oil film) shall be disposed of to the effluent sewer and not to stormwater.
- 6.6.5 Dry, dusty hazardous wastes shall be covered during transfer and storage.
- 6.6.6 The above does not apply to hazardous waste containers situated in a building where rain ingress and spillage are not possible.

6.7 Waste Collection, Monitoring and Reporting

- 6.7.1 A suitable trained competent person shall supervise the collection of waste from site by approved waste collection companies and/or the Municipality.
- 6.7.2 The Waste collection and data input procedure is therefore as follows:
 - (a) The waste skip is placed on site by the contractor.
 - (b) When the waste skip or other container (such as a sump) is full, the authorised person shall inspect the waste container for cross-contamination. If the waste stream is satisfied with the waste consistency, than authorised person shall notify the SHEQ team who shall notify the waste contractor is notified and set a date for collection of the waste.
 - (c) Upon arrival at the site, the replacement skip/tanker and vehicle of the waste contractor is inspected by security or the SHEQ team for rusting, leaks and/or prior contamination prior to them being allowed on site. If security is doubtful as to the integrity of the skip, then the SHEQ team shall be contacted to resolve the matter.
 - (d) Security directs the contractor to the waste and shall notify one of the authorised personnel who shall receive the contractor, check and supervise the loading operation. Any problems or irregularities are to be reported to the SHEQ team before the truck leaves the site.
 - (e) The waste is collected by the contractor and replacement skip placed in the correct location (if required).
 - (f) The waste manifest document is signed by the driver of the truck and the authorised person.
 - (g) The Waste Manifest document is delivered to the SHEQ team who shall enter the data into the details of the waste load for future monitoring.

6.8 Waste Contracts

- 6.8.1 The contract with the Waste Disposal company shall specify that:
 - Any skips not approved by security or the SHEQ team shall be replaced at the cost of the contractor, and
 - The contractor shall comply with the provisions of GN R 1179 (of the OHS Act), in particular regulation 15, which states that all vehicles, re-usable containers and covers which have been in contact with hazardous chemical waste are cleaned and decontaminated after use in such a way that the vehicles, containers or covers do not cause a hazard to the environment, the on site staff and the waste contractor as well as the public (i.e. during transport).
- 6.8.2 If waste is to be removed in a skip or other open container, by vehicle, the designated person should ensure that this has a lid or an attachable cover, to prevent the contents from spilling or generating dust or litter during transit.

It shall be the duty of the SHEQ team to ensure that the waste contractor is informed in writing of the nature and classification of the waste which is to be disposed.

6.9 Waste contractor audits

- 6.9.1 The Environmental Manager shall request all waste contractors to provide proof of audit results on an annual basis.
- 6.9.2 The audits should have consisted of reviewing the operational practice of the contractor/supplier against any permits, DWA's Minimum Requirements and any applicable SANS codes for the handling of dangerous goods.
- 6.9.3 These audits results shall be used in the Management Review and Legal Compliance Audits.

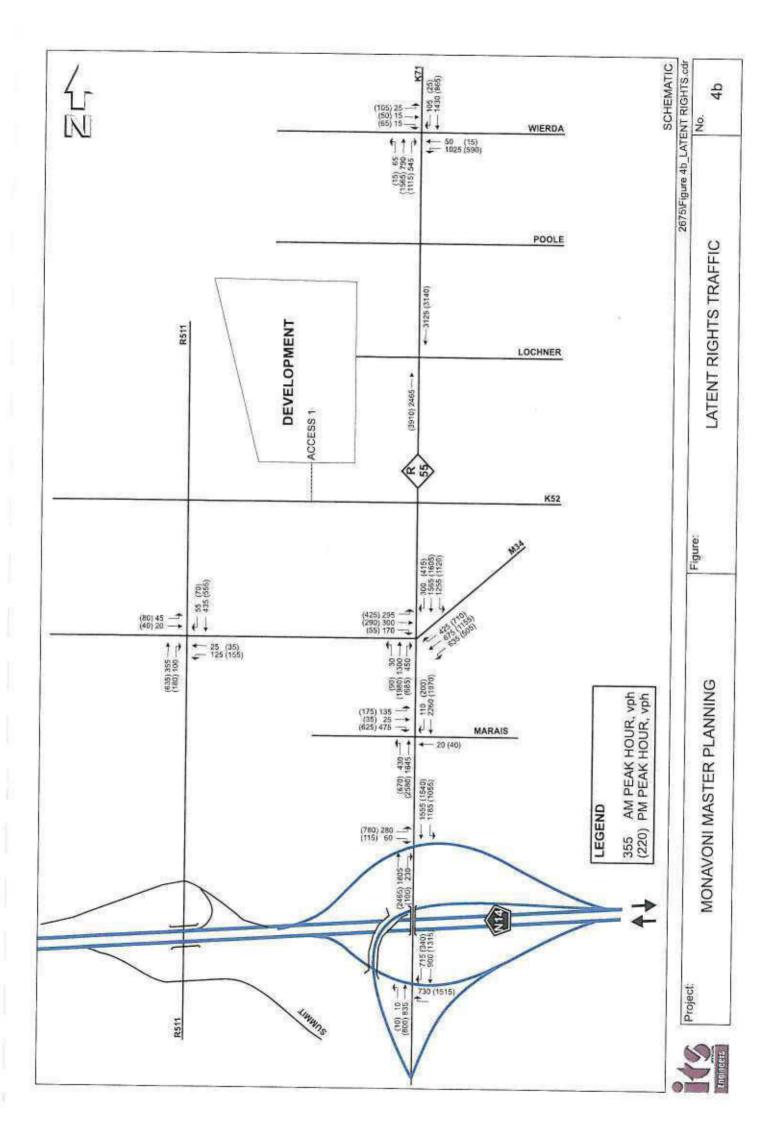
6.10 Labelling of containers and Signage for Hazardous Waste Storage Areas

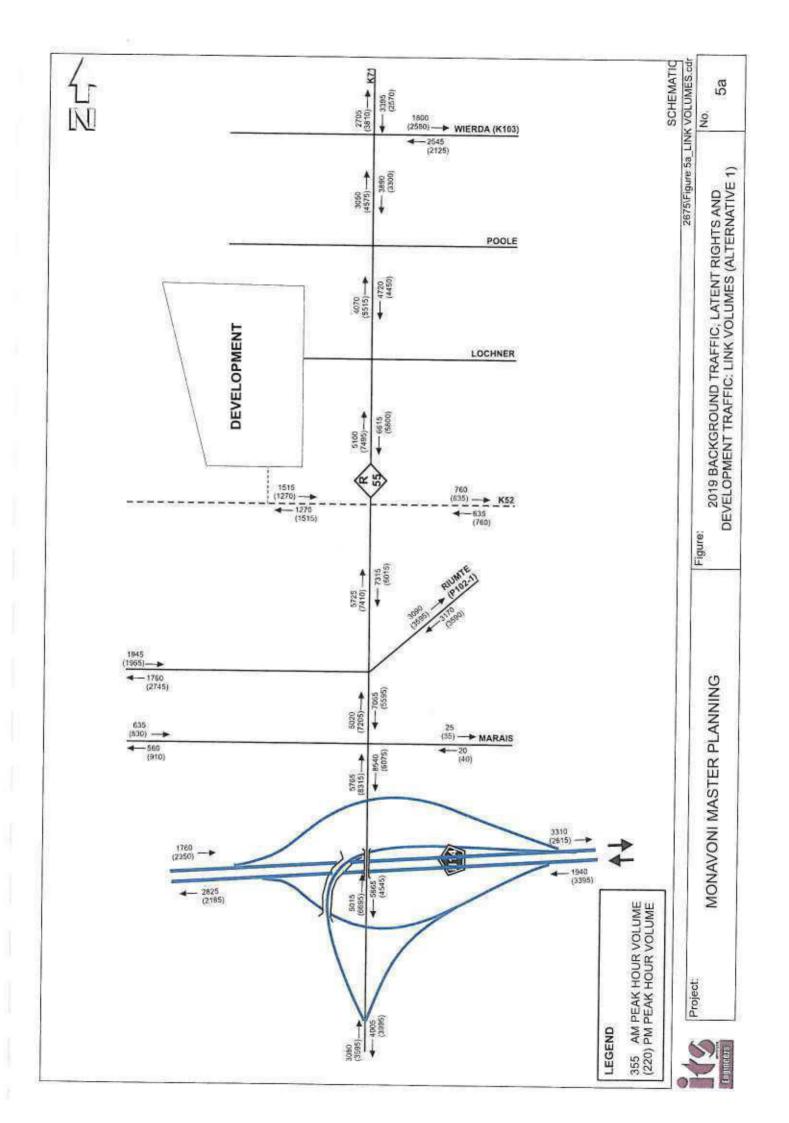
- 6.10.1 Each hazardous waste storage area shall be signposted with a sign with the following specifications:
 - (a) Have a dedicated sign with the words "Hazardous Waste" clearly visible at the entrance to the gate or access point. The sign shall also display the name of the waste stream (e.g. "Used Oil") if the container in that area accepts only that waste stream. If containers are used to collect a variety of waste streams, then only the words "Hazardous Waste" shall appear on the sign.
 - (b) The signs for the waste storage areas shall also comply with the following:
 - Suitably protected from the elements.
 - Mounted in a conspicuous position above the waste bins or skips.
 - (c) Containers used to receive the waste shall comply with the following:
 - Containers shall be checked for leaking. Any leaking containers shall be replaced. For containers (skips) provided by contractors, these shall be approved prior to being allowed on site in accordance.
 - Containers containing dusty waste shall be covered.
 - All containers owned by the individual site owners which are position on site shall be clearly marked with the words: "Hazardous Waste".

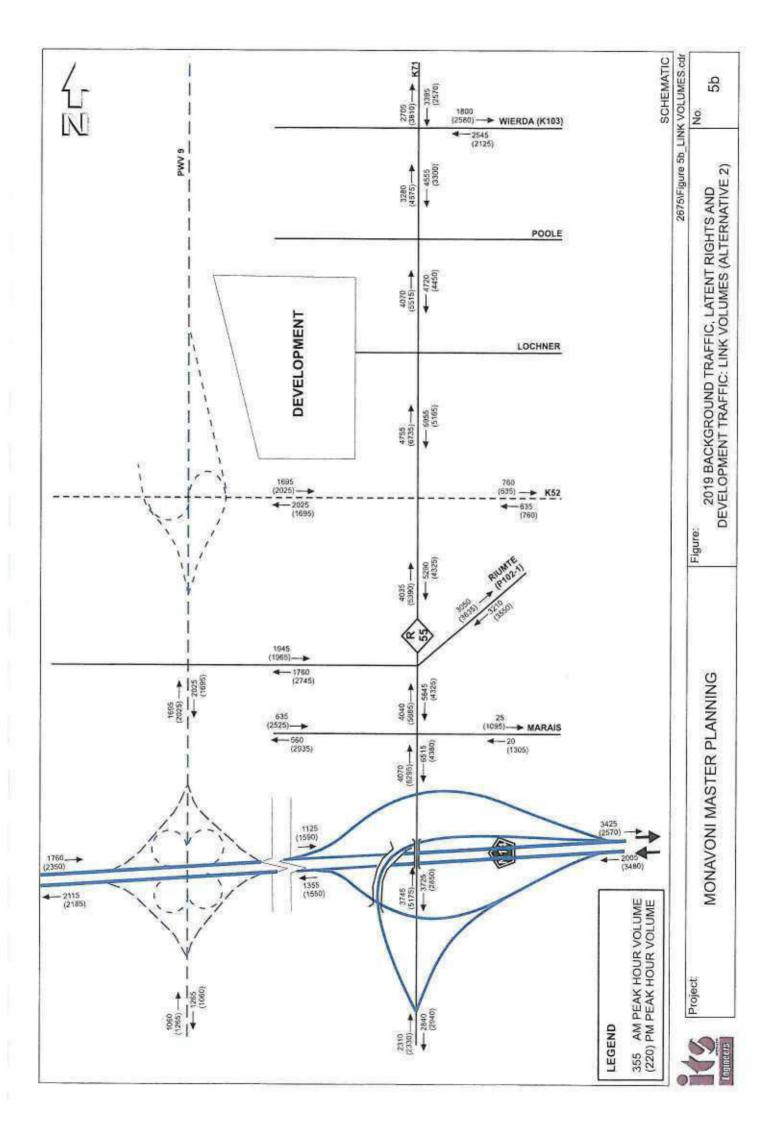
Annexure Q

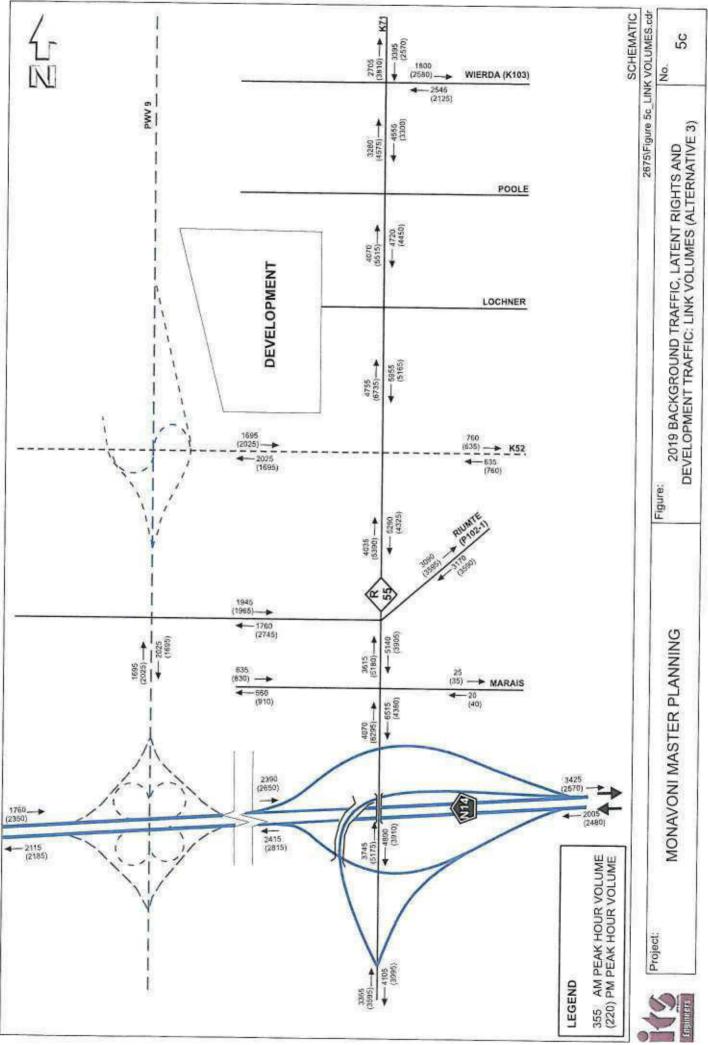
MONAVONI MASTER PLAN

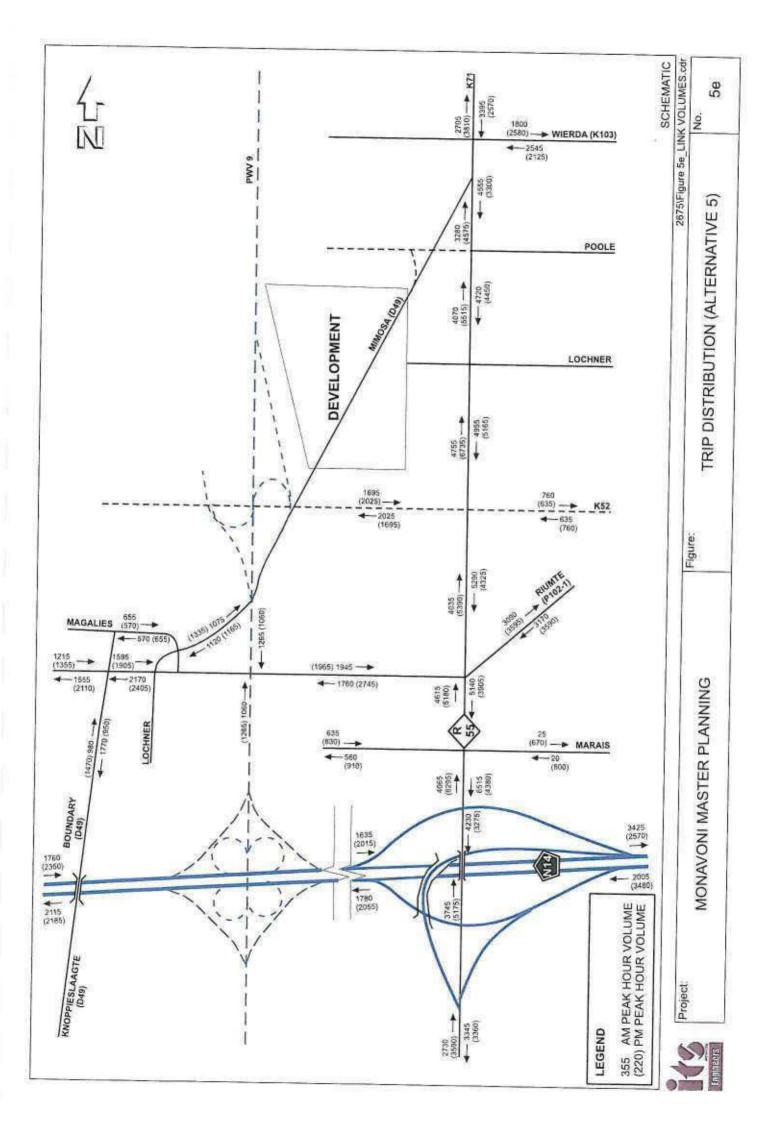
Proposed developments located

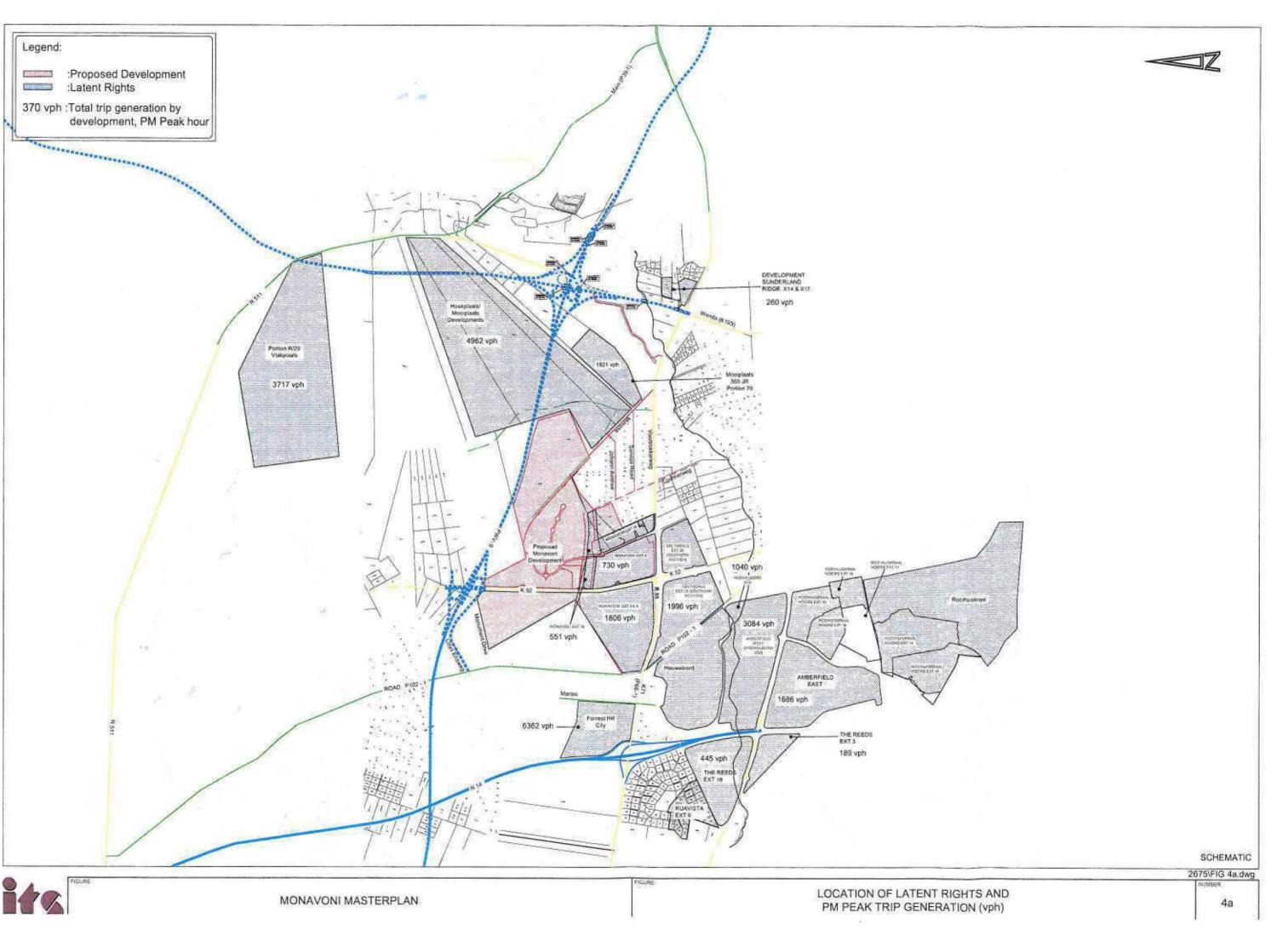

West of the R55 (K71) and North of P102-1


August 2009


29 De Havilland Crescent Pro Park Building 1 Persequor Park 0020


Tel: (012) 349 1664 Fax: (012) 349 1665 e-mail: mail@itse.co.za





Traffic Impact Study

TABLE OF CONTENTS

1. Traffic Impact Study Summary Table

2. Appendix A – Tables

3. Appendix B – Figures

Monavoni Master Planning of all extentions						
	Description	Refer to Appendix				
1. Introduction	A new large mixed land use development is planned by M&T Development in the Monavoni area. All extensions of the proposed Monavoni development will cover approximately 323 ha and will consist of residential, offices, motor trade, light industrial and commercial land use. The locality of the proposed development is shown in Figure 1 .	Appendix B, Figure 1				
2. Land Use	The development will consist of: 164 257 m² Offices 197109 m² Industrial 10762 units Residential The areas shown are gross leasable area (GLA)					
3. Latent Rights	A number of developments were approved or their applications have been submitted for approval in the vicinity of the proposed development. The developments included in the analysis as latent rights are shown in Table 2 . The locality and the volumes of the latent rights are shown in Figure 4a and Figure 4b . The required upgrades for the latent rights are summarised and shown in Table 3 and Figure 4c . Conclusion regarding latent rights is summarised in Table 4 . The upgrades proposed for K71 between Lochner and N14 are inadequate because the latent rights will only provide one additional lane between Marais and N14, whereas two additional lanes are recommended. The upgrades proposed for the other roads are adequate.	Appendix A, Table 2, Table 3 and Table 4, Appendix B, Figure 4a and 4b				
4. Trip Generation	 The development will generate the following: 12 198 trips during the weekday AM and PM peak hours if the adjustment factor is not applied (Option 1). 10 799 trips during the weekday AM and PM peak hours if the adjustment factor of 0.7 is applied to make provision for internal trips between residential, office and industrial (Option 2). 9 292 trips during the weekday AM and PM peak hours if the adjustment factor of 0.8 is applied to indicate that 20% of trips will use public transport (Option 3). Note: Option 3 trips was used for the purpose of this report as it addresses the usage of public transport and make provision for internal trips between industrial, residential and offices. 	Appendix A, Table 1a, 1b and 1c				

		Monavoni Master Planning of all extentions	
		Description	Refer to Appendix
		Refer to Table 1a, 1b and 1c for the detail of the trip generation.	
5.	Expected Trip Distribution and Trip Assignment	 The additional vehicle trips that will be generated by the proposed development were distributed to the adjacent road network. The trip distribution for the study was done based on the examination of the existing traffic flow patterns in the area, surveys conducted in the previous studies, as well as local knowledge of the area. The expected trip distribution of the proposed development is shown in Figure 3a, 3b, 3c, 3d and 3e. It should be noted that there are five alternatives in terms of trip distribution, the aim was to check most suitable trip distribution that will resolve the capacity especially on K71. The five alternatives are explained below: Alternative 1: All traffic towards south will use K71. Alternative 2: 40% of traffic towards south to use PWV9. Alternative 3: 40% of traffic towards south to use PWV9 until at N14, then 25% will join N14 to join K71 south (PWV will be constructed until N14) Alternative 5: 25% of traffic towards south to use PWV9 until at N14, then 10% will join N14 to join K71 south (PWV will be constructed until N14), also 15% towards south will use D49. Alternative 5 was used for the purpose of this study as it will reduce chances of adding more traffic on K71 because K71 will not have spare capacity by the time most of the developments will be developed. 	Appendix B, Figure 3a 3b, 3c, 3d and 3e and Appendix A, Table 5a 5b, 6a, 6b, 7a, 7b, 8a 8b, 9a and 9b
6.	Background Volumes	The surveyed traffic volumes were obtained from traffic counts conducted in June 2009 by ITS Engineers as well as from the study conducted by Arup (Forest Hill City) during August 2008 the counts were conducted during August 2005 and were grown with 4% per annum for our study purposes.	Appendix B, Figure 2 and Figure 2b

	Monavoni Master Planning of all extentions	
	Description	Refer to Appendix
7. Expected Link Demand and Capacity Analysis	 For each of the adjacent roads that will carry additional traffic generated by the development, the following was therefore calculated: The existing traffic demand was determined from survey conducted by ITS Engineers. Traffic generated by latent rights was obtained from other traffic studies. Traffic generated by this development was calculated and assigned to each road. A link volume / capacity ratio was calculated and based on this; a decision was made if additional lanes are required on the link. The results of capacity analysis and link volumes are shown in the attached Table 5a, 5b, 6a, 6b, 7a, 7b, 8a, 8b, 9a and 9b for different alternatives. The road upgrades that were determined on a link level, based on the capacity analyses, are shown in Table 11. The cost of each upgrade, in August 2009 Rands, are also indicated. The proposed upgrades exclude all internal roads in the development, also excluding Mimosa Road that is regarded by the City of Tshwane as a Class 4 road. 	Appendix A, Table 5a, 5b, 6a, 6b, 7a, 7b, 8a 8b, 9a and 9b as well as Table 11
8. Phasing of proposed road upgrades	The proposed road upgrades will not happen at once, but will be phased with the different extensions of the proposed townships. In order to provide an estimate of when which upgrades should be carried out, a matrix was developed in which the 10% of traffic generated per year was tied with a specific road upgrade. This matrix is shown in Table 10 . The aim of this matrix was to balance spending of road upgrades, capacity required and traffic generated by each phase of the development. It is foreseen that the proposed upgrades are used as a planning guideline, and that as individual townships are established, a more detailed traffic impact study be carried out to determine the detail of the upgrades.	Appendix A, Table 10

	Monavoni Master Planning of all extentions	
	Refer to Appendix	
9. Conclusion and recommendation	This document provides a master plan of road upgrades for the proposed development. It should not be regarded as a detailed traffic impact study, but as a guideline to determine macro level road upgrades that will be required to accommodate the development. The proposed development of approximately 164 257m ² for offices, 197109m ² for industrial and 10762 units for residential is expected to generate also 9292 vehicles per hour in the peak hour. The road network where the development will be located will require substantial upgrades to accommodate this extent of traffic volumes. This include widening a large section of K71, including the interchange with the N14, provision of a section of K52 and PWV9, upgrading access routes and the provision of several traffic signals. The estimated cost of all the road upgrades is +/- R 95 million. The funding of these road upgrades will have to be resolved with the relevant authorities, i.e. Gautrans and the City of Tshwane. The upgrades proposed in this report will provide adequate regional capacity that will be able to accommodate the traffic generated by the development, and the development, from a macro planning point of view, can therefore proceed.	

APPENDIX A

TABLES AND ADDITIONAL INFORMATION

ITS 2675 - Traffic Impact Study - Monavoni Master Planning of all extensions

ł

Į

ĺ

APPENDIX A

TABLES AND ADDITIONAL INFORMATION

Table 1a	Summary of Land use and peak hour trip generation
Table 1b	Summary of Land use and peak hour trip generation
Table 1c	Summary of Land use and peak hour trip generation
Table 2	Trip Generation - Latent Rights Traffic
Table 3	Proposed Roads upgrades (by Latent Rights)
Table 4	Issues regarding Latent Rights
Table 5a	Monavoni master summary of link weekday AM Peak traffic volumes and capacity requirements – Alternative 1
Table 5b	Monavoni master summary of link weekday PM Peak traffic volumes and capacity requirements - Alternative 1
Table 6a	Monavoni master summary of link weekday AM Peak traffic volumes and capacity requirements – Alternative 2
Table 6b	Monavoni master summary of link weekday PM Peak traffic volumes and capacity requirements – Alternative 2
Table 7a	Monavoni master summary of link weekday AM Peak traffic volumes and capacity requirements – Alternative 3
Table 7b	Monavoni master summary of link weekday PM Peak traffic volumes and capacity requirements – Alternative 3
Table 8a	Monavoni master summary of link weekday AM Peak traffic volumes and capacity requirements – Alternative 4
Table 8b	Monavoni master summary of link weekday PM Peak traffic volumes and capacity requirements – Alternative 4
Table 9a	Monavoni master summary of link weekday AM Peak traffic volumes and capacity requirements – Alternative 5

- Table 9b Monavoni master summary of link weekday PM Peak traffic volumes and capacity requirements – Alternative 5
- Table 10 Proposed phasing of upgrades
- Table 11 Estimated cost of external road upgrades

APPENDIX A

TRIP GENERATION

Table 1a below indicates the summary of Land use and expected peak hour trip generation

	A CONCE				AM Pea	k Hour		MART IN		1000
Nr.	Land Use	Extent	Units	FAR	GLA	Trip Rate (vph)	Adjustment factor	Inbound (vph)	Outbound (vph)	Total (vph)
1	Office	328514	m²	0.5	164257	2	1	2792	493	3285
2	Industrial	492771	m²	0.4	197109	0.7	1	1104	276	1380
3	Residential	10762	units	N.a	N.a	0.7	1	1883	5650	7533
		a find and the		Totals	Contraction of the		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5780	6419	1219
-				10.010	011 0			51.00	1 0410 1	1213
		A SHOT		, oidio	PM Pea	k Hour		57.55	1 0/10 1	1213
Nr.	Land Use	Extent	Units	FAR	PM Pea GLA	k Hour Trip Rate (vph)	Adjustment factor	Inbound (vph)	Outbound	Total
1	Land Use Office	<i>Extent</i> 328514	Units m ²		TT		and the second state of th	Inbound		Total (vph)
Nr. 1 2		and the second se		FAR	GLA		and the second state of th	Inbound (vph)	Outbound (vph)	Total (vph) 3285
1	Office	328514	m²	FAR 0.5	GLA 164257	Trip Rate (vph) 2	and the second state of th	Inbound (vph) 493	Outbound (vph) 2792	Total (vph) 3285 1380 7533

Table 1b below indicates the summary of Land use and expected peak hour trip generation

-	(and the second	10000		AM Pea	k Hour		10 A A A		
Nr.	Land Use	Extent	Units	FAR	GLA	Trip Rate (vph)	Adjustment factor	Inbound (vph)	Outbound (vph)	Total (vph)
1	Office	328514	m²	0.5	164257	2	0.7	1955	345	2300
2	Industrial	492771	m²	0.4	197109	0.7	0.7	773	193	966
3	Residential	10762	units	N.a	N.a	0.7	1	1883	5650	7533
				Totals	PM Pea	k Hour		4611	6188	
Nr.	Land Use	Extent	Units				Adjustment	Inbound	Outbound	Total
Nr.	Land Use Office	Extent 328514	Units	FAR	GLA	Trip Rate (vph)	factor	Inbound (vph)	Outbound (vph)	1079 Total (vph)
Nr. 1 2	and the second second second	the second se					Contraction of the second s	Inbound (vph) 345	Outbound (vph) 1955	Total (vph) 2300
1	Office	328514	m²	FAR 0.5	GLA 164257	Trip Rate (vph) 2	factor 0.7	Inbound (vph)	Outbound (vph)	Total (vph)

Nr.	Land Use	Extent	Units	FAR	GLA	Trip Rate (vph)	Adjustment factor	Inbound (vph)	Outbound (vph)	Total (vph)
1	Office	328514	m²	0.5	164257	2	0.7	1955	345	2300
2	Industrial	492771	m²	0.4	197109	0.7	0.7	773	193	966
3	Residential	10762	units	N.a	N.a	0.7	0.8	1507	4520	6027
100	n)=weiter Witter	et venterenter	III SHIWES A	Totals	and the second	31.380	and the second second	4234	5058	9292
		the second s		1	and the second s	the statements	Adjustment	Inbound	Outbound	Tota
	1 and they	Contraction of the	44			m. m	Contraction of the second s		CONTRACTOR OF STREET	10.000
Nr.	Land Use	Extent	Units	FAR	GLA	Trip Rate (vph)	factor	(vph)	(vph)	(vph)
Nr.	Office	328514	m²	0.5	164257	2	0.7	345	(vph) 1955	(vph) 2300
1 2				-		Trip Rate (vph) 2 0.7			(vph)	(vph)
1	Office	328514	m²	0.5	164257	2	0.7	345	(vph) 1955	(vph) 2300

Table 1c below indicates the summary of Land use and expected peak hour trip generation

Note: The trip generation rate of 0.7 vehicle trips per hour per dwelling unit, with a directional split of 25:75 (in:out) during the AM peak hour was used.

The reason for this trip generation rate is that recent studies showed that for an area of a significant scale, the average trip rate should be used and not the 75^{th} percentile which is in this case 1 vehicle per hour and not the 1,1 vehicles per unit normally used for the expected type of income group.

LATENT RIGHTS

Table 2: Trip Generation - Latent Rights Traffic

	A REAL PROPERTY AND A REAL		Logic Constant	Trip	Peak	Trip G	eneratio	n (vph)
No.	Development	Extent	Land Use	Rate	Period	In	Out	Total
1	The Reeds Extension 3	172 units	Residential		AM	46	143	
4	The Heeds Extension 3	172 units		1.1	PM	143	46	189
	Th. D	100 M P 20 24/20	Residential	1	AM	109	336	
2	The Reeds Extension 18	405 units	1/01/2005/85/2577.)	3131	PM	336	109	445
10-		1013032107-572	Residential*		NICESS A	512	951	
3		1463 units			AM	112	91	1656
-	ABSA development		Educational					1000
	1	2 000 pupils	Concational		PM	951	515	1273382
_	2	100/200050358850			1.567.502	0	0	1463
4	Sundreland Ridge	7 735 m ²	Educational		AM	75	25	2366255
-	Extension 17	CT. FARMES		. 8	PM	20	80	200
5	Sundreland Ridge	35 322 m²	Industrial, Storage and		AM	130	30	22.011
	Extension 14	OU OLL III	Offices	- ¥	PM	30	130	320
	Hoekplaats / Mooiplaats	49 500 m², 844 units	Residential, Retail,		AM	715	965	
6	Development	and 450 pupils	Industrial, Commercial, Primary School and Office	2	PM	1511	1263	4454
123	Portion R/29 Vlakplaats	60 000 m ² , 1 500	Residential, Retail and		AM	1116	1362	
7	354-JR	units	Office		PM	1981	1736	6195
_		155 500 m², 190	Offices, Retail, Residential		AM	1313	1717	0100
8	Forest Hill City	rooms and 1450	and Hotel			1010	14.10	1
	<u>a</u>	units		8	РМ	3407	2955	9392
9	Heuweloord Extension	950 units	Residential		AM	260	780	
	13	900 units		1.1	PM	780	260	1040
	Rooihuiskraal Noord		Residential		AM	771	2313	10.20
10	Extension 33	2 804 units	N 367652755666657	1.1	PM	2313	771	3084
a	WHITE ANY I REMARK THE REAL PROPERTY.	San de rationes	Residential**		AM	337	1349	
11	ABSA Amberfield East	1 533 units	T TO OT GOT THE	1.1				+000
0.5	Monavoni Extension 3		D. 20-001	1.1	PM	1349	337	1686
12	and 4	1 806 units	Residential	1	AM	452	1354	
_	and 4			1	PM	1354	452	1806
13	Monavoni Extension 6	730 units	Residential		AM	182	548	
22.5		1/19/2008/7298		1	PM.	548	182	730
14	Monavoni Extension 19	550 units	Residential	- 18	AM	138	413	10202403
10,965		19894 9850043		1	PM	413	138	550
15	Celtisdal Extension 20	1 548 units, 500 pupils, 2 500 m ² business and 8 280	Residential, Educational, Business and Retail		АМ	476	1558	1734
		m² retail			PM	1385	611	1996
			Residential		1000	174	523	
1020		634 units	(in the internet inter	1.1	AM	17	95	809
16	Rua Vista Extension 12		Offices			523	174	
		485 m²	onosa	2.3	PM	95	17	809
No.	frances and starting a second starting of	Constitution and Constitution	Residential	2.0	AM	82	246	328
17	Rua Vista Extension 13	298 units	residential	1.1	PM	246	82	328
-		C. DOLO STATE OF			M	7017	14799	
		Tatal			PM			21816
-		Total		1	M	17385	9858	27243

Table 3: Proposed Roads upgrades (by Latent F	Rights)	
---	---------	--

No.	Intersection Name	Description of Road Upgrading
1	N14 / K71 (R55/P66-1) Interchange (Southern Terminal)	 Traffic Signal Construction of an additional through lane on the northern and southern approaches. New left turn loop.
2	N14 / K71 (R55/P66-1) Interchange (Northern Terminal).	 Traffic Signal Construction of an additional through lane on the northern and southern approaches. Construction of an additional left turn lane on the western and northern approach. Construction of an additional right turn lane on the southern approach.
3	K71 (R55/P66-1) / Ruimte Road (P102- 1/M34)	 Convert to a great separation Traffic Signal Construction of an additional right turn lane on the eastern approach. Construction of an additional through lane on both eastern and western approaches Construction of an additional right turn lane on both southern and northern approaches.
4	K71 (R55/P66-1) / Poole	 Traffic Signal Construction of an additional right turn lane on the northern approach. Construction of two additional left turn lanes on the southern approach. Construction of an additional left and right turn lanes on the eastern approach. Construction of an additional left and right turn lanes on the western approach.
5	K71 (R55/P66-1) / Wierda (K103)	 Traffic Signal Construction of an additional right turn lanes on the eastern and western approaches. Construction of an additional right turn lane on the southern approach.
6	Ruimte Road (P102- 1/M34) / Boundary D49	 Traffic Signal Construction of an additional right turn lanes on the southern and western approaches.

Table 4: Issues regarding Latent Rights

No.	Name of Road	Description of Issues
1	K71 (R55/P66-1)	 Will require three more lanes per direction The road reserve is 65m. Won't be able to accommodate three more lanes per direction. No spare capacity for Monavoni development.
2	North of K71 (R55/P66-1)	 It will generate 1670 vph, which means it will require one more lane per direction. Spare capacity for Monavoni development and Latent rights will be available.
3	Ruimte Road (P102-1/M34)	 It will generate 2370 vph to the east of K71 and 1870 vph to the west of K71, which means it will require two more lanes per direction to the east and one more lane per direction to the west. Grade separation intersection on K71 and Riumte (P102-1) is proposed. The road reserve is 48,4 m Recently the road is being upgraded to two lanes per direction There is sufficient space to add one more lane. One more lane will be required to the east. It makes more sense to construct one lane per direction on K52 between K71 to P102-1, because K52 has more important function. Riumte (P102-1) to the east of K71 will have a spare capacity for latent rights.
4	N14	 Latent rights add 1500 vph to the east of K71 and 900 vph to the west of K71. One extra lane will be required per direction on both east and west of K71. Road reserve is 82 m.
5	East of Wierda (K103)	 It will generate 960 vph, which means it will require one more lane per direction. Spare capacity for Monavoni development and Latent rights will be available.
6	Mimosa (D49)	 It will generate 560 vph, which means it will require one more lane per direction. Spare capacity for Monavoni development and Latent rights will be available.

Rand	Section	Direction and Lane Requirements	2009 Background Traffic (vhp)	Rights (repl)	2009 Background Traffe • Latent Rights (vph)	Development Traffic (vph)	2009 Background Traffic + Latent Nights + Development Traffic (vph)	Mr. of Lanes Required for Background Traffic	Nr. of Lanes Required for Development Traffic	Mr. of Lanes Required for 2009 Traffic + Latent Rights + Development Traffic	Z019 Backgroue ad Traffic (vhg)	2019 Backgroun d Traffic + Latent Righs (vph)	2018 Background Traffic + Latent Rights + Development Traffic (vph)	Nr. of Lanes Required for 2013 Background Traffic	Ensing ar. of terms	Nr. of Lanes Required for 2019 Traffic - Latent Rights - Development
	Between Wreds and Narihbaund P39-1 Southbound	d Nanhbaund Southbound	935 970	817 1534	1752 2504	506 423	2258 2928	98	03	15 20	1384	2201 2370	2707 3393	03	20 20	1.8
	Between Wherdia and Nachhound Poole	d Narhbaund Southbound	585 940	1174	1759 2642	1012 847	2771 3489	04	0.7	1.8 2.3	866 1243	2040	0052 3692	08 08	20	2.0
	Between Poole and Lochmar	Narthbound Sourbound	570 680	2466	3036 3774	759 635	3735 4409	0.4	0.5	25	844 962	3310 4086	4069	0.6	20	2.7
	Between Lochser and KS2	Numbound Southbound	545 715	2178 3028	2723	2117 2529	4840 6272	04	1.7	32	807 1058	2985 4086	6102 6815	0.7	2.0	3.4
K71 (RSS) Voorbekker	Between KS2 and Rumtia	Nerthbound. Soumbound	610	2020	2665 3734	2752	5417 7022	0.4	1.8 2.2	3.6	608 903	2975 4027	5727 7315	0.0	20	3.8
Road	Between Flumie and Northbound Maras	d Northbound Southbound	810 1355	1494 2278	2304 3633	5223 5223	4633 6415	0.5	1.6	31 4.3	1199 2006	2693 4284	5022 7066	6.8 8.3	2.0	8.5 4.7
	Between Marats and Northboard N14 Narth Terminal Southboard	d Northbound Southbound	915 2010	2063	2938 4778	2329 2762	5327 7560	0,6	1.6 1.9	36	1254 3020	3438 5758	5766 8540	0.9 2.0	2.0	3.8
	Between N14 North	Northbound	725	2005	2760	1905	4665	05	1.3	31	1073	9940	5013	0.7	2.0	3.3
	terminal	Sourhound	1200	1613	2813	2276	6805	0,8	1.5	3.4	1775	3390	5666	5.5	2.0	3.8
	South of N14 Southers Terminal	Northbound Southbound	845	556	1403 1542	1270	2673	0.8	0.6	1,8	1251 1687	1609 2489	3079 4007	0.0	2.0	21
	West of PSS	Westbound Eastbound	340	1005	1345	203	1598	0.2	01	11	602 502	1508	1761	0.3	0.1	51
Numte Fload	East of R55	Westbound Eastbound	825 560	1735	2560	212 253	2771	9.6	02	8.1	1221 629	2956 2836	3169	0.6	1.0	21
	West of R55	Westbound	٥a	569	660	00	560 835	0.0	00	0.4 0.4	00	560	580 635	0.0	1,0	0.4
Marais	East of RSS	Westbound Eastbound	0.0	28	28	0	88	0.0	00	0.0	00	25	25	0.0	1.0	00
0.0	Behantin Access 1 ant PD5	Westbound	0.0	00	00	1270	1270	0.0	0.8	10	00	00	1270 1517	0.0	0.0	0.6
23	East of RSS	Westbound	00	00	00	615 1769	859 259	0.0	0.4	0.5	00	0.0	635 759	00	0.0	4.0
	With a PWV9	Westbound Eastbound	905 265	725	1620	159	2349	06 02	6.5 0.4	1,1	1340 392	2065	2823 1762	60	2.0	12
NI4	Between PWV9 and Westbound RS5	s Westbound Eastbound	905	735	0001	758	2369	05	0.5	1.6	1340	2065	2623	03	20	12
	East of RS5	Westbound Eastbound	475 995	730	1205	606 423	1711 2653	0.7	03 03	61 13	703	1423	1939	0.5	20	13
Wienda	East of R55	Westhound Eastbound	710	1073	1783	423 506	2206	0.5 0.5	03	1.0	1051	2124	2547 1798	05	1.0	12

Becov	Noad Section Direction and 2009 Lat Lane Background Rig Requirements Traffic (Mpg) (N	Direction and Lane Requirements	Traffic (vhg) (vp	112	2009 Background Traffic + Latent Rights (vph)	Traffic (vph)	2009 Background Traffic + Latent Righta + Development Traffic (vph)	Mr. of Lanes Required for Background Traffic	Nr. of Lanes Required for Development Traffic	Nr. of Lanes Required for 2009 Traffic + Latest Rights + Development	2019 Backgrou nd Traffic (vhp)	2019 Background Traffic • Latent Righs (vph)	2019 Background Traffic + Latent Rights + Development Traffic (vph)	Nr. of Lanes Required for 2019 Background Traffic	Existing nr. of lanes	Nr. of Lanes Required for 2015 Traffic + Latent Rights + Development
	Between Wierds and P39-1	Northbound Southbound	1169 795	1620 588	2630	500	3254	0.6 0.5	03	15 1.5	1177	3367 2064	3811 2570	1.1	20	2 5 1 7
	Between Warda and Poste	Narthound	950 610	2320	3270	847 1912	2000	04	9,6	2.0	1406 903	3726 2288	1300	0.0	2.0	3.0
	Bosween Poole and Lochner	Northbound	229 229	4105	4830 3450	505	5265 4209	0.0	0.5	500	777 740	4582	6144 2155	50	2.0	97 3.0
	Between Lockneer and Northbound KS2 Southbound	Northound Southound	580 450	4105	4605	6292	7214 5562	04	17	37	858 733	4964 2003	7493	0.6	20	50
K71 (R56) Voorentier	Between KS2 and Rumie	Northbaund Southbaund	550 565	3010	0860 2995	3288 2752	7548 5747	50	23 18	38	814 835	4124 3266	7412 6018	0.5	20	4.9
Rad	Betwart Rumlo and Marais	Northbound	666 878	2900	3945 2850	2762 2329	6727 5179	0.7	19	8.4 8.5	1473	4425	7205	10	20	3.9
	Between Marsis and	Northbound	1415	3440	4055	2762	7637	0.9	1.9	51	2095	5635	\$317	14	2.0	0.5
	N14 Namh Tennanal	Southbound	305	2405	3310	2329	5639	90	1.6	3.8	1340	3745	6073	60	20	4.0
	Between M14 North	Northboard	1120	2780	3850	2276	8156	0.7	1.5	4.1	1658	4418	6694	111	2.0	4.5
	permitted	Southbound	870	1350.	2220	1905	4125	0.6	1.3	2.6	1266	26,36	4540	0.0	2.0	910
	South of N14 Southern Northcound	Northcound	725	1 2004	1730	1517	1942	50	10	2.6	1 1291 1	10,000	3660	0.0	40	1.0
	Terrainal	Southbound	1055	1120	2205	1270	3475	0.7	0.8	2.3	1606	2726	3896	1.4	2,0	27
	West of R55	Westbound	900 900	1660	2250	212	2462	04	0.1	11	673 940	1710	2745	0.6	1.0	18
(MD4) P102-1	1 East of R55	Westound	605 670	2005	3025 2965	253	3278	9.6	20.4	22	970 1288	3340	3592 3592	0.6	10	24
	West of ASS	Westbound	00	910	910 830	0	910 630	0.0	00	0.6 0.6	0	910	\$10 \$00	00	10	9.6 9.6
Marak	Eau of RSS	Westbound	0.0	88	40 38	00	40 35	0.0	00	00	0.0	40 35	40 35	00	10	0.0
	Between Access 1 and Westbrand R55 Eastbound	Westbound Eastbound	0.0	60	0	1517	1270	00	0.0	10	0 0	0 0	1017	00	0.0	10
25	East of RSS	Westbound	00	0.0	00	758	229	0.0	0.5	0.5	00	00	758 655	00	0.0	04
	West of PWV3	Westcound	810	350	1160	635 759	2124	50	0.4	12.	969	1549	2384	0.6	2.0	16
MM	Between PWV9 and RS5	Westbound	810	350	1160	635 759	1795	0.5	0.5	12 14	1193	1549	2349	0.8 0.5	20	15
	East of R55	Westbound	902 645	1515	2500	423	9052 5309	0.4	03	1.5	1466	2110	3396	10	20	29
Wiaida	East of R55	Westbound	685	1164	1834	506 623	1873	0.5	63	1.2	1014 092	1821	2126	07	01	24

| and Fight 1 Southbound stress 370 (5)4 2004 421 2004 4204 2004 4004 4014 2004 400
 | and Fight 1 Semitlened 370 154 2.044 423 2528 0.0 Befreen Windta Semithened 370 1437 387 1437 387 0.4 Befreen Windta Semithened 370 1437 387 1437 375 0.4 Befreen Windta Semithened 570 2465 3071 1472 2568 0.6 Befreen Windta Semithened 570 2466 373 1730 2569 0.6 Befreen Kiss Semithened 575 2466 373 1730 2569 0.6 Befreen Kiss Semithened 513 3724 3735 1730 2569 0.6 Befreen Kiss Semithened 513 3724 2735 1730 2569 0.6 Befreen Kiss Semithened 513 3724 1730 513 0.4 0.4 Befreen Kiss Semithened 513 3734 1730 553 0.4 <
 | And Fight 1 Sectional 370 554 204 204 223 0.0 0 Between Writch Southbound 565 1402 1547 2001 4149 0.6 0 Between Writch Southbound 565 1402 1567 3070 6173 2559 0.6 Between Writch Southbound 555 1402 2566 2665 1402 2696 0.4 Between Verture Southbound 513 2734 2734 2735 2733 0.1 0
 | Mathematical
Southbound 370 531 203 731 203 203 203 0.0 Befween Vinctial
Befween Vinctial
Southbound 580 1402 581 1402 589 0.0 0.4 Befween Vinctial
Befween Vinctial
Southbound 580 1402 3734 2046 739 2586 0.0 Befween Vinctial
Befween Vinctial
Southbound 590 2465 3034 7753 2690 0.4 0.4 Befween Vinctial
Befween Visctial
Southbound 515 3734 3734 3734 3735 4490 0.4 0.4 Befween Visctial
Befween Visctial
Southbound 516 3734 3734 3735 1660 0.4 0.4 0.4 Befween Visctial
Befween Name Nonthbound 115 2734 3734 1755 3633 0.4 0.4 Befween Name Nonthbound 115 2734 3734 1755 3633 0.4 0.4 Befween Name Nonthbound 115 2734 1755 <t< th=""><th>autrication 370 531 2104 673 3229 0.0 between Vuterial
Between Vuterial
Sectification 500 2461 300 1341 1947 1012 2008 0.6 Between Vuterial
Between Vuterial
Sectification 500 2461 300 1347 1700 2008 0.6 Between Vuterial
Sectification 5000 2465 3164 516 3164 0.6 0.4 Between Vuterial
Sectification 5000 2465 3000 1640 0.6 0.4 Between Vuterial
Sectification 5015 3206 3606 0.65 0.6 0.4 Between Vuterial
Sectification 513 2006 2635 1059 1059 0.4 0.4 Between Vieturei Sectification 513 2006 233 2734 2735 2734 2735 2734 0.6 0.6 Between Vieturei Sectification 513 2735 2734 2735 2735 0.61 0.6 0.6</th><th>Mathematical
and Fast 1. Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
S</th><th>out right 1 Seattheand 370 321 305</th><th>matrixpi: 1. Sametaniation 370 554 265 619 555 0.0 Mener Winds Sametaniation 370 554 266 617 265 0.0 Mener Winds Sametaniation 370 264 370 75 264 264 Mener Winds Sametaniation 370 276 276 276 276 276 276 Mener Maria Sametaniation 370 278 278 278 278 276</th><th></th><th>Section Between We cores</th><th>Direction and
Lane
Requirements</th><th>Tent</th><th>Latent
Rights
(vph)</th><th>a 3</th><th>Develop
ment
Traffic
(vpN)</th><th>2009 Background
Traffic + Latent
Rights +
Development
Traffic (vph)</th><th>Nr. of Lanes
Required for
Background
Traffic</th><th>Nr. of Lanes
Required for
Development
Traffic</th><th>Raq
Tri
Deve</th><th>Nr. of Lance
Required for 2009
Traffic + Latent
Rights +
Development Traffic</th><th>2019
Backgrou
nd Traffic
(vhp)</th><th>9 2019
rou Backgroun
Mic d
Traffic +
Latent
Nighs (vph)</th><th>9 2019
rou Backgroun
Mic d Trathc +
Latent
Nighs (vph)</th><th>9 2019 2019 Background
reu Background
rift of Traffic + Letent
rift of Traffic + Rights +
Latent
Rights (vph)
Traffic (vph)</th><th>9 2019 Background Nr. of Lanes E
reu Background Tarlie - Lahni Required to
file differite + Rights +
2019 Latent Development Background
Rights + Tarlie (vph) Traffie</th></t<> | autrication 370 531 2104 673 3229 0.0 between Vuterial
Between Vuterial
Sectification 500 2461 300 1341 1947 1012 2008 0.6 Between Vuterial
Between Vuterial
Sectification 500 2461 300 1347 1700 2008 0.6 Between Vuterial
Sectification 5000 2465 3164 516 3164 0.6 0.4 Between Vuterial
Sectification 5000 2465 3000 1640 0.6 0.4 Between Vuterial
Sectification 5015 3206 3606 0.65 0.6 0.4 Between Vuterial
Sectification 513 2006 2635 1059 1059 0.4 0.4 Between Vieturei Sectification 513 2006 233 2734 2735 2734 2735 2734 0.6 0.6 Between Vieturei Sectification 513 2735 2734 2735 2735 0.61 0.6 0.6 | Mathematical
and Fast 1. Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
Submendial
S | out right 1 Seattheand 370 321 305 | matrixpi: 1. Sametaniation 370 554 265 619 555 0.0 Mener Winds Sametaniation 370 554 266 617 265 0.0 Mener Winds
Sametaniation 370 264 370 75 264 264 Mener Winds Sametaniation 370 276 276 276 276 276 276 Mener Maria Sametaniation 370 278 278 278 278 276 | | Section Between We cores | Direction and
Lane
Requirements | Tent | Latent
Rights
(vph) | a 3 | Develop
ment
Traffic
(vpN) | 2009 Background
Traffic + Latent
Rights +
Development
Traffic (vph) | Nr. of Lanes
Required for
Background
Traffic | Nr. of Lanes
Required for
Development
Traffic | Raq
Tri
Deve | Nr. of Lance
Required for 2009
Traffic + Latent
Rights +
Development Traffic | 2019
Backgrou
nd Traffic
(vhp) | 9 2019
rou Backgroun
Mic d Traffic +
Latent
Nighs (vph) | 9 2019
rou Backgroun
Mic d Trathc +
Latent
Nighs (vph) | 9 2019 2019 Background
reu Background
rift of Traffic + Letent
rift of Traffic + Rights +
Latent
Rights (vph)
Traffic (vph) | 9 2019 Background Nr. of Lanes E
reu Background Tarlie - Lahni Required to
file differite + Rights +
2019 Latent Development Background
Rights + Tarlie (vph) Traffie |

--
---|---

--|---|--
---|----------|----------------------------------|--|------------|---------------------------|--------------|-------------------------------------|---|---|--|--------------------|--|---|---|--|---|---|
| Between Vieutra Sist 1402 1987 1012 2006 0.4 and Peolin Southbound 515 1402 3301 733 617 0.4 0.4 and Peolin Southbound 510 2465 3007 619 775 0.4 0.4 and Lether Nonthbound 550 2466 3011 1400 0.4 0.4 Between Lother Nonthbound 515 2466 3011 1400 0.4 0.4 Between Lother Southbound 515 2466 3011 1400 0.4 0.4 Between K2 and Nethermed 610 3124 3124 3124 3125 0.4 0.4 Between K2 and Nethermed 610 3124 3125 0.75 0.4 0.5 Between K2 and Mauh Southbound 610 3124 3125 0.75 0.4 0.5 Between K2 and Mauh Southbound 715 2016 0.55 0.4 0.4 <td>Between Windra Side 1402 1987 1012 2006 0.4 and Poolin Southbound 515 1402 3407 617 012 2006 0.4 and Poolin Southbound 510 2465 3007 619 2755 0.4 0.4 Prevent Lother Nonfbound 510 2466 0011 1770 5493 0.4 0.4 Between Lother Nonfbound 513 2746 3734 6795 4499 0.4 0.4 Between Vist and
Southbound 510 3724 3734 6795 0.6 0.4 0.4 Between Vist and
Southbound 610 3724 3734 7735 1265 0.4 0.4 Between Vist and
Southbound 610 2734 2734 2735 1265 903 0.4 Between Vist and
Markin Southbound 715 2714 2725 7525 9525 0.4 0.5 Between Vist and
Markin Southboun</td> <td>Between Weinda Machbound 553 1402 1887 1002 2066 0.4 and Pealla Southbound 810 2465 3004 759 4193 0.4 Bitween Verze Southbound 510 2465 3004 759 4193 0.4 Bitween Verze Southbound 515 2465 3004 759 4093 0.4 Bitween Verze Southbound 513 3124 3124 3126 0.4 0.4 Bitween Verze Southbound 845 2734 3129 1750 550 0.4 0.4 Bitween Verze Southbound 813 3124 3124 3126 0.4 0.4 Bitween Verze Southbound 813 2179 759 1059 0.4 0.4 Bitween Verze Southbound 813 2734 2733 1059 0.4 0.4 Bitween Verze Southbound 755 2135 759 0.4 <t< td=""><td>Between Nutrial
Antificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectific</td><td>Detween Vinctal
and Preis MadTheomed
Southbound 565 1412 1937 1012 2969 0.4 Briveen Vinctal
Southbound Southbound 510 2475 3004 559 4193 0.4 Briveen Fuel Southbound 510 2174 3004 559 4193 0.4 Briveen Fuel Southbound 515 2174 3039 1170 550 0.4 Briveen Vistand Southbound 515 2174 3039 1770 550 0.4 Briveen Vistand Southbound 515 2773 753 753 0.05 0.4 Briveen Vistand Southbound 515 2773 753 753 0.05 0.4 Briveen Vistand Southbound 515 2734 2733 4778 753 0.01 0.5 Briveen Vistand Southbound 515 2734 753 753 2037 0.01 Briveen Vistand Southound 14400 755</td><td>Between Variation Stable and Fails Stable and Fails</td><td>Between Wintral Statitioned
Environment Statitioned
Set St</td><td>Between Watch Side Side</td><td></td><td>ormeon mercal
and P39-1</td><td>Southbound</td><td>026</td><td>817
1534</td><td>2504</td><td>423</td><td>2258</td><td>0.6</td><td>00</td><td></td><td>3 15</td><td>+</td><td>20</td><td>2,0 1436</td><td>2,0 1436 2307 2,00</td><td>2,0 1436 2307 2,00</td></t<></td> | Between Windra Side 1402 1987 1012 2006 0.4 and Poolin Southbound 515 1402 3407 617 012 2006 0.4 and Poolin Southbound 510 2465 3007 619 2755 0.4 0.4 Prevent Lother Nonfbound 510 2466 0011 1770 5493 0.4 0.4 Between Lother Nonfbound 513 2746 3734 6795 4499 0.4 0.4 Between Vist and
Southbound 510 3724 3734 6795 0.6 0.4 0.4 Between Vist and
Southbound 610 3724 3734 7735 1265 0.4 0.4 Between Vist and
Southbound 610 2734 2734 2735 1265 903 0.4 Between Vist and
Markin Southbound 715 2714 2725 7525 9525 0.4 0.5 Between Vist and
Markin Southboun | Between Weinda Machbound 553 1402 1887 1002 2066 0.4 and Pealla Southbound 810 2465 3004 759 4193 0.4 Bitween Verze Southbound 510 2465 3004 759 4193 0.4 Bitween Verze Southbound 515 2465 3004 759 4093 0.4 Bitween Verze Southbound 513 3124 3124 3126 0.4 0.4 Bitween Verze Southbound 845 2734 3129 1750 550 0.4 0.4 Bitween Verze Southbound 813 3124 3124 3126 0.4 0.4 Bitween Verze Southbound 813 2179 759 1059 0.4 0.4 Bitween Verze Southbound 813 2734 2733 1059 0.4 0.4 Bitween Verze Southbound 755 2135 759 0.4 <t< td=""><td>Between Nutrial
Antificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectific</td><td>Detween Vinctal
and Preis MadTheomed
Southbound 565 1412 1937 1012 2969 0.4 Briveen Vinctal
Southbound Southbound 510 2475 3004 559 4193 0.4 Briveen Fuel Southbound 510 2174 3004 559 4193 0.4 Briveen Fuel Southbound 515 2174 3039 1170 550 0.4 Briveen Vistand Southbound 515 2174 3039 1770 550 0.4 Briveen Vistand Southbound 515 2773 753 753 0.05 0.4 Briveen Vistand Southbound 515 2773 753 753 0.05 0.4 Briveen Vistand Southbound 515 2734 2733 4778 753 0.01 0.5 Briveen Vistand Southbound 515 2734 753 753 2037 0.01 Briveen Vistand Southound 14400 755</td><td>Between Variation Stable and Fails Stable and Fails</td><td>Between Wintral Statitioned
Environment Statitioned
Set St</td><td>Between Watch Side Side</td><td></td><td>ormeon mercal
and P39-1</td><td>Southbound</td><td>026</td><td>817
1534</td><td>2504</td><td>423</td><td>2258</td><td>0.6</td><td>00</td><td></td><td>3 15</td><td>+</td><td>20</td><td>2,0 1436</td><td>2,0 1436 2307 2,00</td><td>2,0 1436 2307 2,00</td></t<> | Between Nutrial
Antificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectificational
Sectific | Detween Vinctal
and Preis MadTheomed
Southbound 565 1412 1937 1012 2969 0.4 Briveen Vinctal
Southbound Southbound 510 2475 3004 559 4193 0.4 Briveen Fuel Southbound 510 2174 3004 559 4193 0.4 Briveen Fuel Southbound 515 2174 3039 1170 550 0.4 Briveen Vistand Southbound 515 2174 3039 1770 550 0.4 Briveen Vistand Southbound 515 2773 753 753 0.05 0.4 Briveen Vistand Southbound 515 2773 753 753 0.05 0.4 Briveen Vistand Southbound 515 2734 2733 4778 753 0.01 0.5 Briveen Vistand Southbound 515 2734 753 753 2037 0.01 Briveen Vistand Southound 14400 755 | Between Variation Stable and Fails | Between Wintral Statitioned
Environment Statitioned
Set St | Between Watch Side | | ormeon mercal
and P39-1 | Southbound | 026 | 817
1534 | 2504 | 423 | 2258 | 0.6 | 00 | | 3 15 | + | 20 | 2,0 1436 | 2,0 1436 2307 2,00 | 2,0 1436 2307 2,00 |
| Brivean Faction 570 2465 3036 759 2456 0.4 0.4 and Lachner Scouthbound 550 212.4 3774 553 4409 0.4 4 Briveen Lachner Scouthbound 550 212.4 3734 553 4409 0.4 4 Briveen Lachner Scouthbound 545 2466 30.11 1482 4493 0.5 4 0.4 4 and Kitz Scouthbound 545 2456 3734 1755 5619 0.5 6 < | Brivean Factor 570 2415 3036 753 2436 0.4 and Lacther Southbound 570 2416 3036 753 4409 0.4 Briveen Lacther Southbound 550 212.4 3734 553 4409 0.4 Briveen Lacther Southbound 515 212.4 3734 1735 5619 0.5 Briveen Kitz Southbound 645 2000 216.5 1730 5619 0.5 Briveen Kitz Southbound 645 2774 2755 1056 0.4 0.4 Briveen Kitz Northbound 645 2774 2755 1056 0.5 0.4 Briveen Kitz Northbound 1355 2774 2755 1056 0.5 0.5 Briveen Kitz Northbound 215 2774 2755 1056 0.5 0.5 Briveen Kitz Southbound 255 2733 2763 1056 0.5 0.5 <td>Bitween Porte Synthe Control Synthe Synthe Synthe Synthe Synthe Synthe Synthe Synth Synthe Synth Synthe Synthe Synthe Synth Synth Synthe Synthe Synth</td> <td>Bitwean Portie String <thstring< th=""> <ths< td=""><td>Bitwean Puritie Strip Strip</td><td>Bitwean Parke Martheound 570 2456 3036 750 3036 750 3036 750 3036 750 3036 0.4 0.4 med lockness Southbound 755 2466 3011 1130 549 0.4 0.4 0.4 med lockness Southbound 755 2466 3011 1130 549 0.01 0.4 0.4 med No. Southbound 610 753 2033 1056 0.5 0.4 0.4 Memorine Sandhound 610 753 2034 753 753 1056 0.5 0.4 Memorine Sandhound 753 2034 753 753 753 753 0.5 0.4 Memorine Sandhound 755 703 753 753 753 0.5 0.5 0.5 Memorine Sandhound 755 753 753 753 753 0.6 0.5 0.5 Memorine Sandhound 755</td><td>Bitwein Paule Normenue 570 2466 3034 759 3766 0.4 Berkein Paule Semithoeneet 550 3734 3734 559 3766 0.4 Berkein Lintmer Nomthound 519 3734 3734 5753 3769 0.4 Berkein Lintmer Nomthound 610 3734 3734 3735 1059 0.4 Berkein Kitz and Naule Nomthound 610 3734 3735 1059 1059 0.4 Berkein Kitz and Naule Nomthound 8135 2036 2036 613 3734 3755 1059 1056 0.4 Berkein Kitz and Naule Nomthound 8135 2036 613 2338 4778 2395 1059 0.4 10</td><td>Revenent futing
and leadners State
Seattleadner <</td><td>No.</td><td>Between Wierda
and Poetn</td><td> Northbound Southbound </td><td>585
840</td><td>1402
2467</td><td>1987</td><td>1012
847</td><td>2015</td><td>0.4</td><td>0.0</td><td></td><td>02</td><td></td><td>20</td><td>2.0 866</td><td>2,0 866 2266
986 1243 3710</td><td>2.0 0666 22669 3279 4557 4557</td></ths<></thstring<></td> | Bitween Porte Synthe Control Synthe Synthe Synthe Synthe Synthe Synthe Synthe Synth Synthe Synth Synthe Synthe Synthe Synth Synth Synthe Synthe Synth | Bitwean Portie String String <thstring< th=""> <ths< td=""><td>Bitwean Puritie Strip Strip</td><td>Bitwean Parke Martheound 570 2456 3036 750 3036 750 3036 750 3036 750 3036 0.4 0.4 med lockness Southbound 755 2466 3011 1130 549 0.4 0.4 0.4 med lockness Southbound 755 2466 3011 1130 549 0.01 0.4 0.4 med No. Southbound 610 753 2033 1056 0.5 0.4 0.4 Memorine Sandhound 610 753 2034 753 753 1056 0.5 0.4 Memorine Sandhound 753 2034 753 753 753 753 0.5 0.4 Memorine Sandhound 755 703 753 753 753 0.5 0.5 0.5 Memorine Sandhound 755 753 753 753 753 0.6 0.5 0.5 Memorine Sandhound 755</td><td>Bitwein Paule Normenue 570 2466 3034 759 3766 0.4 Berkein Paule Semithoeneet 550 3734 3734 559 3766 0.4 Berkein Lintmer Nomthound 519 3734 3734 5753 3769 0.4 Berkein Lintmer Nomthound 610 3734 3734 3735 1059 0.4 Berkein Kitz and Naule Nomthound 610 3734 3735 1059 1059 0.4 Berkein Kitz and Naule Nomthound 8135 2036 2036 613 3734 3755 1059 1056 0.4 Berkein Kitz and Naule Nomthound 8135 2036 613 2338 4778 2395 1059 0.4 10</td><td>Revenent futing
and leadners State
Seattleadner <</td><td>No.</td><td>Between Wierda
and Poetn</td><td> Northbound Southbound </td><td>585
840</td><td>1402
2467</td><td>1987</td><td>1012
847</td><td>2015</td><td>0.4</td><td>0.0</td><td></td><td>02</td><td></td><td>20</td><td>2.0 866</td><td>2,0 866 2266
986 1243 3710</td><td>2.0 0666 22669 3279 4557 4557</td></ths<></thstring<> | Bitwean Puritie Strip | Bitwean Parke Martheound 570 2456 3036 750 3036 750 3036 750 3036 750 3036 0.4 0.4 med lockness Southbound 755 2466 3011 1130 549 0.4 0.4 0.4 med lockness Southbound 755 2466 3011 1130 549 0.01 0.4 0.4 med No. Southbound 610 753 2033 1056 0.5 0.4 0.4 Memorine Sandhound 610 753 2034 753 753 1056 0.5 0.4 Memorine Sandhound 753 2034 753 753 753 753 0.5 0.4 Memorine Sandhound 755 703 753 753 753 0.5 0.5 0.5 Memorine Sandhound 755 753 753 753 753 0.6 0.5 0.5 Memorine Sandhound 755 | Bitwein Paule Normenue 570 2466 3034 759 3766 0.4 Berkein Paule Semithoeneet 550 3734 3734 559 3766 0.4 Berkein Lintmer Nomthound 519 3734 3734 5753 3769 0.4 Berkein Lintmer Nomthound 610 3734 3734 3735 1059 0.4 Berkein Kitz and Naule Nomthound 610 3734 3735 1059 1059 0.4 Berkein Kitz and Naule Nomthound 8135 2036 2036 613 3734 3755 1059 1056 0.4 Berkein Kitz and Naule Nomthound 8135 2036 613 2338 4778 2395 1059 0.4 10 | Revenent futing
and leadners State
Seattleadner < | No. | Between Wierda
and Poetn | Northbound Southbound | 585
840 | 1402
2467 | 1987 | 1012
847 | 2015 | 0.4 | 0.0 | | 02 | | 20 | 2.0 866 | 2,0 866 2266
986 1243 3710 | 2.0 0666 22669 3279 4557 4557 |
| Between Luctured 545 2466 3011 1482 493 0.4 and Ks2 Sourhsound 715 3124 3039 1770 5609 0.5 and Ks2 Sourhsound 715 3124 3039 1770 5609 0.5 Between Ks2 Sourhsound 610 3124 2756 2605 0.64 Between Ks2 Sourhsound 610 3124 2753 0.66 0.4 Between Runte Northbound 810 732 2655 3025 0.64 Between Runte Northbound 115 2774 2755 2655 0.65 0.4 Between Runte Northbound 2004 2738 4778 759 5027 0.5 Between Runte Southbound 225 2736 759 5027 0.5 0.6 Between Runte Southbound 225 2736 759 5027 0.5 0.6 Fernial Southbound 2 | Between Luctimer Selfs 2466 3011 1482 493 0.4 and Ks2 Southsound 715 3124 3039 1770 5690 0.5 and Ks2 Southsound 715 3124 3734 1785 3723 0.4 and Ks2 Southsound 610 3124 2756 2600 0.5 Between Not Southsound 610 3124 2753 2655 3025 0.4 Between Not Southsound 11355 2774 2755 3525 3629 0.5 Between Nut Southsound 11355 2015 2774 2755 3625 3625 10.5 Between Nut Southsound 755 2015 2774 2755 3625 3625 10.5 Between Nut Southsound 755 1613 2866 553 10.5 Between Nut Southsound 755 2015 272 3625 10.5 Between Nut </td <td>Between Luctured
and Ks2 Selfs 2466 3011 1482 4939 0.4 Between Luctured
and Ks2 Sourhsound 715 3124 3039 1770 5690 0.5 Between Luctured
and Ks2 Sourhsound 610 3124 3724 2759 0559 0519 0.4 Between Kares Monthsound 810 732 2005 2005 2005 0516 0.4 0.4 Between Kares Monthsound 810 732 2015 2736 0555 0169 0.4 0.4 Between Kares Monthsound 2015 2738 4778 755 3129 0517 0.4 Fornital Southsound 755 7613 2786 2527 2121 0.6 0.5 Bouthsound 755 1613 2869 253 2793 0.6 0.6 0.6 0.6 Bouthsound 755 7610 273 273 273 0.6 0.6 0</td> <td>Bitween forther Sets 3011 1482 3493 1770 5493 0.4 Between forther Southbound 613 2006 5614 024 04 Between fort Southbound 610 2124 2026 024 04 Between fort Southbound 610 2124 2124 2124 04 Between fort Southbound 610 2124 2124 2124 064 Between fort Southbound 115 2124 2124 2124 064 Between fort Southbound 115 2128 2128 2128 064 Between fort Southbound 115 2128 2128 066 06 Between fort Southbound 1140 213 2134 2128 066 06 Between fort Southbound 1140 213 2128 2128 06 0 Between fort Southbound 1140 213 2128</td> <td>Bitweart lurthort Eith State 3011 1482 4493 0.4 Bitweart lurthort Secontiocond 755 3124 3033 1770 5500 0.5 Betweart lock Secontiocond 655 3124 3735 1785 3690 0.5 Between K32 and
Memoert Markt Monthound 645 3203 3755 1755 3693 0.4 Between K32 and
Memoert Markt Monthound 645 2049 2738 4756 3693 0.6 Between K44 Monthound 2049 2738 4778 759 3693 0.6 Between K44 Monthound 2049 2738 4778 759 3693 0.6 Between K44 Monthound 2049 2738 2749 2693 0.6 Between K44 Monthound 2754 1775 759 3759 0.8 Between K44 Monthound 2754 1755 2693 759 0.8 Between K44</td> <td>Bitweart latituder Eith soundscound Eith sound Eith so</td> <td>Bitween further Martherer 515 2466 011 1460 560 0.4 Between flamme Southbound 615 2003 2003 2003 2003 0.4 Between flamme Southbound 615 2004 735 2134 2755 1056 3033 0.4 Between flamme Southbound 615 2004 735 2134 2755 1056 3033 0.4 Between flamme Southbound 115 2014 2735 2135 2016 213 0.05 0.4 Between N14 Southbound 115 2019 213 213 213 0.01 0.5 Between N14 Southbound 115 2016 213 213 213 0.01 0.6 Between N14 Southbound 1160 213 213 213 0.01 0.6 0.6 Between N14 Southbound 1160 213 213 213 0.01 0.6</td> <td>Bitween factored S45 2466 011 146 490 0.4 Between factored 735 3724 3639 1770 5639 0.5 Between factored 735 3724 1805 7323 9741 0.5 Between factored 1355 2734 2734 1759 3533 964 Between factored 1355 2734 2735 3733 969 964 Between factored 1355 2734 2734 2735 7333 964 Between factored 1355 2734 2734 2735 2734 973 96 Between factored 1355 2734 2735 2734 2737 963 964 Between factored 1355 2734 2735 2734 2737 964 964 Between factored 134 1655 2640 253 2735 964 964 964 Between factored 1745 2640 263</td> <td></td> <td>Between Poole
and Lochner</td> <td></td> <td>570
850</td> <td>2466</td> <td></td> <td>759</td> <td>3795
4409</td> <td>0.4</td> <td>0.5</td> <td></td> <td>No.</td> <td>100 000 000 000 000 000 000 000 000 000</td> <td>310 844 3310</td> <td></td> <td>3310</td> <td>3310 4069 0.6</td> | Between Luctured
and Ks2 Selfs 2466 3011 1482 4939 0.4 Between Luctured
and Ks2 Sourhsound 715 3124 3039 1770 5690 0.5 Between Luctured
and Ks2 Sourhsound 610 3124 3724 2759 0559 0519 0.4 Between Kares Monthsound 810 732 2005 2005 2005 0516 0.4 0.4 Between Kares Monthsound 810 732 2015 2736 0555 0169 0.4 0.4 Between Kares Monthsound 2015 2738 4778 755 3129 0517 0.4 Fornital Southsound 755 7613 2786 2527 2121 0.6 0.5 Bouthsound 755 1613 2869 253 2793 0.6 0.6 0.6 0.6 Bouthsound 755 7610 273 273 273 0.6 0.6 0 | Bitween forther Sets 3011 1482 3493 1770 5493 0.4 Between forther Southbound 613 2006 5614 024 04 Between fort Southbound 610 2124 2026 024 04 Between fort Southbound 610 2124 2124 2124 04 Between fort Southbound 610 2124 2124 2124 064 Between fort Southbound 115 2124 2124 2124 064 Between fort Southbound 115 2128 2128 2128 064 Between fort Southbound 115 2128 2128 066 06 Between fort Southbound 1140 213 2134 2128 066 06 Between fort Southbound 1140 213 2128 2128 06 0 Between fort Southbound 1140 213 2128 | Bitweart lurthort Eith State 3011 1482 4493 0.4 Bitweart lurthort Secontiocond 755 3124 3033 1770 5500 0.5 Betweart lock Secontiocond 655 3124 3735 1785 3690 0.5 Between K32 and
Memoert Markt Monthound 645 3203 3755 1755 3693 0.4 Between K32 and
Memoert Markt Monthound 645 2049 2738 4756 3693 0.6 Between K44 Monthound 2049 2738 4778 759 3693 0.6 Between K44 Monthound 2049 2738 4778 759 3693 0.6 Between K44 Monthound 2049 2738 2749 2693 0.6 Between K44 Monthound 2754 1775 759 3759 0.8 Between K44 Monthound 2754 1755 2693 759 0.8 Between K44 | Bitweart latituder Eith soundscound Eith sound Eith so | Bitween further Martherer 515 2466 011 1460 560 0.4 Between flamme Southbound 615 2003 2003 2003 2003 0.4 Between flamme Southbound 615 2004 735 2134 2755 1056 3033 0.4 Between flamme Southbound 615 2004 735 2134 2755 1056 3033 0.4 Between flamme Southbound 115 2014 2735 2135 2016 213 0.05 0.4 Between N14 Southbound 115 2019 213 213 213 0.01 0.5 Between N14 Southbound 115 2016 213 213 213 0.01 0.6 Between N14 Southbound 1160 213 213 213 0.01 0.6 0.6 Between N14 Southbound 1160 213 213 213 0.01 0.6 | Bitween factored S45 2466 011 146 490 0.4 Between factored 735 3724 3639 1770 5639 0.5 Between factored 735 3724 1805 7323 9741 0.5 Between factored 1355 2734 2734 1759 3533 964 Between factored 1355 2734 2735 3733 969 964 Between factored 1355 2734 2734 2735 7333 964 Between factored 1355 2734 2734 2735 2734 973 96 Between factored 1355 2734 2735 2734 2737 963 964 Between factored 1355 2734 2735 2734 2737 964 964 Between factored 134 1655 2640 253 2735 964 964 964 Between factored 1745 2640 263 | | Between Poole
and Lochner | | 570
850 | 2466 | | 759 | 3795
4409 | 0.4 | 0.5 | | No. | 100 000 000 000 000 000 000 000 000 000 | 310 844 3310 | | 3310 | 3310 4069 0.6 |
| Between Kig and
Submeen Kig and
Submeen Kig and
Between Putter Wath
Submeen Maars Red
Submeen Report
Submeen Putter
Submeen Maars Red
Submeen Report
Submeen Report
Submeen Report
Submeen Na Red
Submeen Report
Submeen | Between Kig and
Submeen Kig and
Submeen Kig and
Between Numte Red
Southbound 645 2020 2051 1723 0.4 Remeen Kig and
Between Numte Southbound 610 3124 3724 1265 4061 0.4 Between Numte Numte Southbound 113 3124 3729 1265 3024 0.5 Ant Maais Southbound 113 2078 2374 3729 1265 3029 0.5 And Maas Nonthbound 115 2078 2374 3729 1265 0.6 0.5 0.5 0.6 Remeen Nut Southbound 115 2019 2739 4778 759 5029 0.6 Remeen Nut Southbound 755 2019 2736 615 3027 0.6 Remeen Nut Southbound 755 2016 635 3257 0.6 Southbound Southbound 755 2038 253 377 0.6 South Intermak Monthbound <td>Between Kig and
Between Kig and
Southbound 645 2020 2050 2065 1026 3723 014 Reineen Kig and
Between Runt Southbound 610 3124 3124 3123 04 04 Between Runt Southbound 113 3124 3124 3123 1265 060 051 052 04 Between Runt Southbound 113 2078 2174 3175 1265 061 05 051 04 Between Nut Southbound 115 2078 2035 2740 535 1265 06 05 051 051 051 051 051 051 051 055 051 051 051 055 051 055 051 055 051 051 055 051 055 051 055 051 055 051 055 051 055 051 055 051 055 051 055 056 055 056 055</td> <td>Between Kig and
Between /td> <td>Between Kiz and
Raines Northbound
Sublexing 64 2000 2065 1000 2025 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 0.4 0.4 Behnen Kunst Northbound 1333 2314 2733 1783 2733 1283 0.4 0.4 Behnen Kunst Northbound 1335 2734 2733 1285 3128 0.4 0.5 Ferninal Southbound 2040 253 2738 4778 759 3237 0.6 0.5 Renning and
Bouthbound Southbound 1140 886 2036 233 2391 0.6 0</td> <td>Between Kig and
Between Kig and
Between Kig and
Between Kig and
Subtraviation 645 600 783 7934 1765 1725 0.4 Between Kig and
Between Kig and
Between Kig and
Subtraviation 810 1733 2734 7735 1765 051 05 Between Kig and
Between Kig and
Subtraviation 811 201 2733 2733 2733 2733 053 06 05 Between Kig and
Subtraviation Subtraviation 813 2015 2015 2035 750 053 053 05 Between Kig and
Subtraviation Subtraviation 1140 988 173 2868 253 2035 2035 053 06 0</td> <td>Between Not and
Examplement Not and
Southbound 645 5000 7734 7734 7735 77</td> <td>Between Name Territy bunde 645 3734 2705 1705 2703<</td> <td></td> <td>Between Locime
and KS2</td> <td>sr Northbound
Southbound</td> <td>545</td> <td>3124</td> <td>3011</td> <td>1482</td> <td>4493
5609</td> <td>0.4</td> <td>-</td> <td></td> <td>10</td> <td>105 007</td> <td>105 007 2273</td> <td>-</td> <td>3273</td> <td>3273 4755
4182 6953</td> | Between Kig and
Between Kig and
Southbound 645 2020 2050 2065 1026 3723 014 Reineen Kig and
Between Runt Southbound 610 3124 3124 3123 04 04 Between Runt Southbound 113 3124 3124 3123 1265 060 051 052 04 Between Runt Southbound 113 2078 2174 3175 1265 061 05 051 04 Between Nut Southbound 115 2078 2035 2740 535 1265 06 05 051 051 051 051 051 051 051 055 051 051 051 055 051 055 051 055 051 051 055 051 055 051 055 051 055 051 055 051 055 051 055 051 055 051 055 056 055 056 055 | Between Kig and
Between | Between Kiz and
Raines Northbound
Sublexing 64 2000 2065 1000 2025 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 2026 0.4 0.4 Behnen Kunst Northbound 1333 2314 2733 1783 2733 1283 0.4 0.4 Behnen Kunst Northbound 1335 2734 2733 1285 3128 0.4 0.5 Ferninal Southbound 2040 253 2738 4778 759 3237 0.6 0.5 Renning and
Bouthbound Southbound 1140 886 2036 233 2391 0.6 0 | Between Kig and
Between Kig and
Between Kig and
Between Kig and
Subtraviation 645 600 783 7934 1765 1725 0.4 Between Kig and
Between Kig and
Between Kig and
Subtraviation 810 1733 2734 7735 1765 051 05 Between Kig and
Between Kig and
Subtraviation 811 201 2733 2733 2733 2733 053 06 05 Between Kig and
Subtraviation Subtraviation 813 2015 2015 2035 750 053 053 05 Between Kig and
Subtraviation Subtraviation 1140 988 173 2868 253 2035 2035 053 06 0 | Between Not and
Examplement Not and
Southbound 645 5000 7734 7734 7735 77 | Between Name Territy bunde 645 3734 2705 1705 2703< | | Between Locime
and KS2 | sr Northbound
Southbound | 545 | 3124 | 3011 | 1482 | 4493
5609 | 0.4 | - | | 10 | 105 007 | 105 007 2273 | - | 3273 | 3273 4755
4182 6953 |
| Berneurin Fluintie Note 11/32 2/32 2/32 105/6 3/65 0.5 and Mauais Southbound 115 2074 3725 1265 4900 0.5 and Mauais Southbound 115 2078 2735 1265 4900 0.5 and Matais Monthbound 115 2019 2738 4776 759 0.5 0.6 Annoin Marais Monthbound 115 2015 2738 4776 759 0.5 0.6 Annoin Marais Monthbound 725 2135 2760 635 3335 0.6 0.6 Southbound 725 2135 2760 635 3221 0.6 0.6 Monthound Southbound 725 2135 2760 635 3221 0.6 Southbound 755 1691 212 0.8 0.6 0.6 Southbound 514 763 763 273 0.7 0.8 </td <td>Betwein Runte Note Theory is an intermediation of the intermediatinte intermediatintermediat</td> <td>Bertwern Runnte Reithbound 810 1782 2942 1056 3151 0.5 and Maxins Southbound 115 2018 2734 3729 1265 4803 0.5 and Maxins Southbound 115 2018 2738 4778 759 0.537 0.6 and Maxins Southbound 115 2019 2739 4778 759 0.537 0.6 Ferninal Southbound 115 2135 2135 2135 0.6 0.6 0.6 South torminal and
Mut interfact Southbound 1140 968 1533 212 1003 0.6 South torminal and
Mut interfact Southbound 1140 968 213 212 1003 0.6 South torminal and
Mut interfact Mosthbound 1140 968 213 212 1003 0.6 South torminal and
Mut interfact Mosthbound 1140 958 213 213 213 213 213 0.6<td>Betwein Runte Note FFO 7732 2174 2725 1255 4800 0.5 and Maaxis Southbound 115 2018 2734 2725 1255 4800 0.5 and Maaxis Monthbound 115 2018 2738 4778 755 3828 0.0 Remoin Maxis Monthbound 115 2019 2738 4778 759 0.537 56 0.5 Remoin Southbound 725 2013 2738 2613 2613 2613 0.5 0.6 0.6 0.5 0.6</td><td>Betwein Runte Note FFO 7782 2778 2775 1255 4000 015 015 and Maxins Southbound 115 2018 2778 2775 2628 0.0 Memoen Maxis Membound 115 2019 2738 4778 755 3628 0.0 Memoen Maxis Membound 2015 2738 4778 759 2629 0.0 Memoen Maxis Membound 2015 2738 4778 759 0.0 0.0 Memoen Maxis Membound 115 2015 2738 2613 2613 2613 2614 0.0 Southbound 114 2015 2015 2015 2016 0.0 0.0 0.0 Southbound 1140 865 1134 212 1903 0.0 0.0 0.0 Must of POS Weetbound 866 1735 2735 0.0 0.0 0.0 0.0 Must of POS <td< td=""><td>Bernerin Rumtre Rumtre Sum Brite 1784 2764 1784 2764 165 1784 0.5 and Meaksing Southbound 113.55 2374 37795 1255 3129 0.6 and Meak Meaksing Southbound 113.55 2378 27795 1255 3129 0.6 and Meak Meaksing Southbound 725 2335 2740 759 0.557 1.6 Southbound 725 2035 2705 2653 3295 0.6 South terminal Southbound 725 2335 2706 759 0.6 0.6 South terminal Southbound 755 2335 2733 253 0.6 0.6 South terminal Southbound 1675 848 253 253 0.6 0.6 South terminal Southbound 1735 2446 753 212 2130 0.6 South terminal Meaksound 1735 253 0.6 0.7 <</td><td>Bernein Bunite
auf Maaisis Weithbunid
Southbunnet
Southbunnet F10 1782 2783 2793 1785 988 05 and Maaisis Southbunnet 1335 2018 2733 2733 2733 2733 055 055 055 055 055 055 055 055 055 055 055 055 056</td><td>Bertwern Burnte
aus Mussis Kurthbound
Southbound 133 2134 2135 1736 1735 1735 1735<</td><td>K71 (RS6</td><td>-</td><td>d Northbound
Southbound</td><td>645</td><td>3124</td><td>2665
3734</td><td>1059</td><td>0723</td><td>0.4</td><td>0.7
0.8</td><td></td><td>-</td><td>556</td><td>24 252 2975</td><td>H</td><td>2975
4027</td><td>2975 4033
4027 5291</td></td<></td></td> | Betwein Runte Note Theory is an intermediation of the intermediatinte intermediatintermediat | Bertwern Runnte Reithbound 810 1782 2942 1056 3151 0.5 and Maxins Southbound 115 2018 2734 3729 1265 4803 0.5 and Maxins Southbound 115 2018 2738 4778 759 0.537 0.6 and Maxins Southbound 115 2019 2739 4778 759 0.537 0.6 Ferninal Southbound 115 2135 2135 2135 0.6 0.6 0.6 South torminal and
Mut interfact Southbound 1140 968 1533 212 1003 0.6 South torminal and
Mut interfact Southbound 1140 968 213 212 1003 0.6 South torminal and
Mut interfact Mosthbound 1140 968 213 212 1003 0.6 South torminal and
Mut interfact Mosthbound 1140 958 213 213 213 213 213 0.6 <td>Betwein Runte Note FFO 7732 2174 2725 1255 4800 0.5 and Maaxis Southbound 115 2018 2734 2725 1255 4800 0.5 and Maaxis Monthbound 115 2018 2738 4778 755 3828 0.0 Remoin Maxis Monthbound 115 2019 2738 4778 759 0.537 56 0.5 Remoin Southbound 725 2013 2738 2613 2613 2613 0.5 0.6 0.6 0.5 0.6</td> <td>Betwein Runte Note FFO 7782 2778 2775 1255 4000 015 015 and Maxins Southbound 115 2018 2778 2775 2628 0.0 Memoen Maxis Membound 115 2019 2738 4778 755 3628 0.0 Memoen Maxis Membound 2015 2738 4778 759 2629 0.0 Memoen Maxis Membound 2015 2738 4778 759 0.0 0.0 Memoen Maxis Membound 115 2015 2738 2613 2613 2613 2614 0.0 Southbound 114 2015 2015 2015 2016 0.0 0.0 0.0 Southbound 1140 865 1134 212 1903 0.0 0.0 0.0 Must of POS Weetbound 866 1735 2735 0.0 0.0 0.0 0.0 Must of POS <td< td=""><td>Bernerin Rumtre Rumtre Sum Brite 1784 2764 1784 2764 165 1784 0.5 and Meaksing Southbound 113.55 2374 37795 1255 3129 0.6 and Meak Meaksing Southbound 113.55 2378 27795 1255 3129 0.6 and Meak Meaksing Southbound 725 2335 2740 759 0.557 1.6 Southbound 725 2035 2705 2653 3295 0.6 South terminal Southbound 725 2335 2706 759 0.6 0.6 South terminal Southbound 755 2335 2733 253 0.6 0.6 South terminal Southbound 1675 848 253 253 0.6 0.6 South terminal Southbound 1735 2446 753 212 2130 0.6 South terminal Meaksound 1735 253 0.6 0.7 <</td><td>Bernein Bunite
auf Maaisis Weithbunid
Southbunnet
Southbunnet F10 1782 2783 2793 1785 988 05 and Maaisis Southbunnet 1335 2018 2733 2733 2733 2733 055 055 055 055 055 055 055 055 055 055 055 055 056</td><td>Bertwern Burnte
aus Mussis Kurthbound
Southbound 133 2134 2135 1736 1735 1735 1735<</td><td>K71 (RS6</td><td>-</td><td>d Northbound
Southbound</td><td>645</td><td>3124</td><td>2665
3734</td><td>1059</td><td>0723</td><td>0.4</td><td>0.7
0.8</td><td></td><td>-</td><td>556</td><td>24 252 2975</td><td>H</td><td>2975
4027</td><td>2975 4033
4027 5291</td></td<></td> | Betwein Runte Note FFO 7732 2174 2725 1255 4800 0.5 and Maaxis Southbound 115 2018 2734 2725 1255 4800 0.5 and Maaxis Monthbound 115 2018 2738 4778 755 3828 0.0 Remoin Maxis Monthbound 115 2019 2738 4778 759 0.537 56 0.5 Remoin Southbound 725 2013 2738 2613 2613 2613 0.5 0.6 0.6 0.5 0.6 | Betwein Runte Note FFO 7782 2778 2775 1255 4000 015 015 and Maxins Southbound 115 2018 2778 2775 2628 0.0 Memoen Maxis Membound 115 2019 2738 4778 755 3628 0.0 Memoen Maxis Membound 2015 2738 4778 759 2629 0.0 Memoen Maxis Membound 2015 2738 4778 759 0.0 0.0 Memoen Maxis Membound 115 2015 2738 2613 2613 2613 2614 0.0 Southbound 114 2015 2015 2015 2016 0.0 0.0 0.0 Southbound 1140 865 1134 212 1903 0.0 0.0 0.0 Must of POS Weetbound 866 1735 2735 0.0 0.0 0.0 0.0 Must of POS <td< td=""><td>Bernerin Rumtre Rumtre Sum Brite 1784 2764 1784 2764 165 1784 0.5 and Meaksing Southbound 113.55 2374 37795 1255 3129 0.6 and Meak Meaksing Southbound 113.55 2378 27795 1255 3129 0.6 and Meak Meaksing Southbound 725 2335 2740 759 0.557 1.6 Southbound 725 2035 2705 2653 3295 0.6 South terminal Southbound 725 2335 2706 759 0.6 0.6 South terminal Southbound 755 2335 2733 253 0.6 0.6 South terminal Southbound 1675 848 253 253 0.6 0.6 South terminal Southbound 1735 2446 753 212 2130 0.6 South terminal Meaksound 1735 253 0.6 0.7 <</td><td>Bernein Bunite
auf Maaisis Weithbunid
Southbunnet
Southbunnet F10 1782 2783 2793 1785 988 05 and Maaisis Southbunnet 1335 2018 2733 2733 2733 2733 055 055 055 055 055 055 055 055 055 055 055 055 056</td><td>Bertwern Burnte
aus Mussis Kurthbound
Southbound 133 2134 2135 1736 1735 1735 1735<</td><td>K71 (RS6</td><td>-</td><td>d Northbound
Southbound</td><td>645</td><td>3124</td><td>2665
3734</td><td>1059</td><td>0723</td><td>0.4</td><td>0.7
0.8</td><td></td><td>-</td><td>556</td><td>24 252 2975</td><td>H</td><td>2975
4027</td><td>2975 4033
4027 5291</td></td<> | Bernerin Rumtre Rumtre Sum Brite 1784 2764 1784 2764 165 1784 0.5 and Meaksing Southbound 113.55 2374 37795 1255 3129 0.6 and Meak Meaksing Southbound 113.55 2378 27795 1255 3129 0.6 and Meak Meaksing Southbound 725 2335 2740 759 0.557 1.6 Southbound 725 2035 2705 2653 3295 0.6 South terminal Southbound 725 2335 2706 759 0.6 0.6 South terminal Southbound 755 2335 2733 253 0.6 0.6 South terminal Southbound 1675 848 253 253 0.6 0.6 South terminal Southbound 1735 2446 753 212 2130 0.6 South terminal Meaksound 1735 253 0.6 0.7 < | Bernein Bunite
auf Maaisis Weithbunid
Southbunnet
Southbunnet F10 1782 2783 2793 1785 988 05 and Maaisis Southbunnet 1335 2018 2733 2733 2733 2733 055 055 055 055 055 055 055 055 055 055 055 055 056 | Bertwern Burnte
aus Mussis Kurthbound
Southbound 133 2134 2135 1736 1735 1735 1735< | K71 (RS6 | - | d Northbound
Southbound | 645 | 3124 | 2665
3734 | 1059 | 0723 | 0.4 | 0.7
0.8 | | - | 556 | 24 252 2975 | H | 2975
4027 | 2975 4033
4027 5291 |
| Behneten Maras Northbaund 115 2078 2930 615 3828 0.6 And N14 Month
Ferninal Southbound 2049 2739 4.778 759 5537 1 Reveent N1 Southbound 2243 2736 4.778 759 5537 1 Reveent N1 Monthbound 225 2736 4.778 759 5057 1 Reveent N1 Monthbound 225 2735 2780 635 33255 0.5 South burnes Southbound 725 1613 286 253 3129 0.6 South burnes Southbound 1255 1613 212 1903 0.6 South burnes Technical Souther 1140 898 2036 223 2291 0.6 South burnes Technical Souther 1140 898 233 223 0.6 South burnes WestBound 1140 898 233 223 0.6 South burnes
 | Behreinen Maras Northbaund 115 2018 2930 615 3828 0.6 And N14 Month Southbound 2049 2738 4778 759 5537 1 Ferninal Southbound 224 2736 4778 759 5537 1 Annoninal and
Vammineal and
Southbound Zelup 2735 2736 759 5537 0.5 South terminal and
Southbound Zelup 2755 1613 2866 253 3129 0.6 South terminal and
Southbound Telepi 1691 212 1903 0.6 South terminal
Southerwind Terminal
Southerwind 2693 2693 253 2793 0.6 South terminal
Southerwind Terminal
Southerwind 2693 2633 273 0.6 0.6 West for R55 WestBound 1140 898 263 273 0.2 0.6 Mest of R55 WestBound 1140 898 2035 273 0.7 0.6 0.6
 | Bitmenen Marast
and N14 Martin
Southbound Nothbound 115 2018 2015 515 3028 0.6 And N14 Martin
Southbound Southbound 725 2735 3778 559 0.5 Antwentin
Memorinal and
Southbound Southbound 725 2735 3770 639 5335 0.5 Southbound 725 2735 2703 690 639 3336 0.5 4 Southbound 725 2735 2600 639 3235 0.6<
 | Binnear Maras Nonthbund 115 2018 2016 615 5124 0.0 And Nichtbound Southbound 2049 2738 4778 59 5537 4 And Nichtbound Southbound 2049 2738 2736 5937 4 Beiwern Nith Southbound 725 2135 2735 2935 5357 0.6 Beiwern Nith Southbound 1255 1613 2866 553 3127 0.6 Beiwern Nith Southbound 1740 989 2036 253 3127 0.6 9 Bouthound Exercision 1160 785 2869 273 2793 0.6 0 Bouthound Exercision 663 566 785 2775 0.8 0.6<
 | Binneon Maras
and N14 Martin
Southbound Nit5 2018 2016 615 3628 0.6 Ferninal
Mentinial
Southbound Southbound 725 2735 778 759 0.557 0.6 Southbound Southbound 7255 1613 2866 759 3355 0.5 Southbound 1755 1613 2866 753 2931 0.6 Southbound 1740 555 1613 2866 753 2931 0.6 Southbound Investionund 1740 555 1613 2869 253 2591 0.6 Southbound Embound 1740 555 1625 755 1633 0.6 0.6 Southbound Titrit 2035 2550 273 2591 0.6 0.6 Southbound 1714 2035 2550 273 2591 0.6 0.6 Southbound 1715 WestBound 0.6 273 2739 0.6 0.6< | Brinneen Maras
and Nie Marth Northbaund 115 2018 2930 615 3628 0.6 Remnan Southbound 2049 2735 2736 4778 759 5057 1 Remnan Southbound 2649 2735 2035 2735 2735 766 639 3355 0.5 Southbound Isouthbound 1255 1613 2866 253 2931 0.6 South of Ni 4 Morehbound 1740 958 1345 275 1933 0.6 South of Ni 4 Morehbound 1740 958 2553 2591 0.6 0.6 South of Ni 4 Morehbound 1655 1735 2569 2573 2591 0.6 Mest of Ni 4 Morehbound 655 765 1735 2563 2613 0.6 0.6 Mest of Ni 4 Morehbound 655 266 263 0.6 0.6 0.6 0.6 0.6 0.6 0.6 | Brinneen Maass
and N14 Math Monthbund 115 2018 2333 4778 5335 5128 0.6 And N14 Math Southbound 2043 2733 4778 759 6537 1 Southbound Southbound 2043 2733 2734 4778 759 6537 1 Southbound Southbound 7555 1613 2633 2533 2122 2133 0.6 South of N14 Monthbound 1140 955 1613 2122 2134 0.6 0.6 South of N14 Monthbound 1140 955 1233 2553 1212 2231 0.6 South of N14 Monthbound 1140 955 2345 2553 104 0.6 South of N14 Monthbound 1166 1735 2566 2523 2513 0.6 0.6 Monthbound 1663 263 203 252 2660 0.6 0.6 0.6 0.6 0.6 | Brinneton Marias
and Nath Monthband N15 2018 2036 615 3028 0.0 Rewit N14 Acritication Southbaund 2019 2738 4778 759 3035 0.6
Rewit N14 Acritication Southbaund 2019 2738 4778 759 3055 0.6 Between N14 Monthbaund Southbaund 1735 2015 2738 2135 0.6 Southbaund Bouthbaund Bouthbaund 1740 858 1603 2035 2596 259 0.6 0.6 South tormined and Southbaund Bouthbaund 813 1735 2686 253 2733 0.6 0 | Robd | | | 810 | 1782 | | 1059 | 3651 | 0.5 | 0.7 | | NA NA | 2006 | 24 1195 2981
23 2006 4379 | - | 2981 4040
4379 5544 | 2981 4040
4379 5544 |
| Terrinal Southbound 2049 2738 4778 759 6537 14 Revenial Southbound 2049 2735 2736 635 5395 0.5 Revenial Monthbound 725 2735 2736 635 3395 0.5 Revenial Southbound 725 1613 2866 553 3121 0.6 South command South compound 1255 1613 2866 553 3121 0.6 South command South commond 1255 1613 2866 553 3121 0.6 South command South commond 1430 868 213 1303 0.6 Mest of HSS Westexante 1140 1005 1345 253 1501 0.9 Mest of HSS Westexante 1400 1650 263 0.4 0.4
 | Terrinal Sourthound 2040 2738 4778 759 6537 Hall Between Ni 4 Morthboard 255 2135 2730 639 5537 Hall With training and
South training Southboard 725 2135 2760 639 5335 0.5 South training South training Tag 1255 1613 2868 253 3721 0.6 South training South training Easthoand 1740 868 253 2731 0.6 0.6 South of thermol Terminal 2038 253 2733 2731 0.6 0.6 South of thermol Easthoand 1140 868 2038 253 2731 0.6 0.6 Mest of H35 Westhoand 3165 1065 1345 2532 0.2 0.6 Mest of H55 Westhoand 860 253 2560 253 0.4 0.6 Mest of H55 Westhoand 820
 | Terrinal Sourthound 2040 2738 4778 759 6537 444 Reween Ni A Monthound 725 2335 2700 650 5537 444 Reween Ni A Monthound 725 2335 2760 650 5355 0.6 Reween Ni A Monthound 725 2335 2760 650 5353 0.6 South torminal and
Rest in Niss Monthound 1740 984 1523 1303 0.6 South of Terminal and
Rest in Niss Monthound 1740 984 1533 0.6 0.6 South of Terminal and
Rest in Niss Monthound 1740 983 1735 2753 1530 0.6 Rest in Niss Monthound 1740 983 1345 2753 1630 0.6 0.6 Mont of PG5 Monthound 1735 2560 273 2733 0.4 0.6 Mont of PG5 Mont of PG5 Monthound 0.7 0.6 0.6
 | Terrinal Sourthound 2040 2738 4778 759 5537 444 Belween Ni A Monthound 725 2135 2760 695 5537 446 Belween Ni A Monthound 725 2135 2760 695 2135 0.6 Belween Ni A Monthound 725 1613 2868 283 0.6 0.6 Bouthound Southound 1740 965 1343 212 1933 0.6 Bouthound 691 212 1343 213 213 0.6 0.6 Mast of MS5 Wrestbound 685 1343 273 1562 0.4 0.6 Mast of MS5 Wrestbound 680 2867 287 0.6 0.4 0.6 0.6 Mast of MS5 Wrestbound 0 2867 287 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
 | Terrinal Sourthound 2040 2738 4778 759 5577 444 Beween Ni Al
Northound Southbound 725 2738 4778 759 5576 495 Beween Ni Al
Northound Southbound 725 2735 2135 2769 693 5335 0.6 Bouthbound Southbound 1255 1613 212 1903 0.6 0.6 Bouthbound Southbound 1740 896 233 2291 0.6 0.6 Bouthbound Southbound 1740 896 233 2590 0.6 0.6 Mission Mission 1735 256 233 273 2810 0.6 0.6 Mission Featbound 610 1735 256 273 2733 0.6 0.6 Mission Featbound 610 212 273 2733 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 | Terrinal Sourthound 2010 2738 4778 759 5057 444 Bitween Ni Al Monthound 725 2738 4778 759 5057 495 0.57 496 Bitween Ni Al Monthound 725 2035 2769 1613 2026 0.6 49 0.6 49 0.6 49 0.6 49 0.6 49 0.6 49 0.6 49 0.6 49 0.6 40 40 0.6 40 40 0.6 0.6 40 40 0.6 40 | Terrinal Sourthound 2000 2730 4778 750 6537 444 Berrinal Sourthound 725 2335 7/00 605 5335 0.6 Berrinal Sourthound 725 2335 7/00 650 3335 0.6 Berrinal Southbound 725 2335 7/00 690 0.5 0.6 Bouthound Southbound 1740 968 1335 212 1303 0.6 0.6 Bouthound 1740 968 1335 1345 213 0.6 0.6 0.6 Bouthound 1740 968 1335 1345 0.6 | Terrinal
Between Nia Southbound 200 2738 4778 59 5557 418 Between Nia Monthbound 755 1013 2035 2739 0.0 0.0 Between Nia
Monthbound 755 1013 2036 2035 2739 0.0 0.0 Between Nia Monthbound 1555 1013 2036 253 3291 0.0 0.0 Bouth Infinitial Monthbound 1735 2630 253 1303 0.0 | | Between Maras | | 915 | 2078 | 0862 | 605 | 3628 | 0.0 | 0.4 | | | 124 | 1356 1351 3433 | 3433 | 3433 | 3433 |
| Deriveter N14 Acceptboland 725 2035 2760 635 3335 0.5 North minnal and
South bitminal
South bitminal
South of HSS Acceptboland 1255 1613 2868 253 3121 0.8 North minnal
South of HSS South bitminal
South of HSS More South of HS 212 1303 0.6 South of HSS Newsbound 1140 359 2036 272 1303 0.6 Routhon Terminal
Southout Terminal
Southout Terminal
Southout Section 1 341 1005 3345 253 5291 0.6
 | Between N14 MortPhological 725 2035 2760 636 3335 0.5 North Intrimed and
South Entrimed SouthCound 1255 1613 2868 253 3121 0.8 South Entrimed SouthCound 1255 1613 2868 253 3121 0.8 South Entrimed SouthCound 846 1691 212 1303 0.6 South Entrimed SouthCound 845 1533 212 1303 0.6 South Entrimed SouthCound 745 846 1533 212 1303 0.6 South Entrimed SouthCound 816 7655 13.35 253 2591 0.9 Mescal of FGS WorkBound 655 7650 753 253 0.4 533 0.4 Featbound 855 755 255 273 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0
 | Between N14 MortPhological 725 2035 2760 635 3335 0.5 0.5 North International
Auth International
South International
Bouldonn Termund
Fermional
Southonn Termund
Southonn d
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Southonned
Sou
 | Beriveren N14 MortPhotuned 725 2035 2760 635 3335 0.5 0.5 North Intermal and Number and South correlation 12555 1613 2868 253 3121 0.8 0.6 North Intermal and South correlation 12555 1613 2888 253 3121 0.8 0.6 North Intermal and South correlation 695 846 1343 212 13403 0.6 0.6 South of Terminal South correlation 695 7655 1343 253 2739 0.6
 | Beriveren NL4 Ascrethbound 725 2035 2760 633 3335 0.55 0.55 North terminal and
Month terminal and
South terminal and
South terminal (complexiting) 1255 1613 2866 253 3321 0.6 North terminal and
South of Net Monthound 1255 1613 2891 212 1903 0.6 North terminal
South of Net Monthound 1340 503 253 1533 0.6 0.6 Net of NS Monthound 1340 1735 2560 253 1533 0.6 0.6 Mest of NS Monthound 1735 2660 253 2775 0.6 0.6 Must of NS Monthound 1735 2660 253 2775 0.6 | Between N14 Morthbound 725 2035 2710 6335 2135 | Between Ni at the momental and south and the momental and south and the momental and south between Ni at the momental and south between 1255 735 735 735 735 735 735 735 735 735 7355 735 7355< | Between Nix Morthbound 725 2335 2700 633 3335 0.5 0.6 North Nummax Southbound 1255 1613 2868 233 3121 0.6 0.6 North Nummax Southbound 1255 1613 283 233 3121 0.6 0.6 North Nummax Morthbound 613 765 13.45 233 1500 0.6 0.6 Northbound 616 765 13.45 253 253 0.6 0.6 0.6 0.6
 0.6 | | Terminal | _ | 2040 | 2738 | 4778 | 759 | 6537 | | 0.5 | | - | 3020 | 3020 5758 | - | 5758 | 5758 |
| South terminal South between 1255 1613 2868 253 3121 0.8 South of W14 Monthound 1255 1613 282 213 3121 0.8 South of W14 Monthound 143 846 1691 212 1303 0.6 South emble of M14 Monthound 1140 895 2035 223 2291 0.6 West of M35 Monthound 1140 895 2035 223 7291 0.6 West of M35 Monthound 613 765 1420 223 0.4 0.4
 | South terminal South betweet 1255 1613 2868 253 3121 0.8 South tif Mit Monthound 1255 1613 2868 253 3121 0.8 South tif Mit Monthound 1140 846 1691 212 1303 0.6 South time Tennal 1140 895 2036 223 2291 0.6 Westion time 1140 895 765 13.45 229 0.6 Westion time 340 1005 13.45 223 2291 0.6 Westion time 655 765 1735 2560 273 0.4 Mestion time 855 755 273 213 0.6 1 East outrid 850 735 2660 253 213 0.4
 | South Unminet Sauthbound 1256 1013 2868 253 3121 0.6 South of N14 Morehound 1140 846 1691 212 1933 0.6 South of N14 Morehound 1140 895 1691 212 1933 0.6 South of N14 Morehound 1140 895 1036 1343 213 0.6 Westioned 815 746 1343 233 233 233 0.6 0.4 Mestioned 815 786 1345 233 233 233 0.6 0.4 Mestioned 815 786 786 213 213 0.6 0.4 Mestioned 615 786 786 213 213 0.6 0.4 Mestioned 615 786 213 213 213 0.6 0.4 Mestioned 61 0 610 0 0.4 0.6 0.6 0.6 0
 | South tormine Sauthbound 1256 1613 2866 233 3121 0.6 South tilt Minist Southbound 1140 846 1691 212 1933 0.6 South tilt Minist Moreflotund 1140 895 1013 212 1933 0.6 Workforund 815 765 1420 213 213 213 0.0 0.6 Workforund 815 765 1735 223 1637 0.4 0.4 Workforund 815 765 1735 259 273 0.4 0.4 Mori of R05 Existiound 815 756 2507 213 2735 0.4 Mori of R05 Existiound 825 756 3607 253 0.6 0.6 Mori of R05 Werelound 0 635 535 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0
 | South Naminet Sauthbound 1256 1013 2006 213 3121 0.6 South Of Wird Routhbound F15 846 1691 212 1303 0.6 South of Wird Moreflocund 815 846 191 212 1303 0.6 Rest of Miss Wordsound 815 765 1345 253 1591 0.6 Merid Miss Wordsound 815 7135 2569 253 1538 0.6 Merid of Mos Eatbound 816 1735 2569 253 0.7 0.6 Merid of Mos Eatbound 0 605 556 213 273 0.6 0.6 Merid of Mos 860 1735 2569 273 273 0.6 0.6 Merid of Mos 860 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | South torminet Sauthbound 1256 1013 2006 213 3121 0.6 South of N14 Morefricund F15 846 1691 212 1303 0.6 South of N14 Morefricund F15 846 191 212 1303 0.6 Rest of H55 Worksound 815 755 1430 273 1530 0.4 Mest of H55 Worksound 815 7135 2560 213 213 0.6 0.4 Mest of H55 Worksound 815 7135 2560 213 0.7 0.6 0.4 Mest of H55 Worksound 615 256 256 257 0.7 0.6 0.6 Mest of H55 Worksound 0 0 0 0.6 < | South Unimite Sauthbound 1256 1013 2006 1721 0.6 0.6 South of NT4 Morefbound F140 655 1613 212 1933 0.6 South of NT4 Morefbound F136 846 1735 212 1933 0.6 Mest of HS5 Workfbound 655 756 1345 253 2591 0.2 Mest of HS5 Workfbound 655 755 1460 253 253 0.6 0.6 Mest of HS5 Workfbound 655 256 256 257 0.7 0.6 0.6 Mest of HS5 Workfbound 0 | South Unimite Sauthbound 1256 1013 2866 233 3121 0.6 South Unimite Southbound F13 846 1611 212 1933 0.6 South of NTA
Monthbound F13 846 1611 212 1933 0.6 South of NTA Monthbound E65 746 1735 253 253 2591 0.6 Mest of HSS Worthbound E65 765 1440 7005 253 0.6 0.6 Mest of HSS Worthbound E65 2560 256 256 257 0.7 0.6 Mest of HSS Westbound 0 | | Between N14
North terminal an | Morthbound | 522 | 2035 | 2760 | 635 | 3395 | 0.5 | 40 | | - | 1073 | 3109 3108 10/3 3108 | 4 | 3109 | 3108 3743 |
| South of N14 NorePEQUINS EH5 846 1691 212 1903 0.6
Boulheon Terminal SourpEcound 1140 898 2038 253 291 0.6
Mest of HS5 WestBound 340 1005 1345 253 1590 0.2
Mest of HS5 Exhibitune 655 765 1420 212 1638 0.4 | South of Nr4 NorePlanund EHS 846 1681 212 1903 0.6 Boulh on Terminal
South confround 1140 848 2038 253 1291 0.6 Mest of HS5 WestBound 1140 1905 1345 253 1591 0.6 Mest of HS5 WestBound 340 1005 1345 253 1591 0.6 Mest of HS5 WestBound 340 1005 1345 253 0.4 0.4 Mest of HS5 WestBound 855 765 1420 2172 1632 0.4 East of HS5 WestBound 855 765 1735 2560 757 0.4 | South of N14 NorePlactured 615 846 1691 212 1903 0.6 Boulhorn Terminal
Boulhorn Terminal
Boulhorn Terminal
Mest of HSS WestBound 1140 935 2036 223 1591 0.6 0.6 Rest of HSS WestBound 310 7055 1345 223 1530 0.6 0.6 Mest of HSS WestBound 655 7655 1345 2591 0.2 0.4 Mest of HSS WestBound 655 7655 1345 2590 2573 0.4 0.4 Mest of HSS WestBound 0 560 250 2573 0.4 0.0 <td>South of M14 NewelBound F15 846 T631 212 1903 0.6 Boulhon Terminal
Boulhound Example
Train 349 765 345 233 233 233 0.6 0.6 WestBound 1140 865 7345 233 233 1530 0.6 WestBound 863 765 1345 233 1537 0.6 0.4 MestBound 863 765 1735 2560 2775 0.4 0.4 Mut of P05 MestBound 0 635 566 2775 2775 0.4 Mut of P05 MestBound 0 635 566 2775 2775 0.0 0 Mut of P05 MestBound 0 566 2775 2775 0.0 0 Mut of P05 Exambound 0 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>South of M14 New Place First Normany First Normany</td> <td>South of N14 Nonefficients 615 646 1631 212 1303 0.6 0.6 Boulhoun Terminal Southcound 1140 393 233 233 233 0.0 0.6 0.6 Mest for N5 WestBound 1140 393 233 1530 0.6 0.6 Mest for N5 WestBound 653 755 14.00 273 0.6 0.4 Mest found 653 755 1345 2733 0.6 0.4 Mest found 653 755 2560 253 0.6 0.6 0 Mest found 0 633 535 0.6 755 0.0 0.0 0 Mest found 0 0 0 0 0 0 0.0</td> <td>South of N14 Noreflocurid 615 646 763 712 1003 0.6 Boulhorn Terminal
Boulhorn Terminal
Boulhorn Terminal
Boulhorn Terminal
Boulhound WestBound 1140 955 1345 213 1500 0.6 0.6 Rest for HSS WestBound 655 755 1345 2550 2573 0.63 0.6 Mest for MSS WestBound 650 7355 2550 2573 0.63 0.6 Mest for MSS WestBound 653 7355 2550 2573 0.6 0.0 Mest for MSS WestBound 0 635 555 213 2773 0.0 0.0 Mest for MSS WestBound 0 635 555 213 2773 0.0 0.0 Mest for MSS WestBound 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>South of M14 NewFiberund F15 Net Early 212 1900 0.6 0.6 Month Terminal
Bourbound Earlbound 1140 959 2036 223 12910 0.6 0.6 WestBound F10 959 755 1345 223 1500 0.4 0.6 WestBound E60 7051 2560 273 2567 253 0.0 0.4 0.2 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6</td> <td></td> <td>South berning!</td> <td>Southbound</td> <td>1255</td> <td>1613</td> <td>2868</td> <td>253</td> <td>3121</td> <td>0.8</td> <td>02</td> <td></td> <td>2.1</td> <td>3.1 1858</td> <td>10.0 1858 3471</td> <td>- 25</td> <td>Lan</td> <td>Lan</td> | South of M14 NewelBound F15 846 T631 212 1903 0.6 Boulhon Terminal
Boulhound Example
Train 349 765 345 233 233 233 0.6 0.6 WestBound 1140 865 7345 233 233 1530 0.6 WestBound 863 765 1345 233 1537 0.6 0.4 MestBound 863 765 1735 2560 2775 0.4 0.4 Mut of P05 MestBound 0 635 566 2775 2775 0.4 Mut of P05 MestBound 0 635 566 2775 2775 0.0 0 Mut of P05 MestBound 0 566 2775 2775 0.0 0 Mut of P05 Exambound 0 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | South of M14 New Place First Normany | South of N14 Nonefficients 615 646 1631 212 1303 0.6 0.6 Boulhoun Terminal Southcound 1140 393 233 233 233 0.0 0.6 0.6 Mest for N5 WestBound 1140 393 233 1530 0.6 0.6 Mest for N5 WestBound 653 755 14.00 273 0.6 0.4 Mest found 653 755 1345 2733 0.6 0.4 Mest found 653 755 2560 253 0.6 0.6 0 Mest found 0 633 535 0.6 755 0.0 0.0 0 Mest found 0 0 0 0 0 0 0.0 | South of N14 Noreflocurid 615 646 763 712 1003 0.6 Boulhorn Terminal
Boulhorn Terminal
Boulhorn Terminal
Boulhorn Terminal
Boulhound WestBound 1140 955 1345 213 1500 0.6 0.6 Rest for HSS WestBound 655 755 1345 2550 2573 0.63 0.6 Mest for MSS WestBound 650 7355 2550 2573 0.63 0.6 Mest for MSS WestBound 653 7355 2550 2573 0.6 0.0 Mest for MSS WestBound 0 635 555 213 2773 0.0 0.0 Mest for MSS WestBound 0 635 555 213 2773 0.0 0.0 Mest for MSS WestBound 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | South of M14 NewFiberund F15 Net Early 212 1900 0.6 0.6 Month Terminal
Bourbound Earlbound 1140 959 2036 223 12910 0.6 0.6 WestBound F10 959 755 1345 223 1500 0.4 0.6 WestBound E60 7051 2560 273 2567 253 0.0 0.4 0.2 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 | | South berning! | Southbound | 1255 | 1613 | 2868 | 253 | 3121 | 0.8 | 02 | | 2.1 | 3.1 1858 | 10.0 1858 3471 | - 25 | Lan | Lan |
| West of HSS WestBound J4D 1005 1345 253 5590 0.2
Eavidedund 653 765 1420 212 1638 0.4
 | West of PISs WestBound 340 1005 1345 253 1500 0.2 Mest of PISs Eastlound 655 765 1345 253 1530 0.4 East of PISs Eastlound 655 765 1345 212 1632 0.4 East of PISs Worthmore 855 1735 2560 253 2613 0.6 Eastbound 550 2567 213 213 0.6 0.4
 | West of HSS WestBound J4D Nos T3AS 253 1500 0.2 Exat of HSS Exationnal 653 765 13AS 253 1632 0.4 Exat of HSS WrotBound 653 765 1735 2560 253 0.4 Exat of HSS WrotBound 855 1735 2560 253 0.4 0.4 Exat of HSS WrotBound 0 560 2567 213 2775 0.4 0.4 Krust of R95 WrestBound 0 535 545 0 555 0.0 0 0.4 0.4 Statiound 0 535 535 0 555 0.0
 | Meet of HSS WestBound 340 1005 1345 253 1530 0.2 Bail of HSS Exelbound 655 765 1345 259 1537 0.4 Bail of HSS WestBound 655 765 1345 259 259 0.4 Bail of HSS WestBound 855 1735 2560 257 213 0.6 Bail of HSS WestBound 0 560 207 2567 213 2773 0.4 WestBound 0 605 635 535 0 605 0.0 0 Stationed 0 635 535 0
 | West of HSS WestBound HD 1005 13.45 4.50 2.53 15.90 0.24 0.24 Ball of FSS WestBound 655 755 14.50 273 15.90 0.2 0.4 0.4 Ball of FSS WestBound 655 755 14.50 253 2613 0.4 | West of HSS WestBound 340 Nos 73.5 4.40 21.3 25.3 15.00 0.4 0.4 East of RSS WestBound 63 765 1735 2490 273 0.4 0.4 East of RSS WestBound 63 755 1735 2490 273 0.4 0.4 Most of RSS WestBound 60 250 260 260 260 0.0 0.4 0.4 Worlbound 0 540 273 273 0.1 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 | Mest of HSS Wrethound 340 100 1345 253 1530 0.4 East of HSS Evaluantiatie 653 765 1345 253 1538 0.4 East of HSS Wrethound 653 755 1735 2595 2573 0.4 East of HSS Wrethound 650 2505 2567 213 2135 0.4 East of HSS Wrethound 0 560 550 255 0.7 0.4 East of HSS Wrethound 0 535 535 0 550 0.0 0 East out of 0 235 235 0 235 0 | Mest of HSS WretBound 340 100 1345 253 1530 0.4 East of HSS WretBound 65 765 765 7345 213 213 0 0 0 0
0 0 <td></td> <td>South of N14
Southern Termin</td> <td>purported in Southbound</td> <td>615</td> <td>846
838</td> <td>1691</td> <td>212</td> <td>1903</td> <td>0.6</td> <td>0.0</td> <td></td> <td>12</td> <td>1.5 1251</td> <td>H</td> <td>1251</td> <td>1251 2097
1487 2484</td> <td>1251 2037 2308
1487 2486 2838</td> | | South of N14
Southern Termin | purported in Southbound | 615 | 846
838 | 1691 | 212 | 1903 | 0.6 | 0.0 | | 12 | 1.5 1251 | H | 1251 | 1251 2097
1487 2484 | 1251 2037 2308
1487 2486 2838 |
|
 | East of PGS Westhermed #29 1735 2569 750 213 206 06 54 04 04 04 04 04 04 04 04 04 04 04 04 04
 | Late (FISS Westherind R25 1735 2560 750 2113 06 Westherind 560 2007 2560 753 2133 2733 04 Westherind 560 2007 2569 753 213 2733 04 Westherind 60 595 586 61 20 60 10 Westherind 0 635 535 0 0 60 10 10 Sast of PISS Westherind 0 535 535 0 60 10
 | Lat of Fiss Weetheund #25 1735 2560 750 2113 06 Mest of P65 Extbound 560 2007 2660 753 2733 04 Mest of P65 Extbound 0 560 266 260 2733 04 Mest of P65 Extbound 0 580 515 0 503 0.0 Ext bound 0 695 515 0 0 50 0.0 Ext bound 0 595 515 0 20 50 0.0 0 Ext bound 0 20 215 20 0 20 0.0
 | Lat of PGS Weetheund R25 1735 2560 753 2113 06 1 West for MSS Featbound 510 2007 2650 253 013 06 1 West for MSS Featbound 0 560 535 0 <td< td=""><td>Lat of PGS Workhmund R25 1735 2560 753 2113 05 014 Mari of PGS Excitobund 510 2007 2667 213 2735 0.4 0 Mari of PGS Excitobund 0 560 535 0 0 0 0 Mari of PGS Excitobund 0 580 505 0</td><td>Lat of Fiss Westhaund R25 1735 2560 257 2673 04 0 Westhaund 560 2007 2867 213 2733 04 0 Westhaund 560 605 2867 213 2733 04 0 Westhaund 0 605 535 535 0</td><td>Lat of Fiss Westhaund R25 1735 2560 753 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 2733 0 0 1 Westbound Exatioand 0 605 535 0 0 64 0<!--</td--><td></td><td>West of RS5</td><td>Westcound</td><td>340</td><td>1005</td><td>100</td><td>253</td><td>1598</td><td>0.4</td><td>0.2</td><td></td><td>11</td><td>+</td><td>503</td><td>500 1508
970 1735</td><td>500 1508
970 1735</td><td>500 1508 1761 0.3
920 1235 1946 0.5</td></td></td<> | Lat of PGS Workhmund R25 1735 2560 753 2113 05 014 Mari of PGS Excitobund 510 2007 2667 213 2735 0.4 0 Mari of PGS Excitobund 0 560 535 0 0 0 0 Mari of PGS Excitobund 0 580 505 0 | Lat of Fiss Westhaund R25 1735 2560 257 2673 04 0 Westhaund 560 2007 2867 213 2733 04 0 Westhaund 560 605 2867 213 2733 04 0 Westhaund 0 605 535 535 0 | Lat of Fiss Westhaund R25 1735 2560 753 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 2733 0 0 1
Westbound Exatioand 0 605 535 0 0 64 0 </td <td></td> <td>West of RS5</td> <td>Westcound</td> <td>340</td> <td>1005</td> <td>100</td> <td>253</td> <td>1598</td> <td>0.4</td> <td>0.2</td> <td></td> <td>11</td> <td>+</td> <td>503</td> <td>500 1508
970 1735</td> <td>500 1508
970 1735</td> <td>500 1508 1761 0.3
920 1235 1946 0.5</td> | | West of RS5 | Westcound | 340 | 1005 | 100 | 253 | 1598 | 0.4 | 0.2 | | 11 | + | 503 | 500 1508
970 1735 | 500 1508
970 1735 | 500 1508 1761 0.3
920 1235 1946 0.5 |
| West of POS Twestbound 0 560 560 0 560 0 560 0 60
 |
 | Betwenn PWV9 Westbound 0 0 0 0 00 wed RSS Eastpound 0 0 0 0 1694 1694 0.0 Fast RSS Eastpound 0
 | Between PWV9 WestPoint 0 0 0 2023 2023 0 0 well R5S Exalibration 0 0 0 0 0 1694 1294 0.0 Fast of R5S WestPoint 0 0 0 0 535 635 0.0 Fast of R5S WestPoint 0 0 0 0 756 759 0.0 Defension 0 <
 | Between PNV9 Westbound 0 0 0 2023 2023 0 0 weld H55 Westbound 0 0 0 0 1664 100 1 frast H55 Westbound 0 0 0 0 555 9.9 9.0 frast of H55 Westbound 0 0 0 1664 0.0 1 Mean vs. and Monthound 0 0 0 1663 100 1 Mean vs. and Monthound 0 0 0 1663 100 1 Mean vs. and Monthound 0 0 0 0 0 0 1 Southerund 0 0 0 0 0 0 0 1 0 1 Southerund 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>Between PNV9 WestBound 0 0 0 2023 2023 0 0 weat fess EastBound 0 0 0 0 1684 1684 0 0 Fast of Riss WestBound 0 0 0 753 635 0 0 Fast of Riss WestBound 0 0 0 753 635 0 0 Determent Kits and Munthbound 0 0 0 1664 10.0 1664 0.0 0</td><td>Between PNV9 Westbound 0 0 0 0 2023 2023 0 0 weat field Eastbound 0 0 0 0 1664 1664 0.0 Fast PNV9 Eastbound 0 0 0 535 555 0.0 Fast PNV9 Eastbound 0 0 0 759 759 0.0 Perment NS2 and NMA Monthound 0 0 0 759 1694 0.0 Mile Monthound 0 0 0 1694 0.0 0 Mile Monthound 0 0 0 1593 100 0 Mile Monthound 0</td><td>Between PVV9 Westbound 0 0 0 0 2023 2023 0 0 weat fields Eastbound 0 0 0 0 1664 1664 0.0 Fast PVV3 Eastbound 0 0 0 53 55 0.0 Fast PVV3 Eastbound 0 0 0 759 759 0.0 Pointbound 0 0 0 0 9 95 1694 0.0 Mist Diversion 0 0 0 0 1559 100 Mist Diversion 0 0 0 0 0 0 0 0 Mist Diversion 0</td><td>Marais</td><td>East of ASS</td><td>Westbound</td><td>00</td><td>20
25</td><td>20
25</td><td>0 0</td><td>88</td><td>0.0</td><td>00</td><td></td><td>0.0</td><td>0 00</td><td>-</td><td>0</td><td>0 20</td><td>0 20 20 20 20 20 20 20 20 20 20 20 20 20</td></t<> | Between PNV9 WestBound 0 0 0 2023 2023 0 0 weat fess EastBound 0 0 0 0 1684 1684 0 0 Fast of Riss WestBound 0 0 0 753 635 0 0 Fast of Riss WestBound 0 0 0 753 635 0 0 Determent Kits and Munthbound 0 0 0 1664 10.0 1664 0.0 | Between PNV9 Westbound 0 0 0 0 2023 2023 0 0 weat field Eastbound 0 0 0 0 1664 1664 0.0 Fast PNV9 Eastbound 0 0 0 535 555 0.0 Fast PNV9 Eastbound 0 0 0 759 759 0.0 Perment NS2 and NMA Monthound 0 0 0 759 1694 0.0 Mile Monthound 0 0 0 1694 0.0 0 Mile Monthound 0 0 0 1593 100 0 Mile Monthound 0 | Between PVV9 Westbound 0 0 0 0 2023 2023 0 0 weat fields Eastbound 0 0 0 0 1664 1664 0.0 Fast PVV3
Eastbound 0 0 0 53 55 0.0 Fast PVV3 Eastbound 0 0 0 759 759 0.0 Pointbound 0 0 0 0 9 95 1694 0.0 Mist Diversion 0 0 0 0 1559 100 Mist Diversion 0 0 0 0 0 0 0 0 Mist Diversion 0 | Marais | East of ASS | Westbound | 00 | 20
25 | 20
25 | 0 0 | 88 | 0.0 | 00 | | 0.0 | 0 00 | - | 0 | 0 20 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| West of PGS West of PGS West of PGS West of PGS 0 560 0 560 0 560
 | East of HSS Washbaund 0 20 20 0 20 00 00 00 East of HSS Washbaund 0 25 25 0 25 0.0
 | Eastart R55 Westbound 0 0 0 0 535 635 0.0 1 Eastantind 0 0 0 759 739 0.0
 | Fast of R55 Westbound 0 0 635 635 0.0 East of R55 Eastbound 0 0 0 759 759 0.0 Denseon K52 and Monthound 0 0 0 0 1564 0.0 Denseon K52 and Monthound 0 0 0 0 1694 0 M14 Eosthonue 0 0 0 0 2023 0.0
 | Fast of RIS Westbound 0 0 635 635 0.0 Rest of RIS Examinund 0 0 0 759 759 0.0 Denseon NS2 and Monthound 0 0 0 0 1564 90 Denseon NS2 and Monthound 0 0 0 0 1694 00 NMA Southound 0 0 0 0 00 0 South of NM Montboard 0 0 0 1059 00 South of NM Montboard 0 0 0 1265 0.0 | Fast of Ris5 WestBound 0 0 533 635 645 0.0 RestBound 0 0 0 0 559 759 0.0 0 NM Exambound 0 0 0 1694 0.0 | Fast of RIS5 WestBound 0 0 533 635 645 0.0 Defineren KC2 and Munthound 0 0 0 0 759 759 0.0 0 Defineren KC2 and Munthound 0 0 0 0 1559 100 NM Munthound 0 0 0 0 0 0 0 South of N14 Nombound 0 0 0 1550 100 0 West of PWV3 Neetbound 2 0 | Fast of RIS5 WestBound 0 0 0 533 635 0.0 0 Defension KC3 and Muntheund 0 0 0 0 759 759 0.0 0 NM Examinued
 0 0 0 0 1694 00 | | Between PWV9
and RSS | | 00 | 0 | 0.0 | 1691 | 2023 | 0.0 | | | 13 | 1.3 0 1.1 | - | 00 | 00 | 6202 0 0 |
| West of PGS West of PGS West of PGS West of PGS 0 560 0 560 0 560 | East of HSS Weighburned 0 20 20 20 0 20 0 <td></td> <td>Definition D 0 0 1694 1694 00 NM4 Southbound 0 0 0 0 2023 0.0</td> <td>Deriveron XC2 Different XC2 Differee XC2 Different XC2 Differen</td> <td>Denseron NS2 and Monthbound D 0 0 1694 1694 0 0 1694 100 0 0 0 1694 0 0 0 1694 100 0<</td> <td>Deriveron KS2 and
Mixed Deriveron KS2 and
Soundbound D 0 1654 1654 0 0 Mixed Soundbound 0 0 0 0 1654 00 0 Soundbound 0 0 0 0 1059 1059 0 0 Soundbound 0 0 0 0 1365 1059 0 0 West of PWV9 Meethound 255 725 1150 756 1265 0</td> <td>Deriveron KS2 and Montheuroid D 0 1694 1694 0 0 Mila Soundbauroid 0 0 0 0 1694 00 0 Model Soundbauroid 0 0 0 0 1069 1285 00 0 Model Fill Nonthbound 0 0 0 11069 1285 0 0 West of PWV9 Mesthound 255 725 1150 759 1269 0 2 2 2 1 1 1 1 0 0 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2</td> <td>2</td> <td>East of R55</td> <td>Westbound
Eastbound</td> <td>00</td> <td>00</td> <td>0</td> <td>535
754</td> <td>635
789</td> <td>00</td> <td>0.4</td> <td></td> <td>0.4</td> <td>0.4 0 0</td> <td></td> <td>00</td> <td>00</td> <td>0 0 515</td> | | Definition D 0 0 1694 1694 00 NM4 Southbound 0 0 0 0 2023 0.0 | Deriveron XC2 Different XC2 Differee XC2 Different XC2 Differen | Denseron NS2 and Monthbound D 0 0 1694 1694 0 0 1694 100 0 0 0 1694 0 0 0 1694 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0< | Deriveron KS2 and
Mixed Deriveron KS2 and
Soundbound D 0 1654 1654 0 0 Mixed Soundbound 0 0 0 0 1654 00 0 Soundbound 0 0 0 0 1059 1059 0 0 Soundbound 0 0 0 0 1365 1059 0 0 West of PWV9 Meethound 255 725 1150 756 1265 0 | Deriveron KS2 and Montheuroid D 0 1694 1694 0 0 Mila Soundbauroid 0 0 0 0 1694 00 0 Model Soundbauroid 0 0 0 0 1069 1285 00 0 Model Fill Nonthbound 0 0 0 11069 1285 0 0 West of PWV9 Mesthound 255 725 1150 759 1269 0 2 2 2 1 1 1 1 0 0 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 | 2 | East of R55 | Westbound
Eastbound | 00 | 00 | 0 | 535
754 | 635
789 | 00 | 0.4 | | 0.4 | 0.4 0 0 | | 00 | 00 | 0 0 515 |

2	Section		Elachground Traffic (vhp)	Rights (vph)	Background Traffic + Latent Fights (vph)	ni Tratlic (vph)	Higher Background ni Treffic Treffic Latent generation Treffic (Yehl) Response (Yehl) Treffic (Yehl) Rights + Beckground Latent Rights (Treffic Vehl) Treffic (Yehl)	Required for Beckpround Traffic	Required for Development Traffic	Required for Required to: 2009 Backgrout Development Traffice + Latent Traffic () Rights + Development Traffic	12	2019 Background Traffic + Latent Righe (vph)	2015 Background Traffic + Latert Rights + Development Traffic (vph)	22 6	t of Lanta quarted for 2019 ckground Traffic	No of Lannes Edisting No. of Lannes Regurand far no. of Regurand for 2019 Janues 2019 Trainfo Background Latent Rights + Traffic Development Traffic
	Between Wenda and P38-1	Southbound	1160	9670	2830	177 200	222	08	03	1.5	1111	3387 2064	2570		0.8	20
	Bethecen Wiorda and Pople	Southbound	950	2320 1385	895	547 1012	A117 3007	0.6	0.7		1405	3725 2209	4573 3300	0.0		9 10 10 10 10 10 10 10 10 10 10 10 10 10
	Between Poole and Lochner	Montheound. Southtound	529	4105	9630	635 759	5865 4209	0.4 0.5	05	1	777	2885	5112 2123	9.0		20
3	Belween Lectiner Montheound and KS2 Sputteound	Sorthound Sputthound	580 480	4105	2445	1770	6455 4927	9.4	10		656 733	4964	673H	90		20
K71 (P55)	Behacen HS2 and Monthbound Rumee Southbound	d Northbound Stuffbound	550	2430	205	1265	5125 4054	0.4	0.7		118	4124	5369 4325	0.5		20
Vaartuskker Road	Between Ruimte and Marzis	Northbound Southbound	956	2950	3945 2850	1265	0520 0000	0.6	0.7	1	1473	4427	56A7 AX20	0.0		202
1	Between Marais	Nurphound	1415	3440	4855	108	5614		05		3962	3535	6295			2.0
02	Terminal	Southcond	505	2405	3010	635	SMC	9.6	D.4	100	0961	3745	4360	6.0		2.0
	Between N14	Northbound	1120	2760	3880	159	4039	20	0.5	Contraction of the	1650	4116	5177	「「「「「「		2.0
	South terminal	Souppound	570	tife	2220	212	2022	0.6	10	16	1288	2636	2850	60		20
	South of N14	Northbound	564	1006	1730	253	1903	0.5	02	01	1073	2076	221	6.7		2.0
		Southboard	1085	0211	2002	312	2417	87	0.1	16	1006	2726	1022			2.0
	West of FISS	Westbound Eastbound	569	1660	2250	212 253	2462	0.4	0.1	1.1	873	2503	2745	0.6		10
(NO4) P102-	MUMIE MOAD East of PISS	Westbound Eastbound	655 875	2370	3025 2965	212 253	237 8125	0.6	9.1	10	970 1285	3340	1988	90		10
	Between PWV9 and RSS	Westbound	0.9	00	0.0	2023	1694	00		11	00	80	1694 2023	000	1.1.9	10
X	East of RSS	Westburd	0.0	00	00	1962	7199	0.0	0.4	04	0.0	50	759 835	00	LL I	0.0
	West of R55	Mutheound Soothfeaund	00	910 008	005	1691	2520 2524	00	No. of the local division of the local divis	20	00	910 830	1930 1720	00		00
Marais	East of RSS	heritzeund	0.0	35	88	1265	4004 NGM	0.0	0.7	0.7	0.0	8 SF	1305	00		0.0
	Batwoon KS2 and Northbound K14. Southbound	a Northbound Southbound	0.0	0 10		2023	2023	0.0	24	1.1	00	00	1500 MB1	000		00
enna	South of N14	Northboard	0.0	99	00	1255	1265	00	06	Q.E 0.7	00	00	1265	00		00
	West of PWV9	Westound	810	350	1160	635	1795	50	0.4	12	1959	1549	2184	6.8		2.0
		Eastbound	470	\$	1345	159	2124	10	0.0	14	969	1651	2345	85		2.0
Nta	Belween PWVB and RISS	Westboord Earlbourd	610	969	1160	0.0	1961 1365	00	0.0	09	1155	6651 1651	1549	05		20
	East of PSS	Wethpurd	306	4515	2500	905	3006	0.7	6.9	10 - 10	1426	5373	3479			2.0
		Eastheard	670	1155.	1825	22	248	R.e	50	13	266	2147	2570	2.7		2.0
Wierda	East of P55	Westbourst	665	1164	1232	506 #23	1572 1572	05	500	15	1014	1621 2155	208	07	1.1.1	2.0

No.	Road Sector Direction and 2009 L Land Background Recontenentia Tradits (Wh)	Direction and Lane Roquinements	Electoround Traditic (vhp)	Rights (vph)	2009 Background Traffic + Letent Rights (vph)	Traffic (vph)	American American	Required for Beckground Traffic	Required for Development	Autor 2009 Autor 2009 Autor - Lanon Alghts - siopment Traffic	ckground Mie (vhp)	Background Traffic + Latent Right	2019 Background Traffic + Latent Rights + Development Traffic (vph)	Nr. of Lanes Required for 2019 Background Traffic		No. of Lanes Required for 2019 Traffic - Latent flights - Development
	Between Wrends and P39-1	Nechbound Southbound	935 970	1534	1752	505	2258 2926	9.6	60	2.0	1384	2201	2707 3393	6.9	20	2.3
	Betwoon Wienda and Poole	Northfound Southbound	945 585	1402	1002	1012 547	2946	100	0.7 0.6	20	866 1243	2268	3279 4557	0.6	2.0	3.0
	Between Poole and Loothner	Nethbound Southbound	520	2466	3774	759	3795	0.4	0.6	26	944	3310	4721	0.6	20	22
	Between Lochner Nambbound and KS2 Southbound	Nerthbound	245	2456	3011	1482	6609	0.5	10	3.0	69201.	2019	a765 5963	0.5 0.7	202	22
	Boween KS2 and Northbound Ruimte Southbound	Northbound Southbound	645	2020	2665	1059	366 2 5225	04	6.0	2.5	898 803	2815	4035	96	20	25
K71 (R55) Vootneiden	Beharen Ruimie	Monthbound	018	1782	2652	525	1220	0.5	0.4	23	4611	2901	3616	0.8	2.0	12
	2001004 0000	Southtound	1355	2374	3729	108	4007		6.0	3.0	2006	4379	6616	13	2.0	34
	Between Marais	Northbound	315	2078	2933	505	3628	9.0	0.4	42	1354	2433	4069	60	2.0	2.0
	Terminul Net North	Sauthound	2040	3736	4778	759	5507	14	05	11	9000	8528	6516	24	2.9	4
	Between N14 Nocth torrefuel soci	Northbound	725	2005	2760	484	3085	50	0.4	11	1073	3106	5743	1.0	2.0	57
	South terminal	Southbound	1255	1613	2868	1617	985#	8.0	1:0	2.9	1856	3471	\$963	12	2.0	33
	South of N14	Nenteeund	582	848	1691	1270	2961	9.0	0.8	2.0	1251	1602	3367	0.8	20	22
		Sudhtrund	1140	858	3002	1017	3665	0.8	1.0	2.4	1687	2505	4103	11	2.0	2.1
	Nex of P55	Westbund Eastound	94 55	1005	0211	212	1508	0.2	01	1	503	1208	1761	03 D6	1.0	13
(MS4) P102-1	East of R55	Westbound	825 560	1735	2567	212	2771	04	0.1	19	1221 225	2956	3183	06	1.0	32
	Between PWV9 and PS5	Mastered	00	00	0.0	2023 1634	2002 1691	00	1	21	00	0.0	2023	00	0.0	19
KS	East of JSS	Westbaund Earthound		00	0	459 454	635 758	00	0.5	0.5	00	00	635 756	00	0.0	8.6
	West of HSS	Westound		360 635	360 635	66	66D 635	00	0.0	0.4	0.0	560	560	00	0.0	0.4
Manus	East of RS5	Westbound Eastbound	00	2 2	88	0.0	88	00	0.0	00		20 25	22 52	00	10	00
	Between KS2 and N14	Nurtheund Southbound	• •	0	0.0	1694	1694 2023	00	13	1.1	00	• •	1694 2023	00	0.0	38
PWV9	South of NTA	Northbound	00	8 8	00	60	00	00	000	00	66	0 0	00	00	0.0	00
	West of PWV9	Westround	23	125	1150	151	1905	03	65	13	629	HSEL	C112	0.4	0.0	14
		Eastbound	265	735	100	929	1625	02	0.4	20	392	121	1762	0.1	9 Q	2
NIA	Batween PWV9 and RS5	Westbound Eastbound	475 266	725	1150	1050	2209 2265	03	69 68	5 22	225 235	1951 (311	2412	04	00	8.9
	East of R55	Westhouns.	576	265/	1305	523	1720	0.4	0.0	12	101	1991	2000	90	20	2
		Eastbound	1015	1415	2022	2005	9502	0.7	0.0	20	1922	1162	100	10	20	-
and the second	East of RSS	Westound	202	EVOL 1073	1785	E285	1961	50	0.5	22	1691	2124	1951	0.5	9.0	1.2

		Lana Lana Requirements	Beckground Traffic (whp)		Beckground Traffic + Latent Rights (vph)	Traffic (vph)	Rights Beckground Traffic (vph) Beckground Required for Required for Recipient (vph) Traffic (vph) Beckground Required for Recipient (vph) Traffic (vph) Beckground Required for Traffic (vph) Traffic (vph) Traffic Development (vph) Traffic Traffic Development (vph)	Required for Background Traffic	Required for Development Traffic	paired for 2009 Mile + Latent Rights +		2019 Background Traffic + Latest Righs (vph)	2019 Background Traffic + Later Rights + Development Traffic (vph)	Nr. of Lanes Required for 2019 Eackground Traffic		
	Between Wooda and P39-1	Nonhbound	796	1670	2830	423 506	3254 2188	0.8	0.3	15	2623	2387	3815	11	2.0	
	Betwoen Witeda and Poole	Nembound	619	2320	3270 1985	847 1012	4117 3007	0.6	0.7	27	1406	3726	4573	0.9	2.0	
	Botween Poole and Loctree	Nonbourd	525 500	4105	4630	635	5265.	04	0.5	35	740	4862	5517 4449	05	2.0	
	Between Lochten Northbund and KS2 Southbound	Nerthbund Southbund	580	\$105	4665	2810	6455	0.0	1.2	53	668	4964	6734 6160	05	20	
	Between XS2 and Monthhound Ruemte Southhound	Northtound Southbound	165 165	3310	360	1265	5125 4054	04	0.8	34	814 836	4124	9369	50	20	
KZ1 (NGS) Vicativeitien Rand	Beween Rumte and Marais	Northbound	882 870	0000	2945	759	101.	07	0.5	10	1473	8528	5192	03	20	
	Between Marate	Monthbound	1415	2440	4855	159	2814	6.6	0.6	12	2095	5535	6233	14	20	
	and N14 Neth Terminal	Southbound	305	2405	2010	630	2045	0.0	0.4	24	0961	3745	4390	6.0	02	
	Boween M14	Monthbound	02(1	2/10	0980	159	4639	0,7	6.5	11	9636	4119	2112	- Wheel	2.0	
	South terminal and	Southbound	870	1350	2220	1270	2490	9.6	0.8	2	1288	2538	3908	60	20	
	South of M14	Marthbound	725	1005	1730	1517	3247	5'0	10	2	1073	2078	3596	0.7	20	
	Southern Lemma	Southfound	1065	1120	2200	1270	3475	0.7	6.9	11	1606	2726	3660	11	2.0	
	West of FISS	Westbound Eastbound	590	1000	2250	212	2452	04	0.2	1,6	010	0121	2745	00	1.0	
(M34) P102-1	East of 1655	Westbound	955	2370	3025	212	3278	90	20	22	970	3363	3592	90 90	1.0	
	Between PWV9 and R00	Westburd	00	00	0.0	1694 2023	1694 2023	0.0	11	11	0 0	00	1694 2023	00	00	
252	East of HSh	Westbound	00	00	00	736 005	119	0.0	0.5	0.5	0 0	00	758 535	00	00	
	West of PSS	Westound	0.0	910	910	00	910 068	0.0	0.0	0.6 0.6	00	016	910	0.0	0.0	
Marain	East of R55	Westbaund	00	8 %	\$ %	0.0	40 58	0.0	0.0	0.0	0.0	\$8	40 35	00	1.0	
	Deliveon KSZ and Westbound N14 Exclored	Westbound	00	0.0	00	2023	2023	0.0	11	85	00	00	2023	00	0.0	
6AMd	South of N14	Walbourd Earbourd	0.0	0.0	0 0	00	00	90	0.0	0.0	66	0	0	0.0	0.0	
	West of PWV9	Westbound Eactbound	810	030 605	1160	259	4212 2124	6.0	0.6	12	1199	1045	2584	98	2.0	
NIA	Between PWUS and RSS	Westound	010	022	1160	1265	2425 2424	0.5	0.7	21	969	1549	2814 2649	9.6	2.0	La harden de
	East of RSS	Wastbound	945 670	1515	2500	423	3006 2248	0.4	6.0	29	956	2973	2150 2150	1.0	2.0	a la seconda de
Wierda	East of R55	Weitbound Eastbound	665	1164	1232	423	1797 2257	0.5	03	55	1014	1621 2155	2125 2573	0.7	1.0	- Article -

and Plant Southbound 970 1544 2606 423 3528 1 and Poole Southbound 970 1524 3035 1697 917 2508 1 and Poole Southbound 970 2665 3035 1752 2508 1995 and Voole Southbound 570 2665 3034 775 2519 5566 1 and KS2 Southbound 610 3134 3134 3134 3134 2517 2519 5566 1 and KS2 Southbound 610 3134 3734 3733 3617 2616 Behonen KS2 and Muthound Monthound 1305 2274 3733 3733 3617 2616 Behonen KS2 and Muthound Southbound 315 3733 3733 3752 3617 2616 Behonen KS2 and Mutho Southbound 315 3733 3756 3617 3617 3617 3617 3617 3617 <t< th=""><th>and P3-1 Staniburind Staniburind Mericen Vermits Staniburind Staniburind Staniburind Mericen Vermits Staniburind Staniburind Staniburind Mericentic Staniburind</th><th>Sombound 970 1534 2668 423 2868 433 2868 4334 free Nombound 500 1467 3107 647 2506 1403 free Nombound 500 2465 3107 647 2506 1403 free Nombound 500 2466 3034 0556 4136 free Nombound 610 3124 3714 753 3519 5566 free Nombound 610 3124 3714 3739 5666 566 and Membound 610 2035 2639 3734 3739 5666 576 and Membound 610 2734 3779 3635 5617 2766 576 and Membound 610 2734 3779 3635 5616 5766 576 and Membound 759 2030 7593 2030 5616 5766 5766</th><th>and D34-1 Sourhound 950 1554 2506 431 343 1753 3538 1 0hween Wende Konthound 960 1667 3647 3647 3617 3698 1 0hween Wende Konthound 566 3124 3134 1773 5173 3139 1773 3136 1773 3136 1773 3136 1773 3136 3137 4179 3136 3137 4179 3136 3137 4179 3136 3137 4173 3136 3137 3136 3137 3137 3136 3137 3136 3137 3137 3136 3137 31317 3137 3137 3</th><th>Road Section Divection 2009 and Backprout Lane of Traffic Requirement (Mp) Between Wards bachbaund 335</th><th>Section een Waardo</th><th>Officertan Interest Requirement Interest Anothering</th><th>2009 Backgrou Mip) (Mip) 935</th><th>Rights Rights (vph)</th><th>2009 Background Treffic + Latent Rights (vph) 1752</th><th>Development (rpth) (cpth)</th><th>POS Background Traffic + Latent Rights • Development Traffic (vph) 2740</th><th>Nr. of Lanes Required for Background Traffic</th><th></th><th>Nr. of Lansa Required for Development Traffic</th><th>Nr. of Lanse Nr. of Lanse Required for Routined for 2008 Development Traffic + Lationt Traffic Bowelopment Traffic 0evelopment Traffic</th><th>Nr. of Lanse Nr. of Lanse 2015 Required for Required for 2009 Baugrou Development Traffic - Lannt and Traffic Traffic - Lannt and Traffic Relation - (Mag)</th><th>2019 Seckgroun d Traffic + Latent tighs (vph)</th><th>2019 Seckgroun d Traffic + Latent tighs (vph)</th><th>2019 2019 Background Background Traffic + Liniot Latiant Development Ngha (oph) Traffic (oph) Sons</th><th>Mr. of Lames 2019 2019 2019 2019 2019 2015</th></t<>	and P3-1 Staniburind Staniburind Mericen Vermits Staniburind Staniburind Staniburind Mericen Vermits Staniburind Staniburind Staniburind Mericentic Staniburind	Sombound 970 1534 2668 423 2868 433 2868 4334 free Nombound 500 1467 3107 647 2506 1403 free Nombound 500 2465 3107 647 2506 1403 free Nombound 500 2466 3034 0556 4136 free Nombound 610 3124 3714 753 3519 5566 free Nombound 610 3124 3714 3739 5666 566 and Membound 610 2035 2639 3734 3739 5666 576 and Membound 610 2734 3779 3635 5617 2766 576 and Membound 610 2734 3779 3635 5616 5766 576 and Membound 759 2030 7593 2030 5616 5766 5766	and D34-1 Sourhound 950 1554 2506 431 343 1753 3538 1 0hween Wende Konthound 960 1667 3647 3647 3617 3698 1 0hween Wende Konthound 566 3124 3134 1773 5173 3139 1773 3136 1773 3136 1773 3136 1773 3136 3137 4179 3136 3137 4179 3136 3137 4179 3136 3137 4173 3136 3137 3136 3137 3137 3136 3137 3136 3137 3137 3136 3137 31317 3137 3137 3	Road Section Divection 2009 and Backprout Lane of Traffic Requirement (Mp) Between Wards bachbaund 335	Section een Waardo	Officertan Interest Requirement Interest Anothering	2009 Backgrou Mip) (Mip) 935	Rights Rights (vph)	2009 Background Treffic + Latent Rights (vph) 1752	Development (rpth) (cpth)	POS Background Traffic + Latent Rights • Development Traffic (vph) 2740	Nr. of Lanes Required for Background Traffic		Nr. of Lansa Required for Development Traffic	Nr. of Lanse Nr. of Lanse Required for Routined for 2008 Development Traffic + Lationt Traffic Bowelopment Traffic 0evelopment Traffic	Nr. of Lanse Nr. of Lanse 2015 Required for Required for 2009 Baugrou Development Traffic - Lannt and Traffic Traffic - Lannt and Traffic Relation - (Mag)	2019 Seckgroun d Traffic + Latent tighs (vph)	2019 Seckgroun d Traffic + Latent tighs (vph)	2019 2019 Background Background Traffic + Liniot Latiant Development Ngha (oph) Traffic (oph) Sons	Mr. of Lames 2019 2019 2019 2019 2019 2015
University Number intervets 0.00 0.000 <th0.000< th=""> 0.000 0.000<td>University Monthead Span 1072 290 200 Entitiestand 801 815 3124 3124 313 413 413 Entitiestand 801 3124 3124 313 413 413 413 Entitiestand 811 3124 3124 3124 313 413<td>University Monthound 610 1002 2301 612 2301 University Semithisund 600 612 3134 1734 613 3114 Environe Semithisund 610 3124 3014 174 615 3119 Environe Semithisund 610 3124 3014 174 615 3114 Environe Total Accord Semithisund 610 3124 323 3114 175 5116 Environe Semithisund Semithisund 610 3124 323 3013 2124 323 5114 512 513 5114 511 5114 511<</td><td>University Werken Subtleatined 950 1627 3237 1012 2398 1 Offweren Versity Kuthbearined 500 2667 3734 753 3193 4195 3193 Offweren Versity Kuthbearined 500 2665 3173 2117 5136 3193 Offweren Versity Kuthbearined 510 3124 3234 3233 3519 5136 5</td><td>and Pre</td><td></td><td>Southbound</td><td>979</td><td>1531</td><td>2204</td><td>423</td><td>2520</td><td>0.6</td><td>T</td><td>00</td><td>03 15 00 20</td><td></td><td>20</td><td>20 1406</td><td>20 1436 2301</td><td>1.5 1384 2201 2207 2.0 1436 2320 3393</td></td></th0.000<>	University Monthead Span 1072 290 200 Entitiestand 801 815 3124 3124 313 413 413 Entitiestand 801 3124 3124 313 413 413 413 Entitiestand 811 3124 3124 3124 313 413 <td>University Monthound 610 1002 2301 612 2301 University Semithisund 600 612 3134 1734 613 3114 Environe Semithisund 610 3124 3014 174 615 3119 Environe Semithisund 610 3124 3014 174 615 3114 Environe Total Accord Semithisund 610 3124 323 3114 175 5116 Environe Semithisund Semithisund 610 3124 323 3013 2124 323 5114 512 513 5114 511 5114 511<</td> <td>University Werken Subtleatined 950 1627 3237 1012 2398 1 Offweren Versity Kuthbearined 500 2667 3734 753 3193 4195 3193 Offweren Versity Kuthbearined 500 2665 3173 2117 5136 3193 Offweren Versity Kuthbearined 510 3124 3234 3233 3519 5136 5</td> <td>and Pre</td> <td></td> <td>Southbound</td> <td>979</td> <td>1531</td> <td>2204</td> <td>423</td> <td>2520</td> <td>0.6</td> <td>T</td> <td>00</td> <td>03 15 00 20</td> <td></td> <td>20</td> <td>20 1406</td> <td>20 1436 2301</td> <td>1.5 1384 2201 2207 2.0 1436 2320 3393</td>	University Monthound 610 1002 2301 612 2301 University Semithisund 600 612 3134 1734 613 3114 Environe Semithisund 610 3124 3014 174 615 3119 Environe Semithisund 610 3124 3014 174 615 3114 Environe Total Accord Semithisund 610 3124 323 3114 175 5116 Environe Semithisund Semithisund 610 3124 323 3013 2124 323 5114 512 513 5114 511 5114 511<	University Werken Subtleatined 950 1627 3237 1012 2398 1 Offweren Versity Kuthbearined 500 2667 3734 753 3193 4195 3193 Offweren Versity Kuthbearined 500 2665 3173 2117 5136 3193 Offweren Versity Kuthbearined 510 3124 3234 3233 3519 5136 5	and Pre		Southbound	979	1531	2204	423	2520	0.6	T	00	03 15 00 20		20	20 1406	20 1436 2301	1.5 1384 2201 2207 2.0 1436 2320 3393
Britwins Poch Non-result ST0 2466 3034 713 7130 7130 Difficulties Southbound FD 3124 3034 2117 5128 3110 Difficulties Visit Result FD 3124 3034 2117 5128 3110 Difficulties FI 3128 3128 3031 2117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5128 3117 5117 5118 3117 5118 3117 3117 3117 3117 3117 31111 3111 </td <td>Britwise Pocine Brite 200 2466 3014 714 715 3110 Difficuries Southbounded 516 3124 3124 3124 5134 3110 Difficuries Southbounded 516 3124 3124 2517 518 3110 Difficuries Visit Prisoned 516 3128 258 2513 2</td> <td>Briveten Fordia State 303 3436 3036 713 3100 DRMeeten Lochter Seuthbounde 515 3214 3011 2117 5158 3100 DRMeeten Lochter Seuthbounde 515 3284 3011 2117 5158 5113 511</td> <td>Between Forie Northbound 570 715 705 715 710 Defector Southbound 510 3124 3011 2117 5138 2101 Defector Southbound 515 3124 3011 2117 5138 2101 Defector Venthbound 515 3124 3011 2117 5138 2101 Defector Venthbound 516 3124 3013 2117 5138 2113 Defector Southbound 516 3124 3729 2013 516 Before Venthbound 715 2013 2013 2013 517 516 Before Venthbound 715 2013 2013 2013 517 4016 Before Venthbound 715 2015 2015 2015 2016 2015 2016 Before Southbound 716 373 2013 5177 2016 2016 2016 2015</td> <td>Betwee and Po</td> <td></td> <td>Nonhearind</td> <td>0e8</td> <td>1402</td> <td>1987</td> <td>1012 847</td> <td>2398</td> <td>0.4</td> <td>And in case of the</td> <td>20</td> <td>07 20 06 28</td> <td>-</td> <td>20</td> <td>2.0 865</td> <td>2.0 865 2265 2.6 1243 2710</td> <td>2.0 065 2565 3279 2.6 1243 3716 4557</td>	Britwise Pocine Brite 200 2466 3014 714 715 3110 Difficuries Southbounded 516 3124 3124 3124 5134 3110 Difficuries Southbounded 516 3124 3124 2517 518 3110 Difficuries Visit Prisoned 516 3128 258 2513 2	Briveten Fordia State 303 3436 3036 713 3100 DRMeeten Lochter Seuthbounde 515 3214 3011 2117 5158 3100 DRMeeten Lochter Seuthbounde 515 3284 3011 2117 5158 5113 511	Between Forie Northbound 570 715 705 715 710 Defector Southbound 510 3124 3011 2117 5138 2101 Defector Southbound 515 3124 3011 2117 5138 2101 Defector Venthbound 515 3124 3011 2117 5138 2101 Defector Venthbound 516 3124 3013 2117 5138 2113 Defector Southbound 516 3124 3729 2013 516 Before Venthbound 715 2013 2013 2013 517 516 Before Venthbound 715 2013 2013 2013 517 4016 Before Venthbound 715 2015 2015 2015 2016 2015 2016 Before Southbound 716 373 2013 5177 2016 2016 2016 2015	Betwee and Po		Nonhearind	0e8	1402	1987	1012 847	2398	0.4	And in case of the	20	07 20 06 28	-	20	2.0 865	2.0 865 2265 2.6 1243 2710	2.0 065 2565 3279 2.6 1243 3716 4557
Britmern Lochner Nath Businern Lochner Nath Businern <	Briteren Lochert Nachbeund 545 3011 2117 5154 5164 and KG2 Southbeund 616 3024 3234 2513 5166 516 Beheen K32 and Monthound 616 3024 3234 3234 2513 5166 516 Beheen K32 and Monthound 610 3024 3729 2004 516 517 5166 517 5166 516 Beheen K32 and Monthound 610 3035 2014 3729 2033 2739 2034 516 516 516 516 516 516 516 517 516	Briteren Lochert Nachbeund 615 3011 2117 5184<	Britment Inchert Test 2011 2117 2137 5138 2137 5138	Brewei	Hen Podle Ochner	Nothbound	5/0	2486	3036 3774	199 809	5195 4475	04		0.5	05 25 04 25		25 844	25 R14 1310 29 562 4066	25 M4 1310 409	25 M4 1310 409
Betwein K32 and Betwein K32 and Southbound Kabbound (10) 2005 2015 0.4 0.4 Betwein K32 Betwein K1 and Name Southbound 610 1782 2902 1094 6517 0.4 0.4 Betwein K32 and Name Monthbound 310 1782 2902 1094 6517 0.4 0.5 Betwein K1 and Name Monthbound 315 2018 2018 2019 0.05 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.5	Betreent S32 and Fournes Monthound Southbound 615 3134 2035 2053 5617 0.4 Retreent S32 Southbound 610 1/34 2/34 2/34 2/34 2/34 0.5 Between Karats are Nams Monthound 810 1/35 2/34 2/32 2/32 0/35 0/3 Between Karats are Nams Monthound 7/35 2/36 2/3 2/3 0/3	Behenen X52 and Humania Memberianed Southbound 610 312.4 328.5 375.7 0.4 0.4 Humania Southbound 610 312.4 329.5 309.5 567.5 0.4 0.4 Humania Southbound 130.5 237.4 329.5 109.4 660.1 17.4 0.4 Behwenn Humania Membound 130.5 237.8 290.5 190.5 200.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 </td <td>Betreen K12 and Extentioned Marchineric (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b</td> <td>Betwee</td> <td>en Lochnet 52</td> <td>Nichbound</td> <td>545 715</td> <td>2466</td> <td>3011</td> <td>2529</td> <td>5128 6368</td> <td>0.6</td> <td>1</td> <td>1.1</td> <td>14 14</td> <td>1.4 0.1 0.1</td> <td></td> <td>1050 1050</td> <td>16 807 3273 1058 4182</td> <td>022 3273 5390 1058 4182 6711</td>	Betreen K12 and Extentioned Marchineric (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	Betwee	en Lochnet 52	Nichbound	545 715	2466	3011	2529	5128 6368	0.6	1	1.1	14 14	1.4 0.1 0.1		1050 1050	16 807 3273 1058 4182	022 3273 5390 1058 4182 6711
Betweint Runte aut Mutus Montheund sig 1782 Statz St	Betweint Runtle aut Mutus Montholund sig 1782 Stag High CSE Stag No Stag 0.5 Betweint Mutus Sheathbound 1355 2274 3729 3023 5752 0.5 Betwein Mutus Sheathbound 1355 2078 2729 3023 5752 0.5 Betwein Mutus Southbound 155 2078 2078 1517 355 0.5 Betwein Mutus Southbound 155 163 1517 3555 0.6 0.6 South terminal Southbound 155 759 1517 3555 0.6 0.6 South terminal Southbound 555 765 1517 3555 0.6 0.6 South terminal Southbound 555 765 1517 3555 0.6 0.6 Southbound 555 765 1517 3555 0.6 0.6 Southbound 555 765 2771 0.6 <	Betweint Runtlis and Munists Memberund (ambeund Sewithstand) isio 1365 2374 3392 1664 636 0.5 Betweint Runtlis and Nints Sewithstand 1305 2374 3729 3023 5752 0.5 Betweint Runtlis Sewithstand 1305 2374 3729 6001 1.4 Betweint Runtlis Sewithstand 715 2018 1517 3555 0.6 Betweint Runtlis Sewithstand 715 2003 1517 3555 0.6 Betwein Rick and Runthermisti and Runthermisti and Runthermisti and Runthermisti and Runthermisti and Runthermisti and Runthermisti 715 2003 2164 0.5 0.6 Betwein Rick and Runthermisti and Runthermisti and Runthermisti and Runthermisti 715 2164 715 2164 0.6 0.6 Betwein Rick and Runthermisti and Runthermisti Runthermisti and Runthermisti 216 716 719 2164 0.6 Betwein Rick and Runthermisti Runthermisti and Runthermisti 216 759 2164 0.6 0.6	Betwein Riumte aut Notito Southound 112 213			Northbound Southbound	645	2025	2665 3734	3752	5617 7022	0.4		18	18 1 10	23 25 25 955		27504 505 24 505 54 55 55 55 55 55 55 55 55 55 55 55 55	27504 505 24 505 54 55 55 55 55 55 55 55 55 55 55 55 55	955 8775 5727 903 8275 7715
Determination 2014 2013 2013 2013 2013 2013 2014 Referent Nicks Multifound 915 2013 2013 2013 2013 2013 2014 Referent Nicks Southbound 915 2013 2105 2013 2013 2014 2014 Referent Nick Southbound 215 2013 2105 2013 2013 2014 <td< td=""><td>Memory Mark Determinant 1705 2014 2015 2014 2015 2014 1016 101<!--</td--><td>Determination 2014 2013 2013 2013 2013 2013 2013 2014 and Netsity Monttoound 915 2013 2013 2013 2013 2013 2014 and Netsity Monttoound 915 2013 2013 2013 2013 2013 2014 2015 2015 2015 2015 2015 2014 2015 2014 2015 2014 2015</td><td>Determination 2014 2013 2013 2013 2013 2013 2013 2014</td><td>thed Between Man</td><td></td><td>Northbound</td><td>810</td><td>1782</td><td>2502</td><td>1494</td><td>100</td><td>0.5</td><td></td><td>11</td><td>1 28</td><td>28</td><td>2.8 1156</td><td>2.9 1156 2981</td><td>23 1155 2881 40.75</td><td>2.8 1155 2381 4675 0.8</td></td></td<>	Memory Mark Determinant 1705 2014 2015 2014 2015 2014 1016 101 </td <td>Determination 2014 2013 2013 2013 2013 2013 2013 2014 and Netsity Monttoound 915 2013 2013 2013 2013 2013 2014 and Netsity Monttoound 915 2013 2013 2013 2013 2013 2014 2015 2015 2015 2015 2015 2014 2015 2014 2015 2014 2015</td> <td>Determination 2014 2013 2013 2013 2013 2013 2013 2014</td> <td>thed Between Man</td> <td></td> <td>Northbound</td> <td>810</td> <td>1782</td> <td>2502</td> <td>1494</td> <td>100</td> <td>0.5</td> <td></td> <td>11</td> <td>1 28</td> <td>28</td> <td>2.8 1156</td> <td>2.9 1156 2981</td> <td>23 1155 2881 40.75</td> <td>2.8 1155 2381 4675 0.8</td>	Determination 2014 2013 2013 2013 2013 2013 2013 2014 and Netsity Monttoound 915 2013 2013 2013 2013 2013 2014 and Netsity Monttoound 915 2013 2013 2013 2013 2013 2014 2015 2015 2015 2015 2015 2014 2015 2014 2015 2014 2015	Determination 2014 2013 2013 2013 2013 2013 2013 2014	thed Between Man		Northbound	810	1782	2502	1494	100	0.5		11	1 28	28	2.8 1156	2.9 1156 2981	23 1155 2881 40.75	2.8 1155 2381 4675 0.8
Between Nexts Membeund 915 2018 2018 1094 6537 0.5 Territial Southbound 216 2738 4778 2015 6601 1.4 1 Efforement Nix Southbound 216 753 4778 2015 6601 1.4 1 Efforement Nix Southbound 2155 1613 21517 2155 0.5	Montent Marks and Number Montenund Southsund Stots Southsund 2018 2018 2019 6837 0.5 Terminal Montenund Southsound 215 2018 2176 3053 4105 0.5 Brinn turninul and South semiound Southsound 215 2019 3163 1517 4106 0.9 Southsound 2155 2010 2160 355 1613 2164 0.9 South eminal Montenund Southsound 316 1691 2053 0.6 0.6 0.6 South eminal Montenund Southsound 355 1735 2560 0.6 0.6 0.6 South eminal Montenund 250 1735 2560 2553 0.6 <t< td=""><td>Monteol Marking and National Southstand Monteoland (31) 2013 2013 1004 6537 0.5 Ferritiant Entimisational South straticational South straticat</td><td>Monthound 915 2018 2019 1094 6517 0.5 Terminal Southbound 915 2018 2019 6011 1,1 0.5 Effective NIX Southbound 215 2013 21517 6011 1,1 0.5 Effective NIX Southbound 2155 2013 21517 2055 0.3 0.3 Minit furnical southbound 215 2605 1517 2555 0.3 0.6 0.4 Minit furnical southbound 216 1631 1270 2555 0.8 0.6 0.4<</td><td></td><td></td><td>Southbound</td><td>1365</td><td>2374</td><td>3729</td><td>2023</td><td>25752</td><td>0.5</td><td>-</td><td>1.3</td><td></td><td>1000</td><td></td><td>3006</td><td>2006 4379</td><td>4379 6403</td></t<>	Monteol Marking and National Southstand Monteoland (31) 2013 2013 1004 6537 0.5 Ferritiant Entimisational South straticational South straticat	Monthound 915 2018 2019 1094 6517 0.5 Terminal Southbound 915 2018 2019 6011 1,1 0.5 Effective NIX Southbound 215 2013 21517 6011 1,1 0.5 Effective NIX Southbound 2155 2013 21517 2055 0.3 0.3 Minit furnical southbound 215 2605 1517 2555 0.3 0.6 0.4 Minit furnical southbound 216 1631 1270 2555 0.8 0.6 0.4<			Southbound	1365	2374	3729	2023	25752	0.5	-	1.3		1000		3006	2006 4379	4379 6403
Territorial Searchbound 2040 2734 4778 3023 6011 14 Member N14 Nonthound 725 2003 2160 955 6011 14 Member N14 Nonthound 725 2003 2160 955 6611 14 Soluth territorial Southeound 725 2003 2160 955 0.9 South territorial Southeound 725 2033 1577 3555 0.9 South territorial Southeound 355 765 1546 753 0.9 Southeound 555 765 1547 7537 3555 0.9 Balware R5 and Memberond 555 755 756 753 259 0.6 Balware R5 and Memberond 555 755 759 759 2703 0.6 Balware R5 and Memberond 6 0 0 759 759 0.0 0 Balware R5 and Memberond 6 0 0	Territion Searchbound 204 273 4738 3023 6011 14 MemberNik Mith Nonteound 725 3019 2160 1953 6011 14 MemberNik Mith Nonteound 725 3019 2160 1955 4815 0.5 South terminal Southeound 725 3019 2160 1955 4815 0.5 Southerm Terminal Southeound 655 763 1517 3555 0.6 69 Southeound 655 765 1647 759 2056 0.6 6	Territion Searchbound 204 273 4738 3023 6011 14 Moneton NLK Nontround 756 1613 2517 6001 14 0.4 Moneton NLK Nontround 755 1613 1517 2553 0.5 14 South triminal Southeound 755 1640 1577 2555 0.6 14 South entities of the second 555 1755 2560 2759 0.6 14 0.8 South entities of the second 555 1630 1517 2555 0.6 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 0.8 14 14 0.8 14 15 15	Territorial Seambaund 2014 4738 4738 5023 6601 1.4 Referential Southerenal 725 2003 2160 955 6601 1.4 Referential Southerenal 725 2003 2160 955 6601 1.4 Southerminal reference Southerminal reference 725 2003 2160 205 660 0.5 Southerminal reference Southerminal reference 316 1613 753 2555 0.8 0.6 Southerminal reference 316 105 753 753 2555 0.8 0.6 Between MS and Westers Westbound 555 755 1420 753 2555 0.8 0.6 Between MS and Westers Westbound 0 0 0 753 753 2555 0.8 0.6 Between MS and Westers Westbound 0 0 0 753 753 753 0.0 0 0 0	Botwoo		Northbound	915	8702	2903	1694	4587	3.6	13		-11		124	11 1354 3433	310 1354 3433 5125	211 1364 3433 5125 0.9
Image: Number	Remember N14 Enterment Non-thoused South terminal Yzis 2003 2160 1905 4845 0.5 South terminal Southeouned 15/5 16/13 26/15 16/13 26/15 0.5 0.5 South terminal Southeouned 16/13 16/13 26/15 16/13 26/15 0.5 0.6 South terminal Southeouned 16/13 36/15 16/13 26/15 26/15 0.6 <td>Implementation Number Ni A Nome 2700 2700 1517 4485 0.5 6 Nome Ni A Southeound 755 1613 2617 2617 261 0.5 0.5 Southerminal Southeound 155 1613 2613 1517 2555 0.5 0.6 Southerm Terminal Southeound 655 765 1620 2555 0.5 0.6 0.6 Southerm Terminal Southeound 655 1755 2650 1270 2555 0.6</td> <td>Remember N14 Environt N14 Southerminal and Southerminal and Southerm</td> <td>Termin</td> <td>12</td> <td>Southbound</td> <td>2040</td> <td>2738</td> <td>4778</td> <td>2023</td> <td>6601</td> <td>14</td> <td>1.8</td> <td></td> <td>-</td> <td>0202</td> <td>1000 3050 S756</td> <td>-</td> <td>5758</td> <td>5758 7781</td>	Implementation Number Ni A Nome 2700 2700 1517 4485 0.5 6 Nome Ni A Southeound 755 1613 2617 2617 261 0.5 0.5 Southerminal Southeound 155 1613 2613 1517 2555 0.5 0.6 Southerm Terminal Southeound 655 765 1620 2555 0.5 0.6 0.6 Southerm Terminal Southeound 655 1755 2650 1270 2555 0.6	Remember N14 Environt N14 Southerminal and Southerminal and Southerm	Termin	12	Southbound	2040	2738	4778	2023	6601	14	1.8		-	0202	1000 3050 S756	-	5758	5758 7781
South territori Southermited State 15/1 3683 15/1 416 0.1 South of K14 Northound 845 1691 1270 2561 0.6 0.1 Southern Terrinol Southern Terrinol Southern Terrinol 845 1691 1270 2561 0.6 0.6 Southern Terrinol Southern Terrinol 845 1740 759 2563 0.4 0.6 Bit at R45 Exit at R45 Meethound 855 1735 759 2655 0.4 0.6 Bit at R45 Meethound 855 1735 759 2701 0.6 0.6 Bit at R45 Meethound 0 0 0 1517 1517 0.0 0.6 Bit at R45 Meethound 0 0 0 759 759 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>South territori Southermini Southermini</td> <td>South territorit Southerearder 15/3 15/3 35/3 15/3 0.1 South arminity Southerearder 14/6 34/6 16/31 12/00 25/35 0.1 South arm Terminity Southerearder 14/6 34/6 16/31 12/00 25/35 0.6 South arm Terminity Southerearder 35/3 13/45 75/3 13/20 25/35 0.6 Britity Exelationered 35/3 17/35 25/36 20/6 0.2 0 <t< td=""><td>South territori Southermidi State 1613 3683 1517 3563 0.11 Southern Terrinol Southern Terrinol</td><td>Betwee North &</td><td>en N14 terminal and</td><td>NorthCourse</td><td>52</td><td>2005</td><td>2760</td><td>1905</td><td>4865</td><td>0.5</td><td>1.3</td><td></td><td>P. Strate Strate</td><td>£201 HE 1023</td><td>1073 3108</td><td>H</td><td>0108</td><td>3108 5013</td></t<></td>	South territori Southermini	South territorit Southerearder 15/3 15/3 35/3 15/3 0.1 South arminity Southerearder 14/6 34/6 16/31 12/00 25/35 0.1 South arm Terminity Southerearder 14/6 34/6 16/31 12/00 25/35 0.6 South arm Terminity Southerearder 35/3 13/45 75/3 13/20 25/35 0.6 Britity Exelationered 35/3 17/35 25/36 20/6 0.2 0 <t< td=""><td>South territori Southermidi State 1613 3683 1517 3563 0.11 Southern Terrinol Southern Terrinol</td><td>Betwee North &</td><td>en N14 terminal and</td><td>NorthCourse</td><td>52</td><td>2005</td><td>2760</td><td>1905</td><td>4865</td><td>0.5</td><td>1.3</td><td></td><td>P. Strate Strate</td><td>£201 HE 1023</td><td>1073 3108</td><td>H</td><td>0108</td><td>3108 5013</td></t<>	South territori Southermidi State 1613 3683 1517 3563 0.11 Southern Terrinol	Betwee North &	en N14 terminal and	NorthCourse	52	2005	2760	1905	4865	0.5	1.3		P. Strate Strate	£201 HE 1023	1073 3108	H	0108	3108 5013
South of N14 Morerbound 645 546 1691 1270 2861 0.6 Souther Terminal Souther Souther Souther Terminal Souther Souther South	South of N14 MorePotend 645 746 1691 1270 2861 0.6 Bouthern Terminal Southern Terminal	South of N14 More bound 645 1691 1670 2861 0.6 66 Mouthern Termind Joundbound 346 1055 1347 3555 0.8 0.6 Mouthern Termind Joundbound 340 1055 1347 759 2105 0.2 0.6 Mouthern Termind 340 1055 1347 759 2105 0.2 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.7	South of N14 Morerbound 645 766 1691 1770 2645 0.6	South	terminal	Southbound	12(6	1613	2958	1517	4305	0.0	1.0	-	2.9	2.9 1850	1	1850	1850 3471	1856 3471 4368
Briven PK3 and MeetDound 310 1065 1345 759 2104 0.2<	Britwinn PK3 and Meathbound 310 1005 1345 759 2104 0.2 0	Britwinn RFG and Britition Mathematic Eastbound 310 1005 1346 759 2104 0.2 <td>Britwine MS3 and Britwine MS3 and British and Exationand Exationand Exationand Exationand Exationand Sec Membered and MS5 Membered and MS5 Membered Exationand Exationand British and Membered British and Membered Exationand Exationand British and Membered British and British and Membered British and Membered British and British and British and British and British and British and British and British and B</td> <td>Southe</td> <td>el N14 em Terminal</td> <td>Nonhound</td> <td>845</td> <td>846 898</td> <td>1691 2038</td> <td>1270</td> <td>2961</td> <td>0.6</td> <td>1.0</td> <td></td> <td>20</td> <td>2.4 1251</td> <td></td> <td>1251</td> <td>1251 2007 1607 2555</td> <td>1251 2097 3367 1007 2565 4103</td>	Britwine MS3 and Britwine MS3 and British and Exationand Exationand Exationand Exationand Exationand Sec Membered and MS5 Membered and MS5 Membered Exationand Exationand British and Membered British and Membered Exationand Exationand British and Membered British and British and Membered British and Membered British and British and British and British and British and British and British and British and B	Southe	el N14 em Terminal	Nonhound	845	846 898	1691 2038	1270	2961	0.6	1.0		20	2.4 1251		1251	1251 2007 1607 2555	1251 2097 3367 1007 2565 4103
Exit if R45 Wrethsonel 855 1736 7560 212 2771 0.6 0 Between Exit bound 560 2007 2567 553 2550 0.4 1 Between Acrests 1 Wrethbound 0 0 0 1517 1517 0.0 0	Exit if R45 Wentheunel 855 1736 7360 212 2771 0.6 Between Access 1 Exitinonal 560 2007 2560 212 2660 0.4 Between Access 1 Wentheunel 0 0 1517 1270 0.0 Between Access 1 Wentheunel 0 0 0 1517 1517 0.0 Between Access 1 Wentheunel 0 0 0 1517 1517 0.0 Between Access 1 Wentheunel 0 0 0 1557 1517 0.0 West of H55 Existionered 0 0 0 259 0.0 0 West of H55 Existionered 0 20 555 0	Exit if R45 Weathened 455 1736 7360 212 2771 0.6 Belwein Access 1 Weathened 455 1736 7367 252 2550 0.4 Belwein Access 1 Weathened 0 0 1517 1517 0 0 0 1 1 0 <td>Exit in Plo5 Weathcond 355 1736 2560 217 0.6 Bellwame Exit in Plo5 Exit in Plo5 2007 2567 2527 0.4 1 Bellwame Exit in Plo5 Exit in Plo5 2007 2567 2527 0.6 0 Bellwame Exit in Plo5 Exit in Plo5 2557 1517 1517 0.0 0 Bellwame 0 0 0 0 0 259 555 0 <td< td=""><td>Betwee</td><td>en RSS and</td><td></td><td>340</td><td>1005</td><td>1345</td><td>739</td><td>2104 2056</td><td>0.2</td><td>0.4</td><td>H</td><td>1.4</td><td>1.4 503</td><td>-</td><td>505 076</td><td>503 1508 976 1735</td><td>503 1508 2267 970 1735 2370</td></td<></td>	Exit in Plo5 Weathcond 355 1736 2560 217 0.6 Bellwame Exit in Plo5 Exit in Plo5 2007 2567 2527 0.4 1 Bellwame Exit in Plo5 Exit in Plo5 2007 2567 2527 0.6 0 Bellwame Exit in Plo5 Exit in Plo5 2557 1517 1517 0.0 0 Bellwame 0 0 0 0 0 259 555 0 <td< td=""><td>Betwee</td><td>en RSS and</td><td></td><td>340</td><td>1005</td><td>1345</td><td>739</td><td>2104 2056</td><td>0.2</td><td>0.4</td><td>H</td><td>1.4</td><td>1.4 503</td><td>-</td><td>505 076</td><td>503 1508 976 1735</td><td>503 1508 2267 970 1735 2370</td></td<>	Betwee	en RSS and		340	1005	1345	739	2104 2056	0.2	0.4	H	1.4	1.4 503	-	505 076	503 1508 976 1735	503 1508 2267 970 1735 2370
Behaverink Access I and Ross WestBound Eastbound 0 0 0 1517 1517 0.0 Field Ross Eastbound 0 0 0 1517 1517 0.0 Feat of Ross Eastbound 0 0 0 1517 1517 0.0 Feat of Ross Eastbound 0 0 0 759 759 0.0 Vestoriand 0 6 505 555 0 759 0.0 Vestoriand 0 560 565 0 759 759 0.0 MetalPlaned 0 23 555 0 255 0 0.0 Eastbound 0 23 759 556 0 255 0.0 0.0 Eastbound 0 23 750 555 0 255 0.0 0.0 0.0 Eastbound 0 230 370 755 0 0.0 0.0 0.0 0.0	Reware Access 1 Westbound 0 0 0 12/10 12/10 00 and ASS Eastbound 0 0 0 1517 1517 0.0 East of ASS Eastbound 0 0 0 1517 1517 0.0 East of ASS Eastbound 0 0 0 633 635 0.0 Westored 0 635 635 635 0 759 0.0 Westored 0 633 635 0 759 0.0 0 Eastbound 0 233 635 0 759 0.0 0 Eastbound 0 233 635 0 255 0 0 0 0 Eastbound 0 233 635 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Between Access 1 Westbound 0 0 0 1270 1270 0.0 and AGS Exerbanie 0 0 0 0 1 1517 1517 0.0 Field AGS Exerbanie 0 0 0 0 1 1517 1517 0.0 Field AGS Westbound 0	Between Access 1 Wetbound 0 0 0 1270 1270 0.0 field ASS Exertbound 0 0 0 0 1517 1517 0.0 field ASS Exertbound 0 0 0 1 1517 1517 0.0 field ASS Exertbound 0 0 1 259 555 0 0 Westor HSS Messbound 0 560 555 0 759 00 0 Mestorund 0 305 555 0 0 255 0.0 0	P102-3 East of		Westbound	H	1736 2007	2560	212	2820	0.6	02	H	81	1221 B1		628 1221	9582 1221	1221 2356 3144 8629 3635
Fast of AU5 Wresthound 0 0 633 635 635 6.0 Writici M55 Exactioning 0 0 0 759 0.0 0 Writici M55 Exactioning 0 560 560 560 0 0 0 0 Writici M55 Microbound 0 563 535 535 0<	Field of Teacher Image Image East of AUS Messible unit Image <	Fast of R15 Weesthound 0 0 535 635 635 640 0 West of H55 Exactioning 0 0 0 759 739 0.0 0 West of H55 Exactioning 0 560 560 560 0.0 0 <td>Fast of M(5) Wresterund 0 0 0 535 635 6.0 West of H55 Exacterund 0 0 0 759 759 0.0 West of H55 Messignand 0 560 9 550 0 759 0.0 West of H55 Messignand 0 563 955 0 759 0.0 Excitationed 0 235 555 0 255 0.0 Excitationed 0 24 35 0 255 0.0 Excitationed 0 230 370 370 759 1129 0.0 Bewinen (14 and Most ended) 0 370 370 759 1129 0.0 Bewinen (14 and Most ended) 0 370 370 1129 1129 0.0 Must el H511 Westeened 255 725 1129 0.0 0.0 0.0 Must el H511 Westeened 255 1500 <t< td=""><td></td><td>on Access 1</td><td>Westbound</td><td>0 0</td><td>00</td><td>• •</td><td>12/0</td><td>1270</td><td>00</td><td>0.0</td><td>1</td><td>0.0</td><td>0 0 01</td><td>Π</td><td>00</td><td>0 0 0</td><td>0 0 t270 0 1597</td></t<></td>	Fast of M(5) Wresterund 0 0 0 535 635 6.0 West of H55 Exacterund 0 0 0 759 759 0.0 West of H55 Messignand 0 560 9 550 0 759 0.0 West of H55 Messignand 0 563 955 0 759 0.0 Excitationed 0 235 555 0 255 0.0 Excitationed 0 24 35 0 255 0.0 Excitationed 0 230 370 370 759 1129 0.0 Bewinen (14 and Most ended) 0 370 370 759 1129 0.0 Bewinen (14 and Most ended) 0 370 370 1129 1129 0.0 Must el H511 Westeened 255 725 1129 0.0 0.0 0.0 Must el H511 Westeened 255 1500 <t< td=""><td></td><td>on Access 1</td><td>Westbound</td><td>0 0</td><td>00</td><td>• •</td><td>12/0</td><td>1270</td><td>00</td><td>0.0</td><td>1</td><td>0.0</td><td>0 0 01</td><td>Π</td><td>00</td><td>0 0 0</td><td>0 0 t270 0 1597</td></t<>		on Access 1	Westbound	0 0	00	• •	12/0	1270	00	0.0	1	0.0	0 0 01	Π	00	0 0 0	0 0 t270 0 1597
Westor HSS Wessound 0 560 560 0 560 0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 500 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 0.0 560 560 760 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 10.0 760 70.0 70.0 70.0 70.0 70.0 70.	Westor HSS Westor HSS Westor HSS Westor HSS State 0 550 550 0 550 0 0 10 <th10< th=""> 10 <th10< th=""></th10<></th10<>	Westor HSS Westorund 0 560 560 560 0 590 0.0 Exableured 0 635 635 635 635 635 0	Westor HSs Westor HSs Westor HSs Westor HSs 600 560 560 560 560 600	and a star		Westbound	0 0	0.0	0 0	635	635	00	0.5	111	0.4	0.4 0		0.0	00	0 0 533 0 0 759
Exercitionard 0 20 30 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0 25 0 0 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 <th26< th=""> 26 26</th26<>	Exist H35 Westbound 0 20	Exet of H5/c Ministroaned 0 20 30 0 26 0/0 10 10 South of N14 Exercitioned 0 25 35 0 25 0.0 10 <td>Exist of H5/c Ministroaned 0 20 30 0 26 0 26 0 26 0 26 0 25 0 60 10 <th10< th=""> 10 10</th10<></td> <td>1</td> <td></td> <td>Westound</td> <td>0.0</td> <td>560 635</td> <td>355</td> <td>00</td> <td>500 500</td> <td>0.0</td> <td>00</td> <td></td> <td>0.4 0.4</td> <td>04 04 04</td> <td></td> <td>0.0</td> <td>0 600</td> <td>0 000 560 560</td>	Exist of H5/c Ministroaned 0 20 30 0 26 0 26 0 26 0 26 0 25 0 60 10 <th10< th=""> 10 10</th10<>	1		Westound	0.0	560 635	355	00	500 500	0.0	00		0.4 0.4	04 04 04		0.0	0 600	0 000 560 560
Soum of N14 Normbound 0 300 300 300 435 936 0.6 Search bound 0 370 370 370 370 759 1129 0.0 Revenent It a and Northbound 0 370 370 370 370 937 0.0 Revenent It a and Northbound 0 370 370 370 370 901 0.0 Runtle Revenent It a and Northbound 0 370 370 901 0.0 0.0	Soum of N14 Mainthound 0 300 300 300 300 505 605 606 606 606 606 606 606 606 606 606 606 606 606 606 606 606 606 606 607 755 1147 0.0 0.0 606 607 1147 0.0 60 606 607 1147 0.0 60 607 1147 0.0 60 60 606 607 1147 0.0 60 606	Sourn of M14 Metitherund 0 300 300 300 415 616 0.6 Spectracured 0 370 370 370 755 1123 0.0 ReweinenUL4 and NonthSound 0 370 370 370 370 370 937 1123 0.0 ReweinenUL4 and NonthSound 0 370 370 370 370 370 90 90 Runtio Scuthbound 0 320 1102 1147 90 90 90 West of R311 Westbound 425 725 1150 6.3	South of N14 Metifficaund 0 300 300 300 455 916 0.6 Search ound 0 370 370 370 755 1123 0.0 Reventer N14 and Mottheound 0 370 370 370 370 975 0.0 Runnie Searthound 0 370 370 370 977 0.0 Runnie Searthound 0 370 370 1159 0.0 0.0 Runnie Searthound 425 725 1150 212 0.2 0.2 Runnie Besterund 425 725 1000 212 1212 0.2 Rowens hit and Weetkound 455 725 1000 0 0.2 0.3 0.3 Beneron R51 and Weetkound 455 725 1000 0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	-		Mestbound	0	28	8 10	00	82	0.0	0.0	1H	00	0 00 0	-	G 0	812	0 20 20
8eeveen/114 and /NonthBound 0 (200 (300 (47 1147) 0.0 / Rumte (Seutribound 0 (370 (370 1012 1392 0.0	Breatine It is and Nontheound 0 300 300 867 1147 0.0 Fundle Southbound 0 378 370 872 1147 0.0 Fundle Southbound 0 378 370 8012 1147 0.0 Must of R511 Westbound 425 725 1159 250 1392 0.0 Must of R511 Westbound 425 725 1159 250 1403 0.3	Between (1.4 and / Nontheound 0 300 300 467 1147 0.0 Funition Southnound 0 378 370 8012 1147 0.0 Must of R511 Westbound 425 755 1159 250 1403 0.3 Wast of R511 Westbound 425 755 1159 250 1403 0.3 Between R511 Westbound 425 735 1150 212 9.2 Between R511 Westbound 425 735 1150 0 312 9.3	Derivative II,14 and Nontheound 0 300 300 467 1147 0.0 Buuntio Soundationed 0 378 376 467 1147 0.0 Must of R511 Westbound 455 725 1159 200 212 0.0 West of R511 Westbound 455 725 1150 212 0.2 Between R511 and Westbound 255 735 1150 0 1100 0.3 R54 735 1150 0 1150 0 1100 0.3 R54 Westbound 453 735 1000 0 1100 0.3 R55 Extended 555 735 1000 0 1100 0.3 R55 R54 1050 0 1150 0 1100 0.3 R54 Westbound 555 735 1000 0 0.3 1100 0.3 R54 Mestbound 575 736	1		Normbound brundhbound	0	300	300	\$15 759	935	0.0	05	H	90	0 00	Ħ	00	0 300	0 3/0 935
	Westbound 425 735 1159 250 1433 6.3 Eastbound 265 735 1000 212 232 9.3	West of R511 Westbound 425 735 1159 250 1403 6.3 West of R511 Westbound 285 735 1000 212 123 6.3 Between R511 and Westbound 463 735 1150 6 1100 0.3 R56 735 1000 0 735 1000 0 0.3	West of PG11 Westbound 425 735 1159 250 1403 0.3 West of PG11 Exeloremed 265 735 1000 212 122 0.3 Between R511 and Westbound 463 735 1150 6 1110 0.3 R55 735 1000 0 1100 0.3 0.3 R55 Fourtowed 255 735 1000 0 100 0.3 Extrates Extrates 255 735 1000 0 1778 0.4 Extrates Kenthowed 575 730 1305 473 1778 0.4		Due MIA and	brundfibound	0.0	000	370	847 1012	1147	0.0	0.6		80	0.6 0.	T	0:0	0 370	0 370 1147 0 370 1382

l	Section	Direction and Lane Requireme ris	2009 Backgroun d Traffic (Mhp)	Refe	Background Traffic + Latent Fights (vph)	ni Traffic (vph)	Traffic + Latent Rights + Development Traffic (vph)	Required for Background Traffic	Nr. of Lanes Required for Development Traffic	Required tor 2009 Backgrin Traffic + Latent of Traf Rights + Latent of Traf Rights + (who)	Eachgrou nd Traffic (whp)	2019 Background Traffic + Latent Righs (vph)	2019 Background Traffic + Latent Righta + Development Traffic (vph)	Nr. of Lanes Required for 2019 Background Traffio	Anna a	Nr. of Lanes Required for 2019 Traffic - Latent Rights - Development
	Between Wields and P39-1	Northbound Southbound	1160	1670	2830	423 505	3254 2188	0.8	0.0	22 15	1717	3387 2064	3811 2570	1.1 0.8	0.0	
	Between Wierda and Poole	Northbound	950 610	2320	3270 1995	847 1012	2008	0.6	99	2.0	1405	3726 2288	4573	99	2.0	
	Between Poolo and Lochnee	Northcound Southcound	525 500	4105 2950	4500	652	6029 5029	04	04	2.6	777 740	4882 3690	5517 6469	0.5	2.0	
	Between Lochner and Reithbound KS2	Southbound	560	4105	4669 3445	2523	7214 5562	04	17	48 3.7	859 730	4964	7485	06	20	
K71 (955)	Between KS2 and Fijamle	punoquars punoquars	550 565	3310	3860 2995	3268	7148 5747	0.4	5.2	4.8	814 836	4124 3266	2412	0.6	20	
Robi	Belween Rumbs and Mareis	Normbound	870	2956	3945 2850	2023	5968 4544	0.0	E.1	40	1288	4423	6446 4361	0.1	20	
	Between Mards and N14 North Terminal	Northbound Southbound	1415	3440 2405	4855 3310	2023	6878 6004	0.0	13	4.6 3.3	2095	5535 3745	7556 5438	1.4	20	
	Between N14 North	Northbund	1120	2760	3865	2276	6156	0.7	15	4.1	1658	4118	5694	ta -	20	
	terminal	Southbound	870	1350	2220	1270	3490	0.6	0.8	23	1288	2636	3908	0.0	2.0	
	South of N14 Southern Terminal	n Mormbound Southbound	725 1085	1005	1730	1517	3247	0.7	0.0	23	1073	2078 2726	3596 3998	1.1	20	
	Between P55 and H511	Westbound	669 695	1660	2250	635 759	2885 2164	0.4	0.5	1.9	673 646	2633	2469	9.6	1.0	1.1
(MDA) P102-1	t East of ASS	Westbound Enstbound	855	2505	2005	263	3278 3172	0.4 0.6	20	N + N N	970 1268	2340	2650	90	1.0	and the second se
	Beween Access 1 and Westbound RSS	d Westbound Eastbound	00	0	00	1517 1270	1517	0.0	10	1.0	00	0	1270	00	0.0	
K52	East of R55	Westbound	00	0.0	0	759	759 635	00	05	9 E	00	0 0	759 635	00	0.0	
AND ICO	West of H55	Westbound	00	910	910	0 0	910	00	0.0	0.6 0.6	00	910 830	910 600	00	1.0	
Maras	East of R55	Westbound	00	40	40	759	798 676	00	94	0.5 0.4	00	40	789 019	0.0	10	
1	South of N14	Northbound	00	815 710	210	55 SS	1574	00	0.4 0.4	10 03	00	815 710	1574 1345	0.0	10	
RSII	Between M14 and Ruamle	Northtround	00	515	815 710	1012 847	1827 1667	00	0.7 0.6	12	00	815	1557	0.0	001	
	West of RS11	Westbound	810 470	355	1160	212	1372	0.5	8.1 0.2	11	1199 696	1549	1761 1544	6.0	20	
4:N	Between R511 and R55	Westbound	810 470	350	1160	0.0	1160	0.3	0.0	80	1199	1549	1549	0.5	20	
	East of ASS	Westbound	985 670	1515	2500	506	3006 2248	0.7	03	2.0	1458 992	2973 2147	3479 2570	1.0	20	
Wiemath	East of A55	Westbound	665 670	507	1282	906 423	1797	0.5	03	1.5	1014	1621 2155	2126 2579	0.7	10	

2	The second secon	3]	Tellic (Mar	111		And the second	The state	Request in Reciproced		Restrict In 200 Traffic - Linear Rules - Development Farm		And the second	and and	the contract	c.i.trant Reparts to pra. 2011 between Bally and to (1941) Taffs	
	Not P.O.I.	Sufferent	200	100 H	105	20	800 800	35	63	45	1384	200	and so its and	2002	2000 E.0	
	Referent Menta and Poole	Southeast	555	1sec	1967	1012	100	0.0	0.0 0.0	42	48 101	8710		123	3278 D6 4550 D6	\mathbb{H}
	Generico Pode a Loctine	energy Pode and Numbered	675 416	1500 9382	3036	730	2776 Mas	04	0.5	12	18	9437 0135	111	400	4063 910	H
	Brunn Lockey	r Numbers	545	1215	3015	041	1014	04 05	10	10	100	2012		555	60 60	H
	Between KS2 and Plante	d Notheard	25	1212	5155	1905	1124	44	00	N N	\$1¥	6249		403	403 0.0 3291 0.0	H
Victorial and	Beweet Ruman	Normand	810	ance	2502	410	1722	00	64	11	0.00	200		3616		
		Suntane	1355	3274	0220	2	100	63	605	10	802	4373	82	NCIE	CF 10015	
	Between Marian 250 N16 Marth	- C	818	8082	1442	13.9	1636	90	*0	3+	124	10H	ľ	4000	- 13- 100	T
	Territ	1.1	2949	2718	atta	<u>1</u> 2	689	14	90	37	0000	8758	66	5115		
	Retwood 1974		12	5062	2760	8	1016	52	40	H	1013	810	1	Gran		07
	No. 45 of Rev 4	Stattoord	1235	1 AM		8	128	ed .	59	14	162	106		65.90		0
	Southern Terrord	in a second second	-	1	-	1		60			ig in	2000				6
	Consection of the local division of the loca	-	11		W		101	0.0	10	1000	1991	-	1	The second		
	Wrist of D43	Watthard	101	745	1205	22	81	10	10	40	100	1001	22.02	151	54 02 16 02	+
	Wetween D49 and Wegeties	d Wethard	10	1002	1261	506	1967	60	35	80	600 605	1000	101		1 0x	+
1-2014 (#201)	1 Breach Magains and RSS	6 Bollourd Earbourd	945 845	1005	NAS NASS	20	158 158	30	02	11	105	1504	1761		6 63	H
	21X of \$55	Frontravel	825	1255	2548	22	2111	0.6	10	11	1221	3555	1000		90 90	H
-	Denvere C40 and Menora	were D40 and Ministeane	100	00	100 100	53	20 200	50	03	04	-	144	571		60	H
Interest	Distance Null and Pharman	Ears Normand	500 93	和彩	102	101	1006	90	04	07	145	600 600	201		01 01	H
89	South of Paymer	Aytexard Service.ed	502	145	190	815 200	127	02	04 09	06	101	346	122.5		0.5	-
	Between PMVB and RCS	Methoda	00	0		2002	2692	500 D00	10	61 11		00	1020		2 0 00 4	+
KS	East of RSE	Mitthere	0.0	00		22	200	60	100	99 92		40	202		00	00
-	Wint SCR50	Weitpard	00	96 96 15 15	940 A.F.	••	95	0.0	9.0	44	-	996 101	83		00	Н
Mura	Eact of PSF	Weithard Emboard	00	88	22	• •	<i>R</i> R	80	20	00	66	80	812	111	80 90	H
	Benaver KS2 and N1A	5 therefored	0.0		0.0	1205	6501 2001	00	01 0.6	92 92	0.0	0 0	1265		000	-
CO.M.d	Faw of Net	Nutritional Southeouse	0.0	0.0	0		a a	40	000	0.0	00	0	æ 0,		00	-
	WHERE RAND	Misloud	NT.	222	1158	954	1001	60	50	13	619	1951	111		3 64	-
		Esthard	345	442	1000	5	162	92	0.4	11	NK.	112	1742	-	10 D	-
ž	Between PAIVE Lang REG	Methound	9.5	23	8821	88	1573	50	1 10	20	213	- Aler	60%	20	04	H
	East of Test	Municipal	400	102	1222	623	USS	34	10	12	192	1951	SOOL	22	30 00	H
	-	Eastered	1015	1415	500	808	2516	6.4	0.1	01	1502	2065	3423	2	a ki	-
Wards	Enternes	Miniburd	240	1005	193	68	2000	50	60	10	1021	2126	12547	-	10 07 102	H

	a lane	ection			if not in			Γ		n 308	
Conditions	Traffic to South can use K71 and no extra lane should be provided by Monavoni	Construction of K52 with one lane per direction	Upgrade link to D49		Construction of PWV9 from K52 to N14 if not in place			Contribution to K71 North of K103	Contribution to K73 East of K71	Contribution to K71 South of K71 northern lerminal if PWV South of N14 is not in place	
Phasing		5	N		e			4	5	9	
Roads that should be upgraded Phasing		K52	D49		PWV			K71	K73	K71	
No. of Lanes for Monavoni Roads that based on trip should be distribution upgraded	0.2	0.3	0.2		0.4	1		0.3	0.3	0.5	
No. of Lanes for Monavoni	0.3	0.7	1.0	1.3	1.7	2.0	2.4	2.7	3.0	3.4	
No. of Lanes for both Latent Rights and Monavoni	15	3.0	4.5	6.0	7.5	9.0	10,5	12.0	13.5	15.0	
Cumulative volumes of Monavoni (vph)	506	1012	1518	2024	2530	3036	3542	4048	4554	5060	
Cumulative volumes of Monavoni + Latent Rights (vph)	2246	4492	6738	8984	11230	13476	15722	17968	20214	22460	
Latent Rights + Monavoní (vph)	2246	2246	2246	2246	2246	2246	2246	2246	2246	2246	22460
Monavoni (vph)	208	506	506	506	506	506	506	506	506	506	5060
All Latent Rights (vph)	1740	1740	1740	1740	1740	1740	1740	1740	1740	1740	17400
Year	-	8	0	4	5	9	2	8	6	10	Total

Table 10: Proposed phasing of upgrades

ITS 2675 - Traffic Impact Study - Monavoni Master Planning of all extensions

2

Table 11: Estimated cost of external road upgrades

Nr	Route	Section	Upgrade	Extent	Estimated cost	Cumulative Cost
1	K71	North of Wierda (K103)	Additional through lanes for both directions	2000 m x 2 lanes	R 11,900,000	R 11,900.000
2	PWV 9	K52 to N14	Construction of 1 lane per direction, Bridge and Ramps to the east **	3000m x 2 lanes + 100m Bridge for 2 lanes + 800m ramps	R 56,900,000	R 68,800.000
3	K52	K71 to Riumte (P102-1)	1 lane per direction, new road	2200m x 2 lanes	R 14,960,000	R 83,760,000
4	D49 / Magalies	Intersection	1 lane per direction, reconstruction	1000m x 2 lanes + 2 x R0,5m for traffic signals	R 3,960,000	R 87,720,000
5	Theron	Riumte to Von Willich	1 lane per direction, reconstruction	1000m x 2 lanes	R 1,600,000	R 89,320,000
6	K52	K71 to PWV9	1 lane per direction, new road	2600m x 2 lanes	R 6,120,000	R 95,440,000
7		COLUMN ST	TOTAL	NUMBER OF STREET	R 95,440,000	1012000

Table 11: Monavoni Masterplan - Estima	ated cost of external road upgrad	les
--	-----------------------------------	-----

R25 000.00 per sam for the bridge.

R400.00 per sqm for reconstruction of road.

** Land expropriation cost is excluded.

APPENDIX B

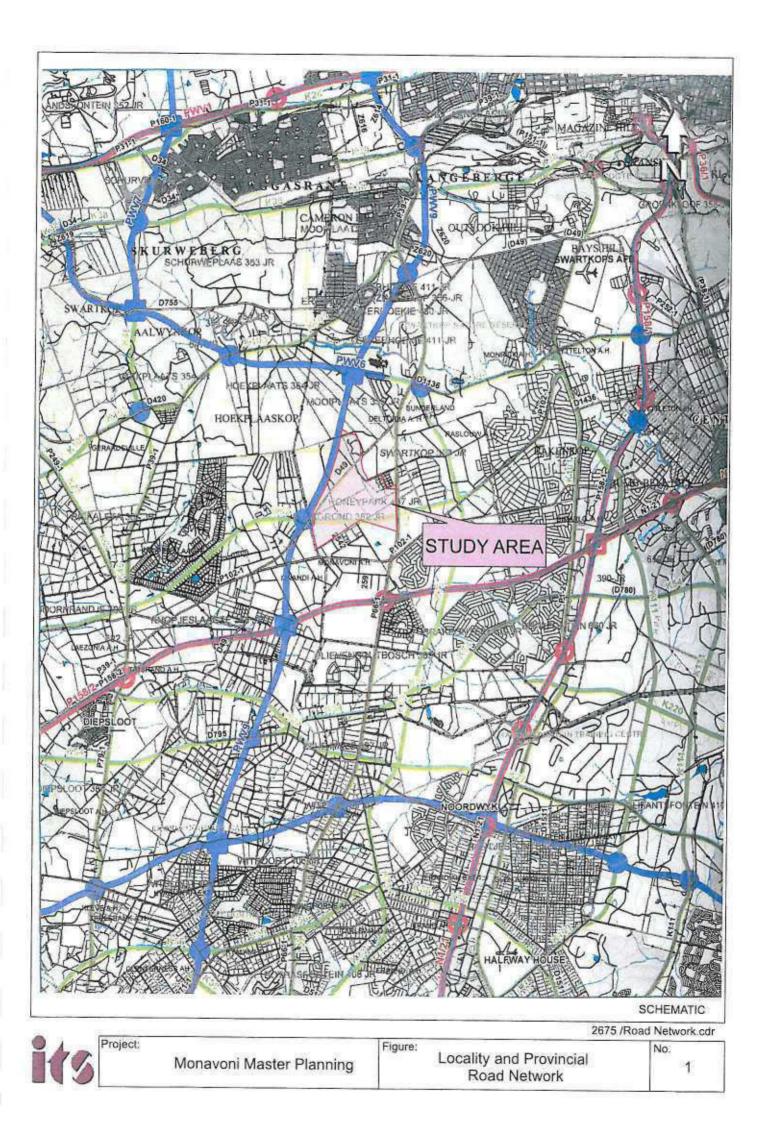
FIGURES

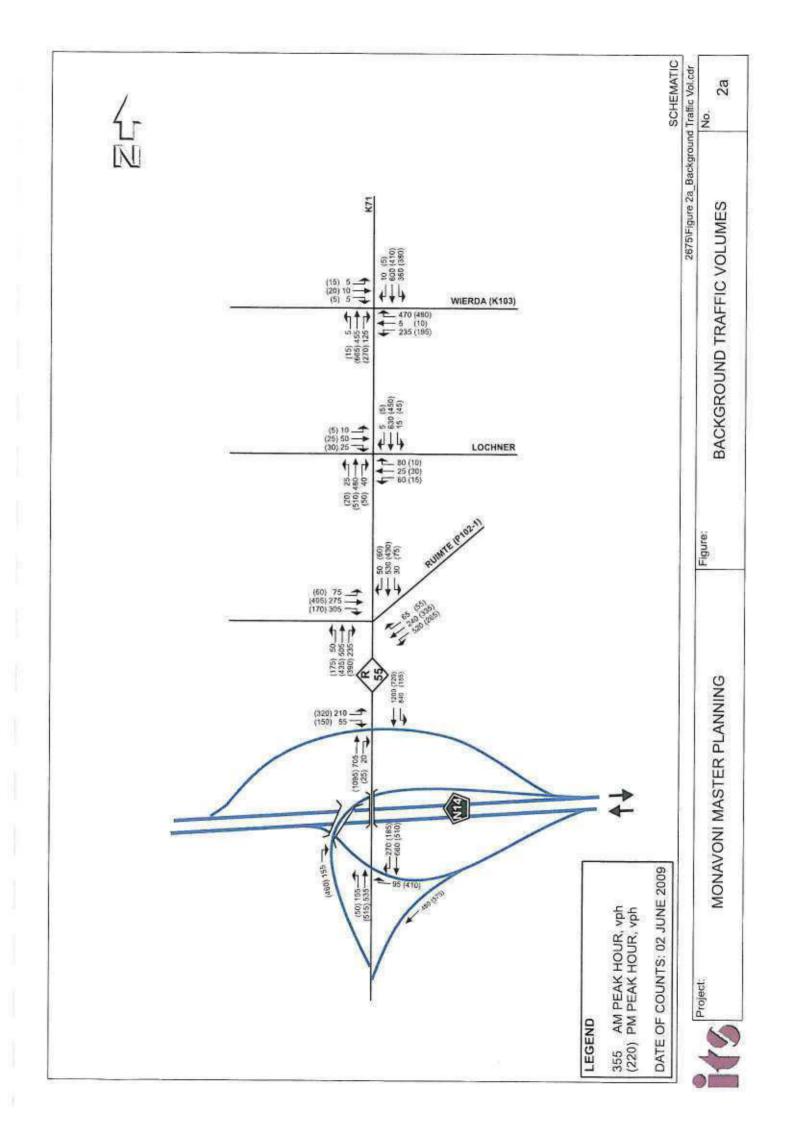
ITS 2675 - Traffic Impact Study - Monavoni Master Planning of all extensions

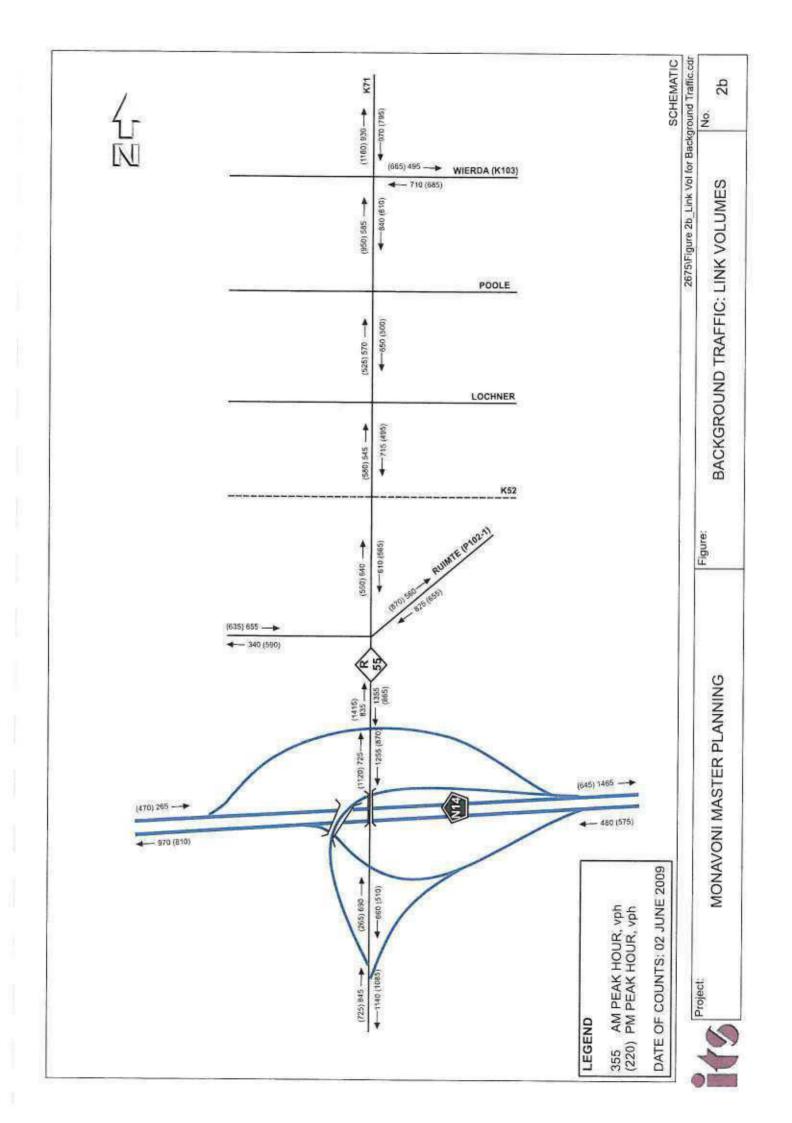
l

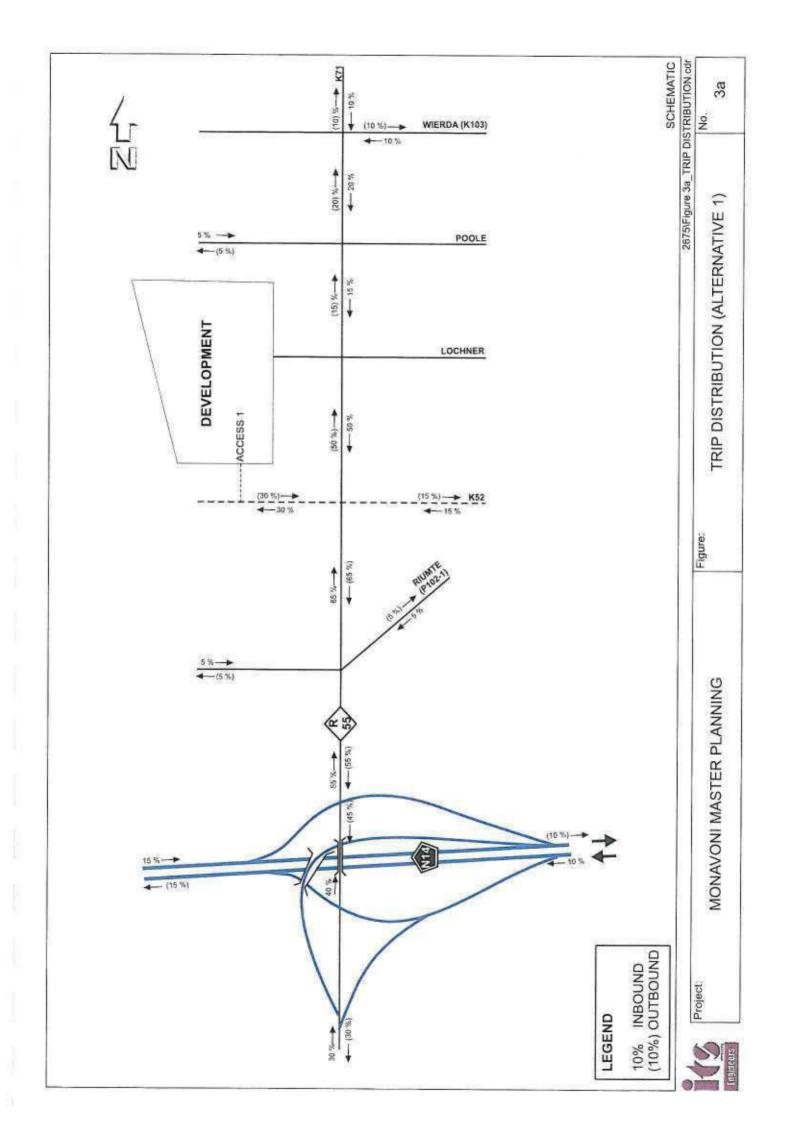
l

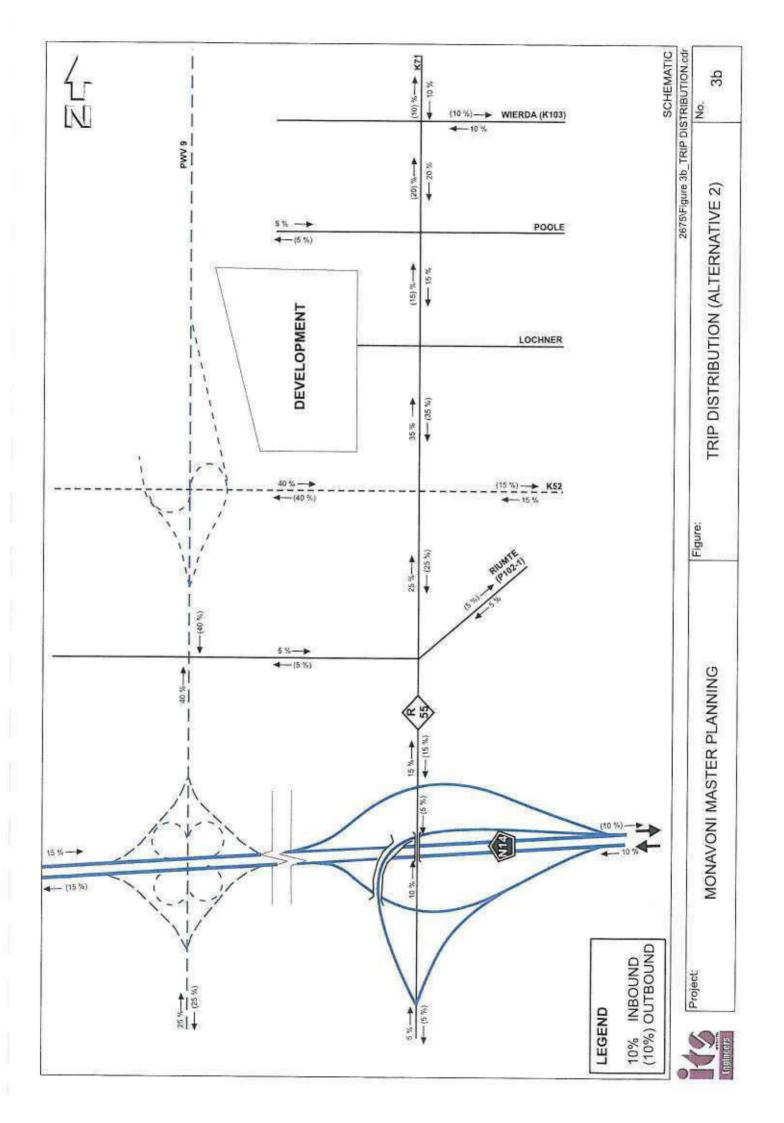
I

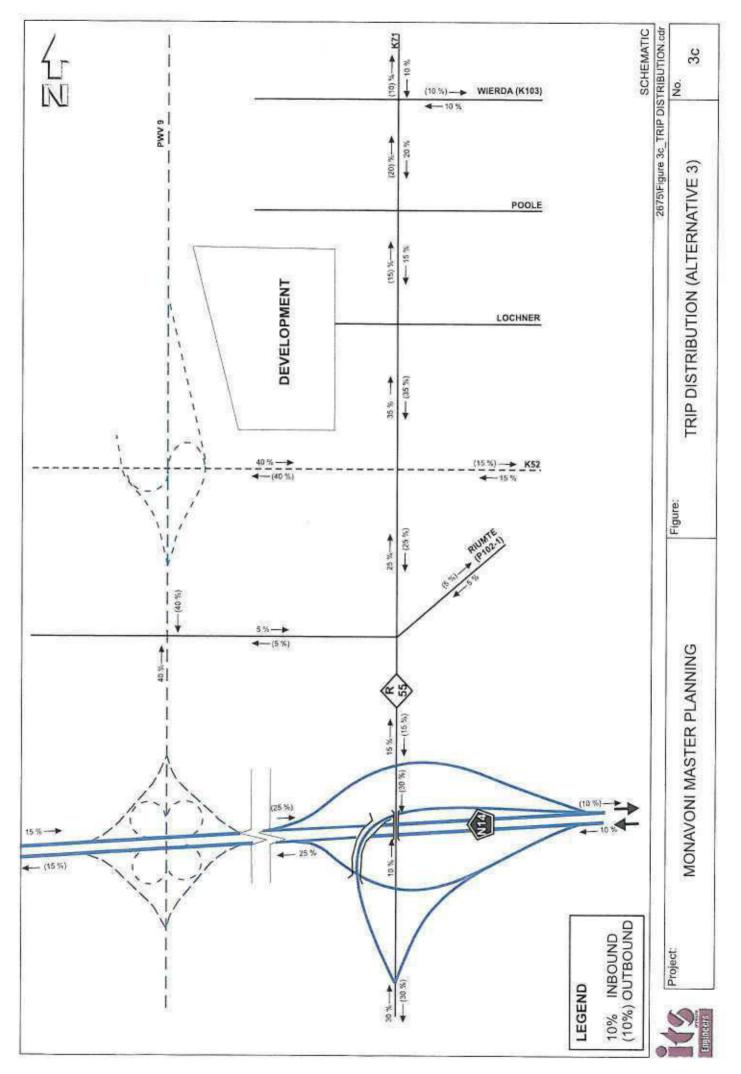

l

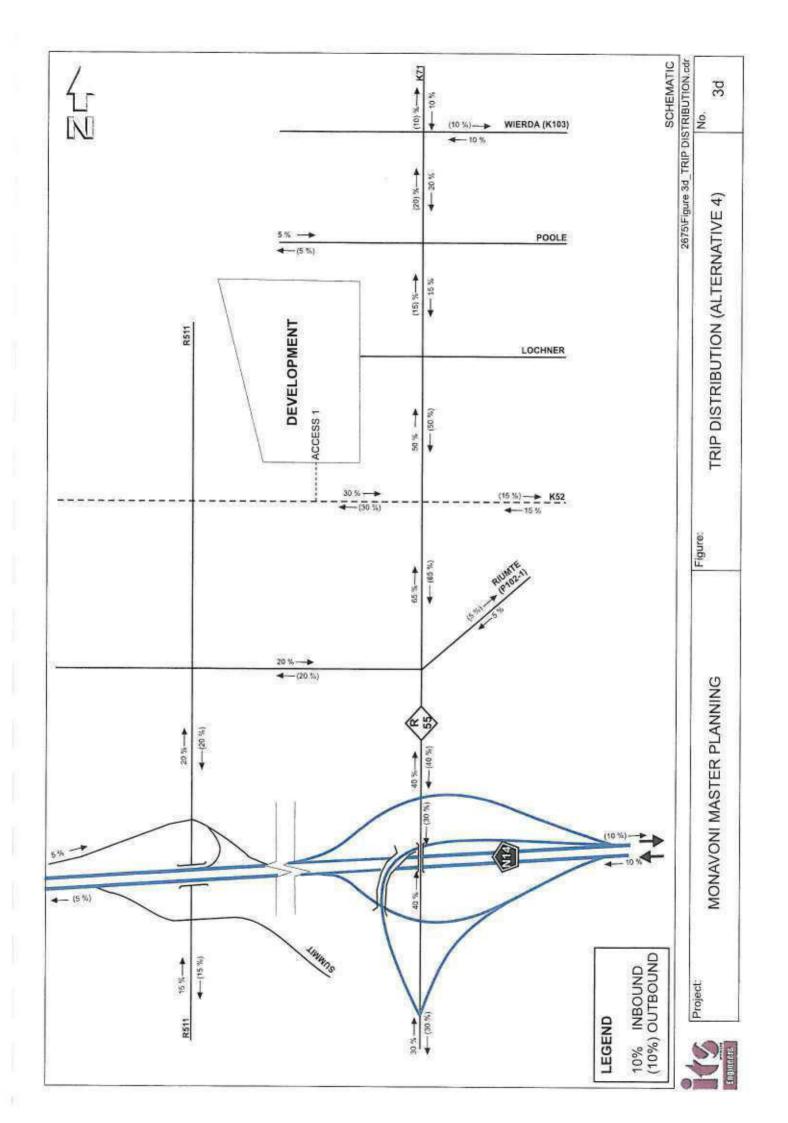

ļ

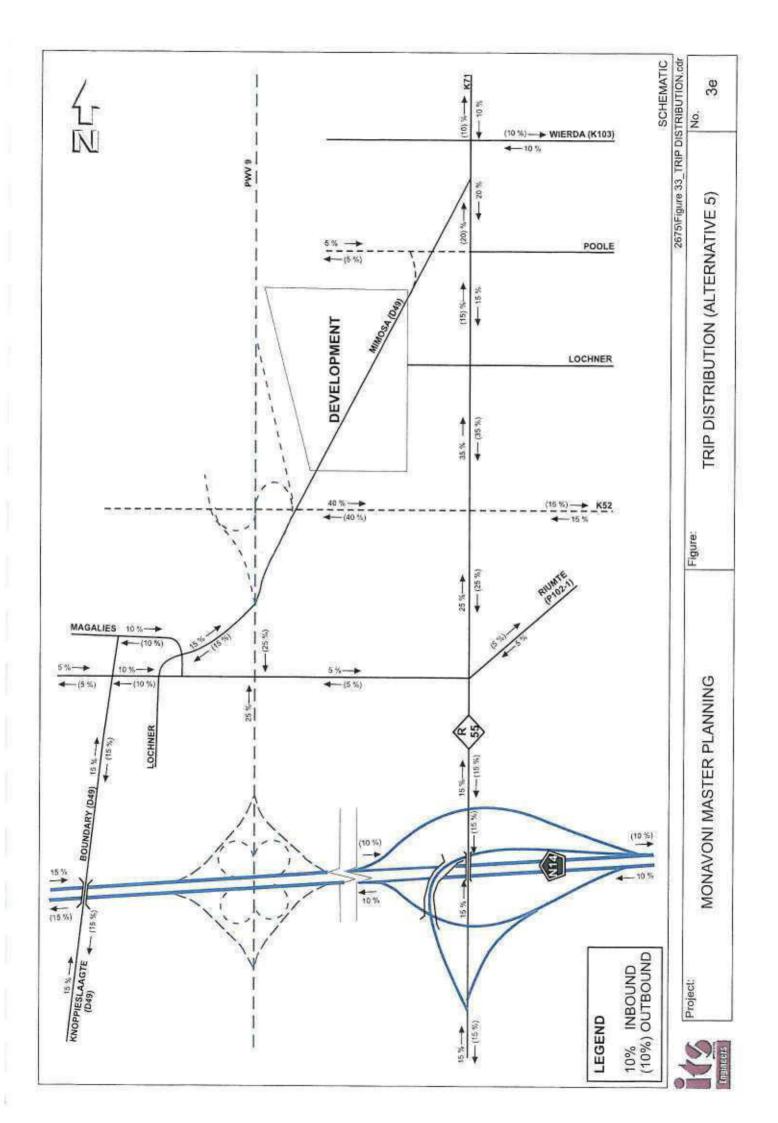

APPENDIX B


LIST OF FIGURES


- Figure 1a: Locality and Provincial Road Network
- Figure 2a: Background traffic volumes (2009)
- Figure 2b: Link volumes of Background traffic (2009)
- Figure 3a: Trip Distribution (alternative 1)
- Figure 3b: Trip Distribution (alternative 2)
- Figure 3c: Trip Distribution (alternative 3)
- Figure 3d: Trip Distribution (alternative 4)
- Figure 3e: Trip Distribution (alternative 5)
- Figure 4a: Location of Latent Rights and PM Peak Trip Generation (vph)
- Figure 4b: Latent Rights traffic volumes
- Figure 4c: Existing and Proposed road upgrades for Latent Rights
- Figure 5a: Link volumes for 2019 traffic volumes plus Latent Rights and Development traffic (Alternative 1)
- Figure 5b: Link volumes for 2019 traffic volumes plus Latent Rights and Development traffic (Alternative 2)
- Figure 5c: Link volumes for 2019 traffic volumes plus Latent Rights and Development traffic (Alternative 3)
- Figure 5d: Link volumes for 2019 traffic volumes plus Latent Rights and Development traffic (Alternative 4)
- Figure 5e: Link volumes for 2019 traffic volumes plus Latent Rights and Development traffic (Alternative 5)







Annexure R

Annexure R(1)

NOTICE OF ENVIRONMENTAL IMPACT ASSESSMENT PROCESS

Notice is given of an application for Environmental authorization that was submitted to the Gauteng Department of Agriculture, Conservation and Environment, in terms of regulation no. R385 published in the Government Notice no. 28753 of 21 April 2006 of the National Environment Management Act, 1998 (Act No. 107 of 1998) governing Scoping procedures (Notice 1 and 2 – Governing Notice R386 & R387) for the following activity:

Name of project: Monavoni x 44

Reference Number: Gaut: 002/08-09/N0588

Property description: Part of Portion 1 of the farm Stukgrond, 382-JR

Project description: Mixed land use development: commercial, offices, motor trade, light industrial & commercial.

Activities

The application was submitted for the following activities in terms of the Government Notice R. 386 & R. 387, 21 April 2006:

R. 386, 21 April 2006	Activity 1k	The bulk transportation of sewage and water, including storm water, in pipelines with (i) an internal diameter of 0.36 metres or more or (ii) a peak throughout of 120 litres per second of more
R. 386, 21 April 2006	Activity 1v	Advertisements as defined in classes 1(a), 1(b), 1(c), 3(a), 3(b),3(l) of the South African Manual for Outdoor Advertising Control
R. 386, 21 April 2006	Activity 7	The above ground storage of dangerous good, including petrol, diesel, liquid paraffin, in containers with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres at any one location.
R. 386, 21 April 2006	Activity 14	The construction of masts of any material or type and of any height, including those used for telecommunication broadcasting and radio transmission, but excluding - (a) masts of 15 metres and lower exclusively used (i) by radio amateurs; or (ii) for lighting purposes (b) flag poles; and (c) lightning conductor poles.
R. 386, 21 April 2006	Activity 15	The construction of a road that is wider than 4 metres of that has a reserve wider than 6 metres, excluding roads that fall within the ambit of another listed activity or which are access roads of less than 30 metres long
R.386, 21 April 2006	Activity 16 (b)	The transformation of undeveloped, vacant or derelict land to – residential, mixed, retail, commercial, industrial or institutional use where such development does not constitute infill and where the total area to be transformed is bigger than 1 hectare.
R. 386, 21 April 2006	Activity 17	Phased activities where any one phase of the activity may be below a threshold specified in the Schedule but where a combination of the phases, including expansions or extensions, will exceed a specified threshold
R. 386, 21 April 2006	Activity 19	The development of a new facility or the transformation of an existing facility for the conducting of manufacturing processes, warehousing, bottling, packaging or storage, which, including associated structures or infrastructure, occupies an area of 1 000 square metres or more outside an existing area zoned for industrial purposes
R. 387, 21 April 2006	Activity 1 (c)	The construction of facilities or infrastructure, including associated structures or infrastructure, for – 1(c)The above ground storage of a dangerous good, including petrol, diesel, liquid paraffin, in containers with a combined capacity of more than 1 000 cubic metres or more including the storage of one or more dangerous goods, in tank farm.
R. 387, 21 April 2006	Activity 1 (g)	The construction of facilities or infrastructure, including associated structures or infrastructure, for – 1(g)The use, recycling, handling, treatment, storage or final disposal of hazardous waste.
R. 387, 21 April 2006`	Activity 2	Any development activity, including associated structures and infrastructure, where the total area of the development area is, or is intended to be, 20 hectares or more.
R. 387, 21 April 2006	Activity 5	The route determination of road and design of associated physical infrastructure, including roads that have not yet been built for which routes has been determined before the publication of this notice and which has been authorized by a competent authority in terms of the Environmental Impact Assessment Regulations, 2006 made under section 24(5) of the Act and published in Government notice No. R. 385 of 2006, where –

Extent: The study area is approximately 34.193 hectares in extent

Name of the proponent: JR 209 Investments (Pty) Ltd

Date of notice: 20 April 2009

Location: The Proposed Development is situated north of the N14 and west of the R55.

Queries regarding this matter should be referred to:

Bokamoso Landscape Architects and Environmental Consultants

Philip Beukes P.O. Box 11375 Maroelana 0161

Tel: (012) 346 3810 Fax: (012) 460 7079 E-mail: lizelleg@mweb.co.za

In order to ensure that you are identified as an interested and/or affected party, please submit your name, contact information and interest in the matter to the contact person given above within 30 days of this advertisement.

Annexure R(ii)

mar van E-1 2007 Polimitetroom, Reg-state aktering 1.0. Noord-Wes provinse the content and the local of 0.10 M on the Ordenative an Despetition of the Despetition of the second and the Despetition of the second for the the second and the second the second of the second second second and the despetition of the second the second and the second the second of the second of the second second second and the second second second and the second of the second second second and the second second second and the second of the second de second and the second of the second de second most beins in repetition of the Mathematical for the second the second and the second of the second de second most beins in repetition and the Mathematical for the second the second most beins in repetition and the Mathematical for the second and the second and the second second de second most beins in repetitions and the Mathematical for the second de second and the second and solutions. Proceeds 1007 Mathematical second the Mathematical Bestionation to the second and the second th

of 21 April 246 - 100. The transforming the of understand land to communical and instantial and what such Dipolo ment data and the manufacture of the solution of the transformed of support that is harding for the development of a membrane sector of the sector of the solution and on the solution of the solution of solution of the solution of the solution and on the solution of the 65/63/08-05/0126 APR 2103180

errore that you are dertified as an interested another uthorised party, please submit your name, contact information and increased in the matter to the contact person given above within 30 days of the advertisement 002/06-07/N0588 APR 21/8/166

<text> 002/06-07/N0588 APB 21(8)195

Regskennisgewings

Spertye:

3 werkedee

voor

publikasia

The article of evolves inside activity of photon seek coasts of basis than all others is social in a set all a set all others is social in a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a set all a set all a set all a set is a set all a point of the set all a set all a set all a set all a point of the set all a set all a set all a set all a set is a set all a set is a set all a set of a set all a set

idke P.O. Box 11375 Te: 012-341 3810. Fax

entrum that way are gentined as an interacted entities effected party. Blassa salardy your name contact information and interest in the matal to the context person given above within 38 days of this advertisement 002/06-07/N0550 APR 11(8)19F

<text> edwert semant 002/06-07/N0591 APR 21/0/140

WAARSKUWIN

Lesers moet hulle vergewis van alle dienste wat aangebied word en kwotasies en depsito's wat vereis word nagaan voordat hulle enige daarvan aanvaar. Dit is die verbruiker se verantwoordelikheid om die adverteerder met wie hulle sake wil doen se getuigskrifte na te gaan.

Beeld Netads, bied 'n diens aan adverteerders om hulle produkte en / of dienste te bemark. Beeld Netads aanvaar egter geen verantwoordelikheid of aanspreeklikheid vir enige skade of eise teen die adverteerder nie.

FOUTE / KORREKSIES / KANSELLASIES

Die verantwoordelikheid berus by die adverteerder om seker te maak dat sy advertensies reg verskyn en om foute voor 09:00 op dag van die 1ste publikasie onder die aandag van Beeld Netads te bring.

Beeld aanvaar nie verantwoordelikheid vir meer as een foutiewe plasing nie.

Krediet en gratis plasings sal nie gegee word vir tipografiese foute wat nie die woorde van die advertensie beinvloed nie. In die geval van 'n kansellasie, moet u op 'n stakingsnommer aandring as bewys.

* Sodra 'n advertensie teruggelees word en deur die adverteerder as korrek bevestig is (inhoud / hofie / datum), kan daar nie aangedring word op 'n gratis plasing nie.

Indien daar per faks met Beeld Netads gekommunikeer word, moet die adverteerder die ontvangs daarvan telefonies bevestig met Beeld Netads

Beeld Netads aanvaar nie verantwoordelikheid vir posisionering van advertensies nie.

* Die onus rus op die adverteerdet om hom / haar te vergewis van die sluitingstye.

* Geen advertensie sal geplaas word indien die adverteerder nie die korrekte bedrag inbetaal en alvorens die betaling op Beeld se bankstaat verskyn nie.

Sluitingstye vir kontant sal 3 dae voor publikasie wees.

Alle geklassifiseerde advertensies van meer as R500 moet deur die adverteerder afgeteken word, alvorens n advertensie gepubliseer sal word

Annexure R(iii)

NOTICE OF ENVIRONMENTAL IMPACT ASSESSMENT PROCESS

Notice is given of an application for Environmental authorization that was submitted to the Gauteng Department of Agriculture, Conservation and Environment, in terms of regulation no. R385 published in the Government Notice no. 28753 of 21 April 2006 of the National Environment Management Act, 1998 (Act No. 107 of 1998) governing Scoping procedures (Notice 1 and 2 – Governing Notice R386 & R387) for the following activity:

Name of project: Monavoni x 44

Reference Number: Gaut: 002/08-09/N0588

Property description: Part of Portion 1 of the farm Stukgrond, 382-JR

Project description: Mixed land use development: commercial, offices, motor trade, light industrial & commercial.

Activities

The application was submitted for the following activities in terms of the Government Notice R. 386 & R. 387, 21 April 2006:

R. 386, 21 April 2006	Activity 1k	The bulk transportation of sewage and water, including storm water, in pipelines with (i) an internal diameter of 0.36 metres or more or (ii) a peak throughout of 120 litres per second of more
R. 386, 21 April 2006	Activity 1v	Advertisements as defined in classes 1(a), 1(b), 1(c), 3(a), 3(b),3(l) of the South African Manual for Outdoor Advertising Control
R. 386, 21 April 2006	Activity 7	The above ground storage of dangerous good, including petrol, diesel, liquid paraffin, in containers with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres at any one location.
R. 386, 21 April 2006	Activity 14	The construction of masts of any material or type and of any height, including those used for telecommunication broadcasting and radio transmission, but excluding - (a) masts of 15 metres and lower exclusively used (i) by radio amateurs; or (ii) for lighting purposes (b) flag poles; and (c) lightning conductor poles.
R. 386, 21 April 2006	Activity 15	The construction of a road that is wider than 4 metres of that has a reserve wider than 6 metres, excluding roads that fall within the ambit of another listed activity or which are access roads of less than 30 metres long
R.386, 21 April 2006	Activity 16 (b)	The transformation of undeveloped, vacant or derelict land to – residential, mixed, retail, commercial, industrial or institutional use where such development does not constitute infill and where the total area to be transformed is bigger than 1 hectare.
R. 386, 21 April 2006	Activity 17	Phased activities where any one phase of the activity may be below a threshold specified in the Schedule but where a combination of the phases, including expansions or extensions, will exceed a specified threshold
R. 386, 21 April 2006	Activity 19	The development of a new facility or the transformation of an existing facility for the conducting of manufacturing processes, warehousing, bottling, packaging or storage, which, including associated structures or infrastructure, occupies an area of 1 000 square metres or more outside an existing area zoned for industrial purposes
R. 387, 21 April 2006	Activity 1 (c)	The construction of facilities or infrastructure, including associated structures or infrastructure, for – 1(c)The above ground storage of a dangerous good, including petrol, diesel, liquid paraffin, in containers with a combined capacity of more than 1 000 cubic metres or more including the storage of one or more dangerous goods, in tank farm.
R. 387, 21 April 2006	Activity 1 (g)	The construction of facilities or infrastructure, including associated structures or infrastructure, for – 1(g)The use, recycling, handling, treatment, storage or final disposal of hazardous waste.
R. 387, 21 April 2006`	Activity 2	Any development activity, including associated structures and infrastructure, where the total area of the development area is, or is intended to be, 20 hectares or more.
R. 387, 21 April 2006	Activity 5	The route determination of road and design of associated physical infrastructure, including roads that have not yet been built for which routes has been determined before the publication of this notice and which has been authorized by a competent authority in terms of the Environmental Impact Assessment Regulations, 2006 made under section 24(5) of the Act and published in Government notice No. R. 385 of 2006, where –

Extent: The study area is approximately 34.193 hectares in extent

Name of the proponent: JR 209 Investments (Pty) Ltd

Date of notice: 20 April 2009

Location: The Proposed Development is situated north of the N14 and west of the R55.

Queries regarding this matter should be referred to:

Bokamoso Landscape Architects and Environmental Consultants

Philip Beukes P.O. Box 11375 Maroelana 0161

Tel: (012) 346 3810 Fax: (012) 460 7079 E-mail: lizelleg@mweb.co.za

In order to ensure that you are identified as an interested and/or affected party, please submit your name, contact information and interest in the matter to the contact person given above within 30 days of this advertisement.

Annexure R(iv)

	Registered Parties	Contact details	Address
	Monika Widmer	<u>083 666 3921</u>	
	Brenda Sellak	monikawid75@gmail.com	
		moni@absamail.co.za	
	Dirk JT van Niekerk	012 562 0330	
	The Waste Group	083 777 0318	
		dirkvn@wastegroup.co.za	
3	Johan Goosen	jgoosen@golder.co.za	
	Golder Associated Africa (Pty) Ltd	082 325 0228	
	White Hills Radio Control Airfield	info@whitehills.co.za	
	Brett Black (Chairman)	082 788 7923	

Annexure R(v)

Ontvangs

From: Sent: To: Subject: Monika Widmer [moni@absamail.co.za] 03 August 2010 12:37 PM Lizelle Gregory Re: FW: Monavoni projects notification

Dear George Gericke

Regarding the proposed developments, township establishments to be known as Monavoni X 43-52, I would like to register as an interested/affected party.

I own and reside on Plot 126 Marjorie Road, Mnandi Guest Farm, Knoppieslaagte, (Portion 126 of the farm Knoppieslaagte 385 JR) near to the proposed development. The aforementioned property is 100% reliant on the ground water as a means of primary supply to the occupants on the property. The ground water level has come under increasing strain as a result of climatic conditions as well as increased development in the area. I object to the development until such time that a full impact assessment on the effect that the proposed application will have on the ground water supply will as proposed alternatives, should the study prove that the ground water supply will not support the proposed development.

In addition to this, I object to the proposed development until such time that more details are provided in terms of the roads plan and the impact that the plan will have on the aforementioned property, and consequential losses have been agreed.

Please acknowledge receipt of this email and the proposed actions thereafter.

I look forward to your response.

Kind regards Brenda Sellak 073 216 9359 P.O.Box 51503 Wierda Park 0149 5 > > To whom it may concern > 5 3 >> I hereby inform you of proposed projects in the Monavoni area. > Attached you will find the public notices together with maps of the area for the following proposed projects: 3 6 Monavoni Ext 43 5 1 > Monavoni Ext 44 > > Monavoni Ext 45 > > Monavoni Ext 46 ->

a state of the second of the second of the second
1

Annexure R(vi)

Agriculture and Environmental Management Department

Environmental Management Division

Galleria Office I 1st Floor I Sammy Marks I Vermeulen Street I Pretoria I 0001 PO Box 1454 I Pretoria I 0001 Tel: 012 358 8871 I Fax: 012 358 8934 Email: <u>livhuwanis@tshwane.gov.za</u> I www.tshwane.gov.za

My ref:	8/4/R/4	Tel:	012 358 8848	
Your ref:	GAUT 002/08-09/N0588	Fax:	012 358 8934	
Contact person:	J. Prinsloo	Email:		
Section:	Open Space Management Section	Date:	18 June 2010	

Bokamoso Environmental Consultants P.O. 11375 Maroelana 0161

Attention: Ms Hazel Engelbrecht Tel: (012) 346 3810 Fax: 086 570 5659

Dear Madam,

DRAFT SCOPING REPORT FOR THE PROPOSED DEVELOPMENT ON PART OF PORTION 1 OF THE FARM STUKGROND 382-JR, TO BE KNOWN AS MONAVONI X44

Your Report dated 28 April 2010 refers,

1. INTRODUCTION

The Agriculture and Environmental Management Department (the Department) has considered the Draft Scoping Report in respect of the above-mentioned application. The Draft Scoping Report is submitted to the Agriculture and Environmental Management Department of the City of Tshwane, hereafter referred to as "the City", as a commenting authority in terms of the National Environmental Management Act 1998 (Act 107 of 1998) (NEMA) and EIA Regulations of April 2006.

2. PROJECT LOCATION AND DESCRIPTION

Bokamoso Environmental was appointed by M&T Development to complete an Environmental Impact Process for the proposed Township Development on Part of Portion 1 of the Farm Stukgrond 382-JR, to be known as Monavoni x44. The proposed application site is approximately 39,2234 in extent. The proposed application site is located within the jurisdiction of the City of Tshwane.

The proposed application entails the establishment of a Township Development consisting of the following land-uses:

- "Residential 3" (2 erven) with an average density of 80 units per hectare; and
- "Special" for the purpose of Commercial uses, Light Industrial and Business Buildings.

The proposed application site is located east of the Mnandi Agricultural Holdings, on the corner of Monument Road and Mimosa Road, within the South-Western part of Centurion. The proposed application site is divided within a northern and a southern portion due to the strip of land in-between which is reserved for the future alignment of the Provincial K52 Road.

3. KEY FACTORS INFORMING THE COMMENTS

In making comments in respect of the proposed Activity the Department has taken, inter alia, the following into consideration:

- a) The information contained in the Draft Scoping Report as submitted by Bokamoso Environmental to the Department on 28 April 2010.
- b) Information obtained from the Section's information base including inter alia:
 - · Geographic Information System (GIS); and
 - Gauteng Open Space Plan (GOSP).

c) Compliance with applicable Municipal, Provincial, and National Policies and Guidelines including:

- The National Environmental Management Act 1998 (Act 107 of 1998) (NEMA): its decision-making principles and Environmental Impact Assessment Regulations;
- The Tshwane Integrated Environmental Policy (TIEP); and
- The Tshwane Open Space Framework (TOSF) Policy Statements and Typologies.

4. DISCUSSION

In reviewing the application the Department made the following findings:

- a) According to the Tshwane Open Space Framework the proposed site is situated within and adjacent to the following open space typologies:
 - A Green Node, namely Hennopsvallei Conservancy. Green nodes are the most important elements in the provisioning of environmental goods and services, the protection of biodiversity, endangered species and ecological systems, as well as eco-based activity. Green nodes must be protected for conservation purposes.
- b) The Report indicated that due to the area within which the development is proposed, has been earmarked for commercial and retail development, no development alternatives were considered. The proposed development is considered to be in line with the current and future planning for the area.
- c) The Report indicated that the proposed development will be in line with the Monavoni Development Framework.
- d) According to the Report the Hennopsvallei Conservancy is situated on the North-Western boundary of the proposed application site. The proposed application site is not affected by any ridges or drainage lines which could facilitate linkages within the adjacent Hennopsvsallei Conservancy.
- e) The Report indicated that the adjacent Hennopsvallei Conservancy is extensively disturbed by human activities such as a land-fill site and informal settlements.
- f) The Report indicated that the proposed development will consist of 4 Erven, including 1 erven for "Residential 3", 1 erven for "Special" for Commercial, Light Industrial and Business land-uses, 1 erven for Streets and 1 erven for the Provincial Road K52.

- g) According to the report the proposed application site is vacant and no sensitive ecological features such as wetlands, ridges or drainage lines were identified.
- According to the Report the proposed application site is underlain by dolomite.
- The Report indicated that the proposed development is not affected by any flood lines as the closest water resource; the Swartbooi Spruit is located approximately 820m south west of the proposed application site.
- According to the Report the Natural Primary Grassland and Rocky outcrop which covers the northern part of the proposed application site were deemed sensitive.
- k) The Report indicated that the Orange-listed Hypoxis hemerocallidea was sparsely scattered across the proposed application site and should be relocated before any construction commence on the proposed application site.
- The Report indicated that several Melodius Lark bird species were observed on the proposed application site. The Melodius Lark has been removed from the GDARD List of priority species.
- m) The Report indicated that Golder Associates registered as an Interested and Affected Party and indicated that the proposed development of Monavoni x44 will not be affected by the 800m buffer zone from the adjacent waste disposal facility (landfill site).

5. RECOMMENDATIONS

The Department supports the proposed development subject to the following recommendations:

- a) Details regarding the Land-use for "Special' including the Commercial, Light Industrial and Business land-uses shall be discussed within the EIA Report. It is important to note that this Department will not support intensive Industrial land-uses due to the Hennopsvallei Conservancy adjacent to the site and due to the Sunderland Ridge Industrial Area located in close proximity of the proposed application site.
- b) A detailed Geotechnical Report and Dolomite Stability Assessment for the proposed Development shall be included within the EIA Report. The Report shall include a land-use specific map for Monavoni x44 in regards to the Geotechnical Stability which will indicate all the Geotechnical zones and allowed land-uses for each zone.
- c) All conditions in regards to the Monavoni x44 Development, within the letter of Council for Geosciences (dated 12 November 2009, page 4& 5) shall be included within the final EMP as part of the EIA Report.
- d) A site specific Fauna and Flora Assessment for Monavoni x44 shall be included within the EIA Report due to the proposed application site been affected by GDARD Irreplaceable Sites. The Report shall include a map which will include the vegetation zones identified on site. Further the Report shall include a letter from GDARD Biodiversity, indicating possible sensitive Fauna and Flora species on the proposed application site. The Report shall address all issues and species as identified by GDARD Biodiversity.
- e) Due to the Monavoni Development Framework not been approved, the layout within the EIA Report shall uphold and incorporate all sensitive features on site, including the Primary Grassland and Rocky outcrop. These areas shall be included within the development as Open Space. The layout should also be sensitively designed to incorporate as much as possible, the existing indigenous vegetation

clumps and trees on site. A conceptual layout indicating building positions, internal streets, vegetation to be retained and proposed open spaces shall be included within the EIA Report.

- f) Possible negative Noise pollution from the future K52 road proposed to traverse the application site should be discussed within the EIA Report. Possible mitigation measures and design recommendations for especially the Residential component of the proposed Township shall be discussed and included within the EIA.
- g) A Traffic Impact Study for the proposed Monavoni x44 Township must be included within the EIA Report. This Report should aim to address expected traffic volumes and recommendations on road upgrades within the direct vicinity to accommodate the proposed development.
- h) Comments from the Hennopsvallei Conservancy must be included in the final EIA report. Any issues identified by the Conservancy shall be addressed and included. Proof of notification to Hennopsyallei Conservancy shall be included within the EIA Report.
- i) A Stormwater Management Plan must be included within the EIA Report. The plan should aim to prevent pollution, erosion and siltation during both the construction and operational phases. The increase in speed, quantity and quality of surface stormwater should also be addressed.
- j) A Rehabilitation plan should be implemented after construction and should aim to prevent erosion and aid the return of natural, endemic and indigenous vegetation cover to at least 80% of the rehabilitated area. The proposed rehabilitation plan should be discussed as part of the EMP included within the EIA Report.
- k) An Environmental Management Plan should be included within the final EIA Report. The EMP should address impacts and mitigation measures for the pre-construction, construction and post-construction activities. All issues and recommendations as indicated above should be included within the final and approved EMP. An Environmental Control Officer and contact details should also be included within the EMP.

6. CONCLUSION

The Department has no objection to the Draft Scoping Report, subject to the consideration and inclusion of the recommendations as outlined above within the EIA Report.

The Department will only provide final comments after the EIA Report has been submitted to the Department for review.

Yours faithfully.

Mr L. Siphuma

EXECUTIVE DIRECTOR: ENVIRONMENTAL MANAGEMENT CC Gauteng Department of Agriculture and Attn: Mr. Teboho Leku Rural Development

Tel: (011)355 1860 Fax: 086 606 1197

Ke Nako. Celebrate Africa's Humanity-

Annexure R(vii)

water affairs

Department: Water Affairs REPUBLIC OF SOUTH AFRICA

> OFFICE OF THE REGIONAL DIRECTOR: GAUTENG Sanlam Plaza East, 285 Schoeman Street, Pretoria

÷.	(012) 392-1486	\boxtimes	P/Bag X995	*	Nevondo Mpho	
118	086 5499 966		PRETORIA	2	(012) 392 1405	
e-mail:	NevondoM2@Dwa.gov.za		0001		16/2/7/A210/N58	

06 June 2010

Bokamoso Landscape Architects and Environmental Consultant P.O Box 11375 Maroelana 0161

ATTENTION: Lizelle Gregory

THE ENVIRONMENTAL SCPOING REPORT FOR THE PROPOSED MONAVONI EXTENSION 44 DEVELOPMENT.

The Basic Assessment Report for the above mentioned proposed development prepared by Bokamoso Environmental consultant on behalf of M and T development refers:

The Department has evaluated the report and the following comments are brought to your attention.

- All municipal by laws must be adhered to.
- Provision should be made for a storm water system. Storm water polluted by refuse, sewage and other surface pollution should be kept from coming into contact with public streams/ clean water systems.
- The proposed development must comply with all Sections of the National Water Act, 1998 (Act 36 of 1998) and Water Service Act, 1997 (Act 107 of 1997).
- This department requires a letter from municipality stating that there is capacity in the sewage works to accommodate effluent from the Department of Water Affairs - Departement van Waterwese - Muhasho wa zwa Madi - uMnyango wezaManzi - Ndzawulo ya ta Mati Lefspha ta Ditaba tsa Metai - Kgoro ya Merero ya Meetse - Lefapha ta Merero ya Metsi - LiTiko leTermanti ISebe lezaManzi - UmNyango weeNdeba zaMenzi

development. The development is not recommended until such capacity is confirmed.

- Stockpiling of any material is not allowed within 100 / 1:100 year flooding metres from a watercourse.
- All waste generated on site must be managed and disposed of at permitted/ approved dumping site as stipulated in section 20 of the Environmental Conservation Act, 1989 (Act 73 of 1989).
- The Department (Department of Water Affairs) must be notified of any deviations from the conditions and commitments.

Should you have any questions on the content of this letter, you are welcome to contact this office at the above contact details.

Yours Faithfully

REGIONAL HEAD: GAUTENG REGION DATE: 07/06/2010

Annexure R(viii)

water affairs

Department: Water Affairs REPUBLIC OF SOUTH AFRICA

> OFFICE OF THE REGIONAL DIRECTOR: GAUTENG Sanlam Plaza East, 285 Schoeman Street, Pretoria

E.	(012) 392-1486	\boxtimes	P/Bag X995	Ŕ	Nevondo Mpho	
01	086 5499 966		PRETORIA	A	(012) 392 1405	
e-mail:	NevondoM2@Dwa.gov.za		0001		16/2/7/A210/N58	

06 June 2010

Bokamoso Landscape Architects and Environmental Consultant P.O Box 11375 Maroelana 0161

ATTENTION: Lizelle Gregory

THE ENVIRONMENTAL SCPOING REPORT FOR THE PROPOSED MONAVONI EXTENSION 44 DEVELOPMENT.

The Basic Assessment Report for the above mentioned proposed development prepared by Bokamoso Environmental consultant on behalf of M and T development refers:

The Department has evaluated the report and the following comments are brought to your attention.

- All municipal by laws must be adhered to.
- Provision should be made for a storm water system. Storm water polluted by refuse, sewage and other surface pollution should be kept from coming into contact with public streams/ clean water systems.
- The proposed development must comply with all Sections of the National Water Act, 1998 (Act 36 of 1998) and Water Service Act, 1997 (Act 107 of 1997).
- This department requires a letter from municipality stating that there is capacity in the sewage works to accommodate effluent from the Department of Water Affairs - Departement van Waterwese - Muhasho wa zwa Madi - uMnyango wezaManzi - Ndzawulo ya ta Madi Lefepha Is Ditaba tsa Metsi - Kgoro ya Merero ya Metsi - LiTiko leTermanti ISebe lezaManzi - UmNyango weeNdaba zaManzi

development. The development is not recommended until such capacity is confirmed.

- Stockpiling of any material is not allowed within 100 / 1:100 year flooding metres from a watercourse.
- All waste generated on site must be managed and disposed of at permitted/ approved dumping site as stipulated in section 20 of the Environmental Conservation Act, 1989 (Act 73 of 1989).
- The Department (Department of Water Affairs) must be notified of any deviations from the conditions and commitments.

Should you have any questions on the content of this letter, you are welcome to contact this office at the above contact details.

Yours Faithfully

AREGIONAL HEAD: GAUTENG REGION DATE: 07/06/20/0

Annexure S

Monavoni X 44

Part of Portion 1 of the Farm Stukgrond 382 – JR Gaut: 002/08-09/N0588

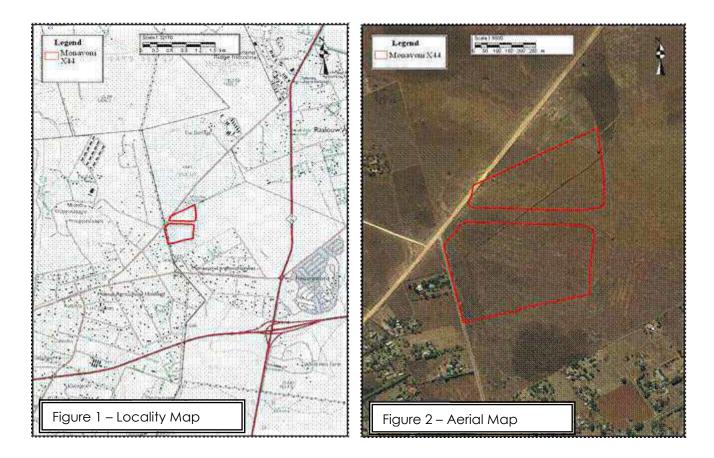
Draft Environmental Management Plan Version 1 October 2013

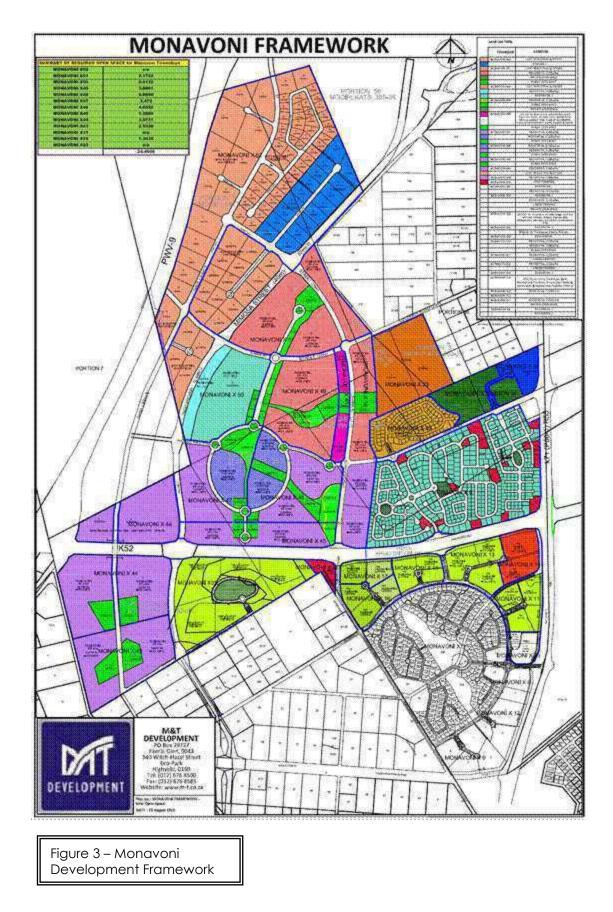
BOKAMOSO

LANDSCAPE ARCHITECTS AND ENVIRONMENTAL CONSULTANTS

Tel: (012) 346 3810 Fax: 086 570 5659 E-mail: lizelleg@mweb.co.za P O BOX 11375 MAROELANA 0161

1 Project Outline


1.1 Background


Bokamoso Environmental Consultants was appointed by **JR 209 Investments (Pty) Ltd** to compile an Environmental Impact Assessment Report for the proposed **Monavoni X 44** development and its associated activities. The Report had been prepared to comply with Section 32 of the National Environmental Management Act (NEMA), 1998 (Act 107 of 1998).

1.2 Project description

The proposed Monavoni X 44 is situated on Part of Portion 1 of the Farm Stukgrond 382 JR (Refer to Figure 1 for the Locality Map and Figure 2 for Aerial Map). The proposed Monavoni X 44 development forms part of the larger Monavoni development for which a Monavoni Development Framework had been compiled (refer to Figure 3).

The study area is approximately **38,8293 hectares** in extent and is located in the area of jurisdiction of the **City of Tshwane** in **Gauteng Province**.

Draft Environmental Management Plan for proposed Monavoni X 44 development

Timeframe for construction:

The construction for the proposed Development of Monavoni X 44 will commence as soon as approval for the proposed development has been secured from the relevant authorities.

The EMP will be a binding document for purposes of compliance.

1.3 Receiving Environment

Geology:

The study area is underlain by Basement granite in the extreme south-western corner, by quartzite and shale of the Black Reef Formation separating the underlying granite from the overlying dolomite and chert of the Oak tree Formation (Malmani Subgroup) of the Chuniespoort Group. The Black Reef Formation and the overlying Chuniespoort Group forms the basal portion of the Transvaal Supergroup.

Hydrology:

The study area is not affected by any rivers, wetlands or floodlines.

Fauna and flora:

Four plant communities were identified on or within 200m of the study area: namely:

- Natural primary grassland;
- Mixed alien and indigenous vegetation;
- Old cultivated fields; and
- Rocky outcrop vegetation.

No Red listed fauna and flora species were identified on site. Some Orange listed species i.e. Hypoxis hemerocallidea occurred on site.

Cultural /Historical:

• No obvious features, sites or artefacts of cultural significance that could be impacted on by the proposed development were identified.

Visual:

• The study area will be visible from the proposed K52 and PWV9. The proposed development is in line with the future proposals and developments for the area and will therefore not be visually out of place.

Noise:

• Some noise impact will occur from the proposed K52.

Dust:

• Dust could impact the surrounding residences if the construction will be done during the dry and windy months. It is proposed that regular damping down of the study area must be done if constructed during dry and windy months.

2 EMP Objectives and context

Objectives

The objectives of this plan are to:

- Identify the possible environmental impacts of the proposed activity;
- Develop measures to minimise, mitigate and manage these impacts;
- Meet the requirements of the Record of Decision of GDARD and other Authorities; and
- Monitor the project.

EMP context

This EMP fits into the overall planning process of the project by carrying out the conditions of consent set out by the GDARD. In addition, all mitigation measures recommended in the EIA report are included in the EMP.

This EMP addresses the following three phases of the development:

- Pre-construction planning phase;
- Construction phase; and
- Operational phase.

3 Monitoring

In order for the EMP to be successfully implemented all the role players involved must have a clear understanding of their roles and responsibilities in the project.

These role players may include the Authorities (A), other Authorities (OA), Developer/proponent (D), Environmental Control Officer (ECO), Project Manager (PM), Contractors (C), Environmental Assessment Practitioner (EAP) and Environmental Site Officer (ESO). Landowners, interested and affected parties and the relevant environmental and project specialists area also important role players.

3.1 Roles and responsibilities

<u>Developer (D)</u>

The developer is ultimately accountable for ensuring compliance with the EMP and conditions contained in the RoD. The developer must appoint an independent Environmental Control Officer (ECO), for the duration of the pre-construction and construction phases, to ensure compliance with the requirements of this EMP. The developer must ensure that the ECO is integrated as part of the project team.

Project Manager (PM)

The project Manager is responsible for the coordination of various activities and ensures compliance with this EMP through delegation of the EMP to the contractors and monitoring of performance as per the Environmental Control Officer's monthly reports.

Environmental Control Officer (ECO)

An independent Environmental Control Officer (ECO) shall be appointed, for the duration of the pre-construction and construction phase of the services and bulk infrastructure, by the developer to ensure compliance with the requirements of this EMP.

Contact details of appointed ECO

ECO details will be available as soon as developer appointed a company.

- The Environmental Control Officer shall ensure that the contractor is aware of all the specifications pertaining to the project.
- Any damage to the environment must be repaired as soon as possible after consultation between the Environmental Control Officer, Consulting Engineer and Contractor.
- The Environmental Control Officer shall ensure that the developer staff and/or contractor are adhering to all stipulations of the EMP.
- The Environmental Control Officer shall be responsible for monitoring the EMP throughout the project by means of site visits and meetings. This should be documented as part of the site meeting minutes.
- The Environmental Control Officer shall be responsible for the environmental training program.
- The Environmental Control Officer shall ensure that all clean up and rehabilitation or any remedial action required, are completed prior to transfer of properties.
- A post construction environmental audit is to be conducted to ensure that all conditions in the EMP have been adhered to.

Contractor (C):

The contractors shall be responsible for ensuring that all activities on site are undertaken in accordance with the environmental provisions detailed in this document and that subcontractor and laborers are duly informed of their roles and responsibilities in this regard.

The contractor will be required, where specified to provide Method Statements setting out in detail how the management actions contained in the EMP will be implemented.

The contractors will be responsible for the cost of rehabilitation of any environmental damage that may result from non-compliance with the environmental regulations.

Environmental Site Officer (ESO):

The ESO is appointed by the developer as his/her environmental representative to monitor, review and verify compliance with the EMP by the contractor. The ESO is not an independent appointment but must be a member of the contractor's management team. The ESO must ensure that he/she is involved at all phases of the construction (from site clearance to rehabilitation).

<u>Authority (A):</u>

The authorities are the relevant environmental department that has issued the Environmental Authorisation. The authorities are responsible for ensuring that the monitoring of the EMP and other authorization documentation is carried out by means of reviewing audit reports submitted by the ECO and conducting regular site visits.

Other Authorities (OA):

Other authorities are those that may be involved in the approval process of the EMP.

Environmental Assessment Practitioner (EAP):

According to section 1 of NEMA the definition of an environmental assessment practitioner is "the individual responsible for the planning, management and coordination of environmental impact assessments, strategic environmental assessments, environmental management plans or any other appropriate environmental instruments through regulations".

3.2 Lines of Communication

The Environmental Control Officer in writing should immediately report any breach of the EMP to the Project Manager. The Project Manager should then be responsible for rectifying the problem on-site after discussion with the contractor. Should this require additional cost, then the developer should be notified immediately before any additional steps are taken.

3.3 Reporting Procedures to the Developer

Any pollution incidents must be reported to the Environmental Control Officer immediately (within 12 hours). The Environmental Control Officer shall report to the Developer on a regular basis (site meetings).

3.4 Site Instruction Entries

The site instruction book entries will be used for the recording of general site instructions as they relate to the works on site. There should be issuing of stop work order for the purposes of immediately halting any activities of the contractor that may pose environmental risk.

3.5 ESA/ESO (Environmental Site Officer) Diary Entries

Each of these books must be available in duplicate, with copies for the Engineer and Environmental Site Officer. These books should be available to the authorities for inspection or on request. All spills are to be recorded in the ESA/Environmental Site Officer's dairy.

3.6 Methods Statements

Methods statements from the contractor will be required for specific sensitive actions on request of the authorities or ESA/ESO (Environmental Site Officer). All method statements will form part of the EMP documentation and are subject to all terms and conditions contained within the EMP document. For each instance wherein it is requested that the contractor submit a method statement to the satisfaction of ESA/ESO, the format should clearly indicate the following:

- What a brief description of the work to be undertaken
- How- a detailed description of the process of work, methods and materials
- Where- a description / sketch map of the locality of work; and
- When- the sequencing of actions with due commencement dates and completion date estimate.

The contractor must submit the method statement before any particular construction activity is due to start. Work may not commence until the method statement has been approved by the ESA/ESO.

3.7 Record Keeping

All records related to the implementation of this management plan (e.g. site instruction book, ESA/ESO dairy, methods statements etc.) must be kept together in an office where it is safe and can be retrieved easily. These records should be kept for two years at any time be available for scrutiny by any relevant authorities.

3.8 Acts

1. The National Water Act, 1998 (Act No: 36 of 1998)

The purpose of this Act is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled in ways that take into account, amongst other factors, the following:

- Meeting the basic human needs of present and future generations;
- Promoting equitable access to water;
- Promoting the efficient, sustainable and beneficial use of water in the public interest;
- **D** Reducing and preventing pollution and degradation of water resources;
- D Facilitating social and economic development; and
- Providing for the growing demand for water use.

Impact on proposed Development:

Significant – The study area is not affected by any rivers or flood lines. In terms of Section 21 of the National Water Act the 1:100 year floodline must be indicated on layout maps.

2. National Environmental Management: Air Quality Act (Act No. 39 of 2004)

This act replaced the Atmospheric Pollution Prevention Act (Act No. 45 of 1965), however Part 2 of this act is still applicable. Part 2 of the act deals with the control of noxious or offensive gases. The proposed development will not release any of the listed gases into the atmosphere and this act is therefore not applicable to the proposed development.

The purpose of the Act is "To reform the law regulating air quality in order to protect the environment by providing reasonable measures for the prevention of pollution and ecological degradation and for securing ecologically sustainable development while promoting justifiable economic and social development; to provide for national norms and standards regulating air quality monitoring, management and control by all spheres of government; for specific air quality measures; and for matters incidental thereto."

The purpose of the Act is "To provide for the prevention of the pollution of the atmosphere, for the establishment of a National Air Pollution Advisory Committee, and for matters incidental thereto".

The Atmospheric Pollution Prevention Act was traditionally administered by the Department of Health until 1995, when it was transferred to the jurisdiction of the Department of Environmental Affairs and Tourism. The Act controls four forms of air pollution:

- Part II Noxious or Offensive gases
- Part III Atmospheric Pollution by Smoke
- Part IV
 Dust Control
- Part V Air Pollution by Fumes Emitted by Vehicles

Impact on proposed Development:

Significant – During the construction phase dust pollution can become a significant factor, especially to the surrounding developments and landowners. Dust control would be adequately minimised during this phase by way of water spraying and possible dust-nets, when required.

The additional vehicles generated by the proposed development will have an insignificant impact on the air pollution due to emissions gasses created by any additional vehicles or traffic of the proposed development.

3. National Environmental Management Act (Act 107 of 1998)

The NEMA is primarily an enabling Act in that it provides for the development of environmental implementation plans and environmental management plans. The principles listed in the act serve as a general framework within which environmental management and implementation plans must be formulated.

The principles in essence state that environmental management must place people and their needs at the forefront of its concern and that development must be socially, environmentally and economically sustainable.

Impact on proposed Development:

Significant – The proposed development of Monavoni X 44 is listed under the activities as regulated under NEMA.

4. The Municipal Systems Act (Act 32 of 2000)

This Act was introduced to provide for the core principles, mechanisms and processes that are necessary to enable municipalities to move progressively towards the social and economic upliftment of local communities, and ensure universal access to essential services that are affordable to all.

The proposed development will support the local authority in complying with the principles of the Municipal Systems Act, by assisting in providing the community with essential services, such as water and sewage infrastructure.

Impact on proposed Development:

Significant – The proposed development will promote the Municipal System within City of Tshwane as the proposed development will upgrade and improve the essential services such as water and sewerage to the area, therefore contributing to the social and economic upliftment of the City of Tshwane.

5. The Draft Red Data Species Policy

This policy is provided for the protection, conservation and maintenance of Red Data species within the Gauteng Province.

Impact on proposed Development:

Not significant - No red listed species were identified on site.

6. National Veld and Forest Fire Act, 1998 (Act No. 101, 1998)

The purpose of this Act is to prevent and combat veld, forest and mountain fires throughout the Republic. Furthermore the Act provides for a variety of institutions, methods and practices for achieving the prevention of fires.

Impact on proposed Development:

Significant – Fires of construction workers may only be lit in the designated site camp as indicated in assistance with the ECO. It is important that a site development camp be located on a part of the application site that is already disturbed.

7. National Heritage Resources Act, 1999 (Act No. 25 of 1999)

The National Heritage Resources Act legislates the necesity and heritage impact assessment in areas earmarked for development, which exceed 0.5ha. The Act makes

Draft Environmental Management Plan for proposed Monavoni X 44 development

provision for the potential destruction to existing sites, pending the archaelogist's recommendations through permitting procedures. Permits are administered by the South African Heritage Resources Agency (SAHRA).

Impact on proposed Development:

Not significant - No features of Heritage importance are present on site.

8. Conservation of Agricultural Resources Act (Act No. 43 of 1983)

This Act provides for control over the utilization of the natural agricultural resources of the Republic in order to promote the conservation of the soil, the water sources and the vegetation and the combating of weeds and invader plants; and for matters connected therewith.

Impact on proposed Development:

Not significant – According to the agricultural specialist the site cannot be used economically for agricultural purposes. The site does not fall within any Agricultural Hub.

9. Water Services Act, 1997 (Act No. 108 of 1997)

This Act provides for the minimum standards and measures of which the following Water Services should adhere to:

- Basic sanitation
- Basic water supply
- Interruption in provision of water services
- Quality of potable water
- Control of objectionable substances
- Disposal of grey water
- Use of effluent
- Quantity and quality of industrial effluent discharged into a sewerage system
- Water services audit as a component in the Water Services Development Plan
- Water and effluent balance analysis and determination of water losses
- Repair of leaks
- Consumer installations other than meters
- Pressure in reticulation system

Impact on proposed Development:

Significant - The proposed development will have to be supplied with the basic water bearing services; therefore the water should comply with the minimum standards and measures of this Act.

10. National Environmental Management Act: Biodiversity Act (Act No. 10 of 2004)

The purpose of the Biodiversity Act is to provide for the management of South Africa's biodiversity within the Framework of the NEMA and the protection of species and

ecosystems that warrant National protection. As part of the implementation strategy, the National Spatial Biodiversity Assessment was developed.

Impact on proposed Development:

Not significant - No red listed species were identified.

11. National Spatial Biodiversity assessment

The National Spatial Biodiversity Assessment (NSBA) classifies areas as worthy of protection based on its biophysical characteristics, which are ranked according to priority levels.

Impact on proposed Development:

Not significant - No red listed species were identified.

12. Protected Species – Provincial Ordinances

Provincial ordinances were developed to protect particular plant species within specific provinces. The protection of these species is enforced through permitting requirements associated with provincial lists of protected species. Permits are administered by the Provincial Departments of Environmental Affairs.

Impact on proposed Development:

Not significant - No red listed plant species were identified.

13. National Environmental Management: Protected Areas Act, 2003 (Act No. 57 of 2003)

The purpose of this Act is to provide for the protection, conservation and management of ecologically viable areas representative of South Africa's biological biodiversity and its natural landscapes.

Impact on proposed Development:

Not Significant – No area was identified as a system which needs protection, conservation and management.

14. Gauteng Transport Infrastructure Act, 2001

To consolidate the laws relating to roads and other transport infrastructure in Gauteng; and to provide for the planning, design, development, construction, financing, management, control, maintenance, protection and rehabilitation of provincial roads, railway lines and other transport infrastructure in Gauteng.

Draft Environmental Management Plan for proposed Monavoni X 44 development

Impact on proposed Development:

Not significant – Some upgrading of the surrounding road network will be needed, but is deemed as insignificant as this will only provide entrance to the proposed development.

15. National Road Traffic Act, 1996 (Act No. 93 of 1996)

This Act provides for all road traffic matters which shall apply uniformly throughout the Republic and for matters connected therewith.

16. Environmental Conservation Act: Noise Regulations, 1989 (Act no.73 of 1989)

The purpose of this Act is to provide measures and management relating Noise levels. This Act enables Noise levels to be acceptable to standards within a specific area and community.

Impact on proposed Development:

Significant – The proposed development may include some noisy activities with the installation of necessary infrastructure and services.

17. National Environmental Management: Waste Act, 2008 (Act No. 59 of 2008)

The purpose of the act is to reform the law regulating waste management in order to protect health and the environment by providing reasonable measures for the prevention of pollution and ecological degradation and for securing ecologically sustainable development; to provide for institutional arrangements and planning matters; to provide for national norms and standards for regulating the management of waste by all spheres of government; to provide for specific waste management measures; to provide for the licensing and control of waste management activities; to provide for the remediation of contaminated land; to provide for the national waste information system; to provide for compliance and enforcement; and to provide for matters connected therewith.

Impact on proposed Development:

Not Significant – The proposed development does not trigger any listed activities in terms of the Waste Act.

4 Project activities

4.1 Pre-Construction Phase

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
General	Project contract	To make the EMP enforceable under the general conditions of the contract.	The EMP document must be included as part of the tender documentation for all contractor appointments		Developer	-	3
			All municipal by laws must be adhered to. The DWA must be notified of any deviations from the conditions and commitments.				
			The proposed development must comply with all Sections of the National Water Services Act, 1997 (Act 107 of 1997).				
Design and planning	Stability of structures and restriction of land use due to geology	To ensure stability of structures	 The layout and land uses must correspond to the stability zonation and development types recommended by the geotechnical engineer. The foundation recommendations supplied by the geotechnical engineers must be adhered to. Detailed foundation investigations should be done for large structures because residual dolomite material may experience settlements under load or be collapsible. 		Individual Developer Engineer	-	
			The NHBRC precautionary measures for development in dolomitic areas must be implemented.	The EMP is included as part of the tender documentation	Engineer Individual Developer	-	
			1) A dolomite risk management plan must	Dolomite Risk	Engineer		

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 be compiled for this township in general and copies must be submitted to the Council for Geoscience and the NHBRC. This system must be practical with detailed requirements applicable to the township. This can, however, only be done after the township to be established has been approved. 2) The application of strict water precautionary measures for the development is essential. Stormwater management on the study area is extremely important to prevent the concentration of surface water is to be permitted and the entire development must be properly drained. 3) The normal drainage precautionary measures for underground wet services, applicable to dolomitic terrain and in compliance with the Tshwane Metropolitan Municipality should be adhered to. 	Management Plan compiles			
	Storm water design	To prevent and restrict erosion, siltation and groundwater pollution	 1) A detailed storm water management plan must be approved by the Local Authority and Council for Geoscience prior to commencement of construction activities. Such approval must be submitted to DWA together with a copy of the original stormwater management plans. Must be implemented according to guidelines provided by the relevant Local Authority Departments. 	Compilation and approval of storm water management plan	Engineer Individual Developer	-	9

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
		·	2) The storm water design for the				
			proposed development must be designed				
			to:				
			Reduce and/ or prevent siltation, erosion				
			and water pollution.				
			3) Storm water runoff should not be				
			concentrated as far as possible and sheet				
			flow should be implemented.				
			5) Energy dissipaters must be installed on				
			the study area to break the speed of the				
			water.				
			6) Surface storm water generated as a				
			result of the development must not be				
			channeled directly into any natural				
			drainage system or wetland.				
			7) The storm water management plan				
			should be designed in a way that aims to				
			ensure that post development runoff does				
			not exceed predevelopment values in:				
			 Peak discharge for any given storm; 				
			 Total volume of runoff for any given 				
			storm;				
			- Frequency of runoff; and				
			- Pollutant and debris concentrations				
			reaching water courses.				
			8)No natural channels will be allowed. All				
			open channels and attenuation ponds				
			must be lined with concrete.				
			9)Concentrated surface drainage is not				
			permitted.				
			10) Stormwater polluted by refuse, sewage				
			and other surface pollution should be kept				
			from coming into contact with public				
			streams / clean water systems.				
			The developer must ensure that no	Correct positioning	Engineer		
			wastewater may run freely into any of the	of construction			

Useduncounting steets or naturally vegetabled positioning of construction camps and their sanitation facilities.campslllUght pollutionTo minimise light pollutionThe generation of light by night events, security lighting and other lighting shall be effectively designed so as not to spill unnecessary outward in the noncoming traffic, or into the yards of the origonapproperfies or open spaces.Lightning effectively designed.Architect-Visual impactTo minimize the visual impact of the proposed development.To minimize the visual impact of the proposed development will be seen from a distance and therefore the roots will blend in tastefully with the surrounding should be used or startegic points to screen of limpacts could be used or startegic points to screen of limpactsArchitect-visual impactTo minimize the visual impact of the proposed development.To minimize the visual impact of the proposed development will be seen from a distance and therefore the roots will blend in tastefully with the surrounding should be used or startegic points to screen of limpacts caused by troots and cars in large parking areas. Disting trees and vegetation will instantly soften the inpact of the proposed permanent structures and they with the unconscience of colours in the should be used of structures with the unconscience of position.Architect-visual impactTo minimize the visual impact of the proposed of the proposed permanent structures and they are parking areas. Disting trees and vegetation will instantly soften the impact of the proposed permanent structures and they area of the proposed permanent structures and they	ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
pollution security lighting and other lighting shall be effectively designed so as not to spill unnecessary outward into the oncoming traffic, or into the yards of the neighbouring properties or open spaces. designed. Visual impact To minimize the visual impact of the proposed development will be seen from a distance and therefore the roots should not reflect the sun or be covered with roofing materials that have bright colours. Black or charcoal coloured roots will beind in tastefully with the surrounding environment. Suitable plant materials that have bright colours and user of the proposed development will be refained as far as possible. The proposed permanent strategic points to screen off impacts caused by roofs and they reprosed permanent strategic points to screen off the proposed permanent strategic points to screen off the proposed permanent strategic points to the yraps and use and the roleur to a more human scale. The roleur scheme should be taken from the polette of colours in the natural surrounding. The Schweberg in the background should be taken from the polette of colours in the natural surrounding. The Schweberg in the background should be taken into consideration during the design phase of the project. Architectural				areas and also ensure the correct positioning of construction camps and	camps			
Visual impactTo minimize the visual impact of the proposed development.Architectural guidelines to minimize the visual impact: To maintize the visual impact of the proposed development will be seen from a distance and therefore the roofs should not reflect the sun or be covered with roofing materials that have bright colours. Black or charcoal coloured roofs will blend in tastfully with the surrounding environment. Suitable plant materials should be used at strategic points to screen off impacts caused by roofs and 		Light pollution		security lighting and other lighting shall be effectively designed so as not to spill unnecessary outward into the oncoming traffic, or into the yards of the		Architect	-	
		Visual impact	visual impact of the proposed	Architectural guidelines to minimize the visual impact: The proposed development will be seen from a distance and therefore the roofs should not reflect the sun or be covered with roofing materials that have bright colours. Black or charcoal coloured roofs will blend in tastefully with the surrounding environment. Suitable plant materials should be used at strategic points to screen off impacts caused by roofs and cars in large parking areas. Existing trees and vegetation clumps should be retained as far as possible. The trees and vegetation will instantly soften the impact of the proposed permanent structures and they will bring the scale of the structures within the urban context down to a more human scale. The colour scheme should be taken from the palette of colours in the natural surroundings. The Schurweberg in the background should be taken into consideration during the	guidelines minimizes	Architect	-	
Neire imparted To minimize noire. The alignment of the KEO must be taken		Noise impact	To minimize noise	The alignment of the K52 must be taken			<u> </u>	

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
		impact from the K52	into consideration during the design of the proposed development.				
Climate	Extreme change in micro climate temperatures	To prevent the extreme change in micro climate temperatures	Where open parking bays are involved, one tree for every two parking bays shall be indicated on the Site Development Plan which shall be approved by the Local Authority and Design Review Committee, if any.	Landscape Development Plan complies	Landscape Architect	-	
Geology and Soils	Unsuitable Geotechnical conditions	To prevent unsuitable Geotechnical conditions	The special precautionary measures, as indicated within the Geotechnical Report must be adhered to at all times. 1) A storm water management plan must be implemented on the study area to prevent the erosion of soil. 2) A pro-active maintenance strategy for water bearing services and other infrastructure should be implemented.	Precautionary measures implemented	Geotechnical engineer Dolomite Risk Manager	-	9
Fauna and flora	Floral biodiversity and ecological health	To ensure that the species introduced to the area, are compatible with the current and future quality of the ecological processes.	 The site development plan for the proposed development shall be submitted to the local authority for approval. It is important that all the plant positions, quantities and coverage per m² be indicated on a plan. The proposed planting materials for the areas to be landscaped shall be non- invasive, and preferably indigenous and /or endemic. As much of the existing indigenous trees, vegetation clumps and natural grassland will have to be incorporated within the proposed formal landscaping. The vegetation around the Drainage channel must be retained and rehabilitated where necessary. Buffer zones should be adhered to. 	The landscape development plan submitted to the local authority for approval.	Landscape Architect	-	10,11,13
			The removal of Category 1 Declared invaders from the property is mandatory	Category 1 and 2 declared Invaders	Contractor ECO		3,8

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			and Category 2 Declared invaders must be controlled.	removed			
	Loss of sensitive vegetation	To ensure protection of orange listed plants	The Orange- listed Hypoxis hemerocallidea (African potato) should be relocated to a safe, suitable area approved by GDARD.	Orange listed plants rescued prior to construction	Qualified specialist		
Preparing Site Access	Environmental integrity	To avoid erosion and disturbance to indigenous vegetation	Designated routes shall be determined for the construction vehicles and designated areas for storage of equipment. Clearly mark the site access point and routes on site to be used by construction vehicles and pedestrians. Provide an access map to all contractors whom in turn must provide copies to the construction workers. Instruct all drivers to use access point and determined route.	Access to site is erosion free. Minimum disturbance to surrounding vegetation. Vehicles make use of established access routes.	Contractor	Continuous	
	Waste storage	To control the temporary storage of waste.	Temporary waste storage points on site shall be determined. These storage points shall be accessible by waste removal trucks and these points should not be located in sensitive areas /areas highly visible from the properties of the surrounding land-owners/tenants/in areas where the wind direction will carry bad odours across the properties of adjacent tenants or landowners.		Contractor ESO	-	
		Ensure waste storage area does not generate pollution	Build a bund around waste storage area to stop overflow into storm water.		Contractor	-	
		To prevent water pollution	-The storage and use of fuel and other chemicals on site must be adequately managed to prevent soil and water pollution. -Containment areas must be provided for		Developer Contractor		

ТҮРЕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			handling of potential pollutants at refuelling depots - Transport, storage, handling and disposal of hazardous substances must be adequately controlled and managed.				
			No wastewater may run freely into any of the surrounding streets or naturally vegetated areas.		Contractor		

4.2 Construction Phase

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
Contractor's Camp	Loss of Vegetation and topsoil	To minimize damage to and loss of vegetation and retain quality of topsoil	Site to be established under supervision of ECO/ESO.	Minimal vegetation removed/ damaged during site activities.	Contractor	Before any construction activity commences and as and when required	5, 10, 11, 13
	Surface and ground water pollution	To minimize pollution of surface and Groundwater resources.	 Sufficient and temporary facilities including ablution facilities must be provided for construction workers operating on the site. A minimum of one chemical toilet shall be provided per 10 construction workers. The contractor shall keep the toilets in a clean, neat and hygienic condition. Toilets provided by the contractor must be easily accessible and a maximum of 50m from the works area to ensure they are utilized. The contractor (who must use reputable toilet-servicing company) shall be responsible for the cleaning, maintenance and servicing of the toilets. The contractor (using reputable toilet-servicing company) shall ensure that all toilets are cleaned and emptied before the builders' or other public holidays. No person is allowed to use any other area than chemical toilets. No French drain systems may be installed. No chemical or waste water must be allowed to contaminate the run-off on site. This could possibly contaminate the drainage channel. The chemical toilets may not be placed in 	Effluents managed Effectively. No pollution of water resources from site. Workforce use toilets provided.	Contractor ESO	As and when required	

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 close proximity of the adjacent dwellings to prevent odors from causing uncomforting situations. 7) Avoid the clearing of the site camp (of specific phase) or paved surfaces with soap. This could drain into the drainage channel on site and contaminate to open space system in the area. 				
		To minimize pollution of surface and Groundwater resources due to spilling of materials.	 Drip trays and/ or lined earth bunds must be provided under vehicles and equipment, to contain spills of hazardous materials such as fuel, oil and cement. Repair and storage of vehicles only within the demarcated site area. Spill kits must be available on site. Oils and chemicals must be confined to specific secured areas within the site camp. These areas must be bunded with adequate containment (at least 1.5 times the volume of the fuel) for potential spills or leaks. All spilled hazardous substances must be contained in impermeable containers for removal to a licensed hazardous waste site. No leaking vehicle shall be allowed on site. The mechanic/ the mechanic of the appointed contractor must supply the environmental officer with a letter of confirmation that the vehicles and equipment are leak proof. No bins containing organic solvents such as paints and thinners shall be cleaned on site, unless containers for liquid waste disposal are placed for this purpose on site. 	No pollution of the environment	Contractor ESO	Daily	
		To minimize	The mixing of concrete shall only be done at	No evidence of	Contractor	Daily	
		pollution of surface	specifically selected sites, as close as possible to the entrance, on mortar boards	contaminated soil on the	ESO		

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
		groundwater resources by cement	or similar structures to prevent run-off into drainage line, streams and natural vegetation.	construction site.			
		To minimize pollution of surface and Groundwater resources due to effluent.	No effluent (including effluent from any storage areas) may be discharged into any water surface or ground water resource.	No evidence of contaminated water resources.	Contractor ESO	Daily	
	Pollution of the environment	To prevent unhygienic usage on the site and pollution of the natural assets.	 Weather proof waste bins must be provided and emptied regularly. The contractor shall provide laborers to clean up the contractor's camp and construction site on a daily basis. Temporary waste storage points on the site should be determined. THESE AREAS SHALL BE PREDETERMINED AND LOCATED IN AREAS THAT IS ALREADY DISTURBED. These storage points should be accessible by waste removal trucks and these points should be located in already disturbed areas /areas not highly visible from the properties of the surrounding land-owners/ in areas where the wind direction will not carry bad odours across the properties of adjacent landowners. This site should comply with the following: Skips for the containment and disposal of waste that could cause soil and water pollution, i.e. paint, lubricants, etc.; Small lightweight waste items should be contained in skips with lids to prevent wind littering; Bunded areas for containment and holding of dry building waste. No solid waste may be disposed of on the 	No waste bins overflowing No litter or building waste lying in or around the site	Contractor ESO	Daily Weekly	5,13

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 site. 5) No waste materials shall at any stage be disposed of in the open veld of adjacent properties or within the drainage lines (No-Go areas). 6) The storage of solid waste on the site, until such time as it may be disposed of, must be in a manner acceptable to the local authority and DWA. 7) Cover any wastes that are likely to wash away or contaminate storm water. 				
		Recycle material where possible and correctly dispose of unusable wastes	 Waste shall be separated into recyclable and non-recyclable waste, and shall be separated as follows: General waste: including (but not limited to) construction rubble, Reusable construction material. Recyclable waste shall preferably be deposited in separate bins. All solid waste including excess spoil (soil, rock, rubble etc) must be removed to a permitted waste disposal site on a weekly basis. No bins containing organic solvents such as paints and thinners shall be cleaned on site, unless containers for liquid waste disposal are placed for this purpose on site. Keep records of waste reuse, recycling and disposal for future reference. Provide information to ESO. 	Sufficient containers available on site No visible signs of pollution	Contractor ESO	Daily Weekly	
			-The storage and use of fuel and other chemicals on site must be adequately managed to prevent soil and water pollution. -Containment areas must be provided for handling of potential pollutants at refuelling depots	Correct storage and use of fuel. Containment areas provided for handling of	Contractor		

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			- Transport, storage, handling and disposal of hazardous substances must be adequately controlled and managed.	potential pollutants at refuelling depots.			
			If any pollution incident is experienced, DWA must be notified immediately.	Contractor			
	Increased fire risk to site and surrounding areas	To decrease fire risk.	 Fires shall only be permitted in specifically designated areas and under controlled circumstances. This area may not be located in close proximity of the power lines as the natural grass within this area can easily take flame and could spread to surrounding open space system. Food vendors shall be allowed within specified areas. Fire extinguishers to be provided in all vehicles and fire beaters must be available on site. Emergency numbers/ contact details must be available on site, where applicable. 	No open fires on site that have been left unattended	Contractor	Monitor daily	6
Construction site	Geology and soils	To prevent the damaging of the existing soils and geology.	 The top layer of all areas to be excavated for the purposes of construction shall be stripped and stockpiled in areas where this material will not be damaged, removed or compacted. All surfaces that are susceptible to erosion, shall be protected either by cladding with biodegradable material or with the top layer of soil being seeded with grass seed/planted with a suitable groundcover. 	Excavated materials correctly stockpiled No signs of erosion	Contractor	Monitor daily	
		To prevent the loss of topsoil To prevent siltation & water pollution.	 Stockpiling will only be done in designated places where it will not interfere with the natural drainage paths of the environment. In order to minimize erosion and siltation and disturbance to existing vegetation, it is 	Excavated materials correctly stockpiled No visible signs of	Contractor of Developer	Monitor daily	4,9

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
		-	recommended that stockpiling be done/	erosion and			
			equipment is stored in already	sedimentation			
			disturbed/exposed areas.				
			3) Cover stockpiles and surround downhill	Minimal invasive			
			sides with a sediment fence to stop materials	weed growth			
			washing away.				
			4) Remove vegetation only in areas	Vegetation only			
			designated during the planning stage and	removed in			
			for the purpose of construction.	designated areas			
			5) Rehabilitation/ landscaping to be done				
			immediately after the involved works are				
			completed (will prevent erosion of the				
			topsoil layer on site).				
			6) All compacted areas should be ripped				
			prior to them being				
			rehabilitated/landscaped by the contractor.				
			7) The top layer of all areas to be excavated				
			must be stripped and stockpiled in areas				
			where this material will not be damaged,				
			removed or compacted. This stockpiled				
			material should be used for the rehabilitation				
			of the site and for landscaping purposes.				
			8) Strip topsoil at start of works and store in				
			stockpiles no more than 1,5 m high in				
			designated materials storage area.				
			9) During the laying of any cables, pipelines				
			or infrastructure (on or adjacent to the site)				
			topsoil shall be kept aside to cover the				
			disturbed areas immediately after such				
			activities are completed. Rehabilitation of				
			these areas shall be done directly after infill				
			of the trenches. No rocks shall be placed on				
			the topsoil after re-filling.				
	Erosion and	To prevent erosion	1) It is recommended that the construction	No erosion scars	Contractor	Monitor daily	
	siltation	and siltation	of the development be done in phases.		ESO		
			2) Each phase should be rehabilitated	No loss of topsoil			
			immediately after the construction for that				

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
		•	phase has been completed. The	All damaged			
			rehabilitated areas should be maintained by	areas successfully			
			the appointed rehabilitation contractor until	rehabilitated			
			a vegetative coverage of at least 80% has				
			been achieved.				
			3) Mark out the areas to be excavated.				
			4) Large exposed areas during the				
			construction phases should be limited.				
			Where possible areas earmarked for				
			construction during later phases should				
			remain covered with vegetation coverage				
			until the actual construction phase. This will				
			prevent unnecessary erosion and siltation in				
			these areas.				
			5) Unnecessary clearing of flora resulting in				
			exposed soil prone to erosive conditions				
			should be avoided.				
			6) All embankments must be adequately				
			compacted and planted with grass to stop				
			any excessive soils erosion and scouring of				
			the landscape if required.				
			7) The eradication of alien vegetation				
			should be followed up as soon as possible by				
			replacement with indigenous vegetation to				
			ensure quick and sufficient coverage of				
			exposed areas.				
			8) Storm water outlets shall be correctly				
			designed to prevent any possible soil				
			erosion.				
			9) All surface run-offs shall be managed in				
			such a way so as to ensure erosion of soil				
			does not occur.				
			10) Implementation of temporary storm				
			water management measures that will help				
			to reduce the speed of surface water by the				
			individual erf owner / developer.				
			11) All surfaces that are susceptible to				

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			erosion shall be covered with a suitable vegetative cover as soon as construction is completed by the individual erf owner / developer.				
	Stability of structures due to geology	To ensure stability of structures.	 A risk management plan must be designed and implemented. The precautionary measures for construction on dolomite must be implemented The foundation recommendations supplied by the geotechnical engineers must be adhered to. It is recommended that excavations (for foundations and underground services) be inspected on the site to ensure that conditions at variance to that described can be noted and the necessary adjustments made. Detailed foundation inspections should be carried out at the time of construction to identify variances and adjust foundation designs accordingly if need be. 		Engineers / Contractor / Individual Developer	When required	
			The normal drainage precautionary measures and special installation measures for underground wet services, applicable to dolomitic terrain and in compliance with the Tshwane Metropolitan Municipality requirements, should be adhered to.	Drainage precautions implemented	Engineers Contractors		
	Blasting	Safety during blasting operations	Blasting may only be done by specialists in the field and should be limited to localised areas.	Blasting done by specialists	Contractors		
			Surrounding land-owners of properties in close proximity of blasting exercises must be	Surrounding land owners informed			

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			informed/ warned (at least one week in advance) of blasting exercises that will take place on the study area.	in advance			
			Warning signs to warn site workers and members of the public of blasting exercises must be erected at strategic points on the study area and the area where the blasting exercises will take place must be fenced off with barrier tape.	Warning signs erected and barrier tape in place.			
			Blasting operations should be carefully controlled and the necessary safety precautions must be implemented.				
	Hydrology	Groundwater management	1) Ongoing monitoring of groundwater levels on and in the immediate vicinity of the site is recommended.	No deviation from baseline data during regular sampling	Engineer	Monthly	
		To minimise pollution of soil, surface and groundwater	 Increased run-off during construction must be managed using berms and other suitable structures as required to ensure flow velocities are reduced. The contractor shall ensure that excessive quantities of sand, silt and silted water do not enter the storm water system. 	No visible signs of erosion. No visible signs of pollution	Contractor	Monitor daily	
	Fauna and flora	To protect the existing fauna and flora.	 All exotic invaders and weeds must be eradicated on a continuous basis. Exotic invaders must be included in an alien management program for the site. Eradication must occur every 6 months. No plants not indigenous to the area, or exotic plant species, especially lawn grasses and other ground-covering plants, should be introduced in the communal landscaping of the proposed site, as they will drastically 	No exotic plants used for landscaping	Contractor ESO / Design Review Committee	As and when required Every 6 months	10,11,13

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			interfere with the nature of the area				
		To protect the existing fauna and flora.	 Trees that are intended to be retained shall be clearly marked on site. Snaring and hunting of fauna by construction workers on or adjacent to the study area are strictly prohibited and offenders shall be prosecuted. Should hedgehogs be encountered during the development, these should be relocated to natural grassland areas in the vicinity; Should the Harlequin snake be encountered during the construction phase of the development, it must be properly recorded, sent to the Transvaal Museum (if dead) or moved to other areas suitable for its preservation. Wood harvesting of any trees or shrubs on the study area or adjacent areas shall not be allowed, especially within the Non- perennial drainage line. OFFENDERS WILL BE PROSECUTED AND A FINE WILL BE ISSUED IN ACCORDANCE WITH THE GDARD. Where possible, work should be restricted to one area at a time. Noise should be kept to a minimum and the development should be done in phases to allow faunal species to temporarily migrate into the conservation areas in the vicinity. The contractor must ensure that no fauna species are disturbed, trapped, hunted or killed during the construction phase. Conservation-orientated clauses should be built into contracts for construction personnel, complete with penalty clauses for non-compliance; 	No measurable signs of habitat destruction	Contractor ESO	As and when required	5,10,11,13, 16

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 9) Vegetation clumps and natural grassland areas to be retained and incorporated within the proposed development formal landscaping, must be marked and demarcated before any commencement of construction activities. These areas must be fenced off (will be seen as "No-Go" areas). 10) The trenches for the water pipelines and sewage lines should be as narrow as possible. Environmental damage caused by these trenches may be kept to a minimum by good forward planning and thereby reducing the actual length of time that they are open. Possible damage to wildlife is in direct proportion to the time that these trenches are open and may destroy amphibian and reptilian species. 				
			 Alien and invasive plants must be removed from areas to be excluded from development and the area rehabilitated with vegetation endemic to the area; No plants not indigenous to the area, or exotic plant species, especially lawn grasses and other ground covering plants, should be introduced in the landscaping of the proposed development, as they might spread into the areas of natural vegetation; Forage and host plants required by pollinator species in the area should also be used in landscaped areas; Dumping of builder's rubble and other waste in the areas 		Contractor ESO	As and when required	5,10,11,13, 16

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 earmarked for exclusion must be prevented through fencing or other management measures; Entrance by vehicles, especially off-road cars and bakkies, off-road bicycles and quad bikes to the areas to be excluded should be prohibited, both during the construction phase and during the lifespan of the project; Foot paths should be restricted to areas where erosion can be controlled and damage to vegetation can be kept to a minimum; The areas earmarked for exclusion from development must be fenced off during the construction phase to ensure that the developer and his contractors do not cover them with soil, builder's rubble or waste. It is suggested that the building restrictions under the high tension power lines which transect the entire site, be used as a conservation feature by managing the grassland to attain as close as possible climax status; Large indigenous trees should be left as part of the landscaping; and Proper Veld Management Practices, such as fire management, should be implemented in the conservation areas. 				

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
Social	Noise impact	To maintain noise levels below "disturbing" as defined in the national Noise Regulations.	 Site workers must comply with the Provincial noise requirements as outlined. Noise activities shall only take place during working hours 	No complaints from surrounding residents and I & AP	Contractor	Monitored daily	16
	Dust impact	Minimise dust from the site	 Dust pollution could occur during the construction works, especially during the dry months. Regular and effective damping down of working areas (especially during the dry and windy periods) must be carried out to avoid dust pollution that will have a negative impact on the surrounding environment. When necessary, these working areas should be damped down in the mornings and afternoons. 	No visible signs of dust pollution No complaints from surrounding residents and I & AP	Contractor	Monitored daily	2
	Safety and security	To ensure the safety and security of the public.	 Although regarded as a normal practice, it is important to erect proper signs indicating the operations of heavy vehicles in the vicinity of dangerous crossings and access roads or even in the development site if necessary. With the exception of the appointed security personnel, no other workers, friend or relatives will be allowed to sleep on the construction site (weekends included) Construction vehicles and activities to avoid peak hour traffic times Presence of law enforcement officials at strategic places must be ensured Following actions would assist in management of safety along the road Adequate road marking Adequate roadside recovery areas Allowance for pedestrians and cyclists where necessary 	No incidences reported	Contractor ECO	Monitored daily	

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 Although regarded as a normal practice, it is important to erect proper signs indicating the danger of the excavation in and around the development site. Putting temporary fencing around excavations where possible. 				
	Influx of people from other areas	In order to limit the influx of people from other areas	It is recommended that (where possible) only people from the local communities in and around the application site are employed.	People from local community employed.	Contractor	When required	
	Infrastructure and services		The road and services upgrading as recommended by the involved engineers to be implemented.	Road and services upgrading according to recommendation	Engineers	When required	4,15
		Installation of services	Determine areas where services will be upgraded and relocated well in advance. Discuss possible disruptions with affected parties to determine most convenient times for service disruptions and warn affected parties well in advance of dates that service disruptions will take place	No complaints from I & AP	Contractor ESO	When required	4,9
	Cultural Resources		 It should be noted that in terms of the South African Resources Act (Act 25 of 1999) Section 35(4) no person may, without a permit issued by the responsible heritage resources authority destroy, damage, excavate, alter, deface or otherwise disturb any archaeological or palaeontological site or material Also important is that Section 34(1) of this act states that no person may alter or demolish any structure or part of a structure, which is older than 60 years without a permit, issued by the relevant provincial heritage resources authority. 	No destruction of or damage to archaeological sites	Contractor ECO	Monitor daily	7

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			3) If archaeological sites or graves are exposed during the construction work, it should be reported to a museum immediately, preferably to a museum with an archaeologist available, so that an investigation and evaluation of the finds can be made.				
	Visual impact	In order to minimise the visual impact	 The disturbed areas shall be rehabilitated immediately after the involved construction works are completed. Shade cloth must be used to conceal and minimise the visual impact of the site camps and storage areas All equipment and materials should be stored in a designated area indicated by the ECO. All areas must be kept neat and tidy and waste should be stored in the designated areas and removed on a weekly basis. 	Visual impacts minimized	Contractor ESO	Monitor daily	
	Vegetation	Landscaping	 When planting trees, care should be taken to avoid the incorrect positioning of trees and other plants, to prevent the roots of trees planted in close proximity to the line of water-bearing services from causing leaking in, or malfunctioning of the services. The proposed planting materials for the areas to be landscaped should preferably be endemic and indigenous. All new trees and shrubs to be planted on the study area shall be inspected for pests and diseases prior to them being planted. The inspection shall be carried out by the maintenance contractor at the property of the supplier and not on the study area. 	Landscaping done according to landscape development plan	Landscape architect Contractor	When required	

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			 5) All trees to be planted shall be in 20L containers with a height of approximately 1,8 metres and a main stem diameter of approximately 300 mm. 6) Rehabilitation of the drainage channel with indigenous vegetation should be done after construction has been completed on site. 				
		Loss of plants	 Aerate compacted soil and check and correct pH for soils affected by construction activities. Make sure plant material will be matured enough and hardened off ready for planting. Water in plants immediately as planting proceeds. Apply mulch to conserve moisture Plant according to the layout and planting techniques specified by the Landscape Architect in the Landscape Development plans for the site. 	Landscaping done according to landscape development plan	Landscape architect Contractor	When required	
		Spread of weeds	Ensure that materials used for mulching and topsoil/ fertilisers are certified weed free. Collect certifications where available. Control weed growth that appears during construction.	Weed growth controlled	Landscape architect Contractor	When required	
		To ensure rehabilitation of the site	 Compacted soils shall be ripped at least 200mm. All clumps and rocks larger than 30mm diameter shall be removed from the soil to be rehabilitated The soil shall be leveled before seeding Hydro-seed the soil with Potch mixture or plant with suitable indigenous ground covering as specified) Watering shall take place at least once per day for the first 14 days until germination of seeds have taken place 	Grass have hardened off	Landscape architect Contractor	Once a day Then every 4 days	

ΤΥΡΕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsibility	Frequency of Action	Applicable Act no.
			6) Thereafter watering should take place at least for 20 minutes every 4 days until grass				
			have hardened off.				

4.3 Operational Phase

ТҮРЕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Responsibility	Frequency of Action	Applicable Act no.
SITE CLEAN UP AND PREPARED FOR USE	Storm water pollution	Do not allow any materials to wash into the storm water system.	Remove erosion and sediment controls only if all bare soil is sealed, covered or re-vegetated. Sweep roadways clean and remove all debris from kerb and gutter areas. Do not wash into drains.	Contractor	-	
		Minimise waste	Decontaminate and collect waste in storage area ready for off-site recycling or disposal Arrange for final collection and removal of excess and waste materials.	Contractor	-	
ESTABLISHING PLANTS	Slow or no re- vegetation to stabilise soil; loss or degradation of habitat	To ensure re- vegetation to stabilize soil	Agreed schedule for regular follow-up watering, weed control, mulch supplements and amenity pruning, if needed. Replace all plant failures within three month period after planting.	Contractor	To be agreed	
MATERIALS FAILURE	Structural damage. Loss of site materials.		Inspect all structures monthly to detect any cracking or structural problems. Confirm with designer if there are design problems. Rectify with materials to match, or other agreed solution.	Contractor	-	
DRAINAGE FAILURE	On-site and downstream drainage pollution or flooding	Storm water management plan	Inspect all site drainage works and repair any failures. Confer with design engineer and to correct site problems.	Contractor	-	
SITE AUDIT	Eventual project failure	Successful project establishment	Routinely audit the works and adjust maintenance schedule accordingly.	Contractor	-	

ТҮРЕ	Environmental risk or issue	Objective or requirement	Mitigation measure	Responsibility	Frequency of Action	Applicable Act no.
GENERAL			Open fires and smoking during maintenance works are strictly prohibited.	Contractor	-	6
GEOLOGY	Erosion of topsoil	Prevent topsoil erosion	Due to lose topsoil, the soil must be covered by means of re-seeding and vegetation with suitable ground covering.	Engineer / Contractor /	Once off	
			A risk management plan must be designed and implemented. After completion it will become the responsibility of the Owners' Association. Infrastructure and ground-surface monitoring should be integral part of the risk management plan. Maintenance checks of infrastructure, the inspection of buildings, and the detection and repair/remediation of leaking services are amongst the tasks that will need to be undertaken at local council level. Findings should be recorded and entered into a database. Inspectors need to be aware or educated as to what to look for (ponding of water, cracks in the ground). Inspectors should be aware of the procedures to be followed in the event of an emergency.	Dolomite risk management plan compiled	Engineer	
REHABILITATIO N		To ensure alien and weeds are eradicated	A Rehabilitation Plan should be implemented after construction and should aim to prevent erosion and aid in the return of natural, endemic and indigenous vegetation cover to at least 80% of the rehabilitated area.	Contractor/ each home owner	Every 6 months	
	Open Space System	To ensure the proper management of the open space system	- Only indigenous plant species, preferably species that are indigenous to the natural vegetation of the area, should be used for landscaping in communal areas. As far as possible, plants naturally growing on the development site, but would otherwise be destroyed during clearing for development purposes, should be incorporated into landscaped areas. Forage and host plants required by pollinators should also be planted in landscaped areas.	Contractor HOA		

TYPE	Environmental risk or issue	Objective or requirement	Mitigation measure	Responsibility	Frequency of Action	Applicable Act no.
			- In order to minimize artificially generated surface stormwater runoff, total sealing of paved areas such as parking lots, driveways, pavements and walkways should be avoided. Permeable material should rather be utilized for these purposes.			
			- Proper Veld Management Practices, such as fire management, should be implemented in the open space areas.			
			- Corridors of Natural primary grassland must be included as part of the Monavoni Development Framework. These Open Space Areas must be properly managed throughout the lifespan of the project in terms of fire, eradication of exotics etc. to ensure continuous biodiversity.			
			The DWA must be notified of any deviations from the conditions and commitments.			

5 Procedures for environmental incidents

5.1 Leakages & spills

- Identify source of problem.
- Stop goods leaking, if safe to do so.
- Contain spilt material, using spills kit or sand.
- Notify Environmental Control Officer
- Remove spilt material and place in sealed container for disposal (if possible).
- Environmental Control Officer to follow Incident Management Plan.

5.2 Failure of erosion/sediment control devices

- Prevent further escape of sediment.
- Contain escaped material using silt fence, hay bales, pipes, etc.
- Notify ECO.
- Repair or replace failed device as appropriate.
- Dig/scrape up escaped material; take care not to damage vegetation.
- Remove escaped material from site.
- ECO to follow Incident Management plan.
- Monitor for effectiveness until re-establishment.

5.3 Bank/slope failure

- Stabilize toe of slope to prevent sediment escape using aggregate bags, silt fence, logs, hay bales, pipes, etc.
- Notify ECO.
- ECO to follow Incident Management plan.
- Divert water upslope from failed fence.
- Protect area from further collapse as appropriate.
- Restore as advised by ECO.
- Monitor for effectiveness until stabilized.

5.4 Discovery of rare or endangered species

- Stop work.
- Notify ECO.
- If a plant is found, mark location of plants.
- If an animal, mark location where sighted.
- ECO to identify or arrange for identification of species and or the relocation of the species if possible.
- If confirmed significant, ECO to liaise with Endangered Wildlife Trust.
- Recommence work when cleared by ECO.

5.5 Discovery of archeological or heritage items

- Stop work.
- Do not further disturb the area.
- Notify ECO.
- ECO to arrange appraisal of specimen.
- If confirmed significant, ECO to liaise with National, Cultural and History Museum.
 P.O. Box 28088
 SUNNYSIDE
 0132

Contact Mr. J. van Schalkwyk

or Mr. Naude

Recommence work when cleared by ECO.

6 EMP review

- 1. The Site supervisor is responsible for ensuring the work crew is complying with procedures, and for informing the work crew of any changes. The site supervisor is responsible for ensuring the work crew is aware of changes that may have been implemented by GDARD before starting any works.
- 2. If the contractor cannot comply with any of the activities as described above, they should inform the ECO with reasons within 7 working days.