

Your Preferred Environmental and Social Solutions Partner

Providing innovative and sustainable solutions throughout the resources sector

Pan African Resources PLC (PAR) Environmental Application Process`

Geochemistry and Waste Classification Assessment

Prepared for:

Pan African Resources PLC

Project Number:

PAR7273

July 2022

This document has been prepared by Digby Wells Environmental.

Report Type:	Geochemistry and Waste Classification Assessment			
Project Name:	Pan African Resources PLC (PAR) Environmental Application Process			
Project Code:	PAR7273			

Name	Responsibility	Signature	Date
Kgaugelo Thobejane Reporting		Hobelane.	July 2022
Levi Ochieng', PhD Reviewer		Degra .	July 2022
Brett Coutts Reviewer		Smit	July 2022

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

EXECUTIVE SUMMARY

Digby Wells Environmental (hereafter Digby Wells) has been appointed to undertake an Environmental Application Process and associated specialist studies for the Mogale Cluster - Mining Right (GP) 30/5/1/2/2 (206) Mining Right (MR) and, more specifically for the proposed construction of a large-scale gold tailings retreatment operation. Pan African Resources PLC (PAR) has entered into a Sale and Purchase Agreement for the acquisition of the shares in and claims against Mogale Gold (Pty) Ltd (Mogale Gold). The agreement was entered into between PAR and the liquidators of Mintails Mining SA (Pty) Ltd (in liquidation) (MMSA). MMSA is the holding company of Mogale Gold. The intended transaction is subject to a due diligence investigation which is in the process of being concluded.

The project entails the reclamation of historical unlined Tailings Storage Facilities (TSFs). The reprocessed tailings will be first discarded into West Wit Pit and possibly other nearby small pits. Any extra processed tailings will be stored on a ground TSF. The new TSF will also be unlined.

This report constitutes the **Environmental Geochemistry Assessment** to describe the high degree of baseline environmental conditions and assess the potential geochemical impacts of the Project.

Three seepage water samples were collected from the existing Tailings Storage Facilities, South Sand, 1L23-1L25 and 1L13. One reprocessed tailings was obtained from the metallurgical test work of a tailings sample from 1L13 1L15 TSF.

Waterlab (Pty) Ltd, a South African National Accreditation System laboratory analysed the samples. The analytical suite included the following:

- Sample preparation crushing, grinding, and compositing of the tailings;
- Mineralogical analysis X-ray diffraction (XRD) analysis to -determine the mineral constituents of the samples;
- Acid digestion (aqua regia) followed by semi-quantitative 29 elements Inductively Coupled Plasma (ICP) scan;
- Deionised (DI) leachate test with a 4:1 liquid:solid ration
- Synthetic Precipitation Leaching Procedure (SPLP) leach testing 20:1 liquid: solid ratio;
- Acid-Base Accounting (ABA) tests including sulphur speciation (total sulphur, sulphate sulphur, and sulphide sulphur); and
- NAG test where an oxidising agent (hydrogen peroxide) is used to assess whether a sample can neutralise the potential acidity on complete oxidation of sulphide.

Table 1-1 presents a summary of the geochemical characteristics of the reprocessed tailings.

No acid-forming minerals were detected in the reprocessed tailings. The tailings are currently neutral in pH but classified as uncertain/inconclusive under ABA and NAG tests in the long term. The leachate from the reprocessed tailings is not acidic but neutral to alkaline.

Although the reprocessed tailings classify as Type 3 waste requiring deposition in a liner consistent with a Class C liner requirements, Digby Wells notes that the barrier systems are not necessarily the default barrier systems if Pan African Resources can demonstrate that the risks associated with the reprocessed tailings can be adequately managed without the default barrier systems. An alternative barrier with the same or lower performance criteria as a Class C liner may also be considered. While the regulation makes provision for a risk-based approach, there is no guidance provided by the legislation as to what information the authorities require in a risk-based approach.

Motivation for an alternative liner may be made on the following basis:

- The leachate from the reprocessed tailings are not acidic but neutral to alkaline. No acid-forming minerals were detected in the reprocessed tailings.
- The metals/metalloids are relatively immobile under the neutral conditions of the reprocessed tailings and are not mobilised into the leach solution with all their LC below the LCT0 limit except sulphate and arsenic which marginally exceed the LCT0 limits but can be managed.
- All the metals/metalloids in the leachate from the reprocessed tailings will be within the IFC limits except manganese (0.62-0.76 mg/L) which marginally exceeded the IFC limit (0.5 mg/L) but can be managed.
- The leachate from the reprocessed tailings will be substantially better than the current seepage from the existing TSFs. The seepage quality will change from acidic (pH 2.4-2.8) to neutral (pH 7.5-7.6) resulting in a significant reduction in total dissolved solids. The total dissolved solids in the seepage will change from 4166-14094 mg/L in the current seepage to 1554-1893 mg/L in the reprocessed tailings.

Overall, reprocessing the existing tailings is supported as a measure to remove the existing TSFs that are acidic and contaminant sources at the site. The reprocessed tailings will be neutral with a low risk of leaching metal/metalloids. The seepage from the reprocessed tailings will be substantially better than the current seepage water.

Table 1-1: Geochemical Characteristics of Reprocessed Tailings

Material	Tailings (n=2)						
	Current pH	Neutral paste pH (pH of 7.62 - 7.67)					
		Non acidic (pH of 4.50 - 4.53) (> 4.5) - neutral					
φ	Future pH	The two samples were classified as uncertain under the ABA and NAG tests.					
istic		No acid-forming minerals					
Geochemical Characteristics	Mineralogy	No fast-dissolving carbonates acid neutralising minerals detected					
nical Ch		Aluminosilicates – pyrophyllite, chlorite, biotite, muscovite, smectite, kaolinite, and orthoclase.					
chen	Supernatant	Alkaline pH (pH of 9.0)					
Geo	Water Quality	Potential constituents of concern - conductivity, arsenic, copper, cadmium, iron, manganese, mercury, nickel and zinc					
	Leachate	Neutral leachate pH (average pH 7.50 - 7.60)					
	quality	Potential constituents of concern – electrical conductivity, arsenic and manganese.					
Waste Classification		Reprocessed tailings from 1L13-1L15 TSF are classified as Type 3 waste and require a Class C liner as depicted below. Waste body 300 mm thick finger drain of geotextile covered aggregate 100 mm Protection layer of silty sand or a geotextile of equivalent performance 1,5 mm thick HDPE geomembrane 300 mm clay liner (of 2 X 150 mm thick layers) Under drainage and monitoring system in base preparation layer In situ soil					
Geochemical Risks	Seepage and runoff from the tailings containing arsenic, copper, fluoride, iron, manganese, mercury and zinc may be of risk to surface and groundwater quality.						
Management (Operations	require a Class	ed tailings are classified as Type 3 waste and would potentially s C liner underneath the new TSF, with further engagement to be th DWS with respect to the liner requirements.					
to closure and aftercare)	existing TSFs	the existing tailings is supported as a measure to remove the that are acidic and contaminant sources at the site. The ailings will be neutral with a low risk of leaching metal/metalloids.					

Material	Tailings (n=2)
	The reprocessing of the tailings should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and processing.
	Clean surface water should be diverted away from the operation using runoff control diversions.
	Dirty water from percolation and runoff from the reprocessing operations and the new reprocessed tailings TSF should be collected in toe paddocks and channelled to the return water dam for management (recycled for use in the plant, dust suppression, treatment before discharge, and establishing vegetation).
	The reprocessing operations would require monitoring the quality of toe seepage collecting in toe paddocks, return water dam, surface water, and groundwater for potential constituents of concern including pH, electrical conductivity, copper, cadmium, manganese, nickel and zinc.

Based on the above understanding, Digby Wells recommends the following:

- Further characterisation of the reprocessed tailings by kinetic tests is required to determine the long-term ARD/ML potential of the tailings;
- The existing tailings should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and reprocessing that may exacerbate the formation of acidic mine drainage and metal leaching;
- Clean surface water should be diverted away from the operation using runoff control diversions; and
- The reprocessing operations would require monitoring the quality of water for potential constituents of concern including pH, electrical conductivity, arsenic, cadmium, copper, total cyanide, iron, manganese, nickel, lead, selenium and zinc.

TABLE OF CONTENTS

1.	In	troduction		
	1.1.	Project L	ocation	1
	1.2.	Geology		4
	1.2	.1.	Regional Geology	4
	1	1.2.1.1.	Witwatersrand Supergroup	4
	1	1.2.1.2.	Ventersdorp Supergroup	4
	1	1.2.1.3.	Transvaal Supergroup	4
	1	1.2.1.4.	Karoo Supergroup	5
	1.2	.2.	Local Geology	5
2.	Р	re-feasibili	ty Study Results	8
3.	A	ssumption	s, Limitations and Exclusions	10
4.	R	eporting S	tandards	10
	4.1.	Elementa	al Enrichment	10
	4.2.	Acid-Bas	se Accounting and Net Acid Generation	11
	4.3.	Metal lea	aching potential	12
	4.3	.1.	National Environmental Management Act	12
	4	1.3.1.1.	Waste Act 2014	12
	4	1.3.1.2.	Waste Type	13
	4.3	.2.	Water Quality Guidelines	16
	4	1.3.2.1.	International Finance Corporation Effluent Guidelines	16
	2	1.3.2.2.	South African General Discharge Limits	16
5.	G	eochemica	al Test Work	17
	5.1.	Sampling	J	17
	5.2.	Laborato	ry Analysis	18
6.	G	eochemica	al characteristics	19
	6.1.	Processe	ed Tailings	19
	6.1	.1.	Mineralogy	19
	6.1	.2.	Acid Rock Drainage Potential	20

6.1.3.	Elemental Enrichment	23
6.2. Existing S	eepage versus Reprocessed Tailings Supernatant Water Quality	25
6.2.1.	Seepage Water	25
6.2.2.	Supernatant Water	25
6.3. Leaching	Potential	27
6.4. Tailings C	lassification	29
6.4.1.	Total Concentration Threshold	29
6.4.2.	Leachate Concentration Threshold	30
7. Geochemical	Implications	32
8. Conclusion a	nd Recommendations	34
9. References		36
	LIST OF FIGURES	
Figure 1-1: Region	al Setting Location	2
Figure 1-2: Local S	Setting	3
Figure 1-3: Locality	/ Мар	6
Figure 1-4 Regiona	al Geology	7
Figure 4-1: Flow Di	iagram For Waste Assessment (GN R635 of 23 August 2013)	14
Figure 6-1: Paste p	oH versus SNPR for the reprocessed tailings from 1L13-1L15 TSF	22
Figure 6-2: NAG pl	H versus SNNP for the reprocessed tailings from 1L13-1L15 TSF	23
-	tion of a Class C barrier requirements for waste material (GN R636	
	LIST OF TABLES	
Table 2-1: Summa	ry of the results of the prefeasibility study	8
Table 4-1: Summa	ry of guidelines used in the study	15
Table 4-3: Water C	Quality Guidelines	16

Table 5-1: Sampling Details18
Table 6-1: Mineralogy of the 1L13-1L15 TSF the reprocessed tailings20
Table 6-2: Acid-base accounting and sulphur speciation for the 1L13-1L15 TSF reprocessed tailings21
Table 6-3: Elemental concentrations and GAI values for the 1L13-1L15 TSF reprocessed tailings24
Table 6-4: Summary of seepage and supernatant quality from the 1L13-1L15 TSF and reprocessed tailings
Table 6-5: Summary of potential constituents of concern for 1L13-1L15 TSF
Table 6-6: Total concentrations in mg/kg for the tailings material against the TCT30
Table 6-7: SPLP concentration results for the waste materials against the LCT31
Table 7-1: Geochemical characteristics of the tailings, risks, and mitigation measures 32

LIST OF APPENDICES

Appendix A: Prefeasibility Study - Geochemistry Report

Appendix B: Unprocessed Tailings Laboratory Certificates of Analysis

Appendix C: Reprocessed Tailings Laboratory Certificates of Analysis

LIST OF ABBREVIATION

Abbreviation	Description
ABA	Acid-Base Accounting
AMD	Acid Mine Drainage
AP	Acid Potential
ARD	Acid Rock Drainage
ASLP	Australian Standard Leaching Procedure
CMA	Catchment Management Agency
DEA	Department of Environmental Affairs
DFFE	Department of Forestry, Fisheries and Environment
DFS	Definitive Feasibility Study
DI	Deionised
DWS	Department of Water and Sanitation
EC	Electrical Conductivity
EHSEBS	Environmental, Health, and Social-Economic Baseline Studies
GAI	Geochemical Abundance Index
GIIP	Good International Industry Practice
GN	Government Notice
ICP	Inductively Coupled Plasma
LC	Leachable Concentration
LCT	Leachable Concentrations Threshold
mg/kg	milligram per kilogram
mg/L	milligram per litre
NEM: WAA	National Environmental Management: Waste Amendment Act, 2014
μS/cm	microSimens/centimeter
ML	Metal Leaching
MCLM	Mogale City Local Municipality
Mt	Megatonne
NAF	Non-Acid Forming
NAG	Nett Acid Generation
NNP	Nett Neutralising Potential
NP	Neutralising Potential
NPR	Neutralising Potential Ratio
PAF	Potential Acid Forming

Abbreviation	Description
PAR	Pan African Resources PLC
PAF	Potentially Acid Forming
NEM: WAA	National Environmental Management: Waste Amendment Act 26 of 2014
SANAS	South Africa National Accreditation System
SPLP	Synthetic Precipitation Leaching Procedure
s.u	Standard Unit
TC	Total Concentration
TCT	Total Concentrations Threshold
TDS	Total Dissolved Solids
TSF	Tailings Storage Facility
USEPA	US Environmental Protection Agency
WHO	World Health Organization
WMA	Water Management Area
WRDM	West Rand District Municipality
WUL	Water Use License
wt.%)	wt.%)
XRD	X-Ray Diffraction

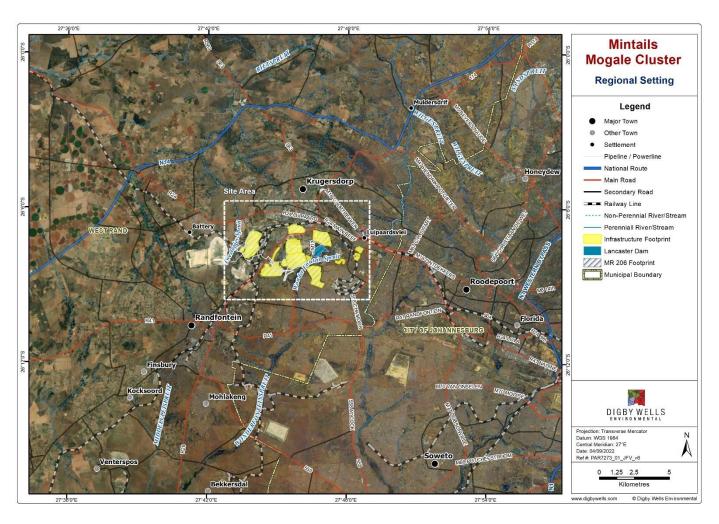
1. Introduction

Digby Wells Environmental (hereafter Digby Wells) has been appointed to undertake an Environmental Application Process and associated specialist studies for the Mogale Cluster - Mining Right (GP) 30/5/1/2/2 (206) Mining Right (MR) and, more specifically for the proposed construction of a large-scale gold tailings retreatment operation. Pan African Resources PLC (PAR) has entered into a Sale and Purchase Agreement for the acquisition of the shares in and claims against Mogale Gold (Pty) Ltd (Mogale Gold). The agreement was entered into between PAR and the liquidators of Mintails Mining SA (Pty) Ltd (in liquidation) (MMSA). MMSA is the holding company of Mogale Gold. The intended transaction is subject to a due diligence investigation which is in the process of being concluded.

The project entails the reclamation of historical unlined Tailings Storage Facilities (TSFs). The reprocessed tailings will be first discarded into West Wit Pit and possibly other nearby small pits. Any extra processed tailings will be stored on a ground TSF. The new TSF will also be unlined.

The project consists of 120 Mt of tailings to be reprocessed and deposited, firstly within the West Wits Pit and then on the reclaimed footprint of 1L23-1L25. Six dumps are being considered to be reprocessed, the largest of which amounts to 57.9 Mt, while the smallest contains 0.57 Mt. The primary location of processed tailings storage has been earmarked for deposition in the 1L4-1L6. This report constitutes the **Environmental Geochemistry Assessment** to describe the high degree of baseline environmental conditions and assess the potential geochemical impacts of the Project.

1.2. Project Location


The Mining Right Area of the Mintails Mogale Cluster includes GI, G2 plant; Cams North Sand; South Sand; 1L23; 1L28; 1L13; 1L8; 1LI0; West Wits Pit and Lancaster Dam. An existing Water Use License (WUL) No. 27/2/2/C423/1/1 was issued on 22 November 2013 to Mintails Mining SA (Pty) Ltd: Mogale Gold. The mining right is located on Portions 66 and 99 of the farm Waterval 174 IQ and portions 136 and 209 of the farm Luipaardsvlei 246 IQ.

The project is within the Mogale City Local Municipality (MCLM), which is located within the West Rand District Municipality (WRDM). MCLM is the regional services authority and the area falls under the jurisdiction of the Krugersdorp Magisterial District.

The site is located in the catchment of the Upper Wonderfonteinspruit, quaternary catchment C23D, which forms part of the Vaal River Water Management Area (WMA) within the Vaal Catchment Management Agency (CMA). The project is about 4 km south of Krugersdorp and northeast of Randfontein, approximately 10 km off the N14 National Road in the Gauteng Province, in an area that has been transformed by past gold mining activities.

The regional setting and location of the site are illustrated in Figure 1-1 and Figure 1-2.

Figure 1-1: Regional Setting Location

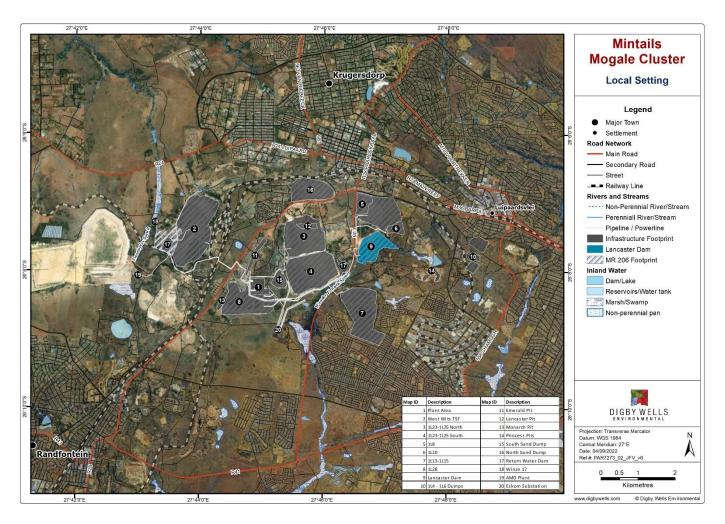


Figure 1-2: Local Setting

1.3. Geology

1.3.1. Regional Geology

The regional geology comprises of four main supergroups, namely: Witwatersrand, Ventersdorp, Transvaal and Karoo. The characteristics of these geological groups are discussed, in their chronological order (oldest first), in the subsections below. The regional geology of the area is indicated in Figure 1-4.

1.3.1.1. Witwatersrand Supergroup

The Witwatersrand Basin is a thick sequence of shale, quartzite and conglomerate. The average dip of the strata varies between 10° and 30° south, although localised dips of up to 80° have been encountered in mine workings closer to the reef outcrop. There are two main divisions, a lower predominantly argillaceous unit, known as the West Rand Group and an upper unit, composed almost entirely of quartzite and conglomerates, known as the Central Rand Group. The West Rand Group is divided into three subgroups namely the Hospital Hill, Government Reef and Jeppestown. These rocks comprise mainly shale, but quartzite, banded ironstones, tillite and intercalated lava flows are also present. The rocks were subjected to low-grade metamorphism causing the shale to become more indurated and slatey, and the original sandstone was re-crystallised to form quartzite.

1.3.1.2. <u>Ventersdorp Supergroup</u>

The younger Ventersdorp Supergroup overlies the Witwatersrand rocks. Although acid lavas and sedimentary intercalations occur, the Ventersdorp is composed largely of andesitic lavas and related pyroclastics. The Ventersdorp Supergroup consists of the Platberg Group and the Klipriviersberg Group.

The Alberton Formation is composed of green – grey amygdaloidal andesitic lavas, agglomerates and tuffs with a total thickness of 1 500 m. The lack of sediments in this sequence indicates a rapid succession of lava flows, which probably came from fissure eruptions. Material of similar composition forms the oldest dykes that have intruded the Witwatersrand rocks. The abundant agglomerates provide indications of periodic explosive activity. The removal of huge volumes of volcanic material from an underlying magma chamber gave rise to tensional conditions and as a result a number of faulted structures, such as, horst and grabens formed.

1.3.1.3. <u>Transvaal Supergroup</u>

Overlying the Ventersdorp Lavas are the Black Reef Quartzite and dolomites of the Transvaal Supergroup. The Black Reef quartzite comprises coarse to gritty quartzite with occasional economically exploitable conglomerates (reefs). The entire area was peneplane in post-Ventersdorp time and it was on this surface that the Transvaal Supergroup was deposited, some 2 200 million years ago. The deposition commenced with the Kromdraai Member with the Black Reef at its base. The Black Reef is formed from material that has been eroded from

the Witwatersrand outcrop areas. As a result, the Black Reef contains zones (reefs) in which gold is present. The occurrence of the gold is not as widespread as in the Witwatersrand and is mainly restricted to north-south trending channels. The Black Reef is overlain by a dark, siliceous quartzite with occasional grits or small pebble bands. The quartzite grades into black carbonaceous shale. The shale then grades into the overlying dolomite through a transition zone approximately 10 m thick.

Overlying the Kromdraai Member is the dolomite of the Malmani Subgroup of the Chuniespoort Group. The dolomites that are 1,500 m thick are known for their huge water storage potential.

The dolomite also contains lenses and layers of chert. The dense, hard and fine-grained chert tends to stand out in relief. Chert (silica) replaces carbonate material.

The dolomites are overlain in the south by the Pretoria Group rocks. The Rooihoogte Formation forms the basal member of the Pretoria Group, consisting predominantly of shale and quartzite.

1.3.1.4. Karoo Supergroup

The Karoo Supergroup was deposited approximately 345 million years ago. It commenced with a glacial period during which most of South Africa was covered by a thick sheet of ice. This ice cap slowly moved towards the south, causing extensive erosion of the underlying rocks. The erosion debris was eventually deposited and formed the Dwyka tillite. The latter is only partially preserved in the study area, as are the younger sedimentary deposits the Karoo Supergroup, including mudstone, shale and sandstone.

1.3.2. Local Geology

The Project area lies along the Witwatersrand on the Witwatersrand Supergroup Formations. The area is, however, highly faulted, folded and eroded, leading to complex and varied geology and rock formations. However, being a surface dump mining operation, the geology has little influence or impact on the project.

The project is situated within the Archaean-aged (i.e., approximately 2970 million years) Witwatersrand Basin - the world's largest natural repository of gold mineralisation, i.e. more than 1,600 million gold ounces have been exploited since 1886. The reefs mined to depths exceeding 3 km are generally considered ancient river placers. These reefs are frequently less than a metre thick and characterised by abundant pyrite, which may comprise up to 5% of the reef, as well as flyspeck and/or seam carbon/kerogen. These three components display a strong spatial correlation with the gold mineralisation, which is rarely visible, in the 10–20-micron range.

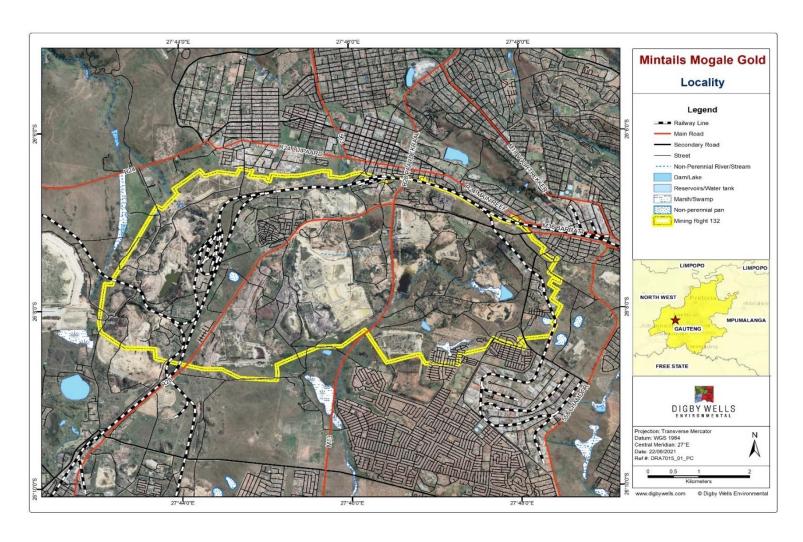


Figure 1-3: Locality Map

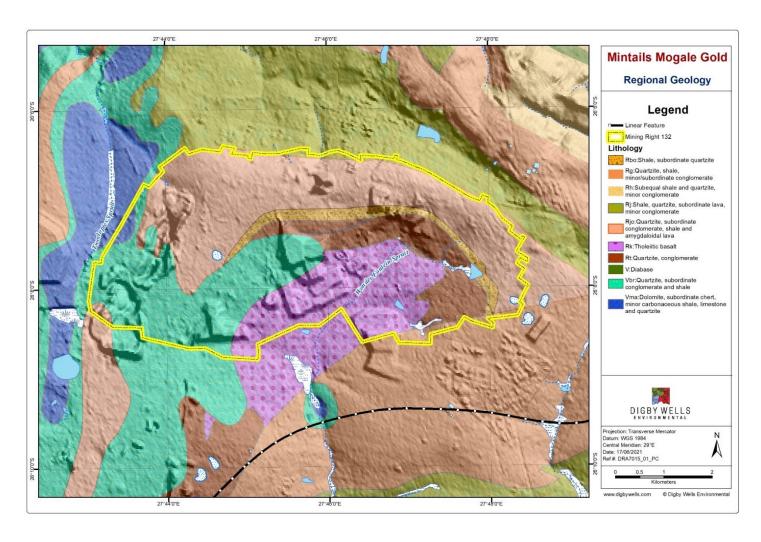


Figure 1-4 Regional Geology

2. Pre-feasibility Study Results

Digby Wells conducted an Environmental and Social Pre-Feasibility Study (PFS) and associated specialist studies for the Mintails Mogale Cluster for Pan African Resources in 2021. The purpose of the study was to describe the current state of the tailings material, identify the potential geochemical impacts, and recommend mitigation and management measures for the project.

The study analysed 32 tailing samples across seven TSFs and a Manganese Slag sample. The geochemical analysis included the following:

- Sample preparation grinding, and compositing of the tailings;
- Mineralogical analysis X-ray diffraction (XRD) analysis to determine the mineral constituents of the samples;
- Total metal analysis acid digestion (aqua regia) followed by semi-quantitative 29 elements Inductively Coupled Plasma (ICP) scan;
- Deionised water leaching test at 1:4 solid to liquid ratio;
- Australian Standard Leach Procedure (ASLP) including Borax and deionised water leaching test at 1:20 solid to liquid ratios;
- Acid-Base Accounting (ABA) tests including sulphur speciation (total sulphur, sulphate sulphur, and sulphide sulphur); and
- Net Acid Generation (NAG) test where an oxidising agent (hydrogen peroxide) is used to assess whether a sample can neutralise the potential acidity on complete oxidation of sulphides.

Table 2-1 presents a summary of the results of the study. The full report is presented in Appendix A.

Table 2-1: Summary of the results of the pre-feasibility study

Material		Tailings (n=32)	Manganese Slag (n=2)		
Geochemical Characteristics	Current pH	Acidic to slightly alkaline (paste pH 2.4-7.8)	Acidic (Paste pH 4.9-5,0)		
	Future pH	97% Potentially Acid Forming (PAF) and 3% Inconclusive	100% PAF		
		NAG-pH is acidic (pH 4.5 - 6.5)	NAG-pH is 6.4-6.5		
		Acid Forming - pyrite (0.2 -1.2 wt.%)			
	Mineralogy	 Acid Neutralising: Carbonates - calcite (0.1 - 3.9 wt.%); 	Gypsum (48-64%), magnetite (34-36%), and chlorite (18%)		

ı	V laterial	Tailings (n=32)	Manganese Slag (n=2)		
		Aluminosilicates - chlorite, muscovite, pyrophyllite and kaolinite			
	Lacabata	Acidic to alkaline (pH 3.9 - 12)	Acidic (Paste pH 4.6)		
	Leachate quality	Potential constituents of concern - pH, electrical conductivity, calcium, iron, mercury, lead, sulphate, and zinc	Potential constituents of concern - pH, electrical conductivity, boron, calcium, manganese, and sulphate		
Geoch	nemical Risks	Acidic seepage and runoff from the tailings and manganese slag containing boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc pose a risk to surface and groundwater quality. Other parameters of concern are pH, electrical conductivity, and TDS.			
the propos	ent measures for sed reprocessing the new TSF ons to closure)	 ARD/ML TSFs and manganese sl footprints at the site; The tailings and manganese slag minimise exposure to oxidation, weath and Clean surface water should be diverted control diversions; Dirty water from percolation and rund should be collected in toe paddocks afor management (recycled for use in before discharge, and establishing verified to the paddocks, groundwater for potential constituent conductivity, total dissolved solids, mercury, lead, sulphate, and zinc; an The results imply that a liner consistence. 	require monitoring the quality of toe return water dam, surface water, and its of concern including pH, electrical, boron, calcium, iron, manganese, id stent with design requirements for the num would theoretically be required to		

The geochemical risk was identified as acidic to neutral (pH 2.6-7.7) seepage and runoff containing boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc from the tailings and manganese slag that may impact the quality of the surface and groundwater depending on site conditions if not managed appropriately.

Digby wells recommended the following measures to manage the tailings and manganese slag during operations to closure:

- Reprocessing the tailings is supported as a measure to remove the existing ARD/ML TSFs and manganese slag as potential contaminant source footprints at the site;
- The tailings and manganese slag should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and processing;

- Clean surface water should be diverted away from the operation using runoff control diversions;
- Dirty water from percolation and runoff from the TSFs and manganese slag should be collected in toe paddocks and channelled to the return water dam for management (recycled for use in the plant, dust suppression, treatment before discharge, and establishing vegetation);
- The reprocessing operations would require monitoring the quality of toe seepage collecting in toe paddocks, return water dam, surface water, and groundwater for potential constituents of concern to include pH, electrical conductivity, total dissolved solids, boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc; and
- The results imply that a liner consistent with design requirements for the disposal of Type 3 waste at a minimum would theoretically be required to be placed underneath the new TSF for the reprocessed tailings. However, this requirement was being evaluated and discussed further with the respective authorities to determine the liner requirements as the site proposed for the tailings facility is a footprint that was previously disturbed.

The tailings characterised in the PFS were from the existing TSFs before reprocessing and therefore represented the baseline geochemistry before reprocessing of the tailings project. The reprocessed tailings samples were not available for characterisation at the time of the PFS and are now presented in this report.

3. Assumptions, Limitations and Exclusions

The following limitations are noted:

- There is a total of six TSFs that will be reclaimed and for this study, only one TSF was analysed and assumed to be representative of all the TSFs;
- Tailings materials in this study are from the reprocessing of the existing tailings, it is assumed that the same reprocessing method will be applied to reprocess all the other TSFs; and
- Two samples were analysed and assumed to be representative of the tailings in the 1L13-1L15 TSF.

4. Reporting Standards

4.2. Elemental Enrichment

One measure of enrichment of elements in samples is the Geochemical Abundance Index (GAI). The GAI compares the actual concentration of an element in a sample with the median abundance for that element in the most relevant media (such as crustal abundance, soils, or a rock type). The main purpose of the GAI is to indicate any elemental enrichments that may be of environmental importance.

The GAI for an element is calculated as follows:

Equation 1: $GAI = Log2 [Cn / (1.5 \times Bn)]$

Where Cn is the concentration of the element in the sample and Bn is the median or average content for that element in the reference material (mean world soil, crustal abundance, etc.).

GAI values are truncated to integer increments (0 through to 6, respectively), where a GAI of 0 indicates the element is present at a concentration equal to, or less than, median abundance, and a GAI of 6 indicates approximately a 100-fold, or greater, enrichment above-median abundance. The actual enrichment ranges for the GAI values are as follows:

- GAI=0 represents <3 times median abundance,
- GAI=1 represents 3 to 6 times median abundance,
- GAI=2 represents 6 to 12 times median abundance,
- GAI=3 represents 12 to 24 times median abundance,
- GAI=4 represents 24 to 48 times median abundance,
- GAI=5 represents 48 to 96 times median abundance, and
- GAI=6 represents more than 96 times the median abundance.

As a general guide, a GAI of 3 or above is considered significant and such enrichment may warrant further examination (INAP, 2009).

4.3. Acid-Base Accounting and Net Acid Generation

In the absence of Senegalese guidelines, Digby Wells assessment adopted the following ARD/ML assessment guidelines that have gained regulatory acceptance in various jurisdictions around the world:

- Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Mine Sites in British Columbia (Price & Errington, 1995);
- Prediction Manual for Drainage Chemistry from Sulfidic Geologic Materials (MEND, 2009); and
- Global Acid Rock Drainage Guide (GARD) (INAP, 2009).

The international guidelines emphasise that there is no minimum concentration of sulphide responsible for generating acidity. The MEND, 2009 guideline was used. The guideline bases the assessment of ARD/ML on Neutralisation Potential Ratio (NPR) and Net Neutralisation Potential (NNP) criteria as detailed below:

- NPR < 1: Potentially Acid Forming (PAF), unless sulphide minerals are non-reactive;
- 1 < NPR < 2: Possibly acid-generating if Neutralisation Potential (NP) is insufficiently reactive or is depleted at a rate faster than sulphide;

- NPR > 2: Non-Acid Forming (NAF) unless significant preferential exposure of sulphide along fractures planes or extremely reactive sulphide in combination with insufficiently reactive NP;
- NNP less than -20 kg CaCO₃/tonne is PAF; and
- A sample is PAF if the NAG pH is <4.5 and NAF if pH is >4.5.

4.4. Metal leaching potential

The guidelines used in the study are the following:

4.4.1. National Environmental Management Act

Digby Wells assessed the tailings against the South African National N&S for the Assessment of Waste for Landfill Disposal (Government Notice R635 of 23 August 2014) and the National N&S for Disposal of Waste to Landfill (GN R636 of 23 August 2014) to determine the type of waste and the barrier/liner requirements

4.4.1.1. Waste Act 2014

On 2 June 2014, the National Environmental Management: Waste Amendment Act, 2014 (Act No. 26 of 2014) (NEM: WAA) was published, which for the first time included "residue deposits" and "residue stockpiles" under the environmental waste legislation (previously mining residue was covered under the Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002). Mine wastes are listed under Schedule 3, under the category "Hazardous Waste", therefore the understanding is that mine wastes are hazardous unless the applicant can prove that the waste is non-hazardous.

As residue deposits and residue stockpiles are considered to be waste, they are regulated by the following regulations, both promulgated on 23 August 2013 under NEM: WAA:

- Norms and Standards for the Assessment of Waste for Landfill Disposal (GN R635 of 23 August 2013), and
- National Norms and Standards for Disposal of Waste to Landfill (GN R636 of 23 August 2013).

According to these regulations, waste that is generated must be classified following SANS 10234 "Globally Harmonised System" within 180 days of generation. Waste that has already been generated, but not previously classified must be classified within 18 months of the date of commencement of the regulations. The Norms and Standards (N&S) specify the waste classification methodologies for determining the waste category, and the specifications for pollution control barrier systems (liners) for each of the waste categories.

The Department of Forestry, Fisheries and Environment (DFFE) has further published the Regulations Regarding the Planning and Management of Residue Stockpiles and Residue Deposits (GN R632 of 24 July 2015, as amended) and in terms of waste classification, these regulations state that residue stockpiles and residue deposits must be characterised to identify

any potential risk to health or safety and environmental impact in terms of physical characteristics, chemical characteristics (i.e. toxicity, propensity to oxidise and decompose, propensity to undergo spontaneous combustion, pH and chemical composition of the water separated from the solids, stability, and reactivity and the rate thereof, neutralising potential and concentration of volatile organic compounds), and mineral content.

4.4.1.2. Waste Type

Digby Wells followed the approach outlined below and presented in Figure 4-1, as per the South African regulations.

- The chemical substances present in the tailings were identified,
- Sampling and analysis were undertaken to determine the Total Concentration (TC) and Leachable Concentration (LC) of the elements and chemical substances identified in the tailings and that are specified in Section 6 of the N&S,
- All analyses of the TC and LC of the elements and the chemical substances in the tailings were conducted by a South Africa National Accreditation System (SANAS) accredited laboratory,
- The TC and LC of the elements and the chemical substances in the tailings were compared to threshold limits specified in Section 6 of the N&S, and
- Based on the comparison with the threshold limits, the specific type of waste was determined according to Section 7 of the N&S.

Total Concentration Threshold (TCT) limits are subdivided into three categories as indicated in Table 4-1 and are summarised as follows:

- TCT0 limits are based on screening values for the protection of water resources, as contained in the Framework for the Management of Contaminated Land (DEA, March 2010),
- TCT1 limits derived from land remediation values for commercial/industrial land (DEA, March 2010), and
- TCT2 limits were derived by multiplying the TCT1 values by a factor of 4, as used by the Environmental Protection Agency, Australian State of Victoria.

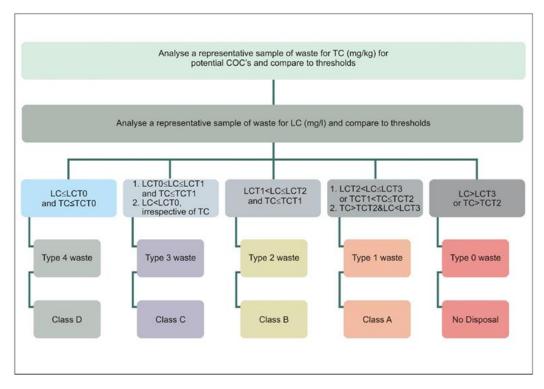


Figure 4-1: Flow Diagram For Waste Assessment (GN R635 of 23 August 2013)

Leachable concentration was determined by following the Australian Standard Leaching Procedure for Wastes, Sediments, and Contaminated Soils (AS 4439.3-1997), as specified in the N&S (2013). The procedure recommends the use of Deionised (DI) Water to detect the metals that are present on the surface exterior. The procedure can also be done under the Borax leaching procedure which consists of two types of pH 9 for co-disposal. Leachate of 1:20 solids per reagent water was advised for the NEM: WA guidelines, but for this study, a 1:20 and 1:4 tailings and water ratio was prepared and analysed by Waterlab Laboratory same as indicated in the NEMWA guidelines.

Leachable Concentration Threshold (LCT) limits are subdivided into four categories as follows:

- LCT0 limits derived from human health effect values for drinking water, as published by the Department of Water and Sanitation (DWS), SANAS, World Health Organization (WHO) or the United States Environmental Protection Agency (USEPA),
- LCT1 limits are derived by multiplying LCT0 values by a Dilution Attenuation Factor (DAF) of 50, as proposed by the Australian State of Victoria,
- LCT2 limits are derived by multiplying LCT1 values by a factor of 2, and LCT3 limits are derived by multiplying the LCT2 values by a factor of 4.

Table 4-1: Summary of guidelines used in the study

Parameter	Unit	тсто	тст1	ТСТ2	Unit	LCT0	LCT1	LCT2	LCT3
Al, Aluminium	mg/kg				mg/L				
As, Arsenic	mg/kg	5.8	500	2000	mg/L	0.01	0.5	1	4
B, Boron	mg/kg	150	15000	60000	mg/L	0.5	25	50	200
Ba, Barium	mg/kg	62.5	6250	25000	mg/L	0.7	35	70	280
Ca, Calcium	mg/kg				mg/L				
Cd, Cadmium	mg/kg	7.5	260	1040	mg/L	0.003	0.15	0.3	1.2
Co, Cobalt	mg/kg	50	5000	20000	mg/L	0.5	25	50	200
Cr total	mg/kg	46000	800000	N/A	mg/L	0.1	5	10	40
Cr (IV), Chromium (IV)	mg/kg	6.5	500	2000	mg/L	0.05	2.5	5	20
Cu, Copper	mg/kg	16	19500	78000	mg/L	2	100	200	800
Fe, Iron	mg/kg				mg/L				
Hg, Mercury	mg/kg	0.93	160	640	mg/L	0.006	0.3	0.6	2.4
Mg, Magnesium	mg/kg				mg/L				
Mn, Manganese	mg/kg	1000	25000	100000	mg/L	0.5	25	50	200
Mo, Molybdenum	mg/kg	40	1000	4000	mg/L	0.07	3.5	7	28
Na, Sodium	mg/kg				mg/L				
Ni, Nickel	mg/kg	91	10600	42400	mg/L	0.07	3.5	7	28
Pb, Lead	mg/kg	20	1900	7600	mg/L	0.01	0.5	1	4
Sb, Antimony	mg/kg	10	75	300	mg/L	0.02	1	2	8
Se, Selenium	mg/kg	10	50	200	mg/L	0.01	0.5	1	4
U, Uranium	mg/kg				mg/L				
V, Vanadium	mg/kg	150	2680	10720	mg/L	0.2	10	20	80
Zn, Zinc	mg/kg	240	160000	640000	mg/L	5	250	500	2000
Chloride as Cl	mg/kg	n/a	n/a	n/a	mg/L	300	15000	30000	120000
Sulphate as SO ₄	mg/kg	n/a	n/a	n/a	mg/L	250	12500	25000	100000
Nitrate as N	mg/kg	n/a	n/a	n/a	mg/L	11	550	1100	4400
F, Fluoride	mg/kg	100	10000	40000	mg/L	1.5	75	150	600
CN total, Cyanide total	mg/kg	14	10500	42000	mg/L	0.07	3.5	7	28

Waste is classified by comparison of the total and leachable concentration of elements and chemical substances in the waste material to TCT and LCT limits as specified in the N&S for Waste Classification and the N&S for Disposal to Landfill.

4.4.2. Water Quality Guidelines

The leachate water quality has been assessed against the following guidelines:

- The International Finance Corporation (IFC, 2007) Environmental Health and Safety effluent guidelines for site runoff and treated effluents to surface water for general use; and
- The 2013 South African General Discharge Limits for discharging wastewater into a water source.

4.4.2.1. <u>International Finance Corporation Effluent Guidelines</u>

Table 4-2 presents the 2007 IFC Environment Health and Safety effluent guideline values for the mining sector. The guidelines are indicative of Good International Industry Practice (GIIP) and are considered achievable under normal operating conditions in appropriately designed and operated facilities through the application of pollution prevention and control techniques. The effluent guidelines are applicable for site runoff and treated effluents to surface waters for general use.

4.4.2.2. <u>South African General Discharge Limits</u>

The General/Special limits (General Authorisation, GN665 of September 2013) and standard (GN 991 of May 1984 as amended by GN 1930 of August 1984 and GN 1864 of November 1996) for discharge of wastewater into a water source are also used to assess the water quality in this report (Table 4-2). The General/Special Limits have been adopted because the available WUL was obtained in 2013 and is therefore invalid. There is no background groundwater to be used. The hydrocensus study groundwater appears to be contaminated by mining activities.

Table 4-2: Water Quality Guidelines

Parameter	General Limit (2013)	IFC Discharge Limits (2007)
Faecal Coliforms (per 100 ml)	1000	
Chemical Oxygen Demand (mg/l)	75	
pH (s.u)	5.5-9.5	6.0-9.0
Ammonia (ionized and unionized) as Nitrogen (mg/l)	6.0	
Nitrate/Nitrite as Nitrogen (mg/l)	15.00	
Chlorine as Free Chlorine (mg/l)	0.25	
Suspended Solids (mg/l)	25.00	
Electrical Conductivity (mS/m)	70 mS/m above intake to a maximum of 150 mS/m	
Sodium (mg/l)	Ns	

Parameter	General Limit (2013)	IFC Discharge Limits (2007)	
Orthophosphate as phosphorus (mg/l)	10.00		
Fluoride (mg/l)	1.00		
Soap, oil, or grease (mg/l)	2.50		
Dissolved Arsenic (mg/l)	0.02	0.10	
Dissolved Cadmium (mg/l)	0.005	0.05	
Dissolved Chromium		0.10	
Dissolved Chromium (VI) (mg/l)	0.05		
Dissolved Copper (mg/l)	0.01	0.30	
Dissolved Cyanide (mg/l)	0.02		
Dissolved Iron (mg/l)	0.30	2.00	
Dissolved Lead (mg/l)	0.01		
Dissolved Manganese (mg/l)	0.10	0.50	
Dissolved Mercury and its compounds (mg/l)	0.005		
Dissolved Nickel (mg/L)		0.50	
Dissolved Selenium (mg/l)	0.02		
Dissolved Zinc (mg/l)	0.10	0.50	
Boron (mg/l)	1.00		

5. Geochemical Test Work

This section describes the sampling and laboratory analysis used for the study.

5.2. Sampling

Digby Wells collected three seepage water samples from the exixting tailings, South Sand, 1L23-1L25 and 1L13-1L15, on the 4th of October 2021.

Reprocessed tailings from metallurgical test work undertaken on a sample of 1L13 1L15 TSF were delivered to Digby Wells on the 24th of March 2022 for laboratory test work. The reprocessed tailings were generated in the laboratory by Maelgwyn South Africa. It is assumed that the same metallurgical process will be used during operations for all the other TSFs.

Table 5-1: Sampling Details

Sample ID	Sample Type Collected From					
Seepage Water from Existing TSFs						
South Sand	Seepage Water	Field				
1L23-1L25	Seepage Water	Field				
1L13-1L15	Seepage Water	Field				
Reprocessed Tailings						
1L13-1L15-1	Tailings	Metallurgical Test Work				
1L13-1L15-2	Tailings	Metallurgical Test Work				
1L13-1L15-1	Supernatant Water	Metallurgical Test Work				

5.3. Laboratory Analysis

Waterlab (Pty) Ltd, a SANAS laboratory, analysed the samples. The analytical suite included the following:

- Sample preparation crushing, grinding, and compositing of the tailing;
- Mineralogical analysis X-ray diffraction (XRD) analysis to -determine the mineral constituents of the samples;
- Acid digestion (aqua regia) followed by semi-quantitative 29 elements Inductively Coupled Plasma (ICP) scan;
- Deionised (DI) leachate test with a 4:1 liquid:solid ration;
- Synthetic Precipitation Leaching Procedure (SPLP) leach testing 20:1 liquid: solid ratio;
- Acid-Base Accounting (ABA) tests including sulphur speciation (total sulphur, sulphate sulphur, and sulphide sulphur); and
- NAG test where an oxidising agent (hydrogen peroxide) is used to assess whether a sample can neutralise the potential acidity on complete oxidation of sulphide.

6. Geochemical characteristics

This section discusses the geochemical characteristics of the tailings. The laboratory certificates of analysis are presented in Appendix A.

6.2. Processed Tailings

6.2.1. Mineralogy

The mineral composition indicates the long-term geochemical behaviour of the material. The purpose of the analysis was to identify the mineral phases present in the tailing that could be a source of acidity, neutralisation capacity, or metals.

The laboratory prepared the samples for XRD analysis using a zero-background holder. The diffractograms were generated using a Malvern PANalytical Aeris diffractometer. The instrument used a PIXcel detector with variable divergence and receiving slits with Fe-filtered Co-K α radiation (λ = 1.789Å). X'Pert Highscore Plus software was used to identify the mineral phases. The Rietveld method (Autoquan Program) was used to estimate the relative phase amounts in percentage weight, normalising them to 100%.

Digby Wells evaluated the mineralogical analysis results on the following basis:

- Occurrence relative quantities described as predominant to trace (normalised to 100%);
- Weathering rates dissolving, fast weathering to inert; and
- The presence and quantities of acid-forming/neutralising minerals

Table 6-1 presents a summary of the mineralogy results.. The mineralogy of the reprocessed tailing is as follows:

- No acid-forming minerals have been detected;
- No fast-dissolving acid neutralising minerals were detected; and
- Aluminosilicates occur in the tailing and include pyrophyllite (7.79%), chlorite (1.42%) and biotite (0.44%). The weathering rates of these minerals are intermediate and can react with acid and consume acidity to contribute to the overall NP of the tailings.

In summary, no acid-forming and fast acid neutralising minerals were detected in the reprocessed tailing samples. The aluminosilicates detected have an intermediate weathering rate and include pyrophyllite, chlorite and biotite. The aluminosilicates will contribute to the overall netralisation potential (NP) of the tailings in the long term.

Table 6-1: Mineralogy of the 1L13-1L15 TSF the reprocessed tailings

		Mineral (%)	neral (%) Molecular Formula		1L13-1L15-1	1L13-1L15-2	
			Willieral (%)		Wioleculai Formula	157163	157164
sing			Pyrophyllite	Al(Si	2O₅)(OH)	10.05	5.53
[6 is]	Weath	Intermediate Weathering Rate	Chlorite	(Mg,	Fe)5Al(AlSi3O10)(OH)8	1.35	1.49
Acid	Nate		Biotite	K(Mg	g,Fe) ₃ ((OH) ₂ AlSi ₃ O ₁₀)	0.29	0.59
Secondary Mineral		Gypsum	Ca(S	O ₄)(H ₂ O) ₂	0.56	0.43	
Resistant/Inert		Quartz	SiO ₂		87.8	92.0	
			Total	•		100	100
Predominant		>50%					
Abundant 2		20-50%					
Less abundant 1		10-20%					

Abundant 20-50% Less abundant 10-20% Minor 3-10% Trace <3%

6.2.2. Acid Rock Drainage Potential

Acid-base accounting (ABA) testing was used to assess the acid generating and neutralising potential of the tailings. The ABA is a series of compositional analyses and calculations that include the following:

- The measurement of paste pH;
- Determination of sulphur species;
- Calculation of the Sulphide Acid Potential (SAP) from sulphide;
- Determination of NP;
- Calculation of Neutralisation Potential Ratio (NPR = NP/AP);
- Calculation of Nett Neutralisation Potential (NNP = NP AP); and
- Determination of NAG pH. The NAG pH indicates the resultant pH on the complete oxidation of sulphides in the tailing using hydrogen peroxide.

Digby Wells followed the Prediction Manual for Drainage Chemistry from sulfidic geological materials criteria (MEND, 2009) in assessing the ARD potential of the tailings. The generation of acidic drainage requires AP to exceed NP. Acidic drainage will only result when the rate of acid generation exceeds that of acid neutralisation.

Assuming accurate AP and NP measurement, future drainage pH is:

- PAF if NP/AP < 1;
- Not Acid Forming (NAF) if NP/AP > 2;

- Uncertain if NP/AP is between 1 and 2; and
- PAF if NNP is less than -20 kg CaCO₃/tonne.
- A NAG pH < 4.5 indicates acid generation, and a NAG pH > 4.5 indicates NAF.

Table 6-2 presents a summary of the ABA and sulphur speciation results for the tailings samples. The acid-generating and neutralising characteristics of the tailings are as follows:

- The paste pH is neutral (pH 7.62-7.67);
- Sulphur species are the primary source of acid, acidity, and potentially deleterious elemental species in the drainage from the tailings. Total sulphur in the reprocessed tailings ranges from 0.67-0.79% and occurs predominantly (68%) as sulphides (0.4-0.6%);
- The sulphide acid potential (SAP) ranges from 12-19 kg CaCO₃/t;and
- Consistent with the mineralogy, the tailings classify as uncertain/inconclusive (neither PAF nor NAF) based on ABA and NAG tests. The samples require kinetic tests to determine their long-term ARD/ML potential.

In summary, the tailings are neutral (paste pH 7.62-7.67), with 68% of the total sulphur detected occurring as sulphide-sulphur (0.4-0.6%). The tailings samples are classified as Uncertain/Inconclusive (neither PAF nor NAF). The samples require kinetic tests to determine their long-term ARD/ML potential.

Table 6-2: Acid-base accounting and sulphur speciation for the 1L13-1L15 TSF reprocessed tailings

	Units	1L13-1L15-1	1L13-1L15-2
Paste pH	s.u	7.62	7.67
Total sulphur as S	%	0.67	0.79
Sulphide as S (Pyritic sulphur)	%	0.40	0.60
Sulphate as SO ₄	%	0.27	0.19
Sulphide Acid potential (SAP)	kg CaCO₃/t	12.39	18.74
Total Acid potential (TAP)	kg CaCO₃/t	20.8	24.6
Neutralisation potential (NP)	kg CaCO₃/t	2.0	0.8
NP:AP ratio (SNPR)	No unit	0.16	0.04
NP:AP ratio (TNPR)	No unit	0.10	0.03
Net neutralising potential (SNNP)	kg CaCO₃/t	-10.4	-18.0
Net neutralising potential (TNNP)	kg CaCO ₃ /t	-18.8	-23.9

	Units	1L13-1L15-1	1L13-1L15-2
NAG	kg H ₂ SO ₄ /t	7.64	10.19
NAG pH (pH 4.5)	s.u.	2.70	2.69
NAG	kg H ₂ SO ₄ /t	3.72	2.94
NAG pH (pH 7)	s.u.	4.53	4.50
Classification (paste pH/NPR)	-	Uncertain	Uncertain
Classification (NAG pH/NNP)		Uncertain	Uncertain

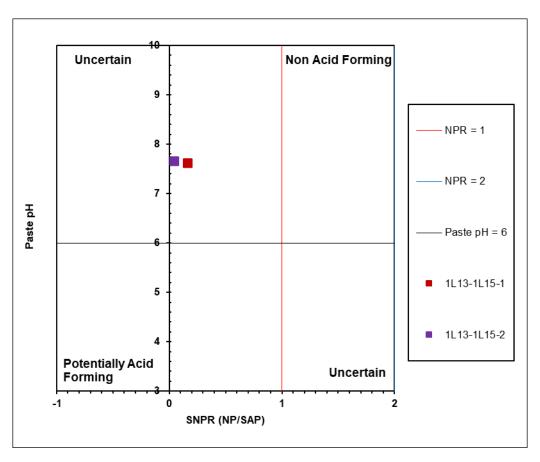


Figure 6-1: Paste pH versus SNPR for the reprocessed tailings from 1L13-1L15 TSF

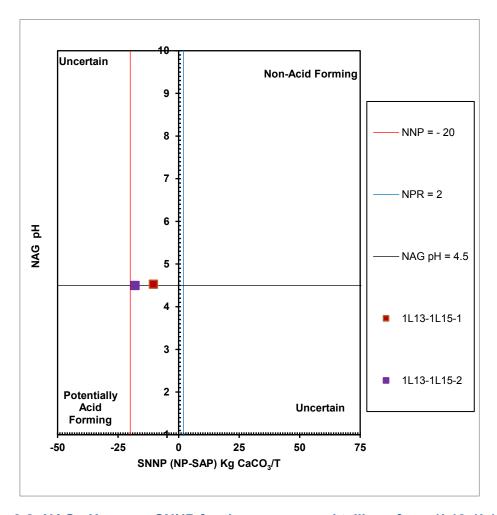


Figure 6-2: NAG pH versus SNNP for the reprocessed tailings from 1L13-1L15 TSF

6.2.3. Elemental Enrichment

The total metal analysis was undertaken to identify elements enriched in the materials that may be of environmental concern relative to the average elemental concentration for the unprocessed tailings..

Table 6-3 presents the elemental concentrations and GAI values for the reprocessed tailings. A GAI value of 0 indicates that the element is present at a concentration equal to or less than the crustal abundance. A GAI of six indicates approximately a 100-fold, or more, enrichment above average elemental concentration for the unprocessed tailings. As a general guide, a GAI of three or above is significant in triggering environmental concerns. All elements are below the GAI.

Table 6-3: Elemental concentrations and GAI values for the 1L13-1L15 TSF reprocessed tailings

Sample ID	IL13-L15-1	IL13-L15-2	Average Elemental Composition of Existing Tailings (Ore) n=6	IL13-L15-1	IL13-L15-2
Ag	<10	<10	8.33	-	-
Al	11600	12800	7326	0	0
As	111	107	78.7	0	0
Ва	34	39	90.07	0	0
Be	<10	<10	8.33	-	-
Bi	<10	<10	8.33	-	-
Cd	0.4	0.4	0.33	0	0
Со	29	29	124	0	0
Cr	390	446	509	0	0
Cu	30	27	23.81	0	0
Fe	15600	16400	17649	0	0
K	2405	2052	1604	0	0
Mg	800	1,200	999	0	0
Mn	631	598	1333	0	0
Мо	<10	<10	8.33	-	-
Ni	112	107	90.07	0	0
Pb	183	154	149	0	0
Sb	<0.400	<0.400	0.33	0	0
Se	<0.400	<0.400	0.33	0	0
Sr	<10	12	20.03	-	0
Ti	1296	1282	1318	0	0
U	40	40	43.79	0	0
V	<10	<10	25.64	-	-
Zn	168	118	143	0	0

The results indicate no enrichment of any of the elements in the reprocessed tailings relative to the average total elemental concentrations of the existing tailings (ore).

6.3. Existing Seepage versus Reprocessed Tailings Supernatant Water Quality

The seepage water collected from the toes of three TSFs (South Sand, 1L23-1L25 and 1L13) indicates the base case seepage quality at the site from the existing tailings.

The supernatant water indicates the potential seepage water quality after the reprocessing of tailings. Supernatant water is from metallurgical test work undertaken on a tailings sample from 1L13-1L15 TSF.

Table 6-4 presents the results of the assessment of the seepage and supernatant water quality against the Water Quality Guidelines. The results of the assessment are presented below.

6.3.1. Seepage Water

The assessment of the seepage water indicates the following:

- The seepage water is acidic, pH ranging between 2.4 and 2.8, and below the General Limits and the IFC guidelines;
- The electrical conductivity ranges between 435 mS/m and 960 mS/m with all samples being above the General Limits of 150 mS/m;
- Arsenic concentration exceeds the General Limits (0.02 mg/L) and IFC guidelines (0.1 mg/L) ranging from 0.013 mg/L to 0.79 mg/L;
- Copper, iron, manganese and zinc are all above the General and IFC guideline limits for all samples ranging between 0.36 – 25.00 mg/L, 44.00 – 931 mg/L, 26.00 – 258 mg/L and 3.52 – 18.00 mg/L respectively; and
- Nickel exceeds the IFC limits for all samples ranging between 2.6 27 mg/L;
- Lead exceeds the General Limits for South Sand (0.07 mg/L) and 1L23-1L25 (0.02 mg/L);
- Cadmium marginally (0.06 mg/L) exceeds the IFC limit for South Sand TSF at 0.6 mg/L; and
- Selenium exceeds the General Limits (0.02 mg/L) for South Sand TSF seepage water at 0.05 mg/L.

6.3.2. Supernatant Water

The assessment of the supernatant water indicates the following:

- The pH of supernatant water is alkaline (pH 9.0) and within the General Limits and IFC limit;
- The electrical conductivity is above the General Limit at 456 mS/m;
- Fluoride marginally (1.1 mg/l) exceeds the General Limits (1.0 mg/L); and

- Arsenic, cadmium, iron, and mercury are all above the General Limits at 0.06 mg/L,
 0.03 mg/L, 0.61 mg/L, and 0.005 mg/L respectively;
- Copper, manganese, nickel and zinc are all above the IFC limit at 3.9 mg/L, 2.4 mg/L,
 1.7 mg/L and 13 mg/L respectively; and
- Cyanide concentration is 134 mg/L, which is relatively high. However, this is not a
 concern because the metallurgical test work method used to generate the tailings
 included cyanide in the process at levels way higher than the levels that will be used
 in the actual reprocessing process.

In summary, the current seepage from the existing TSF is acidic (pH 2.4-2.8). The constituents of concern in the seepage include arsenic, cadmium, copper, electrical conductivity, iron, lead, manganese, nickel, selenium and zinc.

On the contrary, the reprocessed tailings will be alkaline (pH 9.0). The potential contaminants of concern that exceed the IFC limits are copper, manganese, nickel and zinc. Electrical conductivity, arsenic, iron and total cyanide also exceed the General Limits.

The assessment indicates that the supernatant water quality will be substantially better than the seepage from the current TSF. The supernatant water quality will be alkaline (pH 9.0) relative to the current acidic seepage (pH 2.4-2.8). The alkaline pH reduces the mobilisation of metals/metalloids from the reprocessed tailings resulting in a reduced total dissolved solids to 4116 mg/L from 4166-14094 mg/L.

Table 6-4: Summary of seepage and supernatant quality from the 1L13-1L15 TSF and reprocessed tailings

		South Sand	1L23-1L25	1L13	IL13-L15-2	General Discharge	
Analytes	Units	Seepage Water		Supernatant Water	Limits (2013)	IFC (2007)	
		Physi	icochemical F	Parameters			
pH at 25°C	s.u	2.4	2.8	2.5	9.0	5.5-9.5	6.0-9.0
Conductivity	mS/m	960	435	839	456	150	
TDS Measured	mg/L	14094	4166	11544	4116		
Acidity as CaCO ₃	mg/L	6280	760	3480	<5.0		
			Inorganic An	ions			
Chloride	mg/L	24	37	227	174		
Sulfate	mg/L	8606	2475	5448	2267		
Fluoride	mg/L	0.40	0.30	0.30	1.1	1.0	
Nitrate as N	mg/L	<0.1	0.10	<0.1	<0.1	15	
Total Cyanide	mg/L	<0.07	<0.07	<0.07	134		
Free and Saline Ammonia	mg/L	5	41	58	8.3		
Sodium as Na	mg/L	382	67	335	476		
Potassium as K	mg/L	52	25	11.5	219		
Calcium as Ca	mg/L	474	512	475	554		
Magnesium as Mg	mg/L	455	164	625	44		
		М	etals and met	talloids	•		

		South Sand	1L23-1L25	1L13	IL13-L15-2	General	IFC (2007)
Analytes	Units	s	eepage Water	r	Supernatant Water	Discharge Limits (2013)	
Aluminium as Al	mg/L	674	52	84	0.46		
Antimony as Sb	mg/L	<0.001	<0.001	<0.001	0.003		
Arsenic as As	mg/L	0.79	0.013	0.45	0.06	0.02	0.1
Barium as Ba	mg/L	0.067	0.066	0.052	<0.025		
Beryllium as Be	mg/L	<0.025	<0.025	<0.025	<0.025		
Bismuth as Bi	mg/L	<0.025	<0.025	<0.025	<0.025		
Boron as B	mg/L	<0.025	1.0	<0.025	0.11	1.0	
Cadmium as Cd	mg/L	0.06	0.005	0.003	0.033	0.005	0.05
Chromium as Cr	mg/L	5.6	1.0	1.0	<0.025		0.1
Chromium VI	mg/L	<0.010	0.059	<0.010	0.013	0.05	
Cobalt as Co	mg/L	13	2.3	1.3	3.5		
Copper as Cu	mg/L	25	0.36	0.82	3.9	0.01	0.3
Iron as Fe	mg/L	628	44	931	0.61	0.3	2.0
Lead as Pb	mg/L	0.07	0.02	0.009	<0.001	0.01	0.2
Manganese as Mn	mg/L	26	110	258	2.4	0.1	0.5
Mercury as Hg	mg/L	<0.001	<0.001	0.001	0.005	0.005	
Molybdenum as Mo	mg/L	<0.025	<0.025	<0.025	<0.025		2.0
Nickel as Ni	mg/L	27	3.1	2.6	1.7		0.5
Phosphorus as P	mg/L	3.39	1.4	2.64	0.08		
Selenium as Se	mg/L	0.047	0.004	0.003	0.012	0.02	
Silicon as Si	mg/L	132	48	66	4.0		
Silver as Ag	mg/L	<0.025	<0.025	<0.025	<0.025		
Strontium as Sr	mg/L	0.20	1.2	1.6	0.54		
Thallium as TI	mg/L	<0.025	<0.025	<0.025	<0.025		
Thorium as Th	mg/L	1.5	0.023	0.18	0.001		
Tin as Sn	mg/L	<0.001	<0.001	<0.001	<0.001		
Titanium as Ti	mg/L	0.51	0.46	0.43	<0.025		
Uranium as U	mg/L	0.027	0.78	0.95	0.31		
Vanadium as V	mg/L	0.055	0.026	0.132	<0.025		
Zinc as Zn	mg/L	18	3.5	2.6	13	0.1	0.5

6.4. Leaching Potential

The mobility of the metals and salts from materials is typically assessed using the leach test for solid samples. The reprocessed tailings from 1L13-1L15 TSF were subjected to deionised (DI) leachate test at a 1:4 water-rock ratio. It is noted that laboratory leachate tests do not directly replicate metal release under field conditions and apply only as a guide.

To assess the metal leaching potential of the reprocessed tailings from 1L13-1L15 TSF, the leachate results were assessed against the General and IFC Limits. The results of the assessment are presented in Table 6-5.

Table 6-5: Summary of potential constituents of concern for 1L13-1L15 TSF

	Units	Reporting Limit	1L13-1L15- 1	1L13-1L15- 2	General Limit (2013)	IFC Guidelines
		Physicochemic	cal Parameters			
pH at 25°C	s.u		7.5	7.6	5.5-9.5	6.0-9.0
Conductivity	mS/m		225	190	150	
TDS at 180°C (measured)	mg/L	<5	1893	1554		
TDS Calculated	mg/L	<5	24	40		
Total Alkalinity as CaCO ₃	mg/L	<5	6.0	4.0		
	•	Inorgani	Anions			
Chloride	mg/L	<2	6.0	4.0		
Fluoride	mg/L	<0.10	0.2	0.2	1	
Nitrate as N	mg/L	<0.10	0.1	0.1	15	
Sulfate	mg/L	<5	1282	1032		
Calcium as Ca	mg/L	<1	500	425		
Magnesium as Mg	mg/L	<1	36	32		
Sodium as Na	mg/L	<1	37	32		
Potassium as K	mg/L	<0.5	31	26		
		Metals and	metalloids			
Aluminium as Al	mg/L	<0.100	<0.100	<0.100		
Antimony as Sb	mg/L	<0.001	0.002	0.002		
Arsenic as As	mg/L	<0.001	0.03	0.03	0.02	0.1
Barium as Ba	mg/L	<0.025	<0.025	<0.025		
Beryllium as Be	mg/L	<0.025	<0.025	<0.025		
Bismuth as Bi	mg/L	<0.100	<0.025	<0.025		
Boron as B	mg/L	<0.025	0.08	0.07	1	
Cadmium as Cd	mg/L	<0.001	<0.001	<0.001	0.005	0.05
Chromium as Cr	mg/L	<0.025	<0.025	<0.025		0.1
Chromium VI	mg/L	<0.010	<0.010	<0.010	0.05	
Cobalt as Co	mg/L	<0.100	0.42	0.31		
Copper as Cu	mg/L	<0.010	<0.010	<0.010	0.01	0.3
Iron as Fe	mg/L	<0.025	0.29	0.25	0.3	2
Lead as Pb	mg/L	<0.001	<0.001	<0.001	0.01	0.2
Lithium as Li	mg/L	<0.025	<0.025	<0.025		
Manganese as Mn	mg/L	<0.025	0.76	0.62	0.1	0.5
Mercury as Hg	mg/L	<0.001	0.001	<0.001	0.005	
Molybdenum as Mo	mg/L	<0.025	<0.025	<0.025		2
Nickel as Ni	mg/L	<0.025	0.1	0.05		0.5
Phosphorus as P	mg/L	<0.025	<0.025	<0.025		
Selenium as Se	mg/L	<0.001	0.004	<0.001	0.02	
Silicon as Si	mg/L	<0.2	4.74	5.07		
Silver as Ag	mg/L	<0.025	<0.025	<0.025		
Thorium as Th	mg/L	<0.001	<0.001	<0.001		
Titanium as Ti	mg/L	<0.025	<0.025	<0.025		

	Units	Reporting Limit	1L13-1L15- 1	1L13-1L15- 2	General Limit (2013)	IFC Guidelines
Uranium as U	mg/L	<0.001	0.24	0.22		
Vanadium as V	mg/L	<0.025	<0.025	<0.025	0.1	
Zinc as Zn	mg/L	<0.025	<0.025	<0.025	0.1	0.5

The assessment evaluated the data quality of the leachate solutions by balancing the reported cation and anion concentrations. The ion imbalances (5.1 - 8.8%) for the DI leachate results were within the error margin of $\pm 10\%$ taken to represent an acceptable level of analytical accuracy. The assessment of the reprocessed tailings leachate indicates the following:

- The leachate pH is neutral, 7.5 and 7.6, and within the General Limits and IFC limits;
- The electrical conductivity (190 225 mS/m) exceeds the General Limits of 150 mS/m; and
- Arsenic (0.03 mg/L) exceeds the General Limit (0.02 mg/L) but is within the IFC limits (1.0 mg/L); and
- Manganese (0.62-0.76 mg/l) exceeds the General Limit (0.1 mg/l) but marginally exceeds the the IFC limit (0.5 mg/L).

In summary, the assessment indicates that the leachate from the reprocessed tailings will be substantially better than the current seepage from the existing TSFs. The seepage quality will change from acidic (pH 2.4-2.8) to neutral (pH 7.5-7.6) resulting in a significant reduction in total dissolved solids from 4166-14094 mg/L in the current seepage to 1554-1893 mg/L in the reprocessed tailings leachate. The metals/metalloids will not be mobilised under the neutral pH of the reprocessed tailings. All the metals/metalloids will be within the IFC limits except manganese (0.62-0.76 mg/L) which marginally exceeded the IFC limit (0.5 mg/L).

6.5. Tailings Classification

The study assessed the liner requirements for the material against the Norms and Standards for the Assessment of Waste for Landfill Disposal, 2013 (GN R635 of 24 August 2013) and the Norms and Standards for Disposal of Waste to Landfill, 2013 (GN R636 of 24 August 2013).

The type of waste was determined by comparing the TC and LC of the elements and chemical substances in the waste with the TCT and LCT limits. Based on the TC and LC limits of the elements and chemical substances in the materials exceeding the corresponding TCT and LCT limits respectively, the waste type and the landfill disposal requirements were determined.

6.5.1. Total Concentration Threshold

Table 6-6 presents a summary of the assessment of total concentrations against the TCT. The constituents that exceed the threshold limits include the following:

- Arsenic (average 109 mg/kg);
- Copper (average 28.28 mg/kg);

- Nickel (average 109.58 mg/kg); and
- Lead (average 168.60 mg/kg).

Table 6-6: Total concentrations in mg/kg for the tailings material against the TCT

Elements	Units	Reporting Limits	1L13- 1L15-1	1L13- 1L15-2	Total Cor	ncentrations 7 (mg/l)	Threshold		
		Lillits	157163	157164	тсто	TCT1	TCT2		
	Inorganic Ions								
Fluoride	mg/kg	<0.5	<0.5	<0.5	100	10000	40000		
			Metal	lons					
As	mg/kg	<0.400	111	106.80	5.8	500	2000		
В	mg/kg	<10	<10	<10	150	15000	6000		
Ва	mg/kg	<10	33.73	38.70	62.5	6250	25000		
Cd	mg/kg	<0.400	0.40	0.40	7.5	260	1040		
Co	mg/kg	<10	28.76	28.57	50	5000	20000		
Cr total	mg/kg	<10	390	446	46000	800000	N/A		
Cr (VI)	mg/kg	<2	<2	<2	6.5	500	2000		
Cu	mg/kg	<0.010	30	27.05	16	19500	78000		
Hg	mg/kg	<0.400	<0.400	<0.400	0.93	160	640		
Mn	mg/kg	<10	631	598	1000	25000	100000		
Мо	mg/kg	<10	<10	<10	40	1000	4000		
Ni	mg/kg	<10	112	107	91	10600	42400		
Pb	mg/kg	<0.400	183	154	20	1900	7600		
Sb	mg/kg	<0.400	<0.400	<0.400	10	75	300		
Se	mg/kg	<0.400	<0.400	<0.400	10	50	200		
V	mg/kg	<10	<10	<10	150	2680	10720		
Zn	mg/kg	<10	168	118	240	160000	640000		

6.5.2. Leachate Concentration Threshold

Table 6-7 presents a summary of the assessment of leachable concentrations. The leachable concentrations of sulphate and arsenic marginally exceed the LCT0 limits.

In summary, the total metal concentrations of arsenic, copper, nickel and lead exceeded the TCT0 limit but did not exceed the TCT1 limit. These metals are relatively immobile under the neutral conditions of the reprocessed tailings and are not mobilised into the leach solution with all their LC below the LCT0 limit. The leachable concentrations of sulphate and arsenic marginally exceed the LCT0 limits.

Overall, the tailings are assessed to be Type 3 waste; $TC \le TCT1$ and $LCT0 < LC \le LCT1$. Applying the N&S for Disposal of Waste to Landfill, the disposal of the tailings would require a liner consistent with a Class C barrier system illustrated in Figure 6-3.

Table 6-7: SPLP concentration results for the waste materials against the LCT

Sample ID	Units	Reporting Limit	1L13- 1L15-1	1L13-1L15-2	Co	Leachabl ncentrati Threshol	ons	
			157163	157164	LCT0	LCT1	LCT2	
		Inorga	nic Anions					
pН	s.u		7.20	7.40				
EC	mS/m		65	55				
Alkalinity	mg/L as CaCO₃		16	16				
TDS calculated	mg/L		414	339	1000	12500	25000	
CI	mg/L	<2	<2	<2	300	15000	30000	
SO ₄	mg/L		270	222	250	12500	25000	
F	mg/L	<0.2	<0.2	<0.2	1.5	75	150	
NO ₃ -N	as N mg/L	<0.1	<0.1	<0.1	11	550	1100	
	Metal lons							
As	mg/L	<0.001	0.02	0.02	0.01	0.5	1	
В	mg/L	<0.025	0.03	<0.025	0.5	25	50	
Ва	mg/L	<0.025	0.03	0.03	0.7	35	70	
Cd	mg/L	<0.001	<0.001	<0.001	0.003	0.15	0.3	
Со	mg/L	<0.025	0.08	0.09	0.5	25	50	
Cr tot	mg/L	<0.025	<0.025	<0.025	0.1	5	10	
Cu	mg/L	<0.010	<0.010	<0.010	2	100	200	
Hg	mg/L	<0.001	0.002	<0.001	0.006	0.3	0.6	
Mn	mg/L	<0.025	0.17	0.13	0.5	25	50	
Мо	mg/L	<0.025	<0.025	<0.025	0.07	3.5	7	
Ni	mg/L	<0.025	<0.025	<0.025	0.07	3.5	7	
Pb	mg/L	<0.001	<0.001	<0.001	0.01	0.5	1	
Sb	mg/L	<0.001	<0.001	<0.001	0.02	1	2	
Se	mg/L	<0.001	<0.001	<0.001	0.01	0.5	1	
V	mg/L	<0.025	<0.025	<0.025	0.2	10	20	
Zn	mg/L	<0.025	<0.025	<0.025	5	250	500	

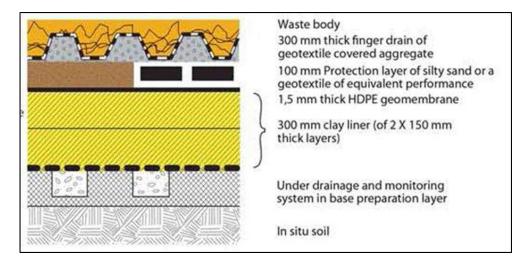


Figure 6-3: Illustration of a Class C barrier requirements for waste material (GN R636 of 23 August 2013)

Digby Wells notes that the barrier systems are not necessarily the default barrier systems if Pan African Resources can demonstrate that the risks associated with the reprocessed tailings can be adequately managed without the default barrier systems. An alternative barrier with the same or lower performance criteria as Class C liner may also be considered. While the regulation makes provision for a risk-based approach, there is no guidance provided by the legislation as to what information the authorities require in a risk-based approach.

7. Geochemical Implications

This section discusses the geochemical implications of the results. Table 7-1 presents a summary of the geochemical characteristics of reprocessed tailings from 1L13-1L15 TSF, the risks, and management options.

Table 7-1: Geochemical characteristics of the tailings, risks, and mitigation measures

Material	Tailings (n=2)				
	Current pH	Neutral paste pH (pH of 7.62 - 7.67)			
iics		Non acidic (pH of 4.50 - 4.53) (> 4.5) - neutral			
acterist	Future pH	The two samples classified as uncertain under the ABA and NAG tests.			
Char	Mineralogy	No acid-forming minerals			
Geochemical Characteristics		No fast-dissolving carbonates acid neutralising minerals detected			
Geoche		Aluminosilicates – pyrophyllite, chlorite, biotite, muscovite, smectite, kaolinite, and orthoclase.			
		Alkaline pH (pH of 9.0)			

Material		Tailings (n=2)			
	Supernatant Water Quality	Potential constituents of concern - conductivity, arsenic, copper, cadmium, iron, manganese, mercury, nickel and zinc			
	Lacabata	Neutral leachate pH (average pH 7.50 - 7.60)			
	Leachate quality	Potential constituents of concern – electrical conductivity, arsenic and manganese.			
Waste Classification		Reprocessed tailings from 1L13-1L15 TSF are classified as Type 3 waste and require a Class C liner as depicted below. Waste body 300 mm thick finger drain of geotextile covered aggregate 100 mm Protection layer of silty sand or a geotextile of equivalent performance 1,5 mm thick HDPE geomembrane 300 mm clay liner (of 2 X 150 mm thick layers) Under drainage and monitoring system in base preparation layer In situ soil			
Geochemical Risks	Seepage and runoff from the tailings containing arsenic, copper, fluoride, iron, manganese, mercury and zinc may be of risk to surface and groundwater quality.				
	require a Class	ed tailings are classified as Type 3 waste and would potentially s C liner underneath the new TSF, with further engagement to be h DWS with respect to the liner requirements.			
	Reprocessing the existing tailings is supported as a measure to remove the existing TSFs that are acidic and contaminant sources at the site. The reprocessed tailings will be neutral with a low risk of leaching metal/metalloids.				
Management	The reprocessing of the tailings should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and processing.				
(Operations to closure and aftercare)	Clean surface water should be diverted away from the operation using runoff control diversions.				
	Dirty water from percolation and runoff from the reprocessing operations and the new reprocessed tailings TSF should be collected in toe paddocks and channelled to the return water dam for management (recycled for use in the plant, dust suppression, treatment before discharge, and establishing vegetation).				
	The reprocessing operations would require monitoring the quality of toe seepage collecting in toe paddocks, return water dam, surface water, and groundwater for potential constituents of concern to include pH, electrical conductivity, copper, cadmium, manganese, nickel and zinc.				

8. Conclusion and Recommendations

No acid-forming minerals were detected in the reprocessed tailings. The tailings are currently neutral in pH but classified as uncertain/inconclusive under ABA and NAG tests in the long term. The leachate from the reprocessed tailings are not acidic but neutral to alkaline.

Although the reprocessed tailings classify as Type 3 waste requiring deposition in a liner consistent with a Class C liner requirements, Digby Wells notes that the barrier systems are not necessarily the default barrier systems if Pan African Resources can demonstrate that the risks associated with the reprocessed tailings can be adequately managed without the default barrier systems. An alternative barrier with the same or lower performance criteria as a Class C liner may also be considered. While the regulation makes provision for a risk-based approach, there is no guidance provided by the legislation as to what information the authorities require in a risk-based approach.

Motivation for an alternative liner may be made on the following basis:

- The leachate from the reprocessed tailings are not acidic but neutral to alkaline. No acid-forming minerals were detected in the reprocessed tailings.
- The metals/metalloids are relatively immobile under the neutral conditions of the reprocessed tailings and are not mobilised into the leach solution with all their LC below the LCT0 limit except sulphate and arsenic which marginally exceed the LCT0 limits but can be managed.
- All the metals/metalloids in the leachate from the reprocessed tailings will be within the IFC limits except manganese (0.62-0.76 mg/L) which marginally exceeded the IFC limit (0.5 mg/L) but can be managed.
- The leachate from the reprocessed tailings will be substantially better than the current seepage from the existing TSFs. The seepage quality will change from acidic (pH 2.4-2.8) to neutral (pH 7.5-7.6) resulting in a significant reduction in total dissolved solids. The total dissolved solids in the seepage will change from 4166-14094 mg/L in the current seepage to 1554-1893 mg/L in the reprocessed tailings.

Overall, reprocessing the existing tailings is supported as a measure to remove the existing TSFs that are acidic and contaminant sources at the site. The reprocessed tailings will be neutral with a low risk of leaching metal/metalloids. The seepage from the reprocessed tailings will be substantially better than the current seepage water.

Based on the above understanding, Digby Wells recommends the following:

- Further characterisation of the reprocessed tailings by kinetic tests is required to determine the long-term ARD/ML potential of the tailings;
- The existing tailings should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and reprocessing that may exacerbate the formation of acidic mine drainage and metal leaching;

- Clean surface water should be diverted away from the operation using runoff control diversions; and
- The reprocessing operations would require monitoring the quality of water for potential constituents of concern including pH, electrical conductivity, arsenic, cadmium, copper, total cyanide, iron, manganese, nickel, lead, selenium and zinc.

9. References

Digby Wells Environmental, 2021. Pan African Resources Prefeasibily Study -Environmental Geochemistry and Waste Classification Assessment, Johannesburg: Pan African Resources.

Fortescue, J., 1992. Landscape geochemistry: retrospect and prospect—1990. *Applied Geochemistry*, pp. 1-53.

INAP, 2009. *Global Acid Rock Drainage Guide.* [Online] Available at: http://www.gardquide.com

MEND, 2009. Prediction Manual for Drainage Chemistry fro Sulfidic Geological Materials, British Columbia, Canada: Mine Environment Neutral Drainage (MEND) Program, Report 1.20.1.

Miller, S., Robertson, A. & Donahue, T., 1997. *Advances in acid drainage prediction using the net acid generation (NAG) test.* Vancouver, CANMET, pp. pp. 533-549.

Price, W. A., 1997. *Draft Guidelines for metal leaching and acid rock drainage at mine sites in British Columbia*. British Columbia: Canada: Ministry of Energy and Mines.

Price, W. & Errington, J., 1995. *ARD Guideline for Mine Sites in British Columbia,* Victoria: BC: Ministry of Energy, Mines and Petroleum Resources.

Soregaroli, B. A. & Lawrence, R. W., 1998. *Update on waste characterization studies*. Polson, Montana, InMine Design, Operations and Closure Conference.

Appendix A: Prefeasibility Study - Geochemistry Report

Pan African Resources Mogale Gold PFS - Geochemistry and Waste Classification Assessment

Prefeasibility Study

Prepared for:

Pan African Resources

Project Number:

DRA7015

August 2021

This document has been prepared by Digby Wells Environmental.

Report Type:	Prefeasibility Study
Project Name:	Pan African Resources Mogale Gold PFS - Geochemistry and Waste Classification Assessment
Project Code:	DRA7015

Name	Responsibility	Signature	Date
Kgaugelo Thobejane	Reporter	Khobejane.	August 2021
Levi Ochieng'	Reviewer	De la companya della companya della companya de la companya della	August 2021

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

ii

EXECUTIVE SUMMARY

Digby Wells Environmental (hereafter Digby Wells) has been appointed by DRA SA (hereafter DRA), to conduct an Environmental and Social Pre-feasibility Study (PFS) and associated specialist studies for the Mintails Mogale Cluster for Pan African Resources (hereafter the Project). This report constitutes the **Environmental Geochemistry Assessment Pre-Feasibility Report** to describe the baseline environmental conditions and assess the potential geochemical impacts of the Project.

The specific objective of the geochemistry study was to assess the potential impacts of acid rock drainage and metal leaching (ARD/ML) of the tailings. The purpose of the study was to describe the current state of the tailings material, identify potential geochemical impacts, and recommend mitigation and management measures for the project.

The study analysed 32 tailing samples across 7 Tailings Storage Facilities (TSF) and a Manganese Slag sample. The geochemical analysis included the following:

- Sample preparation grinding, and compositing of the tailings;
- Mineralogical analysis X-ray diffraction (XRD) analysis to determine the mineral constituents of the samples;
- Total metal analysis acid digestion (aqua regia) followed by semi-quantitative 29 elements Inductively Coupled Plasma (ICP) scan;
- Deionised water leaching test at 1:4 solid to liquid ratio;
- Australian Standard Leach Procedure (ASLP) including Borax and deionised water leaching test at 1:20 solid to liquid ratios;
- Acid-Base Accounting (ABA) tests including sulphur speciation (total sulphur, sulphate sulphur, and sulphide sulphur); and
- Net Acid Generation (NAG) test where an oxidising agent (hydrogen peroxide) is used to assess whether a sample can neutralise the potential acidity on complete oxidation of sulphides.

Table 1-1 presents a summary of the results of the study

Table 1-1: Summary of the results of the study

Material		Tailings (n=32)	Manganese Slag (n=2)	
Current pH		Acidic to slightly alkaline (paste pH 2.4-7.8)	Acidic (Paste pH 4.9-5,0)	
Geochemical Characteristics	Future pH	97% Potentially Acid Forming (PAF) and 3% Inconclusive	100% PAF	
		NAG-pH is acidic (pH 4.5 - 6.5)		

Mat	erial	Tailings (n=32)	Manganese Slag (n=2)	
		Acid Forming - pyrite (0.2 -1.2 wt.%)		
	Mineralogy	Acid Neutralising: • Carbonates - calcite (0.1 - 3.9 wt.%); • Aluminosilicates - chlorite, muscovite, pyrophyllite and kaolinite	Gypsum (48-64%), magnetite (34-36%), and chlorite (18%)	
		Acidic to alkaline (pH 3.9 - 12)	Acidic (Paste pH 4.6)	
	Leachate quality	Potential constituents of concern - pH, electrical conductivity, calcium, iron, mercury, lead, sulphate, and zinc	Potential constituents of concern - pH, EC, B, Ca, Mn, and SO ₄	
Geochem	ical Risks	Acidic seepage and runoff from the tailings and manganese slag containing boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc pose a risk to surface and groundwater quality. Other parameters of concern are pH, electrical conductivity, and TDS.		
Management measures for the proposed reprocessing and the new TSF (Operations to closure)		source footprints at the site; • The tailings and manganese slag minimise exposure to oxidation, we reclamation and processing; Clean surface water should be diverunoff control diversions; • Dirty water from percolation and reslag should be collected in toe pad water dam for management (recyclesuppression, treatment before discontinuous slages and several suppression, treatment before slages and management (recyclesuppression).	should be handled expeditiously to eathering and leaching during erted away from the operation using unoff from the TSFs and manganese docks and channelled to the return led for use in the plant, dust harge, and establishing vegetation); ld require to monitor the quality of toe s, return water dam, surface water, tituents of concern to include pH, ed solids, boron, calcium, iron, te, and zinc; and sistent with design requirements for ninimum would theoretically be the new TSF for the reprocessed	

The tailing characterised in this study are the existing tailings before reprocessing. The geochemistry presented in this report therefore indicates the baseline geochemistry before reprocessing the tailings. The reprocessed tailings were not available for characterisation at the time of the writing of this report. It is recommended that the reprocessed tailings and manganese slag are characterised to update this report when available.

TABLE OF CONTENTS

1	In	ntroducti	on	1
	1.1	Projec	t Location	1
	1.2	Geolo	gy	2
	1.2	2.1 R	egional Geology	2
		1.2.1.1	Witwatersrand Supergroup	2
		1.2.1.2	Ventersdorp Supergroup	2
		1.2.1.3	Transvaal Supergroup	2
		1.2.1.4	Karoo Supergroup	3
	1.2	2.2 Lo	ocal Geology	3
2	Α	ssumpti	ons, Limitations and Exclusions	6
3	R	eporting	Standards	6
	3.1	Eleme	ntal Enrichment	6
	3.2		Base Accounting and Net Acid Generation	
	3.3		leaching potential	
	3.3		ational Environmental Management Act	
		3.3.1.1	Waste Act 2014	8
		3.3.1.2	Waste Type	9
	3.3	3.2 G	roundwater Quality Guidelines	12
	3.4	Limitat	tions	14
4	G	eochem	nical Test Work	14
	4.1	Sampl	ing	14
	4.2		atory Analysis	
5	D	ata Ana	lysis and Interpretations	16
	5.1	Minera	alogy	16
	5.2		Rock Drainage Potential	
	5.3		ntal Enrichment	
	5.4		ing potential	
	5.5		s Classification	
			•	

	5.5.1	Total Concentration Threshold	31
	5.5.2	Leachable Concentration Threshold	31
6	Geoch	nemical Implications and Recommendations	.37
7	Recor	mmendations	.37
8	Concl	usion	.38
9	Refere	ences	.40
		LIST OF FIGURES	
Figi	ure 1-1:	Locality Map	4
Figi	ure 1-2 F	Regional Geology	5
Figi	ure 3-1:	Flow Diagram For Waste Assessment (GN R635 of 23 August 2013)	10
Figi	ure 5-1:	NPR versus SS% for tailing materials	23
		LIST OF TABLES	
Tab	ole 1-1: S	Summary of the results of the study	iii
		Criteria For Interpreting ABA Results Updated From Price (1997) and Sorega	
		A Classification System Based On Paste-pH And NAG-pH Edited From Miller et	
• and		limits are derived by multiplying the LCT2 values by a factor of 4.Table 3-3: To able Concentration Threshold Limits	
Tab	le 3-4: S	Summary of guidelines used in the study	11
Tab	ole 3-5: 0	Groundwater quality limits (WUL, 22 November 2013)	12
Sta	ndard (G	General/Special Limit (General Authorisation, GN665 of 6 September 2013) a GN 991 of 18 May 1984 as amended by GN 1930 of 31 August 1984 and GN 18 mber 1996) for discharge of wastewater into a water resource	364
Tab	le 4-1 T	ailings sample ID and coordinates of locations	14
		Mineralogical composition (wt.%) of tailings material - listed in order of decreas (reactivity) rates	
Tab	le 5-2: <i>A</i>	ABA, NAG, SS% and classification results	21

Table 5-3: Elemental concentrations and GAI values for the tailings	25
Table 5-4: Deionised water leachate quality results for the tailings against the backgroundwater quality	
Table 5-5: Overall waste classification for tailings	33
Table 5-6: Total concentrations in mg/kg for the tailings against the TCT	34
Table 5-7: Deionised water leachable concentration results for the tailings against the LC	CT35
Table 5-8: Borax water leachable concentration results for the tailings against the LCT	36
Table 8-1: Summary of the tailings and manganese slag characterisation	38

LIST OF APPENDICES

Appendix A: Laboratory Certificates

LIST OF ABBREVIATION

Abbreviation	Description
ABA	Acid-Base Accounting
Alk	Alkalinity
AMD	Acid Mine Drainage
AP	Acid Potential
ARD	Acid Rock Drainage
ASLP	Australian Standard Leaching Procedure
CMA	Catchment Management Agency
DEA	Department of Environmental Affairs
DI	Deionised
DWS	Department of Water and Sanitation
EC	Electrical Conductivity
GAI	Geochemical Abundance Index
GN	Government Notice
LC	Leachable Concentration
LCT	Leachable Concentrations Threshold
mg/kg	milligram per kilogram
mg/L	milligram per litre
μS/cm	microSimens/centimeter
ML	Metal Leaching
NAF	Non-Acid Forming
NAG	Nett Acid Generation
NNP	Nett Neutralising Potential
NP	Neutralising Potential
NPR	Neutralising Potential Ratio
PAF	Potential Acid Forming
PAR	Pan African Resources PLC
NEM: WAA	National Environmental Management: Waste Amendment Act 26 of 2014
SS%	Sulphide-Sulphur percent
s.u	Standard Unit
TCT	Total Concentrations Threshold
TDS	Total Dissolved Solids
TSF	Tailings Storage Facility

Abbreviation	Description			
UTD	Undetermined			
US EPA	US Environmental Protection Agency			
WMA	Water Management Area			
wt.%	weight percent			
WUL	Water Use License			
wt.%) wt.%)				
XRD	X-Ray Diffraction			

1

1 Introduction

Digby Wells Environmental (hereafter Digby Wells) has been appointed by DRA SA (hereafter DRA), to conduct an Environmental and Social Pre-feasibility Study (PFS) and associated specialist studies for the Mogale Cluster (GP) 30/5/1/2/2 (206) Mining Right (MR) and, more specifically for the proposed construction of a large-scale gold tailings retreatment operation for Pan African Resources PLC (hereafter the Project). Pan African Resources PLC (PAR) has entered into a Sale and Purchase Agreement for the acquisition of the shares in and claims against Mogale Gold (Pty) Ltd (Mogale Gold). The agreement was entered into between PAR and the liquidators of Mintails Mining SA (Pty) Ltd (in liquidation) (MMSA). MMSA is the holding company of Mogale Gold. The intended transaction is subject to a due diligence investigation which is in the process of being concluded.

The project consists of 120 Mt of tailings to be reprocessed and deposited at a new TSF. Six dumps are being considered to be reprocessed, the largest of which amounts to 57.9 Mt, while the smallest contains 0.57 Mt. The primary location of processed tailings storage has been earmarked for deposition in the West Wits Pit. This report constitutes the **Environmental Geochemistry Assessment Pre-Feasibility Report** to describe the baseline environmental conditions and assess the potential geochemical impacts of the Project.

The purpose of the Pre-Feasibility Study (PFS) Report is to detail the Environmental and Social baseline for the project, highlighting the environmental and social sensitivities associated with the project.

1.1 Project Location

The Mining Right Area of the Mintails Mogale Cluster includes: GI, G2 plant; Cams North Sand; South Sand; 1L23; 1L28; 1L13; 1L8; 1LI0; West Wits Pit (WWP) and Lancaster Dam. An existing Water Use License (WUL) No. 27/2/2/C423/1/1 was issued on 22 November 2013 to Mintails Mining SA (Pty) Ltd: Mogale Gold. The mining right is located on Portions 66 and 99 of the farm Waterval 174 IQ and portions 136 and 209 of the farm Luipaardsvlei 246 IQ.

The project is within the Mogale City Local Municipality (MCLM), which is located within the West Rand District Municipality (WRDM). MCLM is the regional services authority and the area falls under the jurisdiction of the Krugersdorp Magisterial District.

The site is located in the catchment of the Upper Wonderfonteinspruit, quaternary catchment C23D, which forms part of the Vaal River Water Management Area (WMA) within the Vaal Catchment Management Agency (CMA). The project is about 4 km south of Krugersdorp and north-east of Randfontein, approximately 10 km off the N14 National Road in the Gauteng Province, in an area that has been transformed by past gold mining activities.

The regional setting and location of the site is illustrated in Figure 1-1.

1.2 Geology

1.2.1 Regional Geology

The regional geology comprises of four main supergroups, namely: Witwatersrand, Ventersdorp, Transvaal and Karoo. The characteristics of these geological groups are discussed, in their chronological order (oldest first), in the subsections below. The regional geology of the area is also indicated in Figure 1-2.

1.2.1.1 Witwatersrand Supergroup

The Witwatersrand Basin is a thick sequence of shale, quartzite and conglomerate. The average dip of the strata varies between 10° and 30° south, although localised dips of up to 80° have been encountered in mine workings closer to the reef outcrop. There are two main divisions, a lower predominantly argillaceous unit, known as the West Rand Group and an upper unit, composed almost entirely of quartzite and conglomerates, known as the Central Rand Group. The West Rand Group is divided into three subgroups namely the Hospital Hill, Government Reef and Jeppestown. These rocks comprise mainly shale, but quartzite, banded ironstones, tillite and intercalated lava flows are also present. The rocks were subjected to low-grade metamorphism causing the shale to become more indurated and slatey, and the original sandstone was re-crystallised to form quartzite.

1.2.1.2 <u>Ventersdorp Supergroup</u>

The younger Ventersdorp Supergroup overlies the Witwatersrand rocks. Although acid lavas and sedimentary intercalations occur, the Ventersdorp is composed largely of andesitic lavas and related pyroclastics. The Ventersdorp Supergroup consists of the Platberg Group and the Klipriviersberg Group.

The Alberton Formation is composed of green – grey amygdaloidal andesitic lavas, agglomerates and tuffs with a total thickness of 1 500 m. The lack of sediments in this sequence indicates a rapid succession of lava flows, which probably came from fissure eruptions. Material of similar composition forms the oldest dykes that have intruded the Witwatersrand rocks. The abundant agglomerates provide indications of periodic explosive activity. The removal of huge volumes of volcanic material from an underlying magma chamber gave rise to tensional conditions and as a result a number of faulted structures, such as, horst and grabens formed.

1.2.1.3 Transvaal Supergroup

Overlying the Ventersdorp Lavas are the Black Reef Quartzite and dolomites of the Transvaal Supergroup. The Black Reef quartzite comprises coarse to gritty quartzite with occasional economically exploitable conglomerates (reefs). The entire area was peneplane in post-Ventersdorp time and it was on this surface that the Transvaal Supergroup was deposited, some 2 200 million years ago. The deposition commenced with the Kromdraai Member with the Black Reef at its base. The Black Reef is formed from material that has been eroded from the Witwatersrand outcrop areas. As a result, the Black Reef contains zones (reefs) in which

gold is present. The occurrence of the gold is not as widespread as in the Witwatersrand and is mainly restricted to north-south trending channels. The Black Reef is overlain by a dark, siliceous quartzite with occasional grits or small pebble bands. The quartzite grades into black carbonaceous shale. The shale then grades into the overlying dolomite through a transition zone approximately 10 m thick.

Overlying the Kromdraai Member is the dolomite of the Malmani Subgroup of the Chuniespoort Group. The dolomites that are 1,500 m thick are known for their huge water storage potential.

The dolomite also contains lenses and layers of chert. The dense, hard and fine-grained chert tends to stand out in relief. Chert (silica) replaces carbonate material.

The dolomites are overlain in the south by the Pretoria Group rocks. The Rooihoogte Formation forms the basal member of the Pretoria Group, consisting predominantly of shale and quartzite.

1.2.1.4 Karoo Supergroup

The Karoo Supergroup was deposited approximately 345 million years ago. It commenced with a glacial period during which most of South Africa was covered by a thick sheet of ice. This ice cap slowly moved towards the south, causing extensive erosion of the underlying rocks. The erosion debris was eventually deposited and formed the Dwyka tillite. The latter is only partially preserved in the study area, as are the younger sedimentary deposits the Karoo Supergroup, including mudstone, shale and sandstone.

1.2.2 Local Geology

The Project area lies along the Witwatersrand on the Witwatersrand Supergroup Formations. The area is, however, highly faulted, folded and eroded, leading to a complex and varied geology and rock formations. However, being a surface dump mining operation, the geology has little influence or impact on the project.

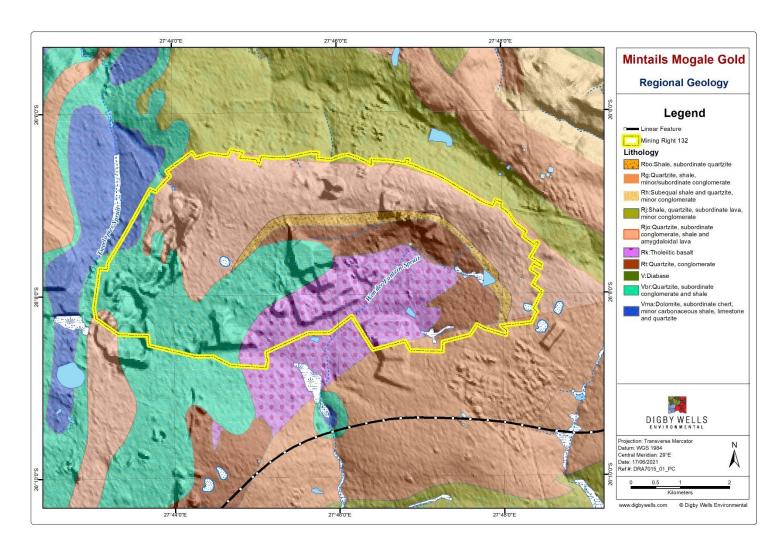

The project is situated within the Archaean aged (i.e., approximately 2970 million years) Witwatersrand Basin - the world's largest natural repository of gold mineralisation, i.e. more than 1,600 million gold ounces have been exploited since 1886. The reefs mined to depths exceeding 3 km are generally considered ancient river placers. These reefs are frequently less than a metre thick and characterised by abundant pyrite, which may comprise up to 5% of the reef, as well as flyspeck and/or seam carbon/kerogen. These three components display a strong spatial correlation with the gold mineralisation, which is rarely visible, in the 10–20-micron range.

Figure 1-1: Locality Map

Figure 1-2 Regional Geology

2 Assumptions, Limitations and Exclusions

The following limitation is observed:

Tailing materials in this study are proposed to be subjected to future reprocessing, thus
the tailing materials in this study indicate the background geochemistry of the tailings
and not the expected tailings materials after reprocessing.

3 Reporting Standards

3.1 Elemental Enrichment

One measure of enrichment of elements in samples is the Geochemical Abundance Index (GAI). The GAI compares the actual concentration of an element in a sample with the median abundance for that element in the most relevant media (such as crustal abundance, soils, or a rock type). The main purpose of the GAI is to indicate any elemental enrichments that may be of environmental importance.

The GAI for an element is calculated as follows:

Equation 1:
$$GAI = Log2 [Cn / (1.5 \times Bn)]$$

Where Cn is the concentration of the element in the sample and Bn is the median or average content for that element in the reference material (mean world soil, crustal abundance, etc.).

GAI values are truncated to integer increments (0 through to 6, respectively), where a GAI of 0 indicates the element is present at a concentration equal to, or less than, median abundance, and a GAI of 6 indicates approximately a 100-fold, or greater, enrichment above-median abundance. The actual enrichment ranges for the GAI values are as follows:

- GAI=0 represents <3 times median abundance,
- GAI=1 represents 3 to 6 times median abundance,
- GAI=2 represents 6 to 12 times median abundance,
- GAI=3 represents 12 to 24 times median abundance,
- GAI=4 represents 24 to 48 times median abundance,
- GAI=5 represents 48 to 96 times median abundance, and
- GAI=6 represents more than 96 times the median abundance.

As a general guide, a GAI of 3 or above is considered significant and such enrichment may warrant further examination (INAP, 2009).

3.2 Acid-Base Accounting and Net Acid Generation

Acid-Base Accounting (ABA) is a first-order classification procedure whereby the acidneutralising potential and acid-generating potential of rock samples are determined and the

difference in Net Neutralising Potential (NNP) is calculated. This procedure includes Net Acid Generation (NAG) tests that evaluate the NAG and Neutralising Potential (NP) of the material to evaluate the potential of the material to counter acid production. The NNP and/or the ratio of neutralising potential to acid-generation potential is compared with a predetermined value, or set of values, to divide samples into categories that either require or do not require further determinative acid potential generation test work.

To assess the Acid Rock Drainage/ Metal Leaching (ARD/ML) potential of the materials, Digby Wells used international guidelines provided by the following documents that have gained regulatory acceptance in various jurisdictions around the world, namely:

- Miller, S., Robertson, A. & Donahue, T., 1997. Advances in acid drainage prediction using the net acid generation (NAG) test. Vancouver, CANMET, pp. pp. 533-549,
- Price, W. A., 1997. Draft Guidelines for metal leaching and acid rock drainage at mine sites in British Columbia. British Columbia: Canada: Ministry of Energy and Mines, and
- Soregaroli, B. A. & Lawrence, R. W., 1998. *Update on waste characterization studies*. Polson, Montana, In Mine Design, Operations, and Closure Conference.

The international guidelines emphasis is that there is no minimum concentration of sulphide responsible for acid generation. The guidelines base the assessment of ARD/ML on Neutralisation Potential Ratio (NPR) and Net Neutralisation Potential (NNP) criteria as detailed in Table 3-1 and Table 3-2.

Table 3-1: Criteria For Interpreting ABA Results Updated From Price (1997) and Soregaroli and Lawrence (1998)

Potential for AMD	Criterion	S ²⁻ -S%	Comments
Rock Type I: Likely	NPR<1	>0.3	Potentially acid forming unless sulphide minerals are non-reactive
Rock Type II: Possible	1 <npr<2< th=""><th>0.2-0.3</th><th>Possibly acid forming if NP is insufficiently reactive or is depleted at a rate faster than sulphides</th></npr<2<>	0.2-0.3	Possibly acid forming if NP is insufficiently reactive or is depleted at a rate faster than sulphides
Rock Type III: Low	2 <npr<4< th=""><th>0.1-0.2</th><th>Not potentially acid forming unless significant preferential exposure of sulphide</th></npr<4<>	0.1-0.2	Not potentially acid forming unless significant preferential exposure of sulphide
Rock Type IV: None	NPR>4	< 0.1	Non-acid generating

Table 3-2: A Classification System Based On Paste-pH And NAG-pH Edited From Miller et al. (1997)

Acid Forming Potential	Test Criteria	NAG Value (H ₂ SO ₄ kg/t)	NNP (CaCO ₃ kg/t)	
Rock Type Ia. PAF High Risk	Paste-pH < 4.0	>10	Negative	
	NAG-pH < 4	>10	Negative	
Rock Type Ib. PAF Medium Risk	Paste-pH 4.0 – 6	≤10		
	NAG-pH < 4	210	-	
PAF – Lag to ARD	Paste-pH >6.0			
	NAG-pH < 4			
Uncertain, possibly Sediment Type Ib	NAG-pH < 4	>10	Positive	
Uncertain	NAG-pH ≥4.5	0	Negative (reassess mineralogy)	
Rock Type IV: NAF	Paste-pH >6	0	Positive	
	NAG-pH >4	0	1 ositive	

3.3 Metal leaching potential

The guidelines used in the study are the following:

3.3.1 National Environmental Management Act

Digby Wells assessed the tailings against the South African National N&S for the Assessment of Waste for Landfill Disposal (GN R635 of 23 August 2014) and the National N&S for Disposal of Waste to Landfill (GN R636 of 23 August 2014) to determine the type of waste and the barrier/liner requirements

3.3.1.1 Waste Act 2014

On 2 June 2014, the National Environmental Management: Waste Amendment Act, 2014 (Act No. 26 of 2014) (NEM: WAA) was published, which for the first time included "residue deposits" and "residue stockpiles" under the environmental waste legislation (previously mining residue was covered under the Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002). Mine wastes are listed under Schedule 3, under the category "Hazardous Waste", therefore the understanding is that mine wastes are hazardous unless the applicant can prove that the waste is non-hazardous.

As residue deposits and residue stockpiles are considered to be waste, they are regulated by the following regulations, both promulgated on 23 August 2013 under NEM: WAA:

 Norms and Standards for the Assessment of Waste for Landfill Disposal (GN R635 of 23 August 2013), and

 National Norms and Standards for Disposal of Waste to Landfill (GN R636 of 23 August 2013).

According to these regulations, waste that is generated must be classified following SANS 10234 "Globally Harmonised System" within 180 days of generation. Waste that has already been generated, but not previously classified must be classified within 18 months of the date of commencement of the regulations. The Norms and Standards (N&S) specify the waste classification methodologies for determining the waste category, and the specifications for pollution control barrier systems (liners) for each of the waste categories.

The Department of Forestry, Fisheries and Environment (DFFE) has further published the Regulations Regarding the Planning and Management of Residue Stockpiles and Residue Deposits (GN R632 of 24 July 2015, as amended) and in terms of waste classification, these regulations state that residue stockpiles and residue deposits must be characterised to identify any potential risk to health or safety and environmental impact in terms of physical characteristics, chemical characteristics (i.e. toxicity, propensity to oxidise and decompose, propensity to undergo spontaneous combustion, pH and chemical composition of the water separated from the solids, stability, and reactivity and the rate thereof, neutralising potential and concentration of volatile organic compounds), and mineral content.

3.3.1.2 <u>Waste Type</u>

Digby Wells followed the approach outlined below and presented in Figure 3-1, as per the South African regulations.

- The chemical substances present in the tailings were identified,
- Sampling and analysis were undertaken to determine the Total Concentration (TC) and Leachable Concentration (LC) of the elements and chemical substances identified in the tailings and that are specified in Section 6 of the N&S,
- All analyses of the TC and LC of the elements and the chemical substances in the tailings were conducted by a South Africa National Accreditation System (SANAS) accredited laboratory,
- The TC and LC of the elements and the chemical substances in the tailings were compared to threshold limits specified in Section 6 of the N&S, and
- Based on the comparison with the threshold limits, the specific type of waste was determined according to Section 7 of the N&S.

Total Concentration Threshold (TCT) limits are subdivided into three categories as indicated in Table 3-3 and are summarised as follows:

 TCT0 limits are based on screening values for the protection of water resources, as contained in the Framework for the Management of Contaminated Land (DEA, March 2010),

 TCT1 limits derived from land remediation values for commercial/industrial land (DEA, March 2010), and

TCT2 limits were derived by multiplying the TCT1 values by a factor of 4, as used by the Environmental Protection Agency, Australian State of Victoria.

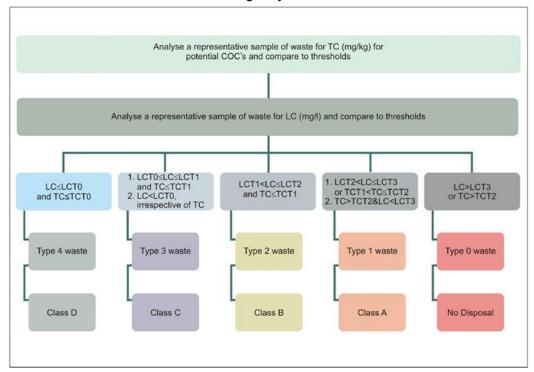


Figure 3-1: Flow Diagram For Waste Assessment (GN R635 of 23 August 2013)

Leachable concentration was determined by following the Australian Standard Leaching Procedure for Wastes, Sediments, and Contaminated Soils (AS 4439.3-1997), as specified in the N&S (2013). The procedure recommends the use of Deionised (DI) Water to detect the metals that are present on the surface exterior. The procedure can also be done under the Borax leaching procedure which consists of two types of pH 9 for co-disposal and. Leachate of 1:20 solids per reagent water was advised for the NEM: WA guidelines, but for this study, a 1:20 and 1:4 tailings and water ratio was prepared and analysed by Waterlab Laboratory same as indicated in the NEMWA guidelines.

Leachable Concentration Threshold (LCT) limits are subdivided into four categories as follows:

- LCT0 limits derived from human health effect values for drinking water, as published by the Department of Water and Sanitation (DWS), SANAS, WHO or the United States Environmental Protection Agency (USEPA),
- LCT1 limits derived by multiplying LCT0 values by a Dilution Attenuation Factor (DAF) of 50, as proposed by the Australian State of Victoria,
- LCT2 limits are derived by multiplying LCT1 values by a factor of 2, and

LCT3 limits are derived by multiplying the LCT2 values by a factor of 4.Table 3-3:
 Total and Leachable Concentration Threshold Limits.

Table 3-4: Summary of guidelines used in the study

Parameter	Unit	тсто	TCT1	ТСТ2	Unit	LCT0	LCT1	LCT2	LCT3
Al, Aluminium	mg/kg				mg/L				
As, Arsenic	mg/kg	5.8	500	2000	mg/L	0.01	0.5	1	4
B, Boron	mg/kg	150	15000	60000	mg/L	0.5	25	50	200
Ba, Barium	mg/kg	62.5	6250	25000	mg/L	0.7	35	70	280
Ca, Calcium	mg/kg				mg/L				
Cd, Cadmium	mg/kg	7.5	260	1040	mg/L	0.003	0.15	0.3	1.2
Co, Cobalt	mg/kg	50	5000	20000	mg/L	0.5	25	50	200
Cr total	mg/kg	46000	800000	N/A	mg/L	0.1	5	10	40
Cr (IV), Chromium (IV)	mg/kg	6.5	500	2000	mg/L	0.05	2.5	5	20
Cu, Copper	mg/kg	16	19500	78000	mg/L	2	100	200	800
Fe, Iron	mg/kg				mg/L				
Hg, Mercury	mg/kg	0.93	160	640	mg/L	0.006	0.3	0.6	2.4
Mg, Magnesium	mg/kg				mg/L				
Mn, Manganese	mg/kg	1000	25000	100000	mg/L	0.5	25	50	200
Mo, Molybdenum	mg/kg	40	1000	4000	mg/L	0.07	3.5	7	28
Na, Sodium	mg/kg				mg/L				
Ni, Nickel	mg/kg	91	10600	42400	mg/L	0.07	3.5	7	28
Pb, Lead	mg/kg	20	1900	7600	mg/L	0.01	0.5	1	4
Sb, Antimony	mg/kg	10	75	300	mg/L	0.02	1	2	8
Se, Selenium	mg/kg	10	50	200	mg/L	0.01	0.5	1	4
U, Uranium	mg/kg				mg/L				
V, Vanadium	mg/kg	150	2680	10720	mg/L	0.2	10	20	80
Zn, Zinc	mg/kg	240	160000	640000	mg/L	5	250	500	2000
Chloride as Cl	mg/kg	n/a	n/a	n/a	mg/L	300	15000	30000	120000
Sulphate as SO ₄	mg/kg	n/a	n/a	n/a	mg/L	250	12500	25000	100000
Nitrate as N	mg/kg	n/a	n/a	n/a	mg/L	11	550	1100	4400
F, Fluoride	mg/kg	100	10000	40000	mg/L	1.5	75	150	600
CN total, Cyanide total	mg/kg	14	10500	42000	mg/L	0.07	3.5	7	28

Waste is classified by comparison of the total and leachable concentration of elements and chemical substances in the waste material to TCT and LCT limits as specified in the N&S for Waste Classification and the N&S for Disposal to Landfill.

3.3.2 Groundwater Quality Guidelines

The direct receptors of the seepage from the tailings will be the surface and groundwater. The Mintails Mining SA (Pty) Ltd: Mogale Gold groundwater quality limits stipulated in the Water Use License (WUL) (Licence No. 27/2/2/C423/1/1) presented in Table 3-5 was used as a qualitative screening tool to identify parameters of potential environmental concern from the leach test results. The WUL groundwater quality limits were supplemented with the General/Special limits (General Authorisation, GN665 of September 2013) and standard (GN 991 of May 1984 as amended by GN 1930 of August 1984 and GN 1864 of November 1996) for discharge of wastewater into a water source (Table 3-6).

Table 3-5: Groundwater quality limits (WUL, 22 November 2013)

Parameters	Groundwater Quality Limits
рН	9,5-10
EC (mS/m)	150
Ca	150
F	1
Mg	100
NO ₃	15
Na	200
SO ₄	400

Table 3-6: General/Special Limit (General Authorisation, GN665 of 6 September 2013) and Standard (GN 991 of 18 May 1984 as amended by GN 1930 of 31 August 1984 and GN 1864 of 15 November 1996) for discharge of wastewater into a water resource

Parameter	General Limit	General Standard	Special Limit	Special Standard
Faecal Coliforms (per 100 ml)	1 000	0	0	0
Chemical Oxygen Demand (mg/l)	75		30	30
pH (s.u)	5.5-9.5	5.5 – 9.5	5.5-7.5	5.5 – 7.5
Ammonia (ionized and unionized) as Nitrogen (mg/l)	6.0	10	2.0	1.0

Parameter	General Limit	General Standard	Special Limit	Special Standard	
Nitrate/Nitrite as Nitrogen (mg/l)	15	1.5		1.5	
Chlorine as Free Chlorine (mg/l)	0.25	0.10	0	0	
Suspended Solids (mg/l)	25	25	10	10	
Electrical Conductivity (mS/m)	70 mS/m above intake to a maximum of 150 mS/m	70 mS/m above intake to a maximum of 250 mS/m	50 mS/m above background receiving water, to a maximum of 100 mS/m	maximum of 15% above intake	
Sodium (mg/l)	Ns	maximum of 90 mg/l above intake	Ns	maximum of 50 mg/l above intake	
Orthophosphate as phosphorus (mg/l)	10	Ns	1: median; 2,5 : maximum	1.0	
Fluoride (mg/l)	1.0	1.0	1.0	1.0	
Soap, oil or grease (mg/l)	2.5	2.5	0	0	
Dissolved Arsenic (mg/l)	0.02	0.10	0.01	0.10	
Dissolved Cadmium (mg/l)	0.005	0.050	0.001	0.050	
Dissolved Chromium (VI) (mg/l)	0.050	0.05 for total and Cr (VI)	0.02	0.05 as total Cr	
Dissolved Copper (mg/l)	0.010	0.02	0.002	0.02	
Dissolved Cyanide (mg/l)	0.020	0.50	0.010	0.50	
Dissolved Iron (mg/l)	0.30	0.30	0.30	0.30	
Dissolved Lead (mg/l)	0.01	0.10	0.006	0.10	
Dissolved Manganese (mg/l)	0.10	0.10	0.1 0.10		
Dissolved Mercury and its compounds (mg/l)	0.005	0.020	0.001	0.020	
Dissolved Selenium (mg/l)	0.02	0.050	0.020	0.050	
Dissolved Zinc (mg/l)	0	0.30	0.040	0.30	
Boron (mg/l)	1.0	0.50	0.5	0.50	

3.4 Limitations

The tailing and manganese slag assessed in this study are the existing materials before reprocessing. The geochemistry presented in this report therefore indicates the baseline geochemistry before reprocessing the tailings. The reprocessed tailings and manganese slag were not available for characterisation at the time of the writing of this report.

4 Geochemical Test Work

The section below describes the geochemistry assessment and waste classification assessment methodology/techniques.

4.1 Sampling

A total of 24 tailing and two Manganese slag samples were collected by the DRA Global with the guidance of Digby Wells. The samples collected are from pre-existing tailings facilities to understand the geochemistry of the samples. The samples collected are presented in Table 4-1.

Table 4-1 Tailings sample ID and coordinates of locations

	Tailings Facility	Longitude	Latitude
S Sands_Z1			
S Sands_Z2	South Sand	27.755333°	-26.135642°
S Sands_Z3			
N Sands_Z1			
N Sands_Z2	North Sand	27.765358°	-26.114347°
N Sands_Z3			
1L8_Z1			
1L8_Z2	1L8 Dump	27.776422°	-26.117003°
1L8_Z3			
1L10_Z1			
1L10_Z2	1L10 Dump	27.786347°	-26.123144°
1L10_Z3			
1L13_A_Z1			
1L13_A_Z2			
1L13_A_Z3	1L13 Dump	27.777148°	-26.139917°
1L13_B_Z1			
1L13_B_Z2			

	Tailings Facility	Longitude	Latitude
1L13_B_Z3			
1L25_A_Z1	1L25 Dump	27.761622°	-26.126475°
1L25_A_Z2			
1L25_A_Z3			
1L25_B_Z1		27.764964°	-26.130167°
1L25_B_Z2			
1L25_B_Z3			
1L25_C_Z1		27.767281°	-26.134006°
1L25_C_Z2			
1L25_C_Z3			
1L28_Z1	1L28 Dump	27.743469°	-26.140658°
1L28_Z2			
1L28_Z3			
1L 28 M1	Manganese Slag	27.752831°	-26.141915°
1L 28 M2			

4.2 Laboratory Analysis

Water laboratory analysed the tailings samples. The analytical suite included the following:

- Sample preparation crushing, grinding, and compositing of the waste rock;
- Mineralogical analysis X-ray diffraction (XRD) analysis to determine the mineral constituents of the samples;
- Acid digestion (aqua regia) followed by semi-quantitative 29 elements Inductively Coupled Plasma (ICP) scan;
- Deionised water leaching test at 1:4;
- ASLP using deionised water at and Borax leaching tests at 1:20 tailings to water ratio;
- Acid-Base Accounting (ABA) tests including sulphur speciation (total sulphur, sulphate sulphur, and sulphide sulphur); and
- NAG test where an oxidising agent (hydrogen peroxide) is used to assess whether a sample can neutralise the potential acidity on complete oxidation of sulphide.

5 Data Analysis and Interpretations

5.1 Mineralogy

The mineral composition indicates the long-term geochemical behaviour of the material. The purpose of the analysis was to identify the mineral phases present in the waste rock that could be a source of acidity, neutralisation capacity, or metals.

The laboratory prepared the samples for XRD analysis using a zero-background holder. The diffractograms were generated using a Malvern PANalytical Aeris diffractometer. The instrument used a PIXcel detector with variable divergence and receiving slits with Fe filtered Co-K α radiation (λ = 1.789Å). X'Pert Highscore Plus software was used to identify the mineral phases. The Rietveld method (Autoquan Program) was used to estimate the relative phase amounts in percentage weight, normalising them to 100%.

Digby Wells evaluated the mineralogical analysis results on the following basis:

- Occurrence relative quantities described as predominant to trace (normalised to 100%);
- Weathering rates dissolving, fast weathering to inert; and
- The presence and quantities of acid-forming/neutralising minerals

Table 5-1 presents a summary of the mineralogical composition of the tailings and manganese slag. The mineralogy of the tailings is as follows:

- Acid forming mineral, pyrite, occurs at trace levels, 0.2-1.2 weight percent (wt.%), in all samples apart from samples collected from the Manganese Slag, North Sands, and S-Sands_Z1 from South Sands.
- The reactive acid neutralising carbonate mineral calcite occurs in a few samples from South Sands, North Sands, and a sample 1L25_C_Z3 from 1L25 TSF ranging between 0.1 3.9 wt. %. The mineral is dissolving and will readily react with acid to consume acidity.
- Aluminosilicates occurring include chlorite, muscovite, pyrophyllite and kaolinite. The
 weathering rates of these minerals range from fast weathering (bassanite and gypsum)
 to slow (kaolinite). These minerals can react with acid and consume acidity to
 contribute to the overall NP of the tailing.
- Calcium sulphate minerals, gypsum and bassanite, occur in the tailings. Bassanite is
 a secondary basic sulphate mineral that transitions to gypsum (CaSO₄.2H₂O)
 depending on temperature. It is a metastable mineral in the transition zone between
 gypsum and anhydrite (CaSO₄) and is formed by the action of sulfuric acid on calcite.
- Quartz predominates (>50%) the mineralogy of samples except for Manganese Slag samples. Quartz is inert and does not contribute to acidity or neutralization potential.

Table 5-1: Mineralogical composition (wt.%) of tailings material - listed in order of decreasing weathering (reactivity) rates

		D						Acid Neutr	alising					
TSF	Mineral (wt %)	Acid Forming	Dissolving	Fast Wea	thering	Inter	mediate We	athering	Slow Weathering			Inert		
	, ,	Pyrite	Calcite	Bassanite*	Gypsum	Chlorite	Muscovite	Pyrophyllite	Kaolinite	Anatase	Magnetite	Hematite	Chromite	Quartz
	S Sands_Z1	-	0.0	-	-	1.3	3.1	0.5	0.2	0	0.6	0.2	-	94.2
South Sands	S Sands_Z2	0.4	0.4	-	-	1.3	2.4	2.2	0.4	0.2	0	-	-	92.7
	S Sands_Z3	0.2		-	-	2.1	2.2	2.2	3.5	0.6	0	0.3	-	89.1
N4h	N Sands_Z1	-	0.8	-	-	-	1.8	6.9	-	-	-	0.2	-	90.4
North Sands	N Sands_Z2	-	3.9	-	-	-	2	7.2	-	-	-	-	-	86.9
	N Sands_Z3	-	0.3	-	-	-	3.6	9.9	-	-	-	-	-	86.2
	1L8_Z1	0.8	-	-	-	-	-	15	1	0	0.1	0.0	-	79
1L8	1L8_Z2	0.8	-	-	-	0.6	-	17.1	1.1	0.3	0.4	0.1	-	76.4
	1L8_Z3	-	-	-	0.1	0.4	-	24.9	1.8	-	-	-	-	69.8
	1L10_Z1	-	-	-	-	-	3.9	25.4	1.7	-	-	-	-	69
1L10	1L10_Z2	0.6	-	-	1	1	4.5	29.9	1.7	0.1	-	0.1	-	62
	1L10_Z3	0.6	-	0.2	-	-	4	30.6	1.3	0.1	-	0.0	-	61.7
	1L13_A_Z1		-	-	1.8	4.3		16.4	-	-	4.1		-	73.5
1L13	1L13_A_Z2	0.6	-	-	0.4	1.7	3.8	11.4	-	-	0.1	0.2	-	81.8
1213	1L13_A_Z3	0.6	-	0.4		1	2.2	12.8	2.8		0.1		-	80.2
	1L13_B_Z1	0.6	-	-	1.7	2.6	4.1	20.5	1	0.1		0.3	-	69.1

		D						Acid Neutr	alising					
TSF	Mineral (wt %)	Acid	Dissolving	Fast Wea	thering	Inter	rmediate We	athering	Slow Weathering			Inert		
		Pyrite	Calcite	Bassanite*	Gypsum	Chlorite	Muscovite	Pyrophyllite	Kaolinite	Anatase	Magnetite	Hematite	Chromite	Quartz
	1L13_B_Z2	0.6	-	-	0.2	0.6	4.8	6	2	-	0.4		-	85.4
	1L13_B_Z3	0.7	-	-	1.2	1.2	3.5	11.4	4.3	-	0.3	0.1	-	77.3
	1L25_A_Z1	0.7	-	-	2.1	1.9	3.7	15.1	2.2	-	0.2	0.3	-	73.9
	1L25_A_Z2	0.6	-	-	0.4	0.4	5.3	9.8	1.2	-	0.3	-	-	81.9
	1L25_A_Z3	0.6	-	0.3	0.6	1.7	4.6	15.6	1.7	-	0.2	-	-	74.6
	1L25_B_Z1	0.5	-	-	0.9	5.3	4.2	13.4	-	-	0.4	0.1	-	75.2
1L25_	1L25_B_Z2	1.2	-	-	0.8	3.3	4.5	10.3	1.4	0.2	0.4	-	-	78
	1L25_B_Z3	0.9	-	-	0.2	2.8	3.9	8.8		0.2	0.4	-	-	82.8
	1L25_C_Z1	0.4	-	0.7	0.6	1.9	3.6	14.3	1.2	0.3	0.2	0.1	-	77.4
	1L25_C_Z2	1	-	1.4	-	2.3	3.5	14.3	1.5	-	0.1	-	-	75.9
	1L25_C_Z3	0.7	0.1	0.6	-	3.3	3.3	10.9	1.8	-	0.5	-	-	78.2
	1L28_Z1	0.4	-	0.9	0.7	3.6	5.1	15	-	-	0.5	-	-	73.9
1L28	1L28_Z2	0.7	-	0.5	5.7	1.8	3.8	24.6	1.9	-	0.2	-	-	60.9
	1L28_Z3	0.8	-	-	0.8	1.8	1.7	23.4	0.8	0	0.1	0.8	-	69.7
Manganese	IL 28 M1	-	-	-	47.8	-	-	-	-	-	33.9	-	18.3	-
Slag	IL 28 M2	-	-	-	64.2	-	-	-	-	-	35.8	-		-

Quartz - SiO₂

N	O	ŀe	s

Predominant	>50%	Anatase - TiO ₂	Chromite- Cr ₂ FeO ₄	Magnetite - Fe ₃ O ₄
Abundant	20-50%	Bassanite - CaSO ₄ (H ₂ O) _{0.5}	Gypsum- Ca(SO ₄)(H ₂ O) ₂	Muscovite - KAl ₂ ((OH) ₂ AlSi ₃ O ₁₀)
Less abundant	10-20%	Calcite - CaCO₃	Hematite- Fe ₂ O ₃	Pyrite - FeS2
Minor	3-10%	Chlorite - (Mg, Fe) ₅ Al(AlSi ₃ O ₁₀)(OH) ₈	Kaolinite - Al ₂ Si ₂ O ₅ (OH) ₄	Pyrophyllite - Al(Si ₂ O ₅)(OH)
Trace	<3%			

In summary, acid-forming mineral pyrite was detected in the tailings from all the facilities in traces ranging between 0.2 and 1.2 wt. %. Calcite, a highly dissolving acid neutralising carbonate mineral was detected at 0.1 - 3.9 wt. % in the North, South Sands TSF, and one sample from 1L25 TSF. In addition, aluminosilicates (kaolinite) and phyllosilicates (pyrophyllite, muscovite, chlorite, and talc) occur at varying concentrations in the tailings. The weathering rates of these minerals range from fast to slow. These minerals can react with and consume acidity contributing to the overall NP in the tailings in the long term. Manganese Slag is dominated by gypsum and magnetite.

5.2 Acid Rock Drainage Potential

Table 5-2 presents a summary of the ABA and sulphur speciation results for the tailing samples. The acid-generating and neutralising characteristics of the tails are as follows:

- The paste pH ranges from acidic to neutral (pH 2.4 7.8);
- Total sulphur ranged between 0.01 and 5.16 %. The lowest concentrations were detected in South Sands and the highest concentrations were detected in the Manganese Slag;
- The AP ranges from 0.028 kg CaCO₃/t to 164 kg CaCO₃/t with the South Sands samples being the lowest and the Manganese Slag having the highest concentration;
- The NP ranges from -4.40 kg CaCO₃/t to 15.21 kg CaCO₃/t with the lowest concentration detected in 1L10 TSF and the highest concentration detected in 1L28 TSF.
- The NAG pH ranged from pH 4.5 and 6.5;
- Assessment of the AP and NP indicates that all tailings samples are PAF apart from one sample from South Sands TSF that is inconclusive as shown in Figure 5-1. The ARD characteristics of the tailings can be summarised per facility as follows:
 - South Sands 66% of the samples are PAF and 33%inconclusive in the short term;
 - North Sands 100% PAF in the short term;
 - 1L8 100% PAF, 66% in the short term and 33% in the long term;
 - 1L10 100% PAF, 66% in the short term and 33% in the long term;
 - 1L13 100% PAF, 66% in the short term and 33% in the long term;
 - 1L25 100% PAF, 33% in the short term and 66% in the long term;
 - 1L28 100% PAF, 66% in the short term and 33% in the long term; and
 - Manganese Slag 100% PAF long term

Table 5-2: ABA, NAG, SS% and classification results

TSF	Sample ID	АР	NP	NNP	NPR	paste- pH	Total Sulphur	SO ₄ ² - -S	S ²⁻ -S	NAG pH: (H2O2) pH-7	NAG (kg H2SO4 / t) pH-7	NAG pH: (H2O2) pH-4.5	NAG (kg H2SO4 / t) pH-4.5	Organic Carbon (%)	Inorganic Carbon (%)	ABA Classification	NAG Class	ification
	Units	kg/t	kg C	aCO₃ /t		s.u		%S		s.u	kg H ₂ SO ₄ / t	s.u	kg H ₂ SO ₄ / t	(LECO) [s]	(LECO) [s]	Classification	Classification pH-	Classification pH-4.5
	S Sands_Z1	1.39	0.01	-1.38	0.01	4.30	0.04	<0.01	0.04	4.50	9.60	3.80	0.39	0.04	<0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
South Sands	S Sands_Z2	5.71	-1.22	-6.93	0.21	3.10	0.18	0.02	0.16	4.50	1.18	2.40	10	0.03	0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
Cuitas	S Sands_Z3	0.82	-1.22	-2.03	1.49	2.70	0.03	<0.01	0.03	4.50	1.18	2.20	12	0.03	<0.01	Inconclusive	PAF High Risk	PAF High Risk
	N Sands_Z1	5.03	-0.24	-5.27	0.05	5.60	0.02	<0.01	0.02	4.50	13.00	4.50	<0.01	0.29	<0.01	PAF Medium Risk	PAF High Risk	Inconclusive
North Sands	N Sands_Z2	0.28	0.01	-0.27	0.04	4.70	0.01	<0.01	0.01	4.70	16.00	4.40	<0.01	0.34	0.04	PAF Medium Risk	PAF High Risk	Inconclusive
Garias	N Sands_Z3	0.35	0.01	-0.34	0.03	4.30	0.01	<0.01	0.01	4.70	13.00	4.70	<0.01	0.08	0.01	PAF Medium Risk	PAF High Risk	Inconclusive
	1L8_Z1	7.08	-1.46	-8.54	0.21	2.60	0.23	0.02	0.21	4.50	1.37	2.30	18	0.04	<0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
1L8	1L8_Z2	7.11	-1.95	-9.06	0.27	2.70	0.62	0.03	0.59	4.50	1.76	2.40	17	0.04	<0.01	PAF High Risk	PAF High Risk	PAF High Risk
	1L8_Z3	20.00	-0.48	-20.00	0.03	4.70	0.14	<0.01	0.14	4.50	1.57	2.20	23	0.06	0.03	PAF Medium Risk	PAF High Risk	PAF High Risk
	1L10_Z1	4.25	0.75	-3.50	0.18	6.00	0.24	<0.01	0.24	4.50	1.96	2.30	17	0.05	0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
1L10	1L10_Z2	7.36	-4.16	-12.00	0.57	2.40	0.23	0.14	0.09	4.50	1.37	2.80	2.80	0.05	<0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
	1L10_Z3	7.26	-4.40	-12.00	0.61	2.70	0.91	0.11	0.79	4.50	2.74	2.40	2.40	0.06	0.02	PAF High Risk	PAF High Risk	PAF High Risk
	1L13_A_Z1	28.00	3.93	-24.00	0.14	7.80	0.74	0.33	0.41	4.50	1.96	2.40	2.4	0.10	0.04	PAF High Risk	PAF High Risk	PAF High Risk
	1L13_A_Z2	23.00	2.46	-21.00	0.11	5.50	0.37	0.26	0.12	4.50	1.76	2.60	2.60	0.06	0.03	PAF Medium Risk	PAF High Risk	PAF High Risk
41.40	1L13_A_Z3	12.00	2.95	-8.64	0.26	7.00	0.43	0.31	0.13	4.50	2.16	2.40	2.4	0.03	0.02	PAF Medium Risk	PAF High Risk	PAF High Risk
1L13	1L13_B_Z1	14.00	1.24	-12.00	0.09	6.50	0.89	0.23	0.66	4.50	2.35	2.40	16	0.12	0.01	PAF High Risk	PAF High Risk	PAF High Risk
	1L13_B_Z2	28.00	0.26	-28.00	0.01	4.30	0.20	0.17	0.03	4.50	3.33	2.70	7.64	0.06	<0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
	1L13_B_Z3	28.00	0.26	-28.00	0.01	4.20	0.44	0.27	0.17	4.50	3.72	2.70	7.64	0.04	0.05	PAF Medium Risk	PAF High Risk	PAF High Risk
	1L25_A_Z1	6.16	-2.44	-8.60	0.40	6.00	0.80	0.38	0.42	4.50	2.74	2.40	14	0.17	0.10	PAF High Risk	PAF High Risk	PAF High Risk
	1L25_A_Z2	14.00	-1.95	-16.00	0.14	6.20	0.48	0.02	0.46	4.50	3.14	2.40	15	0.03	<0.01	PAF High Risk	PAF High Risk	PAF High Risk
	1L25_A_Z3	4.65	0.26	-4.39	0.06	5.60	0.42	0.40	0.02	4.50	2.35	2.50	9.8	0.10	0.04	PAF Medium Risk	PAF High Risk	PAF High Risk
	1L25_B_Z1	9.99	0.99	-9.00	0.10	6.90	1.00	0.56	0.43	4.50	1.96	2.50	11	0.06	0.04	PAF High Risk	PAF High Risk	PAF High Risk
1L25	1L25_B_Z2	26.00	1.73	-24.00	0.07	6.30	0.28	0.21	0.07	4.50	2.55	2.30	21	0.00	0.05	PAF High Risk	PAF High Risk	PAF High Risk
	1L25_B_Z3	26.00	4.42	-22.00	0.17	7.00	0.32	0.22	0.10	4.50	3.33	2.60	12	0.01	0.04	PAF High Risk	PAF High Risk	PAF High Risk
	1L25_C_Z1	31.00	2.95	-28.00	0.10	6.90	0.83	0.51	0.33	4.50	2.55	2.60	8.43	0.07	0.02	PAF High Risk	PAF High Risk	PAF High Risk
	1L25_C_Z2	37.00	6.14	-30.00	0.17	6.50	0.83	0.31	0.52	4.50	2.16	3.20	1.96	0.10	0.02	PAF Medium Risk	PAF High Risk	PAF High Risk
	1L25_C_Z3	37.00	4.67	-32.00	0.13	6.50	0.99	0.39	0.60	4.50	1.76	3.40	1.37	0.16	0.01	PAF Medium Risk	PAF High Risk	PAF High Risk
41.00	1L28_Z1	51.00	5.16	-46.00	0.10	7.00	1.18	0.85	0.33	4.50	3.14	2.80	4.31	0.20	0.08	PAF High Risk	PAF High Risk	PAF High Risk
1L28	1L28_Z2	31.00	2.22	-29.00	0.07	6.80	1.64	1.35	0.30	4.50	3.14	2.50	11	0.25	0.02	PAF High Risk	PAF High Risk	PAF High Risk

TSF	Sample ID	АР	NP	NNP	NPR	paste- pH	Total Sulphur	SO ₄ ²	S ²⁻ -S	NAG pH: (H2O2) pH-7	, ,	NAG pH: (H2O2) pH-4.5	NAG (kg H2SO4 / t) pH-4.5	Organic Carbon (%)	Inorganic Carbon (%)	ABA Classification	NAG Class	ification
	Units	kg/t	kg Ca	aCO ₃ /t		s.u		%S		s.u	kg H ₂ SO ₄ / t	s.u	kg H ₂ SO ₄ / t	(LECO) [s]	(LECO) [s]		Classification pH-	Classification pH-4.5
	1L28_Z3	13	15.21	-120.00	0.11	5.00	1.00	0.43	0.57	6.40	0.39	6.40	<0.01	0.14	0.06	PAF High Risk	PAF High Risk	Inconclusive
Manganese	IL 28 M1	16	14.96	-146.00	0.09	5.00	4.34	0.21	4.13	6.50	0.59	6.50	<0.01	3.76	0.18	PAF High Risk	PAF High Risk	Inconclusive
Slag	IL 28 M2	164	15.21	-149.00	0.09	4.90	5.16	0.22	4.95	6.40	0.78	6.40	<0.01	4.38	0.18	PAF High Risk	PAF High Risk	Inconclusive

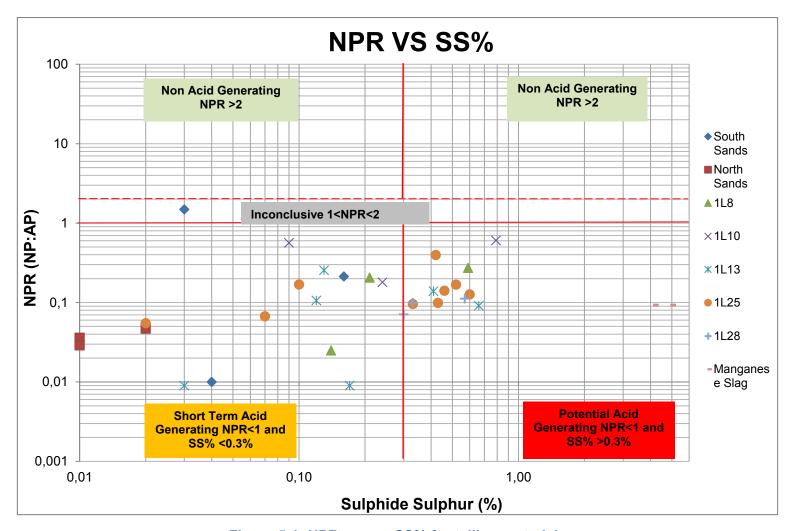


Figure 5-1: NPR versus SS% for tailing materials

In summary, the paste-pH of the tailings materials ranges from acidic to neutral (pH 2.4-7.8). The titration value at pH 4.5 and pH 7 for the NAG pH values are all acidic with the final pH ranging from 4.5-6.5. Assessment of the AP and NP indicates that all tailings samples are PAF apart from one sample from South Sands that is inconclusive. In total 50% of the samples are PAF in the short term, 47% PAF in the long term.

5.3 Elemental Enrichment

The total metal analysis was undertaken to identify elements enriched in the materials that may be of environmental concern relative to the average crustal abundance levels (Fortescue, 1992). The use of crustal abundance data is an industrially accepted approach of identifying enrichment and is commonly used in Environmental, Health, and Social-Economic Baseline Studies (EHSEBS).

Table 5-3 presents the elemental concentrations and GAI values for the tailing. A GAI value of 0 indicates that the element is present at a concentration equal to or less than the crustal abundance. A GAI of six indicates approximately a 100-fold, or more, enrichment above crustal abundance. As a general guide, a GAI of three or above is significant in triggering environmental concerns.

Elements that are significantly enriched (GAI ≥3) in the samples are

- Silver (44 43 mg/kg);
- Arsenic (6 450 mg/kg);
- Barium (7 326 mg/kg for Manganese Slag at the same concentration);
- Chromium (1 578 mg/kg);
- Potassium (266 2 930 mg/kg);
- Lead (149 1 166) and
- Uranium (25 70 mg/kg).

The significant enrichment demonstrated by the elements does not necessarily imply environmental risk. The risk that these enriched elements present is a function of their mobility assessed in the next section of this geochemistry report.

Table 5-3: Elemental concentrations and GAI values for the tailings

					1														Ai vaiu														
Т	SF	s	outh Sar	nd	N	orth San	nd	11	L8 Dum	пр	11	_10 Dum	ıp			1L13	Dump						1	L25 Dum	р				1L	.28 Dum	ıp	Mang e S	
Sam ple ID	AC A	S Sand s_Z1	S Sand s_Z2	S Sand s_Z3	N Sand s_Z1	N Sand s_Z2	N Sand s_Z3	1L8 _Z1	1L8 _Z2	1L8 _Z3	1L1 0_Z 1	1L1 0_Z 2	1L1 0_Z 3	1L13_ A_Z1	1L13_ A_Z2	1L13_ A_Z3	1L13_ B_Z1	1L13_ B_Z2	1L13_ B_Z3	1L25_ A_Z1	1L25_ A_Z2	1L25_ A_Z3	1L25_ B_Z1	1L25_ B_Z2	1L25_ B_Z3	1L25_ C_Z1	1L25_ C_Z2	1L25_ C_Z3	1L2 8_Z 1	1L2 8_Z 2	1L2 8_Z 3	IL 28 M1	IL 28 M2
Ag	0.0 8		<8.33			<8.33			<8.33			<8.33				<8	.33							<8.33						<8.33		44	43
Al	83 60 0	7992	7659	7659	4662	4662	4662	499 5	532 8	532 8	532 8	666 0	599 4	8658	7659	5661	8991	6327	6660	9990	6660	8325	9324	7659	8325	8991	9990	8325	113 22	126 54	999 0	399 6	432 9
As	1.8	24.64	47.29	38.30	7.66	7.99	5.66	36. 30	53. 95	49. 28	40.2 9	69.2 6	57.2 8	59.61	74.59	95.57	58.28	76.26	107.8 9	143.8 6	75.59	92.57	58.28	94.24	100.5 7	63.27	152.5 1	80.59	166. 17	336. 33	449. 55	20. 98	21. 65
Ва	39 0	27	25	20	48	31	27	42	46	51	42	47	45	151	95	54	114	55	73	93	42	89	53	41	39	39	109	109	180	142	98	732 6	732 6
Ве	2		<8.33			<8.33			<8.33			<8.33				<8	.33							<8.33						<8.33		<8.	.33
Bi	0.0 82		<8.33			<8.33			<8.33			<8.33				<8	.33							<8.33						<8.33		<8.	.33
Ca	46 60 0	666	666	666	666	666	333	<33	333	999	666	233 1	266 4	2997	2331	2331	3663	1665	1998	6660	1665	4995	5328	1998	1998	4662	7326	3663	932 4	139 86	799 2	556 11	509 49
Cd	0.1 6		<0.333			<0.333			<0.333	i		<0.333		<0.33	<0.33	0.333	<0.33	<0.33	0.333					<0.333					<0.3	0.33	<0.3	<0.	.33
Co	29	78	147	110	86	169	89	124	95	68	71	78	108	100	142	103	129	121	147	172	198	121	144	153	144	119	113	87	175	226	145	103	118
Cr	12 2	159	215	178	107	126	150	159	189	221	194	239	264	273	255	192	1578	312	446	224	221	270	301	214	229	214	222	210	238	294	311	173	140
Cu	68	<3.3	11	4		<3.33		8	16	17	7	44	31	26	25	22	29	22	18	32	30	61	25	29	27	22	27	20	26	27	23	125	146
Fe	62 20 0	8658	1332 0	1265 4	2727	2148	3330	765 9	113 22	999 0	566 1	136 53	106 56	22644	17982	13320	22311	11322	18315	21312	13320	20313	21645	19314	18981	14652	18648	27639	219 78	209 79	203 13	196 470	189 144
К	19	1032	1066	899	1465	1265	1199	249 8	286 4	293 0	263 1	259 7	219 8	1665	1898	1698	1465	1365	1532	1698	1965	2797	2231	1499	1565	1698	1399	2498	159 8	226 4	156 5	333	266
Mg	27 64 0	666	666	666		<333			<333		<33	333	<33	1332	666	<333	2331	333	333	1332	333	999	2331	999	999	999	1332	666	166 5	666	333	999	999
Mn	10 60	350	162	166	228	58	50	144	48	54	28	116	95	1718	1545	686	2537	616	892	2118	157	1802	247	235	200	288	2707	1502	4329	4329	2408	192 141	183 816
Мо	1.2		<8.33			<8.33			<8.33			<8.33				<8	.33							<8.33						<8.3		<8.	.33
Ni	99	<8.3	29	43	<8.3	13	<8.3	28	43	40	<8.3	107	102	78	88	75	152	17	131	134	84	144	105	64	84	85	123	52	128	162	143	46	48
Pb	13	13	13	13	16	15	17	30	18	27	59	81	90	82	78	183	93	242	214	141	38	49	78	31	29	53	162	48	149	513	466	116 6	102 9
Sb	0.2		<0.333		<0.	333	0.666	0.3	0.3	0.3		0.333		<0.33	<0.33	0.333	<0.33	0.333	<0.33	<0.33	0.333	0.333	0.333	<0.33	<0.33	<0.33	<0.33	<0.33	<0.3	0.33	0.67	<0.	.33
Se	0.0 5		<0.333			<0.333			<0.333			<0.333				<0.	333							<0.333						<0.33		<0.	.33

TS	F	S	outh Sar	nd	N	lorth Sar	nd	1	L8 Dum	пр	11	L10 Dun	np			1L13	Dump						1	L25 Dum	p				1L	.28 Dun	np	Mang e S	
Sam ple ID	AC A	S Sand s_Z1	S Sand s_Z2	S Sand s_Z3	N Sand s_Z1	N Sand s_Z2	N Sand s_Z3	1L8 _Z1	1L8 _Z2	1L8 _Z3	1L1 0_Z 1	1L1 0_Z 2	1L1 0_Z 3	1L13_ A_Z1	1L13_ A_Z2	1L13_ A_Z3	1L13_ B_Z1	1L13_ B_Z2	1L13_ B_Z3	1L25_ A_Z1	1L25_ A_Z2	1L25_ A_Z3	1L25_ B_Z1	1L25_ B_Z2	1L25_ B_Z3	1L25_ C_Z1	1L25_ C_Z2	1L25_ C_Z3	1L2 8_Z 1	1L2 8_Z 2	1L2 8_Z 3	IL 28 M1	IL 28 M2
Sn	2.1		<0.33		<0.3	<0.3	1.665		<0.333			<0.333				<0.	.33			<0.33	<0.33	<0.33	0.666	<0.33	<0.33	<0.33	<0.33	<0.33		<0.33		<0	.33
Sr	38 4	11	12	11	19	18	16	16	15	20	17	17	19	24	22	14	25	18	17	27	23	38	24	20	19	21	28	23	41	35	36	294 4	292 7
Ti	63 20	1315	1362	1265	1179	1275	1162	142 9	133 2	127 5	135 9	138 2	148 5	1429	1462	1175	1072	1419	1349	1279	1315	1342	1142	1139	1439	1505	1136	1778	123 5	119 2	121 5	277	293
Th	8.1	<8.3	<8.3	8		<8.33			<8.33			<8.33				<8.	.33							<8.33						<8.3	İ	<8	.33
U	2.3	3	13	17	3	3	3	10	16	19	9	43	31	47	34	44	62	26	50	70	25	43	26	33	27	49	56	32	47	66	79	1	1
V	13 6		<8.33			<8.33			<8.33			<8.33		40	<8.33	<8.33	11	<8.33	<8.33					<8.33						<8.3		81	78
Zn	76	<8.3	47	46	<8.3	<8.3	<8.3	20	34	38	12	360	181	131	107	135	216	82	189	210	99	165	201	111	77	202	193	94	179	287	244	309	353
Ag		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	8
Al		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
As		3	4	4	2	2	1	4	4	4	4	5	4	4	5	5	4	5	5	6	5	5	4	5	5	5	6	5	6	7	7	3	3
Ва		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4
Ве		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ca		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cd		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Co		1	2	1	1	2	1	2	1	1	1	1	1	1	2	1	2	1	2	2	2	1	2	2	2	1	1	1	2	2	2	1	1
Cr		0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	0	0	1	1	0	0	0	0	0	0	1	1	0	0
Cu		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Fe		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
К		5	5	5	6	5	5	6	7	7	7	7	6	6	6	6	6	6	6	6	6	7	6	6	6	6	6	6	6	6	6	4	3
Mg		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mn		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	1	1	7	7
Мо		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ni		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pb		0	0	0	0	0	0	1	0	0	2	2	2	2	2	3	2	4	3	3	1	1	2	1	1	1	3	1	3	5	5	6	6
Sb		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

TSF		Sc	outh San	d	N	lorth Sar	nd	11	L8 Dum	р	1L	_10 Dun	np			1L13	Dump						1	L25 Dum	р				11	.28 Dun	np	Mang e S	ganes Blag
Sam ple ID	AC A	S Sand s_Z1	S Sand s_Z2	S Sand s_Z3	N Sand s_Z1	N Sand s_Z2	N Sand s_Z3	1L8 _Z1	1L8 _Z2	1L8 _Z3	1L1 0_Z 1	1L1 0_Z 2	1L1 0_Z 3	1L13_ A_Z1	1L13_ A_Z2	1L13_ A_Z3	1L13_ B_Z1	1L13_ B_Z2	1L13_ B_Z3	1L25_ A_Z1	1L25_ A_Z2	1L25_ A_Z3	1L25_ B_Z1	1L25_ B_Z2	1L25_ B_Z3	1L25_ C_Z1	1L25_ C_Z2	1L25_ C_Z3	1L2 8_Z 1	1L2 8_Z 2	1L2 8_Z 3	IL 28 M1	IL 28 M2
Se		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sn		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sr		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
Ti		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Th		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U		0	2	2	0	0	0	2	2	2	1	4	3	4	3	4	4	3	4	4	3	4	3	3	3	4	4	3	4	4	5	0	0
V		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zn		0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	1	0	1	1	0	1	1	0	0	1	1	0	1	1	1	1	2

5.4 Leaching potential

The mobility of the metals and salts from materials is typically assessed using the leach test for solid samples. The tailings samples were subjected to deionised water leach test at 1:4 water-rock ratio.

Digby Wells has assessed the leachate quality against the General Limits for the discharge of wastewater into a water resource and the WUL Groundwater Quality Limits. It is noted that laboratory leachate tests do not directly replicate metal release under field conditions and apply only as a guide.

Table 5-4 presents a summary of the assessment of the quality of the leachates against the General Limits. The study assessed the quality of the data by balancing the reported cation and anion concentrations. An ion imbalance within \pm 10% represents an acceptable level of analytical accuracy. The assessment indicates the following:

- The tailings leachate ranges from acidic to neutral (pH 2.6 7.7). The leachates from all the dumps and the Manganese Slag are acidic relative to the General Limits (pH 5.5 9.5) except dump 1L28 leachate (pH 6.4-7.0) that is neutral and within the General Limits;
- Conductivity (55 320 mS/m) exceeds the General and WUL Groundwater Quality Limits (150 μ S/cm) in the leachates from all the dumps and the Manganese Slag except South Sands (60-124 μ S/cm), North Sands (55-71 μ S/cm) and 1L8 dump (89-99 μ S/cm); and
- The following parameters exceed the General and WUL Groundwater Quality Limits in the tailings and Manganese Slag:
 - South Sands pH, Fe, SO₄, and Zn;
 - North Sands pH, Ca, and Zn;
 - 1L8 Dump pH, Ca, Fe, Pb, SO₄, and Zn;
 - 1L10 Dump pH, EC, Ca, Fe, Hg, Pb, SO₄, and Zn;
 - 1L13 Dump pH, EC, B, Ca, Mn, SO₄, and Zn;
 - 1L25 Dump pH, EC, Ca, Hg, Mn, SO₄, and Zn;
 - 1L28 Dump EC, Ca, Mn, and SO₄; and
 - Manganese Slag pH, EC, B, Ca, Mn, and SO₄

In summary, the leaching assessment indicates that the tailings will be acidic (pH 2.6-7.7). The leachates from all the dumps and the Manganese Slag are acidic relative to the General Limits (pH 5.5-9.5) except dump 1L28 leachate (pH 6.4-7.0). The parameters that require close monitoring include pH, EC, B, Ca, Fe, Hg, Mn, Pb, SO₄, and Zn..

Table 5-4: Deionised water leachate quality results for the tailings against the background groundwater quality

	Sc	outh San	ds	Ne	orth San	ds	1	L8 Dum	np	1L	.10 Dun	np			1L13	Dump							1L25 I	Dump				11	L28 Dur	np	Mangan	e Ge	
Para meter	S	S	S	N	N	N							41.42	41.40			41.42	41.42	41.05	41.25	41.25	41.05			41.05	41.05	41.25				se Slag	al	2013)
s	San ds_Z 1	San ds_Z 2	San ds_Z 3	San ds_Z 1	San ds_Z 2	San ds_Z 3	1L8 _Z1	1L8 _Z2	1L8 _Z3	1L1 0_Z 1	1L1 0_Z 2	1L1 0_Z 3	1L13 _A_Z 1	1L13 _A_Z 2	1L13 _A_Z 3	1L13 _B_Z 1	1L13 _B_Z 2	1L13 _B_Z 3	1L25 _A_Z 1	1L25 _A_Z 2	1L25 _A_Z 3	1L25 _B_Z 1	1L25 _B_Z 2	1L25 _B_Z 3	1L25 _C_Z 1	1L25 _C_Z 2	1L25 _C_Z 3	1L2 8_Z 1	1L2 8_Z 2	1L2 8_Z 3	IL II 28 2 M1 M	8 /20	dwate r
													Physic	ochemic	al Paran	eters in	mg/L exc	ept EC a	t uS/cm	and pH v	vithout u	ınit											
pН	4.4	3.7	3.3	5.6	4.6	4.4	3.3	4.4	6.6	2.6	3.2	7.5	6.7	6.9	6.6	4.9	6.4	6.2	6.3	4.7	6.6	7.0	5.2	7.0	7.2	7.2	7.2	7.0	6.5	6.4	4.6 4.	6 5.5 9.5	9,5-10
EC	60	99	124	71	60	55	93	89	99	309	306	156	242	192	231	320	186	196	256	144	236	245	174	179	299	241	247	257	248	238	22 23 6 2		
Alkali nity		<5		<5	8	<5	<5	<5	16	<5	<5	52	28	24	16	12	16	16	16	<5	16	40	8	20	52	20	32	20	12	8.0	8.0 8.		;
TDS	430	808	1,00 8	526	434	382	652	694	802	3,16 8	3,51 4	1,46 8	2,500	1,898	2,310	3,714	1,810	1,936	2,726	1,346	2,368	2,496	1,688	1,702	3,142	2,516	2,420	2,67 6	2,50 6	2,39 0	2,3 2, 12 8	3 Ns	;
			-								-					Inorga	nic Anio	ns in mg	/L										-				
CI		<2			<2		<2	<2	6.0	2.0	2.0	19	4.0	6.0	5.0	2.0	<2	3.0	4.0	5.0	5.0	5.0	6.0	6.0	548	7.0	5.0	4.0	7.0	6.0	<2 <	2 Ns	3
SO ₄	269	516	667	325	272	234	404	423	485	1,96 7	2,19 1	842	1,502	1,156	1,391	2,234	1,097	1,168	1,653	809	1,451	1,505	1,070	1,041	1,979	1,500	1,513	1,62 9	1,55 9	1,45 4	1,4 1, 17 5		400
NO ₃ -	0.20	<0.1	<0.1	<0.1	0.10	<0.1	0.1 0	0.1 0	0.2	0.10	0.10	<0.1	<0.1	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.20	0.10	<0.1	<0.1	<0.1	0.20	<0.1	0.10		<0.1		2.0 4.	2 15	15
F		<0.2			<0.2			<0.2			<0.2		<0.2	0.20	<0.2	0.20	0.20	0.20	0.20	0.20	0.40	0.30	0.30	0.30	0.30	0.40	0.40	0.40	0.60	0.50	0.3 0. 0 0		1.0
														Ме	tals and	Metalloid	ls in mg/l	and ior	nic balan	ce in %													
Ag		<0.025			<0.025			<0.025			<0.025		<0.02 5	<0.02 5	<0.02 5	0.07	<0.02 5	<0.02 5					<0.025						<0.025		<0.025	Ns	s
Al	<0.1 00	29	44		<0.100		28	<0. 100	<0. 100	151	112	<0.1 00			<0.	100							<0.100						<0.100		<0.100	Ns	;
As	0.00 13	0.00 71	0.01 1		<0.001		0.0 1	<0. 001	0.0 015	0.02	0.00 5	<0.0 01	<0.00 1	<0.00 1	0.001	<0.00 1	<0.00 1	0	<0.00 1	<0.00 1	<0.00 1	<0.00 1	<0.00 1	0.001	<0.00 1	<0.00 1	<0.00 1	<0.0 01	<0.0 01	0.00	<0.001	0.0	
В		<0.025	·		<0.025			<0.025		<0.0 25	0.04	0.07	0.99	0.61	0.12	1.2	0.23	0.22	0.14	<0.02 5	0.29	0.036	<0.02 5	<0.02 5	0.046	0.12	0.38	0.96	0.32	0.17	12 2.		
Ва		<0.025			<0.025			<0.025			<0.025				<0.	.025				Ü			<0.025	Ü				<0.0 25	<0.0 25	0.04 6	<0.025	Ns	;
Ве		<0.025			<0.025			<0.025			<0.025				<0.	.025							<0.025						<0.025		0.1 <(9 5	2 Ns	s
Bi		<0.025			<0.025			<0.025			<0.025				<0.	.025							<0.025					<0.0 25	<0.0 25	0.04	4.9 0). 2 Ns	,
Ca	107	109	104	142	188	103	66	166	205	177	491	362	557	410	585	522	519	527	563	318	824	571	451	459	620	633	637	545	457	629	42 6	2 No	
Cd	<0.0	0.00	0.00		<0.001	.00	0.0	0.0	<0.	0.00	0.00	<0.0	30.			.001		02.		0.0	52 .	• • •	<0.001	.00	020			0.0	<0.001		2 3	0.0)
Co	0.04	23 0.76	3 1.2		<0.025		1.3	015 1.1	0.2	3 2.4	9 4.9	01 0.14	0.67	0.03	0.16	1.9	0.42	0.41	0.73	1.0	0.33	0.19	0.28	0.05	0.41	<0.02 5	0.26	0.22	0.08	0.07	0.2).	
Cr	<0.0	0.08					0.1	<0.	4 <0.			<0.0		<0.02	<0.02		<0.02			<0.02			<0.02	<0.02	<0.02	< 0.02	<0.02			0.03	0 <).). o (
total	25	5	0.19		<0.025		8	025	025		0.24	25	0	<0.02 5	5	0	5	0	0	5	<0.02 5	<0.02 5	5	5	5	5	5	0.08	0.04	2	9 5	4 I 5	
Cr (VI)		<0.010			<0.010		0.0 1	<0. 010	<0. 010	0.02 3	0.02 3	<0.0 10			<0.	.010							<0.010						<0.010		<0.010		•
Cu	<0.0 10	1.1	0.46		<0.010		1.7	0.1 2	<0. 010	5.1	4.5	<0.0 10	<0.01 0	<0.01 0	<0.01 0	0.013	<0.01 0	<0.01 0	<0.01 0	0	<0.01 0	<0.0 10	<0.0 10	0.26	0.3 <0 2 0	1 0.0)						
Fe	0.06 2	13	37	<0.0 25	<0.0 25	0.07 0	26	0.2 1	<0. 025	221	122	0.06 5	<0.02 5	<0.02 5	<0.02 5	0.052	<0.02 5	0.051	0.048	0.030	<0.0 25	<0.0 25	0.05 0	0.0 <(29 5	2 0.3	3							
Hg	<0.0 01	<0.0 01	<0.0 01		<0.001		<0. 001	<0. 001	0.0 03	<0.0 01	<0.0 01	0.01			<0.	.001			0.001 6	<0.00 1	<0.00 1	0.001	<0.00 1	<0.00 1	0.006	<0.00 1	<0.00 1	<0.0 01	0.00	<0.0 01	<0.001	0.0	
K	0.83	<0.5	<0.5	1.0	1.5	1.3	<0.		7.3	<0.5	0.7	3.5	5.7	7.0	6.6	1.6	3.1	4.0	2.2	6.4	10	5.7	5.8	4.1	5.5	4.7	12	5.8	9.1	10	0.5 6 1.		

Para	Sc	outh San	ds	No	orth San	ds	1	L8 Dum	пр	11	_10 Dun	ıp			1L13	Dump							1L25	Dump				11	_28 Dun	ıр	Mangane se Slag	Ge ner al	WUL (Nov 2013)
meter s	S San ds_Z 1	S San ds_Z 2	S San ds_Z 3	N San ds_Z 1	N San ds_Z 2	N San ds_Z 3	1L8 _Z1	1L8 _Z2	1L8 _Z3	1L1 0_Z 1	1L1 0_Z 2	1L1 0_Z 3	1L13 _A_Z 1	1L13 _A_Z 2	1L13 _A_Z 3	1L13 _B_Z 1	1L13 _B_Z 2	1L13 _B_Z 3	1L25 _A_Z 1	1L25 _A_Z 2	1L25 _A_Z 3	1L25 _B_Z 1	1L25 _B_Z 2	1L25 _B_Z 3	1L25 _C_Z 1	1L25 _C_Z 2	1L25 _C_Z 3	1L2 8_Z 1	1L2 8_Z 2	1L2 8_Z 3	IL IL 28 28 M1 M2	Lim it (20 13)	Groun dwate r Limits
Mg	4.0	15	22	1.0	2.0	<1	6.0	11	5.0	51	67	12	38	21	6.0	78	12	10	54	9.0	23	75	15	8.0	210	17	24	33	27	13	1.0 3.0	Ns	100
Mn	3.0	7.5	4.4	0.72	0.89	0.70	5.3	2.7	1.3	1.5	6.2	0.91	79	36	19	361	39	47	98	13	22.0	3.7	3.0	1.3	19	0.078	27	96	69	58	0.2 3 67	0.1 0	
Мо		<0.025			<0.025			<0.025	i		<0.025				<0.	025							<0.025						<0.025		<0.025	Ns	1
Na	1.0	<1	<1	2.0	2.0	1.0	<1	2.0	6.0	<1	2.0	13	6.0	7.0	9.0	3.0	2.0	2.0	3.0	8.0	6.0	3.0	4.0	4.0	3.0	4.0	7.0	10	8.0	11	3.0 6.0	Ns	200
Ni	0.21	2.7	4.2	0.07 7	0.17	0.13	4.3	3.8	1.1	5.5	15	0.46	3.0	0.16	0.42	9.1	0.47	1.9	3.6	4.5	1.4	0.61	1.7	0.17	1.9	<0.02 5	0.10	0.60	0.19	0.22	<0.025	Ns	
Р		<0.025			<0.025		<0. 025	<0. 025	<0. 025		<0.025		<0.02 5	0	<0.02 5	0	<0.02 5	<0.02 5	0.059	<0.02 5	<0.02 5	0.026	<0.02 5	<0.02 5	0.072	0.027	<0.02 5	<0.0 25	0.03 1	0.03 6	<0.025	Ns	
Pb		<0.001			<0.001		0.0 19	0.0 02	<0. 001	<0.0 01	0.47	<0.0 01	<0.00 1	<0.00 1	0.002	0.029	0.002	0.005	0.001	0.002	<0.00 1	<0.0 01	0.00 2	0.00	<0.001	0.0							
Sb		<0.001			<0.001			<0.001			<0.001		-		<0.	001							<0.001						<0.001	_	<0.001	Ns	1
Se		<0.001			<0.001			<0.001			<0.001				<0.	001							<0.001						<0.001		<0.001	0.0 2	
Si	1.6	1.6	1.3	2.0	2.1	1.3	2.6	4.6	4.6	2.9	10	6.3	7.9	3.6	4.0	7.4	5.2	6.6	6.3	5.5	4.0	3.6	4.3	3.9	6.0	<0.2	5.4	6.4	3.0	4.1	6.4 <0.	Ns	1
Sn		<0.001		<0.0 01	<0.0 01	<0.0 01	<0. 001	<0. 001	<0. 001	<0.0 01	<0.0 01	<0.0 01	<0.00 1	<0.00 1	<0.00 1	<0.00 1	<0.00 1	<0.00 1					<0.001						<0.001		<0.001	Ns	
Sr	0.14	0.07	0.05 0	0.25	0.19	0.12	0.0 7	0.1 7	0.1 8	0.07	0.31	0.21	1	1	0	1	0	0	0.78	0.21	0.78	0.39	0.24	0.18	0.27	0.54	0.65	0.75	0.55	0.72	3.8 3.8	Ns	
Th	<0.0 01	0.00 5	0.03		<0.001		0.0	<0. 001	0.0 015	0.35	0.11	<0.0 01			<0.	001							<0.001						<0.001		<0.001	Ns	
Ti		<0.025			<0.025			<0.025	i		<0.025				<0.	025							<0.025						<0.025		<0. 3.1 02 5	Ns	
TI		<0.025			<0.025			<0.025	i		<0.025				<0.	025							<0.025					<0.0 25	<0.0 25	0.19	33 0.0 35	Ns	
U	0.00 1	0.76	2.2	0.00 1	<0.0 01	<0.0 01	1.1	0.1 9	0.0 06	1.7	6.0	0.6	0.058	0.11	0.02	0.46	0.002	0.002	0.02	0.007	0.01	0.05	0.002	0.09	0.65	0.11	0.16	0.06	0.00 5	0.00 5	<0.001	Ns	
V		<0.025			<0.025			<0.025	i		<0.025		0.030	<0.02 5	<0.02 5	0.10	<0.02 5	<0.02 5	0.04				<0.	025				0.04	<0.0 25	0.04	<0. 02 02 21	0- 0.1	
Zn	0.21	0.73	2.1	<0.0 25	0.38	<0.0 25	4.1	2.8	0.1 5	3.5	30	0.04 7	0.68	<0.02 5	0.044	11	0.058	0.22	0.60	2.0	0.053	0.074	0.23	<0.02 5	0.37	<0.02 5	<0.02 5	0.03	<0.0 25	<0.0 25	<0.025	0.1	
lon Balan ce	99	97	67	97	77	97	61	97	99	97	79	97	98	97	99	97	93	97	96	97	83	96	97	97	97	98	97	93	97	96	97 99		

5.5 Tailings Classification

The study assessed the liner requirements for the material against the N&S for the Assessment of Waste for Landfill Disposal and the N&S for Disposal of Waste to Landfills.

The type of waste was determined by comparing the TC and LC of the elements and chemical substances in the waste with the Total Concentration Threshold (TCT) and Leachate Concentration Threshold (LCT) limits. Based on the TC and LC limits of the elements and chemical substances in the materials exceeding the corresponding TCT and LCT limits respectively, the waste type and the landfill disposal requirements were determined. For this study, the leachate water/rock ratio is 20:1 for both DI and borax leachate tests.

5.5.1 Total Concentration Threshold

Table 5-6 present a summary of the assessment of total concentrations against the TCT. The assessment indicates the following for the total leachable concentration:

The following parameters exceed the TCT0 in the tailings and Manganese Slag:

- South Sands -As, Co and Hg;
- North Sands As; Co and Hg;
- 1L8 Dump As, Co, Cu, Hg and Pb;
- 1L10 Dump As, Co, Cu, Hg, Ni, Pb and Zn;
- 1L13 Dump As, Ba, Co, Cu, Hg, Mn, Ni and Pb;
- 1L25 Dump As, Ba, Co, Cu, Hg Mn, Ni and Pb;
- 1L28 Dump As, Ba, Co, Cu, Hg, Mn, Ni, Pb and Zn; and
- Manganese Slag As, Co, Cu, Hg, Pb and Zn.

The following parameters exceed the TCT1 and TCT2 in the Manganese Slag:

- Barium greater than TCT1 guideline at 7 326 mg/kg; and
- Manganese above the TCT2 guideline with concentrations of 183 816 and 192 141 mg/kg.

5.5.2 Leachable Concentration Threshold

A high ionic charge balance is observed in samples N Sands_Z2 and N Sands_Z3 from North Sands TSF and 1L10_Z2 from 1L10 TSF at 56.90%, 31.15% and 31.15 % respectively. The deviation from < 10% ion imbalance requirement is because the leachates are acid waters in which H⁺ is the major cation but cannot be introduced directly into the charge balance from the pH measurements resulting in less cations. To achieve a proper charge balance, the activity coefficient for H+ must be used to convert pH to H+ equivalents.

The type of waste was determined by comparing the TC and LC of the elements and chemical substances in the waste with the Total Concentration Threshold (TCT) and Leachate Concentration Threshold (LCT) limits.

Deionised water leachable concentrations

Table 5-7 presents a summary of the assessment of deionised water leachable concentrations. The assessment indicates the following for the leachable concentrations above the LCT0 but below LCT1:

- South Sands SO₄, As, Co, Cr total, Mn and Ni;
- North Sands TDS, SO₄, Cd, Co Cr total, Cr(VI), Cu, Mn, Ni and Zn;
- 1L8 Dump TDS, SO₄, B, Co, Mn, Ni, Pb and Zn;
- 1L10 Dump TDS, SO₄, Cd, Co, Cr total, Cu, Hg, Ni, and Pb;
- 1L13 Dump TDS, SO₄, B, Ba, Co, Hg, Mn, Ni and V;
- 1L25 Dump TDS, SO₄, Ba, Co, Hg Mn and Ni;
- 1L28 Dump TDS, SO₄, Ba, Hg and Ni; and
- Manganese Slag TDS, SO₄ and B.

The assessment indicates the following for the leachable concentrations above the LCT1 but below LCT2:

- 1L8 Dump Mn;
- 1L13 Dump Mn and Ni;
- 1L25 Dump Mn;
- 1L28 Dump Mn; and
- Manganese Slag Mn.

The assessment indicates the following for the leachable concentrations above the LCT2 but below LCT3:

- North Sands Ni; and
- 1L13 Dump Ni.

Borax leachable concentrations

Table 5-8 presents a summary of the assessment of Borax leachable concentrations. The assessment indicates the following for the borax water above the LCT0 but below LCT1:

- South Sands SO₄, As and Pb;
- North Sands As, Mo and Pb;
- 1L8 Dump SO₄, As, Hg, Mo, Ni, Pb and Se;

- 1L10 Dump SO₄, As, Hg, Mo, Ni, Pb and Se;
- 1L13 Dump SO₄, As, Hg, Mn and Pb;
- 1L25 Dump SO₄, As, Hg Mn, Ni and Pb;
- 1L28 Dump TDS, SO₄, As, Mn and Mo; and
- Manganese Slag TDS, SO₄ and Mo.

Based on the TC and LC limits of the elements and chemical substances in the materials exceeding the corresponding TCT and LCT limits respectively, the waste type for the tailings from the different facilities are as summarised in Table 5-5.

Table 5-5: Overall waste classification for tailings

TSF	Overall Type of Waste
South Sands	Type 3
North Sands	Type 1
1L8 Dump	Type 2
1L10 Dump	Type 1
1L13 Dump	Type 1
1L25 Dump	Type 2
1L28 Dump	Type 2
Manganese Slag	Type 1

Table 5-6: Total concentrations in mg/kg for the tailings against the TCT

Elements substan	ces in tails	As	В	Ва	Cd	Со	Cr total	Cr (VI)	CN total	Cu	F	Hg	Mn	Мо	Ni	Pb	Sb	Se	V	Zn
Leachable	тсто	5.8	150	62.5	7.5	50	46000	6.5	14	16	100	0.93	1000	40	91	20	10	10	150	240
Concentrations Threshold (mg/l)	TCT1	500	15000	6250	260	5000	800000	500	10500	19500	10000	160	25000	1000	10600	1900	75	50	2680	160000
	TCT2	2000	6000	25000	1040	20000	N/A	2000	42000	78000	40000	640	100000	4000	42400	7600	300	200	10720	640000
	S Sands_Z1	25	<8.33	26.6	<0.333	78	159	<2	<1.55	<3.33	1.57	5.33	350	<8.33	<8.33	13	<0.333	<0.333	<8.33	<8.33
South Sand	S Sands_Z2	47	<8.33	25.0	<0.333	147	215	<2	<1.55	11	<0.5	6.99	162	<8.33	28.6	13	<0.333	<0.333	<8.33	46.95
	S Sands_Z3	38.30	<8.33	19.65	<0.333	110.22	178	2	<1.55	4.33	<0.5	5.66	166	<8.33	43.3	13	<0.333	<0.333	<8.33	45.95
	N Sands_Z1	7.7	<8.33	47.95	<0.333	86.25	107	<5	<1.55	<3.33	<0.5	4.66	228	<8.33	<8.33	16	<0.333	<0.333	<8.33	<8.33
North Sand	N Sands_Z2	8	15.0	30.6	<0.333	169	126	<2	<1.55	<3.33	1.22	8.66	58.3	<8.33	13	15.3	<0.333	<0.333	<8.33	<8.33
	N Sands_Z3	5.66	<8.33	27.0	<0.333	88.58	150	<2	<1.55	<3.33	<0.5	4.66	50	<8.33	<8.33	17	1	<0.333	<8.33	<8.33
	1L8_Z1	36	8.3	41.63	<0.333	124	159	<2	<1.55	7.99	<0.5	5.33	144	<8.33	28	30	0.333	<0.333	<8.33	20
1L8 Dump	1L8_Z2	53.95	<8.33	45.95	<0.333	94.91	189	<2	<1.55	15.98	1.31	3.00	48	<8.33	43	18	0.333	<0.333	<8.33	33.6
	1L8_Z3	49	<8.33	50.62	<0.333	67.6	221	<2	<1.55	17	0.96	2.33	54.3	<8.33	40	27	0.3	<0.333	<8.33	38
	1L10_Z1	40	<8.33	41.96	<0.333	71.3	194	<2	<1.55	6.66	<0.5	2.66	28	<8.33	<8.33	59	0.3	<0.333	<8.33	12
1L10 Dump	1L10_Z2	69	<8.33	46.62	0.33	78	239	<2	<1.55	44	<0.5	1.33	116	<8.33	107	81	<0.333	<0.333	<8.33	360
	1L10_Z3	57.28	21.0	44.62	0.33	108.23	264	<2	<1.55	31	0.73	3.00	94.9	<8.33	102	90	0.333	<0.333	<8.33	181
	1L13_A_Z1	60	12.0	151	<0.333	100.2	273	<2	<1.55	26	2.40	2.33	1718	<8.33	78	82	<0.333	<0.333	40.29	131
	1L13_A_Z2	75	35.3	95	<0.333	142	255	<2	<1.55	25	0.70	4.33	1545.12	<8.33	88	78	<0.333	<0.333	<8.33	107
1L13 Dump	1L13_A_Z3	96	<8.33	54	0.33	103	192	<2	<1.55	22	<0.5	2.66	686	<8.33	75	183	0.33	<0.333	<8.33	135
1210 Bump	1L13_B_Z1	58.28	10.3	114.22	<0.333	128.87	1578	<2	<1.55	29	<0.5	4.00	2537.5	<8.33	152	93	<0.333	<0.333	11.0	216
	1L13_B_Z2	76.26	25.0	54.61	<0.333	120.88	312	<2	<1.55	22	0.55	3.66	616	<8.33	17	242	0.3	<0.333	<8.33	82
	1L13_B_Z3	108	<8.33	73	0.33	147	446	<2	<1.55	18	0.58	4.00	892	<8.33	131	214	<0.333	<0.333	<8.33	189
	1L25_A_Z1	143.86	<8.33	92.57	<0.333	172.49	224	<2	<1.55	32	1.26	4.00	2118	<8.33	134	141	<0.333	<0.333	<8.33	210
	1L25_A_Z2	76	26.3	42.3	<0.333	198	221	<2	<1.55	30	0.56	6.33	157	<8.33	84	38	0.333	<0.333	<8.33	99
	1L25_A_Z3	93	21.0	89	<0.333	121	270	<2	<1.55	61	0.62	2.00	1802	<8.33	144	49	0.3	<0.333	<8.33	165
	1L25_B_Z1	58	16.3	53	<0.333	144	301	<2	<1.55	25	<0.5	4.00	247	<8.33	105	78	0.3	<0.333	<8.33	201
1L25 Dump	1L25_B_Z2	94	<8.33	41	<0.333	153	214	<2	<1.55	29	<0.5	3.66	235	<8.33	64	31	<0.333	<0.333	<8.33	111
	1L25_B_Z3	101	18.6	39.3	<0.333	144	229	<2	<1.55	27	<0.5	4.66	200	<8.33	84	29	<0.333	<0.333	<8.33	77
	1L25_C_Z1	63.27	19.3	38.63	<0.333	118.88	214	<2	<1.55	22	<0.5	3.00	288	<8.33	85	53	<0.333	<0.333	<8.33	202
	1L25_C_Z2	153	<8.33	109	<0.333	113	222	<2	<1.55	27	<0.5	3.00	2707	<8.33	123	162	<0.333	<0.333	<8.33	193
	1L25_C_Z3	81	<8.33	109	<0.333	87	210	<2	<1.55	20	1.83	2.00	1502	<8.33	52	48	<0.333	<0.333	<8.33	94
	1L28_Z1	166.2	13.7	180	<0.333	175	238	<2	<1.55	26	<0.5	5.00	4329.0	<8.33	128	149	<0.333	<0.333	<8.33	179
	1L28_Z2	336.33	22.6	141.86	0.33	226.11	294	<2	<1.55	27	<0.5	5.33	4329	<8.33	162	513	0.3	<0.333	<8.33	287
1L28 Dump	1L28_Z3	449.55	10.0	97.57	<0.333	144.86	311	<2	<1.55	23	<0.5	3.00	2407.6	<8.33	143	466	0.666	<0.333	<8.33	244
	IL 28 M1	20.979	14.7	7326	<0.333	102.564	173	<2	<1.55	125	<0.5	<0.333	192141	<8.33	46	1166	<0.333	<0.333	81	309
	IL 28 M2	21.645	16.7	7326	<0.333	117.549	140	<2	<1.55	146	<0.5	<0.333	183816	<8.33	48	1029	<0.333	<0.333	78	353

Table 5-7: Deionised water leachable concentration results for the tailings against the LCT

												ASLP (20:1)	- Reagent w	rater pH 7.0										
Elements & substances			ı	norganic A	Anions (mg	j/L)									Metal I	ons (mg/L))							
Substances	3 III Waste	TDS	CI	SO ₄	NO ₃ -N	F	CN total	As	В	Ва	Cd	Co	Cr total	Cr(VI)	Cu	Hg	Mn	Мо	Ni	Pb	Sb	Se	V	Zn
Leachable	LCT0 mg/l	1000	300	250	11	1.5	0.07	0.01	0.5	0.7	0.003	0.5	0.1	0.05	2	0.006	0.5	0.07	0.07	0.01	0.02	0.01	0.2	5
Concentrations Threshold	LCT1 mg/l	12500	15000	12500	550	75	3.5	0.5	25	35	0.15	25	5	2.5	100	0.3	25	3.5	3.5	0.5	1	0.5	10	250
(mg/l)	LCT2 mg/l	25000	30000	25000	1100	150	7	1	50	70	0.3	50	10	5	200	0.6	50	7	7	1	2	1	20	500
	S Sands_Z1	196	<2	130	<0.1	<0.2	<0.07	<0.001	<0.025	<0.025	<0.001	<0.025	<0.025	<0.010	<0.010	<0.001	0.34	<0.025	0.066	<0.001	<0.001	<0.001	<0.025	<0.025
South Sand	S Sands_Z2	408	<2	278	<0.1	<0.2	<0.07	0.015	<0.025	<0.025	0.0046	0.76	0.11	<0.010	1.4	<0.001	2.9	<0.025	2.4	0.007	<0.001	<0.001	<0.025	1.927
	S Sands_Z3	310	2.0	195	<0.1	<0.2	<0.07	0.0010	<0.025	<0.025	<0.001	0.15	<0.025	<0.010	<0.010	<0.001	0.59	<0.025	0.70	<0.001	<0.001	<0.001	<0.025	0.149
	N Sands_Z1	442	3.0	281	<0.1	<0.2	<0.07	0.0018	<0.025	<0.025	<0.001	0.16	<0.025	<0.010	<0.010	<0.001	0.69	<0.025	0.75	<0.001	<0.001	<0.001	<0.025	0.172
North Sand	N Sands_Z2	1,842	<2	1,281	<0.1	<0.2	<0.07	0.0080	<0.025	<0.025	0.003	1.4	1.095	0.072	3.4	<0.001	0.85	<0.025	3.4	0.001	<0.001	<0.001	<0.025	2.164
	N Sands_Z3	1,994	<2	1,356	<0.1	<0.2	<0.07	0.0088	<0.025	<0.025	0.012	2.7	0.122	0.020	3.6	<0.001	2.6	<0.025	7.9	0.11	<0.001	<0.001	<0.025	20
	1L8_Z1	1,336	4.0	882	<0.1	<0.2	<0.07	0.0012	0.074	<0.025	0.0050	1.0	<0.025	<0.010	0.359	<0.001	2.7	<0.025	3.0	0.16	<0.001	<0.001	<0.025	5.5
1L8 Dump	1L8_Z2	1,362	2.0	812	<0.1	<0.2	<0.07	<0.001	0.57	0.025	<0.001	0.24	<0.025	<0.010	<0.010	<0.001	39	<0.025	1.1	<0.001	<0.001	<0.001	<0.025	0.200
	1L8_Z3	990	3.0	655	<0.1	<0.2	<0.07	0.0018	0.34	0.031	<0.001	<0.025	<0.025	<0.010	<0.010	<0.001	20	<0.025	0.09	<0.001	<0.001	<0.001	<0.025	<0.025
	1L10_Z1	1,202	3.0	774	<0.1	<0.2	<0.07	0.0023	0.081	<0.025	<0.001	0.12	<0.025	<0.010	<0.010	<0.001	13	<0.025	0.26	0.001	<0.001	<0.001	<0.025	0.035
1L10 Dump	1L10_Z2	1,994	<2	1,356	<0.1	<0.2	<0.07	0.0088	<0.025	<0.025	0.012	2.7	0.12	0.020	3.6	<0.001	2.6	<0.025	7.9	0.11	<0.001	<0.001	<0.025	20
	1L10_Z3	1,336	4.0	882	<0.1	<0.2	<0.07	0.0012	0.074	<0.025	0.0050	1.0	<0.025	<0.010	0.36	<0.001	2.7	<0.025	3.0	0.16	<0.001	<0.001	<0.025	5.5
	1L13_A_Z1	1,362	2.0	812	<0.1	<0.2	<0.07	<0.001	0.57	0.025	<0.001	0.24	<0.025	<0.010	<0.010	<0.001	39	<0.025	1.1	<0.001	<0.001	<0.001	<0.025	0.20
	1L13_A_Z2	990	3.0	655	<0.1	<0.2	<0.07	0.0018	0.34	0.031	<0.001	<0.025	<0.025	<0.010	<0.010	<0.001	20	<0.025	0.090	<0.001	<0.001	<0.001	<0.025	<0.025
1L13 Dump	1L13_A_Z3	1,202	3.0	774	<0.1	<0.2	<0.07	0.0023	0.081	<0.025	<0.001	0.12	<0.025	<0.010	<0.010	<0.001	13	<0.025	0.26	0.001	<0.001	<0.001	<0.025	0.035
	1L13_B_Z1	2,114	2.0	1,371	<0.1	<0.2	<0.07	<0.001	0.83	<0.025	0.0021	1.42	0.066	0.037	<0.010	<0.001	164	<0.025	5.0	0.010	<0.001	<0.001	0.027	4.9
	1L13_B_Z2	924	<2	613	<0.1	<0.2	<0.07	0.0014	0.12	<0.025	<0.001	0.28	<0.025	<0.010	<0.010	<0.001	20	<0.025	0.32	0.001	<0.001	<0.001	<0.025	0.060
	1L13_B_Z3	930	2	612	<0.1	<0.2	<0.07	0.0051	0.10	<0.025	<0.001	0.16	<0.025	<0.010	<0.010	<0.001	17	<0.025	0.72	0.004	<0.001	<0.001	<0.025	0.080
	1L25_A_Z1	2,446	3.0	1,629	<0.1	<0.2	<0.07	<0.001	0.13	<0.025	<0.001	0.35	<0.025	<0.010	<0.010	<0.001	44	<0.025	1.7	<0.001	<0.001	<0.001	<0.025	0.27
	1L25_A_Z2	694	4.0	473	<0.1	<0.2	<0.07	0.0018	<0.025	<0.025	0.001	0.59	<0.025	<0.010	0.023	<0.001	5.8	<0.025	2.1	0.002	<0.001	<0.001	<0.025	1.5
	1L25_A_Z3	1,762	3.0	1,168	<0.1	0.20	<0.07	<0.001	0.21	<0.025	<0.001	0.12	<0.025	<0.010	<0.010	<0.001	11	<0.025	0.45	<0.001	<0.001	<0.001	<0.025	0.028
	1L25_B_Z1	2,334	3.0	1,547	<0.1	<0.2	<0.07	<0.001	0.026	<0.025	<0.001	0.096	<0.025	<0.010	<0.010	<0.001		<0.025	0.35	<0.001	<0.001	<0.001	<0.025	0.036
1L25 Dump	1L25_B_Z2	982	5.0	651	<0.1	<0.2	<0.07	0.0011	<0.025	<0.025	<0.001	0.16	<0.025	<0.010	<0.010	<0.001	1.7	<0.025	0.84	<0.001	<0.001	<0.001	<0.025	0.12
	1L25_B_Z3	870	4.0	573	<0.1	0.20	<0.07	0.0013	<0.025	<0.025	<0.001	<0.025	<0.025	<0.010	<0.010	<0.001	0.63	<0.025	0.054	<0.001	<0.001	<0.001	<0.025	0.022
	1L25_C_Z1	2,306	3.0	1,524	<0.1	<0.2	<0.07	<0.001	0.027	<0.025	<0.001	0.20	<0.025	<0.010	<0.010	<0.001	9.3	<0.025	0.82	<0.001	<0.001	<0.001	<0.025	0.18
	1L25_C_Z2	2,592	3.0	1,708	<0.1	0.20	<0.07	<0.001	0.076	<0.025	<0.001	0.060	<0.025	<0.010	<0.010	<0.001	28	<0.025	0.08	<0.001	<0.001	<0.001	<0.025	<0.025
	1L25_C_Z3	1,444	2.0	964	<0.1	0.20	<0.07	<0.001	0.22	0.026	<0.001	0.14	<0.025	<0.010	<0.010	<0.001	14	<0.025	0.06	<0.001	<0.001	<0.001	<0.025	<0.025
	1L28_Z1	2,460	3.0	1,628	<0.1	0.20	<0.07	<0.001	0.41	<0.025	<0.001	0.085	<0.025	<0.010	<0.010	<0.001	45	<0.025	0.14	<0.001	<0.001	<0.001	<0.025	<0.025
	1L28_Z2	2,404	5.0	1,601	<0.1	0.30	<0.07	<0.001	0.18	<0.025	<0.001	0.032	<0.025	<0.010	<0.010	<0.001	36	<0.025	0.13	<0.001	<0.001	<0.001	<0.025	<0.025
1L28 Dump	1L28_Z3	2,332	3.0	1,540	<0.1	0.30	<0.07	<0.001	0.087	<0.025	<0.001	0.047	<0.025	<0.010	<0.010	<0.001	30	<0.025	0.15	0.002	<0.001	<0.001	<0.025	<0.025
	IL 28 M1	2,294	<2	1,514	1.4	<0.2	<0.07	<0.001	0.60	0.026	<0.001	<0.025	<0.025	<0.010	<0.010	<0.001	29	<0.025	0.038	0.003	<0.001	<0.001	<0.025	<0.025
	IL 28 M2	2,318	<2	1,526	2.4	<0.2	<0.07	<0.001	1.0	<0.025	<0.001	<0.025	<0.025	<0.010	<0.010	<0.001	41	<0.025	0.046	<0.001	<0.001	<0.001	<0.025	<0.025

Table 5-8: Borax water leachable concentration results for the tailings against the LCT

												ASLP (20:	1) - Tetrabo	rate pH 8.5										
Elements &			l	norganic A	nions (mg/l	L)									Me	tal lons (m	g/L)							
substances	s III waste	TDS	CI	SO ₄	NO ₃ -N	F	CN total	As	В	Ва	Cd	Со	Cr total	Cr(VI)	Cu	Hg	Mn	Мо	Ni	Pb	Sb	Se	٧	Zn
Leachable	LCT0 mg/l	1000	300	250	11	1.5	0.07	0.01	0.5	0.7	0.003	0.5	0.1	0.05	2	0.006	0.5	0.07	0.07	0.01	0.02	0.01	0.2	5
Concentrations Threshold	LCT1 mg/l	12500	15000	12500	550	75	3.5	0.5	25	35	0.15	25	5	2.5	100	0.3	25	3.5	3.5	0.5	1	0.5	10	250
(mg/l)	LCT2 mg/l	25000	30000	25000	1100	150	7	1	50	70	0.3	50	10	5	200	0.6	50	7	7	1	2	1	20	500
	S Sands_Z1	47	<50	216	<10	<1.00	<0.07	0.078	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	<0.070	<0.070	0.013	<0.020	<0.010	<0.200	<2.00
South Sand	S Sands_Z2	80	<50	456	<10	1.1	<0.07	0.13	UTD	<0.070	<0.003	<0.400	0.009	<0.020	<1.00	<0.006	<0.500	<0.070	<0.070	0.044	<0.020	<0.010	<0.200	<2.00
	S Sands_Z3	107	<50	552	<10	1.2	<0.07	0.091	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	<0.070	<0.070	0.023	<0.020	<0.010	<0.200	<2.00
	N Sands_Z1	107	<50	<50.0	<10	<1.00	<0.07	0.011	UTD	0.19	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	0.075	<0.070	0.048	<0.020	<0.010	<0.200	<2.00
North Sand	N Sands_Z2	67	<50	100	<10	<1.00	<0.07	0.022	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	0.076	<0.070	0.031	<0.020	<0.010	<0.200	<2.00
	N Sands_Z3	40	<50	<50.0	<10	<1.00	<0.07	<0.010	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	<0.070	<0.070	0.051	<0.020	<0.010	<0.200	<2.00
	1L8_Z1	54	<50	438	<10	1.3	<0.07	0.26	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	0.016	<0.500	<0.070	<0.070	0.041	<0.020	0.027	<0.200	<2.00
1L8 Dump	1L8_Z2	80	<50	325	<10	<1.00	<0.07	0.17	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	0.010	<0.500	<0.070	<0.070	0.081	<0.020	0.014	<0.200	<2.00
	1L8_Z3	141	<50	432	<10	<1.00	<0.07	0.23	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	0.008	<0.500	0.080	<0.070	0.036	<0.020	0.013	<0.200	<2.00
	1L10_Z1	369	<50	998	<10	1.1	<0.07	0.23	UTD	<0.070	<0.003	<0.400	0.040	0.043	<1.00	0.008	<0.500	0.085	0.085	0.013	<0.020	0.011	<0.200	<2.00
1L10 Dump	1L10_Z2	415	<50	1,217	<10	<1.00	< 0.07	0.13	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	0.007	<0.500	0.081	<0.070	0.076	<0.020	<0.010	<0.200	<2.00
	1L10_Z3	161	<50	766	<10	<1.00	<0.07	0.32	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	0.007	<0.500	0.11	<0.070	0.066	<0.020	0.011	<0.200	<2.00
	1L13_A_Z1	308	<50	902	<10	<1.00	<0.07	0.088	UTD	0.12	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	4.8	<0.070	<0.070	0.027	<0.020	<0.010	<0.200	<2.00
	1L13_A_Z2 1L13_A_Z3	255 261	<50 <50	851 986	<10 <10	<1.00 <1.00	<0.07 <0.07	0.18 0.19	UTD UTD	0.14 <0.070	<0.003 <0.003	<0.400 <0.400	<0.003 <0.003	<0.020 <0.020	<1.00 <1.00	<0.006 <0.006	4.9 1.4	<0.070 <0.070	<0.070 <0.070	0.054 0.054	<0.020 <0.020	<0.010 <0.010	<0.200 <0.200	<2.00 <2.00
1L13 Dump	1L13_A_Z3 1L13 B Z1	449	<50	1,351	<10	<1.00	<0.07	0.19	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	1.4	<0.070	<0.070	0.054	<0.020	<0.010	<0.200	<2.00
	1L13_B_Z1	201	<50	888	<10	<1.00	<0.07	<0.010	UTD	0.10	<0.003	<0.400	<0.003	<0.020	<1.00	0.007	2.9	<0.070	<0.070	0.034	<0.020	<0.010	<0.200	<2.00
	1L13_B_22	208	<50	911	<10	<1.00	<0.07	0.020	UTD	0.10	<0.003	<0.400	<0.003	<0.020	<1.00	0.010	3.7	<0.070	<0.070	0.045	<0.020	<0.010	<0.200	<2.00
	1L25_A_Z1	811	<50	1,782	<10	<1.00	<0.07	0.061	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	2.3	<0.070	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
	1L25_A_Z2	188	<50	673	<10	<1.00	<0.07	0.16	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	0.61	<0.070	<0.070	0.019	<0.020	<0.010	<0.200	<2.00
	1L25 A Z3	362	<50	739	<10	<1.00	<0.07	0.093	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	1.2	<0.070	<0.070	0.032	<0.020	<0.010	<0.200	<2.00
	1L25_B_Z1	442	<50	1,149	<10	<1.00	<0.07	0.071	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	0.072	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
1L25 Dump	1L25_B_Z2	221	<50	886	<10	<1.00	<0.07	0.17	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	0.007	<0.500	0.12	<0.070	0.074	<0.020	<0.010	<0.200	<2.00
	1L25_B_Z3	295	<50	803	<10	<1.00	<0.07	0.22	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	0.094	<0.070	0.012	<0.020	<0.010	<0.200	<2.00
	1L25_C_Z1	590	<50	1,378	<10	<1.00	<0.07	0.097	UTD	<0.070	<0.003	<0.400	0.011	<0.020	<1.00	<0.006	1.9	<0.070	0.081	<0.010	<0.020	<0.010	<0.200	<2.00
	1L25_C_Z2	750	<50	1,953	<10	<1.00	<0.07	0.10	UTD	<0.070	<0.003	<0.400	0.0070	<0.020	<1.00	<0.006	2.2	<0.070	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
	1L25_C_Z3	389	<50	840	<10	<1.00	<0.07	0.14	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	1.6	<0.070	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
	1L28_Z1	938	<50	2,476	<10	<1.00	<0.07	0.059	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	4.7	<0.070	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
1L28 Dump	1L28_Z2	1,333	<50	3,900	<10	<1.00	<0.07	0.089	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	2.7	0.077	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
	1L28_Z3	891	<50	2,506	<10	<1.00	<0.07	0.10	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	3.3	<0.070	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
Manganoso	IL 28 M1	2,486	<50	7,619	<10	<1.00	<0.07	<0.010	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	0.13	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
Manganese Slag	IL 28 M2	2,432	<50	7,395	<10	<1.00	<0.07	<0.010	UTD	<0.070	<0.003	<0.400	<0.003	<0.020	<1.00	<0.006	<0.500	0.13	<0.070	<0.010	<0.020	<0.010	<0.200	<2.00
		_,		.,500			0.01	1 0.0.0	0.0	0.010	0.000	5.100	5.000	0.020		0.000	0.000	0.10	0.070	0.010	0.020	0.010	5.200	00

6 Geochemical Implications and Recommendations

Pan African Resources PLC (PAR) plans to reprocess the tailings and deposit the reprocessed tailings in a new TSF. Geochemical characterisation of the tailings indicates that the tailings are PAF (97% PAF and 3% Inconclusive). The potential contaminants from the tailings have been determined by leach tests to include PH, electrical conductivity, total dissolved solids, boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc.

The tailings range from Type 3 to Type 1. The results imply that a liner consistent with design requirements for the disposal of Type 3 waste at a minimum would theoretically be required to be placed underneath the new TSF for the reprocessed tailings and engagements with DWS are required.

The geochemical risk is that the seepage and runoff from the tailings and manganese slag will be acidic to neutral (pH 2.6-7.7) and containing boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc. The seepage and runoff may impact the quality of the surface and groundwater depending on site conditions if not managed appropriately.

7 Recommendations

Digby wells recommends the following measures to manage the tailings and manganese slag during operations to closure:

- Reprocessing the tailings is supported as a measure to remove the existing ARD/ML
 TSFs and manganese slag as potential contaminant source footprints at the site;
- The tailings and manganese slag should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and processing;
- Clean surface water should be diverted away from the operation using runoff control diversions;
- Dirty water from percolation and runoff from the TSFs and manganese slag should be collected in toe paddocks and channelled to the return water dam for management (recycled for use in the plant, dust suppression, treatment before discharge, and establishing vegetation);
- The reprocessing operations would require monitoring the quality of toe seepage collecting in toe paddocks, return water dam, surface water, and groundwater for potential constituents of concern to include pH, electrical conductivity, total dissolved solids, boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc; and
- The results imply that a liner consistent with design requirements for the disposal of Type 3 waste at a minimum would theoretically be required to be placed underneath the new TSF for the reprocessed tailings and and engagements with DWS are required.

8 Conclusion

This study has characterised the tailings and manganese slag for the Mogale Cluster. The study constitutes the Environmental Geochemistry Assessment Pre-Feasibility to describe the baseline environmental conditions and assess the potential geochemical impacts of the Project. Table 8-1 presents a summary of the results of the study.

Table 8-1: Summary of the tailings and manganese slag characterisation

M	aterial	Tailings (n=32)	Manganese Slag (n=2)				
	Current pH	Acidic to slightly alkaline (paste pH 2.4-7.8)	Acidic (Paste pH 4.9-5,0)				
	Future pH	97% Potentially Acid Forming (PAF) and 3% Inconclusive	100% PAF				
ristics	r ataro pri	NAG-pH is acidic (pH 4.5 - 6.5)					
naracte		Acid Forming - pyrite (0.2 -1.2 wt.%)					
Geochemical Characteristics	Mineralogy	Acid Neutralising: • Carbonates - calcite (0.1 - 3.9 wt.%); • Aluminosilicates - chlorite, muscovite, pyrophyllite and kaolinite	Gypsum (48-64%), magnetite (34-36%), and chlorite (18%)				
Ö	Leachate	Acidic to alkaline (pH 3.9 - 12)	Acidic (Paste pH 4.6)				
	quality	Potential constituents of concern - pH, electrical conductivity, calcium, iron, mercury, lead, sulphate, and zinc	Potential constituents of concern - pH, EC, B, Ca, Mn, and SO ₄				
Geoche	emical Risks	Acidic seepage and runoff from the tailings and manganese slag containing boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc pose a risk to surface and groundwater quality. Other parameters of concern are pH, electrical conductivity, and TDS.					

Management measures for the proposed reprocessing and the new TSF (Operations to closure)

- Reprocessing the tailings is supported as a measure to remove the existing ARD/ML TSFs and manganese slag as potential contaminant source footprints at the site;
- The tailings and manganese slag should be handled expeditiously to minimise exposure to oxidation, weathering and leaching during reclamation and processing;
- Clean surface water should be diverted away from the operation using runoff control diversions;
- Dirty water from percolation and runoff from the TSFs and manganese slag should be collected in toe paddocks and channelled to the return water dam for management (recycled for use in the plant, dust suppression, treatment before discharge, and establishing vegetation):
- The reprocessing operations would require to monitor the quality of toe seepage collecting in toe paddocks, return water dam, surface water, and groundwater for potential constituents of concern to include pH, electrical conductivity, total dissolved solids, boron, calcium, iron, manganese, mercury, lead, sulphate, and zinc; and
- The results imply that a liner consistent with design requirements for the disposal of Type 3 waste at a minimum would theoretically be required to be placed underneath the new TSF for the reprocessed tailings and engagements with DWS are required.

The tailing characterised in this study are the existing tailings before reprocessing. The geochemistry presented in this report therefore indicates the baseline geochemistry before reprocessing the tailings. The reprocessed tailings were not available for characterisation at the time of the writing of this report. It is recommended that the reprocessed tailings and manganese slag are characterised to update this report when available.

9 References

Fortescue, J., 1992. Landscape geochemistry: retrospect and prospect—1990. *Applied Geochemistry*, pp. 1-53.

INAP, 2009. *Global Acid Rock Drainage Guide.* [Online] Available at: http://www.gardquide.com

Miller, S., Robertson, A. & Donahue, T., 1997. *Advances in acid drainage prediction using the net acid generation (NAG) test.* Vancouver, CANMET, pp. pp. 533-549.

Price, W. A., 1997. *Draft Guidelines for metal leaching and acid rock drainage at mine sites in British Columbia*. British Columbia: Canada: Ministry of Energy and Mines.

Soregaroli, B. A. & Lawrence, R. W., 1998. *Update on waste characterization studies*. Polson, Montana, InMine Design, Operations and Closure Conference.

Appendix A: Laboratory Certificates

WATERLAB (Pty) Ltd

eg. No.: 1983/009165/07 V.A.T. No.: 41301078

23B De Havilland Crescent P.O. Box 283, Persequor Park, 0020
Persequor Techno Park Tel: +2712 - 349 - 1066
Meiring Naudé Drive Fax: +2786 - 654 - 2570
Pretoria e-mail: admin@waterlab.co.za

T0391

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2022-03-30 Date completed: 2022-04-14

Project number: 1000 Report number: 108663 Order number: PAR7273

Client name: Digby Wells Environmental Contact person: Ms. Kgaugelo Thobejane

Address: Turnberry Office Park, 48 Grosvenor Rd, Bryanston, JHB 2191 e-mail: kgaugelo.thobejane@digbywells.com

Telephone: 011 789 9498 Facsimile: 011 069 6801 Mobile: 076 221 9137

Analyses in mg/ℓ			Sample Identification			
(Unless specified otherwise)		Method	IL13-L15-1 Supernatent			
Sample Number		Identification	157348			
Date\Time Sampled			N/A			
pH - Value @ 25 ℃	A	WLAB065	9.0			
Electrical Conductivity in mS/m @ 25°C	А	WLAB065	456			
Total Dissolved Solids @ 180°C	А	WLAB003	4116			
Total Acidity as CaCO₃	А	WLAB022	<5			
Chloride as Cl	А	WLAB046	174			
Sulphate as SO ₄	А	WLAB046	2267			
Sulphur as S (Dissolved)	S		507.7			
Fluoride as F	N	WLAB014	1.1			
Nitrate as N	А	WLAB046	<0.1			
Total Cyanide as CN	S		134.40			
Free and Saline Ammonia as N	А	WLAB046	8.3			
Sodium as Na	Α	WLAB015	476			
Potassium as K	А	WLAB015	219			
Calcium as Ca	А	WLAB015	554			
Magnesium as Mg	Α	WLAB015	44			
Aluminium as Al (Dissolved)	A	WLAB015	0.456			
Antimony as Sb (Dissolved)	A	WLAB050	0.003			
Arsenic as As (Dissolved)	A	WLAB050	0.060			
Barium as Ba (Dissolved)	A	WLAB015	<0.025			
Beryllium as Be (Dissolved)	N	WLAB015	<0.025			
Bismuth as Bi (Dissolved)	N	WLAB015	<0.025			
Boron as B (Dissolved)	A	WLAB015	0.109			
Cadmium as Cd (Dissolved)	A	WLAB050	0.033			
Total Chromium as Cr (Dissolved)	A	WLAB015	<0.025			
Hexavalent Chromium as Cr	A	WLAB032	0.013			
Cobalt as Co (Dissolved)	A	WLAB015	3.53			
Copper as Cu (Dissolved)	А	WLAB015	3.93			
Iron as Fe (Dissolved)	А	WLAB015	0.609			

A. van de Wetering - Chemical Technical Signatory

A = Accredited N = Not Accredited S = Subcontracted

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for this Laboratory. Results marked "Subcontracted Test" in this report are not included in the SANAS Scope of Accreditation for this Laboratory.

Sample condition acceptable unless specified on the report.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, part of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd. Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

WATERLAB (Pty) Ltd

eg. No.: 1983/009165/07 V.A.T. No.: 41301078

23B De Havilland Crescent P.O. Box 283, Persequor Park, 0020
Persequor Techno Park Tel: +2712 - 349 - 1066
Meiring Naudé Drive Fax: +2786 - 654 - 2570
Pretoria e-mail: admin@waterlab.co.za

T0391

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2022-03-30 Date completed: 2022-04-14

Project number: 1000 Report number: 108663 Order number: PAR7273

Client name: Digby Wells Environmental Contact person: Ms. Kgaugelo Thobejane

Address: Turnberry Office Park, 48 Grosvenor Rd, Bryanston, JHB 2191 e-mail: kgaugelo.thobejane@digbywells.com

Telephone: 011 789 9498 Facsimile: 011 069 6801 Mobile: 076 221 9137

Analyses in mg/ℓ			Sample Identification
(Unless specified otherwise)		Method	IL13-L15-1 Supernatent
Sample Number		Identification	157348
Date\Time Sampled			N/A
Lead as Pb (Dissolved)	А	WLAB050	<0.001
Manganese as Mn (Dissolved)	А	WLAB015	2.35
Mercury as Hg (Dissolved)	А	WLAB050	0.005
Molybdenum as Mo (Dissolved)	N	WLAB015	<0.025
Nickel as Ni (Dissolved)	А	WLAB015	1.73
Phosphorus as P (Dissolved)	N	WLAB015	0.080
Selenium as Se (Dissolved)	А	WLAB050	0.012
Silicon as Si (Dissolved)	N	WLAB015	4.0
Silver as Ag (Dissolved)	N	WLAB015	<0.025
Strontium as Sr (Dissolved)	N	WLAB015	0.536
Thallium as TI (Dissolved)	N	WLAB015	<0.025
Thorium as Th (Dissolved)	N	WLAB050	0.001
Titanium as Ti (Dissolved)	N	WLAB015	<0.025
Uranium as U (Dissolved)	А	WLAB050	0.307
Vanadium as V (Dissolved)	А	WLAB015	<0.025
Zinc as Zn (Dissolved)	A	WLAB015	13

A. van de Wetering - Chemical Technical Signatory

A = Accredited N = Not Accredited S = Subcontracted

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for this Laboratory. Results marked "Subcontracted Test" in this report are not included in the SANAS Scope of Accreditation for this Laboratory.

Sample condition acceptable unless specified on the report.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, part of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd. Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

Appendix B: Unprocessed Tailings Laboratory Certificates of Analysis

1000

Project number:

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent
P.O. Box 283, Persequor Park, 0020
Persequor Techno Park
Tel: +2712 - 349 - 1066
Meiring Naudé Drive
Fax: +2786 - 654 - 2570
Pretoria e-mail: admin@waterlab.co.za

G

Order number:

CERTIFICATE OF ANALYSES

GENERAL WATER QUALITY PARAMETERS

Date received: 2021-10-04 Date completed: 2021-10-27

Client name: Digby Wells Environmental Contact person: Kgaugelo Thobejane

Address: Turnberry Office Park, 48 Grosvenor Rd, Bryanston, JHB 219 e-mail: kgaugelo.thobejane@digbywells.com

104155

Telephone: 011 789 9498 Facsimile: 011 069 6801 Mobile: 076 221 9137

Report number:

Analyses in mg/ℓ			Sample Identification						
(Unless specified otherwise)		Method Identification	South Sand	IL23/IL25	IL13				
Sample Number			140942	140943	140944				
Date/Time Sampled			N/A	N/A	N/A				
pH - Value @ 25 ℃	Α	WLAB065	2.4	2.8	2.5				
Electrical Conductivity in mS/m @ 25°C	Α	WLAB002	960	435	839				
Total Dissolved Solids @ 180°C	Α	WLAB003	14094	4166	11544				
Total Acidity as CaCO₃	Α	WLAB022	6280	760	3480				
Chloride as Cl	Α	WLAB046	24	37	227				
Sulphate as SO₄	Α	WLAB046	8606	2475	5448				
Fluoride as F	N	WLAB014	0.4	0.3	0.3				
Nitrate as N	Α	WLAB046	<0.1	0.1	<0.1				
Total Cyanide as CN	S		<0.07	<0.07	<0.07				
Free and Saline Ammonia as N	Α	WLAB046	5.0	41	58				
Sodium as Na	Α	WLAB015	382	67	335				
Potassium as K	Α	WLAB015	52	25	11.5				
Calcium as Ca	А	WLAB015	474	512	475				
Magnesium as Mg	Α	WLAB015	455	164	625				
Aluminium as Al	Α	WLAB015	674	52	84				
Antimony as Sb	Α	WLAB050	<0.001	<0.001	<0.001				
Arsenic as As	Α	WLAB050	0.789	0.013	0.450				
Barium as Ba	Α	WLAB015	0.067	0.066	0.052				
Beryllium as Be	N	WLAB015	<0.025	<0.025	<0.025				
Bismuth as Bi	N	WLAB015	<0.025	<0.025	<0.025				
Boron as B	Α	WLAB015	<0.025	1.03	<0.025				
Cadmium as Cd	А	WLAB050	0.060	0.005	0.003				
Total Chromium as Cr	А	WLAB015	5.62	1.02	0.994				
Hexavalent Chromium as Cr	А	WLAB032	<0.010	0.059	<0.010				
Cobalt as Co	Α	WLAB015	13	2.30	1.34				
Copper as Cu	А	WLAB015	25	0.356	0.817				
Iron as Fe	А	WLAB015	628	44	931				
Lead as Pb	Α	WLAB050	0.070	0.022	0.009				

A. van de Wetering - Chemical Technical Signatory

A = Accredited N = Not Accredited S = Subcontracted

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for this Laboratory. Results marked "Subcontracted Test" in this report are not included in the SANAS Scope of Accreditation for this Laboratory.

Sample condition acceptable unless specified on the report.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, part of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd. Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

1000

Project number:

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07 V.A.T. No.: 413010789

Tel:

23B De Havilland Crescent
Persequor Techno Park
Meiring Naudé Drive
Pretoria

Report number:

Fax: +2786 - 654 - 2570 e-mail: admin@waterlab.co.za

P.O. Box 283, Persequor Park, 0020

+2712 - 349 - 1066

Order number:

CERTIFICATE OF ANALYSES

GENERAL WATER QUALITY PARAMETERS

Date received: 2021-10-04 Date completed: 2021-10-27

Client name: Digby Wells Environmental Contact person: Kgaugelo Thobejane

Address: Turnberry Office Park, 48 Grosvenor Rd, Bryanston, JHB 219 e-mail: kgaugelo.thobejane@digbywells.com

104155

Telephone: 011 789 9498 Facsimile: 011 069 6801 Mobile: 076 221 9137

Analyses in mg/ℓ				Sample Identification					
(Unless specified otherwise)		Method Identification	South Sand	IL23/IL25	IL13				
Sample Number			140942	140943	140944				
Date/Time Sampled			N/A	N/A	N/A				
Manganese as Mn	А	WLAB015	26	110	258				
Mercury as Hg	Α	WLAB047	<0.001	<0.001	0.001				
Molybdenum as Mo	N	WLAB015	<0.025	<0.025	<0.025				
Nickel as Ni	Α	WLAB015	27	3.10	2.62				
Phosphorus as P	N	WLAB015	3.39	1.40	2.64				
Selenium as Se	Α	WLAB050	0.047	0.004	0.003				
Silicon as Si	N	WLAB015	132	48	66				
Silver as Ag	N	WLAB015	<0.025	<0.025	<0.025				
Strontium as Sr	N	WLAB015	0.201	1.22	1.56				
Thallium as TI	N	WLAB015	<0.025	<0.025	<0.025				
Thorium as Th	N	WLAB050	1.49	0.023	0.184				
Tin as Sn	N	WLAB050	<0.001	<0.001	<0.001				
Titanium as Ti	N	WLAB015	0.507	0.462	0.429				
Uranium as U	А	WLAB050	0.027	0.775	0.947				
Vanadium as V	А	WLAB015	0.055	0.026	0.132				
Zinc as Zn	Α	WLAB015	18	3.52	2.56				

A. van de Wetering - Chemical Technical Signatory

A = Accredited N = Not Accredited S = Subcontracted

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for this Laboratory. Results marked "Subcontracted Test" in this report are not included in the SANAS Scope of Accreditation for this Laboratory.

Sample condition acceptable unless specified on the report.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, part of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd. Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

Appendix C: Reprocessed Tailings Laboratory Certificates of Analysis

WATERLAB (PTY) LTD

Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

Prelim CERTIFICATE OF ANALYSES

Index

Date received:	2022/03/29		Date completed:	2022/05/05
Project number:	1000	Report number: 108629	Order number:	PAR7273
Client name:	Digby Wells Environmental		Contact person:	Kgaugelo Thobejane
Address:	Digby Wells House, Turnberry Office	e Park, 48 Grosvenor Road, Bryanston, 2191	Email:	kgaugelo.thobejane@digbywells.com
Telephone:	011 789 9495		Email:	levi.ochieng@digbywells.com
Facsimile:	011 789 9498		Email:	creditors@digbywells.com

Analyses
Leachable
Distilled Water
ICP DW
<u>SPLP</u>
ICP SPLP
Other
Acid Digestion
Acid digestion ICP
Acid Base Accounting
Net Acid Generation
Sulphur Speciation
Outsourced analysis
X-ray Diffraction

S.	Laubscher	

Assistant Geochemistry Project Manager

WATERLAB (PTY) LTD

Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES DISTILLED WATER EXTRACTION

Date received: 2022/03/29
Project number: 108629

Client name: Digby Wells Environmental Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191

Date completed: 2022/04/22
PRA7273

PAR7273

Contact person: Kgaugelo Thobejane
Kgaugelo .thobejane@digbywells.com

Telephone: 011 789 9495 Email: levi.ochieng@digbywells.com
Facsimile: 011 789 9498 Email: creditors@digbywells.com

Analyses						
Ailalyses	IL13-	L15-1	IL13-L15-2 157164			
Sample Number	157	163				
TCLP / Acid Rain / Distilled Water / H ₂ O ₂	Distille	d Water	Distilled Water			
Dry Mass Used (g)	2	50	250			
Volume Used (mℓ)	10	00	1000			
pH Value at 25°C	7,5 7,6					
Electrical Conductivity in mS/m at 25°C	2:	25	19	90		
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg		
Total Alkalinity as CaCO ₃	24	96	40	160		
Chloride as Cl	6	24	4	16		
Sulphate as SO ₄	1282	5128	1032	4128		
Nitrate as N	0,1	0,4	0,1	0,4		
Fluoride as F	0,2	0,8	0,2	0,8		
Hexavalent Chromium as Cr ⁶⁺	<0.010	<0.04	<0.010	<0.04		
ICP-OES Quant	See ICP DW tab					
ICP-MS Quant	See ICP DW (db					

S. Laubs	cher

Assistant Geochemistry Project Manager

WATERLAB (PTY) LTD CERTIFICATE OF ANALYSES ICP-OES QUANTITATIVE ANALYSIS

Date received:2022/03/29Date Completed:2022/04/22Project number:1000Report number:108629

Client name: Digby Wells Environmental

Adress: Digby Wells House, Turnberry Office Park, Email:

48 Grosvenor Road, Bryanston, 2191

Telephone: 011 789 9495

Contact person: Kgaugelo Thobejane

mail: kgaugelo.thobejane@digbywells.com

Email: levi.ochieng@digbywells.com
Email: creditors@digbywells.com

Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor
Distilled Water	250	1000	250	4

Sample Id	Sample number	Ag	Ag	Al	Al	As*	As*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.100	<0.400	<0.001	<0.004
IL13-L15-1	157163	<0.025	<0.100	<0.100	<0.400	0,030	0,119
IL13-L15-2	157164	<0.025	<0.100	<0.100	<0.400	0,029	0,114

Sample Id	Sample number	В	В	Ва	Ва	Be	Be
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.025	<0.100	<0.025	<0.100
IL13-L15-1	157163	0,077	0,310	<0.025	<0.100	<0.025	<0.100
IL13-L15-2	157164	0,071	0,283	<0.025	<0.100	<0.025	<0.100

Sample Id	Sample number	Bi	Bi	Ca	Ca	Cd*	Cd*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<1	<4	<0.001	<0.004
IL13-L15-1	157163	<0.025	<0.100	500	2000	<0.001	<0.004
IL13-L15-2	157164	<0.025	<0.100	425	1700	<0.001	<0.004

Sample Id	Sample number	Со	Со	Cr	Cr	Cu	Cu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.025	<0.100	<0.010	<0.040
IL13-L15-1	157163	0,417	1,67	<0.025	<0.100	<0.010	<0.040
IL13-L15-2	157164	0,306	1,23	<0.025	<0.100	<0.010	<0.040

Sample Id	Sample number	Fe	Fe	Hg*	Hg*	K	K
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.001	<0.004	<0.5	<2.0
IL13-L15-1	157163	0,294	1,18	0,001	0,004	31	124
IL13-L15-2	157164	0,252	1,01	<0.001	<0.004	26	104

Sample Id	Sample number	Li	Li	Mg	Mg	Mn	Mn
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<1	<4	<0.025	<0.100
IL13-L15-1	157163	<0.025	<0.100	9	36	0,764	3,06
IL13-L15-2	157164	<0.025	<0.100	8	32	0,617	2,47

Sample Id	Sample number	Мо	Мо	Na	Na	Ni	Ni
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<1	<4	<0.025	<0.100
IL13-L15-1	157163	<0.025	<0.100	37	148	0,101	0,404
IL13-L15-2	157164	<0.025	<0.100	32	128	0,052	0,210

Sample Id	Sample number	Р	Р	Pb*	Pb*	Sb*	Sb*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.001	<0.004	<0.001	<0.004
IL13-L15-1	157163	<0.025	<0.100	<0.001	<0.004	0,002	0,008
IL13-L15-2	157164	<0.025	<0.100	<0.001	<0.004	0,002	0,008

Sample Id	Sample number	Se*	Se*	Si	Si	Sr	Sr
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.004	<0.2	<0.8	<0.025	<0.100
IL13-L15-1	157163	0,004	0,015	4,7	19,0	0,353	1,41

Sample Id	Sample number	Th*	Th*	Ti	Ti	U*	U*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.004	<0.025	<0.100	<0.001	<0.004
IL13-L15-1	157163	<0.001	<0.004	<0.025	<0.100	0,244	0,975
IL13-L15-2	157164	<0.001	< 0.004	<0.025	<0.100	0,220	0,881

Sample Id	Sample number	V	V	Zn	Zn
		mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.025	<0.100
IL13-L15-1	157163	<0.025	<0.100	<0.025	<0.100
IL13-L15-2	157164	<0.025	<0.100	<0.025	<0.100

[*] = Element analysed on ICP-MS Instrument

Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES SPLP EXTRACTION

Date received: 2022/03/29 Date completed: 2022/04/22 Project number: Order number: 1000 Report number: 108629 PAR7273 Client name: Contact person: Kgaugelo Thobejane **Digby Wells Environmental** Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Email: kgaugelo.thobejane@digbywells.com Telephone: 011 789 9495 Email: levi.ochieng@digbywells.com Facsimile: 011 789 9498 Email: creditors@digbywells.com

Analyses					
Allalyses	IL13-	L15-1	IL13-	L15-2	
Sample Number	157	163	157164		
TCLP / Acid Rain / Distilled Water / H ₂ O ₂	SP	LP	SPLP		
Dry Mass Used (g)	50		5	50	
Volume Used (mℓ)	1000		10	000	
pH Value at 25°C	7,2		7,4		
Electrical Conductivity in mS/m at 25°C	65,3		54,7		
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	
Total Alkalinity as CaCO ₃	16	320	16	320	
Chloride as Cl	<2	<40	<2	<40	
Sulphate as SO ₄	270	5400	222	4440	
Nitrate as N	<0.1	<2.0	<0.1	<2.0	
Fluoride as F	<0.2	<0.4	<0.2	<0.4	
Hexavalent Chromium as Cr ⁶⁺	<0.010	<0.20	<0.010	<0.20	
ICP-OES Quant	<u>See ICP-SPLP tab</u>				
ICP-MS Quant					

S. Laubscher

Assistant Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability or liability or WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

WATERLAB (PTY) LTD <u>CERTIFICATE OF ANALYSES</u> ICP-OES QUANTITATIVE ANALYSIS

Date received:2022/03/29Date Completed:2022/04/22Project number:1000Report number:108629

Client name: Digby Wells Environmental Contact person: Kgaugelo Thobejane

Adress: Digby Wells House, Turnberry Office Park, Email: kgaugelo.thobejane@digbywells.com

48 Grosvenor Road, Bryanston, 2191 Email: levi.ochieng@digbywells.com

Telephone: 011 789 9495 Email: creditors@digbywells.com

Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor
SPLP	50	1000	50	20
Sample Id	Sample number	Aa	Aq	Al

Sample Id	Sample number	Ag	Ag	Al	Al	As*	As*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.100	<2.00	<0.001	<0.020
IL13-L15-1	157163	<0.025	<0.500	<0.100	<2.00	0,021	0,420
IL13-L15-2	157164	<0.025	<0.500	<0.100	<2.00	0,019	0,378

Sample Id	Sample number	В	В	Ва	Ва	Be	Be
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.025	<0.500	<0.025	<0.500
IL13-L15-1	157163	0,030	0,597	0,028	0,566	<0.025	<0.500
IL13-L15-2	157164	<0.025	<0.500	0,031	0,622	<0.025	<0.500

Sample Id	Sample number	Bi	Bi	Ca	Ca	Cd*	Cd*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<1	<20	<0.001	<0.020
IL13-L15-1	157163	<0.025	<0.500	114	2280	<0.001	<0.020
IL13-L15-2	157164	<0.025	<0.500	87	1740	<0.001	<0.020

Sample Id	Sample number	Co	Co	Cr	Cr	Cu	Cu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.025	<0.500	<0.010	<0.200
IL13-L15-1	157163	0,083	1,66	<0.025	<0.500	<0.010	<0.200
IL13-L15-2	157164	0,093	1,85	<0.025	<0.500	<0.010	<0.200

Sample Id	Sample number	Fe	Fe	Hg*	Hg*	K	K
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.001	<0.020	<0.5	<10.0
IL13-L15-1	157163	0,085	1,70	0,002	0,043	7,3	145
IL13-L15-2	157164	0,079	1,58	<0.001	<0.020	6,6	131

Sample Id	Sample number	Li	Li	Mg	Mg	Mn	Mn
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<1	<20	<0.025	<0.500
IL13-L15-1	157163	<0.025	<0.500	2	40	0,174	3,49
IL13-L15-2	157164	<0.025	<0.500	2	40	0,130	2,59

Sample Id	Sample number	Мо	Мо	Na	Na	Ni	Ni
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<1	<20	<0.025	<0.500
IL13-L15-1	157163	<0.025	<0.500	8	160	<0.025	<0.500
IL13-L15-2	157164	<0.025	<0.500	9	180	<0.025	<0.500

Sample Id	Sample number	Р	Р	Pb*	Pb*	Sb*	Sb*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.001	<0.020	<0.001	<0.020
IL13-L15-1	157163	<0.025	<0.500	<0.001	<0.020	<0.001	<0.020
IL13-L15-2	157164	<0.025	<0.500	<0.001	<0.020	<0.001	<0.020

Sample Id	Sample number	Se*	Se*	Si	Si	Sr	Sr
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.2	<4.0	<0.025	<0.500
IL13-L15-1	157163	<0.001	<0.020	2,6	52	0,108	2,16
IL13-L15-2	157164	<0.001	<0.020	2,3	47	0,095	1,89

Sample Id	Sample number	Th*	Th*	Ti	Ti	U*	U*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg

Det Limit		<0.001	<0.020	<0.025	<0.500	<0.001	<0.020
IL13-L15-1	157163	<0.001	<0.020	<0.025	<0.500	0,051	1,03
IL13-L15-2	157164	<0.001	<0.020	<0.025	<0.500	0,042	0,839

Sample Id	Sample number	V	V	Zn	Zn
		mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.025	<0.500
IL13-L15-1	157163	<0.025	<0.500	<0.025	<0.500
IL13-L15-2	157164	<0.025	<0.500	<0.025	<0.500

[*] = Element analysed on ICP-MS Instrument

Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES TOTALS

Date received: 2022/03/29 Date completed: 2022/04/22 Project number: Order number: PAR7273 1000 Report number: 108629

Client name: **Digby Wells Environmental** Kgaugelo Thobejane Contact person:

Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Email: kgaugelo.thobejane@digbywells.com levi.ochieng@digbywells.com Telephone: 011 789 9495 Email:

Facsimile: 011 789 9498 creditors@digbywells.com Email:

Analyses	IL13	-L15-1	IL13	-L15-2		
Sample Number	15	157163		7164		
Digestion	HNO	3 : HF	HNC	3 : HF		
Dry Mass Used (g)	0	,25	0	,25		
Volume Used (mℓ)	1	00	1	100		
Paste pH	7	7,6	-	7,7		
Paste Electrical Conductivity	275		2	263		
Units	mg/ℓ	mg/kg	mg/ℓ	mg/kg		
Sulphate[o]		587,10		3615,00		
Chloride [o]		81,61		101,30		
Fluoride [o]		<0.5		<0.5		
Nitrate [o]		<5		<5		
Hexavalent Chromium [o]		<2		<2		
Units	mg/ℓ	mg/kg	mg/ℓ	mg/kg		
ICP-OES Quant		See ICP-Die	rection tab			
ICP-MS Quant		See ICP-Digestion tab				

S.	Laubscher	

Assistant Geochemistry Project Manager

Prelim CERTIFICATE OF ANALYSES

ICP-MS QUANTITATIVE ANALYSIS

Date received:2022/03/29Date Completed:2022/05/05Project number:1000Report number:108629

Client name: Digby Wells Environmental Contact person: Kgaugelo Thobejane

Adress: Digby Wells House, Turnberry Office Park, Email: kgaugelo.thobejane@digbywells.com

48 Grosvenor Road, Bryanston, 2191 Email: levi.ochieng@digbywells.com

Telephone: 011 789 9495 Email: creditors@digbywells.com

Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor	
HNO3 : HF	0,25	100	3	400	

Sample Id	Sample number	Ag	Ag	Al	Al	As*	As*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.100	<40	<0.001	<0.400
IL13-L15-1	157163	<0.025	<10	29	11600	0,278	111
IL13-L15-2	157164	<0.025	<10	32	12800	0,267	107

Sample Id	Sample number	В	В	Ва	Ba	Be	Be
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.025	<10	<0.025	<10
IL13-L15-1	157163	<0.025	<10	0,084	34	<0.025	<10
IL13-L15-2	157164	<0.025	<10	0,097	39	<0.025	<10

Sample Id	Sample number	Bi	Bi	Ca	Ca	Cd*	Cd*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<1	<400	<0.001	<0.400
IL13-L15-1	157163	<0.025	<10	2	800	0,001	0,400
IL13-L15-2	157164	<0.025	<10	3	1200	0,001	0,400

Sample Id	Sample number	Co	Со	Cr	Cr	Cu	Cu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.025	<10	<0.010	<4.00
IL13-L15-1	157163	0,072	29	0,974	390	0,074	30
IL13-L15-2	157164	0,071	29	1,11	446	0,068	27

Sample Id	Sample number	Fe	Fe	Hg*	Hg*	K	K
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.001	<0.400	<0.5	<200
IL13-L15-1	157163	39	15600	<0.001	<0.400	6,0	2405
IL13-L15-2	157164	41	16400	<0.001	<0.400	5,1	2052

Sample Id	Sample number	Li	Li	Mg	Mg	Mn	Mn
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<1	<400	<0.025	<10
IL13-L15-1	157163	<0.025	<10	2	800	1,58	631
IL13-L15-2	157164	<0.025	<10	3	1200	1,50	598

Sample Id	Sample number	Мо	Мо	Na	Na	Ni	Ni
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<1	<400	<0.025	<10
IL13-L15-1	157163	<0.025	<10	2	800	0,279	112
IL13-L15-2	157164	<0.025	<10	1	400	0,268	107

Sample Id	Sample number	Р	Р	Pb*	Pb*	Sb*	Sb*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.001	<0.400	<0.001	<0.400
IL13-L15-1	157163	0,215	86	0,458	183	<0.001	<0.400
IL13-L15-2	157164	0.144	58	0.385	154	<0.001	<0.400

Sample Id	Sample number	Se*	Se*	Si	Si	Sr	Sr
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.2	<80	<0.025	<10
IL13-L15-1	157163	<0.001	<0.400	957	382800	<0.025	<10

Sample Id	Sample number	Th*	Th*	Ti	Ti	U*	U*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.025	<10	<0.001	<0.400
IL13-L15-1	157163	<0.001	<0.400	3,24	1296	0,100	40
IL13-L15-2	157164	<0.001	<0.400	3,20	1282	0,100	40

Sample Id	Sample number	٧	V	Zn	Zn
		mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.025	<10
IL13-L15-1	157163	<0.025	<10	0,419	168
IL13-L15-2	157164	<0.025	<10	0,296	118

[*] = Element analysed on ICP-MS Instrument

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID - BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received:	2022/03/29		Date completed:	2022/04/22
Project number:	1000	Report number: 108629	Order number:	PAR7273
Client name:	Digby Wells Environmental		Contact person:	Kgaugelo Thobejane
Address:	Digby Wells House, Turnberry	Office Park, 48 Grosvenor Road, Bryanston, 2191	Email:	kgaugelo.thobejane@digbywells.com
Telephone:	011 789 9495		Email:	levi.ochieng@digbywells.com
Facsimile:	011 789 9498		Email:	creditors@digbywells.com

Acid – Base Accounting		Sample Identification			
Modified Sobek (EPA-600)	IL13-L15-1	IL13-L15-2	IL13-L15-2		
Sample Number	157163	157164	157164 D		
Paste pH	7,6	7,7	7,7		
Total Sulphur (%) (LECO)	0,67	0,79	0,78		
Acid Potential (AP) (kg/t)	21	25	24		
Neutralization Potential (NP)	2,00	0,750	1,50		
Nett Neutralization Potential (NNP)	-19	-24	-23		
Neutralising Potential Ratio (NPR) (NP : AP)	0,096	0,030	0,061		
Rock Type	I	I	I		

^{*} Negative NP values are obtained when the volume of NaOH (0.1N) titrated (pH: 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 – 2.5 Any negative NP values are corrected to 0.00.

APPENDIX: TERMINOLOGY AND ROCK CLASSIFICATION TERMINOLOGY (SYNONYMS)

> Acid Potential (AP); Synonyms: Maximum Potential Acidity (MPA)	Method: Total S(%) (Leco Analyzer) x 31.25
> Neutralization Potential (NP); Synonyms: Gross Neutralization Potential (GNP); Syn: Acid Neutralization Capacity (ANC) (The capacity of a sample to consume acid)	Method: Fizz Test ; Acid-Base Titration (Sobek & Modified Sobek (Lawrence) Methods)
> Nett Neutralization Potential (NNP); Synonyms: Nett Acid Production Potential (NAPP)	Calculation: NNP = NP - AP ; NAPP = ANC - MPA
➤ Neutralising Potential Ratio (NPR)	Calculation: NPR = NP : AP

CLASSIFICATION ACCORDING TO NETT NEUTRALISING POTENTIAL (NNP)

If NNP (NP – AP) < 0, the sample has the potential to generate acid

If NNP (NP – AP) > 0, the sample has the potential to neutralise acid produced

Any sample with NNP < 20 is potentiall acid-generating, and any sample with NNP > -20 might not generate acid (Usher et al., 2003)

ROCK CLASSIFICATION

TYPE I	Potentially Acid Forming	Total S(%) > 0.25% and NP:AP ratio 1:1 or less
TYPE II	Intermediate	Total S(%) > 0.25% and NP:AP ratio 1:3 or less
TYPE III	Non-Acid Forming	Total S(%) < 0.25% and NP:AP ratio 1:3 or greater

CLASSIFICATION ACCORDING TO NEUTRALISING POTENTIAL RATIO (NPR)

Guidelines for screening criteria based on ABA (Price et al., 1997; Usher et al., 2003)

Potential for ARD	Initial NPR Screening Criteria	Comments
Likely	< 1:1	Likely AMD generating
Possibly	1:1 – 2:1	Possibly AMD generating if NP is insufficiently reactive or is depleted at a faster rate than sulphides
Low	2:1 – 4:1	Not potentially AMD generating unless significant preferential exposure of sulphides along fracture planes, or extremely reactive sulphides in combination with insufficiently reactive NP
None	>4:1	No further AMD testing required unless materials are to be used as a source of alkalinity

CLASSIFICATION ACCORDING TO SULPHUR CONTENT (%S) AND NEUTRALISING POTENTIAL RATIO (NPR)

For sustainable long-term acid generation, at least 0.3% Sulphide-S is needed. Values below this can yield acidity but it is likely to be only of short-term significance. From these facts, and using the NPR values, a number of rules can be derived:

- 1) Samples with less than 0.3% Sulphide-S are regarded as having insufficient oxidisable Sulphide-S to sustain acid generation.
- NPR ratios of >4:1 are considered to have enough neutralising capacity.
- 3) NPR ratios of 3:1 to 1:1 are consider inconclusive.
- 4) NPR ratios below 1:1 with Sulphide-S above 3% are potentially acid-generating. (Soregaroli & Lawrence, 1998; Usher et al., 2003)

REFERENCES

LAWRENCE, R.W. & WANG, Y. 1997. **Determination of Neutralization Potential in the Prediction of Acid Rock Drainage**. Proc. 4th International Conference on Acid Rock Drainage. Vancouver. BC. pp. 449 – 464.

PRICE, W.A., MORIN, K. & HUTT, N. 1997. Guidelines for the prediction of Acid Rock Drainage and Metal leaching for mines in British Columbia: Part 11.

Recommended procedures for static and kinetic testing. In: Proceedings of the Fourth International Conference on Acid Rock Drainage. Vol 1. May 31 – June 6. Vancouver, BC., pp. 15 – 30.

SOBEK, A.A., SCHULLER, W.A., FREEMAN, J.R. & SMITH, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. USEPA. Cincinnati. Ohio.

SOREGAROLI, B.A. & LAWRENCE, R.W. 1998. Update on waste Characterisation Studies. Proc. Mine Design, Operations and Closure Conference. Polson, Montana.

USHER, B.H., CRUYWAGEN, L-M., DE NECKER, E. & HODGSON, F.D.I. 2003. Acid-Base: Accounting, Techniques and Evaluation (ABATE): Recommended Methods for Conducting and Interpreting Analytical Geochemical Assessments at Opencast Collieries in South Africa. Water Research Commission Report No 1055/2/03. Pretoria.

ENVIRONMENT AUSTRALIA. 1997. Managing Sulphidic Mine Wastes and Acid Drainage.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES NET ACID GENERATION

Date received: 2022/03/29 Date completed: 2022/04/22 Project number: 1000 Report number: 108629 Order number: PAR7273 Digby Wells Environmental Client name: Contact person: Kgaugelo Thobejane Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Email: kgaugelo.thobejane@digbywells.com Telephone: 011 789 9495 Email: levi.ochieng@digbywells.com Facsimile: 011 789 9498 Email: creditors@digbywells.com

	Sample Identification: pH 4.5				
	IL13-L15-1	IL13-L15-2			
Sample Number	157163	157164	157164 D		
NAG pH: (H ₂ O ₂)	2,7	2,7	2,9		
NAG (kg H ₂ SO ₄ / t)	7,64	10	10		

	Sample Identification: pH 7		
	IL13-L15-1	IL13-L15-2	IL13-L15-2
Sample Number	157163	157164	157164 D
NAG pH: (H ₂ O ₂)	4,5	4,5	4,5
NAG (kg H ₂ SO ₄ / t)	3,72	2,94	2,94

Mataa

Samples analysed with Single Addition NAG test as per Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1.

Please let me know if results do not correspond to other data.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES SULPHUR SPECIATION

Date received: 2022/03/29 Date completed: 2022/04/22 Project number: Order number: PAR7273 1000 Report number: 108629 Client name: **Digby Wells Environmental** Contact person: Kgaugelo Thobejane Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Email: kgaugelo.thobejane@digbywells.com Telephone: 011 789 9495 Email: levi.ochieng@digbywells.com Facsimile: 011 789 9498 Email: creditors@digbywells.com

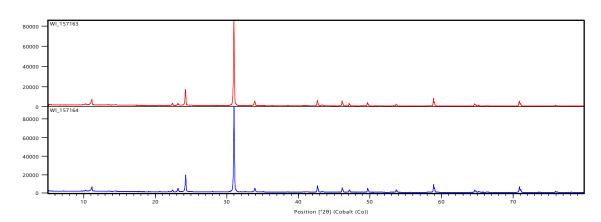
	Sample Identification:		
	IL13-L15-1	IL13-L15-2	IL13-L15-2
Sample Number	157163	157164	157164 D
Total Sulphur (%) (ELTRA)	0,67	0,79	0,78
Sulphate Sulphur as S (%)	0,27	0,19	0,19
Sulphide Sulphur (%)	0,40	0,60	0,60

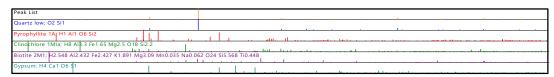
The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria Persequor . . . Meiring Naudé Road P.O. Box 283, 0020

Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Small: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION [o]


Date received: 2022/03/29 Date completed: 2022/04/22 Project number: 1000 Report number: 108629 Order number: PAR7273


Client name: Digby Wells Environmental Kgaugelo Thobejane Contact person:

Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Address: Email: kgaugelo.thobejane@digbywells.com Telephone: 011 789 9495 Email: levi.ochieng@digbywells.com Facsimile: 011 789 9498 Email: creditors@digbywells.com

	Sample Identification	
	IL13-L15-1	IL13-L15-2
Sample Number	157163	157164
Mineral Amount (weight %)	Composition (%) [o]	
Quartz	87,8	92,0
Pyrophyllite	10,1	5,5
Chlorite	1,4	1,5
Gypsum	0,6	0,4
Biotite	0,3	0,6

[o] = Outsourced

Note:

The material was prepared for XRD analysis using a back loading preparation method.

Diffractograms were obtained using a Malvern Panalytical Aeris diffractometer with PIXcel detector and fixed slits with Fe filtered Co-Kα radiation. The phases were identified using X'Pert Highscore plus software.

The relative phase amounts (weight %) were estimated using the Rietveld method.

- In case the results do not correspond to results of other analytical techniques, please let me know for further fine tuning of XRD results.
- Mineral names may not reflect the actual compositions of minerals identified, but rather the mineral group.
- Smectite, lizardite (serpentine), vermiculite, chlorite and kaolinite peaks overlap and further test would be necessary to distinguish. Identification is largely based on peak shapes and positions.
- Due to preferred orientation and crystallite size effects, results may not be as accurate as shown.
- Traces of additional phases may be present. Amounts below 0.5 weight % may be unreliable.
- · Amorphous phases, if present, were not taken into consideration during quantification.

Ideal Mineral compositions:

Compound Name	Chemical Formula
Biotite	K(Mg,Fe)3 ((OH)2 Al Si3 O10)
Chlorite	(Mg,Fe)5Al(AlSi3O10)(OH)8
Gypsum	Ca(SO4)(H2O)2
Pyrophyllite	Al(Si2O5)(OH)
Quartz	SiO2

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.