Appendix G6 Traffic Impact Study

Kale Developments (Pty) Ltd

C2284/01TIA

Proposed Residential Development on Erven 1130 and 1131, Ormonde Extension 24 in Johannesburg

Traffic Impact Assessment

November 2016

CNIL CONCEPTS CONSULTING ENIGINEERS, CIVIL Conceptes (PDJ) Ltd 50, 15th c

x 36148, Mento

path, 0102 Tel: 012 365 1414, Fax: 012 460 0005, Email: mailechniconcepts co

ROADS

REPORT SHEET

PROJECT TITLE: PROPOSED RESIDENTIAL DEVELOPMENT ON ERVEN 1130 AND 1131, ORMONDE EXTENSION 24 IN JOHANNESBURG

TRAFFIC IMPACT ASSESSMENT

- PREPARED FOR: KALE DEVELOPMENTS (PTY) LTD
- PREPARED BY: CIVIL CONCEPTS (PTY) LTD
- PROJECT TEAM: MM GOUNDEN TRAFFIC ENGINEER

JJ POTGIETER TRAFFIC ENGINEER

TP MPONTSHANE

STUDENT TECHNICIAN

Сору	Date	Done By	Checked	Approved
V1 DRAFT 1	2016/11/18	TP Mpontshane & JJ Potgieter	JJ Potgieter	MM Gounden
V1				
V2				

DECLARATION

I certify that this study has been prepared under my immediate supervision and that I have experience and training in the field of traffic and transportation engineering.

Signed:

Name:

MM Gounden

Qualification: BSc Eng (Civil)

Registration Number: ECSA 2013 0143

a world class African city

PAGE

EXECUTIVE SUMMARY

1.	INTRODUCTION
1.1	Background 1
1.2	Definitions
1.3	Time Horizon 4
1.4	Determination of Road Upgrading 4
2.	TRIP GENERATION AND ASSIGNMENT6
2.1	Introduction
2.2	Proposed Rights
2.3	Trip Generation
2.4	Trip Distribution and Assignments7
3.	TRAFFIC AND THE ROAD NETWORK
3.1	Traffic Counts
3.2	Traffic Volumes
3.3	Latent Rights9
3.4	Background Traffic9
3.5	Background and Development Traffic10
3.6	Road Network10
4.	SITE INVESTIGATION
5.	TRAFFIC OPERATIONS15
5.1	Introduction15
5.2	Background Traffic16
5.3	Background and Development Traffic20
5.4	Capacity analysis comparison25
6.	ACCESS
6.1	Introduction

6.2	Access off Milkwood Road	28
6.3	Access Control	29
7.	PEDESTRIAN AND PUBLIC TRANSPORT ASSESSMENT	30
7.1	Pedestrian	30
7.2	Public Transport	30
8.	PARKING PROVISION	31
9.	EXISTING AND PROPOSED JUNCTION CONFIGURATIONS	32
10.	FINANCE AND COST ESTIMATES	38
10.1	Total Improvement Cost Estimates	38
10.2	Contributions per Development	38
11.	CONCLUSIONS AND RECOMMENDATIONS	39
11.1	Conclusions	39
11.2	Recommendations	40

REFERENCES

FIGURES

FIGURES 2.1 & 2.2	– AM & PM Peak Hour Residential Development Trips
FIGURES 3.1 & 3.2	- 2015 AM & PM Peak Hour Traffic Counts (PCUs)
FIGURES 3.3 & 3.4	– 2017 AM & PM Peak Hour Traffic Volumes
FIGURES 3.5& 3.6	- 2022 AM & PM Peak Hour Traffic Volumes
FIGURES 3.7 & 3.8	 AM & PM Peak Hour Latent Rights Erven 962 and 963, Ormonde Extension 22
FIGURES 3.9 & 3.10	 AM & PM Peak Hour Latent Rights Erven 1010 and 1011, Ormonde Extension 22
FIGURES 3.11 & 3.12	- AM & PM Peak Hour Latent Rights for Erven 982 Ormonde
	Extension 22
FIGURES 3.13 & 3.14	– AM & PM Peak Hour Total Latents
FIGURES 3.15 & 3.16	- 2017 AM & PM Peak Hour Background Traffic Volumes
FIGURES 3.17 & 3.18	- 2022 AM & PM Peak Hour Background Traffic Volumes

- FIGURES 3.19 & 3.20 2017 AM & PM Peak Hour Background and Development Traffic Volumes
- FIGURES 3.21 & 3.22 2022 AM & PM Peak Hour Background and Development Traffic Volumes

ANNEXURES

Annexure A - Township Layout Plan
Annexure B - Conditions of Establishment
Annexure C - Capacity Calculation Results
Annexure D - Proposed Traffic Signal Phasings and Timings
Annexure E - Storage Lane Calculations
Annexure F - Proposed Road Upgrades Layout Plans
Annexure G - Cost Estimates of the Proposed Upgrades

EXECUTIVE SUMMARY

A residential development is proposed on Erven 1130 and 1131, Ormonde Extension 24, to be located in the south-western part of the City of Johannesburg Metropolitan Municipality (CoJ) comprising of **192** "Residential 3" dwelling units.

The developer has three (3) other development sites in the close proximity of Erven 1130 and 1131 and form part of the study area. The developer might construct any of the development sites before Erven 1130 and 1131. Civil Concepts (Pty) Ltd prepared separate traffic studies for each site (three (3) other development sites):

- A residential development on Erven 962 and 963;
- A residential development on Erf 982; and
- A residential development on Erven 1010 and 1011.

The Traffic Impact Assessment of Erven 1130 and 1131 was prepared lastly and takes into consideration the above-mentioned developments as latent rights. Erven 1130 and 1131 development site will contribute towards the ultimate road upgrades proposed (refer to **ANNEXURE F**).

This Traffic Impact Assessment (TIA) has been prepared to determine the impact of the development trips on the surrounding road network. This study is prepared in accordance with the Committee of Transport Officials (COTO) TMH17 – Trip Data Manual, COTO TMH16 – Traffic Impact and Site Traffic Assessment Standards and Requirements Manual, Department of Transport's Manual for Traffic Impact Studies (Document RR 93/635), COTO TRH26 – South African Road Classification and Access Management Manual and Requirements Manual and the 2010 Highway Capacity Manual.

The development will generate **163** trips during both the weekday morning and afternoon peak hours, respectively.

The base year (2017) and horizon year (2022) are analysed as part of this study, respectively.

The following studies done by Civil Concepts (Pty) Ltd, dated November 2016 (report no. C2284/01TIA) were considered as latent rights:

• The TIA done for the proposed residential development on Erven 962 and 963, Ormonde Extension 22;

- The TIA done for the proposed residential development on Erven 1010 and 1011, Ormonde Extension 22; and
- The Traffic Impact Statement (TISm) done for the proposed residential development on Erf 982, Ormonde Extension 22.

Seven (7) junctions were analysed in this study using the SIDRA 5.0 Intersection software program. The following junctions were analysed:

- Dorado Avenue / Alwen Road;
- Akker Avenue / Alwen Road / Shakespeare Avenue;
- Akker Avenue / Chamfuti Crescent North;
- Akker Avenue / Chamfuti Crescent South;
- Akker Avenue / Msasa Crescent;
- Akker Avenue / Milkwood Road; and
- Akker Avenue / Proposed Access.

Six (6) of the seven (7) junctions analysed will operate satisfactorily during the 2017 and 2022 weekday morning and afternoon peak hour background with development traffic scenario with the proposed road upgrades in place as shown in **Section 9** of this report.

Akker Avenue / Alwen Road / Shakespeare Avenue junction will experience capacity problems during the 2022 weekday morning peak hour background with development traffic scenario with the proposed road upgrades in place. It will however operate the same when compared to the 2022 weekday morning peak hour background traffic scenario.

The proposed road upgrades are for the developer's account.

No public transport facilities are proposed.

Pedestrian walkways have to be provided along the site frontage by the developer to the satisfaction of the Johannesburg Road Agency (JRA) and CoJ.

1. INTRODUCTION

1.1 Background

Civil Concepts (Pty) Ltd was appointed by Kale Developments (Pty) Ltd to prepare a Traffic Impact Assessment (TIA) in support of a proposed residential development on Erven 1130 and 1131, Ormonde Extension 24 in Johannesburg.

The proposed development will consist of 192 "Residential 3" dwelling units.

The developer has three (3) other development sites in the close proximity of Erven 1130 and 1131 and form part of the study area. The developer might construct any of the development sites before Erven 1130 and 1131. Civil Concepts (Pty) Ltd prepared separate traffic studies for each site (three (3) other development sites):

- A residential development on Erven 962 and 963;
- A residential development on Erf 982; and
- A residential development on Erven 1010 and 1011.

The Traffic Impact Assessment of Erven 1130 and 1131 was prepared lastly.

The site is located to the south of Akker Avenue and it is bordered by Milkwood Road along the western boundary in Ormonde as shown in Figure 1.1.

Figure 1.1: Locality Plan

The objective of this study is to determine the impact of the development trips on the adjacent road network. The land use rights and trip generation are described first. This is followed by a description of the existing and proposed traffic volumes and the road network. The traffic operations at the junctions are calculated and upgrading proposals are made. Conclusions and recommendations are made at the end of the report.

1.2 Definitions

The following definitions from the 2010 Highway Capacity Manual are applicable to this report:

Level of Service (LOS)

Level of Service is defined in terms of delay. Delay is a measure of driver discomfort, frustration, fuel consumption and lost travel time. The levels of Service for junctions as defined in the 2010 Highway Capacity Manual are shown in Table 1.1.

	Control delay per vehicle (s/veh)						
Level of Service	Signalised	Unsignalised					
	junctions	junctions					
A	< 10	< 10					
В	10 to 20	10 to 15					
С	20 to 35	15 to 25					
D	35 to 55	25 to 35					
E	55 to 80	35 to 50					
F	> 80	> 50					

ΤΔΒΙΕ11	I FVFI	OF	SERVICE	DEFINITIONS
IADEE TITI		v.	SERVICE	DELITITIONS

Capacity

The maximum hourly rate at which vehicles can reasonably be expected to traverse a lane or roadway during a given period under prevailing roadway, traffic and control conditions.

Volume

The hourly rate (v/h), the actual flow rate for an approach or lane.

Volume to capacity ratio (V/C)

The ratio of flow to capacity.

1.3 Time Horizon

The base year (2017) and horizon year (2022) are analysed as part of this study.

The weekday morning and afternoon peak hours are analysed.

1.4 Determination of Road Upgrading

The Department of Transport's Manual for Traffic Impact Studies (Document RR 93/635) states:

"The recommended criteria that should be used to measure the level of upgrading/ improvement required, is the LOS and the v/c ratio.

In urban areas it is recommended that either of the following two LOS be used to determine whether an intersection should be upgraded, on condition that the contribution of the proposed development is at least 2% of the sum of the critical volume on a lane basis of the intersection assessed:

All elements of an intersection should operate at LOS D or better and a v/c ratio less than 0.95 during the peak hour of the roadway system.

In areas where the baseline LOS is E or worse, or the v/c ratio is greater than 0.95, this baseline (i.e. prior to development) LOS must be maintained or improved for the situation with the development included. The baseline LOS includes all committed (funded) road improvements and all non-site traffic (including existing site traffic) but exclude the additional traffic that will be generated by the proposed development.

It should, however, be debated whether an application should be approved if the baseline LOS is E or worse and it is not practical to upgrade the intersection any further. Engineering judgement should further be used in the case of the LOS of specifically right turning movements across high opposing traffic volumes at signalised intersections, due to the number of vehicles that are turning during the intergreen period / typically between 1 to 4 vehicles per cycle, depending on the intersection layout. It is not realistic to upgrade an intersection if a small number of right turning vehicles experience a LOS E or F. The same is also true if a level of service E/F is experienced by a small number of vehicles entering a major road from a minor road.

The determination of the necessary upgrading and improvement to the road infrastructure needs to be determined for the "with" and "without-development"

scenarios for the opening year and the horizon years(s). The following procedure should be followed to determine the necessary road upgrading:

Calculate the LOS, v/c ratios and the site traffic as a percentage of the critical flows at the intersection for every scenario.

If the LOS is worse than LOS D for the with-development scenario but not for the without-development scenario, the developer is responsible for all the required road upgrading.

If the LOS is worse than D for the with- and without-development scenarios, the developer is only responsible for the incremental upgrading to obtain the same LOS and v/c ratio as for the without-development scenario."

2.1 Introduction

The proposed land use rights of the site are described first. This is followed by the trip generation of the proposed rights. Trip distributions and assignments are then provided.

2.2 Proposed Rights

The proposed land use rights are shown in Table 2.1.

Erven	Land Use	Extent (ha)	Unit/ha	No. Units
1130	"Decidential 2"	0.615	113 unit	70
1131	Residential 3	1.0429	/ha	118
	192			

TABLE 2.1: PROPOSED LAND USE RIGHTS

A copy of the Township Layout Plan is included in **ANNEXURE A**.

The memorandum concerning the proposed Erven 1130 and 1131, Ormonde Extension 24as per the CoJ Town-Planning Scheme are included in **ANNEXURE B.**

2.3 Trip Generation

2.3.1 Introduction

The trip rates prescribed in the Committee of Transport Officials' (COTO) TMH 17 -Trip Data Manual, Version 1.0 (dated September 2013) were used to calculate the development trips.

No trip reductions were considered in this study.

The weekday morning and afternoon peak hours were analysed.

2.3.2 Trip Generation

The weekday morning and afternoon peak hour trip generations are shown in Tables 2.2 and 2.3, respectively.

Land Use	Extent	Trip Rate /	Direct Sp	ional lit	Trips			
	Unit		In	Out	In	Out	Total	
"Residential 3"	192 Units	0.85	25%	75%	41	122	163	
				TOTAL	41	122	163	

TABLE 2.2: WEEKDAY MORNING PEAK HOUR TRIP GENERATION

Land Use	Extent	Trip Rate /	Direc Sp	tional olit	Trips			
		Unit	In	Out	In	Out	Total	
"Residential 3"	192 Units	0.85	70%	30%	114	49	163	
				TOTAL	114	49	163	

2.4 Trip Distribution and Assignments

The road network, trip distribution, assignment and the development framework information of the study area are shown on schematic diagrams as required in TMH 16 South African Traffic Impact and Site Traffic Assessment Manual, Version 1.0, August 2012 (refer to Figures 2.1 and 2.2 and 3.1 to 3.22 for the schematic diagrams).

The proposed development trips were distributed and assigned to the adjacent road network based on the expected origins and destinations to and from the subject site.

The weekday morning and afternoon peak hour residential development trip distributions and assignments are shown in Figures 2.1 and 2.2, respectively.

3.1 Traffic Counts

A weekday morning and afternoon peak hour classified traffic count survey was carried out on 19 October 2016 by Trafsol Data Specialists at the following junctions:

- Dorado Avenue / Alwen Road;
- Akker Avenue / Alwen Road / Shakespeare Avenue;
- Akker Avenue / Chamfuti Crescent North;
- Akker Avenue / Chamfuti Crescent South; and
- Akker Avenue / Msasa Crescent.

The classified traffic counts were converted to Passenger Car Units (PCUs) using the following factors:

- 1 for a car;
- 1.5 for a taxi; and
- 3 for heavies (buses and trucks).

The weekday morning and afternoon peak hour traffic counts (PCUs) are shown in Figures 3.1 and 3.2, respectively.

3.2 Traffic Volumes

3.2.1 2017 Traffic Volumes

The 2016 weekday morning and afternoon peak hour traffic counts (PCUs) were escalated at a 3% annual growth rate over 1 year to obtain the 2017 peak hour traffic volumes.

The 2017 weekday morning and afternoon peak hour traffic volumes are shown in Figures 3.3 and 3.4, respectively.

3.2.2 2022 Traffic Volumes

The 2016 weekday morning and afternoon peak hour traffic counts (PCUs) were escalated at a 3% annual growth rate over 6 years to obtain the 2022 peak hour traffic volumes.

The 2022 weekday morning and afternoon peak hour traffic volumes are shown in Figures 3.5 and 3.6, respectively.

3.3 Latent Rights

The following studies done by Civil Concepts (Pty) Ltd, dated November 2016 (report no. C2284/01TIA) were considered as latent rights:

- The TIA done for the proposed residential development on Erven 962 and 963, Ormonde Extension 22;
- The TIA done for the proposed residential development on Erven 1010 and 1011, Ormonde Extension 22; and
- The TISm done for the proposed residential development on Erf 982, Ormonde Extension 22.

Erven 962 and 963, Ormonde Extension 22 weekday morning and afternoon peak hour latent development trips are shown in Figures 3.7 and 3.8, respectively.

Erven 1010 and 1011, Ormonde Extension 22 weekday morning and afternoon peak hour latent development trips are shown in Figures 3.9 and 3.10, respectively.

Erf 982, Ormonde Extension 22 weekday morning and afternoon peak hour latent development trips are shown in Figures 3.11 and 3.12, respectively.

The weekday morning and afternoon peak hour total latent development trips are shown in Figures 3.13 and 3.14, respectively.

3.4 Background Traffic

3.4.1 2017 Background Traffic Volumes

The weekday morning and afternoon peak hour latent trips were added to the 2017 weekday morning and afternoon peak hour traffic volumes to obtain the 2017 peak hour background traffic volumes.

The 2017 weekday morning and afternoon peak hour background traffic volumes are shown in Figures 3.15 and 3.16, respectively.

3.4.2 2022 Background Traffic Volumes

The weekday morning and afternoon peak hour latent trips were added to the 2022 weekday morning and afternoon peak hour traffic volumes to obtain the 2022 peak hour background traffic volumes.

The 2022 weekday morning and afternoon peak hour background traffic volumes are shown in Figures 3.17 and 3.18, respectively.

3.5 Background and Development Traffic

3.5.1 2017 Background and Development Traffic Volumes

The weekday morning and afternoon peak hour development trips were added to the 2017 background peak hour volumes to obtain the 2017 background and development peak hour traffic volumes.

The 2017 weekday morning and afternoon peak hour background and development traffic volumes are shown in Figures 3.19 and 3.20, respectively.

3.5.2 2022 Background and Development Traffic Volumes

The weekday morning and afternoon peak hour development trips were added to the 2022 background peak hour volumes to obtain the 2022 background and development peak hour traffic volumes.

The 2022 weekday morning and afternoon peak hour background and development volumes are shown in Figures 3.21 and 3.22, respectively.

3.6 Road Network

- 3.6.1 Existing Road Network According to the Gauteng Strategic Major Road Network Master plan and the CoJ Regional Road Master Plan
 - **Shakespeare Avenue** can be assumed to be a class 5b (residential) local street that lies to the north and east of the development site. It runs in a north-south and east-west direction.
 - **Alwen Road** can be assumed to be a class 5b (residential) local street that lies to the north of the development site and runs in a north-south direction. It intersect with Shakespeare Avenue and Dorado Avenue to the north-east.
 - **Dorado Avenue** can be assumed to be a class 5b (residential) local street that lies to the north of the development site and runs in a north-south direction. This road starts at its intersection with Alwen Road.
 - **Akker Avenue** can be assumed to be a class 5b (residential) local street that lies to the north of the development site and runs in an east-west and north-south direction.
 - **Chamfuti Crescent** can be assumed to be a class 5b (residential) local street that lies to the north-east of the development.

- **Msasa Crescent** can be assumed to be a class 5b (residential) local street that borders the development site to the east.
- 3.6.2 Future Road Network

There are no proposed roads within the vicinity of the development site.

3.6.3 Proposed Upgrading of the Road Network

Refer to **Section 9** of this report for the existing and proposed upgraded junction configurations.

4. SITE INVESTIGATION

A site visit was done on 19 October 2016 to determine the existing lane configurations of the junctions analysed in this study and to observe the existing traffic operations. Refer to Figures 4.1 to 4.5 below.

• Dorado Avenue / Alwen Road

Figure 4.2: Dorado Avenue / Alwen Road junction configuration

The junction is priority controlled. There are no pedestrian crossings or walkways at this junction which creates an unsafe hazards for pedestrians. The road surface is in good condition and road markings are visible at all approaches to the junction.

• Akker Avenue / Alwen Road / Shakespeare Avenue

Figure 4.1: Akker Avenue / Alwen Road / Shakespeare Avenue configuration

The junction is signalised. There are no pedestrian crossings on all approaches. There are existing pedestrian walkways along the western side of Alwen Road at this junction.

The road surface is in good condition and road markings are visible at all approaches to the junction.

• Akker Avenue / Chamfuti Crescent North and South

Figure 4.3: Akker Avenue / Chamfuti Crescent North and South configurations

The junctions are priority controlled. There are no pedestrian walkways at both junctions but there is a visible pedestrian crossing sign at the Chamfuti Crescent South junction. The road surface is in good condition and road markings are visible at all approaches to the junction.

• Akker Avenue / Msasa Crescent

Figure 4.4: Akker Avenue / Msasa Crescent junction configuration

The junction is priority controlled. There are no pedestrian walkways at the junction which creates an unsafe hazards for pedestrians. The road surface is in good condition and road markings are visible at all approaches to the junction.

• Akker Avenue / Milkwood Road

Figure 4.4: Akker Avenue / Milkwood Road junction configuration

The junction is priority controlled. There is an existing pedestrian crossing line at the junction. The road surface is in good condition and road markings are visible at all approaches to the junction.

5. TRAFFIC OPERATIONS

5.1 Introduction

The SIDRA Intersection 5.0 software program was used for the capacity analysis of the following junctions:

- Akker Avenue / Alwen Road / Shakespeare Avenue;
- Dorado Avenue / Alwen Road;
- Akker Avenue / Chamfuti Crescent North;
- Akker Avenue / Chamfuti Crescent South;
- Akker Avenue / Msasa Crescent;
- Akker Avenue / Milkwood Road; and
- Msasa Crescent / Proposed Access.

The average capacity results per junction are given in this section, however in accordance with Section 3.3.2 of the TMH16 Volume 2 – South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual (Version 1.0, August 2012) as published by the Committee of Transport Officials (COTO), detailed capacity analysis results for all individual movements of the junctions are provided in ANNEXURE C of this report.

The pedestrian clearance times were checked at the signalised junction.

5.2 Background Traffic

5.2.1 2017 Background Traffic

The optimised signal timings used to accommodate the background and development traffic for Erven 962 and 962, Ormonde extension 22 were used for the Akker Avenue / Alwen Road / Shakespeare Avenue junction and the optimised signal timings used to accommodate the background and development traffic for Erven 1010 and 1011, Ormonde extension 22 were used for the Dorado Avenue / Alwen Road junction.

The existing signal timings are shown in Table 5.1.

Detailed phasings and timings of the traffic signals are included in **ANNEXURE D**.

TABLE 5.1 2017 BAG	CKGROUNE) TRAFFIC PEAK HOUR EXISTING SIGNAL
TIMINGS		

STONAL ISED		SIGNAL TIMINGS (SEC)								CYCLE				
IUNCTION		PHASE A			Pl	HASE	В	PHASE C			PHASE D			
JONCHON	HOOK	G	Α	R	G	G	G	G	Α	R	G	Α	R	
Akker Avenue / Alwen Road / Shakespeare Avenue	AM	30	3	2	20	3	2	-	-	-	-	-	-	60 sec
	PM	19	3	2	15	3	2	11	3	2	-	-	-	60 sec
Dorado Avenue / Alwen Road	AM	17	3	2	23	3	2	13	3	2	-	-	-	65 sec
	PM	7	3	2	38	3	2	7	3	2	-	-	-	70 sec

Legend: G = Green,

A= Amber,

R = Red

The average capacity calculation results are shown in Table 5.2.

Detailed capacity calculation results are included in **ANNEXURE C**.

JUNCTION			WEEKDAY AM PEAK HOUR	WEEKDAY PM PEAK HOUR		
ED	Akker Avenue /	V/C ratio	0. 934	0.777		
IALIS	Alwen Road /	LOS	С	В		
SIGN	Avenue	Delay (sec/veh)	22.7	17.1		
		V/C ratio	0.666	0.773		
_	Dorado Avenue / Alwen Road	LOS	В	В		
		Delay (sec/veh)	12.9	18.7		
	Akker Avenue / Chamfuti Crescent	V/C ratio	0.351	0.263		
		LOS	N/A	N/A		
LLED	North	Delay (sec/veh)	-	-		
ITRO	Akker Avenue / Chamfuti Crescent	V/C ratio	0.470	0.224		
CON		LOS	N/A	N/A		
) RITY	South	Delay (sec/veh)	-	-		
PRIC		V/C ratio	0.677	0.215		
	Akker Avenue / Msasa Crescent	LOS	N/A	N/A		
		Delay (sec/veh)	-	-		
		V/C ratio	0.252	0.082		
	Akker Avenue / Milkwood Road	LOS	N/A	N/A		
		Delay (sec/veh)	-	-		

TABLE 5.2: 201	7 BACKGROUND) TRAFFIC	CAPACITY	CALCULATION	RESULTS
INDER DIVI TAT	/ Brandinoonb			OVEO OFVITOIL	ILEO O E I O

Legend: V/C ratio = Volume to capacity ratio LOS = Level of Service

N/A = The average junction delay is not a good LOS measure for a priority control junction due to zero delays associated with major road movements.

All five junctions analysed will operate satisfactorily during the 2017 weekday morning and afternoon peak hour background traffic scenario.

5.2.2 2022 Background Traffic

The optimised signal timings are shown in Table 5.3.

Detailed phasings and timings of the traffic signals are included in **ANNEXURE D**.

TABLE 5.3: 2022 BACKGROUND TRAFFIC PEAK HOUR EXISTING SIGNALTIMINGS

STONAL TSED		SIGNAL TIMINGS (SEC)												CYCLE
JUNCTION		PHASE A			PHASE B			PHASE C			PHASE D			LENGTH
JUNCTION	nook	G	Α	R	G	G	G	G	Α	R	G	Α	R	
Akker Avenue / Alwen Road /	AM	7	3	2	41	3	2	17	3	2	-	-	-	80 sec
Shakespeare Avenue	РМ	7	3	2	25	3	2	13	3	2	-	-	-	60 sec
Dorado Avenue /	AM	18	3	2	27	3	2	7	3	2	-	-	I	70 sec
Alwen Road	PM	7	3	2	48	3	2	7	3	2	-	-	-	80 sec

Legend: G = Green,

A= Amber,

R = Red

The average capacity calculation results are shown in Table 5.4.

Detailed capacity calculation results are included in **ANNEXURE C**.

JUNCTION			WEEKDAY AM PEAK HOUR	WEEKDAY PM PEAK HOUR		
ED	Akker Avenue /	V/C ratio	1.000	0.925		
IALIS	Alwen Road / Shakespeare	LOS	D	В		
SIG	Avenue	Delay (sec/veh)	42.9	14.6		
		V/C ratio	0.918	0.4800		
-	Dorado Avenue / Alwen Road	LOS	В	С		
		Delay (sec/veh)	14.0	21.0		
	Akker Avenue / Chamfuti Crescent North	V/C ratio	1.105	0.286		
		LOS	N/A	N/A		
LLED		Delay (sec/veh)	-	-		
ITRO	Akker Avenue / Chamfuti Crescent	V/C ratio	0.351	0.241		
CO		LOS	N/A	N/A		
RITY	South	Delay (sec/veh)	-	-		
PRIC		V/C ratio	0.789	0.235		
	Akker Avenue / Msasa Crescent	LOS	N/A	N/A		
		Delay (sec/veh)	-	-		
		V/C ratio	0.320	0.095		
	Akker Avenue / Milkwood Road	LOS	N/A	N/A		
		Delay (sec/veh)	-	-		

TABLE 5.4: 2022 BACKGROUND	TRAFFIC CAPACITY	CALCULATION RESULTS

Legend: V/C ratio = Volume to capacity ratio LOS = Level of Service

N/A = The average junction delay is not a good LOS measure for a priority control junction due to zero delays associated with major road movements.

Two (2) of the six (6) junctions analysed will experience capacity problems during the 2022 weekday morning peak hour background traffic scenario.

5.3 Background and Development Traffic

5.3.1 2017 Background and Development Traffic

The signal timings used are optimised signal timings to accommodate the background and development traffic.

The proposed signal timings are shown in Table 5.5.

Detailed phasings and timings of the traffic signals are included in **ANNEXURE D.**

TABLE 5.5: 2017 BACKGROUND AND DEVELOPMENT TRAFFIC PEAK HOURPROPOSED SIGNAL TIMINGS

	DEAK	SIGNAL TIMINGS (SEC)												
JUNCTION	HOUR	PHASE A						PHASE C			PHASE D			
		G		R	G	Α	R	G	Α	R	G	Α	R	
Akker Avenue / Alwen Road /	AM	7	3	2	32	3	2	15	3	2	-	-	-	70 sec
Shakespeare Avenue	PM	22	3	2	16	3	2	7	3	2	-	-	-	60 sec
Dorado Avenue / Alwen Road	AM	17	3	2	23	3	2	13	3	2	-	-	-	65 sec
	PM	7	3	2	38	3	2	7	3	2	-	-	-	70 sec

Legend: G = Green,

A= Amber,

R = Red

The average capacity calculation results are shown in Table 5.6.

Detailed capacity calculation results are included in **ANNEXURE C**.

	JUNCTION	-	WEEKDAY AM PEAK HOUR	WEEKDAY PM PEAK HOUR		
	Akker Avenue /	V/C ratio	0. 923	0.859		
	Alwen Road / Shakespeare	LOS	С	В		
ILISED	Avenue	Delay (sec/veh)	30.1	13.3		
SIGNA		V/C ratio	0.796	0.838		
	Dorado Avenue / Alwen Road	LOS	В	С		
		Delay (sec/veh)	14.9	21.9		
		V/C ratio	0.702	0.425		
	Akker Avenue / Chamfuti Crescent	LOS	А	А		
	NOLUT	Delay (sec/veh)	8.9	8.1		
	Akker Avenue / Chamfuti Crescent	V/C ratio	0.351	0.280		
OLLED		LOS	N/A	N/A		
ONTRO	South	Delay (sec/veh)	-	-		
лү с		V/C ratio	0.498	0.331		
PRIOR	Akker Avenue / Msasa Crescent	LOS	В	A		
		Delay (sec/veh)	10.1	8.9		
		V/C ratio	0.512	0.161		
	Akker Avenue / Milkwood Road	LOS	N/A	N/A		
		Delay (sec/veh)	-	-		

TABLE 5.6: 2017 BACKGROUND AND DEVELOPMENT TRAFFIC CAPACITY CALCULATION RESULTS

TABLE 5.8: CONTINUED

	JUNCTION		WEEKDAY AM PEAK HOUR	WEEKDAY PM PEAK HOUR		
۲		V/C ratio	0.150	0.064		
IORIT	Milkwood Road / Proposed Access	LOS	N/A	N/A		
PF		Delay (sec/veh)	-	-		

Legend: V/C ratio = Volume to capacity ratio

LOS = Level of Service

N/A = The average junction delay is not a good LOS measure for a priority control junction due to zero delays associated with major road movements.

All six (6) junctions analysed will operate satisfactorily during the 2017 weekday morning and afternoon peak hour background with development traffic scenario with the proposed road upgrades in place (refer to **Section 9** of this report).

5.3.2 2022 Background and Development Traffic

The proposed signal timings are shown in Table 5.7.

Detailed phasings and timings of the traffic signals are included in **ANNEXURE D.**

PROPOSED SIGNAL TIMINGS									
TABLE 5.7: 2022 BACKGROUND AND DEVELOPMENT TRAFFIC PEAK HOUR									

		SIGNAL TIMINGS (SEC)												
	HOUR	PHASE A			PHASE B			PHASE C			PHASE D			IFNGTH
JONCHION		G	Α	R	G	Α	R	G	Α	R	G	Α	R	LENGIN
Akker Avenue / Alwen Road /	AM	7	3	2	40	3	2	18	3	2	-	-	-	80 sec
Avenue	PM	23	3	2	15	3	2	7	3	2	-	-	I	60 sec
Dorado Avenue /	AM	19	3	2	26	3	2	7	3	2	-	-	I	70 sec
Alwen Road	PM	7	3	2	48	3	2	7	3	2	-	-	-	80 sec

Legend: G = Green,

A= Amber,

R = Red

The average capacity calculation results are shown in Table 5.8.

Detailed capacity calculation results are included in **ANNEXURE C**.

	JUNCTION	-	WEEKDAY AM PEAK HOUR	WEEKDAY PM PEAK HOUR		
	Akker Avenue /	V/C ratio	1.000	0.948		
	Alwen Road / Shakespeare	LOS	D	В		
ILISED	Avenue	Delay (sec/veh)	47.6	18.2		
SIGNA		V/C ratio	0.921	0.890		
•	Dorado Avenue / Alwen Road	LOS	В	С		
		Delay (sec/veh)	16.5	28.1		
		V/C ratio	0.703	0.454		
	Akker Avenue / Chamfuti Crescent North	LOS	А	А		
		Delay (sec/veh)	9.1	8.1		
	Akker Avenue / Chamfuti Crescent	V/C ratio	0.421	0.297		
ILLED		LOS	N/A	N/A		
ONTRC	South	Delay (sec/veh)	-	-		
лту с		V/C ratio	0.526	0.352		
PRIOR	Akker Avenue / Msasa Crescent	LOS	В	А		
		Delay (sec/veh)	10.2	8.9		
		V/C ratio	0.612	0.181		
	Akker Avenue / Milkwood Road	LOS	N/A	N/A		
		Delay (sec/veh)	-	-		

TABLE 5.8: 2022 BACKGROUND AND DEVELOPMENT TRAFFIC CAPACITY CALCULATION RESULTS

TABLE 5.8: CONTINUED

	JUNCTION	WEEKDAY AM PEAK HOUR	WEEKDAY PM PEAK HOUR		
LED		V/C ratio	0.150	0.064	
LIORIT	Milkwood Road / Proposed Access	LOS	N/A	N/A	
PF CON		Delay (sec/veh)	-	-	

Legend: V/C ratio = Volume to capacity ratio

LOS = Level of ServiceN/A = Not Applicable

N/A = The average junction delay is not a good LOS measure for a priority control junction due to zero delays associated with major road movements.

Akker Avenue / Alwen Road / Shakespeare Avenue junction will experience capacity problems during the 2022 weekday morning peak hour background with development traffic scenario with the proposed road upgrades in place (refer to **Section 9** of this report). It will however operate the same when compared to the 2022 weekday morning peak hour background traffic scenario.

5.4 Capacity analysis comparison

5.4.1 V/C ratio comparison

The V/C ratio comparisons are shown in Table 5.9.

TRAFE ON BROKENE AND BROKENE TATIL PETEERI TETT T/ CINITA COLI ANA OVI
--

	2017				2022				
JUNCTION	AM PEAK HOUR		PM PEAK HOUR		AM PEAK HOUR		PM PEAK HOUR		
	BG	BG+DEV	BG	BG+DEV	BG	BG+DEV	BG	BG+DEV	
Akker Avenue / Alwen Road / Shakespeare Avenue	0.934	0.923	0.777	0.859	1.000	1.000	0.925	0.948	
Dorado Avenue / Alwen Road	0.666	0.796	0.773	0.838	0.918	0.921	0.800	0.890	
Akker Avenue / Chamfuti Crescent North	0.351	0.702	0.263	0.425	1.105	0.703	0.286	0.454	
Akker Avenue / Chamfuti Crescent South	0.470	-	0.224	-	0.351	-	0.241	-	
Akker Avenue / Msasa Crescent	0.677	0.478	0.215	0.331	0.789	0.526	0.235	0.352	
Akker Avenue / Milkwood Road	0.252	0.512	0.082	0.161	0.320	0.612	0.095	0.181	
Milkwood Road / Proposed Access	0.187	-	0.115	-	0.187	-	0.115	-	

BG - Background Traffic Scenario

BG+DEV - Background with Development Traffic Scenario

Akker Avenue / Alwen Road / Shakespeare Avenue junction will experience capacity problems (v/c ratio>0.95) during the 2022 weekday morning peak hour background with development traffic scenario with the proposed road upgrades (refer to **Section 9** of this report). It will however operate the same when compared to the 2022 weekday morning peak hour background traffic scenario

5.4.2 Level of service (LOS) comparison

The level of service (LOS) comparison is shown in Table 5.10.

TABLE 5.10: BACKGROUND AND BACKGROUND WITH DEVELOPMENT LEVEL OF SERVICE (LOS) COMPARISON

	2017				2022				
JUNCTION	AM PEAK HOUR		PM PEAK HOUR		AM PEAK HOUR		PM PEAK HOUR		
	BG	BG+DEV	BG	BG+DEV	BG	BG+DEV	BG	BG+DEV	
Akker Avenue / Alwen Road / Shakespeare Avenue	С	С	В	В	D	D	В	В	
Dorado Avenue / Alwen Road	В	В	В	С	В	В	С	С	
Akker Avenue / Chamfuti Crescent North	N/A	А	N/A	А	N/A	А	N/A	А	
Akker Avenue / Chamfuti Crescent South	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Akker Avenue / Msasa Crescent	N/A	В	N/A	А	N/A	В	N/A	А	
Akker Avenue / Milkwood Road	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Milkwood Road / Proposed Access	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

BG - Background Traffic Scenario

BG+DEV - Background with Development Traffic Scenario

N/A - Not applicable

All seven (7) junctions analysed will operate satisfactorily (LOS not worse than D) during the 2017 and 2022 weekday morning and afternoon peak hour background with development traffic scenario with the proposed road upgrades in place (refer to **Section 9** of this report).

5.4.3 Delay comparison

The delay comparison is shown in Table 5.11.

	2017				2022				
JUNCTION	AM PEAK HOUR		PM PEAK HOUR		AM PEAK HOUR		PM PEAK HOUR		
	BG	BG+DEV	BG	BG+DEV	BG	BG+DEV	BG	BG+DEV	
Akker Avenue / Alwen Road / Shakespeare Avenue	22.7	30.1	17.1	16.3	42.9	47.6	14.6	18.2	
Dorado Avenue / Alwen Road	12.9	14.9	18.7	21.9	14.0	16.5	21.0	28.1	
Akker Avenue / Chamfuti Crescent North	-	8.9	-	8.1	-	9.1	-	8.1	
Akker Avenue / Chamfuti Crescent South	-	-	-	-	-	-	-	-	
Akker Avenue / Msasa Crescent	-	10.1	-	8.9	-	10.2	-	8.9	
Akker Avenue / Milkwood Road	-	-	-	-	-	-	-	-	
Milkwood Road / Proposed Access	-	-	-	-	-	-	-	-	

TABLE 5.11: BACKGROUND AND BACKGROUND WITH DEVELOPMENT DELAY COMPARISON

BG - Background Traffic Scenario

BG+DEV - Background with Development Traffic Scenario

All seven (7) junctions analysed will operate satisfactorily (delay not longer than 55 seconds) during the 2017 and 2022 weekday morning and afternoon peak hour background with development traffic scenario with the proposed road upgrades in place (refer to **Section 9** of this report).

6. ACCESS

6.1 Introduction

Access to the proposed development site will be provided off Milkwood Road. The proposed access configuration is described below.

6.2 Access off Milkwood Road

The access to the proposed development site will be provided off Milkwood Road as a three legged priority controlled junction approximately 340 m south of the Akker Avenue / Milkwood Road junction as shown in Figure 6.1 below.

The access arrangement complies with TRH 26 South African Road Classification and Access Management Manual requirements, dated August 2012, Version 1.0.

Figure 6.1: Milkwood Road / Proposed Access Configuration
6.3 Access Control

Storage lane length analysis was done at the proposed access point off Milkwood Road.

The proposed access to the residential development will be controlled by a coded card reader with a service rate of approximately 350 vehicles/hour.

The queue storage lane length calculations have been done using the anticipated development traffic and coded card reader service rate. The results show that there will be a queue of one (1) vehicle at the Milkwood Road access control point during the weekday morning or afternoon peak hour, 95% of the time. There is a 5% probability that the queue will exceed one (1) vehicle (refer to **ANNEXURE E** for calculations).

The results show that the number of lanes at the Milkwood Road access control point have to be provided as one (1) lane entering and one (1) lane exiting the development.

It is recommended that one (1) of the lanes be at least 4.5 m wide to accommodate emergency vehicles.

A summary of the queue storage lane length calculations is shown in Table 6.12 below.

ACCESS	SERVICE RATE	NUMBER OF LANES ENTERING	STORAGE LANE REQUIRED	STORAGE LANE TO BE PROVIDED	
Off Milkwood Road 350 veh/h		1	6 m	Min 10 m	

TABLE 6.1: QUEUE STORAGE LANE LENGTH CALCULATION RESULTS

7. PEDESTRIAN AND PUBLIC TRANSPORT ASSESSMENT

7.1 Pedestrian

There are paved pedestrian walkways at the Akker Avenue / Alwen Road / Shakespeare Avenue junction, along the western side of Alwen Road to the north and along the eastern side of Shakespeare Avenue to the south.

There is an existing pedestrian crossing line at the Akker Avenue / Milkwood Road junction.

There are no other pedestrian facilities that exist at the junctions that form part of this study.

It is recommended that pedestrian walkways be provided along the site frontage in consultation with the CoJ.

7.2 Public Transport

Taxis operate along Alwen Road.

There are no public transport facilities proposed.

8. PARKING PROVISION

Parking will be provided within the site as required by the City of Johannesburg and in accordance with the Johannesburg Draft Consolidated Town Planning Scheme, 2010.

BACKGROUND AND DEVELOPMENT

NO UPGRADES ARE REQUIRED

	7. Milkwood Road / Proposed Access	
EXISTING	BACKGROUND	BA
		Milkwood Ro
		4
N/A	N/A	
		4
		Milkwood Re

Refer to **ANNEXURE F** for the proposed road upgrades layout plans.

10. FINANCE AND COST ESTIMATES

10.1 Total Improvement Cost Estimates

The cost estimate for the proposed total road upgrades at the following junctions (excluding VAT and professional fees):

- Akker Avenue / Alwen Road / Shakespeare Avenue is ±R.
- Dorado Avenue / Alwen Road is ±R;
- Akker Road / Chamfuti Crescent North is ±R; and
- Akker Avenue / Msasa Crescent is ±R.

The total amount to be payable is $\pm R$.

Refer to **ANNEXURE G** for the cost estimates.

10.2 Contributions per Development

The contributions payable are shown in Table 10.1 below.

Development	Units	Trips	Contribution/ Trip	Total Contribution
Site B – Erven 962 and 963, Ormonde Extension 22	176	150		
Site C – Erven 1010 and 1011, Ormonde Extension 22	192	163		
Site D – Erf 982, Ormonde Extension 22	88	75		
Site E - Erven 1130 and 1131, Ormonde Extension 24	192	163		

TABLE 10.1: BULK CONTRIBUTIONS

Site D – Erf 982, Ormonde Extension 22 will not contribute towards the road upgrading for the Akker Avenue / Msasa Crescent junction since it will generate close to 0% trips on this junction, however it will have to contribute towards all the other three (3) junctions on the north.

11. CONCLUSIONS AND RECOMMENDATIONS

11.1 Conclusions

The proposed residential development site is located on Erven 1130 and 1131, Ormonde Extension 24 in Johannesburg.

The developer has three (3) other development sites in the close proximity of Erven 1130 and 1131 and form part of the study area. The developer might construct any of the development sites before Erven 1130 and 1131. Civil Concepts (Pty) Ltd prepared separate traffic studies for each site (three (3) other development sites):

- A residential development on Erven 962 and 963;
- A residential development on Erf 982; and
- A residential development on Erven 1010 and 1011.

The Traffic Impact Assessment of Erven 1130 and 1131 was prepared lastly and takes into consideration the above-mentioned developments as latent rights.

The proposed development will consist of 192 "Residential 3" dwelling units.

The development will generate **163** trips during both the weekday morning and afternoon peak hours, respectively.

The base year (2017) and the horizon year (2022) were considered in this study.

Access to the proposed development site will be off Milkwood Road.

Fix (6) of the seven (7) junctions analysed will operate satisfactorily for the 2017 and 2022 weekday morning and afternoon peak hour background with development traffic scenario with the proposed road upgrades in place as shown in **Section 9** of this report.

Akker Avenue / Alwen Road / Shakespeare Avenue junction will experience capacity problems for the 2022 weekday morning peak hour background with development traffic scenario with the proposed road upgrades in place as shown in **Section 9** of this report. It will however operate the same when compared to the 2022 weekday morning peak hour background traffic scenario.

The proposed road upgrades are for the developer's account.

No public transport facilities are proposed.

Pedestrian walkways have to be provided along the site frontage by the developer to the satisfaction of the CoJ.

11.2 Recommendations

It is recommended that:

- the developer carry out the proposed road upgrades to mitigate the effect of the development traffic;
- the developer construct pedestrian walkways in consultation with the relevant departments of CoJ; and
- this traffic assessment be approved.

REFERENCES

- 1. Akcelik & Associates Pty Ltd, (July 2010) aaSIDRA 5.0, Victoria, Australia.
- 2. Transportation & Traffic Technology Africa (Pty) Ltd, (2013) **AUTO J**, Johannesburg, South Africa.
- Committee of Transport Officials, (September 2013) TMH17 South African Trip Data Manual, Version 1.01, Pretoria, South Africa.
- BKS (Pty) Ltd, (October 1995) Manual for Traffic Impact Studies, Report No. RR93/635, Department of Transport, Pretoria, South Africa.
- Transportation Research Board, (2010) Highway Capacity Manual 2010, Washington, D.C, USA.
- Committee of Transport Officials, (August 2012) THM16 Volume 2 South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual, Version 1.0, Pretoria, South Africa.
- Gauteng Strategic Major Road Network, (May 2010) Transport Department of Roads and Transport, Pretoria, South Africa.
- Committee of Transport Officials (COTO), (August 2012) TRH26 South African Road Classification and Access Management Manual, Version 1.0, SANRAL, South Africa.
- 9. Trafsol, (October 2016), Ormonde X22 Traffic Survey, Johannesburg, South Africa.

FIGURES

Project Number	C2284	
Job Describption	Ormonde - Site A	
Date	2016/11/21 08:47	
Done by	TP Mpontshane	Ν
,		
		40%
		Щ.
		\triangleleft
		OQ
		A A
		Q
		16
		ALWEN ROAD
		104
		OF C
		70
		<
		35

IN	OUT
41	122

Project Number	C2284	
Job Describption	Ormonde - Site A	
Date	2016/11/21 08:47	
Done by	TP Mpontshane	Ν
,		
		40% V
		\geq
		Q
		AD
		ă
		46
		46
		42
		A C
		м Ж
		\geq
		A A
		97

	IN	OUT
_ [114	49

Project NumberC2284Job DescribptionOrmonde - Site ADate2016/11/21 08:47Done byTP Mpontshane	W E
	PORADO AVENUE
	392 10 km 11 ALWEN ROAD 127 127
	TOTAL STATES OF THE STATES OF

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane			W <i><</i>	N E	
				ORADO AVENUE	Ś	
					WEN ROAD	
				ALWEN ROAD 362 362		

Project NumberC2284Job DescribptionOrmonde - Site ADate2016/11/21 08:47Done byTP Mpontshane	W E	
	OBADO AVENUE	
		-
	TINK TORA ALW ROAD ALW	

Job Ber/Ibption Date Date Date Date Date Date Date Date
Date Done by TP Mpontshane
Done by TP Mpontshane
729 9 9 9 9 9 107
Image: Second state Image: Second state Image: Second state ALWEN ROAD
407
Q
Ŏ Ŏ
Ā

Project Number	C2284	
Job Describption	Ormonde - Site A	
Date	2016/11/21 08:47	
Done by	TP Mpontshane	Ņ
		W 🗮 🏓 E
		$\mathbf{v}_{\mathbf{r}}$
		I S
		B B
		A
		8
		SAC SAL
		Ŭ
		468
		ALWEN ROAD
		1256
		<u> </u>
		O A

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	
		DORADO AVENUE
		845 ↓ ↓ ALWEN ROAD ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	W E
		DORADO AVENUE
		UI 00 VOAD ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane			W
			OAVENUE	S
			DORADO	
				ALWEN ROAD
			ALWEN ROA	

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	N W E
		DORADO AVENUE
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	W E
		S DORADO AVENUE
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	
		S T T ALWEN ROAD
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	W E
		S DORADO AVENUE
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	W E
		JUNE ALWEN ROAD ALWEN ROAD
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	
		DORADO AVENUE
		122 122 120 124 124 124 124 124 124 122 122 122 122
		UI4 DYNEN ROAD ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	
		HOURDAD DORADD HAT HAT HAT HAT HAT HAT HAT HAT
		ALWEN ROAD

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	
		BSI BORYOOU BSI ALWEN ROAD ALWEN ROAD TOT BSI SII SII OV Q
		ALAN

Project Number	C2284	
Job Describption	Ormonde - Site A	
Date Dana hy	2016/11/21 08:47 TR Mpontshano	N
Done by	TP Mpontshane	
		S
		O
		Q
		$\frac{341}{166}$
		ALWEN ROAD
		1516
		AD
		Q₂
		\triangleleft

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	N W V E
		BORADO ALWEN ROAD
		ALVEN ROAD 200

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	
		DORADO AVENUE
		I448 DYNAU ALWEN

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	N W V E
		ALWEN ROAD
		ALVEN ROAD ALVEN ROAD

Project Number	C2284	
Job Describption	Ormonde - Site A	
Done by	TP Mpontshane	Ν
		W 🖊 🖌 E
		ь — — — — — — — — — — — — — — — — — — —
		A O
		Ŭ V
		NO N
		527
		664
		ALVVEN ROAD
		1620
		O A
		ALY

Project Number Job Describption Date Done by	C2284 Ormonde - Site A 2016/11/21 08:47 TP Mpontshane	W E
		S DORADO AVENUE
		1013 1013 1013 1013 1013 ALWEN ROAD 124 124 124 124 124 124 124 124
		ALWEN ROAD

ANNEXURE A

TOWNSHIP LAYOUT PLAN

9/1255						
8/1255						
7/1255						
24/1256						
27/1256						
28/1256						
+2 905 400 X						
26/1256						
29/1256						
30/1256						
$\boldsymbol{\succ}$						
		_				
	OCT 2016	-	ISSUED	FOR APPF	ROVAL	
	DATE	NO			REVISION	
	CLIENT					
				1		
				U		
	H	5	le	Devie	aloom	ents
		for share	arren a tia			20 200 08112 1002000 0000
+2 905 500 X		TUOF				
		HOF	ATT Y	/		
				10	DULd	
				a world clas	s African city	
					santinin William	
				Civi	I Concept	s (Pty) Ltd actural Engineers
	C	ON	CEP	TS P	O Box 36148, M Office:	Aenio Park, 0102 +27 12 460 0008
					www.ci	viiconcepts.co.za
	PROJECT					
		0	RM		E SOI	JTH
			SITE	BON	ERF 96	2 &
				9	63	
	DRAWING	TITLE				
			SITE	ELAY	OUT PL	AN
	DRAWING	NO		C228	34-B-20)1
	REVINO					
	SCALE	-			DESIGNED	A.OOSTHUIZEN
+2 905 600 X			1:500		DRAWN	A.OOSTHUIZEN
	DATE		ОСТОВІ	ER 2016	CHECKED	L.ZIETSMAN

ANNEXURE B

CONDITIONS OF ESTABLISHMENT

1. EXECUTIVE SUMMARY

- 1.1 This memorandum is submitted in support of an application in terms of the provisions of Section 21 of The City of Johannesburg Municipal Planning By-Law, 2016 for the amendment of the Johannesburg Town-Planning Scheme, 1979, by the rezoning of Erven 962 & Erf 963, Ormonde Extension 22, subject to certain conditions.
- 1.2 Application is made for the amendment of the Johannesburg Town-Planning Scheme, 1979, by way of the rezoning of the subject property from "Residential 3" with a density of "25 dwelling units per hectare; FAR of 0.4; Height of 3 storeys; and coverage of 30%" to "Residential 3" with a density of "110 dwelling units per hectare", and subject to the following conditions:

Floor Area Ratio	:	0.7
Coverage	:	30%
Height	:	Four (4) storeys
Parking requirements	:	1.3 parking bays per unit
Building lines	:	In accordance with an approved site development plan
Number of Units	:	176 units

- 1.3 The purpose of this application is to obtain the appropriate land use rights to enable the registered property owner to develop a higher residential development on the erf.
- 1.4 Note that a separate application for the consolidation of the two properties, in terms of the provisions of Section 33 of the City of Johannesburg Municipal Planning By-Law, 2016, was also submitted to the Municipality. Even though the rezoning and consolidation applications are submitted separately, approval of both applications will be required before submission of any building plans to Council and before construction can commence.
- 1.5 This memorandum provides the relevant property information, and motivates the merits of the development proposal from a development planning perspective.
- 1.6 The consolidation application is submitted separately and will be handled as a separate application, but will form part of the rezoning of the erven.

2. PROPERTY INFORMATION

2.1 Locality

The subject property is situated along Msasa Crescent in Ormonde, towards the north of the M1 Freeway and towards the south of Akker Street. A Locality Plan is attached hereto as **Annexure A**. The site is situated in close proximity to Rand Show Road, Nasrec Road and the M1-Highway.

The figure below gives the context of the application site.

Figure 1: Aerial view of the property

2.2 Property description, ownership and size

Details pertaining to property description, ownership and extent of the subject properties are provided in the table below:

PROPERTY DESCRIPTION	REGISTERED OWNER	DEED OF TRANSFER NUMBER	SIZE
Ormonde X22: Erf 962	Matla Projects (Pty) Ltd	T27309/2009	5 942m ²
Ormonde X22: Erf 963	Matla Projects (Pty) Ltd	T27310/2009	10 274m ²

Deeds of Transfer T27309/2009 and T27310/2009 are attached as **Annexures B** to form part of the application documentation.

The signed and completed Company Resolution, Power of Attorney and Proof of Directors are attached as **Annexure C** respectively.

2.3 Zoning

The subject properties are currently zoned "Residential 3", in terms of the Johannesburg Town-Planning Scheme, 1979, subject to the following conditions:

Floor Area Ratio	:	0.4
Density	:	25 Dwelling units per ha
Coverage	:	30%
Height	:	Three storeys

The relevant Zoning Certificate is attached hereto as Annexure D.

The zoning regime of the surrounding area includes the following zonings:

"Residential 1"; "Residential 3;" "Business 3"; "Institutional" and "Municipal".

2.4 Land Use

A land use plan, based on a visual survey, is attached as **Annexure E**. The subject property is currently vacant, while surrounding land uses include:

- Dwelling houses;
- Open Spaces; and
- Public Roads.

It becomes clear that the area is a predominantly residential area. The proposal to develop the subject property for higher density residential uses will contribute to the livelihood of the area and create additional housing opportunities.

The proposed land-use will have no detrimental effect on any of the surround properties on municipal infrastructure.

3. BONDS, CONDITIONS OF TITLE AND SERVITUDES

3.1 Mortgage Bond

There is currently no bond registered over the property. The consent from a bondholder is therefore not required.

3.2 Conditions of title

The subject property is not affected by any conditions of title which may prove to be restrictive to the proposed development. No removal of restrictions is therefore required.

3.3 Servitudes

In terms of Deed of Transfers T27309/2009 and T27310/2009 the properties are subject to the following servitude:

 A servitude for sewer and other municipal services purposes 2 metres wide, in favour of the City Council of Johannesburg along any two boundaries other than a street boundary.

This servitude will be retained and accommodated in the development proposal and on the final Site Development Plan.

4. DEVELOPMENT PROPOSAL

4.1 Application Particulars and Development Proposal

4.1.1 Application is made in terms of the provisions of Section 21 of the City of Johannesburg Municipal Planning By-Law, 2016 for the amendment of the Johannesburg Town-Planning Scheme, 1979, by the simultaneous rezoning of Erf 962 & Erf 963, Ormonde Extension 22, subject to the following conditions:

Floor Area Ratio	:	0.7
Coverage	:	30%
Height	:	Four (4) storeys
Parking requirements	:	1.3 parking bays per unit
Building lines	:	In accordance with an approved site development plan
Number of Units	:	176 units

- 4.1.2 Al parking and manoeuvring space will be provide on-site. No parking within the road reserve will be allowed or will be necessary. The proposed site plan is attached hereto as **Annexure G.** Parking will be provided at a ratio of 1.3 parking bays per unit, with a total of 229 parking bays being required. A total of 230 parking bays will be provided on-site, to ensure sufficient parking for residents and visitors. All parking and manoeuvring space will be covered with a permanent dust-free surface.
- 4.1.3 Access to the development will be obtained via Msasa Crescent. Access will be provided to the satisfaction of the municipality. The current road network is sufficient to accommodate the minimal increase in traffic. If so required by Council, upgrades to the road and services network can be made through a service agreement between the developer and Council.
- 4.1.3 Sufficient opens space (gardens / lawns) will be provide within the development, as per the minimum requirements from Council.
- 4.1.4 The privacy of the neighbouring properties will be protected by means of building design, landscaping and building lines. The height of the proposed development will be limited four storeys and building lines will be determined in accordance with an approved site development plan.

4.2 Existing vs Proposed Zoning

- 4.2.1 The proposed scheme document is attached hereto as **Annexure F**.
- 4.2.2 The type of housing unit that is being proposed is IHS C-Type (3-4 levels). The design of the units will be done by Boogertman & Partners Architects. A formal Site Development Plan and Building Plans will be submitted to Council after approval of the rezoning application. A concept plan is attached to form part of the application documentation.
- 4.2.3 The following table compares the current and proposed land use rights:

CURRENT ZONING	PROPOSED ZONING
Existing Zoning:	Proposed Zoning:
"Residential 3"	"Residential 3"
Permitted land uses:	Permitted land uses:
Residential dwelling units	Residential dwelling units
Permitted Density:	Proposed Density:
25 units/ha	110 units/ha
Number of Units allowed:	Number of Units allowed:
40 sectional title units	176 sectional title units
Height Restriction:	Proposed Height Restriction:
Three (3) storeys	Four (4) storeys
Coverage:	Proposed Coverage:
30%	30%
Floor Area Ratio:	Proposed Floor Area Ratio:
0.4	0.7
Parking:	Parking:
1 parking space per dwelling unit of 3 or less	1.3 parking bays per unit
habitable rooms.	Required: 229
2 parking space per dwelling unit of 4 or more	Provided: 230
Plus 0.3 parking spaces per dwelling unit for visitors.	
Building lines:	Building lines:
0m on all street fronts	In accordance with an approved site
	development plan

5. MUNICIPAL SERVICES

- 5.1 The region is generally well provided with civil service infrastructure. Development pressure in this area challenges the rate at which bulk infrastructure can be provided to accommodate expansion. Existing infrastructure will however be capable of accommodating the proposed additional land-use rights.
- 5.2 During the application stage, the different engineering departments will get an opportunity to indicate whether additional engineering studies will be required before the rezoning application can be approved. If so required, Professional Engineers will be appointed to investigate the civil services and compile an outline scheme document.
- 5.3 The amount of Bulk Services Contributions for civil services payable to the City of Joburg will be determined with the finalisation of the rezoning application. Rebate will be given for the existing land use rights on the final amounts.
- 5.4 A formal Traffic Access Study is currently being prepared by the project Engineers. It will be submitted to Council as soon as it is received.
- 5.5 The electricity connection has been discussed with City Power. Adequate capacity is currently available for the development at the nearby Crown substation and an estimated 2,2 MVA can therefore be made available for planned developments in the Ormonde area, of which this application forms part of.

Capacity can be released by shifting loads between the various distributor areas. A feeder cable from Crown substation is thus not required. A detailed Electrical Report and/or Outline Scheme Report will be submitted to Council in due course.

6. POLICIES

6.1 <u>National Development Guidelines</u>

6.1.1 Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013)

Section 7 of the Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013) confirms that the following principles applies to spatial planning, land development and land use management:

7(a) The principle of spatial justice, whereby-:

(i) Past spatial and other development imbalances must be redressed through improved access to and use of land.

It is our opinion that the greater community of this area will benefit from the development proposal through various new housing opportunities.

The development will enhance the urban environment through the strengthening of the residential character and the creation of economic growth, as required in terms of local policies.

- (ii) Spatial development frameworks and policies at all spheres of government must address the inclusion of persons and areas that were previously excluded, with an emphasis on informal settlements, former homeland areas and areas characterised by widespread poverty and deprivation.
- (iii) Spatial planning mechanism, including land use schemes, must incorporate provisions that enable redress in access to land by disadvantaged communities and persons.
- (iv) Land use management system must include all areas of a municipality and specifically include provisions that are flexible and appropriate for the management of disadvantaged areas, informal settlements and former homeland areas.
- (v) Land development procedures must include provisions that accommodate access to secure tenure and incremental upgrading of informal areas.
- (vi) A Municipal Planning Tribunal considering an application before it, may not be implemented or restricted in the exercise of its discretion solely on the ground that the value of land or property is affected by the outcome of the application.

Principles (7)(a) (ii) to (vi) relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

7(b) The principle of spatial sustainability, whereby spatial planning and land use management systems must-:

(*i*) Promote land development that is within the fiscal, institutional and administrative means of the Republic.

The proposed development, as motivated, complies with the fiscal, institutional and

administrative means of the Republic as well as the Local Authority.

Development Policies, related administration and laws (City of Johannesburg Municipal Planning By-Law, 2016) and the National Environmental Management Act, 1998, do allow for the application, as submitted, to be entertained. The proposal has been discussed with the relevant Town Planners at Council before submission of the application.

(*ii*) Ensure that special consideration is given to the protection of prime and unique agricultural land.

The property is surrounded by existing urban infrastructure, and in terms of Municipal policy, the property is earmarked for higher density residential development.

(iii) Uphold consistency of land use measures in accordance with environmental management instruments.

This principle relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

(iv) Promote and stimulate the effective and equitable functioning of land markets.

This principle relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

(v) Consider all current and future cost to all parties for the provision of infrastructure and social services in land developments.

This principle relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

(vi) Promote land development in locations that are sustainable and limit urban sprawl.

The subject property is situated within Region F of the City of Johannesburg and will not contribute to urban sprawl. The proposed development will serve as infill development and will ensure the optimisation of developable land and municipal infrastructure and services.

According to relevant policy guidelines of the Municipality (i.e. the Municipal Spatial Development Framework), the subject property is earmarked for purposes of higher density residential development. The proposal is, in principle, supported by Council.

(vii) Result in communities that are viable.

The proposed development is in close proximity to other residential, some commercial, lifestyle and educational opportunities. It is furthermore located near public transport facilities and is also ideally situated in terms of the main through routes in the area (i.e. the M1-Highway).

7(c) The principle of efficiency, whereby-:

(i) Land development optimises the use of existing resources and infrastructure.

The proposed development will promote efficient land development, as it entails the development of residential housing in close proximity to commercial, lifestyle and educational opportunities. Public transport is also available in close proximity.

The subject property is strategically situated in relation to transportation routes, e.g. M1 Freeway and Shakespeare Avenue.

Civil services are also available in the area for the proposed development.

(ii) Decision-making procedures are designed to minimise negative financial, social, economic or environmental impacts.

This principle relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

(iii) Development application procedures are efficient and streamlined and timeframes are adhered to by all parties.

This principle relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

7(d) Principal of spatial resilience whereby flexibility in spatial plans, policies and land use management systems are accommodated to ensure sustainable livelihoods in communities most likely to suffer the impacts of economic and environmental shocks.

This principle relates to obligations imposed on local government, and in this regard the legislation is clear in respect of the procedures to facilitate the development to the property.

7(e) The principle of good administration, whereby-:

(i) All spheres of government ensure an integrated approach to land use and land development that is guided by the spatial planning and land use management systems as embodied in this Act.

This principle relates to obligations imposed on local government. The application will be circulated to relevant internal municipal departments for their comments.

(ii) All government departments must provide their sector inputs and comply with any other prescribed requirements during the preparation or amendment of spatial planning frameworks.

This principle relates to obligations imposed on local government.

(iii) The requirements of any law relating to land development and land use are met timeously.

This principle relates to obligations imposed on local government.

(iv) The preparation and amendment of spatial plans, policies, land use schemes as well as procedures for development applications, include transparent processes of public participation that afford all parties the opportunity to provide inputs on matters affecting them.

This principle relates to obligations imposed on local government. It is also confirmed

that the application will be advertised by the applicant in the prescribed manner.

(v) Policies, legislation and procedures must be clearly set in order to inform and empower members of the public.

This principle relates to obligations imposed on local government.

6.1.2 National Development Plan, 2030

The National Development Plan identifies five principles for spatial development: spatial justice, spatial sustainability, spatial resilience, spatial quality and special efficiency.

It confirms that South African cities are highly fragmented, as little has been achieved in reversing apartheid geography. The Plan proposes that the situation be addressed by establishing new norms and standards: amongst others by densifying cities, improving transport and locating jobs where people live.

The containment of urban sprawl is particularly highlighted in the Plan, confirming that sprawl be contained and reversed (if possible), "... as denser forms of development are more efficient in terms of land usage, infrastructure cost and environmental protection."

The proposed development aligns with the vision of the National Development Plan, as it will promote compaction of the city and limiting urban sprawl (by means of infill development), by the redevelopment of a property which is currently vacant instead of developing outside the urban edge.

6.2 Provincial Development Guidelines

6.2.1 Gauteng Metropolitan Spatial Development Framework, 2011

The Gauteng Metropolitan Spatial Development Framework (MSDF), 2011, was, amongst others, compiled to specify a clear set of spatial objectives for municipalities to achieve in order to ensure realisation of the future provincial spatial infrastructure; and to enable and direct growth.

The MSDF aims to articulate the spatial objectives of the Gauteng region to assist the alignment of neighbouring municipalities' spatial plans. It is proposed that key principles in local municipality SDFs should include (applicable to this application):

- Promotion of densification in specific areas to utilise resources more efficiently;
- Establishment of a hierarchy of nodes and supporting existing development nodes.

The MSDF confirms that "it remains the intension to limit urban sprawl as a fundamental tenet or urban growth policy and to promote the intentions of intensification and densification, together with a transformed urban structure that de-emphasises the need for outward expansion of the urban system".

The development proposal will not contribute to urban sprawl and should be regarded as infill development.

6.2.2 Gauteng Spatial Development Framework, 2011

The Gauteng Spatial Development Framework (SDF), 2011, was, amongst others, compiled to specify a clear set of spatial objectives for municipalities to achieve in order to ensure realisation of the future provincial spatial infrastructure; and to enable and direct growth.

The SDF aims to articulate the spatial objectives of the Gauteng region to assist the alignment of neighbouring municipalities' spatial plans. It is proposed that key principles in local municipality SDFs should include (applicable to this application):

- Promotion of densification in specific areas to utilise resources more efficiently;
- Establishment of a hierarchy of nodes and supporting existing development nodes.

The SDF confirms on page 128 that "it remains the intension to limit urban sprawl as a fundamental tenet or urban growth policy and to promote the intentions of intensification and densification, together with a transformed urban structure that de-emphasises the need for outward expansion of the urban system".

The SDF furthermore identified four critical factors for development in the province, relevant to this development:

• Contained urban growth:

To contain urban growth, an Urban Edge was identified to curb urban sprawl. The idea behind the urban edge is to limit development within certain areas of a city. Only certain types of developments are allowed on the outside of the urban edge. The goal is to curb urban sprawl and thereby protecting the natural environment. One way to do this is to increase the densities of the built environment within the urban edge.

This edge is however not set in stone and can be amended if development pressure in an area requires the alteration of this "line" or edge. Normally, areas identified for future development or as future development nodes are not included within the urban edge of a municipality. Amendments to the relevant spatial legislation and frameworks of the municipality usually later include these areas within the edge, so the development potential can be unlocked. Approval of net land-use rights and applications in an area indicates that the characteristics of the area have changed over the ears.

Resourced based economic development:

Resource based economic development should result in identification of the economic core. Development should be encouraged in close proximity to existing resources, which includes infrastructure such as roads, water and electricity.

The proposed development is situated near existing and adjacent to approved proposed developments and infrastructure networks. Recent similar approved township establishment applications indicate that there is a growing economic base in the area.

• Re-direction of urban growth:

Developments in economically non-viable areas should be limited and thereby achieving growth within the economic growth sphere. This part of the Municipality is a fast growing sector in Joburg and growth should be encouraged in the precinct.

Increased access and mobility:

The proposed land development area could be regarded as highly accessible.

6.3 Local Development Guidelines

6.3.1 Spatial Development Framework (SDF), 2011

The SDF was compiled to realise the vision of the Municipality through spatial restructuring and to integrate all aspects of spatial planning.

The subject property is earmarked for purposes of residential development. The Ormonde area is situated within a mixed use area, focussing on sporting / entertainment facilities, light industrial with a very large residential component.

In light of the above, it is apparent that the proposed development is consistent with the principles contained in the SDF.

6.3.2 Integrated Development Plan (IDP), 2012/2016

The Municipality has adopted an Integrated Development Plan (IDP) for 2012/2016 in terms of Section 25 of the Local Government, Municipal Systems Act, 2000 (Act No. 32 of 2000), which plan integrates and coordinates plans and aligns the resources and capacity of the Municipality to implement these plans. The compilation of Spatial Development Frameworks forms part of the IDP.

The Johannesburg Municipality seeks to focus its efforts to complement National and Provincial Government to accomplish the following strategic objectives through the IDP:

- Provide quality basic services and infrastructure;
- Facilitate higher and shared economic growth and development;
- To fight poverty, build clean, healthy, safe and sustainable communities;
- Foster participatory democracy through a caring, accessible and accountable service; and
- To ensure good governance, financial viability and optimal institutional transformation with capacity to execute its mandate.

The Strategic Levers emanating from the city's macro and long-term strategy, including the medium-term plan reflect Joburg's attempts in actively working towards achieving the targets set out at national and provincial level

The IDP confirms the status of the Ormonde area which focusses on the residential component as indicated in the SDF. The proposed development therefore finds support in the IDP.

7. MOTIVATION AND BURDEN OF PROOF

7.1 <u>Need</u>

- 7.1.1 The need for the development of residential units on the property is acknowledged in the land use policies of the Municipality, particularly the SDF which confirms that the property is earmarked for purposes of residential development. This confirms that the need for the development on the property is also acknowledged from a policy perspective.
- 7.1.2 The proximity of the subject property to important transport routes (e.g. the, M1 freeway and Shakespeare Avenue), public transport, job opportunities and most importantly renders that the property ideal for the intended land use.
- 7.1.3 Open and vacant, unutilised land within a build-up area can be perceived as a weakness due to the security threat that vacant land imposes, as well as the negative influence it has on the image of a neighbourhood. Unused open or vacant land, which implies lower densities, makes the provision of essential municipal services less viable and more expensive to provide. By developing the existing land, the development of urban fibre can be stimulated through the strengthening of the development node and region. The proposed land use rights of the erf accommodated in this application is in accordance with the proposals of the Integrated Development Plan (IDP), as the IDP earmarks this area for medium to high density residential uses.
- 7.1.4 The proposed development will positively influence the income base of the Municipality. The income generated by rates is a function of land value, which is in turn a function of the land use. The establishment of the residential townships (which includes a retail erf) broadens the economic base of the area. The

development will also ensure the following:

- Infill development The application site is a vacant portion of land situated adjacent to an existing and future residential townships, within the Municipality;
- New work opportunities in close proximity to place of residence during construction; and
- Optimal use of existing infrastructure.
- 7.1.5 The proposed development is also consistent with approved land use policies in Johannesburg. The need for the proposed development is substantiated by the principles of the IDP, i.e. the infill of vacant land and the optimal use of existing infrastructure, as well as from current market forces.

7.2 <u>Desirability</u>

- 7.2.1 There is a need for more residential units within the Ormonde area and this development will contribute to this need. Mounting development pressure within the municipality is resulting in all available developable land being developed.
- 7.2.2 The development proposal is also consistent with, and will promote, the land use policy guidelines of the Municipality. The development can be regarded as being desirable and will have several beneficial social and economic impacts on the area, which can be summarised as follow:
 - Optimum utilisation of services and infrastructure;
 - Increase in property values of surrounding properties;
 - Increased security;
 - Compatibility with surrounding land uses; and
 - Increased housing opportunities
- 7.2.3 The proposed development will maximize the potential of the subject property and is consistent with the strategic location of the site. The proposed development will additionally contribute to the overall efficiency, sustainability and improved quality of the greater area. The development will have several beneficial social, economic and ecological impacts once the construction thereof is finalised, which can be summarised as follow:
 - Reduction of potential dumping areas and informal settlements;
 - Optimum utilisation of services and infrastructure;
 - Expansion of municipal infrastructure and services;
 - Increase in property values of surrounding properties;
 - Increased security;
 - Eradication of invasive species;
 - Compatibility with surrounding land uses; and
 - Landscaping could improve fauna numbers and species.

As mentioned above, the proposed development will include community and will be easy accessible through public transport. The need for social and economic facilities in this area is identified in various planning policies and policy frameworks of the Municipality. The development will provide much needed residential and retail facilities for the area, and thus make a positive contribution with regards to social welfare.

- 7.2.4 The proposed development will align with the existing urban form and character of the area. It will uplift the area economically and might attract other potential developers to the area as well. Thus, in effect, in might have a very positive financial influence to the precinct. Furthermore, the proposed development will contribute to an economic base in the area. Thus, it is argued that the proposed development will have a positive influence to the area.
- 7.2.5 When considering that the Building Plans and Site Development Plans which must be submitted to the Municipality, will have to comply with the relevant design guidelines and development parameters of land

use policies, the proposed development can be perceived as desirable from a land use perspective.

7.3 Compliance with SPLUMA principles

7.3.1 With reference to Section 7.1.1 of this Memorandum, it is confirmed that the development proposal complies with the principles of the Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013).

7.4 <u>Public interest in terms of Section 47(2) of the Spatial Planning and Land Use Management Act</u>, 2013 (Act No. 16 of 2013)

7.4.1 The proposed development is in the public interest, as the land use rights is consistent with approved policy guidelines on national, provincial and local level.

7.5 Facts and circumstances of application in terms of Section 42 of the Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013)

- 7.5.1 This memorandum is submitted in support of an application in terms of the provisions of Section 21 of the City of Johannesburg Municipal Planning By-Law, 2016 for the rezoning of Erf 962 & Erf 963, Ormonde Extension 22, from "Residential 3" with 25 dwelling units per hectare to "**Residential 3**" with "**110 dwelling units per hectare**".
- 7.5.2 The proposed development aligns with approved policy guidelines on national, provincial and local level.

7.6 <u>Rights and obligations of affected parties in terms of Section 42 of the Spatial Planning and Land</u> Use Management Act, 2013 (Act No. 16 of 2013)

- 7.6.1 The rights and obligations of affected parties will be taken into account in the following manner:
 - The application will be advertised as prescribed in Section 21(2) of the City of Johannesburg Municipal Planning By-Law, 2016, by the publications of notices in the Gauteng Provincial Gazette, Beeld and Citizen during February/ March 2017, and by the simultaneous display of a notice on site for fourteen (14 days). An objection period of 28 days will be afforded to any affected parties; and
 - The City Planning Department will circulate the application for comments from internal departments of the Municipality. Any concerns raised will have to be dealt with to the satisfaction of the relevant department.

7.7 Interested persons in terms of Section 45 of the Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013)

7.7.1 The application will be advertised as prescribed in Section 21(2) of the City of Johannesburg Municipal Planning By-Law, 2016, granting any person the opportunity to register as an interested party.

7.8 Impact on engineering services, social infrastructure and open space in terms of Sections 42 and 49 of the Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013), read with Section 46, 47 and 48 of the City of Johannesburg Municipal Planning By-Law, 2016

- 7.8.1 The impact of the proposed development will be confirmed by the internal departments of the Municipality who will be afforded an opportunity to comment on the application.
- 7.8.2 Any adverse impacts will be mitigated and addressed by suitable solutions, which may include service agreements and/or payment of bulk contributions to upgrade existing services infrastructure.

7.9 Reply to objections

- 7.9.1 The applicant will reply to any valid objections to the application.
- 7.9.2 The advertisements will comply with the requirements of the relevant sections of the City of Johannesburg Municipal Planning By-Law, 2016. The rights of potential objectors and or interested parties will be brought to the attention of probable objectors and or interested parties in terms of the requirements of Section 21(2) of the City of Johannesburg Municipal Planning By-Law, 2016.
- 7.9.3 In submitting this application, applicant has endeavoured to comply with the requirements of the relevant provincial legislation as well as the provisions of the City of Johannesburg Municipal Planning By-Law, 2016, read with the Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013).
- 7.9.4 The application clearly indicates the land- use rights, scheme documents, diagrams, layout plans, need and desirability, co-ordinated harmonious development and all other relevant requirements in terms of provincial legislation.
- 7.9.5 The application further complies with the relevant requirements of the Spatial Planning and Land Use Management Act, 2013 (Act 16 of 2013). Specifically, Sections 7, 42, 47 and 49 thereof.

8. CONCLUSION

- 8.1 Application is made in terms of the provisions of Section 21 of the City of Johannesburg Municipal Planning By-Law, 2016 for the rezoning of Erf 962 & Erf 963, Ormonde Extension 22, from "Residential 3" with a density of "25 dwelling units per hectare; FAR of 0.4; Height of 3 storeys; and coverage of 30%" to "Residential 3" with a density of "110 dwelling units per hectare; FAR of 0.7; Height of 4 storeys; and coverage of 30%", subject to the following conditions
- 8.2 The purpose of this application is to obtain the appropriate land use rights to enable higher residential development. The application clearly confirms the need and desirability and compliance with all other relevant requirements in terms of relevant policies and legislation.
- 8.3 Note that a separate application for the consolidation of the two properties, terms of the provisions of Section 33 of the City of Johannesburg Municipal Planning By-Law, 2016, was also submitted to the Municipality. Even though the rezoning and consolidation applications are submitted separately, approval of both applications will be required before submission of any building plans to Council and before construction can commence.
- 8.4 We trust that Council will evaluate and consider the application on its merit.

Werner Slabbert B(TRP) Professional Planner - Pr. Pln A/2190/2015

URBAN INNOVATE CONSULTING CC CK2007/191853/23

November 2016

R16026

LIST OF ANNEXURES

۴	ANNEXURE A	-	LOCALITY PLAN
1	ANNEXURE B	-	DEED OF TRANSFER
•	ANNEXURE C	-	POWER OF ATTORNEY, COMPANY RESOLUTION & PROOF OF DIRECTORS
Ŧ	ANNEXURE D	-	ZONING CERTIFICATE AND ZONING MAP
Ŧ	ANNEXURE E	-	LAND USE MAP
Ŧ	ANNEXURE F	-	PROPOSED SCHEME DOCUMENTATION
Ŷ	ANNEXURE G	-	PROPOSED SITE PLAN AND GATEHOUSE DESIGN
•	ANNEXURE H	-	GENERAL PLAN / S.G DIAGRAMS

ANNEXURE C

CAPACITY CALCULATION RESULTS

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 AM Peak Hour Background Traffic Volume Proposed by latents Signals - Fixed Time Cycle Time = 100 seconds

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	Shakesp	eare Avenue (S	5)								
1	L	187	0.0	0.173	8.5	LOS A	0.8	5.5	0.12	0.69	48.4
2	Т	901	0.0	0.870	30.4	LOS C	43.9	307.0	0.96	0.96	31.1
Approac	h	1088	0.0	0.870	26.6	LOS C	43.9	307.0	0.81	0.91	33.2
North: A	Iwen R	load (N)									
8	Т	417	0.0	0.403	16.6	LOS B	14.1	98.4	0.67	0.59	39.4
9	R	95	0.0	0.852	69.1	LOS E	7.2	50.2	1.00	1.01	20.6
Approac	h	512	0.0	0.852	26.4	LOS C	14.1	98.4	0.73	0.66	33.7
West: Ak	ker Ave	enue (W)									
10	L	297	0.0	0.850	44.3	LOS D	31.9	223.4	0.98	0.94	27.0
12	R	335	0.0	0.850	44.4	LOS D	31.9	223.4	0.98	0.94	27.0
Approac	h	632	0.0	0.850	44.4	LOS D	31.9	223.4	0.98	0.94	27.0
All Vehic	les	2232	0.0	0.870	31.6	LOS C	43.9	307.0	0.84	0.86	31.2

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 01:59:05 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\02 SITE C\02 Sidras\02 Akker_Alwen_shakespeare\BG\Latents\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 PM Peak Hour Background Traffic Volumes Proposed by Latents Signals - Fixed Time Cycle Time = 120 seconds

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	hakesp	eare Avenue (S	5)								
1	L	171	0.0	0.853	39.3	LOS D	7.5	52.3	0.85	0.83	28.8
2	Т	391	0.0	0.526	32.5	LOS C	19.0	132.9	0.85	0.73	30.4
Approac	h	561	0.0	0.854	34.6	LOS C	19.0	132.9	0.85	0.76	29.9
North: A	Iwen R	oad (N)									
8	Т	794	0.0	0.494	5.2	LOS A	17.7	123.8	0.40	0.36	50.8
9	R	229	0.0	0.679	16.9	LOS B	5.1	35.5	0.56	0.79	40.8
Approac	h	1023	0.0	0.679	7.8	LOS A	17.7	123.8	0.43	0.46	48.2
West: Ak	ker Ave	enue (W)									
10	L	71	0.0	0.808	67.8	LOS E	14.6	102.0	1.00	0.90	20.9
12	R	142	0.0	0.808	67.9	LOS E	14.6	102.0	1.00	0.90	20.9
Approac	h	213	0.0	0.808	67.9	LOS E	14.6	102.0	1.00	0.90	20.9
All Vehic	les	1797	0.0	0.853	23.3	LOS C	19.0	132.9	0.63	0.61	35.8

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 02:00:58 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\02 SITE C\02 Sidras\02 Akker_Alwen_shakespeare\BG\Latents\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 AM Peak Hour Background Traffic Volumes Proposed by Latents Signals - Fixed Time Cycle Time = 120 seconds

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	hakesp	eare Avenue (S	5)								
1	L	217	0.0	0.200	8.4	LOS A	0.9	6.4	0.10	0.68	48.5
2	Т	1044	0.0	0.917	39.1	LOS D	65.8	460.8	0.99	1.02	27.6
Approac	h	1261	0.0	0.917	33.9	LOS C	65.8	460.8	0.83	0.96	29.8
North: A	lwen R	load (N)									
8	Т	501	0.0	0.441	16.9	LOS B	18.2	127.6	0.64	0.57	39.2
9	R	85	0.0	1.001 ³	80.5	LOS F	7.5	52.3	1.00	0.86	18.6
Approac	h	586	0.0	1.000	26.2	LOS C	18.2	127.6	0.69	0.61	33.8
West: Ak	ker Ave	enue (W)									
10	L	327	0.0	0.987	104.7	LOS F	65.6	459.2	1.00	1.14	15.4
12	R	386	0.0	0.987	104.8	LOS F	65.6	459.2	1.00	1.14	15.4
Approac	h	714	0.0	0.987	104.8	LOS F	65.6	459.2	1.00	1.14	15.4
All Vehic	les	2561	0.0	1.001	51.9	LOS D	65.8	460.8	0.85	0.93	24.2

Level of Service (Aver. Int. Delay): LOS D. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane

Processed: 18 November 2016 01:59:54 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 www.sidrasolutions.com Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\02 SITE C\02 Sidras\02 Akker_Alwen_shakespeare\BG\Latents\Akker_Alwen_hakespeare_REV1(C).sip

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 PM Peak Hour Background Traffic Volumes Proposed by latents Signals - Fixed Time Cycle Time = 60 seconds

Movem	Novement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: S	Shakesp	eare Avenue (S	5)											
1	L	197	0.0	0.682	23.1	LOS C	5.7	39.7	0.69	0.83	36.6			
2	Т	453	0.0	0.525	14.2	LOS B	11.7	81.7	0.80	0.69	40.8			
Approac	h	649	0.0	0.682	16.9	LOS B	11.7	81.7	0.76	0.73	39.5			
North: A	Iwen R	oad (N)												
8	т	920	0.0	0.720	8.6	LOS A	19.6	137.4	0.75	0.68	45.9			
9	R	249	0.0	0.645	17.7	LOS B	5.1	35.5	0.79	0.82	40.2			
Approac	h	1169	0.0	0.720	10.5	LOS B	19.6	137.4	0.75	0.71	44.5			
West: Ak	ker Ave	enue (W)												
10	L	75	0.0	0.588	31.9	LOS C	8.3	57.8	0.95	0.82	31.9			
12	R	164	0.0	0.588	32.0	LOS C	8.3	57.8	0.95	0.82	31.9			
Approac	h	239	0.0	0.588	32.0	LOS C	8.3	57.8	0.95	0.82	31.9			
All Vehic	les	2058	0.0	0.720	15.0	LOS B	19.6	137.4	0.78	0.73	41.0			

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 02:00:13 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\02 SITE C\02 Sidras\02 Akker_Alwen_shakespeare\BG\Latents\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 70 seconds

Movem	Novement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: S	Shakesp	eare Avenue (S	6)											
1	L	198	0.0	0.377	10.8	LOS B	2.7	18.6	0.31	0.71	46.2			
2	Т	901	0.0	0.923	37.3	LOS D	41.2	288.6	1.00	1.21	28.3			
Approac	h	1099	0.0	0.923	32.5	LOS C	41.2	288.6	0.88	1.12	30.4			
North: A	Iwen R	oad (N)												
8	Т	417	0.0	0.313	6.0	LOS A	8.0	55.9	0.48	0.42	49.6			
9	R	187	0.0	0.589	24.7	LOS C	5.2	36.6	0.97	0.80	35.7			
Approac	h	604	0.0	0.589	11.8	LOS B	8.0	55.9	0.63	0.54	44.2			
West: Ak	ker Ave	enue (W)												
10	L	575	0.0	0.802	33.0	LOS C	20.5	143.8	0.95	0.93	31.4			
12	R	366	0.0	0.921	48.5	LOS D	16.4	115.0	1.00	1.01	25.6			
Approac	h	941	0.0	0.920	39.0	LOS D	20.5	143.8	0.97	0.96	28.9			
All Vehic	les	2644	0.0	0.923	30.1	LOS C	41.2	288.6	0.85	0.93	32.1			

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:08:28 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\02 Akker_Alwen_shakespeare\BG+D\Proposed\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 60 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: S	hakesp	eare Avenue (S	6)										
1	L	200	0.0	0.640	20.0	LOS B	5.2	36.1	0.63	0.79	38.7		
2	Т	391	0.0	0.707	23.1	LOS C	12.6	88.3	0.96	0.86	34.7		
Approac	h	591	0.0	0.707	22.0	LOS C	12.6	88.3	0.85	0.84	36.0		
North: A	Iwen R	load (N)											
8	Т	794	0.0	0.535	4.2	LOS A	12.2	85.7	0.50	0.45	51.5		
9	R	489	0.0	0.859	22.2	LOS C	9.9	69.0	0.78	0.90	37.2		
Approac	h	1283	0.0	0.859	11.0	LOS B	12.2	85.7	0.60	0.62	44.9		
West: Ak	ker Av	enue (W)											
10	L	181	0.0	0.172	14.9	LOS B	3.6	25.5	0.51	0.75	42.5		
12	R	155	0.0	0.714	39.4	LOS D	6.4	45.1	1.00	0.88	28.7		
Approac	h	336	0.0	0.714	26.2	LOS C	6.4	45.1	0.73	0.81	34.8		
All Vehic	les	2209	0.0	0.859	16.3	LOS B	12.6	88.3	0.69	0.71	40.5		

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:08:45 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\02 Akker_Alwen_shakespeare\BG+D\Proposed\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 AM Peak Hour Background and Development Traffic Volumes **Proposed Configuration** Signals - Fixed Time Cycle Time = 80 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: S	Shakesp	eare Avenue (S	S)										
1	L	227	0.0	0.432	11.2	LOS B	3.1	21.4	0.36	0.73	45.8		
2	Т	1044	0.0	0.984	72.4	LOS E	73.2	512.1	1.00	1.50	19.4		
Approac	h	1272	0.0	0.984	61.4	LOS E	73.2	512.1	0.89	1.36	21.7		
North: A	Iwen R	oad (N)											
8	т	483	0.0	0.352	6.3	LOS A	9.9	69.3	0.47	0.42	49.2		
9	R	197	0.0	0.725	33.2	LOS C	6.8	47.5	1.00	0.86	31.3		
Approac	h	680	0.0	0.725	14.1	LOS B	9.9	69.3	0.63	0.55	42.2		
West: Ak	ker Ave	enue (W)											
10	L	629	0.0	0.934	58.5	LOS E	34.3	240.3	1.00	1.09	23.0		
12	R	395	0.0	1.000 ³	43.4	LOS D	17.2	120.2	1.00	0.86	27.3		
Approac	h	1023	0.0	1.000	52.7	LOS D	34.3	240.3	1.00	1.00	24.4		
All Vehic	les	2975	0.0	1.000	47.6	LOS D	73.2	512.1	0.87	1.05	25.5		

Level of Service (Aver. Int. Delay): LOS D. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane

Processed: 18 November 2016 03:09:05 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\02 Akker_Alwen_shakespeare\BG+D\Proposed\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 60 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: S	hakesp	eare Avenue (S	5)										
1	L	225	0.0	0.741	25.1	LOS C	6.6	46.4	0.69	0.87	35.5		
2	Т	453	0.0	0.874	32.5	LOS C	17.1	119.6	1.00	1.09	30.2		
Approac	h	678	0.0	0.874	30.0	LOS C	17.1	119.6	0.90	1.01	31.7		
North: A	Iwen R	load (N)											
8	Т	920	0.0	0.620	4.7	LOS A	15.1	105.6	0.55	0.50	50.7		
9	R	509	0.0	0.948	20.0	LOS C	9.9	69.0	0.79	0.86	38.6		
Approac	h	1429	0.0	0.949	10.1	LOS B	15.1	105.6	0.64	0.63	45.6		
West: Ak	ker Av	enue (W)											
10	L	186	0.0	0.172	14.4	LOS B	3.6	25.3	0.49	0.75	42.9		
12	R	177	0.0	0.816	42.1	LOS D	7.6	53.0	1.00	0.97	27.7		
Approac	h	363	0.0	0.816	27.9	LOS C	7.6	53.0	0.74	0.85	33.9		
All Vehic	les	2471	0.0	0.948	18.2	LOS B	17.1	119.6	0.72	0.77	39.0		

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:09:19 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\02 Akker_Alwen_shakespeare\BG+D\Proposed\Akker_Alwen_hakespeare_REV1(C).sip Unlicensed Trial Version

Dorado Avenue / Alwen Road Junction 2017 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 65 seconds

Movem	Movement Performance - Vehicles Demand Deg Average Level of 95% Back of Queue Pron Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	lwen R	oad (S)												
2	Т	884	0.0	0.603	5.2	LOS A	15.6	109.1	0.55	0.50	50.1			
3	R	373	0.0	0.666	16.3	LOS B	6.5	45.8	0.78	0.82	41.4			
Approac	h	1257	0.0	0.666	8.5	LOS A	15.6	109.1	0.62	0.60	47.2			
East: Alwen Road (E)														
4	L	157	0.0	0.172	19.2	LOS B	4.1	28.8	0.62	0.76	39.2			
6	R	43	0.0	0.203	38.6	LOS D	2.0	14.0	0.95	0.73	29.0			
Approac	h	200	0.0	0.203	23.4	LOS C	4.1	28.8	0.69	0.75	36.5			
North: D	orado A	venue (N)												
7	L	148	0.0	0.593	26.3	LOS C	13.1	91.8	0.86	0.87	36.2			
8	Т	296	0.0	0.593	18.1	LOS B	13.1	91.8	0.86	0.75	37.0			
Approac	h	444	0.0	0.593	20.8	LOS C	13.1	91.8	0.86	0.79	36.7			
All Vehic	les	1901	0.0	0.666	12.9	LOS B	15.6	109.1	0.68	0.66	43.0			

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:12:00 PM SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\ Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG\Latents\Dorado_Alwen_REV2(C).sip

Dorado Avenue / Alwen Road Junction 2017 PM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 70 seconds

Movem	Movement Performance - Vehicles Demand Deg Average Level of 95% Back of Queue Prop Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	lwen R	oad (S)												
2	Т	313	0.0	0.207	3.2	LOS A	4.7	32.8	0.34	0.29	53.5			
3	R	203	0.0	0.534	20.9	LOS C	5.6	39.2	0.89	0.82	38.0			
Approac	h	516	0.0	0.534	10.2	LOS B	5.6	39.2	0.56	0.50	46.1			
East: Alv	ven Roa	ad (E)												
4	L	325	0.0	0.577	31.7	LOS C	11.4	79.6	0.91	0.83	32.0			
6	R	113	0.0	0.571	43.3	LOS D	5.4	37.7	1.00	0.79	27.3			
Approac	h	438	0.0	0.577	34.7	LOS C	11.4	79.6	0.93	0.82	30.6			
North: D	orado A	venue (N)												
7	L	161	0.0	0.773	22.3	LOS C	24.7	172.8	0.84	0.94	39.1			
8	Т	709	0.0	0.773	14.1	LOS B	24.7	172.8	0.84	0.78	40.3			
Approac	h	871	0.0	0.773	15.6	LOS B	24.7	172.8	0.84	0.81	40.1			
All Vehic	les	1824	0.0	0.773	18.7	LOS B	24.7	172.8	0.78	0.73	38.6			

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:12:13 PM SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2 Dorado Alwan\PGU atents\Dorado Alwan PEV/ Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG\Latents\Dorado_Alwen_REV2(C).sip Unlicensed Trial Version

Dorado Avenue / Alwen Road Junction 2022 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 70 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	lwen R	oad (S)											
2	Т	1068	0.0	0.708	5.7	LOS A	21.2	148.3	0.61	0.56	49.3		
3	R	475	0.0	0.918	18.4	LOS B	10.1	70.6	0.89	0.86	39.7		
Approac	h	1543	0.0	0.918	9.6	LOS A	21.2	148.3	0.70	0.65	45.9		
East: Alv	ven Roa	ad (E)											
4	L	197	0.0	0.225	21.2	LOS C	5.6	39.4	0.66	0.77	37.9		
6	R	51	0.0	0.256	41.6	LOS D	2.5	17.6	0.96	0.74	27.9		
Approac	h	247	0.0	0.256	25.4	LOS C	5.6	39.4	0.72	0.77	35.3		
North: D	orado A	venue (N)											
7	L	173	0.0	0.654	26.8	LOS C	16.2	113.3	0.87	0.88	35.9		
8	Т	358	0.0	0.654	18.6	LOS B	16.2	113.3	0.87	0.76	36.7		
Approac	h	531	0.0	0.654	21.2	LOS C	16.2	113.3	0.87	0.80	36.5		
All Vehic	les	2321	0.0	0.918	14.0	LOS B	21.2	148.3	0.74	0.70	42.1		

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:12:23 PM SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C Prode Auror PD Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG\Latents\Dorado_Alwen_REV2(C).sip

Dorado Avenue / Alwen Road Junction 2022 PM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 80 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: Al	lwen R	oad (S)											
2	Т	356	0.0	0.225	2.9	LOS A	5.3	37.3	0.31	0.27	54.1		
3	R	229	0.0	0.689	26.8	LOS C	8.6	60.4	0.99	0.88	34.5		
Approact	h	585	0.0	0.689	12.3	LOS B	8.6	60.4	0.57	0.51	44.2		
East: Alw	ven Roa	ad (E)											
4	L	360	0.0	0.730	39.9	LOS D	15.0	105.2	0.98	0.88	28.6		
6	R	131	0.0	0.756	51.6	LOS D	7.2	50.1	1.00	0.88	24.7		
Approach	h	491	0.0	0.756	43.0	LOS D	15.0	105.2	0.98	0.88	27.4		
North: Do	orado A	venue (N)											
7	L	187	0.0	0.800	21.9	LOS C	30.7	215.0	0.82	0.94	39.3		
8	Т	806	0.0	0.800	13.7	LOS B	30.7	215.0	0.82	0.77	40.6		
Approact	h	994	0.0	0.800	15.3	LOS B	30.7	215.0	0.82	0.81	40.3		
All Vehic	les	2069	0.0	0.800	21.0	LOS C	30.7	215.0	0.79	0.74	37.1		

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:12:34 PM SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG\Latents\Dorado_Alwen_REV2(C).sip

Dorado Avenue / Alwen Road Junction 2017 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 65 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	lwen R	oad (S)											
2	Т	1015	0.0	0.692	5.8	LOS A	19.4	135.7	0.62	0.57	49.1		
3	R	509	0.0	0.796	23.2	LOS C	11.4	80.1	0.91	0.93	36.6		
Approac	h	1524	0.0	0.796	11.6	LOS B	19.4	135.7	0.72	0.69	44.1		
East: Alwen Roa		ad (E)											
4	L	202	0.0	0.222	19.5	LOS B	5.3	36.9	0.64	0.77	39.0		
6	R	43	0.0	0.203	38.6	LOS D	2.0	14.0	0.95	0.73	29.0		
Approac	h	245	0.0	0.222	22.9	LOS C	5.3	36.9	0.69	0.76	36.8		
North: D	orado A	Avenue (N)											
7	L	148	0.0	0.654	26.8	LOS C	14.5	101.5	0.89	0.87	36.0		
8	Т	339	0.0	0.653	18.7	LOS B	14.5	101.5	0.89	0.77	36.7		
Approac	h	487	0.0	0.653	21.1	LOS C	14.5	101.5	0.89	0.80	36.5		
All Vehic	les	2257	0.0	0.796	14.9	LOS B	19.4	135.7	0.75	0.72	41.3		

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:16:18 PM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG+D\Proposed\Dorado_Alwen_REV2(C).sip

Dorado Avenue / Alwen Road Junction 2017 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 70 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	lwen R	oad (S)											
2	Т	344	0.0	0.228	3.3	LOS A	5.2	36.2	0.35	0.30	53.4		
3	R	237	0.0	0.675	25.1	LOS C	7.5	52.5	0.98	0.86	35.4		
Approac	h	581	0.0	0.675	12.2	LOS B	7.5	52.5	0.61	0.53	44.3		
East: Alwen Roa		ad (E)											
4	L	404	0.0	0.717	34.1	LOS C	14.5	101.8	0.96	0.87	30.9		
6	R	113	0.0	0.571	43.3	LOS D	5.4	37.7	1.00	0.79	27.3		
Approac	h	517	0.0	0.717	36.1	LOS D	14.5	101.8	0.97	0.86	30.1		
North: D	orado A	Avenue (N)											
7	L	161	0.0	0.837	27.0	LOS C	31.1	217.6	0.90	1.00	36.3		
8	Т	782	0.0	0.838	18.8	LOS B	31.1	217.6	0.90	0.90	36.9		
Approac	h	943	0.0	0.838	20.2	LOS C	31.1	217.6	0.90	0.92	36.8		
All Vehic	les	2041	0.0	0.838	21.9	LOS C	31.1	217.6	0.83	0.79	36.5		

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:16:50 PM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG+D\Proposed\Dorado_Alwen_REV2(C).sip

Dorado Avenue / Alwen Road Junction 2022 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 70 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	lwen R	oad (S)											
2	Т	1146	0.0	0.760	6.2	LOS A	24.3	170.1	0.66	0.61	48.6		
3	R	559	0.0	0.921	28.3	LOS C	14.3	100.0	0.96	0.96	33.7		
Approac	h	1705	0.0	0.921	13.4	LOS B	24.3	170.1	0.76	0.73	42.5		
East: Alwen Roa		ad (E)											
4	L	224	0.0	0.257	21.4	LOS C	6.4	44.6	0.67	0.78	37.7		
6	R	51	0.0	0.256	41.6	LOS D	2.5	17.6	0.96	0.74	27.9		
Approac	h	275	0.0	0.257	25.1	LOS C	6.4	44.6	0.72	0.77	35.4		
North: D	orado A	Avenue (N)											
7	L	173	0.0	0.687	27.1	LOS C	17.1	119.6	0.89	0.88	35.8		
8	Т	383	0.0	0.687	18.9	LOS B	17.1	119.6	0.89	0.78	36.5		
Approac	h	556	0.0	0.686	21.4	LOS C	17.1	119.6	0.89	0.81	36.3		
All Vehic	les	2536	0.0	0.921	16.5	LOS B	24.3	170.1	0.78	0.75	40.1		

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:17:17 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG+D\Proposed\Dorado_Alwen_REV2(C).sip
Dorado Avenue / Alwen Road Junction 2022 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 80 seconds

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	lwen R	oad (S)											
2	Т	387	0.0	0.245	2.9	LOS A	5.8	40.8	0.31	0.27	54.0		
3	R	263	0.0	0.857	44.5	LOS D	11.5	80.3	1.00	1.06	26.9		
Approac	h	651	0.0	0.857	19.7	LOS B	11.5	80.3	0.59	0.59	38.4		
East: Alwen Road (E		ad (E)											
4	L	439	0.0	0.890	51.5	LOS D	21.4	149.5	1.00	1.02	24.8		
6	R	131	0.0	0.756	51.6	LOS D	7.2	50.1	1.00	0.88	24.7		
Approac	h	569	0.0	0.890	51.5	LOS D	21.4	149.5	1.00	0.98	24.8		
North: D	orado A	Avenue (N)											
7	L	187	0.0	0.859	27.5	LOS C	39.3	275.0	0.89	1.00	35.9		
8	Т	879	0.0	0.859	19.3	LOS B	39.3	275.0	0.89	0.89	36.6		
Approac	h	1066	0.0	0.859	20.8	LOS C	39.3	275.0	0.89	0.91	36.5		
All Vehic	les	2286	0.0	0.890	28.1	LOS C	39.3	275.0	0.83	0.84	33.1		

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Processed: 18 November 2016 03:17:38 PM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\01 Dorado_Alwen\BG+D\Proposed\Dorado_Alwen_REV2(C).sip

Akker Avenue / Chamfuti Crescent North Junction 2017 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	enue (S)												
2	Т	678	0.0	0.333	2.4	LOS A	4.3	29.8	0.63	0.00	49.6			
3	R	2	0.0	0.351	10.8	LOS B	4.3	29.8	0.63	0.97	49.3			
Approac	h	680	0.0	0.333	2.5	LOS B	4.3	29.8	0.63	0.00	49.6			
East: Chamfuti Crescent North (E)														
4	L	7	0.0	0.819	71.0	LOS F	5.3	37.4	0.95	1.38	20.6			
6	R	104	0.0	0.784	70.8	LOS F	5.3	37.4	0.95	1.29	20.6			
Approac	h	112	0.0	0.785	70.8	LOS F	5.3	37.4	0.95	1.29	20.6			
North: A	kker A	/enue (N)												
7	L	43	0.0	0.173	8.2	LOS A	0.0	0.0	0.00	1.01	49.0			
8	Т	308	0.0	0.173	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	352	0.0	0.173	1.0	LOS A	0.0	0.0	0.00	0.12	58.4			
All Vehic	les	1143	0.0	0.819	8.7	NA	5.3	37.4	0.47	0.17	45.5			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:27:59 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\03 Akker_Chamfuti N\BG\Existing\Akker_Chamfuti N_REV1(C).sip

Akker Avenue / Chamfuti Crescent North Junction 2017 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Novement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	kker Av	enue (S)											
2	Т	246	0.0	0.122	3.8	LOS A	1.7	11.7	0.67	0.00	49.0		
3	R	1	0.0	0.117	12.2	LOS B	1.7	11.7	0.67	1.03	48.0		
Approacl	h	247	0.0	0.122	3.9	LOS B	1.7	11.7	0.67	0.00	49.0		
East: Ch	amfuti	Crescent Nort	h (E)										
4	L	1	0.0	0.175	26.2	LOS D	0.8	5.5	0.79	1.00	35.6		
6	R	40	0.0	0.183	26.0	LOS D	0.8	5.5	0.79	1.00	35.7		
Approacl	h	41	0.0	0.183	26.0	LOS D	0.8	5.5	0.79	1.00	35.7		
North: A	kker A	/enue (N)											
7	L	84	0.0	0.290	8.2	LOS A	0.0	0.0	0.00	1.00	49.0		
8	Т	507	0.0	0.291	0.0	LOS A	0.0	0.0	0.00	0.00	60.0		
Approacl	h	592	0.0	0.291	1.2	LOS A	0.0	0.0	0.00	0.14	58.1		
All Vehic	les	880	0.0	0.291	3.1	NA	1.7	11.7	0.23	0.14	53.8		

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:30:22 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 50.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\03 Akker_Chamfuti N\BG\Existing\Akker_Chamfuti N_REV1(C).sip

Akker Avenue / Chamfuti Crescent North Junction 2022 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Average Level of 05% Back of Queue Prop Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	enue (S)												
2	Т	746	0.0	0.366	3.1	LOS A	5.5	38.2	0.69	0.00	48.8			
3	R	2	0.0	0.351	11.5	LOS B	5.5	38.2	0.69	1.00	48.9			
Approacl	h	748	0.0	0.366	3.1	LOS B	5.5	38.2	0.69	0.00	48.8			
East: Ch	amfuti	Crescent Nort	h (E)											
4	L	8	0.0	1.053	322.8	LOS F	23.9	167.2	1.00	3.37	6.1			
6	R	112	0.0	1.105	322.6	LOS F	23.9	167.2	1.00	2.55	6.1			
Approacl	h	120	0.0	1.104	322.6	LOS F	23.9	167.2	1.00	2.61	6.1			
North: A	kker Av	/enue (N)												
7	L	46	0.0	0.192	8.2	LOS A	0.0	0.0	0.00	1.01	49.0			
8	Т	345	0.0	0.192	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approacl	h	392	0.0	0.192	1.0	LOS A	0.0	0.0	0.00	0.12	58.4			
All Vehic	les	1260	0.0	1.105	32.9	NA	23.9	167.2	0.51	0.29	30.2			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 21 November 2016 07:33:59 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\03 Akker_Chamfuti N\BG\Existing\Akker_Chamfuti N_REV1(C).sip

Akker Avenue / Chamfuti Crescent North Junction 222 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Novement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	enue (S)												
2	Т	269	0.0	0.133	4.4	LOS A	2.0	13.8	0.70	0.00	48.6			
3	R	1	0.0	0.132	12.9	LOS B	2.0	13.8	0.70	1.05	47.5			
Approacl	h	271	0.0	0.133	4.5	LOS B	2.0	13.8	0.70	0.00	48.6			
East: Ch	amfuti	Crescent North	h (E)											
4	L	1	0.0	0.211	30.3	LOS D	1.0	7.1	0.83	1.02	33.4			
6	R	43	0.0	0.230	30.2	LOS D	1.0	7.1	0.83	1.02	33.5			
Approacl	h	44	0.0	0.230	30.2	LOS D	1.0	7.1	0.83	1.02	33.5			
North: A	kker A	/enue (N)												
7	L	88	0.0	0.314	8.2	LOS A	0.0	0.0	0.00	1.00	49.0			
8	Т	551	0.0	0.314	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approacl	h	639	0.0	0.314	1.1	LOS A	0.0	0.0	0.00	0.14	58.2			
All Vehic	les	954	0.0	0.314	3.4	NA	2.0	13.8	0.24	0.14	53.4			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:30:02 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 50.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\03 Akker_Chamfuti N\BG\Existing\Akker_Chamfuti N_REV1(C).sip

Akker Avenue / Chamfuti Crescent North Junction 2017 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	Iovement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	venue (S)												
2	Т	800	0.0	0.643	8.9	LOS A	8.7	60.7	0.57	0.59	47.0			
3	R	2	0.0	0.702	11.9	LOS B	8.7	60.7	0.57	0.69	45.6			
Approac	h	802	0.0	0.643	8.9	LOS B	8.7	60.7	0.57	0.59	47.0			
East: Ch	East: Chamfuti Crescent		n (E)											
4	L	7	0.0	0.127	11.5	LOS B	0.9	6.0	0.53	0.73	45.5			
6	R	104	0.0	0.127	13.1	LOS B	0.9	6.0	0.53	0.75	44.2			
Approac	h	112	0.0	0.127	13.0	LOS B	0.9	6.0	0.53	0.74	44.3			
North: A	kker A	/enue (N)												
7	L	43	0.0	0.240	8.9	LOS A	2.1	15.0	0.03	0.77	48.0			
8	Т	349	0.0	0.239	7.6	LOS A	2.1	15.0	0.03	0.62	49.4			
Approac	h	393	0.0	0.239	7.8	LOS A	2.1	15.0	0.03	0.64	49.2			
All Vehic	les	1306	0.0	0.702	8.9	LOS A	8.7	60.7	0.40	0.62	47.4			

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: 18 November 2016 03:43:07 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Chamfuti Crescent North Junction 2017 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	/enue (S)												
2	Т	296	0.0	0.222	7.9	LOS A	1.9	13.4	0.21	0.58	48.6			
3	R	1	0.0	0.211	10.9	LOS B	1.9	13.4	0.21	0.76	46.2			
Approac	h	297	0.0	0.222	7.9	LOS B	1.9	13.4	0.21	0.58	48.6			
East: Chamfuti Cresce		Crescent North	n (E)											
4	L	1	0.0	0.058	13.5	LOS B	0.4	2.7	0.65	0.76	43.6			
6	R	40	0.0	0.059	15.2	LOS B	0.4	2.7	0.65	0.77	42.4			
Approac	h	41	0.0	0.059	15.1	LOS B	0.4	2.7	0.65	0.77	42.5			
North: A	kker Av	venue (N)												
7	L	84	0.0	0.425	8.9	LOS A	4.3	30.2	0.03	0.77	48.0			
8	Т	621	0.0	0.425	7.6	LOS A	4.3	30.2	0.03	0.62	49.4			
Approac	h	705	0.0	0.425	7.8	LOS A	4.3	30.2	0.03	0.64	49.2			
All Vehic	les	1043	0.0	0.425	8.1	LOS A	4.3	30.2	0.10	0.63	48.7			

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: 18 November 2016 03:53:04 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Chamfuti Crescent North Junction 2022 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	lovement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	/enue (S)												
2	Т	869	0.0	0.703	9.2	LOS A	10.4	72.8	0.65	0.60	46.6			
3	R	2	0.0	0.702	12.1	LOS B	10.4	72.8	0.65	0.68	45.5			
Approac	h	872	0.0	0.704	9.2	LOS B	10.4	72.8	0.65	0.60	46.6			
East: Ch	amfuti	Crescent North	h (E)											
4	L	8	0.0	0.138	11.5	LOS B	0.9	6.5	0.53	0.73	45.5			
6	R	112	0.0	0.137	13.1	LOS B	0.9	6.5	0.53	0.75	44.2			
Approac	h	120	0.0	0.137	13.0	LOS B	0.9	6.5	0.53	0.75	44.3			
North: A	kker A	venue (N)												
7	L	46	0.0	0.241	8.9	LOS A	2.2	15.5	0.04	0.76	48.0			
8	Т	349	0.0	0.241	7.6	LOS A	2.2	15.5	0.04	0.62	49.4			
Approac	h	396	0.0	0.241	7.8	LOS A	2.2	15.5	0.04	0.64	49.2			
All Vehic	les	1387	0.0	0.703	9.1	LOS A	10.4	72.8	0.46	0.62	47.1			

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: 18 November 2016 03:52:09 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Chamfuti Crescent North Junction 2022 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	kker Av	/enue (S)											
2	Т	319	0.0	0.240	7.9	LOS A	2.1	14.9	0.22	0.58	48.5		
3	R	1	0.0	0.263	10.9	LOS B	2.1	14.9	0.22	0.75	46.2		
Approac	h	320	0.0	0.240	7.9	LOS B	2.1	14.9	0.22	0.58	48.5		
East: Chamfuti C		Crescent North	ו (E)										
4	L	1	0.0	0.066	14.0	LOS B	0.4	3.1	0.67	0.78	43.2		
6	R	43	0.0	0.066	15.7	LOS B	0.4	3.1	0.67	0.79	42.0		
Approac	h	44	0.0	0.066	15.6	LOS B	0.4	3.1	0.67	0.79	42.1		
North: A	kker Av	venue (N)											
7	L	88	0.0	0.453	8.9	LOS A	4.8	33.7	0.03	0.77	48.0		
8	Т	665	0.0	0.454	7.6	LOS A	4.8	33.7	0.03	0.62	49.4		
Approac	h	754	0.0	0.454	7.8	LOS A	4.8	33.7	0.03	0.64	49.2		
All Vehic	les	1118	0.0	0.454	8.1	LOS A	4.8	33.7	0.11	0.63	48.7		

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: 18 November 2016 03:52:45 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Chamfuti Crescent South Junction 2017 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Movement Performance - Vehicles Demand Deman													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	enue (S)												
2	Т	586	0.0	0.287	1.7	LOS A	3.3	22.9	0.53	0.00	51.0			
3	R	1	0.0	0.263	10.1	LOS B	3.3	22.9	0.53	0.96	49.4			
Approac	h	587	0.0	0.287	1.7	LOS B	3.3	22.9	0.53	0.00	51.0			
East: Chamfuti Crescent South (E)														
4	L	2	0.0	0.162	27.8	LOS D	0.7	4.7	0.79	0.80	34.7			
6	R	31	0.0	0.161	27.6	LOS D	0.7	4.7	0.79	1.00	34.8			
Approac	h	33	0.0	0.161	27.6	LOS D	0.7	4.7	0.79	0.99	34.8			
North: A	kker Av	/enue (N)												
7	L	16	0.0	0.136	8.2	LOS A	0.0	0.0	0.00	1.05	49.0			
8	Т	263	0.0	0.136	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	279	0.0	0.136	0.5	LOS A	0.0	0.0	0.00	0.06	59.2			
All Vehic	les	899	0.0	0.287	2.3	NA	3.3	22.9	0.37	0.06	52.4			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:46:15 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 50.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2017 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Novement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	kker Av	enue (S)												
2	Т	205	0.0	0.101	2.5	LOS A	1.2	8.2	0.58	0.00	50.3			
3	R	1	0.0	0.105	10.9	LOS B	1.2	8.2	0.58	0.99	49.0			
Approac	h	206	0.0	0.101	2.5	LOS B	1.2	8.2	0.58	0.01	50.3			
East: Ch	amfuti	Crescent Sout	h (E)											
4	L	1	0.0	0.050	20.1	LOS C	0.2	1.5	0.66	0.87	39.4			
6	R	15	0.0	0.050	19.9	LOS C	0.2	1.5	0.66	0.99	39.6			
Approac	h	16	0.0	0.050	19.9	LOS C	0.2	1.5	0.66	0.98	39.6			
North: A	kker Av	enue (N)												
7	L	31	0.0	0.223	8.2	LOS A	0.0	0.0	0.00	1.04	49.0			
8	Т	426	0.0	0.224	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	457	0.0	0.224	0.5	LOS A	0.0	0.0	0.00	0.07	59.1			
All Vehic	les	679	0.0	0.224	1.6	NA	1.2	8.2	0.19	0.07	55.5			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:46:24 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 50.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2022 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Novement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	[:] Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: A	kker Av	enue (S)											
2	Т	641	0.0	0.314	2.0	LOS A	3.8	26.4	0.57	0.00	50.4		
3	R	1	0.0	0.351	10.4	LOS B	3.8	26.4	0.57	0.97	49.5		
Approacl	h	642	0.0	0.314	2.0	LOS B	3.8	26.4	0.57	0.00	50.4		
East: Ch	amfuti	Crescent Sout	h (E)										
4	L	2	0.0	0.211	33.5	LOS D	0.9	6.6	0.84	0.86	31.8		
6	R	35	0.0	0.221	33.3	LOS D	0.9	6.6	0.84	1.02	31.9		
Approacl	h	37	0.0	0.222	33.3	LOS D	0.9	6.6	0.84	1.01	31.9		
North: A	kker Av	venue (N)											
7	L	16	0.0	0.150	8.2	LOS A	0.0	0.0	0.00	1.05	49.0		
8	Т	292	0.0	0.150	0.0	LOS A	0.0	0.0	0.00	0.00	60.0		
Approacl	h	307	0.0	0.150	0.4	LOS A	0.0	0.0	0.00	0.05	59.3		
All Vehic	les	986	0.0	0.351	2.7	NA	3.8	26.4	0.40	0.06	51.7		

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:47:08 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2022 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	ent Pe	rformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	kker Av	enue (S)									
2	Т	222	0.0	0.110	2.8	LOS A	1.3	9.3	0.61	0.00	49.9
3	R	1	0.0	0.105	11.2	LOS B	1.3	9.3	0.61	1.00	48.7
Approacl	h	223	0.0	0.110	2.9	LOS B	1.3	9.3	0.61	0.00	49.9
East: Ch	amfuti	Crescent Sout	h (E)								
4	L	1	0.0	0.066	21.7	LOS C	0.3	2.0	0.70	0.89	38.4
6	R	18	0.0	0.067	21.5	LOS C	0.3	2.0	0.70	1.00	38.5
Approacl	h	19	0.0	0.067	21.5	LOS C	0.3	2.0	0.70	0.99	38.5
North: A	kker Av	/enue (N)									
7	L	35	0.0	0.241	8.2	LOS A	0.0	0.0	0.00	1.04	49.0
8	Т	458	0.0	0.241	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approacl	h	493	0.0	0.241	0.6	LOS A	0.0	0.0	0.00	0.07	59.1
All Vehic	les	735	0.0	0.241	1.8	NA	1.3	9.3	0.20	0.08	55.2

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:47:50 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2017 AM Peak Hour Background and Development Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	ent Pe	rformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	kker Av	venue (S)									
2	Т	709	0.0	0.347	2.2	LOS A	4.4	30.6	0.61	0.00	49.9
3	R	1	0.0	0.351	10.6	LOS B	4.4	30.6	0.61	0.97	49.4
Approac	h	711	0.0	0.347	2.2	LOS B	4.4	30.6	0.61	0.00	49.9
East: Ch	amfuti	Crescent South	ו (E)								
4	L	2	0.0	0.234	39.1	LOS E	1.0	6.9	0.87	0.88	29.5
6	R	31	0.0	0.237	38.9	LOS E	1.0	6.9	0.87	1.02	29.5
Approac	h	33	0.0	0.237	38.9	LOS E	1.0	6.9	0.87	1.01	29.5
North: A	kker A	/enue (N)									
7	L	16	0.0	0.156	8.2	LOS A	0.0	0.0	0.00	1.06	49.0
8	Т	304	0.0	0.156	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	320	0.0	0.156	0.4	LOS A	0.0	0.0	0.00	0.05	59.3
All Vehic	les	1063	0.0	0.351	2.8	NA	4.4	30.6	0.43	0.05	51.3

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:49:19 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG+D\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2017 PM Peak Hour Background and Development Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	ent Pe	rformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	kker Av	venue (S)									
2	Т	296	0.0	0.146	3.7	LOS A	2.0	14.0	0.68	0.00	49.0
3	R	1	0.0	0.150	12.2	LOS B	2.0	14.0	0.68	1.03	48.1
Approac	h	297	0.0	0.146	3.8	LOS B	2.0	14.0	0.68	0.00	49.0
East: Ch	amfuti	Crescent South	ו (E)								
4	L	1	0.0	0.075	27.0	LOS D	0.3	2.2	0.79	0.94	35.1
6	R	15	0.0	0.078	26.8	LOS D	0.3	2.2	0.79	1.00	35.2
Approac	h	16	0.0	0.077	26.9	LOS D	0.3	2.2	0.79	1.00	35.2
North: A	kker A	/enue (N)									
7	L	31	0.0	0.280	8.2	LOS A	0.0	0.0	0.00	1.05	49.0
8	Т	541	0.0	0.280	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	572	0.0	0.280	0.4	LOS A	0.0	0.0	0.00	0.06	59.3
All Vehic	les	884	0.0	0.280	2.0	NA	2.0	14.0	0.24	0.06	54.8

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 03:49:37 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 50.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG+D\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2022 AM Peak Hour Background and Development Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	ent Pe	rformance - '	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	kker Av	venue (S)									
2	Т	641	0.0	0.314	2.0	LOS A	3.8	26.5	0.58	0.00	50.3
3	R	1	0.0	0.351	10.4	LOS B	3.8	26.5	0.58	0.97	49.5
Approac	h	642	0.0	0.314	2.0	LOS B	3.8	26.5	0.58	0.00	50.3
East: Ch	amfuti	Crescent South	ו (E)								
4	L	2	0.0	0.234	33.6	LOS D	0.9	6.6	0.84	0.86	31.8
6	R	35	0.0	0.223	33.4	LOS D	0.9	6.6	0.84	1.02	31.9
Approac	h	37	0.0	0.222	33.4	LOS D	0.9	6.6	0.84	1.01	31.9
North: A	kker A	/enue (N)									
7	L	19	0.0	0.152	8.2	LOS A	0.0	0.0	0.00	1.05	49.0
8	Т	292	0.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	311	0.0	0.152	0.5	LOS A	0.0	0.0	0.00	0.06	59.2
All Vehic	les	989	0.0	0.351	2.7	NA	3.8	26.5	0.40	0.06	51.7

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 02:14:15 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\02 SITE C\02 Sidras\04 Akker_Chamfuti S\BG+D\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Chamfuti Crescent South Junction 2022 PM Peak Hour Background and Development Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	ent Pe	erformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	kker Av	venue (S)									
2	Т	272	0.0	0.134	4.1	LOS A	1.9	13.3	0.69	0.00	48.8
3	R	1	0.0	0.132	12.5	LOS B	1.9	13.3	0.69	1.04	47.8
Approac	h	273	0.0	0.134	4.1	LOS B	1.9	13.3	0.69	0.00	48.8
East: Ch	namfuti	Crescent Sout	h (E)								
4	L	1	0.0	0.096	27.8	LOS D	0.4	2.8	0.80	0.97	34.7
6	R	18	0.0	0.096	27.6	LOS D	0.4	2.8	0.80	1.00	34.8
Approac	h	19	0.0	0.096	27.6	LOS D	0.4	2.8	0.80	1.00	34.8
North: A	kker Av	venue (N)									
7	L	35	0.0	0.297	8.2	LOS A	0.0	0.0	0.00	1.05	49.0
8	Т	573	0.0	0.297	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	607	0.0	0.297	0.5	LOS A	0.0	0.0	0.00	0.06	59.2
All Vehic	les	899	0.0	0.297	2.1	NA	1.9	13.3	0.23	0.06	54.9

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 21 November 2016 07:52:21 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 50.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\04 Akker_Chamfuti S\BG+D\Existing\Akker_Chamfuti S_REV1(C).sip

Akker Avenue / Msasa Crescent Junction 2017 AM Peak Hour Background Traffic Volumes Existing Configuration Stop (Two-Way)

Movem	ent Pe	rformance - '	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	lsasa C	Crescent (S)									
1	L	5	0.0	0.658	27.2	LOS D	6.3	44.4	0.80	1.13	35.0
3	R	256	0.0	0.677	27.1	LOS D	6.3	44.4	0.80	1.25	35.1
Approac	h	261	0.0	0.676	27.1	LOS D	6.3	44.4	0.80	1.25	35.1
East: Ak	ker Ave	nue (E)									
4	L	89	0.0	0.128	8.2	LOS A	0.0	0.0	0.00	0.89	49.0
5	Т	168	0.0	0.128	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	258	0.0	0.128	2.8	LOS A	0.0	0.0	0.00	0.31	55.7
West: Ak	ker Ave	enue (W)									
11	Т	309	0.0	0.163	1.3	LOS A	1.5	10.7	0.44	0.00	52.3
12	R	5	0.0	0.164	9.7	LOS A	1.5	10.7	0.44	0.97	49.3
Approac	h	315	0.0	0.163	1.4	LOS A	1.5	10.7	0.44	0.02	52.3
All Vehic	les	834	0.0	0.677	9.9	NA	6.3	44.4	0.41	0.49	46.1

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 14 November 2016 10:44:37 AM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa_BG\Existing\Akker_Msasa_REV1(C).sip

Akker Avenue / Msasa Crescent Junction 2017 PM Peak Hour Background Traffic Volumes Existing Configuration Stop (Two-Way)

Movem	ent Pe	rformance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	^r Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	lsasa C	Crescent (S)									
1	L	3	0.0	0.211	15.8	LOS C	1.1	7.5	0.56	0.87	42.5
3	R	102	0.0	0.215	15.7	LOS C	1.1	7.5	0.56	0.98	42.7
Approac	h	105	0.0	0.214	15.7	LOS C	1.1	7.5	0.56	0.98	42.7
East: Ak	ker Ave	nue (E)									
4	L	241	0.0	0.210	8.2	LOS A	0.0	0.0	0.00	0.79	49.0
5	Т	177	0.0	0.210	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	418	0.0	0.210	4.7	LOS A	0.0	0.0	0.00	0.46	53.1
West: Ak	ker Ave	enue (W)									
11	Т	93	0.0	0.054	2.0	LOS A	0.5	3.6	0.50	0.00	51.1
12	R	6	0.0	0.054	10.5	LOS B	0.5	3.6	0.50	0.95	48.9
Approac	h	99	0.0	0.054	2.6	LOS B	0.5	3.6	0.50	0.06	51.0
All Vehic	les	622	0.0	0.215	6.2	NA	1.1	7.5	0.18	0.48	50.7

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 14 November 2016 10:44:57 AM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa_BG\Existing\Akker_Msasa_REV1(C).sip

Akker Avenue / Msasa Crescent Junction 2022 AM Peak Hour Background Traffic Volumes Existing Configuration Stop (Two-Way)

Movem	ent Pe	rformance - '	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	lsasa C	rescent (S)									
1	L	6	0.0	0.789	36.2	LOS E	8.5	59.3	0.88	1.37	30.7
3	R	257	0.0	0.785	36.0	LOS E	8.5	59.3	0.88	1.41	30.7
Approac	h	263	0.0	0.786	36.0	LOS E	8.5	59.3	0.88	1.41	30.7
East: Ak	ker Ave	nue (E)									
4	L	91	0.0	0.141	8.2	LOS A	0.0	0.0	0.00	0.90	49.0
5	Т	195	0.0	0.141	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	285	0.0	0.141	2.6	LOS A	0.0	0.0	0.00	0.29	56.0
West: Ak	ker Ave	enue (W)									
11	Т	358	0.0	0.189	1.5	LOS A	1.9	13.1	0.47	0.00	51.8
12	R	6	0.0	0.191	9.9	LOS A	1.9	13.1	0.47	0.97	49.3
Approac	h	364	0.0	0.189	1.6	LOS A	1.9	13.1	0.47	0.02	51.7
All Vehic	les	913	0.0	0.789	11.8	NA	8.5	59.3	0.44	0.50	44.1

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 14 November 2016 10:45:18 AM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa_BG\Existing\Akker_Msasa_REV1(C).sip

Akker Avenue / Msasa Crescent Junction 2022 PM Peak Hour Background Traffic Volumes Existing Configuration Stop (Two-Way)

Movem	ent Pe	rformance - N	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	^r Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	Isasa C	Crescent (S)									
1	L	4	0.0	0.234	16.7	LOS C	1.2	8.3	0.59	0.90	41.8
3	R	103	0.0	0.235	16.6	LOS C	1.2	8.3	0.59	1.00	42.0
Approac	h	107	0.0	0.235	16.6	LOS C	1.2	8.3	0.59	1.00	42.0
East: Ak	ker Ave	nue (E)									
4	L	242	0.0	0.224	8.2	LOS A	0.0	0.0	0.00	0.81	49.0
5	Т	205	0.0	0.224	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	447	0.0	0.224	4.4	LOS A	0.0	0.0	0.00	0.44	53.5
West: Ak	ker Ave	enue (W)									
11	Т	106	0.0	0.063	2.3	LOS A	0.6	4.3	0.53	0.00	50.8
12	R	7	0.0	0.063	10.7	LOS B	0.6	4.3	0.53	0.96	48.7
Approac	h	114	0.0	0.063	2.8	LOS B	0.6	4.3	0.53	0.06	50.7
All Vehic	les	668	0.0	0.235	6.1	NA	1.2	8.3	0.18	0.46	50.8

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 14 November 2016 10:45:43 AM SIDRA INTERSECTION 5.0.0.1354 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa_BG\Existing\Akker_Msasa_REV1(C).sip

Akker Avenue / Msasa Crescent Junction 2017 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	ent Pe	rformance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: M	Asasa C	Crescent (S)									
1	L	5	0.0	0.263	10.6	LOS B	1.9	13.6	0.47	0.70	46.3
3	R	255	0.0	0.260	12.3	LOS B	1.9	13.6	0.47	0.72	44.9
Approac	h	260	0.0	0.260	12.3	LOS B	1.9	13.6	0.47	0.72	44.9
East: Ak	ker Ave	nue (E)									
4	L	89	0.0	0.188	9.0	LOS A	1.6	11.5	0.06	0.74	47.9
5	Т	208	0.0	0.189	7.6	LOS A	1.6	11.5	0.06	0.60	49.2
Approac	h	298	0.0	0.189	8.0	LOS A	1.6	11.5	0.06	0.64	48.8
West: Ak	ker Ave	enue (W)									
11	Т	432	0.0	0.463	10.2	LOS B	4.4	31.0	0.66	0.71	46.6
12	R	5	0.0	0.478	13.2	LOS B	4.4	31.0	0.66	0.79	44.6
Approac	h	437	0.0	0.462	10.3	LOS B	4.4	31.0	0.66	0.72	46.6
All Vehic	les	995	0.0	0.478	10.1	LOS B	4.4	31.0	0.43	0.70	46.8

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: 18 November 2016 03:54:55 PM SIDRA INTERSECTION 5.0.0.1354 Project: W\Traffic\PRQJECTS\C PRQJECTS\C2284 - Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com monde TIS\05 Calculations\04 SITE A\02 Sidras\05 SIDRA

SIDRA INTERSECTION 5.0.0.1354 <u>www.sidrasolutions.com</u> Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa\BG+D\Proposed\Akker_Msasa_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Msasa Crescent Junction 2017 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	ent Pe	erformance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: M	Isasa (Crescent (S)									
1	L	3	0.0	0.113	11.0	LOS B	0.8	5.4	0.49	0.71	46.0
3	R	102	0.0	0.114	12.6	LOS B	0.8	5.4	0.49	0.73	44.6
Approac	h	105	0.0	0.114	12.6	LOS B	0.8	5.4	0.49	0.72	44.6
East: Ak	ker Ave	enue (E)									
4	L	240	0.0	0.331	9.0	LOS A	3.1	21.5	0.07	0.72	47.9
5	Т	291	0.0	0.331	7.7	LOS A	3.1	21.5	0.07	0.59	49.2
Approac	h	531	0.0	0.331	8.3	LOS A	3.1	21.5	0.07	0.65	48.6
West: Ak	ker Av	enue (W)									
11	Т	141	0.0	0.133	8.4	LOS A	1.0	7.2	0.33	0.59	48.0
12	R	6	0.0	0.134	11.4	LOS B	1.0	7.2	0.33	0.74	46.0
Approac	h	147	0.0	0.133	8.5	LOS B	1.0	7.2	0.33	0.60	47.9
All Vehic	les	783	0.0	0.331	8.9	LOS A	3.1	21.5	0.17	0.65	47.9

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Akker_Msasa\BG+D\Proposed\Akker_Msasa_REV1(C).sip

Processed: 18 November 2016 03:55:11 PM SIDRA INTERSECTION 5.0.0.1354

Unlicensed Trial Version

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05

SID	RA	100
INT	ERSECTI	ON

Akker Avenue / Msasa Crescent Junction 2022 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lsasa C	Crescent (S)												
1	L	6	0.0	0.275	10.9	LOS B	2.0	14.3	0.50	0.72	46.1			
3	R	257	0.0	0.272	12.6	LOS B	2.0	14.3	0.50	0.73	44.7			
Approac	h	263	0.0	0.271	12.5	LOS B	2.0	14.3	0.50	0.73	44.7			
East: Ak	ker Ave	nue (E)												
4	L	91	0.0	0.208	9.0	LOS A	1.9	13.0	0.07	0.74	47.9			
5	Т	236	0.0	0.208	7.6	LOS A	1.9	13.0	0.07	0.60	49.2			
Approac	h	326	0.0	0.208	8.0	LOS A	1.9	13.0	0.07	0.64	48.8			
West: Ak	ker Ave	enue (W)												
11	Т	481	0.0	0.514	10.4	LOS B	5.2	36.2	0.69	0.72	46.4			
12	R	6	0.0	0.526	13.4	LOS B	5.2	36.2	0.69	0.79	44.5			
Approac	h	487	0.0	0.514	10.4	LOS B	5.2	36.2	0.69	0.73	46.4			
All Vehic	les	1077	0.0	0.526	10.2	LOS B	5.2	36.2	0.46	0.70	46.7			

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Unlicensed Trial Version

Processed: 18 November 2016 03:55:43 PM SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa\BG+D\Proposed\Akker_Msasa_REV1(C).sip

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

172 SIDRA INTERSECTION

Akker Avenue / Msasa Crescent Junction 2022 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Roundabout

Movem	ovement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: M	Asasa C	Crescent (S)												
1	L	4	0.0	0.120	11.2	LOS B	0.8	5.7	0.51	0.72	45.8			
3	R	103	0.0	0.120	12.9	LOS B	0.8	5.7	0.51	0.73	44.4			
Approac	h	107	0.0	0.120	12.8	LOS B	0.8	5.7	0.51	0.73	44.5			
East: Ak	ker Ave	nue (E)												
4	L	242	0.0	0.351	9.0	LOS A	3.4	23.5	0.08	0.72	47.9			
5	Т	319	0.0	0.352	7.7	LOS A	3.4	23.5	0.08	0.59	49.1			
Approac	h	561	0.0	0.352	8.2	LOS A	3.4	23.5	0.08	0.65	48.6			
West: Ak	ker Ave	enue (W)												
11	Т	156	0.0	0.147	8.4	LOS A	1.1	8.0	0.34	0.59	48.0			
12	R	7	0.0	0.147	11.4	LOS B	1.1	8.0	0.34	0.74	46.0			
Approac	h	163	0.0	0.147	8.5	LOS B	1.1	8.0	0.34	0.60	47.9			
All Vehic	les	832	0.0	0.352	8.9	LOS A	3.4	23.5	0.18	0.65	47.9			

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: 18 November 2016 03:55:58 PM SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msasa\BG+D\Proposed\Akker_Msasa_REV1(C).sip Unlicensed Trial Version

Akker Avenue / Milkwood Road Junction 2017 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Novement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	d Road (S)												
1	L	12	0.0	0.252	15.1	LOS C	1.3	9.1	0.53	0.80	43.1			
3	R	124	0.0	0.250	14.9	LOS B	1.3	9.1	0.53	0.97	43.3			
Approac	h	136	0.0	0.250	14.9	LOS C	1.3	9.1	0.53	0.96	43.3			
East: Ak	ker Ave	nue (E)												
4	L	56	0.0	0.097	8.2	LOS A	0.0	0.0	0.00	0.92	49.0			
5	Т	140	0.0	0.097	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	196	0.0	0.097	2.3	LOS A	0.0	0.0	0.00	0.26	56.4			
West: Ak	ker Ave	enue (W)												
11	Т	184	0.0	0.097	0.8	LOS A	0.8	5.7	0.35	0.00	53.7			
12	R	3	0.0	0.096	9.3	LOS A	0.8	5.7	0.35	0.98	49.1			
Approac	h	187	0.0	0.097	1.0	LOS A	0.8	5.7	0.35	0.02	53.6			
All Vehic	les	519	0.0	0.252	5.1	NA	1.3	9.1	0.27	0.35	51.4			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:16:17 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2017 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Movement Performance - Vehicles Demand Deg Average Level of 95% Back of Queue Prop Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	d Road (S)												
1	L	8	0.0	0.073	12.2	LOS B	0.4	2.5	0.33	0.82	45.5			
3	R	45	0.0	0.073	12.0	LOS B	0.4	2.5	0.33	0.89	45.6			
Approac	h	54	0.0	0.073	12.0	LOS B	0.4	2.5	0.33	0.87	45.6			
East: Ak	ker Ave	nue (E)												
4	L	73	0.0	0.082	8.2	LOS A	0.0	0.0	0.00	0.85	49.0			
5	Т	93	0.0	0.082	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	165	0.0	0.082	3.6	LOS A	0.0	0.0	0.00	0.37	54.6			
West: Ak	ker Ave	enue (W)												
11	Т	37	0.0	0.024	0.6	LOS A	0.2	1.2	0.29	0.00	54.4			
12	R	6	0.0	0.024	9.0	LOS A	0.2	1.2	0.29	0.90	48.8			
Approac	h	43	0.0	0.024	1.8	LOS A	0.2	1.2	0.29	0.13	53.5			
All Vehic	les	262	0.0	0.082	5.0	NA	0.4	2.5	0.12	0.44	52.3			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:17:07 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2022 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Aovement Performance - Vehicles Demand Deg Average Level of 95% Back of Queue <u>Prop Effective Average</u>													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwoo	d Road (S)												
1	L	14	0.0	0.318	16.9	LOS C	1.9	13.3	0.59	0.85	41.7			
3	R	144	0.0	0.320	16.7	LOS C	1.9	13.3	0.59	1.03	41.9			
Approac	h	158	0.0	0.320	16.7	LOS C	1.9	13.3	0.59	1.02	41.9			
East: Ak	ker Ave	nue (E)												
4	L	64	0.0	0.112	8.2	LOS A	0.0	0.0	0.00	0.92	49.0			
5	Т	162	0.0	0.112	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	226	0.0	0.112	2.3	LOS A	0.0	0.0	0.00	0.26	56.4			
West: Ak	ker Ave	enue (W)												
11	Т	214	0.0	0.113	1.0	LOS A	1.0	6.9	0.39	0.00	53.1			
12	R	4	0.0	0.114	9.4	LOS A	1.0	6.9	0.39	0.97	49.2			
Approac	h	218	0.0	0.113	1.2	LOS A	1.0	6.9	0.39	0.02	53.0			
All Vehic	les	602	0.0	0.320	5.7	NA	1.9	13.3	0.29	0.37	50.6			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:17:50 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2022 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Movement Performance - Vehicles Demand Deman													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	l Road (S)												
1	L	11	0.0	0.088	12.5	LOS B	0.4	3.0	0.36	0.82	45.2			
3	R	53	0.0	0.089	12.3	LOS B	0.4	3.0	0.36	0.89	45.4			
Approac	h	63	0.0	0.089	12.3	LOS B	0.4	3.0	0.36	0.88	45.4			
East: Ak	ker Ave	nue (E)												
4	L	84	0.0	0.095	8.2	LOS A	0.0	0.0	0.00	0.85	49.0			
5	Т	106	0.0	0.095	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	191	0.0	0.095	3.6	LOS A	0.0	0.0	0.00	0.37	54.6			
West: Ak	ker Ave	enue (W)												
11	Т	43	0.0	0.028	0.7	LOS A	0.2	1.4	0.31	0.00	54.0			
12	R	7	0.0	0.028	9.2	LOS A	0.2	1.4	0.31	0.90	48.8			
Approac	h	51	0.0	0.028	2.0	LOS A	0.2	1.4	0.31	0.13	53.2			
All Vehic	les	304	0.0	0.095	5.1	NA	0.4	3.0	0.13	0.44	52.2			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:18:25 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2017 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Aovement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	d Road (S)												
1	L	18	0.0	0.511	18.8	LOS C	4.3	30.4	0.65	0.93	40.3			
3	R	247	0.0	0.512	18.6	LOS C	4.3	30.4	0.65	1.12	40.5			
Approac	h	265	0.0	0.512	18.7	LOS C	4.3	30.4	0.65	1.10	40.5			
East: Ak	ker Ave	nue (E)												
4	L	96	0.0	0.117	8.2	LOS A	0.0	0.0	0.00	0.86	49.0			
5	Т	140	0.0	0.117	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	236	0.0	0.117	3.3	LOS A	0.0	0.0	0.00	0.35	55.0			
West: Ak	ker Ave	enue (W)												
11	Т	184	0.0	0.099	1.0	LOS A	0.9	6.0	0.39	0.00	53.0			
12	R	5	0.0	0.099	9.5	LOS A	0.9	6.0	0.39	0.97	49.2			
Approac	h	189	0.0	0.099	1.3	LOS A	0.9	6.0	0.39	0.03	52.9			
All Vehic	les	691	0.0	0.512	8.7	NA	4.3	30.4	0.36	0.55	47.9			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:22:36 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG+D\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2017 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Movement Performance - Vehicles Demand Deg Average Level of 95% Back of Queue Prop Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	d Road (S)												
1	L	12	0.0	0.161	13.1	LOS B	0.8	5.8	0.43	0.83	44.7			
3	R	95	0.0	0.161	13.0	LOS B	0.8	5.8	0.43	0.91	44.9			
Approac	h	106	0.0	0.161	13.0	LOS B	0.8	5.8	0.43	0.90	44.9			
East: Ak	ker Ave	nue (E)												
4	L	187	0.0	0.141	8.2	LOS A	0.0	0.0	0.00	0.76	49.0			
5	Т	93	0.0	0.141	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	280	0.0	0.141	5.5	LOS A	0.0	0.0	0.00	0.51	52.1			
West: Ak	ker Ave	enue (W)												
11	Т	37	0.0	0.031	1.2	LOS A	0.2	1.5	0.38	0.00	52.6			
12	R	13	0.0	0.031	9.6	LOS A	0.2	1.5	0.38	0.85	48.6			
Approac	h	49	0.0	0.031	3.3	LOS A	0.2	1.5	0.38	0.22	51.6			
All Vehic	les	436	0.0	0.161	7.1	NA	0.8	5.8	0.15	0.57	50.1			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:23:10 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG+D\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2022 AM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Iovement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	d Road (S)												
1	L	20	0.0	0.606	22.1	LOS C	5.8	40.6	0.72	1.04	38.1			
3	R	267	0.0	0.612	22.0	LOS C	5.8	40.6	0.72	1.19	38.2			
Approac	h	287	0.0	0.612	22.0	LOS C	5.8	40.6	0.72	1.18	38.2			
East: Ak	ker Ave	nue (E)												
4	L	105	0.0	0.133	8.2	LOS A	0.0	0.0	0.00	0.87	49.0			
5	Т	162	0.0	0.133	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	267	0.0	0.133	3.2	LOS A	0.0	0.0	0.00	0.34	55.1			
West: Ak	ker Ave	enue (W)												
11	Т	214	0.0	0.115	1.2	LOS A	1.0	7.3	0.42	0.00	52.5			
12	R	6	0.0	0.115	9.7	LOS A	1.0	7.3	0.42	0.96	49.2			
Approac	h	220	0.0	0.115	1.5	LOS A	1.0	7.3	0.42	0.03	52.4			
All Vehic	les	775	0.0	0.612	9.7	NA	5.8	40.6	0.39	0.56	46.8			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:21:23 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG+D\Existing\Akker_Msilkwood_REV1(C).sip

Akker Avenue / Milkwood Road Junction 2022 PM Peak Hour Background Traffic Volumes **Existing Configuration** Stop (Two-Way)

Movem	Movement Performance - Vehicles Demand Demand Deg Average Level of 95% Back of Queue Prop Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwood	d Road (S)												
1	L	13	0.0	0.180	13.5	LOS B	0.9	6.5	0.45	0.84	44.4			
3	R	102	0.0	0.181	13.4	LOS B	0.9	6.5	0.45	0.92	44.6			
Approac	h	115	0.0	0.181	13.4	LOS B	0.9	6.5	0.45	0.91	44.5			
East: Ak	ker Ave	nue (E)												
4	L	199	0.0	0.154	8.2	LOS A	0.0	0.0	0.00	0.77	49.0			
5	Т	106	0.0	0.154	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	305	0.0	0.154	5.3	LOS A	0.0	0.0	0.00	0.50	52.3			
West: Ak	ker Ave	enue (W)												
11	Т	43	0.0	0.035	1.3	LOS A	0.3	1.8	0.40	0.00	52.3			
12	R	14	0.0	0.035	9.7	LOS A	0.3	1.8	0.40	0.86	48.7			
Approac	h	57	0.0	0.035	3.3	LOS A	0.3	1.8	0.40	0.21	51.4			
All Vehic	les	477	0.0	0.181	7.0	NA	0.9	6.5	0.16	0.56	50.1			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:22:01 AM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras\05 Akker_Msilkwood\BG+D\Existing\Akker_Msilkwood_REV1(C).sip

Milkwood Road / Proposed Access Junction 2017 AM Peak Hour Background and Development Traffic Volumes **Proposed Configuration** Stop (Two-Way)

Movem	lovement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwoo	d Road (S)												
2	Т	1	0.0	0.001	0.1	LOS A	0.0	0.1	0.12	0.00	57.2			
3	R	1	0.0	0.001	8.6	LOS A	0.0	0.1	0.12	0.79	48.5			
Approac	h	2	0.0	0.001	4.3	LOS A	0.0	0.1	0.12	0.39	52.5			
East: Pro	opose A	Access (E)												
4	L	1	0.0	0.150	10.9	LOS B	0.8	5.6	0.12	0.87	46.3			
6	R	128	0.0	0.149	10.7	LOS B	0.8	5.6	0.12	0.92	46.5			
Approac	h	129	0.0	0.149	10.7	LOS B	0.8	5.6	0.12	0.92	46.5			
North: M	lilkwood	l Road (N)												
7	L	43	0.0	0.024	8.2	LOS A	0.0	0.0	0.00	0.67	49.0			
8	Т	1	0.0	0.024	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	44	0.0	0.024	8.0	LOS A	0.0	0.0	0.00	0.66	49.2			
All Vehic	les	176	0.0	0.150	10.0	NA	0.8	5.6	0.09	0.84	47.2			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 17 November 2016 09:28:39 AM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.0.1354 Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras

\07Milkwood_Access\BG+D\Proposed\Milkwood_Access_REV1(C).sip

Milkwood Road / Proposed Access Junction 2017 PM Peak Hour Background and Development Traffic Volumes **Proposed Configuration** Stop (Two-Way)

Movem	Novement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: N	lilkwoo	d Road (S)												
2	Т	1	0.0	0.001	0.4	LOS A	0.0	0.1	0.22	0.00	55.1			
3	R	1	0.0	0.001	8.8	LOS A	0.0	0.1	0.22	0.75	48.3			
Approac	h	2	0.0	0.001	4.6	LOS A	0.0	0.1	0.22	0.37	51.5			
East: Propose A		Access (E)												
4	L	1	0.0	0.062	11.2	LOS B	0.3	2.2	0.20	0.84	46.2			
6	R	52	0.0	0.064	11.0	LOS B	0.3	2.2	0.20	0.89	46.3			
Approac	h	53	0.0	0.064	11.0	LOS B	0.3	2.2	0.20	0.89	46.3			
North: M	lilkwood	d Road (N)												
7	L	120	0.0	0.062	8.2	LOS A	0.0	0.0	0.00	0.67	49.0			
8	Т	1	0.0	0.062	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	h	121	0.0	0.062	8.1	LOS A	0.0	0.0	0.00	0.66	49.0			
All Vehic	les	176	0.0	0.064	8.9	NA	0.3	2.2	0.06	0.73	48.2			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 04:01:05 PM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 50.0.1354 www.sidrasolutions.com Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras

\07Milkwood_Access\BG+D\Proposed\Milkwood_Access_REV1(C).sip

Milkwood Road / Proposed Access Junction 2022 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Milkwood Road (S)											
2	Т	1	0.0	0.001	0.1	LOS A	0.0	0.1	0.12	0.00	57.2
3	R	1	0.0	0.001	8.6	LOS A	0.0	0.1	0.12	0.79	48.5
Approac	h	2	0.0	0.001	4.3	LOS A	0.0	0.1	0.12	0.39	52.5
East: Propose Access (E)											
4	L	1	0.0	0.150	10.9	LOS B	0.8	5.6	0.12	0.87	46.3
6	R	128	0.0	0.149	10.7	LOS B	0.8	5.6	0.12	0.92	46.5
Approach		129	0.0	0.149	10.7	LOS B	0.8	5.6	0.12	0.92	46.5
North: Milkwood Road (N)											
7	L	43	0.0	0.023	8.2	LOS A	0.0	0.0	0.00	0.67	49.0
8	Т	1	0.0	0.023	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	44	0.0	0.023	8.0	LOS A	0.0	0.0	0.00	0.66	49.2
All Vehicles		176	0.0	0.150	10.0	NA	0.8	5.6	0.09	0.84	47.2

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 04:01:23 PM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.0.1354 www.sidrasolutions.com

Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras \07Milkwood_Access\BG+D\Proposed\Milkwood_Access_REV1(C).sip
Unlicensed Trial Version MOVEMENT SUMMARY

Milkwood Road / Proposed Access Junction 2022 PM Peak Hour Background and Development Traffic Volumes **Proposed Configuration** Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	lilkwoo	d Road (S)									
2	Т	1	0.0	0.001	0.4	LOS A	0.0	0.1	0.22	0.00	55.1
3	R	1	0.0	0.001	8.8	LOS A	0.0	0.1	0.22	0.75	48.3
Approac	h	2	0.0	0.001	4.6	LOS A	0.0	0.1	0.22	0.37	51.5
East: Pro	opose A	Access (E)									
4	L	1	0.0	0.062	11.2	LOS B	0.3	2.2	0.20	0.84	46.2
6	R	52	0.0	0.064	11.0	LOS B	0.3	2.2	0.20	0.89	46.3
Approac	h	53	0.0	0.064	11.0	LOS B	0.3	2.2	0.20	0.89	46.3
North: M	lilkwood	d Road (N)									
7	L	120	0.0	0.062	8.2	LOS A	0.0	0.0	0.00	0.67	49.0
8	Т	1	0.0	0.062	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	121	0.0	0.062	8.1	LOS A	0.0	0.0	0.00	0.66	49.0
All Vehic	les	176	0.0	0.064	8.9	NA	0.3	2.2	0.06	0.73	48.2

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 18 November 2016 04:01:43 PM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 50.0.1354 www.sidrasolutions.com Project: W:\Traffic\PROJECTS\C PROJECTS\C2284 - Ormonde TIS\05 Calculations\04 SITE A\02 Sidras

- ----SIDRA INTERSECTION

\07Milkwood_Access\BG+D\Proposed\Milkwood_Access_REV1(C).sip

Unlicensed Trial Version

ANNEXURE D

PROPOSED TRAFFIC SIGNAL PHASINGS AND TIMINGS

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 60 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

Phase	Α	В
Green Time (sec)	30	20
Yellow Time (sec)	3	3
All-Red Time (sec)	2	2
Phase Time (sec)	35	25
Phase Split	58%	42%

Processed: 18 November 2016 03:02:50 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 60 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	19	15	11
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	24	20	16
Phase Split	40%	33%	27%

Slip-Lane Movement	Opposed Slip-Lane
Stopped Movement	Continuous Movement
Turn On Red	Undetected Movement
	Phase Transition Applied

Processed: 18 November 2016 03:03:01 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 80 seconds

Cycle Time Option: **Optimum Cycle Time (Minimum Delay)** Phase times determined by the program Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	6	41	18
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	11	46	23
Phase Split	14%	58%	29%

Normal Movement	Permitted/Opposed
Slip-Lane Movement	Opposed Slip-Lane
Stopped Movement	Continuous Movement
Turn On Red	Undetected Movement
	Phase Transition Applied

Processed: 18 November 2016 03:03:14 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 PM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 60 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	25	13
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	30	18
Phase Split	20%	50%	30%

	Fernilled/Opposed
Slip-Lane Movement	Opposed Slip-Lane
Stopped Movement	Continuous Movement
Turn On Red	Undetected Movement
	Phase Transition Applied

Processed: 18 November 2016 03:03:23 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 70 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	33	15
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	38	20
Phase Split	17%	54%	29%

Slip-Lane Movement	Opposed Slip-Lane
Stopped Movement	Continuous Movement
Turn On Red	Undetected Movement
	Phase Transition Applied

Processed: 18 November 2016 03:08:28 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2017 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 60 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	22	16	7
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	27	21	12
Phase Split	45%	35%	20%

	oppood onp _and
Stopped Movement	Continuous Movement
Turn On Red	Undetected Movement
	Phase Transition Applied

Processed: 18 November 2016 03:08:45 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 80 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	41	17
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	46	22
Phase Split	15%	58%	28%

Stopped Movement		Continuous Movement
Turn On Red	-	Undetected Movement
	•	Phase Transition Applied

Processed: 18 November 2016 03:09:05 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Akker Avenue / Alwen Road / Shakespeare Avenue Junction 2022 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 60 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	23	15	7
Yellow Time (sec)	3	3	3
All-Red Time (sec)	2	2	2
Phase Time (sec)	28	20	12
Phase Split	47%	33%	20%

Stopped Movement		Continuous Movement
Turn On Red	-	Undetected Movement
	•	Phase Transition Applied

Processed: 18 November 2016 03:09:19 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2017 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 65 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	17	23	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	23	29	13
Phase Split	35%	45%	20%

Phase Transition Applied

Processed: 18 November 2016 03:12:00 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2017 PM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 70 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	38	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	13	44	13
Phase Split	19%	63%	19%

Phase Transition Applied

Processed: 18 November 2016 03:12:13 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2022 AM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 70 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	18	27	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	24	33	13
Phase Split	34%	47%	19%

Phase Transition Applied

Processed: 18 November 2016 03:12:23 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2022 PM Peak Hour Background Traffic Volumes Proposed by Latents Configuration Signals - Fixed Time Cycle Time = 80 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	48	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	13	54	13
Phase Split	16%	68%	16%

Phase Transition Applied

Processed: 18 November 2016 03:12:34 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2017 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 65 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	17	23	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	23	29	13
Phase Split	35%	45%	20%

Processed: 18 November 2016 03:16:18 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2017 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 70 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	38	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	13	44	13
Phase Split	19%	63%	19%

Processed: 18 November 2016 03:16:50 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2022 AM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 70 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	18	27	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	24	33	13
Phase Split	34%	47%	19%

Processed: 18 November 2016 03:17:17 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Dorado Avenue / Alwen Road Junction 2022 PM Peak Hour Background and Development Traffic Volumes Proposed Configuration Signals - Fixed Time Cycle Time = 80 seconds

Cycle Time Option: User-specified Cycle Time Phase times specified by the user Sequence: Opposed Turns Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	7	48	7
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	13	54	13
Phase Split	16%	68%	16%

Processed: 18 November 2016 03:17:38 PM SIDRA INTERSECTION 5.0.0.1354

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

ANNEXURE E

STORAGE LANE CALCULATIONS

CONCEPTS	Required Storage Lane Calculation 18-Nov-16 ORMONDE EXTENSION 24 - SITE A DEVELOPMENT PM PEAK HOUR TRIP ASSIGMENT											
Conditional Sector Indians												
	(ACCESS OFF MILKWOOD ROAD)											
Input Values:	Input Values:											
Trips												
	Development IN	41	/h									
	Development OUT	122	/h									
from: Guidelines for traffic	Impact Studies - Table 5.2: Typical parking control se	ervice rates pe	er lane									
Security gate	max. service rate: Coded Card Reader	350	/hour									
Number of channels (IN)	N :	1	lanes									
Number of channels (OUT)	N:	1	lanes									
Exceed Probability:	M (queue L) could be exceeded	5%	of the time									
• • • •												
Output values: Trips Generated:												
Peak hour: F	Primary direction (demand/arrival rate) a1 :	41										
Sec	ondary direction (demand/arrival rate) q2 :	122	_									
	_	163	v/h (100%)									
	_		_									
Queue length (M) (re. Utilization factor (o): a =	f. Transport & Land Development By Stover / Koepke = o(1.2) / NO = arrival rate [demand] / (number of chat arrival rate [de	e Eq 8-9b) annels x servi	ce rate per channel)									
$\rho = \text{dem}$	nand (arrive) rate / (\mathbf{N} x max. service rate)											
	$= 41 / (1 \times 350) =$	0.1171										
	= 122 / (1 x 350) =	0.3486										
	Qm1 (from Table 8-11) =	0.1171										
	Qm2 (from Table 8-11) =	0.2971										
Queue length (M)1 = ((= ((= (-	LN[Probability]-LN[Qm]) / LN[p]) - 1 LN[0.05]-LN[0.117]) / LN[0.117]) - 1 -0.851 / -2.144) - 1 =	-0.7 -6	Zero queue m									
Queue length (M)2 = ((= ((= (-	LN[Probability]-LN[Qm]) / LN[p]) - 1 LN[0.05]-LN[0.297]) / LN[0.349]) - 1 -1.782 / -1.054) - 1 =	0.9 6	Vehicles m									

CONCEPTS	Required Storage Lane Calculation 18-Nov-16 ORMONDE EXTENSION 24 - SITE A DEVELOPMENT PM PEAK HOUR TRIP ASSIGMENT											
Considing Collinal Street on Englishers												
(ACCESS OFF MILKWOOD ROAD)												
Input Values:	Input Values:											
Trips												
	Development IN	114	/h									
	Development OUT	49	/h									
<u>from: Guidelines for traffic</u>	Impact Studies - Table 5.2: Typical parking control se	ervice rates pe	<u>er lane</u> /bour									
Number of channels (IN)		1										
Number of channels (IN)	N.	1	lanes									
Freed Probability:	N.	Г Б9/	of the time									
Exceed Probability.		J /o	or the time									
Output values: Trips Generated:												
Peak hour: F	Primary direction (demand/arrival rate) q1:	114										
Sec	ondary direction (demand/arrival rate) q2 :	49	_									
	=	163	v/h (100%)									
Queue length (M) (re	f. Transport & Land Development By Stover / Koepke	e Eq 8-9b)										
Utilization factor (ρ): ρ =	= q(1,2) / NQ = arrival rate [demand] / (number of cha	annels x servio	ce rate per channel)									
ρ =den	$= 114 / (1 \times 350) =$	0.3257										
	= 49 / (1 x 350) =	0.1400										
	Qm1 (from Table 8-11) =	0.2514										
	Qm2 (from Table 8-11) =	0.1400										
Queue length (M)1 = ((= ((= (-	LN[Probability]-LN[Qm]) / LN[p]) - 1 LN[0.05]-LN[0.251]) / LN[0.326]) - 1 -1.615 / -1.122) - 1 =	0.7 6	Vehicles m									
Queue length (M)2 = ((= ((= (·	LN[Probability]-LN[Qm]) / LN[p]) - 1 LN[0.05]-LN[0.140]) / LN[0.140]) - 1 -1.030 / -1.966) - 1 =	-0.5 -6	Zero queue m									

ANNEXURE F

PROPOSED ROAD UPGRADES LAYOUT PLANS

ORMONDE X22: PROPOSED EXTERNAL ROAD UPGRADES ALWEN ROAD / DORADO AVENUE INTERSECTION

SCALE 1:1000

AKKER AVENUE / MSASA CRESCENT INTERSECTION

AKKER AVENUE / CHAMFUTI CRESCENT INTERSECTION

1:500

AKKER AVENUE / ALWEN ROAD / SHAKESPEARE AVENUE INTERSECTION

1:1000

ANNEXURE G

COST ESTIMATES OF THE PROPOSED UPGRADES

No			ROADWAY	EARTH	KERBING	REMOVE	PAINT LINES	PAINT	REMOVE &	RELOCATE	RELOCATE	RELOCATE	REMOVE	TRAFFIC	TOTAL PER
		CONSTRUCTION TYPE		WORKS		KERBS		SYMBOL	REPLACE	KERB INLET	STREET	SIGN	TREE	SIGNALS	
	INTERSECTION	UNIT	m²	m²	m	m	m	m²	m	No.	No.		No.	COMPLETE	(RANDS)
		RANDS / UNIT	1200	120	170	60	80	150	700	15000	7500	3500	3500	1000000	
1	AKKER AVE / ALWEN RD / SHAKESPEARE AVE		840	1150	360	365	650	65	100	2	3	2	11	0.5	R 1 958 850.00
2	ALWEN ROAD / DORADO AVE		625		280	285	505	65		1	6	3	2	1	R 1 942 350.00
3	AKKER AVE / MSASA CRESCENT		15		12	11	60	10							R 27 000.00
4	AKKER AVE / CHAMFUTI CRESCENT		15		12	11	60	10			1				R 34 500.00
5															
6															
	SUB-TOTAL UNITS		1495	1150	664	672	1275	150	100	3	10	5	13		
	SUB-TOTAL PRICE (RANDS)		R 1 794 000	R 138 000	R 112 880	R 40 320	R 102 000	R 22 500	R 70 000	R 45 000	R 75 000	R 17 500	R 45 500		
									IUIAL Add: Contingencies 10%						P 206 270 00
		Add: Contingencies 10%							R 4 358 970 00						
	VAT 14%								R 610 255.80						
		AMOUNT							R 4 969 225.80						

