

PALAEONTOLOGICAL DESKTOP ASSESSMENT FOR THE ELECTRIFICATION PROJECT IN THE MATSAKALI VILLAGE, LIMPOPO

SAHRA CaseID: 15552

Compiled for:

NCC Environmental Services (Pty) Ltd

26 Bell Close
Westlake Business Park
Westlake
Cape Town

Prepared by
Banzai Environmental
12 December 2020

Declaration of Independence

I, Elize Butler, declare that -

General declaration:

- I act as the independent palaeontological specialist in this application
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favorable to the applicant
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting palaeontological impact assessments, including knowledge
 of the Act, Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I will take into account, to the extent possible, the matters listed in section 38 of the NHRA when preparing the application and any report relating to the application;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing

 any decision to be taken with respect to the application by the competent authority; and
 the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- I will ensure that information containing all relevant facts in respect of the application is distributed or made available to interested and affected parties and the public and that participation by interested and affected parties is facilitated in such a manner that all interested and affected parties will be provided with a reasonable opportunity to participate and to provide comments on documents that are produced to support the application;
- I will provide the competent authority with access to all information at my disposal regarding the application, whether such information is favorable to the applicant or not
- All the particulars furnished by me in this form are true and correct;
- I will perform all other obligations as expected a palaeontological specialist in terms of the
 Act and the constitutions of my affiliated professional bodies; and
- I realize that a false declaration is an offense in terms of regulation 71 of the Regulations and is punishable in terms of section 24F of the NEMA.

Disclosure of Vested Interest

I do not have and will not have any vested interest (either business, financial, personal or other) in the proposed activity proceeding other than remuneration for work performed in terms of the Regulations.

PALAEONTOLOGICAL CONSULTANT: Banzai Environmental (Pty) Ltd

CONTACT PERSON: Elize Butler

Tel: +27 844478759

Email: info@Banzai-group.com

SIGNATURE:

This Palaeontological Impact Assessment report has been compiled considering the National Environmental Management Act 1998 (NEMA) and Environmental Impact Regulations 2014 as amended, requirements for specialist reports, Appendix 6, as indicated in the table 1 below.

Table 1: NEMA Table.

Requirements of Appendix 6 – GN R326 EIA	Relevant section in	Comment where
Regulations of 7 April 2017	report	not applicable.
	Page 2 and Section 2 of	-
	Report - Contact details	
	and company and	
1.(1) (a) (i) Details of the specialist who prepared the report	Appendix A	
(ii) The expertise of that person to compile a specialist	Section 2 - refer to	-
report including a curriculum vita	Appendix A	
(b) A declaration that the person is independent in a form	Daniel A O of the manual	-
as may be specified by the competent authority	Page 1-2 of the report	
(c) An indication of the scope of, and the purpose for	Continue 4 Objective	-
which, the report was prepared	Section 4 – Objective	
(cA) An indication of the quality and age of base data	Section 5 – Geological and	-
used for the specialist report	Palaeontological history	
(cB) a description of existing impacts on the site,		-
cumulative impacts of the proposed development and	Section 9	
levels of acceptable change;		
(d) The duration, date and season of the site		
investigation and the relevance of the season to the	Desktop Study	
outcome of the assessment		
(e) a description of the methodology adopted in		-
preparing the report or carrying out the specialised	Section 7 Approach and	
process inclusive of equipment and modelling used	Methodology	
(f) details of an assessment of the specific identified		
sensitivity of the site related to the proposed activity		
or activities and its associated structures and		
infrastructure, inclusive of a site plan identifying site		
alternatives;	Desktop Study	
		No buffers or
(g) An identification of any areas to be avoided, including		areas of sensitivity
buffers	Section 5	identified
(h) A map superimposing the activity including the		
associated structures and infrastructure on the		
environmental sensitivities of the site including areas	Section 5 – Geological and	
to be avoided, including buffers;	Palaeontological history	
(i) A description of any assumptions made and any	Section 7.1 – Assumptions	-
	<u> </u>	l .

Requirements of Appendix 6 – GN R326 EIA	Relevant section in	Comment where
Regulations of 7 April 2017	report	not applicable.
uncertainties or gaps in knowledge;	and Limitation	
(j) A description of the findings and potential implications		
of such findings on the impact of the proposed	Section 1 and 10	
activity, including identified alternatives, on the environment	Section Fand To	
(k) Any mitigation measures for inclusion in the EMPr	Section 1 and 10	
(I) Any conditions for inclusion in the environmental		None required
authorisation	N/A	Trono roquilou
(m) Any monitoring requirements for inclusion in the	N/A	
EMPr or environmental authorisation		
(n)(i) A reasoned opinion as to whether the proposed	N/A	
activity, activities or portions thereof should be		
authorised and		
(n)(iA) A reasoned opinion regarding the acceptability		
of the proposed activity or activities; and		
(n)(ii) If the opinion is that the proposed activity,		-
activities or portions thereof should be authorised,		
any avoidance, management and mitigation	Section 1 and 10	
measures that should be included in the EMPr,		
and where applicable, the closure plan		
(o) A description of any consultation process that was		
undertaken during the course of carrying out the		
study	N/A	
(p) A summary and copies if any comments that were		
received during any consultation process	N/A	
(q) Any other information requested by the competent		
authority.	N/A	
(2) Where a government notice by the Minister provides for		
any protocol or minimum information requirement to be	Section 3 compliance with	
applied to a specialist report, the requirements as indicated	SAHRA guidelines	
in such notice will apply.		

EXECUTIVE SUMMARY

Banzai Environmental was appointed by **NCC Environmental Services (Pty) Ltd** to conduct the Palaeontological Desktop Assessment (PDA) to assess the proposed electrification project in Matsakali Village in Limpopo. The National Heritage Resources Act (No 25 of 1999, section 38), states that a Palaeontological Assessment is necessary to detect the presence of fossil material within the planned development footprint. This study is thus necessary to evaluate the effect of the construction on the Palaeontological Heritage on the development.

The proposed electrification project in Matsakali Village, Limpopo Province is completely underlain by the Quaternary Superficial deposits. According to SAHRIS the Palaeontological Sensitivity of the Quaternary is moderate.

It is therefore considered that the electrification project in Matsakali Village, Limpopo Province is deemed appropriate and feasible and will not lead to detrimental impacts on the palaeontological resources of the area. Thus, the construction and operation of the electrification may be authorised as the whole extent of the development footprint is not considered sensitive in terms of palaeontological resources.

If fossil remains or trace fossils are discovered during any phase of construction, either on the surface or exposed by excavations the Environmental Officer (EO) in charge of these developments must be informed. These discoveries ought to be protected and the ECO must report to SAHRA (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Tel: 021 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za) so that mitigation can be carry out by a palaeontologists.

It is consequently recommended that no further palaeontological heritage studies, ground truthing and/or specialist mitigation are required pending the discovery of newly discovered fossils.

TABLE OF CONTENT

1	INTRODUCTION	8	
2	QUALIFICATIONS AND EXPERIENCE OF THE AUTHOR	11	
3	LEGISLATION	11	
3.1	National Heritage Resources Act (25 of 1999)	11	
4	OBJECTIVE	12	
5	GEOLOGICAL AND PALAEONTOLOGICAL HISTORY	13	
6	GEOGRAPHICAL LOCATION OF THE SITE	16	
7	METHODS	16	
7.1	Assumptions and Limitations	16	
8	ADDITIONAL INFORMATION CONSULTED	16	
9	IMPACT ASSESSMENT METHODOLOGY AND HIERARCHY	17	
9.1	Impact Rating System	17	
9.2	Summary of Impacts	20	
10	FINDINGS AND RECOMMENDATIONS	21	
11	REFERENCES	21	
1.1.	CONFERENCE CONTRIBUTIONS	36	
List	t of Figures		
Figu	ure 1: Google Earth Hybrid Image (2020) of the proposed electrification pro	oject in	
Mat	sakali Village, Limpopo Province	9	
Figu	ure 2: Extract of the topographical map indicating the locality of the pro	oposed	
electrification project in Matsakali Village, Limpopo Province			
Figure 3: The proposed electrification project in Matsakali Village, Limpopo Province			
is c	s completely underlain by the Quaternary Superficial Deposits		

List of Tables

Table 1: NEMA Table	3
Table 2: Fossil heritage of rocks represented in the proposed Ga-Rapadi	Village
electrification project (Almond and Pether, 2008)	14
Table 3:The rating system	17
Appendix A: CV	

1 INTRODUCTION

[Information provided by NCC Environmental Services (Pty) Ltd]

NCC Environmental Services (Pty) Ltd was appointed to oversee the Palaeontological Desktop Assessment requested by SAHRA (CaseID: 15552). Eskom Holdings SOC Ltd, Limpopo Operating Unit (LOU) proposes to electrify a household in Matsakali Village, Limpopo Province. The proposed new power line will be 461 meters long, beginning at Malamulele/Boltman 22 kV feeder, on the Fischer 214 LT, in the Limpopo Province. The powerline will be connected from the existing powerline in the area from pole number MBM47/26/89. The power line will be supplying electricity to a household in the Matsakali village. The proposed power line will be constructed along a gravel road servitude passing a cemetery (Figure 1).

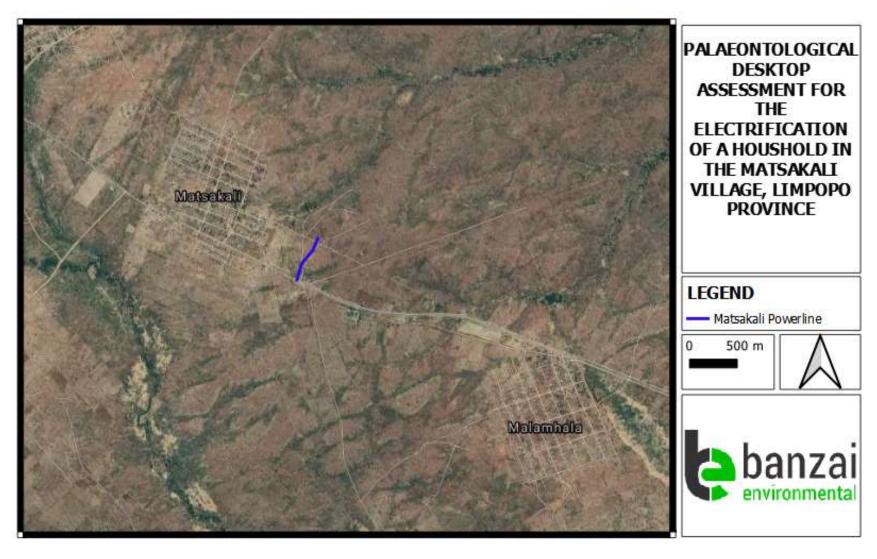


Figure 1: Google Earth Hybrid Image (2020) of the proposed electrification project in Matsakali Village, Limpopo Province.

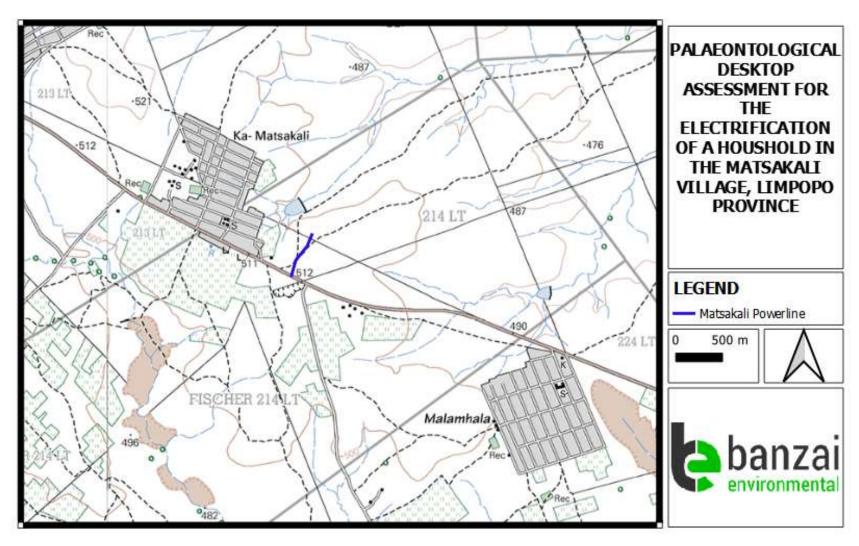


Figure 2: Extract of the topographical map indicating the locality of the proposed electrification project in Matsakali Village, Limpopo Province.

2 QUALIFICATIONS AND EXPERIENCE OF THE AUTHOR

The author (Mrs Elize Butler) has conducted approximately 300 palaeontological impact assessments for developments in the Free State, KwaZulu-Natal, Eastern, Central, and Northern Cape, Northwest, Gauteng, Limpopo, and Mpumalanga. She has an MSc (*cum laude*) in Zoology (specializing in Palaeontology) from the University of the Free State, South Africa and has been working in Palaeontology for more than twenty-five years. She has experience in locating, collecting, and curating fossils, including exploration field trips in search of new localities in the Karoo Basin. She has been a member of the Palaeontological Society of South Africa (PSSA) since 2006 and has been conducting PIAs since 2014.

3 LEGISLATION

3.1 National Heritage Resources Act (25 of 1999)

Cultural Heritage in South Africa, includes all heritage resources, is protected by the National Heritage Resources Act (Act 25 of 1999) (NHRA). Heritage resources as defined in Section 3 of the Act include "all objects recovered from the soil or waters of South Africa, including archaeological and palaeontological objects and material, meteorites and rare geological specimens".

Palaeontological heritage is unique and non-renewable and is protected by the NHRA. Palaeontological resources may not be unearthed, broken moved, or destroyed by any development without prior assessment and without a permit from the relevant heritage resources authority as per section 35 of the NHRA.

This Palaeontological Desktop Assessment forms part of the Heritage Impact Assessment (HIA) and adhere to the conditions of the Act. According to **Section 38 (1)**, an HIA is required to assess any potential impacts to palaeontological heritage within the development footprint where:

- the construction of a road, wall, power line, pipeline, canal or other similar form of linear development or barrier exceeding 300 m in length;
- the construction of a bridge or similar structure exceeding 50 m in length;
- any development or other activity which will change the character of a site—
- (exceeding 5 000 m² in extent; or
- involving three or more existing erven or subdivisions thereof; or
- involving three or more erven or divisions thereof which have been consolidated within the past five years; or
- the costs of which will exceed a sum set in terms of regulations by SAHRA or a provincial heritage resources authority
- the re-zoning of a site exceeding 10 000 m² in extent;

 or any other category of development provided for in regulations by SAHRA or a Provincial heritage resources authority.

4 OBJECTIVE

The objective of a Palaeontological Desktop Assessment is to determine the impact of the development on potential palaeontological material at the site.

According to the "SAHRA APM Guidelines: Minimum Standards for the Archaeological and Palaeontological Components of Impact Assessment Reports" the aims of the PIA are: 1) to **identify** the palaeontological status of the exposed as well as rock formations just below the surface in the development footprint 2) to assess the **palaeontological importance** of the formations 3) to determine the **impact** on fossil heritage, and 4) to **recommend** how the developer ought to protect or mitigate damage to fossil heritage.

When a palaeontologist compiles a desktop study, the potentially fossiliferous rocks present within the development are established from 1:250 000 geological maps. The topography of the development is identified by 1:50 000 topography maps and Google Earth Images. Previous palaeontological impact studies in the same region, the PalaeoMap from SAHRIS; and databases of various institutions which identify fossils found in close proximity to the development is used to identify the fossil heritage within each rock. The palaeontological status of each rock component is calculated and the possible impact of the development on fossil heritage is determined by a) the palaeontological importance of the rocks, b) the quantity of bedrock removed and c) the type of development.

When it is determined that the development footprint has a **moderate to high sensitivity**, **a field-based assessment** by a palaeontologist is necessary. By using the desktop and the field survey of the exposed rock the impact significance of the planned development is calculated and recommendations for any further studies or mitigation are made. Usually, destructive impacts on palaeontological heritage only occur during the construction phase and the excavations will change the current topography and may destruct or permanently seal-in fossils at or below the ground surface. Fossil Heritage will then no longer be accessible for scientific research.

Mitigation may precede construction or even better occur during construction when potentially fossiliferous bedrock is exposed. Mitigation comprises the collection and recording of fossils. It is important that preceding the excavation of any fossil heritage a permit from SAHRA must be obtained and the material will have to be housed in a permitted institution. When mitigation is applied correctly, a positive impact as possible because our knowledge of local palaeontological heritage may be increased

5 GEOLOGICAL AND PALAEONTOLOGICAL HISTORY

The proposed electrification project in Matsakali Village, Limpopo is indicated in the 1:250 000 2330 Tzaneen (1985) Geological Map (Council of Geosciences) and is underlain by the Quaternary superficial deposits (Figure 3). According to the South African Heritage Resources Information System the Palaeontological Sensitivity of the Quaternary superficial deposits is moderate (Almond *et al*, 2013; SAHRIS website).

The Quaternary superficial deposits are the youngest geological deposits formed during the most recent geological period (approximately 2.6 million years ago to present). The rocks and sediments are found at or near the Earth's surface. Pre-Quaternary deposits are known as bedrock. Most of the superficial deposits are unconsolidated sediments and consist of clay, gravel, sand, silt, that form relatively thin, discontinuous patches of sediments or larger spreads onshore. These sediments comprise of beach sand, channel, floodplain and stream deposits, talus gravels and glacial drift sediments.

The Quaternary deposits are of most importance due to the paleoclimatic changes that are reflected in the different geological formations (Hunter et al., 2006). During the climate fluctuations in the Cenozoic Era most geomorphologic features in southern Africa where formed (Maud, 2012). Barnosky (2005) indicated that various warming and cooling events occurred in the Cenozoic but states that climatic changes during the Quaternary Period, specifically the last 1.8 Ma, were the most drastic climate changes relative to all climate variations in the past. Climate variations that occurred in the Quaternary Period were both drier and wetter than the present and resulted in changes in river flow patterns, sedimentation processes and vegetation variation (Tooth et al., 2004).

Quaternary fossil assemblages are generally rare and low in diversity and occur over a wide-ranging geographic area. These fossil assemblages may in some cases occur in extensive alluvial and colluvial deposits cut by dongas. In the past palaeontologists did not focus on Caenozoic superficial deposits although they sometimes comprise of significant fossil deposits. These fossil assemblages resemble modern animals and may comprise of mammalian teeth, bones and horn corns, reptile skeletons and fragments of ostrich eggs. Microfossils, non-marine mollusc shells are also known from Quaternary deposits. Plant material such as foliage, wood, pollens and peats are recovered as well as trace fossils like vertebrate tracks, burrows, termitaria (termite heaps/ mounds) and rhizoliths (root casts).

Table 2: Fossil heritage of rocks represented in the proposed Matsakali Village electrification project (Groenewald *et al*, 2014).

Geological Unit	Rock Type and Age	Fossil Heritage	Palaeontological
			Sensitivity
CAENOZOIC	Quaternary (1.6 Ma to	Fossil assemblages	Moderate
SUPERFICIAL DEPOSITS	recent)	resemble modern	
		animals. May	
Aeolian sand, alluvium, colluvium,		comprise of	
calcareous spring tufa		mammalian teeth,	
and siliceous sinter, as well as lake deposits,		bones and horn corns,	
peats, pedocretes		reptile skeletons and	
(calcrete and ferricrete), and gravel		fragments of ostrich	
and soils		eggs. Microfossils,	
and cone		non-marine mollusc	
		shells, Plant material	
		includes foliage, wood,	
		pollens and peats and	
		trace fossils like	
		vertebrate tracks,	
		burrows, termitaria	
		and rhizoliths	

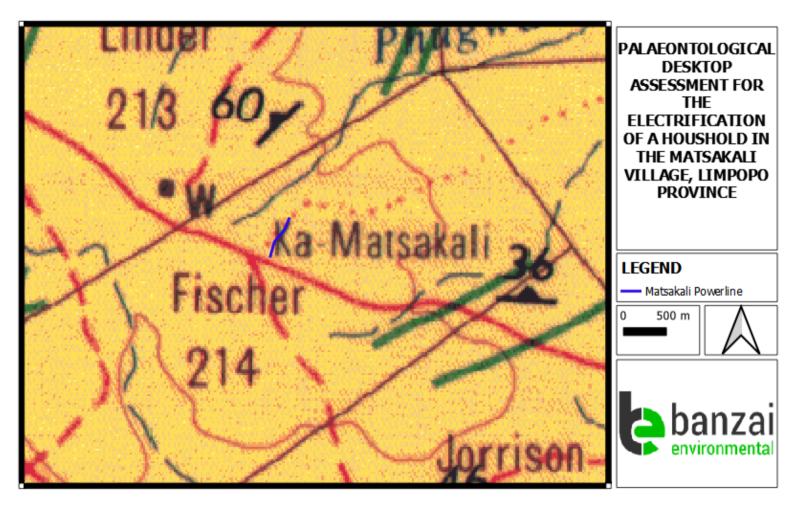


Figure 3: Extract of the 1:250 000 2330 Tzaneen (1985) Geological Map (Council of Geosciences)

indicates that the proposed electrification project in Matsakali Village, Limpopo Province is completely underlain by the Quaternary Superficial Deposits.

6 GEOGRAPHICAL LOCATION OF THE SITE

The coordinates of the proposed powerline is: Northern point 23° 3'7.21"S 30°46'10.95"E Southern point 23° 3'20.22"S 30°46'3.84"E

7 METHODS

A desktop study was assembled to evaluate the possible risk to palaeontological heritage (this includes fossils as well as trace fossils) in the proposed development area. In compiling the desktop report aerial photos, Google Earth 2020, topographical and geological maps and other reports from the same area as well as the author's experience were used to assess the proposed development footprint.

7.1 Assumptions and Limitations

The accuracy of Palaeontological Desktop Assessments is reduced by several factors which may include the following: the databases of institutions are not always up to date and relevant locality and geological information were not accurately documented in the past. Various remote areas of South Africa have not been assessed by palaeontologists and data is based on aerial photographs alone. Geological maps concentrate on the geology of an area and the sheet explanations were never intended to focus on palaeontological heritage.

Similar Assemblage Zones, but in different areas is used to provide information on the presence of fossil heritage in an unmapped area. Desktop studies of similar geological formations and Assemblage Zones generally **assume** that exposed fossil heritage is present within the development area. The accuracy of the Palaeontological Impact Assessment is thus improved considerably by conducting a field-assessment.

8 ADDITIONAL INFORMATION CONSULTED

In compiling this report the following sources were consulted:

- The Palaeosensitivity Map from the SAHRIS website.
- Geological map 1:100 000, Geology of the Republic of South Africa (Visser 1984)
- Geological Map 1: 250 000 2330 Tzaneen Geological Map (Council of Geosciences).
- A Google Earth map with polygons of the proposed development was obtained from NCC.

9 IMPACT ASSESSMENT METHODOLOGY AND HIERARCHY

9.1 Impact Rating System

Impact assessment must take account of the nature, scale and duration of impacts on the environment whether such impacts are positive or negative. Each impact is also assessed according to the following project phases:

- Construction
- Operation
- Decommissioning

Where necessary, the proposal for mitigation or optimisation of an impact should be detailed. A brief discussion of the impact and the rationale behind the assessment of its significance should also be included. The rating system is applied to the potential impacts on the receiving environment and includes an objective evaluation of the mitigation of the impact. In assessing the significance of each impact the following criteria is used:

Table 3: The rating system

NATURE		
Include a brief description of the impact of environmental parameter being assessed in the context		
of the p	project. This criterion includes a	brief written statement of the environmental aspect being
impacte	ed upon by a particular action or a	ctivity.
GEOGR	RAPHICAL EXTENT	
This is	defined as the area over which the	e impact will be experienced.
1	Site	The impact will only affect the site.
2	Local/district	Will affect the local area or district.
3	Province/region	Will affect the entire province or region.
4	International and National	Will affect the entire country.
PROBABILITY		
This describes the chance of occurrence of an impact.		
1	Unlikely	The chance of the impact occurring is extremely low
		(Less than a 25% chance of occurrence).
2	Possible	The impact may occur (Between a 25% to 50% chance
		of occurrence).
3	Probable	The impact will likely occur (Between a 50% to 75%
		chance of occurrence).
4	Definite	Impact will certainly occur (Greater than a 75% chance of
		occurrence).

Table 1 Continues

DURATION		
This describes the duration of the impacts. Duration indicates the lifetime of the impact as a result		
of the proposed activity.		
1	Short term	The impact will either disappear with mitigation or will be
		mitigated through natural processes in a span shorter
		than the construction phase (0 – 1 years), or the impact
		will last for the period of a relatively short construction
		period and a limited recovery time after construction,
		thereafter it will be entirely negated (0 – 2 years).
2	Medium term	The impact will continue or last for some time after the
		construction phase but will be mitigated by direct human
		action or by natural processes thereafter (2 – 10 years).
3	Long term	The impact and its effects will continue or last for the
		entire operational life of the development, but will be
		mitigated by direct human action or by natural processes
		thereafter (10 – 30 years).
4	Permanent	The only class of impact that will be non-transitory.
		Mitigation either by man or natural process will not occur
		in such a way or such a time span that the impact can
		be considered indefinite.
INTEN	SITY/ MAGNITUDE	
Describ	es the severity of an impact.	
1	Low	Impact affects the quality, use and integrity of the
		system/component in a way that is barely perceptible.
2	Medium	Impact alters the quality, use and integrity of the
		system/component but system/component still continues
		to function in a moderately modified way and maintains
		general integrity (some impact on integrity).
3	High	Impact affects the continued viability of the system/
		component and the quality, use, integrity and
		functionality of the system or component is severely
		impaired and may temporarily cease. High costs of
		rehabilitation and remediation.
4	Very high	Impact affects the continued viability of the
		system/component and the quality, use, integrity and
		functionality of the system or component permanently
		ceases and is irreversibly impaired. Rehabilitation and
		remediation often impossible. If possible rehabilitation
		and remediation often unfeasible due to extremely high

	costs of rehabilitation and remediation.

Table 1 Continues

Table 1 Continues		
REVERSIBILITY		
This describes the degree to which an impact can be successfully reversed upon completion of the		
d activity.		
Completely reversible	The impact is reversible with implementation of minor	
	mitigation measures.	
Partly reversible	The impact is partly reversible but more intense	
	mitigation measures are required.	
Barely reversible	The impact is unlikely to be reversed even with intense	
	mitigation measures.	
Irreversible	The impact is irreversible and no mitigation measures	
	exist.	
ACEABLE LOSS OF RESOURC	ES	
cribes the degree to which resour	rces will be irreplaceably lost as a result of a proposed	
No loss of resource	The impact will not result in the loss of any resources.	
Marginal loss of resource	The impact will result in marginal loss of resources.	
Significant loss of resources	The impact will result in significant loss of resources.	
Complete loss of resources	The impact is result in a complete loss of all resources.	
ATIVE EFFECT		
This describes the cumulative effect of the impacts. A cumulative impact is an effect which in itself		
be significant but may become	significant if added to other existing or potential impacts	
emanating from other similar or diverse activities as a result of the project activity in question.		
Negligible cumulative impact	The impact would result in negligible to no cumulative	
	effects.	
Low cumulative impact	The impact would result in insignificant cumulative	
	effects.	
Medium cumulative impact	The impact would result in minor cumulative effects.	
High cumulative impact	The impact would result in significant cumulative effects	
	cribes the degree to which an imple activity. Completely reversible Partly reversible Barely reversible Irreversible ACEABLE LOSS OF RESOURCE cribes the degree to which resource Marginal loss of resource Significant loss of resources Complete loss of resources ATIVE EFFECT cribes the cumulative effect of the be significant but may become and from other similar or diverse and Negligible cumulative impact Low cumulative impact	

Table 1 Continues

SIGNIFICANCE

Significance is determined through a synthesis of impact characteristics. Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. The calculation of the significance of an impact uses the following formula:

(Extent + probability + reversibility + irreplaceability + duration + cumulative effect) x magnitude/intensity.

The summation of the different criteria will produce a non-weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

Points	Impact significance rating	Description
6 to 28	Negative low impact	The anticipated impact will have negligible negative
		effects and will require little to no mitigation.
6 to 28	Positive low impact	The anticipated impact will have minor positive effects.
29 to 50	Negative medium impact	The anticipated impact will have moderate negative
		effects and will require moderate mitigation measures.
29 to 50	Positive medium impact	The anticipated impact will have moderate positive
		effects.
51 to 73	Negative high impact	The anticipated impact will have significant effects and
		will require significant mitigation measures to achieve an
		acceptable level of impact.
51 to 73	Positive high impact	The anticipated impact will have significant positive
		effects.
74 to 96	Negative very high impact	The anticipated impact will have highly significant effects
		and are unlikely to be able to be mitigated adequately.
		These impacts could be considered "fatal flaws".
74 to 96	Positive very high impact	The anticipated impact will have highly significant
		positive

Extent (1) + probability (2) + reversibility (4) + irreplaceability (4) + duration (4) + cumulative effect (1)) x magnitude/intensity (1) = 16

9.2 Summary of Impacts

The impact on Fossil Heritage is DIRECT NEGATIVE. Only the study site will be affected by the proposed development. The expected duration of the impact is assessed as potentially permanent. The impact is highly destructive but will only occur during the construction phase. The significance of the impact occurring will be **moderate**. As fossil heritage will be destroyed the

impact is **irreversible** but the degree to which the impact can cause irreplaceable loss of resources is Moderate if proper mitigation is to be undertaken.

10 FINDINGS AND RECOMMENDATIONS

The proposed electrification project in Matsakali Village, Limpopo Province is completely underlain by the Quaternary Superficial deposits. According to SAHRIS the Palaeontological Sensitivity of the Quaternary is low while it could be locally high.

It is therefore considered that the electrification project in Matsakali Village, Limpopo Province is deemed appropriate and feasible and will not lead to detrimental impacts on the palaeontological resources of the area. Thus, the construction and operation of the electrification may be authorised as the whole extent of the development footprint is not considered sensitive in terms of palaeontological resources.

If fossil remains or trace fossils are discovered during any phase of construction, either on the surface or exposed by excavations the Environmental Officer (EO) in charge of these developments must be informed. These discoveries ought to be protected and the ECO must report to SAHRA (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Tel: 021 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za) so that mitigation can be carry out by a palaeontologists.

It is consequently recommended that no further palaeontological heritage studies, ground truthing and/or specialist mitigation are required pending the discovery of newly discovered fossils.

11 REFERENCES

ALMOND, J., PETHER, J, and GROENEWALD, G. 2013. South African National Fossil Sensitivity Map. SAHRA and Council for Geosciences. Schweitzer *et al.* (1995) pp p288.

BARNOSKY, A.D. 2005. Effects of Quaternary Climatic Change on Speciation in Mammals. *Journal of Mammalian Evolution*. 2005(12):247-264, June

DU TOIT, A. 1954. The geology of South Africa. xii + 611pp, 41 pls. Oliver & Boyd, Edinburg.

GROENEWALD, G. and GROENEWALD, D. 2014. SAHRA Palaeotechnical Report: Palaeontological Heritage of the Free State Province. South African Heritage Resources Agency, Pp 1-20.

HUNTER, D.R., JOHNSON, M.R., ANHAEUSSER, C. R. AND THOMAS, R.J. 2006. Introduction. (*In*: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J. (Eds), *The Geology of South Africa*. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, 585-604.)

KENT, L. E., 1980. Part 1: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei, and Venda. SACS, Council for Geosciences, Pp 535-574.

MACRAE, C. 1999. Life etched in stone. Fossils of South Africa. 305 pp. The Geological Society of South Africa, Johannesburg.

MAUD, R. 2012. Macroscale Geomorphic Evolution. (*In* Holmes, P. and Meadows, M. Southern Africa Geomorphology, New trends and new directions. Bloemfontein: Sun Press. p. 7-21)

PARTRIDGE, T.C., BOTHA, G.A. AND HADDON, I.G. 2006. Cenozoic Deposits of the Interior. (*In*: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J. (Eds), *The Geology of South Africa*. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, 585-604.)

SG 2.2 SAHRA APMHOB Guidelines, 2012. Minimum standards for palaeontological components of Heritage Impact Assessment Reports, Pp 1-15.

TOOTH, S. BRANDT, D., HANCOX P.J. AND MCCARTHY, T. S. 2004. Geological controls on alluvial river behavior: a comparative study of three rivers in the South African Highveld. *Journal of African Earth Sciences*, 38(2004): 79-97, 15 Aug.

VISSER, D.J.L. (ed) 1984. Geological Map of South Africa 1:100 000. South African Committee for Stratigraphy, Council for Geoscience, Pretoria.

VISSER, D.J.L. (ed) 1989. Toeligting: Geologiese kaart (1:100 000). Die Geologie van die Republieke van Suid Afrika, Transkei, Bophuthatswana, Venda, Ciskei en die Koningkryke van Lesotho en Swaziland. South African Committee for Stratigraphy. Council for Geoscience, Pretoria, Pp 494.

Appendix A - Elize Butler CV

CURRICULUM VITAE

ELIZE BUTLER

PROFESSION: Palaeontologist

YEARS' EXPERIENCE: 26 years in Palaeontology

EDUCATION: B.Sc Botany and Zoology, 1988

University of the Orange Free State

B.Sc (Hons) Zoology, 1991

University of the Orange Free State

Management Course, 1991

University of the Orange Free State

M. Sc. Cum laude (Zoology), 2009

University of the Free State

Dissertation title: The postcranial skeleton of the Early Triassic non-mammalian Cynodont *Galesaurus planiceps*: implications for biology and lifestyle

MEMBERSHIP

Palaeontological Society of South Africa (PSSA) 2006-currently

EMPLOYMENT HISTORY

Part time Laboratory assistant Department of Zoology & Entomology

University of the Free State Zoology

1989-1992

Part time laboratory assistant Department of Virology

University of the Free State Zoology

1992

Research Assistant National Museum, Bloemfontein 1993 –

1997

Principal Research Assistant National Museum, Bloemfontein

and Collection Manager 1998–currently

TECHNICAL REPORTS

- **Butler, E. 2014.** Palaeontological Impact Assessment of the proposed development of private dwellings on portion 5 of farm 304 Matjesfontein Keurboomstrand, Knysna District, Western Cape Province. Bloemfontein.
- **Butler, E. 2014.** Palaeontological Impact Assessment for the proposed upgrade of existing water supply infrastructure at Noupoort, Northern Cape Province. 2014. Bloemfontein.
- **Butler, E. 2015.** Palaeontological impact assessment of the proposed consolidation, redivision and development of 250 serviced erven in Nieu-Bethesda, Camdeboo local municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2015.** Palaeontological impact assessment of the proposed mixed land developments at Rooikraal 454, Vrede, Free State. Bloemfontein.
- **Butler, E. 2015.** Palaeontological exemption report of the proposed truck stop development at Palmiet 585, Vrede, Free State. Bloemfontein.
- **Butler, E. 2015.** Palaeontological impact assessment of the proposed Orange Grove 3500 residential development, Buffalo City Metropolitan Municipality East London, Eastern Cape. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Gonubie residential development, Buffalo City Metropolitan Municipality East London, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Ficksburg raw water pipeline. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Heritage Impact Assessment report on the establishment of the 65 mw Majuba Solar Photovoltaic facility and associated infrastructure on portion 1, 2 and 6 of the farm Witkoppies 81 HS, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed township establishment on the remainder of portion 6 and 7 of the farm Sunnyside 2620, Bloemfontein, Mangaung metropolitan municipality, Free State, Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Woodhouse 1 photovoltaic solar energy facilities and associated infrastructure on the farm Woodhouse729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Woodhouse 2 photovoltaic solar energy facilities and associated infrastructure on the farm Woodhouse 729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2015.**Palaeontological Impact Assessment of the proposed Orkney solar energy farm and associated infrastructure on the remaining extent of Portions 7 and 21 of the farm Wolvehuis 114, near Orkney, North West Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Spectra foods broiler houses and abattoir on the farm Maiden Manor 170 and Ashby Manor 171, Lukhanji Municipality, Queenstown, Eastern Cape Province. Bloemfontein.

- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed construction of the 150 MW Noupoort concentrated solar power facility and associated infrastructure on portion 1 and 4 of the farm Carolus Poort 167 and the remainder of Farm 207, near Noupoort, Northern Cape. Prepared for Savannah Environmental. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Woodhouse 1 Photovoltaic Solar Energy facility and associated infrastructure on the farm Woodhouse 729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Woodhouse 2 Photovoltaic Solar Energy facility and associated infrastructure on the farm Woodhouse 729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2016.** Proposed 132kV overhead power line and switchyard station for the authorised Solis Power 1 CSP project near Upington, Northern Cape. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Senqu Pedestrian Bridges in Ward 5 of Senqu Local Municipality, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Recommendation from further Palaeontological Studies: Proposed Construction of the Modderfontein Filling Station on Erf 28 Portion 30, Founders Hill, City Of Johannesburg, Gauteng Province. Bloemfontein.
- **Butler, E. 2016.** Recommendation from further Palaeontological Studies: Proposed Construction of the Modikwa Filling Station on a Portion of Portion 2 of Mooihoek 255 Kt, Greater Tubatse Local Municipality, Limpopo Province. Bloemfontein.
- **Butler, E. 2016.** Recommendation from further Palaeontological Studies: Proposed Construction of the Heidedal filling station on Erf 16603, Heidedal Extension 24, Mangaung Local Municipality, Bloemfontein, Free State Province. Bloemfontein.
- **Butler, E. 2016.** Recommended Exemption from further Palaeontological studies: Proposed Construction of the Gunstfontein Switching Station, 132kv Overhead Power Line (Single Or Double Circuit) and ancillary infrastructure for the Gunstfontein Wind Farm Near Sutherland, Northern Cape Province. Savannaha South Africa. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Galla Hills Quarry on the remainder of the farm Roode Krantz 203, in the Lukhanji Municipality, division of Queenstown, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Chris Hani District Municipality Cluster 9 water backlog project phases 3a and 3b: Palaeontology inspection at Tsomo WTW. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed construction of the 150 MW Noupoort concentrated solar power facility and associated infrastructure on portion 1 and 4 of the farm Carolus Poort 167 and the remainder of Farm 207, near Noupoort, Northern Cape. Savannaha South Africa. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed upgrading of the main road MR450 (R335) from the Motherwell to Addo within the Nelson Mandela Bay Municipality and Sunday's river valley Local Municipality, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment construction of the proposed Metals Industrial Cluster and associated infrastructure near Kuruman, Northern Cape Province. Savannaha South Africa. Bloemfontein.

- **Butler, E. 2016.** Palaeontological Impact Assessment for the proposed construction of up to a 132kv power line and associated infrastructure for the proposed Kalkaar Solar Thermal Power Plant near Kimberley, Free State and Northern Cape Provinces. PGS Heritage. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed development of two burrow pits (DR02625 and DR02614) in the Enoch Mgijima Municipality, Chris Hani District, Eastern Cape.
- **Butler, E. 2016.** Ezibeleni waste Buy-Back Centre (near Queenstown), Enoch Mgijima Local Municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment for the proposed construction of two 5 Mw Solar Photovoltaic Power Plants on Farm Wildebeestkuil 59 and Farm Leeuwbosch 44, Leeudoringstad, North West Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment for the proposed development of four Leeuwberg Wind farms and basic assessments for the associated grid connection near Loeriesfontein, Northern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological impact assessment for the proposed Aggeneys south prospecting right project, Northern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological impact assessment of the proposed Motuoane Ladysmith Exploration right application, Kwazulu Natal. Bloemfontein.
- **Butler, E. 2016.** Palaeontological impact assessment for the proposed construction of two 5 MW solar photovoltaic power plants on farm Wildebeestkuil 59 and farm Leeuwbosch 44, Leeudoringstad, North West Province. Bloemfontein.
- **Butler, E. 2016**: Palaeontological desktop assessment of the establishment of the proposed residential and mixed-use development on the remainder of portion 7 and portion 898 of the farm Knopjeslaagte 385 Ir, located near Centurion within the Tshwane Metropolitan Municipality of Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological impact assessment for the proposed development of a new cemetery, near Kathu, Gamagara local municipality and John Taolo Gaetsewe district municipality, Northern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment Of The Proposed Development Of The New Open Cast Mining Operations On The Remaining Portions Of 6, 7, 8 And 10 Of The Farm Kwaggafontein 8 In The Carolina Magisterial District, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the Proposed Development of a Wastewater Treatment Works at Lanseria, Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Scoping Report for the Proposed Construction of a Warehouse and Associated Infrastructure at Perseverance in Port Elizabeth, Eastern Cape Province.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the Proposed Establishment of a Diesel Farm and a Haul Road for the Tshipi Borwa mine Near Hotazel, In the John Taolo Gaetsewe District Municipality in the Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the Proposed Changes to Operations at the UMK Mine near Hotazel, In the John Taolo Gaetsewe District Municipality in the Northern Cape Province. Bloemfontein.

- **Butler, E. 2017.** Palaeontological Impact Assessment for the Development of the Proposed Ventersburg Project-An Underground Mining Operation near Ventersburg and Henneman, Free State Province. Bloemfontein.
- **Butler**, **E. 2017.** Palaeontological desktop assessment of the proposed development of a 3000 MW combined cycle gas turbine (CCGT) in Richards Bay, Kwazulu-Natal. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment for the Development of the Proposed Revalidation of the lapsed General Plans for Elliotdale, Mbhashe Local Municipality. Bloemfontein.
- **Butler, E. 2017.** Palaeontological assessment of the proposed development of a 3000 MW Combined Cycle Gas Turbine (CCGT) in Richards Bay, Kwazulu-Natal. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed development of the new open cast mining operations on the remaining portions of 6, 7, 8 and 10 of the farm Kwaggafontein 8 10 in the Albert Luthuli Local Municipality, Gert Sibande District Municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed mining of the farm Zandvoort 10 in the Albert Luthuli Local Municipality, Gert Sibande District Municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed Lanseria outfall sewer pipeline in Johannesburg, Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of open pit mining at Pit 36W (New Pit) and 62E (Dishaba) Amandelbult Mine Complex, Thabazimbi, Limpopo Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological impact assessment of the proposed development of the sport precinct and associated infrastructure at Merrifield Preparatory school and college, Amathole Municipality, East London. PGS Heritage. Bloemfontein.
- **Butler, E. 2017.** Palaeontological impact assessment of the proposed construction of the Lehae training and fire station, Lenasia, Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of the new open cast mining operations of the Impunzi mine in the Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the construction of the proposed Viljoenskroon Munic 132 KV line, Vierfontein substation and related projects. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed rehabilitation of 5 ownerless asbestos mines. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of the Lephalale coal and power project, Lephalale, Limpopo Province, Republic of South Africa. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of a 132KV powerline from the Tweespruit distribution substation (in the Mantsopa local municipality) to the Driedorp rural substation (within the Naledi local municipality), Free State province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of the new coal-fired power plant and associated infrastructure near Makhado, Limpopo Province. Bloemfontein.

- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of a Photovoltaic Solar Power station near Collett substation, Middelburg, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment for the proposed township establishment of 2000 residential sites with supporting amenities on a portion of farm 826 in Botshabelo West, Mangaung Metro, Free State Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed prospecting right project without bulk sampling, in the Koa Valley, Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed Aroams prospecting right project, without bulk sampling, near Aggeneys, Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed Belvior aggregate quarry II on portion 7 of the farm Maidenhead 169, Enoch Mgijima Municipality, division of Queenstown, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** PIA site visit and report of the proposed Galla Hills Quarry on the remainder of the farm Roode Krantz 203, in the Lukhanji Municipality, division of Queenstown, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of Tina Falls Hydropower and associated power lines near Cumbu, Mthlontlo Local Municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed construction of the Mangaung Gariep Water Augmentation Project. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed Belvoir aggregate quarry II on portion 7 of the farm Maidenhead 169, Enoch Mgijima Municipality, division of Queenstown, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of the Melkspruit-Rouxville 132KV Power line. Bloemfontein.
- **Butler, E. 2017** Palaeontological Desktop Assessment of the proposed development of a railway siding on a portion of portion 41 of the farm Rustfontein 109 is, Govan Mbeki local municipality, Gert Sibande district municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed consolidation of the proposed Ilima Colliery in the Albert Luthuli local municipality, Gert Sibande District Municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed extension of the Kareerand Tailings Storage Facility, associated borrow pits as well as a storm water drainage channel in the Vaal River near Stilfontein, North West Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed construction of a filling station and associated facilities on the Erf 6279, district municipality of John Taolo Gaetsewe District, Ga-Segonyana Local Municipality Northern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed of the Lephalale Coal and Power Project, Lephalale, Limpopo Province, Republic of South Africa. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed Overvaal Trust PV Facility, Buffelspoort, North West Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed development of the H2 Energy Power Station and associated infrastructure on Portions 21; 22 And 23 of the farm

- Hartebeestspruit in the Thembisile Hani Local Municipality, Nkangala District near Kwamhlanga, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed upgrade of the Sandriver Canal and Klippan Pump station in Welkom, Free State Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed upgrade of the 132kv and 11kv power line into a dual circuit above ground power line feeding into the Urania substation in Welkom, Free State Province. Bloemfontein.
- **Butler**, **E. 2017.** Palaeontological Desktop Assessment of the proposed Swaziland-Mozambique border patrol road and Mozambique barrier structure. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed diamonds alluvial & diamonds general prospecting right application near Christiana on the remaining extent of portion 1 of the farm Kaffraria 314, registration division HO, North West Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed development of Wastewater Treatment Works on Hartebeesfontein, near Panbult, Mpumalanga. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed development of Wastewater Treatment Works on Rustplaas near Piet Retief, Mpumalanga. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment for the Proposed Landfill Site in Luckhoff, Letsemeng Local Municipality, Xhariep District, Free State. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment of the proposed development of the new Mutsho coal-fired power plant and associated infrastructure near Makhado, Limpopo Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment of the authorisation and amendment processes for Manangu mine near Delmas, Victor Khanye local municipality, Mpumalanga. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment for the proposed Mashishing township establishment in Mashishing (Lydenburg), Mpumalanga Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment for the Proposed Mlonzi Estate Development near Lusikisiki, Ngquza Hill Local Municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Phase 1 Assessment of the proposed Swaziland-Mozambique border patrol road and Mozambique barrier structure. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment for the proposed electricity expansion project and Sekgame Switching Station at the Sishen Mine, Northern Cape Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological field assessment of the proposed construction of the Zonnebloem Switching Station (132/22kV) and two loop-in loop-out power lines (132kV) in the Mpumalanga Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Field Assessment for the proposed re-alignment and decommisioning of the Firham-Platrand 88kv Powerline, near Standerton, Lekwa Local Municipality, Mpumalanga province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment of the proposed Villa Rosa development In the Buffalo City Metropolitan Municipality, East London. Bloemfontein.

- **Butler, E. 2018.** Palaeontological field Assessment of the proposed Villa Rosa development In the Buffalo City Metropolitan Municipality, East London. Bloemfontein.
- **Butler**, **E. 2018.** Palaeontological desktop assessment of the proposed Mookodi Mahikeng 400kV line, North West Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment for the proposed Thornhill Housing Project, Ndlambe Municipality, Port Alfred, Eastern Cape Province. Bloemfontein.
- **Butler**, **E. 2018.** Palaeontological desktop assessment of the proposed housing development on portion 237 of farm Hartebeestpoort 328. Bloemfontein.
- **Butler, E. 2018.** Palaeontological desktop assessment of the proposed New Age Chicken layer facility located on holding 75 Endicott near Springs in Gauteng. Bloemfontein.
- **Butler, E. 2018** Palaeontological Desktop Assessment for the development of the proposed Leslie 1 Mining Project near Leandra, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological field assessment of the proposed development of the Wildealskloof mixed use development near Bloemfontein, Free State Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Field Assessment of the proposed Megamor Extension, East London. Bloemfontein
- **Butler, E. 2018.** Palaeontological Impact Assessment of the proposed diamonds Alluvial & Diamonds General Prospecting Right Application near Christiana on the Remaining Extent of Portion 1 of the Farm Kaffraria 314, Registration Division HO, North West Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment of the proposed construction of a new 11kV (1.3km) Power Line to supply electricity to a cell tower on farm 215 near Delportshoop in the Northern Cape. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Field Assessment of the proposed construction of a new 22 kV single wood pole structure power line to the proposed MTN tower, near Britstown, Northern Cape Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Exemption Letter for the proposed reclamation and reprocessing of the City Deep Dumps in Johannesburg, Gauteng Province. Bloemfontein.
- **Butler, E.** 2018. Palaeontological Exemption letter for the proposed reclamation and reprocessing of the City Deep Dumps and Rooikraal Tailings Facility in Johannesburg, Gauteng Province. Bloemfontein.
- **Butler, E.** 2018. Proposed Kalabasfontein Mine Extension project, near Bethal, Govan Mbeki District Municipality, Mpumalanga. Bloemfontein.
- **Butler, E.** 2018. Palaeontological Desktop Assessment for the development of the proposed Leslie 1 Mining Project near Leandra, Mpumalanga Province. Bloemfontein.
- **Butler, E.** 2018. Palaeontological Desktop Assessment of the proposed Mookodi Mahikeng 400kV Line, North West Province. Bloemfontein.
- **Butler, E.** 2018. Environmental Impact Assessment (EIA) for the Proposed 325mw Rondekop Wind Energy Facility between Matjiesfontein And Sutherland In The Northern Cape Province.

- **Butler, E.** 2018. Palaeontological Impact Assessment of the proposed construction of the Tooverberg Wind Energy Facility, and associated grid connection near Touws River in the Western Cape Province. Bloemfontein.
- **Butler, E.** 2018. Palaeontological impact assessment of the proposed Kalabasfontein Mining Right Application, near Bethal, Mpumalanga.
- **E. Butler.** 2019. Palaeontological Desktop Assessment of the proposed Westrand Strengthening Project Phase II.
- **E. Butler**. 2019. Palaeontological Field Assessment for the proposed Sirius 3 Photovoltaic Solar Energy Facility near Upington, Northern Cape Province
- **E. Butler.** 2019. Palaeontological Field Assessment for the proposed Sirius 4 Photovoltaic Solar Energy Facility near Upington, Northern Cape Province
- **E. Butler**. 2019. Palaeontological Field Assessement for Heuningspruit PV 1 Solar Energy Facility near Koppies, Ngwathe Local Municipality, Free State Province.
- **E. Butler**. 2019. Palaeontological Field Assessment for the Moeding Solar Grid Connection, North West Province.
- **E. Butler.** 2019. Recommended Exemption from further Palaeontological studies for the Proposed Agricultural Development on Farms 1763, 2372 And 2363, Kakamas South Settlement, Kai! Garib Municipality, Mgcawu District Municipality, Northern Cape Province.
- **E. Butler. 2019.** Recommended Exemption from further Palaeontological studies: of Proposed Agricultural Development, Plot 1178, Kakamas South Settlement, Kai! Garib Municipality
- **E. Butler. 2019.** Palaeontological Desktop Assessment for the Proposed Waste Rock Dump Project at Tshipi Borwa Mine, near Hotazel, Northern Cape Province:
- **E. Butler. 2019**. Palaeontological Exemption Letter for the proposed DMS Upgrade Project at the Sishen Mine, Gamagara Local Municipality, Northern Cape Province
- **E. Butler. 2019.** Palaeontological Desktop Assessment of the proposed Integrated Environmental Authorisation process for the proposed Der Brochen Amendment project, near Groblershoop, Limpopo
- E. **Butler. 2019.** Palaeontological Desktop Assessment of the proposed updated Environmental Management Programme (EMPr) for the Assmang (Pty) Ltd Black Rock Mining Operations, Hotazel, Northern Cape
- **E. Butler. 2019**. Palaeontological Desktop Assessment of the proposed Kriel Power Station Lime Plant Upgrade, Mpumalanga Province
- **E. Butler. 2019**. Palaeontological Impact Assessment for the proposed Kangala Extension Project Near Delmas, Mpumalanga Province.
- **E. Butler. 2019**. Palaeontological Desktop Assessment for the proposed construction of an iron/steel smelter at the Botshabelo Industrial area within the Mangaung Metropolitan Municipality, Free State Province.
- **E. Butler. 2019**. Recommended Exemption from further Palaeontological studies for the proposed agricultural development on farms 1763, 2372 and 2363, Kakamas South settlement, Kai! Garib Municipality, Mgcawu District Municipality, Northern Cape Province.

- **E. Butler. 2019.** Recommended Exemption from further Palaeontological Studies for Proposed formalisation of Gamakor and Noodkamp low cost Housing Development, Keimoes, Gordonia Rd, Kai !Garib Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province.
- **E. Butler. 2019**. Recommended Exemption from further Palaeontological Studies for proposed formalisation of Blaauwskop Low Cost Housing Development, Kenhardt Road, Kai !Garib Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province.
- **E. Butler. 2019**. Palaeontological Desktop Assessment of the proposed mining permit application for the removal of diamonds alluvial and diamonds kimberlite near Windsorton on a certain portion of Farm Zoelen's Laagte 158, Registration Division: Barkly Wes, Northern Cape Province.
- **E. Butler. 2019.** Palaeontological Desktop Assessment of the proposed Vedanta Housing Development, Pella Mission 39, Khâi-Ma Local Municipality, Namakwa District Municipality, Northern Cape.
- **E. Butler. 2019**. Palaeontological Desktop Assessment for The Proposed 920 Kwp Groenheuwel Solar Plant Near Augrabies, Northern Cape Province
- **E. Butler. 2019.** Palaeontological Desktop Assessment for the establishment of a Super Fines Storage Facility at Amandelbult Mine, Near Thabazimbi, Limpopo Province
- **E. Butler. 2019.** Palaeontological Impact Assessment for the proposed Sace Lifex Project, Near Emalahleni, Mpumalanga Province
- **E. Butler. 2019.** Palaeontological Desktop Assessment for the proposed Rehau Fort Jackson Warehouse Extension, East London
- **E. Butler. 2019.** Palaeontological Desktop Assessment for the proposed Environmental Authorisation Amendment for moving 3 Km Of the Merensky-Kameni 132KV Powerline
- **E. Butler. 2019.** Palaeontological Impact Assessment for the proposed Umsobomvu Solar PV Energy Facilities, Northern and Eastern Cape
- **E. Butler. 2019.** Palaeontological Desktop Assessment for six proposed Black Mountain Mining Prospecting Right Applications, without Bulk Sampling, in the Northern Cape.
- **E. Butler. 2019.** Palaeontological field Assessment of the Filling Station (Rietvlei Extension 6) on the Remaining Portion of Portion 1 of the Farm Witkoppies 393JR east of the Rietvleidam Nature Reserve, City of Tshwane, Gauteng
- **E. Butler. 2019.** Palaeontological Desktop Assessment Of The Proposed Upgrade Of The Vaal Gamagara Regional Water Supply Scheme: Phase 2 And Groundwater Abstraction
- **E. Butler. 2019.** Palaeontological Desktop Assessment Of The Expansion Of The Jan Kempdorp Cemetry On Portion 43 Of Farm Guldenskat 36-Hn, Northern Cape Province
- **E. Butler. 2019.** Palaeontological Desktop Assessment of the Proposed Residential Development On Portion 42 Of Farm Geldunskat No 36 In Jan Kempdorp, Phokwane Local Municipality, Northern Cape Province
- **E. Butler.** 2019. Palaeontological Impact Assessment of the proposed new Township Development, Lethabo Park, on Remainder of Farm Roodepan No 70, Erf 17725 And Erf 15089, Roodepan Kimberley, Sol Plaatjies Local Municipality, Frances Baard District Municipality, Northern Cape
- **E. Butler.** 2019. Palaeontological Protocol for Finds for the proposed 16m WH Battery Storage System in Steinkopf, Northern Cape Province

- **E. Butler.** 2019. Palaeontological Exemption Letter of the proposed 4.5WH Battery Storage System near Midway-Pofadder, Northern Cape Province
- **E. Butler.** 2019. Palaeontological Exemption Letter of the proposed 2.5ml Process Water Reservoir at Gloria Mine, Black Rock, Hotazel, Northern Cape
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the Establishment of a Super Fines Storage Facility at Gloria Mine, Black Rock Mine Operations, Hotazel, Northern Cape:
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the Proposed New Railway Bridge, and Rail Line Between Hotazel And The Gloria Mine, Northern Cape Province
- **E. Butler.** 2019. Palaeontological Exemption Letter Of The Proposed Mixed Use Commercial Development On Portion 17 Of Farm Boegoeberg Settlement Number 48, !Kheis Local Municipality In The Northern Cape Province
- **E. Butler.** 2019. Palaeontological Desktop Assessment of the Proposed Diamond Mining Permit Application Near Kimberley, Sol Plaatjies Municipality, Northern Cape Province
- **E. Butler.** 2019. Palaeontological Desktop Assessment of the Proposed Diamonds (Alluvial, General & In Kimberlite) Prospecting Right Application near Postmasburg, Registration Division; Hay, Northern Cape Province
- **E. Butler.** 2019. Palaeontological Desktop Assessment of the proposed diamonds (alluvial, general & in kimberlite) prospecting right application near Kimberley, Northern Cape Province.
- **E. Butler.** 2019. Palaeontological Phase 1 Impact Assessment of the proposed upgrade of the Vaal Gamagara regional water supply scheme: Phase 2 and groundwater abstraction
- **E. Butler.** 2019. Palaeontological Desktop Assessment of the proposed seepage interception drains at Duvha Power Station, Emalahleni Municipality, Mpumalanga Province
- **E. Butler.** 2019. Palaeontological Desktop Assessment letter for the Proposed PV Solar Facility at the Heineken Sedibeng Brewery, near Vereeniging, Gauteng.
- **E. Butler.** 2019. Palaeontological Phase 1 Assessment letter for the Proposed PV Solar Facility at the Heineken Sedibeng Brewery, near Vereeniging, Gauteng.
- **E. Butler.** 2019. Palaeontological field Assessment for the Proposed Upgrade of the Kolomela Mining Operations, Tsantsabane Local Municipality, Siyanda District Municipality, Northern Cape Province, Northern Cape
- **E. Butler.** 2019. Palaeontological Desktop Assessment of the proposed feldspar prospecting rights and mining application on portion 4 and 5 of the farm Rozynen 104, Kakamas South, Kai! Garib Municipality, Zf Mgcawu District Municipality, Northern Cape
- **E. Butler.** 2019. Palaeontological Phase 1 Field Assessment of the proposed Summerpride Residential Development and Associated Infrastructure on Erf 107, Buffalo City Municipality, East London.
- **E. Butler.** 2019. Palaeontological Desktop Impact Assessment for the proposed recommission of the Old Balgray Colliery near Dundee, Kwazulu Natal.
- **E. Butler.** 2019. Palaeontological Phase 1 Impact Assessment for the Proposed Re-Commission of the Old Balgray Colliery near Dundee, Kwazulu Nata.I
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the Proposed Environmental Authorisation and Amendment Processes for Elandsfontein Colliery.

- **E. Butler.** 2019. Palaeontological Impact Assessment and Protocol for Finds of a Proposed New Quarry on Portion 9 (of 6) of the farm Mimosa Glen 885, Bloemfontein, Free State Province
- **E. Butler.** 2019. Palaeontological Impact Assessment and Protocol for Finds of a proposed development on Portion 9 and 10 of the Farm Mimosa Glen 885, Bloemfontein, Free State Province
- **E. Butler.** 2019. Palaeontological Exemption Letter for the proposed residential development on the Remainder of Portion 1 of the Farm Strathearn 2154 in the Magisterial District of Bloemfontein, Free State
- **E. Butler.** 2019. Palaeontological Field Assessment for the Proposed Nigel Gas Transmission Pipeline Project in the Nigel Area of the Ekurhuleni Metropolitan Municipality, Gauteng Province
- **E. Butler.** 2019. Palaeontological Desktop Assessment for five Proposed Black Mountain Mining Prospecting Right Applications, Without Bulk Sampling, in the Northern Cape.
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the Proposed Environmental Authorisation and an Integrated Water Use Licence Application for the Reclamation of the Marievale Tailings Storage Facilities, Ekurhuleni Metropolitan Municipality Gauteng Province.
- **E. Butler.** 2019. Palaeontological Impact Assessment for the Proposed Sace Lifex Project, near Emalahleni, Mpumalanga Province.
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the proposed Golfview Colliery near Ermelo, Msukaligwa Local Municipality, Mpumalanga Province
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the Proposed Kangra Maquasa Block C Mining development near Piet Retief, in the Mkhondo Local Municipality within the Gert Sibande District Municipality
- **E. Butler.** 2019. Palaeontological Desktop Assessment for the Proposed Amendment of the Kusipongo Underground and Opencast Coal Mine in Support of an Environmental Authorization and Waste Management License Application.
- **E. Butler.** 2019. Palaeontological Exemption Letter of the Proposed Mamatwan Mine Section 24g Rectification Application, near Hotazel, Northern Cape Province
- **E. Butler.** 2020. Palaeontological Field Assessment for the Proposed Environmental Authorisation and Amendment Processes for Elandsfontein Colliery
- **E. Butler.** 2020. Palaeontological Desktop Assessment for the Proposed Extension of the South African Nuclear Energy Corporation (Necsa) Pipe Storage Facility, Madibeng Local Municipality, North West Province
- **E. Butler.** 2020. Palaeontological Field Assessment for the Proposed Piggery on Portion 46 of the Farm Brakkefontien 416, Within the Nelson Mandela Bay Municipality, Eastern Cape
- **E. Butler.** 2020. Palaeontological field Assessment for the proposed Rietfontein Housing Project as part of the Rapid Land Release Programme, Gauteng Province Department of Human Settlements, City of Johannesburg Metropolitan Municipality
- **E. Butler.** 2020. Palaeontological Desktop Assessment for the Proposed Choje Wind Farm between Grahamstown and Somerset East, Eastern Cape
- **E. Butler.** 2020. Palaeontological Desktop Assessment of the Proposed Prospecting Right Application for the Prospecting of Diamonds (Alluvial, General & In Kimberlite), Combined with

- A Waste License Application, Registration Division: Gordonia And Kenhardt, Northern Cape Province
- **E. Butler.** 2020. Palaeontological Impact Assessment for the Proposed Clayville Truck Yard, Ablution Blocks and Wash Bay to be Situated on Portion 55 And 56 Of Erf 1015, Clayville X11, Ekurhuleni Metropolitan Municipality, Gauteng Province
- **E. Butler.** 2020. Palaeontological Desktop Assessment for the Proposed Hartebeesthoek Residential Development
- **E. Butler.** 2020. Palaeontological Desktop Assessment for the Proposed Mooiplaats Educational Facility, Gauteng Province
- **E. Butler.** 2020. Palaeontological Impact Assessment for the Proposed Monument Park Student Housing Establishment
- **E. Butler.** 2020. Palaeontological Field Assessment for the Proposed Standerton X10 Residential and Mixed-Use Developments, Lekwa Local Municipality Standerton, Mpumalanga Province
- **E. Butler.** 2020. Palaeontological Field Assessment for the Rezoning and Subdivision of Portion 6 Of Farm 743, East London
- **E. Butler.** 2020. Palaeontological Field Assessment for the Proposed Matla Power Station Reverse Osmosis Plant, Mpumalanga Province

1.1. CONFERENCE CONTRIBUTIONS

NATIONAL

PRESENTATION

Butler, E., Botha-Brink, J., and F. Abdala. A new gorgonopsian from the uppermost *Dicynodon Assemblage Zone*, Karoo Basin of South Africa.18 the Biennial conference of the PSSA 2014.Wits, Johannesburg, South Africa.

INTERNATIONAL

Attended the Society of Vertebrate Palaeontology 73th Conference in Los Angeles, America.

October 2012.

CONFERENCES: POSTER PRESENTATION

NATIONAL

- Butler, E., and J. Botha-Brink. Cranial skeleton of *Galesaurus planiceps*, implications for biology and lifestyle. University of the Free State Seminar Day, Bloemfontein. South Africa. November 2007.
- Butler, E., and J. Botha-Brink. Postcranial skeleton of *Galesaurus planiceps*, implications for biology and lifestyle.14th Conference of the PSSA, Matjesfontein, South Africa. September 2008:
- Butler, E., and J. Botha-Brink. The biology of the South African non-mammaliaform cynodont *Galesaurus planiceps*.15th Conference of the PSSA, Howick, South Africa. August 2008.

INTERNATIONAL VISITS

Natural History Museum, London

July 2008

Paleontological Institute, Russian Academy of Science, Moscow

November 2014