

PRE-FEASIBILITY STUDY RAPID RAIL LOS UPGRADE FOR WESSELS & **MAMATWAN MINES** 

## **GEOTECHNICAL INVESTIGATIONS REPORT**

DOC. NO.: 504733-0000-

PREPARED BY: **AURECON SOUTH AFRICA** 4 Daventry Street PRETORÍA 0081 South Africa

**CONTACT PERSONS:** Tel No: +27 12 427 2000 PREPARED FOR: SOUTH 32 39 Melrose Blvd Johannesburg 2196 South Africa

**CONTACT PERSON:** Daniel Chelopo (Study Manager) Tshego Milanzi (Directional Studies Manager) Tel No: +27 11 376 2780



## GEOTECHNICAL INVESTIGATIONS



## South32

# Pre-Feasibility Study - Rapid Rail LOS Upgrade

## Wessels & Mamatwan Mines

# **Geotechnical Investigations**

Doc. No.: 504733-0000-

| For Aurecon: | $\cap$                                          |                    |   |
|--------------|-------------------------------------------------|--------------------|---|
| Prepared By: | Siya Nyathi                                     |                    |   |
| Reviewed By: | Engineering Geologist                           |                    |   |
|              | Willem du Preez<br>Geotechnical Engineer        | 22 July 2019  Date |   |
| Approved By: | Salona Naidoo<br>Technical Director             | 22 July 2019 Date  |   |
| For South32: |                                                 |                    |   |
| Approved by: | David Mitchell<br>Manager (Directional Studies) | Date               | _ |
| Approved by: | Tohogo Milessa                                  |                    |   |
|              | Tshego Milanzi<br>Directional Studies           | Date               |   |
| Approved by: |                                                 |                    |   |
|              | Herman Swanepoel<br>Major Projects Manager      | Date               | _ |

# Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



## **GEOTECHNICAL INVESTIGATIONS REPORT**

# Contents

| 1 | introductio   | n        |                                                           |    |
|---|---------------|----------|-----------------------------------------------------------|----|
|   | 1.1           | Terms    | of reference                                              | 1  |
|   | 1.2           | Objecti  | ives of the geotechnical study                            | 1  |
|   |               | -        |                                                           |    |
| 2 | Site locality | y and de | escription                                                | 1  |
| 3 | Available ii  | nformati | ion                                                       | 2  |
| 4 | Geology ar    | nd Seisn | nicity                                                    | 2  |
|   | 4.1           | Region   | al geology                                                | 2  |
|   | 4.2           | Seismi   | city                                                      | 3  |
|   |               |          |                                                           |    |
| 5 | Geotechnic    |          | stigation methodology                                     |    |
|   | 5.1           | Site fea | atures, topography and climate                            | 4  |
|   | 5.2           | Summa    | ary of geotechnical investigation                         | 6  |
| _ | Fieldone de   |          |                                                           | _  |
| O |               |          |                                                           |    |
|   | 6.1           |          | t results                                                 |    |
|   | 6.2           | Ground   | dwater conditions/ seepage                                | 9  |
| 7 | Laboratory    | test res | sults                                                     | c  |
| • | 7.1           |          | ation indicators                                          |    |
|   | 7.1           |          | action test results                                       |    |
|   | 7.2           | •        | ties and classification of materials for placing purposes |    |
|   | 7.4           | •        | cal test results                                          |    |
|   |               |          |                                                           |    |
| 8 | Geotechnic    | cal cons | iderations                                                | 15 |
|   | 8.1           | Excava   | atability                                                 | 15 |
|   | 8.2           | Suitabi  | lity of material for re-use                               | 15 |
|   | 8.3           | Soil co  | rrosivity                                                 | 15 |
|   | 8.4           | Seismi   | c activity                                                | 15 |
|   | 8.5           |          | dwater conditions/ seepage                                |    |
|   | 8.6           | Compr    | essible / collapsible soils                               | 16 |
| ۵ | Evaluation    | of found | ding conditions                                           | 16 |
| J |               |          | wan mine                                                  |    |
|   | 9.1           |          |                                                           |    |
|   |               | 9.1.1    | Construction of fills along the track                     |    |
|   |               | 9.1.2    | Cut areas along the track                                 |    |
|   |               | 9.1.3    | Slope stability on the mine dumps in Mamatwan mine        |    |
|   |               | 9.1.4    | Conveyors                                                 |    |
|   | 9.2           | Wesse    | ls mine                                                   |    |
|   |               | 9.2.1    | Construction of fills along the track                     |    |
|   |               | 9.2.2    | Cut areas along the track                                 |    |
|   |               | 9.2.3    | Slope stability on the tailings dam in Wessels mine       |    |
|   |               | 9.2.4    | Conveyors                                                 |    |
|   | 9.3           | Draina   | ge                                                        | 20 |



## Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

| 10 Additional investigations and required information | 20 |
|-------------------------------------------------------|----|
| 11 Conclusions                                        |    |
| 12 Limitations                                        | 23 |
| 13 References                                         | 24 |

## **Appendices**

Appendix A

Appendix B

Appendix C

Appendix D

## **Figures**

- Figure 1: Site locality plan, indicating locations of Wessels and Mamatwan mines (from: worldstreetmap.org)
- Figure 2: The regional geological map indicating Wessels and Mamatwan mines (Council for Geoscience, 1979)
- Figure 3: Peak ground acceleration (g) with 10% probability for being exceeded in a 50-year-old period (after SANS 10160-4:2011).
- Figure 4: Site conditions at the Wessels mine, view the mine waste dump
- Figure 5: General site conditions at the Mamatwan mine, view of one of the waste dumps along the route

## **Tables**

- Table 1: Schedule of test pits
- Table 2: Test pit profile summary
- Table 3: Geotechnical zonation with soil description
- Table 4: Summary of foundation indicators
- Table 5: Summary of compaction test results
- Table 6: Material properties for earthworks construction (S410 specification)
- Table 7: Summary of laboratory results for material properties for earthwork construction
- Table 8: Guideline values for the interpretation of soil conductivity (Duligal, 1996)
- Table 9: Chemical test summary results
- Table 10: Cut and fill chainages for rail loop in Mamatwan mine
- Table 11: Ground parameters for dumps in Mamatwan mine
- Table 12: Cut and fill chainages for rail loop in Wessels mine
- Table 13: Ground parameters for the tailings dam

#### **GEOTECHNICAL INVESTIGATIONS REPORT**



## 1 Introduction

## 1.1 Terms of reference

Aurecon was appointed by South 32 Ltd to conduct a pre-feasibility study for the proposed new rail loops at Wessels and Mamatwan mines. Aurecon's Ground Engineering team conducted the geotechnical investigations of these studies.

At the Wessel mine two options (Option 1 and Option 2) were identified for the new rail loop. At the Mamatwan mine, only one option was identified for the pre-feasibility study.

The associated structures of the new rail loops comprise:

- Transfer structures,
- New load out structures,
- Conveyors, and
- Stackers and sampler plants.

This report, which focuses on the proposed rail loops at Wessels and Mamatwan mines, presents the results of the geotechnical investigations and an interpretation of the ground conditions along the routes and associated structures.

## 1.2 Objectives of the geotechnical study

The objectives of the geotechnical investigation were to comment on:

- Ground and groundwater conditions at the sites,
- Stability of excavations and general excavation conditions as per SANS 1200D guidelines,
- The suitability of excavated/ in situ materials for backfill and rail layer works,
- Geotechnical considerations that may have an influence on the proposed development,
- Recommendations for the rail loops, and
- Geotechnical inputs for the founding of the proposed structures.

## 2 Site locality and description

The Mamatwan mine is situated about 40km north of Kathu (see Figure 1). The Wessels mine is located approximately 50km north-west of the Mamatwan mine near Santoy (Blackrock) town. Various alignment scenarios have been considered in the project pre-feasibility study, of which one route of 4.3km of new railway alignment was selected as the preferred option for Wessels mine and a route of 5.5 km was selected for Mamatwan Mine (see drawing 504733-0000-DRG-GG-0001 to 504733-0000-DRG-GG-003).



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

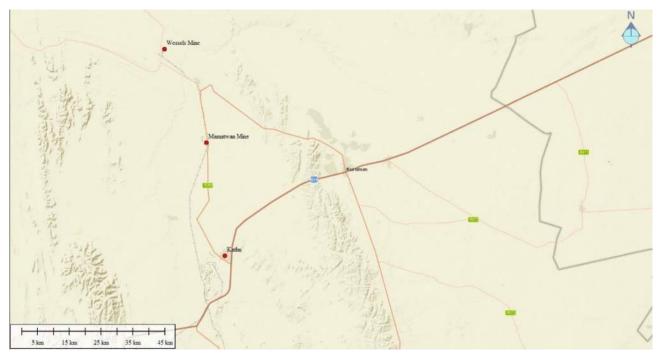



Figure 1: Site locality plan, indicating locations of Wessels and Mamatwan mines (from: worldstreetmap.org)

## 3 Available information

Geotechnical information from published sources and data from nearby geotechnical investigations was considered for the desktop study, which included the following:

- Council for Geoscience (1979). 1:250 000 Geological Map, Sheet 2722 Kuruman,
- Kimatlab (2007). Geotechnical investigations for the new wet screening plant at Wessels mine. Report SL 3111/07272
- S410 (2006). Specifications for railway earthworks, technical specifications. Technology management and track technology. Spoortnet, a division of Transnet Limited

## 4 Geology and Seismicity

## 4.1 Regional geology

According to the geological map (sheet 2722 Kuruman), the sites are underlain by red to flesh-coloured windblown (unconsolidated) sand, which is underlain by gravel, calcrete with some gravel layers (Figure 2).

No bedrock was encountered in the current investigation with the unconsolidated sands and calcrete gravel or nodules mainly encountered at both sites.



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

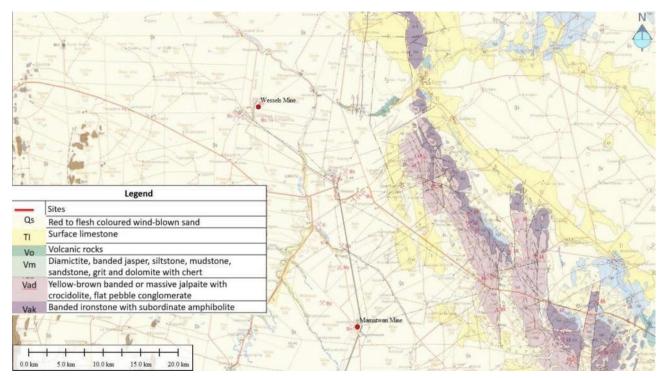



Figure 2: The regional geological map indicating Wessels and Mamatwan mines (Council for Geoscience, 1979)

## 4.2 Seismicity

On the published seismic hazard map of South Africa (SANS 10160-4:2011), the seismic hazard is defined in terms of peak ground acceleration. According to this map (presented in Figure 3), the sites occurs in an area with a Peak Ground Acceleration (PGA) value of less than 0.05g, with a 10% probability exists that this value will be exceeded in a 50-year period.

According to the SANS 10160-4:2011 guidelines, the site is located outside Zone I and Zone II and therefore are considered non-seismic activity zones and, according to the SANS guidelines, no specific seismic design requirements other than normal structural design requirements are required.



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

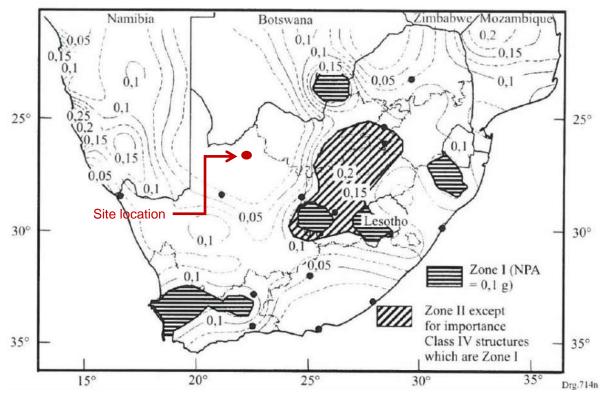



Figure 3: Peak ground acceleration (g) with 10% probability for being exceeded in a 50-year-old period (after SANS 10160-4:2011).

## 5 Geotechnical investigation methodology

## 5.1 Site features, topography and climate

A site walk over survey was also carried out by a representative of the Aurecon Ground Engineering team, where the following observations were made:

- The proposed Wessels mine rail loop is partially covered by a mine dump, a tailings dam and a waste dump area (Figure 4),
- The proposed Mamatwan mine rail loop will traverse two mine waste dumps (Figure 5),
- No pans or wetlands were identified along the proposed rail alignments.







Figure 4: Site conditions at the Wessels mine, view the mine waste dump



Figure 5: General site conditions at the Mamatwan mine, view of one of the waste dumps along the route

The Weinert climatic N-number for the area is 9. This indicates that the climate is semi-arid, and that physical mineral grain disintegration is the predominant mode of weathering of the underlying bedrock.





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

## 5.2 Summary of geotechnical investigation

The geotechnical investigations consisted of the following:

- 8 No. (WTP03 to WTP18) test pits with a TLB at the Wessels mine,
- 10 No. (MTP01 to MTP16) test pits with a TLB at the Mamatwan mine,
- Laboratory testing on selected soil samples.

At the Wessels mine not all the proposed test pit positions were investigated as the proposed rail loop footprint is in the operational area and partially covered by a waste dump. Other reasons why test pits were cancelled include:

- Two positions were located within the Blackrock property;
- Environmental constraints; and
- Locations not surveyed or scanned for services prior to the investigations.

Subsequently only test pits WTP03, WTP 04, WTP 05, WTP 11, WTP 15, WTP 16 and WTP 18 were approved for geotechnical investigations. The ground conditions encountered were however uniform across site.

At the Mamatwan mine the investigations were conducted at every second test pit position. Ground conditions were also uniform across this site.

The field investigations were conducted from 18 to 21 June 2019 between the two mines. A two-person team carried out the test pitting to comply with accepted safety requirements as reflected in the South African Code of Practice (SAICE: 2007). The positions of the test pits were recorded with a handheld GPS and the coordinates given in WGS84 Lo 23 coordinate systems. All the test pits were excavated with a TLB to refusal, the maximum reach of the equipment or until the sidewalls of the test pits became unstable. These test pit positions are indicated on drawing 504630-0000-DRG-GG-0001-01 to 504630-0000-DRG-GG-0002-01 in Appendix D. The test pits were profiled in accordance with the methodology proposed by Jennings, Brink, and Williams (1973) and were backfilled after profiling.

Representative soil samples were taken and submitted to Roadlab Engineering Materials Laboratory for testing. The following tests were done:

- Foundation Indicators with Atterberg limits (16 No.)
- California Bearing Ratio (CBR) including MOD ASSHTO (9 No)
- Moisture Content (8 No); and
- pH and Conductivity (6 No).

The positions, maximum depths of the test pits as well as a brief description of the material encountered at the termination depths are listed in Table 1, where the prefix WTP and MTP represents Wessels and Mamatwan test pit respectively. The detailed logs are attached in Appendix B and the locations of the test pits are on shown on drawings 504630-0000-DRG-GG-0001-01 to 504630-0000-DRG-GG-0002-01 in Appendix D.





### **GEOTECHNICAL INVESTIGATIONS REPORT**

Table 1: Schedule of test pits

| D N         | Coordinates (WGS84 Lo 23) |          | Termination |                                                    |
|-------------|---------------------------|----------|-------------|----------------------------------------------------|
| Test Pit No | Easting                   | Northing | depth (m)   | General soil and rock profile at termination depth |
|             |                           | Wesse    | els mine    |                                                    |
| WTP03       | -14458                    | -3000782 | 2.7         | Loose sand. Aeolian                                |
| WTP04       | -14276                    | -3000323 | 3.0         | Dense sand with calcrete concretions. Pedogenic    |
| WTP05       | -14099                    | -2999881 | 1.7         | Medium dense sand. Aeolian                         |
| WTP08       | -13702                    | -3000319 | 3.0         | Medium dense sand. Aeolian                         |
| WTP11       | -13661                    | -2999854 | 3.0         | Medium dense sand. Aeolian                         |
| WTP15       | -13325                    | -3000350 | 3.0         | Medium dense to dense sand. Aeolian                |
| WTP16       | -13769                    | -3000923 | 3.0         | Dense sand with calcrete concretions. Pedogenic    |
| WTP18       | -13945                    | -3000229 | 3.2         | Medium dense to dense sand. Aeolian                |
|             |                           | Mamaty   | wan mine    |                                                    |
| MTP01       | -890                      | -3032118 | 2.7         | Medium dense to dense sand. Aeolian                |
| MTP03       | -549                      | -3031176 | 2.4         | Medium dense to dense sand. Aeolian                |
| MTP05       | -218                      | -3030230 | 2.3         | Dense sand. Aeolian                                |
| MTP06       | -221                      | -3029620 | 2.5         | Medium dense to dense sand. Aeolian                |
| MTP07       | -310                      | -3029123 | 2.7         | Dense sand. Aeolian                                |
| MTP09       | -971                      | -3029257 | 2.1         | Dense sand. Aeolian                                |
| MTP11       | -750                      | -3029773 | 2.4         | Dense to very dense sand. Aeolian                  |
| MTP14       | -563                      | -3030249 | 2.0         | Medium dense to dense sand. Aeolian                |
| MTP15       | -345                      | -3029448 | 2.6         | Medium dense to dense sand. Aeolian                |
| MTP16       | -680                      | -3029511 | 2.7         | Dense sand. Aeolian                                |

## 6 Fieldwork results

## 6.1 Test pit results

The detailed descriptions of the soil profiles encountered in the test pits are presented in Appendix B; while the geological profiles are summarised below in Table 2.





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

Table 2: Test pit profile summary

| Test pit No: | Manganese gravel<br>and sand, Fill<br>material<br>(m) | Silty sand,<br>Topsoil (m) | Sand, Aeolian sand<br>(m) | Calcritised sand and calcrete nodules, Pedogenic material (m) |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------|----------------------------|---------------------------|---------------------------------------------------------------|--|--|--|--|--|--|--|
|              | Wessels mine                                          |                            |                           |                                                               |  |  |  |  |  |  |  |
| WTP03        | 0-0.3                                                 | -                          | 0.3-2.7+                  | -                                                             |  |  |  |  |  |  |  |
| WTP04        | 0-0.5                                                 | -                          | 0.5-2.5                   | 2.5-3.0+                                                      |  |  |  |  |  |  |  |
| WTP05        | 0-1.5                                                 | -                          | 1.5-1.7+                  | -                                                             |  |  |  |  |  |  |  |
| WTP08        | 0-0.3                                                 | -                          | 0.3-3.0+                  | -                                                             |  |  |  |  |  |  |  |
| WTP11        | -                                                     | 0-0.4                      | 0.4-3.0+                  | -                                                             |  |  |  |  |  |  |  |
| WTP15        | -                                                     | 0-0.2                      | 0.2-3.0                   | -                                                             |  |  |  |  |  |  |  |
| WTP16        | 0-0.2                                                 | -                          | 0.2-2.3                   | 2.3-3.0+                                                      |  |  |  |  |  |  |  |
| WTP18        | 0-0.3                                                 | -                          | 0.3-2.6                   | 2.6-3.2+                                                      |  |  |  |  |  |  |  |
|              |                                                       | Mamatwan mine              |                           |                                                               |  |  |  |  |  |  |  |
| MTP01        | 0-0.4                                                 | -                          | 0.4-2.7+                  | -                                                             |  |  |  |  |  |  |  |
| MTP03        | -                                                     | 0-0.2                      | 0.2-2.4+                  | -                                                             |  |  |  |  |  |  |  |
| MTP05        | 0-0.3                                                 | -                          | 0.3-2.3+                  | -                                                             |  |  |  |  |  |  |  |
| MTP06        | -                                                     | 0-0.3                      | 0.3-2.5+                  | -                                                             |  |  |  |  |  |  |  |
| MTP07        | -                                                     | 0-0.2                      | 0.2-2.7+                  | -                                                             |  |  |  |  |  |  |  |
| MTP09        | 0-0.2                                                 | -                          | 0.2-2.1                   | 2.1+                                                          |  |  |  |  |  |  |  |
| MTP11        | -                                                     | 0-0.3                      | 0.3-2.4+                  | -                                                             |  |  |  |  |  |  |  |
| MTP14        | -                                                     | 0-0.1                      | 0.1-2.0+                  | -                                                             |  |  |  |  |  |  |  |
| MTP15        | -                                                     | 0-0.2                      | 0.2-2.6+                  | -                                                             |  |  |  |  |  |  |  |
| MTP16        | -                                                     | 0-0.1                      | 0.1-2.7+                  | -                                                             |  |  |  |  |  |  |  |

Two different geological profiles were encountered along both alignments. A distinction between the profiles has been made according to the origin of the soils to zone the rail routes into geological zones. The section covered by aeolian sand with topsoil and no refusal has been zoned as Zone G1. The section where aeolian sands are underlain by calcritised gravel or calcrete nodules is zoned as Zone G2. The descriptions of the zones are summarised in Table 3 and zoning of the alignments on drawings 504733-0000-DRG-GG-0001-01 to 504733-0000-DRG-GG-0002-01 in Appendix D.



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

Table 3: Geotechnical zonation with soil description

|                   | Geotechnical zonation descriptions                               |                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Geotechnical zone | Summary                                                          | Description                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| G1                | Aeolian sand                                                     | At Wessels mine, this material on average is encountered to 2.8m.  At Mamatwan mine, the aeolian material is encountered to an average depth of 2.6m.  Encountered as dry to moist, loose to dense sand.                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| G2                | Aeolian sand underlain by calcritised gravel or calcrete nodules | At Wessels mine, encountered in three test pits as indicated in Table 2. It was encountered between 2.4m and 3.0m depth and comprised moist medium dense to dense calcritised sand with calcrete concretions or nodules.  At Mamatwan mine, this was only encountered at test pit MTP09 at the refusal depth of 2.1m. Encountered as very dense to very soft rock hardpan calcrete. |  |  |  |  |  |  |  |  |

## 6.2 Groundwater conditions/ seepage

No groundwater seepage was encountered during the investigations. The presence of calcrete and calcritised materials are an indication that shallow seasonal perched water tables may be present (as indicated in Table 3) during and after high rainfall periods.

## 7 Laboratory test results

### 7.1 Foundation indicators

Representative soil samples were collected for laboratory testing at both the mines. The detailed test results are attached in Appendix C and the summary of foundation indicator results is presented in Table 4.

Table 4: Summary of foundation indicators

| Test Pit | Depth        | Origin       |             | Soil Co     | ompositio   | on            | GM   | GM Atterberg Limits |            |           | Activity | USC   |
|----------|--------------|--------------|-------------|-------------|-------------|---------------|------|---------------------|------------|-----------|----------|-------|
| No       | (m)          |              | Clay<br>(%) | Silt<br>(%) | Sand<br>(%) | Gravel<br>(%) |      | LL<br>(%)           | WPI<br>(%) | LS<br>(%) |          |       |
|          | Wessels mine |              |             |             |             |               |      |                     |            |           |          |       |
| WTP04    | 0.5-2.5      | Aeolian sand | 1           | 8           | 92          | 0             | 0.98 | 18                  | 0          | 0         | Low      | SP-SM |
| WTP04    | 2.5-3.0      | Pedogenic    | 1           | 5           | 71          | 23            | 1.46 | 18                  | 0          | 0         | Low      | SP-SM |
| WTP08    | 0.3-3.0      | Aeolian sand | 1           | 8           | 90          | 1             | 0.97 | 16                  | 0          | 0         | Low      | SP-SM |





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

| WTP11 | 0.4-3.0 | Aeolian sand | 1 | 9  | 90   | 0         | 0.98 | 16 | 0 | 0 | Low | SP-SM |
|-------|---------|--------------|---|----|------|-----------|------|----|---|---|-----|-------|
| WTP15 | 0.2-2.6 | Aeolian sand | 1 | 7  | 92   | 0         | 0.96 | 16 | 0 | 0 | Low | SP-SM |
| WTP16 | 2.3-3.0 | Pedogenic    | 1 | 7  | 92   | 0         | 0.96 | 16 | 0 | 0 | Low | SP-SM |
| WTP18 | 2.6-3.2 | Pedogenic    | 1 | 11 | 75   | 13        | 1.19 | 17 | 0 | 0 | Low | SM    |
|       |         |              |   |    | Mama | twan mine |      |    |   |   |     |       |
| MTP01 | 1.0-2.7 | Aeolian sand | 0 | 4  | 96   | 0         | 1.11 | 19 | 0 | 0 | Low | SP-SM |
| MTP03 | 1.0-2.4 | Aeolian sand | 1 | 10 | 86   | 3         | 1.05 | 16 | 0 | 0 | Low | SP-SM |
| MTP05 | 0.3-2.3 | Aeolian sand | 1 | 13 | 85   | 1         | 0.98 | 15 | 0 | 0 | Low | SM    |
| MTP06 | 0.3-2.5 | Aeolian sand | 2 | 12 | 86   | 0         | 0.98 | 17 | 0 | 0 | Low | SM    |
| MTP07 | 0.2-2.7 | Aeolian sand | 1 | 12 | 87   | 0         | 0.99 | 16 | 0 | 0 | Low | SM    |
| MTP09 | 0.2-2.1 | Aeolian sand | 1 | 13 | 85   | 1         | 1.0  | 16 | 0 | 0 | Low | SM    |
| MTP14 | 0.1-2.0 | Aeolian sand | 1 | 9  | 90   | 0         | 0.97 | 16 | 0 | 0 | Low | SP-SM |
| MTP16 | 0.1-2.7 | Aeolian sand | 1 | 13 | 86   | 0         | 1.0  | 16 | 0 | 0 | Low | SM    |

LegendGM=Grading modulusLL=Liquid LimitWPI=Weighted Plasticity IndexLS=Linear Shrinkage

USC = Classification of the soil according to the Unified Soil Classification system

Activity = Potential expansiveness of the soil according to Van der Merwe's method (Van der

Merwe, 1973)

From the results in Table 4 it is evident that:

#### At Wessels mine:

The **aeolian sand material** comprises of silty sands (SM) and poorly graded sands (SP). The material typically consists of zero to 1% gravel, 90% to 92% sand, 7% to 9% silt material, and 1% for clays. The fines fraction material exhibits a low liquid limit between 16% and 18%, zero linear shrinkage and zero weighted plasticity index. These aeolian sand are of low potential expansiveness.

The **pedogenic material** encountered on site comprises of silty sands (SM) and poorly graded sands (SP). The material consists of 0% to 23% gravel, 71% to 92% sand material, 5% to 11% silt and 1% clay. The fines fraction material exhibits a low liquid limit between 16% and 18%, zero linear shrinkage and zero weighted plasticity index. These aeolian sand are of low potential expansiveness.

#### At Mamatwan mine:

The **aeolian sand material** comprises of silty sands (SM) and poorly graded sands (SP). The material typically consists of zero to 3% gravel, 85% to 96% sand, 4% to 13% silt material, and zero to 2% for clays. The fines fraction material exhibits a low liquid limit between 15% and 19%, zero linear shrinkage and zero weighted plasticity index. These aeolian sand are of low potential expansiveness.





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

## 7.2 Compaction test results

Representative sample of potential sources of construction materials were sampled for laboratory testing. The samples were subjected to compaction tests in which the moisture-density relationship was established, with California Bearing Ratio (CBR) tests carried out to determine the suitability of the soils for use in constructing layer works. The test results are summarised below.

Table 5: Summary of compaction test results

| Test No. | Depth                                                                          | Origin       | ОМС | b) (kg-/m3) (%) | Swell | CE    | COLTO |       |       |            |
|----------|--------------------------------------------------------------------------------|--------------|-----|-----------------|-------|-------|-------|-------|-------|------------|
|          | (m)                                                                            | G.I.g.ii     | (%) |                 | (%)   | 90(%) | 93(%) | 95(%) | 98(%) |            |
|          | Wessels mine                                                                   |              |     |                 |       |       |       |       |       |            |
| WTP04    | 0.5-2.5                                                                        | Aeolian sand | 5.9 | 1860            | 0     | 5     | 8     | 12    | 19    | G9         |
| WTP11    | 0.4-3.0                                                                        | Aeolian sand | 5.8 | 1852            | 0     | 6     | 8     | 11    | 17    | G9         |
| WTP15    | 0.2-2.6                                                                        | Aeolian sand | 5.8 | 1834            | 0     | 5     | 8     | 10    | 17    | G9         |
| WTP16    | 2.3-3.0                                                                        | Pedogenic    | 6.3 | 1809            | 0     | 6     | 9     | 12    | 19    | G9         |
| WTP18    | 2.6-3.2                                                                        | Pedogenic    | 6.5 | 1815            | 0     | 5     | 8     | 11    | 18    | G9         |
|          |                                                                                |              |     | Mamatwan        | mine  |       |       |       |       |            |
| MTP 01   | 1.0-2.7                                                                        | Aeolian      | 6.0 | 1899            | 0     | 5     | 7     | 10    | 15    | <b>G</b> 9 |
| MTP 05   | 0.3-2.3                                                                        | Aeolian      | 6.9 | 1966            | 0     | 7     | 10    | 12    | 17    | <b>G</b> 9 |
| MTP 09   | 0.2-2.1                                                                        | Aeolian      | 6.9 | 1992            | 0     | 6     | 9     | 12    | 17    | <b>G</b> 9 |
| MTP 16   | 0.1-2.7                                                                        | Aeolian      | 6.0 | 1908            | 0     | 3     | 4     | 6     | 8     | G10        |
|          | Legend: OMC = Optimum moisture content  MDD = Maximum dry density (Mod AASHTO) |              |     |                 |       |       |       |       |       |            |

MDD = Maximum dry density (Mod AASHTO)

Swell = Soaked at 100% Mod AASHTO compaction

COLTO = Committee of Land Transport Officials

From the results in **Error! Reference source not found.** it is evident that:

#### At Wessels mine:

The **aeolian sand material** generally has low dry density between 1834 kg/m³ and 1860 kg/m³ and low optimum moisture content between 5.8% and 5.9%. The CBR values indicates zero swell, with low value at both 93% Mod AASHTO and 95% Mod AASHTO. This material is classified as G9 according to COLTO guidelines and is classified as suitable for use in selected subgrade or alternatively used for landscaping or spoiled.

The **pedogenic material** was encountered with low dry density between 1809 kg/m³ and 1815 kg/m³ and low optimum moisture content between 6.3% and 6.5%. The CBR values indicates zero swell, with low value at both 93% Mod AASHTO and 95% Mod AASHTO. This material is classified as G9 according to COLTO





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

guidelines and is classified as suitable for use in selected subgrade or alternatively used for landscaping or spoiled.

#### At Mamatwan mine:

The **aeolian sand material** was encountered with low dry density between 1899 kg/m³ and 1992 kg/m³ and low optimum moisture content between 6.0% and 6.9%. The CBR values indicates zero swell, with low value at both 93% Mod AASHTO and 95% Mod AASHTO. This material is classified as G9 and G10 according to COLTO guidelines and is classified as suitable for use in selected subgrade or alternatively used for landscaping or spoiled.

# 7.3 Properties and classification of materials for placing purposes

The materials have been classified as per the specifications for railway earthworks, S410. This section results are to be viewed in conjunction with Section 7.1 and 7.2 and full laboratory results in Appendix C.

Table 6: Material properties for earthworks construction (S410 specification)

|                        | MATERIAL PROPERTIES |                                     |     |        |             |       |       |      |                           |                                                   |                                                       |
|------------------------|---------------------|-------------------------------------|-----|--------|-------------|-------|-------|------|---------------------------|---------------------------------------------------|-------------------------------------------------------|
| Form<br>ation<br>s     | SAR<br>Index        | Min.<br>Grad-<br>ing<br>Modul<br>us | 75  |        | eve size in | o.425 | 0.075 | ΡΙ   | Max.<br>CBR<br>Swell<br>% | Minimu m compact ion % of modified AASHTO Density | Minimum<br>strength<br>after<br>compacti<br>on<br>CBR |
| SSB                    | <50                 | 2.0                                 | 100 | 60-85  | 20-50       | 10-30 | 5-15  | 3-10 | 0.5                       | 98                                                | 60 <b>(o)</b><br>(1.5-3 MPa)                          |
| SB                     | <80                 | 1.8                                 | 100 | 70-100 | 20-60       | 10-40 | 5-20  | 3-10 | 0.5                       | 95                                                | 30 <b>(o)</b><br>(1.5-3 MPa)                          |
| Α                      | <110                | 1.0                                 |     |        |             |       | <40   | <12  |                           | 95<br>100*                                        | 20                                                    |
| В                      | <155                | 0.5                                 |     |        |             |       | <70   | <17  |                           | 93<br>98*                                         | 10                                                    |
| Bulk<br>earth<br>works |                     |                                     |     |        |             |       |       | <25  | 2                         | 90<br>95*                                         | 5                                                     |





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

- These densities apply to non-cohesive soils
- (o) Strengths in brackets apply in place of CBR values where sub-ballast is stabilised

+ Increase to 45 in the absence of Layer SSB unless otherwise specified (Increase not normally required in dry areas.)

Note:- See Appendix A for comparable road materials (S410). The classifications shown may be used by the Contractor at his discretion when preparing preliminary assessments of availability of materials for use in the listed layers.

Table 7: Summary of laboratory results for material properties for earthwork construction

| Sample No | Origin       | Depth (m) | SAR Index     | Min grading<br>modulus | PI | Structural layer classification |  |  |  |  |
|-----------|--------------|-----------|---------------|------------------------|----|---------------------------------|--|--|--|--|
|           | Wessels mine |           |               |                        |    |                                 |  |  |  |  |
| WTP04     | Aeolian sand | 0.5-2.5   | 8             | 1.0                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
| WTP11     | Aeolian sand | 0.4-3.0   | 10            | 1.0                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
| WTP15     | Aeolian sand | 0.2-2.6   | 8             | 1.0                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
| WTP16     | Pedogenic    | 2.3-3.0   | 8             | 1.0                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
| WTP18     | Pedogenic    | 2.6-3.2   | 12            | 1.2                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
|           |              |           | Mamatwan mine |                        |    |                                 |  |  |  |  |
| MTP01     | Aeolian sand | 1.0-2.7   | 4             | 1.1                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
| MTP05     | Aeolian sand | 0.3-2.3   | 14            | 1.0                    | SP | Bulk earthworks,<br>A and B     |  |  |  |  |
| MTP09     | Aeolian sand | 0.2-2.1   | 16            | 1.0                    | NP | Bulk earthworks,<br>A and B     |  |  |  |  |
| MTP16     | Aeolian sand | 0.1-2.7   | 14            | 1.0                    | NP | Not suitable *                  |  |  |  |  |

#### Notes:

Not suitable\* - Minimum strength after compaction CBR for layer A at 100% should be 20 but the sample test results showed 11, and layer B at 98% should be 10, but the results show 8.

SAR index - a sum of the Liquid Limit, the Plastic Limit and the percentage passing the 0.075mm sieve

## 7.4 Chemical test results

The conductivity of the soil has an influence on the rate of corrosion of buried metallic objects. Based on significance of soil resistivity on corrosivity, Duligal (1996) provides the following table for evaluation of the conductivity of soil (Table 8).





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

Table 8: Guideline values for the interpretation of soil conductivity (Duligal, 1996)

| Soil conductivity<br>(mS/m) | Soil resistivity (Ohm.cm) | Corrosivity classification |
|-----------------------------|---------------------------|----------------------------|
| More than 50                | 0 – 2000                  | Extremely corrosive        |
| 25 - 50                     | 2000 – 4000               | Very corrosive             |
| 20 – 25                     | 4000 – 5000               | Corrosive                  |
| 10 – 20                     | 5000 – 10000              | Mildly corrosive           |
| Less than 10                | >10000                    | Not generally corrosive    |

Representative soil sample of different soil horizons encountered on site were subjected to chemical (pH and conductivity) tests. The test results are summarised as follows. Based on Evans guideline (1977) a soil pH less than 6 indicates serious corrosion potential.

Table 9: Chemical test summary results

| Test pit No   | Depth (m)    | Origin       | рН   | Conductivity<br>(mS/m) |  |  |  |
|---------------|--------------|--------------|------|------------------------|--|--|--|
|               | Wessels mine |              |      |                        |  |  |  |
| WTP04         | 0.5-2.5      | Aeolian sand | 7.88 | 33                     |  |  |  |
| WTP08         | 0.3-3.0      | Aeolian sand | 6.56 | 9                      |  |  |  |
| WTP18         | 2.6-3.2      | Pedogenic    | 7.74 | 37                     |  |  |  |
| Mamatwan mine |              |              |      |                        |  |  |  |
| MTP03         | 1.0-2.4      | Aeolian sand | 7.65 | 12                     |  |  |  |
| MTP09         | 0.2-2.1      | Aeolian sand | 7.58 | 22                     |  |  |  |
| MTP14         | 0.1-2.0      | Aeolian sand | 6.55 | 5                      |  |  |  |

At the Wessels mine, the pH values range between 6.56 and 7.88 which indicates non-corrosive soils (based on Evans guidelines) with the soil conductivity ranging between 9.0 and 37, indicating generally non-corrosive soil to very corrosive. At the Mamatwan mine, the pH values are ranging between 6.55 and 7.65 which indicates non-corrosive soils according to Evans guidelines and the soil conductivity ranging between 5.0 and 22, indicating generally non-corrosive to corrosive soils. Due to the conductivity of the soil, special consideration may be necessary in the design against the deterioration of buried steel, copper and concrete elements in soil.



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

## 8 Geotechnical considerations

## 8.1 Excavatability

The refusal depth of the TLB during the test pitting exercise can be used as an indication of the depth to which soft and hard excavations can be expected to extend.

The material encountered in both mines can be classified as "Soft excavation" in terms of SANS 1200D to an average depth of 2.8m (between 1.7m and 3.0) below natural ground in Wessels mine and 2.4m in Mamatwan mine. Previous report by Kimatlab indicates that sand and pedogenic materials are encountered to 18m depth, "Soft excavations" may be expected to deeper depths.

## 8.2 Suitability of material for re-use

Laboratory results indicates that the aeolian sand and the pedogenic material as encountered at both mines can generally be classified as suitable for bulk earthworks, layer B and A material according to the S410 guidelines. One sample taken from Mamatwan mine indicates the aeolian sand not suitable for use for either bulk earthworks, layer B and A material according to the S410 guidelines.

Given that one sample indicates that aeolian sand may sometime not be suitable for construction purposes, the onerous selection of this material may be a challenge. As a result, it may be feasible for all construction material to be imported from elsewhere with the rest of the soils used as general fill or for landscaping purposes, or alternatively spoiled.

The SB and SSB formation materials must be sourced from existing/commercial sources.

For the associated structured, the aeolian sand and pedogenic material encountered in both mines is classified as G9 and G10 according to COLTO guidelines and is classified as suitable for use in selected subgrade or alternatively used for landscaping or spoiled.

## 8.3 Soil corrosivity

The pH indicates that the soils are generally not corrosive, however the soil conductivity results indicates that the soils are generally non-corrosive to very corrosive based on the laboratory results. Due to the conductivity of the soil, special consideration may be necessary in the design against the deterioration of buried steel, copper and concrete elements in soil.

## 8.4 Seismic activity

The site is located outside Zone I and Zone II seismic zones according to the SANS 10160-4:2011 guidelines and no specific seismic design requirements other than normal structural design requirements are required.

## 8.5 Groundwater conditions/ seepage

Groundwater seepage was not encountered during the investigations. The presence of calcrete nodules and calcritised materials are an indication that shallow seasonal perched water table may be present during and after periods of rainfall.



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

## 8.6 Compressible / collapsible soils

The loose silty sand material encountered in the topsoil and aeolian sand may be potentially compressible or collapsible to a maximum depth of investigation (i.e. 3m) in both mines. Komatlab (2007) indicates the loose aeolian sands encountered in Wessels mine to be highly compressible and possess a collapse potential.

## 9 Evaluation of founding conditions

### 9.1 Mamatwan mine

The following table summarises cut and fill for rail construction in Mamatwan mine from drawing number 504733-0000-DRG-DD-0501:

Table 10: Cut and fill chainages for rail loop in Mamatwan mine

| Chainages (km distance) | Cut or fill | Maximum cut/fill (m) |
|-------------------------|-------------|----------------------|
| 0+000 to 0+650          | Fill        | 1                    |
| 0+650 to 1+100          | Cut         | 19 (dump)            |
| 1+100 to 1+550          | Fill        | 4                    |
| 1+550 to 1+650          | Cut         | 9 (dump)             |
| 1+650 to 2+700          | Fill        | 4                    |
| 2+700 to 3+200          | Fill        | 1                    |
| 3+200 to 4+450          | Cut         | 1                    |
| 4+450 to 5+943          | Fill        | 1                    |

## 9.1.1 Construction of fills along the track

The fill sections will be constructed on the topsoil which comprises loose sand with roots and the fill material comprising of manganese gravel and sand. These areas vary from natural ground level to about 4m as indicated in drawing 504733-0000-DRG-DD-0501. The following methodology is proposed for the construction of fills:

- Remove fill material and topsoil to an average depth of 0.3m between (0.1m and 0.4m). The excavated topsoil material must be stockpiled for possible later re-use as landscaping material.
- Compact the base of the excavation to the required density as specified in S410 guidelines.
- Construct bulk earthworks and formation layers to required levels, compacted as specified in the S410 guidelines.



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

### 9.1.2 Cut areas along the track

The cut depth between 1m and 2m in the natural ground sections and between 9 m and 19 m in the sections covered by the dumps. The cuttings in the mine dumps may create slope stability issues which are further discussed in Section 9.1.3.

The cut material encountered in the natural profile between 1m and 2m will comprise of loose to dense silty sand material of aeolian origin.

The following methodology is proposed prior to construction of formation/structural layers:

- Compact the base of the excavation to the required density prior to construction of bulk earthworks and the formation layers.
- Construct bulk earthworks and formation layers to required levels, compacted as specified in the S410 guidelines.

## 9.1.3 Slope stability on the mine dumps in Mamatwan mine

The waste dumps comprise of sand, calcrete gravel and some banded ironstone gravels. These are present in two locations along the proposed rail loop (see drawing 504733-0000-DRG-GG-0001-01) and are at the maximum heights of 19m in the southern dump and at 9m in the northern dump.

Shallow ground water table was not encountered in any of the test pits along the rail loop.

The table below presents materials design estimated parameters and Swiss Norm (1999) correlations.

Table 11: Ground parameters for dumps in Mamatwan mine

| Profile Description   | Unit weight (kN/m³) | Drained Cohesion<br>(kPa) | Friction angle<br>(°) |
|-----------------------|---------------------|---------------------------|-----------------------|
| Sand                  | 20                  | 0                         | 34                    |
| Calcrete sandy gravel | 21                  | 0                         | 32                    |

Due to economic risk associated with the proposed rail loop and to ensure stability, the following slope batters are recommended:

- The dump of 19m height must be flattened to a maximum gradient of 23.1° (1:2.3) to achieve a factor of safety (FoS) of 1.5.
- The 9m high dump must be flattened to a maximum gradient of 23.2° (1:2.3) to achieve a FoS of 1.5.

### 9.1.4 Conveyors

The conveyor alignment for Mamatwan is divided into the following sections as indicated in drawing number 504733-0000-DRG-GG-0001-01:

- MMT-MIL/SIN-CV01,
- MMT-MIL/SIN-CV02,
- MMT-SIN-CV03,
- MMT-SIN-CV04,
- MMT-MIL-CV05,
- MMT-RECLAIM-CV01, and

## Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

MMT-RECLAIM-CV02.

The ground profiles for the conveyors was assessed using the profile descriptions of test pits MTP11, MTP14, MTP15 and MTP16. The soil profile in area generally comprises of loose silty sand to an average depth of 0.2m, which is underlaid by the loose to dense sand to the depth of 2.7m.

At this pre-feasibility stage no detail information is available on the trestles or any conveyor structures and their proposed founding depth, loads and footing dimensions. However, analysis of the ground conditions indicates that the following provisional recommendations can be made on the lighter structures (such as the trestles and at-grade section) and shall be revised after the drilling investigation:

- Remove all the loose material to an average depth of 1m,
- Compact the in-situ material at the base of excavation to the required density,
- Replace the excavated material with better or imported material, constructed in layers not exceeding 150mm up to soffit level,
- Excavations to be inspected by a competent person, i.e. geotechnical engineer or engineering geologist.

## 9.2 Wessels mine

The following table summarises cut and fill for rail construction in Wessels mine from drawing number 504733-0000-DRG-DD-0603:

Table 12: Cut and fill chainages for rail loop in Wessels mine

| Chainages (km distance) | Cut or fill | Maximum cut/fill (m) |
|-------------------------|-------------|----------------------|
| 0+00 to 0+850           | Cut         | 2                    |
| 0+850 to 1+450          | Fill        | 1                    |
| 1+450 to 2+400          | Cut         | 2                    |
| 2+400 to 2+800          | Fill        | 1                    |
| 2+800 to 3+350          | Cut         | 7 (tailings dam)     |
| 3+350 to 3+900          | Fill        | 1                    |
| 3+900 to 4+250          | Fill        | 1                    |
| 4+250 to 4+916          | Cut         | 2                    |

### 9.2.1 Construction of fills along the track

The fill sections will be constructed on the topsoil which comprises loose sand with roots and the dense to very dense fill material comprising of manganese gravel and sand. These areas vary from natural ground level to about 2m as indicated in drawing 504733-0000-DRG-DD-0603.

#### Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

The following methodology is proposed for the construction of fills:

- Remove fill material and topsoil to an average depth of 0.3m (0.1m and 0.4m). The excavated topsoil material must be stockpiled for possible later re-use as landscaping material.
- Compact the base of the excavation to the required density.
- Construct bulk earthworks and formation layers to required levels, compacted as specified in the S410 guidelines.

## 9.2.2 Cut areas along the track

The cut sections vary in depth between 1m and 2m below the natural ground and to a maximum depth of 7m in the tailings dam. The cut in the tailings dam is further discussed in Section 9.2.3 below in regard to slope stability.

The cut material encountered between 1m and 2m will comprise of loose to dense silty sand material of aeolian origin.

The following methodology is proposed prior to construction of formation/structural layers:

- Compact the base of the excavation to the required density prior to construction of bulk earthworks and the formations.
- Construct bulk earthworks and formation layers to required levels, compacted as specified in the S410 guidelines.

### 9.2.3 Slope stability on the tailings dam in Wessels mine

Tailings dam is typically an earth-fill embankment dam used to store by products of mining operations after separation of the ore from the gangue.

The material on the Wessels tailings dam was not sampled and tested for soil composition or classification. However, it has been stated (via email from the client) that the dam comprises of slime material made of <0.5mm material. The preferred option at the Wessels mine will traverse through the existing tailings dam as indicated in drawing 504733-0000-DRG-GG-0001.

No shallow ground water table was not encountered in any of the excavated test pits near the tailings dam. It is also understood that the tailings dam is currently dry as per email correspondence with the client. The ground parameters are summarised in table below.

Table 13: Ground parameters for the tailings dam

| Profile Description                 | Unit weight<br>(kN/m³) | Drained Cohesion<br>(kPa) | Friction angle<br>(°) |
|-------------------------------------|------------------------|---------------------------|-----------------------|
| Sand                                | 20                     | 0                         | 34                    |
| Tailings slime (received via email) | 19                     | 2                         | 28                    |

It is recommended that the Wessels tailings slope of 7m height be flattened to a maximum gradient of 25.0° (1:2.1) to achieve a FoS of 1.5, due to economic risk associated with the proposed rail loop and to ensure stability.

### Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

### 9.2.4 Conveyors

The conveyor alignment for Wessels mine is divided into the following sections as indicated in drawing number 504733-0000-DRG-GG-0002-01:

- WSL-CV04,
- WSL-CV04B,
- WSL-CV05,
- WSL-CV06,
- WSL-CV07, and
- WSL-CV08.

WSL-CV04 and WSL-CV04B sections traverse over the mine dump which is characterised by a combination of sand, calcrete, clay, gravel and banded ironstone excavated during the decline development. It is understood as this stage that there are no plans to remove the mine dump and the conveyor is expected to traverse over it. The rest of the conveyor sections are appraised using test pit WTP05 and WTP11 which comprises of well compacted, very dense fill material to 1.5m depth and loose to medium dense sand of aeolian origin to 3.0m below ground level.

The provisional recommendations are as follows:

- Where the very dense fill material is encountered to at least 1m below surface, conveyor footings can be constructed within this material,
- Remove the loose to medium dense sand to 1m below natural ground,
- The sides of the excavation must be battered to ensure stability (typically at 60°).
- Replace the excavated material with a G8 or better material,
- Compacted to the required density in layers not exceeding 150mm up to soffit level,
- Excavations to be inspected by a competent person, i.e. geotechnical engineer or engineering geologist.

## 9.3 Drainage

The drainage requirements detailed in the S410 specification must be implemented.

# 10 Additional investigations and required information

In order to provide design parameters for the heavier structures, it is recommended that further investigations are undertaken to characterise the soil and rock profiles at depth. These investigations and required information shall entail drilling of rotary core boreholes to 25m each in conjunction with Standard Penetration Testing (SPT) as follows:

Transfer structures (3 No borehole),





#### **GEOTECHNICAL INVESTIGATIONS REPORT**

- New load out structure (1 No borehole), and
- Stackers and sampler plants (1 No boreholes)

This equates to four (5 No) boreholes at Wessels mine and five (5 No) borehole at Mamatwan mine.

This drilling investigation shall include all associated laboratory testing (such as Uniaxial Compressive Strength test on core samples).

## 11 Conclusions

The following conclusions are presented:

- The shallow soils of aeolian sands and pedogenic material are generally considered suitable for use as bulk earthworks, layer A and B. One sample in Mamatwan mine indicates the aeolian sand not suitable for use for either bulk earthworks, layer B and A material. The material for construction of SB and SSB layers is to be sourced elsewhere.
- Given that one sample indicates that aeolian sand may sometime not be suitable for construction purposes. The onerous selection of this material may be a challenge. As a result, it may be feasible for all construction material to be imported from elsewhere with the rest of the soils used as general fill or for landscaping purposes, or alternatively spoiled.
- The material encountered in both mines can be classified as "Soft excavation" in terms of SANS 1200D to an average depth of 2.8m below natural ground in Wessels mine and 2.4m in Mamatwan mine.
- The loose sand of topsoil is to be removed prior to construction of cut/fill along the route. This material is to be stockpiled for possible later re-use as landscaping material.
- The loose silty sand material encountered in the topsoil and aeolian sand may be potentially compressible or collapsible.
- Due to the soil conductivity of the soil, special consideration may be necessary in the design against the deterioration of buried steel, copper and concrete elements in soil.
- The drainage requirements detailed in the S410 specification must be implemented.
- The slope stability checks were high-level checks conducted to give an idea on safe and acceptable cut slopes. It is further proposed that samples be taken from the tailings dam in Wessels mine and in the mine dumps at Mamatwan mine for laboratory testing to further analyse and provide more suitable slope designs.
- The conveyor provisional recommendations are to be revised once the drilling investigation and laboratory testing has been concluded and more information with regards to footing dimensions, height, founding levels below ground level and general foundation loads becomes available.
- The founding recommendations for the transfer structures, load out structures, stackers and sampler plants will be addressed once drilling investigation has been conducted in both mines as recommended in Section
- The material on the tailings dam may be toxic and potentially radioactive. It is therefore proposed that this material should be verified of any potential health and environmental risk prior to being disposed. If it has been evaluated to pose a risk, the material will have to be disposed of in a manner and a location deemed appropriate.
- Should the above point also apply to the very dense well compacted stockpile material, it is proposed that all fill material be removed prior to construction and the competent person be present on site to re-evaluate recommendation stated in this report.
- The information contained herein is based on a limited number of test pits. As indicated in Section 10, additional work is recommended for heavier structures.





### **GEOTECHNICAL INVESTIGATIONS REPORT**

There are no fatal flaws in terms of geotechnical inputs to prevent the proposed development from proceeding. However, the indicated geotechnical constrains and recommendations pertaining to slope stability, usability of in-situ material for construction purposes, environmental/health risk associated with the tailings, cut/fill and associated structures are to be adhered to as proposed.

### Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

## 12 Limitations

The following limitations apply to this interpretive report:

- 1. The Aurecon Tshwane Ground Engineering Group has prepared this report for the use of our Client, South 32. The report has not been prepared for use by parties other than the Client, and the Client's respective consulting advisors.
- 2. This report has been written with the express intent of providing sufficient information for the prefeasibility stage purposes. The interpretation of the ground conditions has been conducted in accordance with generally accepted engineering practice, and the opinions and conclusions expressed in the report are made in good faith based on the information available to the Aurecon Tshwane Ground Engineering Group at the time of preparing this report.
- 3. There may be some variations in subsurface conditions across a site due to geological conditions that cannot be defined fully even by exhaustive investigation. Hence, it is possible that the measurements and values obtained from sampling and testing during the investigation may not represent the extremes of conditions which exist within the site. The precision with which subsurface conditions are identified depends on the method of drilling, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions at locations other than the test pit and borehole locations may vary from the conditions encountered at the test pit / borehole locations. In advancing the project to more definitive levels of engineering additional geotechnical investigations will prove necessary.
- 4. Furthermore, subsurface conditions, including groundwater levels can change over time. The groundwater conditions described in this report refer only to those observed at the place and time of observation noted in the report. These conditions may vary seasonally or because of construction activities in the area. This should be borne in mind, particularly if the report is used after a protracted delay or a period of protracted climatic conditions.
- 5. Should conditions exposed at the site during subsequent investigation or construction works vary significantly from those provided in this report, we request that the Aurecon Tshwane Ground Engineering Group be informed and have the opportunity to review any of the findings or conclusions of this report. It is highly recommended that during construction the site conditions be inspected by a representative of the Aurecon Tshwane Ground Engineering Group to confirm the geotechnical interpretations and ground model in this report.
- 6. Unless otherwise stated, this report does not address potential environmental hazards, or groundwater contamination. In addition to soil variability, fil material of variable physical and chemical composition can be present over portions of the site or on adjacent properties.

## Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



#### **GEOTECHNICAL INVESTIGATIONS REPORT**

## 13 References

- Association of Swiss Road and Traffic Engineers, 1999. Characteristic Coefficients of soils. In: Swiss Standard SN 670 010b. S.I.
- Brink A. B. A. (1979). Engineering Geology of South Africa. Printed in South Africa by the Natal Witness printing and publishing company (Pty) Ltd, 8293LM
- Byrne. G & Berry, AD, Franki A, 2008. Guide to Practical Geotechnical Engineering in Southern Africa, Fourth Edition.
- Duligal, E. (1996). Significance of Soil Resistivity on Corrosivity. Unpublished report compiled for Africon.
- Evans, U.R. (1977). The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications. Edward Arnold (Publishers) Ltd. 1977.
- Geotechnology Workshop (1990). Guidelines for Soil and Rock Logging. SAIEG-AEG-SAICE (Geotech Division).
- Jennings, J. E. B, Brink, A.B.A and Williams, A. A. B, (1973). Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa. The Civil Engineer in S A, p 3-12. January 1973.
- Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J. (Eds) (2006). The Geology of South Africa.
   Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, 585-593 pp.
- Kimatlab (2007). Geotechnical investigations for the new wet screening plant at Wessels mine. Report SL 3111/07272
- S410 (2006), Specifications for railway earthworks, technical specifications. Technology management and trach technology. Spoortnet, a division of Transnet Limited
- SANS 10160-4:2011 (2011). South African National Standard: Basis of structural design and actions for buildings and industrial structures. Part 4: Seismic actions and general requirements for buildings. ISBN 978-0-626-26431-4
- SANS 10160-4:2011 (2011). South African National Standard: Basis of structural design and actions for buildings and industrial structures. Part 4: Seismic actions and general requirements for buildings. ISBN 978-0-626-26431-4
- SANS 10160-1:2011 (2011). South African National Standard: Basis of structural design and actions for buildings and industrial structures. Part 1: Basis of structural design. ISBN 978-0-626-26428-4
- SANS 1200DB: 1989 Standardised specification for civil engineering construction. DB Earthworks (Pipe trenches), South African Bureau of Standards, Pretoria.
- SABS 1200D: 1988 Standardised specification for civil engineering construction. D: Earthworks, South African Bureau of Standards, Pretoria.
- South African Institution of Civil Engineering (SAICE) Geotechnical Division. 2007. The Safety of Persons Working in Small Diameter Shafts and Test Pits for Geotechnical Engineering Purposes – Code of Practice, 1st Edition.
- The government of Hong Kong Special Administrative Region, 2011. Geotechnical Manual for Slope, Civil Engineering and Development Department, Hong Kong.
- Weinert, H.H. The natural road construction materials of southern Africa. Academica, Pretoria 298pp. 1980.





## **GEOTECHNICAL INVESTIGATIONS REPORT**

## Appendix A

Soil and rock profile description terminology





## **GEOTECHNICAL INVESTIGATIONS REPORT**

## STANDARD DESCRIPTIONS USED IN SOIL PROFILING

| 1. MOIST                | URE CONDITION                                                                                                                | 2. COLOI                 | JR                                                                                                                                                     |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Term                    | Description                                                                                                                  |                          |                                                                                                                                                        |  |  |
| -                       | 2 000111011                                                                                                                  |                          | The Predominant colours or colour combinations                                                                                                         |  |  |
| Dry                     | Poguiros addition of water to reach antimum                                                                                  |                          | are described including secondary coloration                                                                                                           |  |  |
| moist                   | Slightly Requires addition of water to reach optimum noist moisture content for compaction                                   |                          | described as banded, streaked, blotched,                                                                                                               |  |  |
| Moist                   | <u> </u>                                                                                                                     |                          | eckled or stained.                                                                                                                                     |  |  |
| Very Moist              | Requires drying to attain optimum content                                                                                    |                          |                                                                                                                                                        |  |  |
| Wet                     | Fully saturated and generally below water table                                                                              |                          |                                                                                                                                                        |  |  |
| 3. CONSIS               |                                                                                                                              |                          |                                                                                                                                                        |  |  |
| 3.1 Non-Col             | nesive Soils                                                                                                                 | 3.2 Cohesi               | ve Soils                                                                                                                                               |  |  |
| Term                    | Description                                                                                                                  | Term                     | Description                                                                                                                                            |  |  |
| Very<br>Loose           | Crumbles very easily when scraped with geological pick                                                                       | Very soft                | Easily penetrated by thumb. Sharp end of pick car be pushed in 30 - 40mm. Easily moulded by fingers                                                    |  |  |
| Loose                   | Small resistance to penetration by sharp end of geological pick                                                              | Soft                     | Pick head can easily be pushed into the shaft of handle. Moulded by fingers with some pressure.                                                        |  |  |
| Medium<br>Dense         | Considerable resistance to penetration by sharp end of geological pick                                                       | Firm                     | Indented by thumb with effort. Sharp end of pick can be pushed in up to 10mm. Can just be penetrated with an ordinary spade.                           |  |  |
| Dense                   | Dense  Very high resistance to penetration to sharp end of geological pick. Requires many blows of hand pick for excavation. |                          | Penetrated by thumbnail. Slight indentation produced by pushing pick point into soil. Cannot be moulded by fingers. Requires hand pick for excavation. |  |  |
| Very<br>Dense           | , , ,                                                                                                                        |                          | Indented by thumbnail. Slight indentation produced by blow of pick point. Requires power tools for excavation.                                         |  |  |
| 4. STRUC                | TURE                                                                                                                         | 5. SOIL TYPE             |                                                                                                                                                        |  |  |
|                         |                                                                                                                              | 5.1 Particle Size        |                                                                                                                                                        |  |  |
| Term                    | Description                                                                                                                  | Term                     | Size (mm)                                                                                                                                              |  |  |
| Intact                  | Absence of fissures or joints                                                                                                | Boulder                  | >200                                                                                                                                                   |  |  |
| Fissured                | Presence of closed joints                                                                                                    | Pebbles                  | 60 – 200                                                                                                                                               |  |  |
| Shattered               | Presence of closely spaced air-filled joints giving cubical fragments                                                        | Gravel                   | 60 – 2                                                                                                                                                 |  |  |
| Micro-<br>shattered     | Small scale shattering with shattered fragments the size of sand grains                                                      | Sand                     | 2 – 0,06                                                                                                                                               |  |  |
| Slickensided            | Polished planar surfaces representing shear movement in soil                                                                 | Silt                     | 0,06 – 0,002                                                                                                                                           |  |  |
| Bedded<br>Folitated     | Many residual soils show structures of parent rock.                                                                          | Clay                     | <0,002                                                                                                                                                 |  |  |
| 6. ORIGIN               |                                                                                                                              | 5.2 Soil Classification  |                                                                                                                                                        |  |  |
| 6.1 Transpo             | rted Soils                                                                                                                   |                          |                                                                                                                                                        |  |  |
| Term                    | Agency of Transportation                                                                                                     |                          |                                                                                                                                                        |  |  |
| Colluvium               | Gravity deposits                                                                                                             |                          | ° 100                                                                                                                                                  |  |  |
| Talus                   | Scree or coarse colluvium                                                                                                    |                          | 10 90                                                                                                                                                  |  |  |
| Hillwash                | Fine colluvium                                                                                                               |                          | 20 80                                                                                                                                                  |  |  |
| Alluvial                | River deposits                                                                                                               |                          | 30 CLAY 70                                                                                                                                             |  |  |
| Aeolian Wind deposits   |                                                                                                                              | SAND 40 SLIGHTLY SO CLAY |                                                                                                                                                        |  |  |
| Litoral                 | Beach deposits                                                                                                               |                          | SANDY SLIGHTLY SLIGHTLY SLIGHTLY SOUTH                                                                                                                 |  |  |
| Estuarine               | Tidal – river deposits                                                                                                       |                          | SLIGHTLY SANDY AND SILTY CLAY                                                                                                                          |  |  |
| Lacustine Lake deposits |                                                                                                                              |                          | 70 SANDY SANDY SILTY CLAY 30                                                                                                                           |  |  |
| 6.2 Residual            | 6.2 Residual soils                                                                                                           |                          | CLAYEY SANDY CLAYEY SILT                                                                                                                               |  |  |
|                         | These are products of in-situ weathering of rocks and are described as e.g. Residual Shale                                   |                          | CLATEY SAND SILT CLATEY SAND SANDY SILT  10 SANDY SILT SILTS 0                                                                                         |  |  |
|                         | 6.3 Pedocretes                                                                                                               |                          | 10 20 30 40 50 60 70 80 90 100                                                                                                                         |  |  |
| Formed in tra           | insported and residual soils etc. ete, manganocrete and ferricrete.                                                          |                          | / vii. 1                                                                                                                                               |  |  |
| calcrete, SilCr         | ete, manganociete and lemolete.                                                                                              | <u> </u>                 |                                                                                                                                                        |  |  |





## **GEOTECHNICAL INVESTIGATIONS REPORT**

SUMMARY OF DESCRIPTIONS USED IN ROCK CORE LOGGING

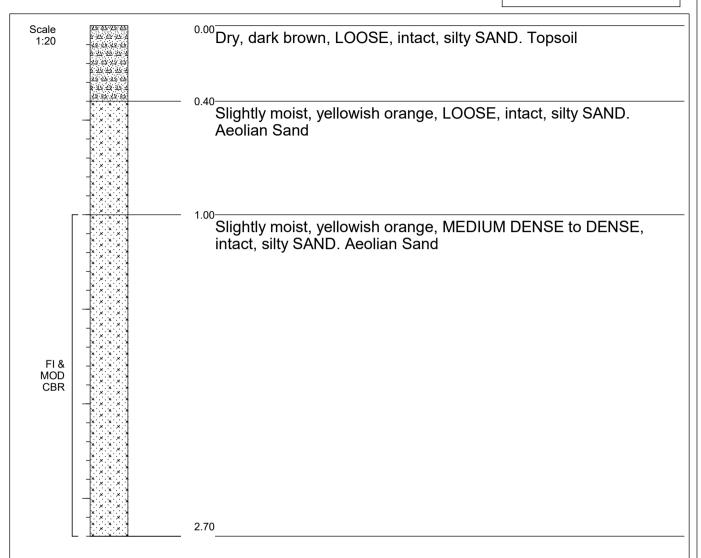
| 1. WEATHER                                                                                | ING              |                                                                                                                                                                                                                                       |                                                       |                                                                                                                      |                                      |
|-------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Term                                                                                      | Symbol           | Diagnostic Features                                                                                                                                                                                                                   |                                                       |                                                                                                                      |                                      |
| Residual Soil                                                                             | W5               | Rock is discoloured and completely changed to a soil in which original rock fabric is completely destroyed. There is a large change in volume.                                                                                        |                                                       |                                                                                                                      |                                      |
| Completely<br>Weathered                                                                   | W5               | Rock is discoloured and changed to a soil but original fabric is mainly preserved. There may be occasional small corestones.                                                                                                          |                                                       |                                                                                                                      |                                      |
| Highly<br>Weathered                                                                       | W4               | Rock is discoloured, discontinuities may be open and have discoloured surfaces, and the original fabric of the rock near the discontinuities may be altered; alternation penetrates deeply inwards, but corestones are still present. |                                                       |                                                                                                                      |                                      |
| Moderately<br>Weathered                                                                   | W3               | Rock is discoloured, discontinuities may be open and will have discoloured surfaces with alteration starting to penetrate inwards, intact rock is noticeably weaker than the fresh rock.                                              |                                                       |                                                                                                                      |                                      |
| Slightly<br>Weathered                                                                     | W2               | Rock may be slightly discoloured, particularly adjacent to discontinuities, which may be open and will have slightly discoloured surfaces, the intact rock is not noticeably weaker than the fresh rock                               |                                                       |                                                                                                                      |                                      |
| Unweathered                                                                               | W1               | Parent rock showing n                                                                                                                                                                                                                 | o discolouration, los                                 | s of strength or any other we                                                                                        | eathering effects.                   |
| 2. HARDNES                                                                                | S                |                                                                                                                                                                                                                                       |                                                       | 3. COLOUR                                                                                                            |                                      |
| Classification                                                                            | Field Test       |                                                                                                                                                                                                                                       | Compressive<br>Strength Range<br>MPa                  |                                                                                                                      |                                      |
| Very Soft Rock                                                                            | crumbles under   | Can be peeled with a knife. Material crumbles under firm blows with the sharp end of a geological pick.                                                                                                                               |                                                       | The predominant colours                                                                                              |                                      |
| Soft Rock                                                                                 |                  | can be scraped with a knife, and and a knife, and and a scraped with firm blows                                                                                                                                                       |                                                       | are described including secondary colouration described as banded, streaked, blotched, mottled, speckled or stained. |                                      |
| Medium Hard<br>Rock                                                                       | knife. Hand held | Cannot be scraped or peeled with a knife. Hand held specimen breaks with irm blows of the pick.                                                                                                                                       |                                                       |                                                                                                                      |                                      |
| Hard Rock                                                                                 |                  | must be carried out in guish between these                                                                                                                                                                                            | 25 - 70                                               |                                                                                                                      |                                      |
| Very Hard<br>Rock                                                                         |                  | may be verified by ssive strength tests on s.                                                                                                                                                                                         | 70 - 200                                              |                                                                                                                      |                                      |
| Extremely<br>Hard Rock                                                                    |                  |                                                                                                                                                                                                                                       | >200                                                  |                                                                                                                      |                                      |
| 4. FABRIC                                                                                 |                  |                                                                                                                                                                                                                                       |                                                       |                                                                                                                      |                                      |
| 4.1 Grain Size                                                                            |                  | 4.2 Discontinuit                                                                                                                                                                                                                      | y Spacing                                             |                                                                                                                      |                                      |
| Term                                                                                      | Size (mm)        |                                                                                                                                                                                                                                       | Bedding, foliation,                                   | Spacing (mm)                                                                                                         | Descriptions for joints faults, etc. |
| Very Coarse                                                                               | >2,0             | Very Thickly Bed                                                                                                                                                                                                                      | dded                                                  | > 2000                                                                                                               | Very Widely                          |
| Coarse                                                                                    | 0,6 - 2,0        | Thickly Bedded                                                                                                                                                                                                                        |                                                       | 600 - 2000                                                                                                           | Widely                               |
| Medium                                                                                    | 0,2 - 0,6        | Medium Bedded                                                                                                                                                                                                                         |                                                       | 200 - 600                                                                                                            | Medium                               |
| Fine                                                                                      | 0,06 - 0,2       | Thinly Bedded                                                                                                                                                                                                                         |                                                       | 20 - 60                                                                                                              | Closely                              |
| Very Fine                                                                                 | < 0,06           | Laminated                                                                                                                                                                                                                             |                                                       | 6 - 20                                                                                                               | Very closely                         |
| -                                                                                         | ,                | Thinly Laminate                                                                                                                                                                                                                       | d                                                     | <6                                                                                                                   | , ,                                  |
| 5. ROCK NAME                                                                              |                  |                                                                                                                                                                                                                                       | 6. STRATIGRAPHIC HORIZON                              |                                                                                                                      |                                      |
| Classified in terr                                                                        | ms of origin:    |                                                                                                                                                                                                                                       |                                                       |                                                                                                                      |                                      |
| IGNEOUS Granite, Diorite, Gabbro, Syenite, Diabase, Dolerite, Trachyte, Andesite, Basalt. |                  |                                                                                                                                                                                                                                       | Identification of rock type in terms of stratigraphic |                                                                                                                      |                                      |
| METAMORPHIC                                                                               |                  | Slate, Quartzite, Gneiss, Chert, Sandstone                                                                                                                                                                                            |                                                       | horizons.                                                                                                            |                                      |
| SEDIMENTARY                                                                               | Shale, Muds      | tone, Siltstone, Sand<br>, Tillite, Quartzite, Limes                                                                                                                                                                                  | Siltstone, Sandstone, Dolomite,                       |                                                                                                                      |                                      |





## **GEOTECHNICAL INVESTIGATIONS REPORT**

Appendix B


Test pit profiles



HOLE No: MTP01

Sheet 1 of 1

JOB NUMBER: **504733** 



## NOTES:

Final depth at 2.7m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 1.0-2.7m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** X COORD:

MACHINE:

PROFILED BY: S. Nyathi & T. Mofokeng

DATE DRILLED: 6/20/2019

TYPE SET BY:

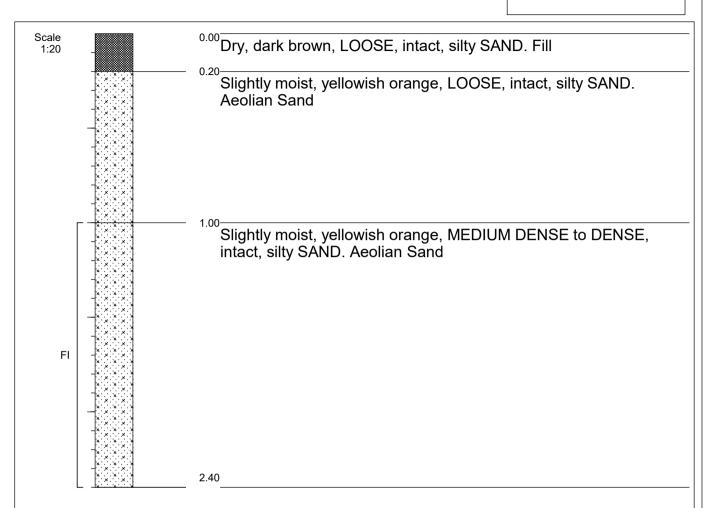
DATE PROFILED: 6/20/2019

DIAM:

Y COORD: 6967226 HOLE No: MTP01

696803

WESSELS&MAMATWAN LOGS.GPJ


\_ZA TRIAL PIT LOG || Project: WESSELS&MAMATWAN LOGS.GPJ || Library: GINT STD AGS 4\_0\_SA.GLB || Date: July 10, 2019 Report ID:



HOLE No: MTP03

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2.4m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Small sample bag taken at 1.0-2.4m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** X COORD:

697159 6968163

TYPE SET BY:

MACHINE:

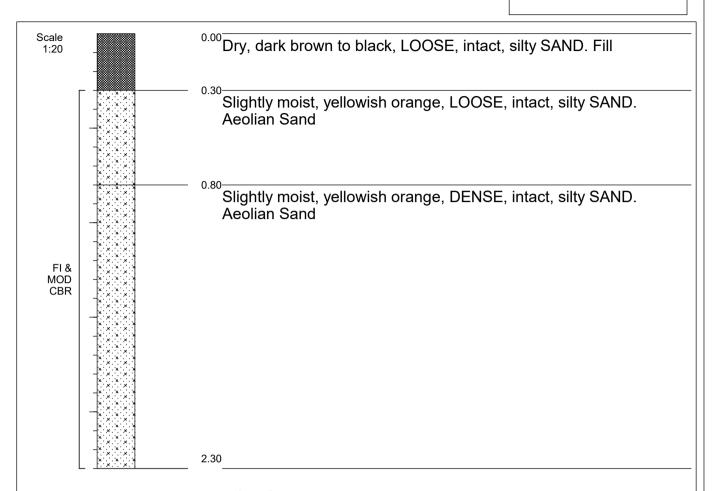
PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/20/2019

DATE PROFILED: 6/20/2018

DIAM:

WESSELS&MAMATWAN LOGS.GPJ

HOLE No: MTP03


Y COORD:



HOLE No: MTP05

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2.3m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 0.3-2.3m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** X COORD:

Y COORD:

697505

6969104

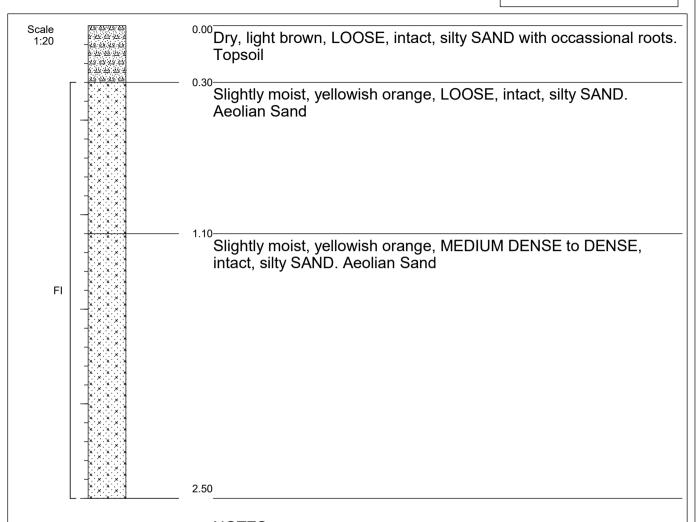
DIAM: DATE DRILLED: 6/21/2019

DATE PROFILED: 6/21/2019

HOLE No: MTP05

PROFILED BY: S. Nyathi & T. Mofokeng TYPE SET BY:

MACHINE:


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: MTP06

Sheet 1 of 1

JOB NUMBER: **504733** 



### NOTES:

Final depth at 2.5m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Small sample bag taken at 0.3-2.5m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** X COORD:

697512 Y COORD: 6969714

TYPE SET BY:

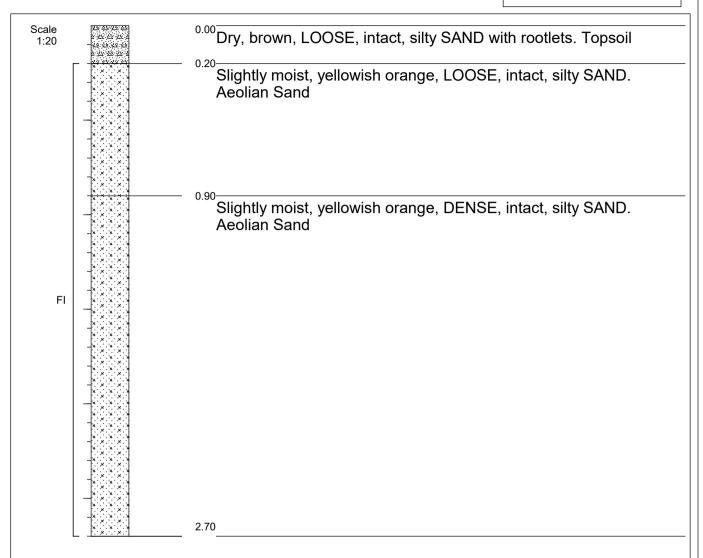
MACHINE:

PROFILED BY: S. Nyathi & T. Mofokeng

DIAM: DATE DRILLED: 6/21/2019

DATE PROFILED: 6/21/2019

WESSELS&MAMATWAN LOGS.GPJ


HOLE No: MTP06



HOLE No: MTP07

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2.7m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Small sample bag taken at 0.2-2.7m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** 

MACHINE:

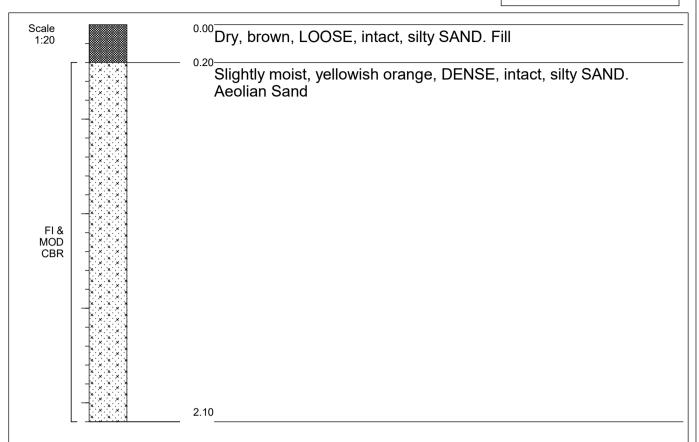
PROFILED BY: S. Nyathi & T. Mofokeng

DIAM: DATE DRILLED: 6/21/2019

TYPE SET BY:

DATE PROFILED: 6/21/2019

WESSELS&MAMATWAN LOGS.GPJ


X COORD: 697431 Y COORD: 6970212



HOLE No: MTP09

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Refusal at 2.1m on very dense to very soft rock calcrete No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 0.2-2.1m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** 

MACHINE:

TYPE SET BY:

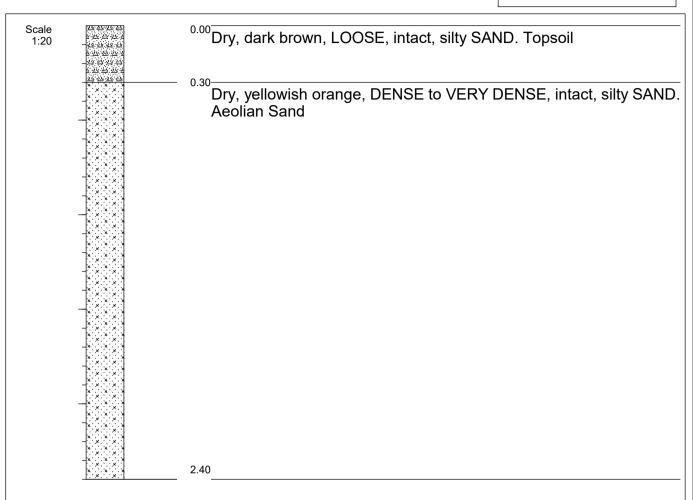
PROFILED BY: S. Nyathi & T. Mofokeng

DATE DRILLED: 6/21/2019

DIAM:

DATE PROFILED: 6/21/2019

X COORD: 696768 Y COORD: 6970089


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: MTP11

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Partial refusal at 2.4m on very dense Aeolian sand No groundwater or seepage encountered No sample taken Sidewalls stable

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** X COORD:

696981

6969569

MACHINE:

PROFILED BY: S. Nyathi & T. Mofokeng

DATE DRILLED: 6/21/2019

TYPE SET BY:

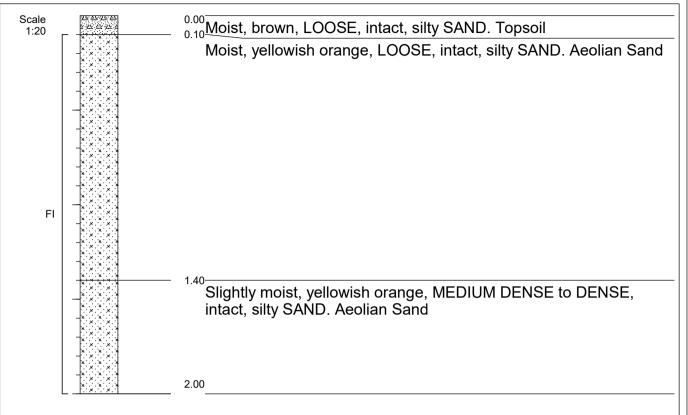
DATE PROFILED: 6/21/2019

DIAM:

HOLE No: MTP11

Y COORD:

Report ID: \_ZA TRIAL PIT LOG || Project: WESSELS&MAMATWAN LOGS.GPJ || Library: GINT STD AGS 4\_0\_SA.GLB || Date: July 10, 2019


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: MTP14

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Small sample bag taken at 0.1-2.0m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** 

MACHINE:

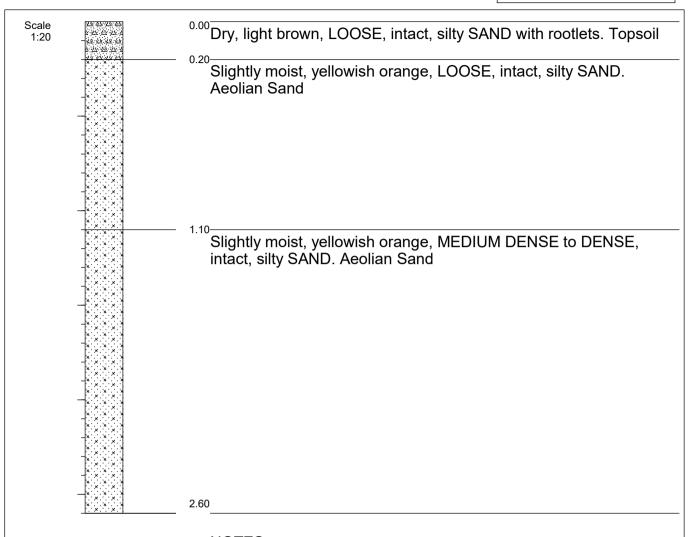
PROFILED BY: S. Nyathi & T. Mofokeng

DIAM: DATE DRILLED: 6/21/2019

TYPE SET BY:

DATE PROFILED: 6/21/2019

WESSELS&MAMATWAN LOGS.GPJ


X COORD: 697160 Y COORD: 6969090



HOLE No: MTP15

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2.6m on Aeolian sand No refusal No groundwater or seepage encountered No sample taken Sidewalls stable

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** 

MACHINE:

TYPE SET BY:

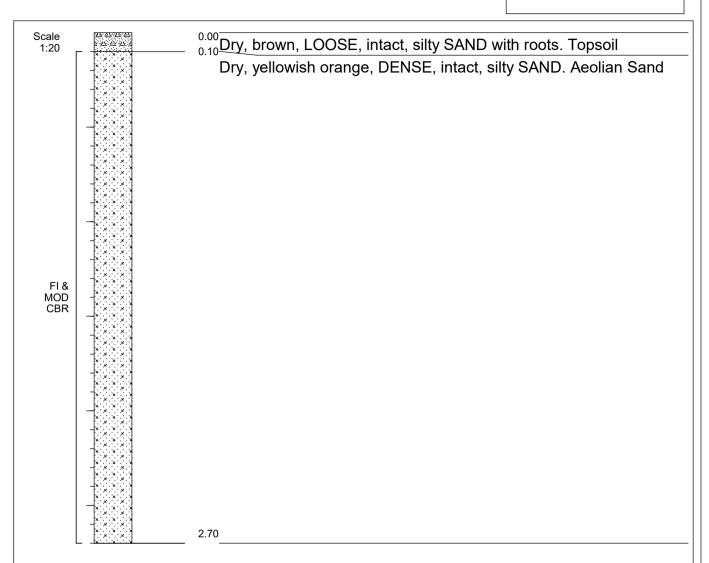
PROFILED BY: S. Nyathi & T. Mofokeng

DATE DRILLED: 6/21/2019

DIAM:

DATE PROFILED: 6/21/2019

X COORD: 697391 Y COORD: 6969888


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: MTP16

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2.7m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 0.1-2.7m

CONTRACTOR: Thomas

INCLINATION:

**ELEVATION:** 

MACHINE:

TYPE SET BY:

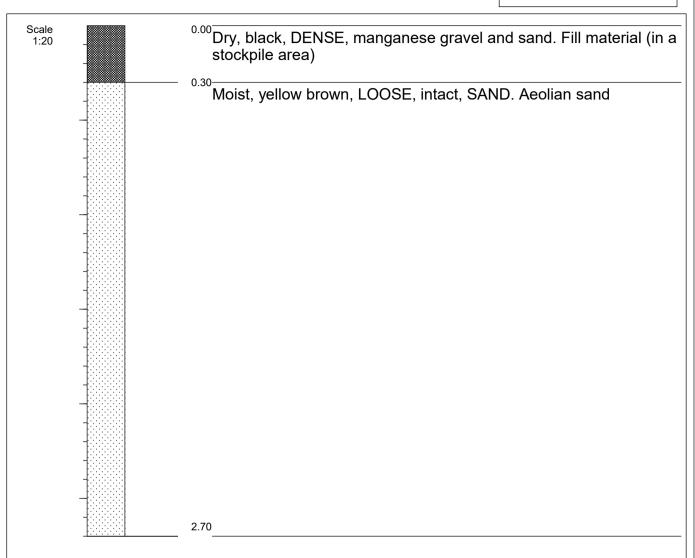
PROFILED BY: S. Nyathi & T. Mofokeng

DATE DRILLED: 6/21/2019

DIAM:

DATE PROFILED: 6/21/2019

X COORD: 697055 Y COORD: 6969830


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: WTP03

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 2.7m on Aeolian sand No refusal No groundwater or seepage encountered No sample taken Sidewalls unstable

CONTRACTOR: Daniel

INCLINATION:

**ELEVATION:** 

Y COORD:

MACHINE: Volvo BL61B

DIAM:

DATE DRILLED: 6/18/2019

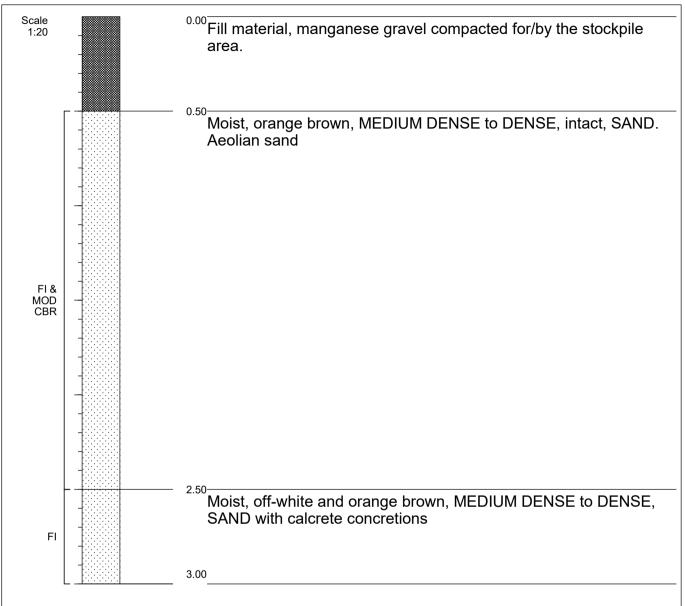
X COORD: 683738

6998777

PROFILED BY: S. Nyathi & T. Mofokeng TYPE SET BY:

DATE PROFILED: 6/18/2019

HOLE No: WTP03


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: WTP04

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 3m on pedogenic material No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 0.5-2.5m Small sample bag at 2.5-3.0m

CONTRACTOR: Daniel

INCLINATION:

ELEVATION:

Y COORD:

MACHINE:

MACHINE: Volvo BL61B

DIAM:

X COORD: 683927

6999232

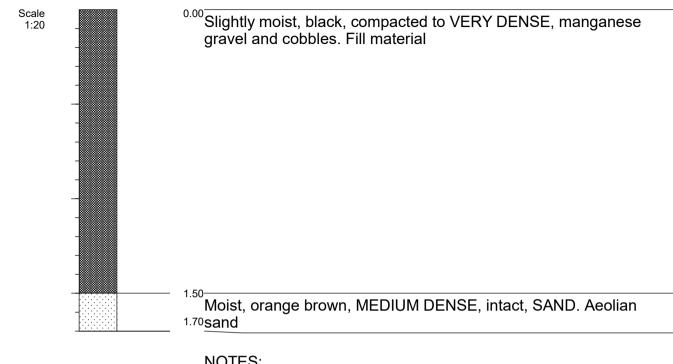
TYPE SET BY:

PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/19/2019

DATE PROFILED: 6/19/2019

HOLE No: WTP04

Report ID: \_ZA TRIAL PIT LOG || Project WESSELS&MAMATWAN LOGS.GPJ || Library: GINT STD AGS 4\_0\_SA.GLB || Date: July 10, 2019


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: WTP05

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

TLB refusing to break through the well compacted fill No groundwater or seepage encountered No sample taken Sidewalls stable It's likely sand to 3.0m

Report ID: \_ZA TRIAL PIT LOG || Project: WESSELS&MAMATWAN LOGS.GPJ || Library: GINT STD AGS 4\_0\_SA.GLB || Date: July 10, 2019

CONTRACTOR: Daniel INCLINATION: **ELEVATION:** 

MACHINE: Volvo BL61B DIAM: PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/19/2019 TYPE SET BY: DATE PROFILED: 6/19/2019

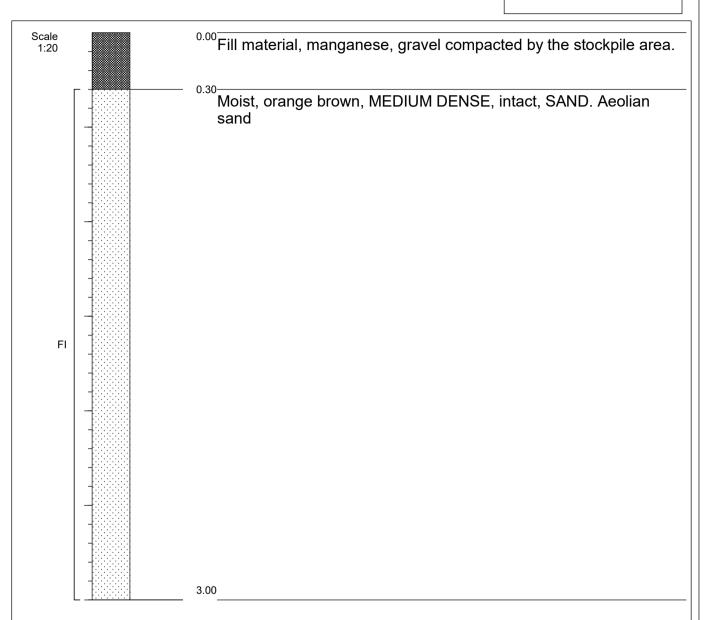
WESSELS&MAMATWAN LOGS.GPJ

HOLE No: WTP05

X COORD:

Y COORD:

684111


6999672



HOLE No: WTP08

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 3.0m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Small sample bag taken at 0.3-3.0m

CONTRACTOR: Daniel

MACHINE: Volvo BL61B

INCLINATION:

DIAM:

**ELEVATION:** 

684501

TYPE SET BY:

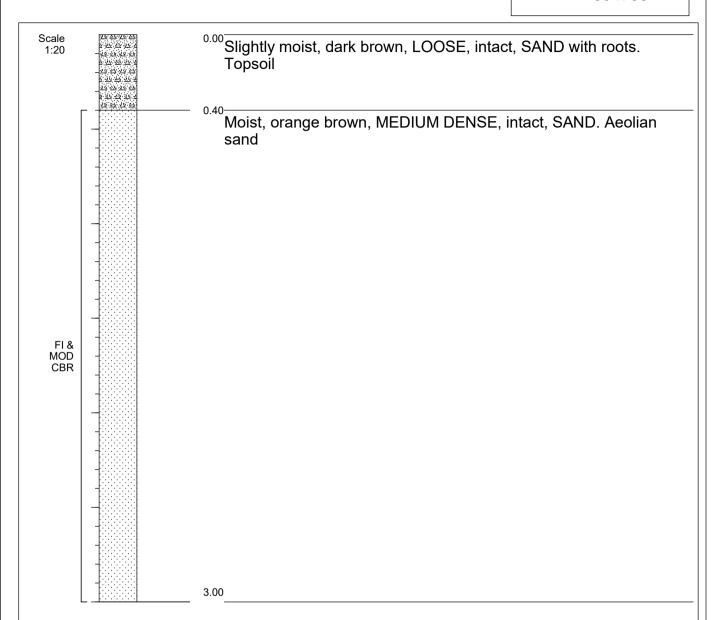
PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/19/2019 DATE PROFILED: 6/19/2019

6999228

WESSELS&MAMATWAN LOGS.GPJ

HOLE No: WTP08

X COORD:


Y COORD:



HOLE No: WTP11

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

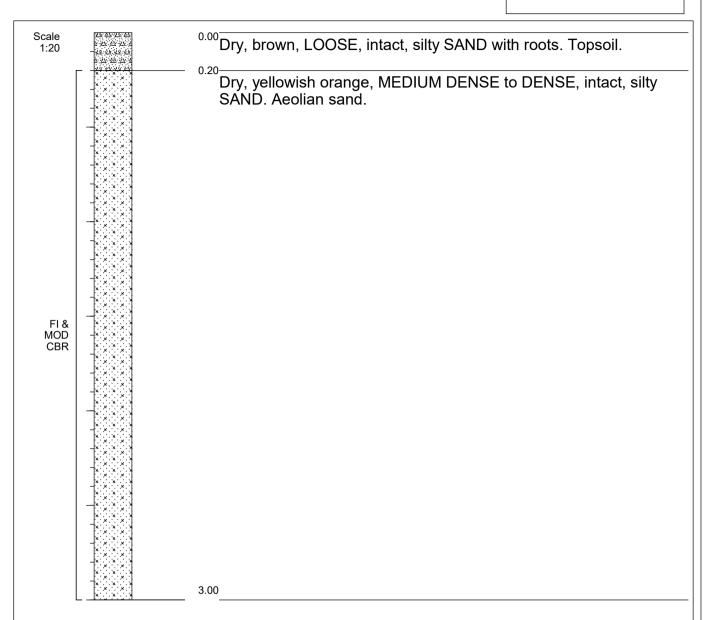
Final depth at 3.0m on Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 0.4-3.0m It is around rubbish dump areas

CONTRACTOR: Daniel INCLINATION: **ELEVATION:** 

MACHINE: Volvo BL61B DIAM: PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/19/2019 TYPE SET BY:

DATE PROFILED: 6/19/2019

WESSELS&MAMATWAN LOGS.GPJ


X COORD: 684549 Y COORD: 6999692



HOLE No: WTP15

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 3m on Aelian sand No refusal No groundwater or seepage encountered Side walls stable Big sample bags taken at 0.2-3.0m

CONTRACTOR: Daniel

INCLINATION:

**ELEVATION:** 

MACHINE: Volvo BL61B

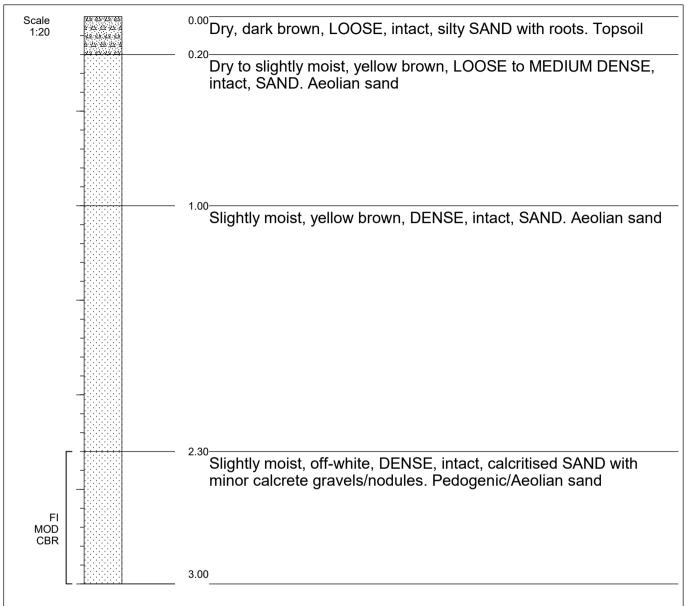
DIAM:

X COORD: 684877 Y COORD:

TYPE SET BY:

PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/19/2019 DATE PROFILED: 6/19/2019

6999191


WESSELS&MAMATWAN LOGS.GPJ



HOLE No: WTP16

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 3.0m on pedogenic material / Aeolian sand No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 2.3-3.0m Small sample bag taken at 2.3-3.0m

CONTRACTOR: Daniel INCLINATION: **ELEVATION:** 

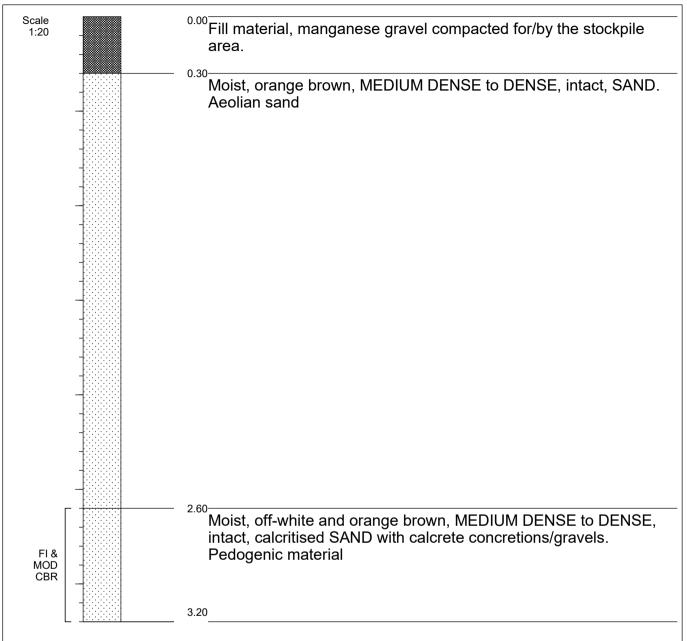
MACHINE: Volvo BL61B DIAM: PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/18/2019 TYPE SET BY:

DATE PROFILED: 6/18/2019

WESSELS&MAMATWAN LOGS.GPJ

Y COORD: 6998919

684475


X COORD:



HOLE No: WTP18

Sheet 1 of 1

JOB NUMBER: **504733** 



#### NOTES:

Final depth at 3.2m on pedogenic material No refusal No groundwater or seepage encountered Sidewalls stable Big sample bag taken at 2.6-3.2m

CONTRACTOR: Daniel INCLINATION: **ELEVATION:** 

MACHINE: Volvo BL61B DIAM: PROFILED BY: S. Nyathi & T. Mofokeng DATE DRILLED: 6/19/2019 TYPE SET BY:

DATE PROFILED: 6/19/2019

WESSELS&MAMATWAN LOGS.GPJ

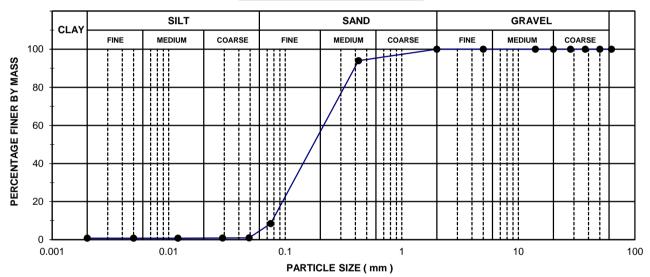
X COORD: 684259 Y COORD: 6999321

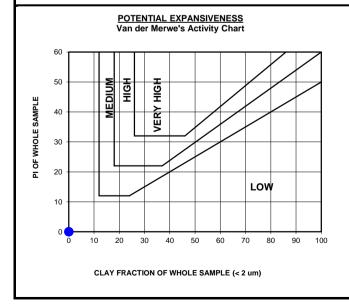


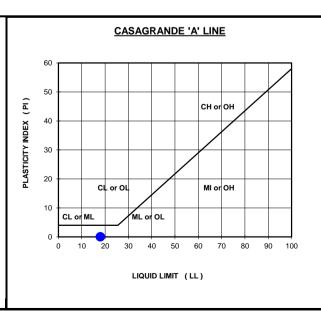
## Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



### **GEOTECHNICAL INVESTIGATIONS REPORT**


### Appendix C

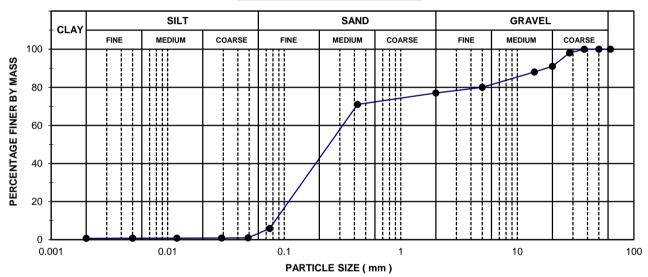

Laboratory test results

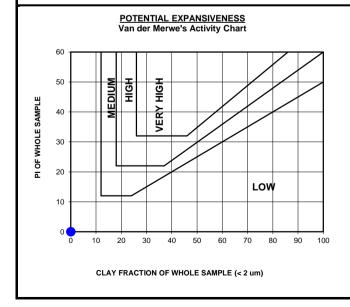



| TEST LOCATION | WTP04     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 0.5-2.5 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE ANALYSIS |            |           | ATTERBERG LIMITS         |     | SOIL CLASSIFICATION |                        |       |
|------------|----------------|------------|-----------|--------------------------|-----|---------------------|------------------------|-------|
| Sieve (mm) | % Passing      | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |                     | SOIL CLASSIFICATION    |       |
| 63.000     | 100            | 0.425      | 94        | Liquid limit             | (%) | 18.0                | % Gravel               | 0     |
| 50.000     | 100            | 0.075      | 9         | Plastic limit            | (%) | 18                  | % Sand                 | 92    |
| 37.500     | 100            | 0.049      | 1         | Plasticity Index         | (%) | 0                   | % Silt                 | 8     |
| 28.000     | 100            | 0.029      | 1         | Weighted PI              | (%) | 0                   | % Clay                 | 1     |
| 20.000     | 100            | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0                 | Activity               | 0.0   |
| 14.000     | 100            | 0.002      | 1         | Grading Modulus          |     | 0.98                | Unified Classification | SP-SM |
| 5.000      | 100            | 0.000      | 0         | Uniformity coefficient 3 |     | 3                   | TRB Classification     | A - 3 |
| 2.000      | 100            | 0.000      | 0         | Coefficient of curvature |     | 1.1                 |                        |       |





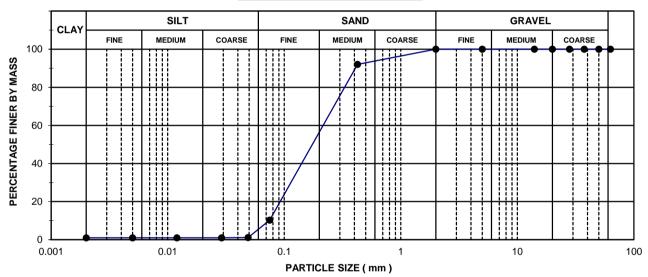



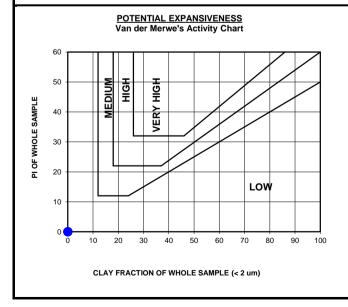


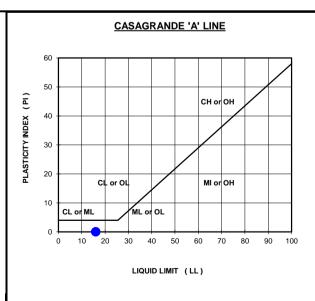

| TEST LOCATION | WTP04     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 2.5-3.0 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE ANALYSIS |            |           | ATTERBERG LIMITS         |     | SOIL CLASSIFICATION |                        |       |
|------------|----------------|------------|-----------|--------------------------|-----|---------------------|------------------------|-------|
| Sieve (mm) | % Passing      | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |                     | SOIL CLASSIFICATION    |       |
| 63.000     | 100            | 0.425      | 71        | Liquid limit             | (%) | 18.0                | % Gravel               | 23    |
| 50.000     | 100            | 0.075      | 6         | Plastic limit            | (%) | 18                  | % Sand                 | 71    |
| 37.500     | 100            | 0.049      | 1         | Plasticity Index         | (%) | 0                   | % Silt                 | 5     |
| 28.000     | 98             | 0.029      | 1         | Weighted PI              | (%) | 0                   | % Clay                 | 1     |
| 20.000     | 91             | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0                 | Activity               | 0.0   |
| 14.000     | 88             | 0.002      | 1         | Grading Modulus          |     | 1.46                | Unified Classification | SP-SM |
| 5.000      | 80             | 0.000      | 0         | Uniformity coefficient   |     | 4                   | TRB Classification     | A - 3 |
| 2.000      | 77             | 0.000      | 0         | Coefficient of curvature |     | 1.2                 |                        |       |





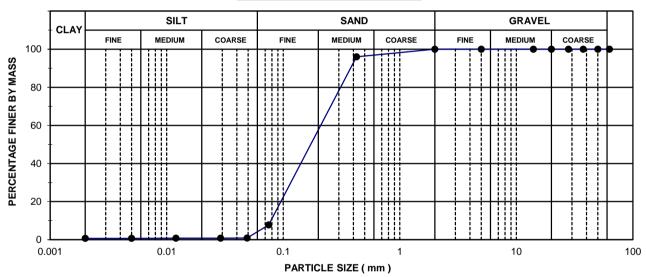



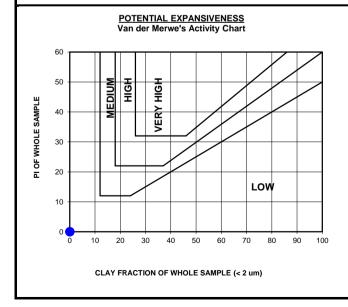



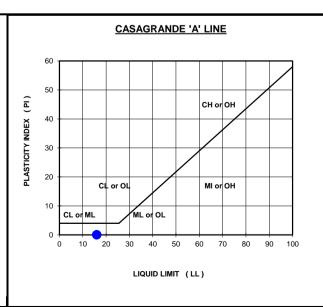

| TEST LOCATION | WTP11     | PROJECT Project raptor |                            |
|---------------|-----------|------------------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER         | 504733                     |
| DEPTH         | 0.4-3.0 m | SITE                   | Wessels and Mamatwan mines |

|            | SIEVE ANALYSIS |            |           | ATTERBERG LIMITS         |     |      | SOIL CLASSIFICATION    |           |
|------------|----------------|------------|-----------|--------------------------|-----|------|------------------------|-----------|
| Sieve (mm) | % Passing      | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |      | SOIL CLASSIFICATION    |           |
| 63.000     | 100            | 0.425      | 92        | Liquid limit             | (%) | 16.0 | % Gravel               | 0         |
| 50.000     | 100            | 0.075      | 10        | Plastic limit            | (%) | 16   | % Sand                 | 90        |
| 37.500     | 100            | 0.049      | 1         | Plasticity Index         | (%) | 0    | % Silt                 | 9         |
| 28.000     | 100            | 0.029      | 1         | Weighted PI              | (%) | 0    | % Clay                 | 1         |
| 20.000     | 100            | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0  | Activity               | 0.0       |
| 14.000     | 100            | 0.002      | 1         | Grading Modulus          |     | 0.98 | Unified Classification | SP-SM     |
| 5.000      | 100            | 0.000      | 0         | Uniformity coefficient 4 |     | 4    | TRB Classification     | A - 2 - 4 |
| 2.000      | 100            | 0.000      | 0         | Coefficient of curvature |     | 1.2  |                        |           |





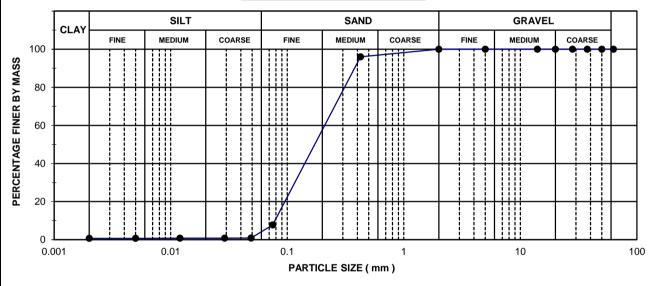



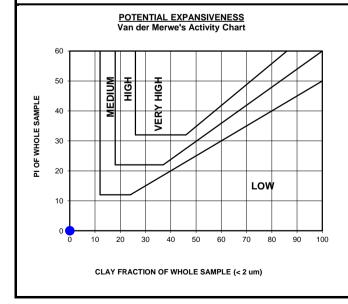



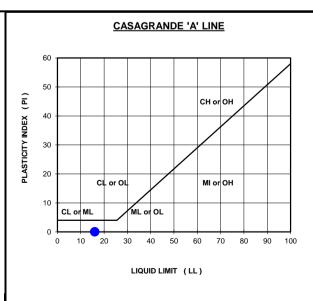

| TEST LOCATION | WTP15     | PROJECT Project raptor |                            |
|---------------|-----------|------------------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER         | 504733                     |
| DEPTH         | 0.2-2.6 m | SITE                   | Wessels and Mamatwan mines |

|            | SIEVE ANALYSIS |            |           | ATTERBERG LIMITS         |     | SOIL CLASSIFICATION |                        |       |
|------------|----------------|------------|-----------|--------------------------|-----|---------------------|------------------------|-------|
| Sieve (mm) | % Passing      | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |                     | SOIL CLASSIFICATION    |       |
| 63.000     | 100            | 0.425      | 96        | Liquid limit             | (%) | 16.0                | % Gravel               | 0     |
| 50.000     | 100            | 0.075      | 8         | Plastic limit            | (%) | 16                  | % Sand                 | 92    |
| 37.500     | 100            | 0.049      | 1         | Plasticity Index         | (%) | 0                   | % Silt                 | 7     |
| 28.000     | 100            | 0.029      | 1         | Weighted PI              | (%) | 0                   | % Clay                 | 1     |
| 20.000     | 100            | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0                 | Activity               | 0.0   |
| 14.000     | 100            | 0.002      | 1         | Grading Modulus          |     | 0.96                | Unified Classification | SP-SM |
| 5.000      | 100            | 0.000      | 0         | Uniformity coefficient 3 |     | 3                   | TRB Classification     | A - 3 |
| 2.000      | 100            | 0.000      | 0         | Coefficient of curvature |     | 1.1                 |                        |       |





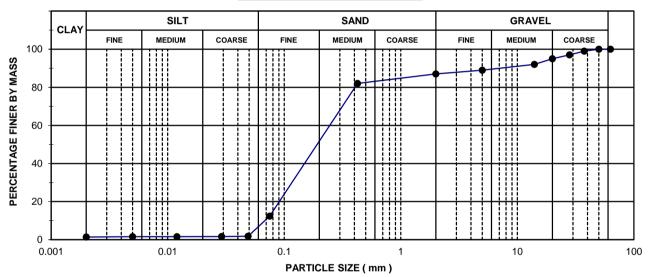



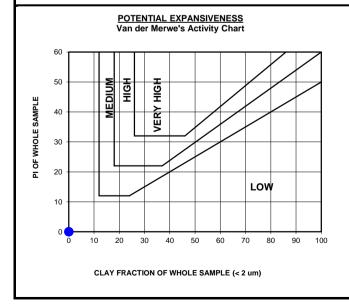



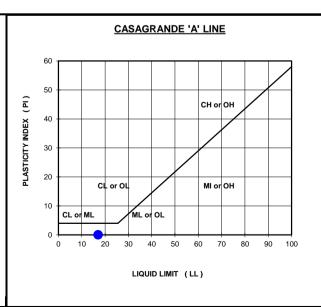

| TEST LOCATION | WTP16     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 2.3-3.0 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE ANALYSIS |            |           | ATTERBERG LIMITS         |     | SOIL CLASSIFICATION |                        |       |
|------------|----------------|------------|-----------|--------------------------|-----|---------------------|------------------------|-------|
| Sieve (mm) | % Passing      | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |                     | SOIL CLASSIFICATION    |       |
| 63.000     | 100            | 0.425      | 96        | Liquid limit             | (%) | 16.0                | % Gravel               | 0     |
| 50.000     | 100            | 0.075      | 8         | Plastic limit            | (%) | 16                  | % Sand                 | 92    |
| 37.500     | 100            | 0.049      | 1         | Plasticity Index         | (%) | 0                   | % Silt                 | 7     |
| 28.000     | 100            | 0.029      | 1         | Weighted PI              | (%) | 0                   | % Clay                 | 1     |
| 20.000     | 100            | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0                 | Activity               | 0.0   |
| 14.000     | 100            | 0.002      | 1         | Grading Modulus          |     | 0.96                | Unified Classification | SP-SM |
| 5.000      | 100            | 0.000      | 0         | Uniformity coefficient 3 |     | 3                   | TRB Classification     | A - 3 |
| 2.000      | 100            | 0.000      | 0         | Coefficient of curvature |     | 1.1                 |                        |       |





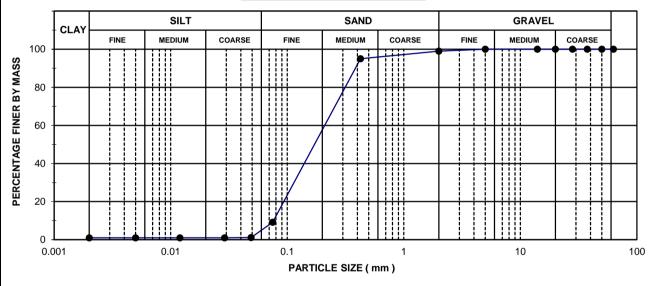



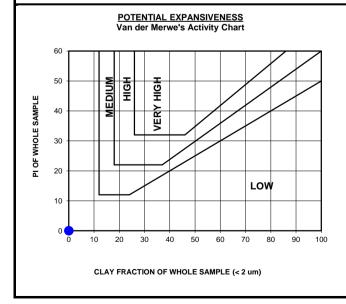



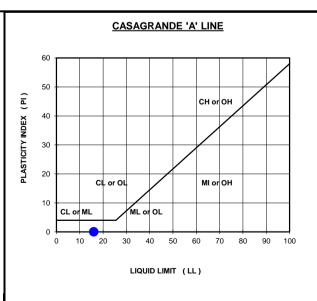

| TEST LOCATION | WTP18     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 2.6-3.2 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE ANALYSIS |            |           | ATTERBERG LIMITS         |            |      | SOIL CLASSIFICATION    |           |
|------------|----------------|------------|-----------|--------------------------|------------|------|------------------------|-----------|
| Sieve (mm) | % Passing      | Sieve (mm) | % Passing | ATTERDERGI               | J11V11 1 ) | 3    | SOIL CLASSIFICATION    |           |
| 63.000     | 100            | 0.425      | 82        | Liquid limit             | (%)        | 17.0 | % Gravel               | 13        |
| 50.000     | 100            | 0.075      | 12        | Plastic limit            | (%)        | 17   | % Sand                 | 75        |
| 37.500     | 99             | 0.049      | 2         | Plasticity Index         | (%)        | 0    | % Silt                 | 11        |
| 28.000     | 97             | 0.029      | 2         | Weighted PI              | (%)        | 0    | % Clay                 | 1         |
| 20.000     | 95             | 0.012      | 2         | Linear Shrinkage         | (%)        | 0.0  | Activity               | 0.0       |
| 14.000     | 92             | 0.002      | 1         | Grading Modulus          |            | 1.19 | Unified Classification | SM        |
| 5.000      | 89             | 0.000      | 0         | Uniformity coefficient 4 |            |      | TRB Classification     | A - 2 - 4 |
| 2.000      | 87             | 0.000      | 0         | Coefficient of curvature |            | 1.2  |                        |           |





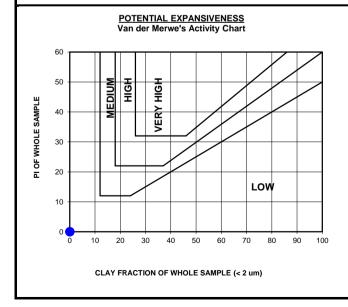



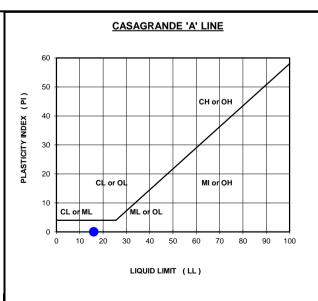

| TEST LOCATION | WTP08     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 0.3-3.0 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG LIMITS         |     | SOIL CLASSIFICATION |                        |       |
|------------|-----------|------------|-----------|--------------------------|-----|---------------------|------------------------|-------|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |                     | SOIL CLASSIFICATION    |       |
| 63.000     | 100       | 0.425      | 95        | Liquid limit             | (%) | 16.0                | % Gravel               | 1     |
| 50.000     | 100       | 0.075      | 9         | Plastic limit            | (%) | 16                  | % Sand                 | 90    |
| 37.500     | 100       | 0.049      | 1         | Plasticity Index         | (%) | 0                   | % Silt                 | 8     |
| 28.000     | 100       | 0.029      | 1         | Weighted PI              | (%) | 0                   | % Clay                 | 1     |
| 20.000     | 100       | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0                 | Activity               | 0.0   |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |     | 0.97                | Unified Classification | SP-SM |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |     | 4                   | TRB Classification     | A - 3 |
| 2.000      | 99        | 0.000      | 0         | Coefficient of curvature |     | 1.2                 |                        |       |





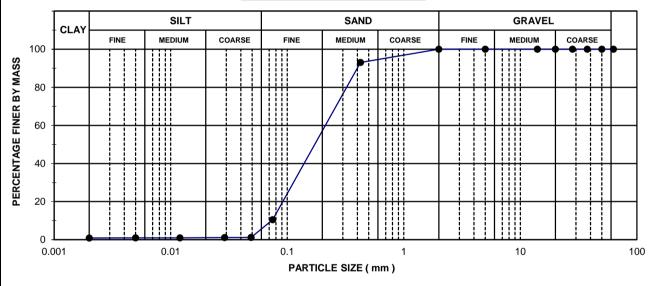


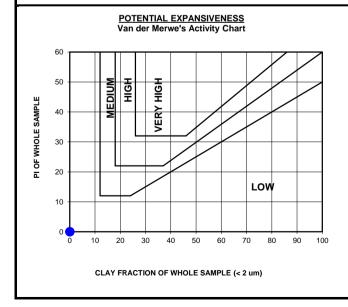



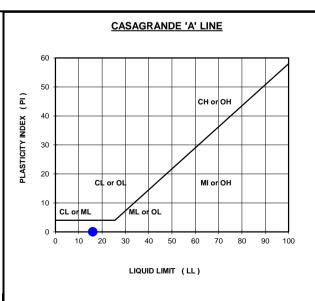

| TEST LOCATION | MTP03     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 1.0-2.4 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG LIMITS         |     |      | SOIL CLASSIFICATION    |           |
|------------|-----------|------------|-----------|--------------------------|-----|------|------------------------|-----------|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |      | SOIL CLASSIFICATION    |           |
| 63.000     | 100       | 0.425      | 87        | Liquid limit             | (%) | 16.0 | % Gravel               | 3         |
| 50.000     | 100       | 0.075      | 11        | Plastic limit            | (%) | 16   | % Sand                 | 86        |
| 37.500     | 100       | 0.049      | 1         | Plasticity Index         | (%) | 0    | % Silt                 | 10        |
| 28.000     | 100       | 0.029      | 1         | Weighted PI              | (%) | 0    | % Clay                 | 1         |
| 20.000     | 100       | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0  | Activity               | 0.0       |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |     | 1.05 | Unified Classification | SP-SM     |
| 5.000      | 98        | 0.000      | 0         | Uniformity coefficient   |     | 4    | TRB Classification     | A - 2 - 4 |
| 2.000      | 97        | 0.000      | 0         | Coefficient of curvature |     | 1.2  |                        |           |





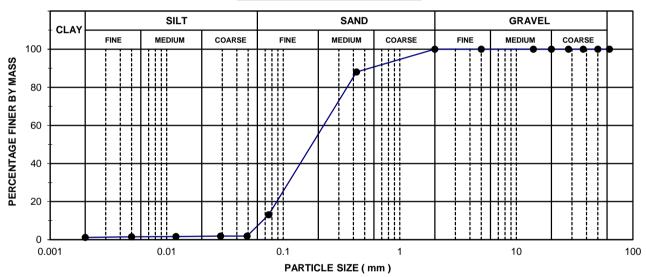



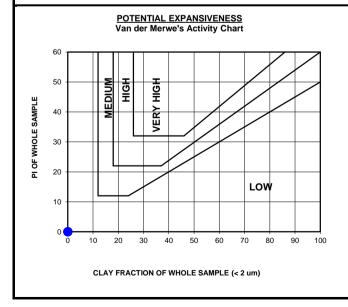



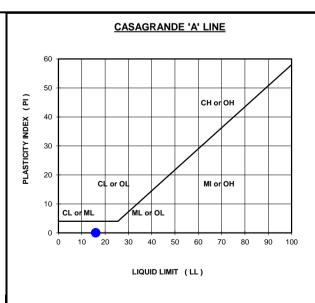

| TEST LOCATION | MTP14     | PROJECT        | Project raptor             |  |
|---------------|-----------|----------------|----------------------------|--|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |  |
| DEPTH         | 0.1-2.0 m | SITE           | Wessels and Mamatwan mines |  |

|            | SIEVE A   | NALYSIS    |           | ATTEDREDC I IN           | ATTERBERG LIMITS |      | SOIL CLASSIFICATION    |           |
|------------|-----------|------------|-----------|--------------------------|------------------|------|------------------------|-----------|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTEMBERG LIVITS         |                  |      | SOIL CLASSIFICATION    |           |
| 63.000     | 100       | 0.425      | 93        | Liquid limit             | (%)              | 16.0 | % Gravel               | 0         |
| 50.000     | 100       | 0.075      | 11        | Plastic limit            | (%)              | 16   | % Sand                 | 90        |
| 37.500     | 100       | 0.049      | 1         | Plasticity Index         | (%)              | 0    | % Silt                 | 10        |
| 28.000     | 100       | 0.029      | 1         | Weighted PI              | (%)              | 0    | % Clay                 | 1         |
| 20.000     | 100       | 0.012      | 1         | Linear Shrinkage         | (%)              | 0.0  | Activity               | 0.0       |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |                  | 0.97 | Unified Classification | SP-SM     |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |                  | 4    | TRB Classification     | A - 2 - 4 |
| 2.000      | 100       | 0.000      | 0         | Coefficient of curvature |                  | 1.2  |                        |           |





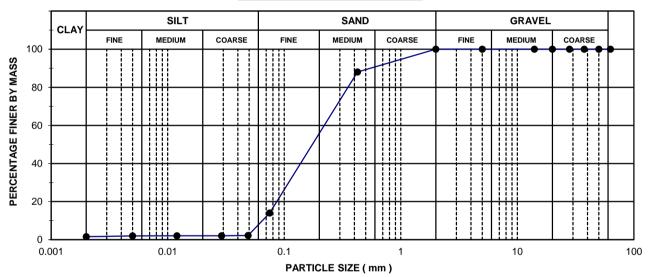



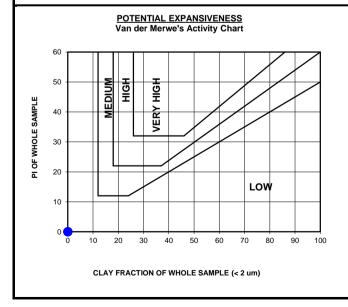



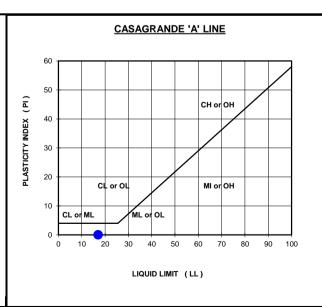

| TEST LOCATION | MTP07     | PROJECT        | Project raptor             |  |
|---------------|-----------|----------------|----------------------------|--|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |  |
| DEPTH         | 0.2-2.7 m | SITE           | Wessels and Mamatwan mines |  |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG LIMITS         |     |      | SOIL CLASSIFICATION    |           |
|------------|-----------|------------|-----------|--------------------------|-----|------|------------------------|-----------|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |      | SOIL CLASSIFICATION    |           |
| 63.000     | 100       | 0.425      | 88        | Liquid limit             | (%) | 16.0 | % Gravel               | 0         |
| 50.000     | 100       | 0.075      | 13        | Plastic limit            | (%) | 16   | % Sand                 | 87        |
| 37.500     | 100       | 0.049      | 2         | Plasticity Index         | (%) | 0    | % Silt                 | 12        |
| 28.000     | 100       | 0.029      | 2         | Weighted PI              | (%) | 0    | % Clay                 | 1         |
| 20.000     | 100       | 0.012      | 2         | Linear Shrinkage         | (%) | 0.0  | Activity               | 0.0       |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |     | 0.99 | Unified Classification | SM        |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |     | 4    | TRB Classification     | A - 2 - 4 |
| 2.000      | 100       | 0.000      | 0         | Coefficient of curvature |     | 1.2  |                        |           |





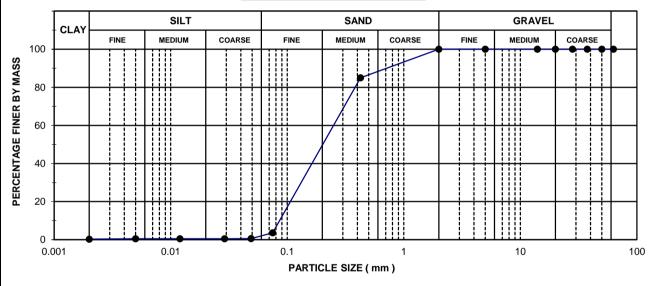



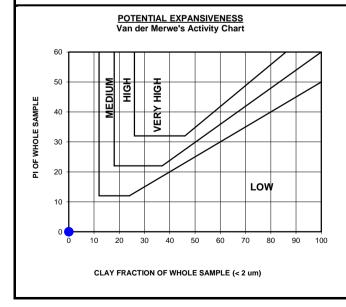



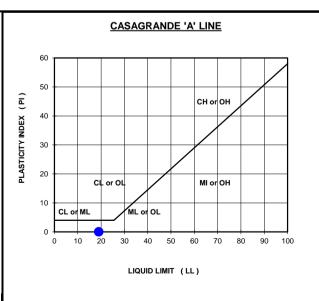

| TEST LOCATION | MTP06     | PROJECT        | Project raptor             |  |
|---------------|-----------|----------------|----------------------------|--|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |  |
| DEPTH         | 0.3-2.5 m | SITE           | Wessels and Mamatwan mines |  |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG LIMITS         |     |      | SOIL CLASSIFICATION    |           |
|------------|-----------|------------|-----------|--------------------------|-----|------|------------------------|-----------|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTEMBERG LIVITS         |     |      | SOIL CLASSIFICATION    |           |
| 63.000     | 100       | 0.425      | 88        | Liquid limit             | (%) | 17.0 | % Gravel               | 0         |
| 50.000     | 100       | 0.075      | 14        | Plastic limit            | (%) | 17   | % Sand                 | 86        |
| 37.500     | 100       | 0.049      | 2         | Plasticity Index         | (%) | 0    | % Silt                 | 12        |
| 28.000     | 100       | 0.029      | 2         | Weighted PI              | (%) | 0    | % Clay                 | 2         |
| 20.000     | 100       | 0.012      | 2         | Linear Shrinkage         | (%) | 0.0  | Activity               | 0.0       |
| 14.000     | 100       | 0.002      | 2         | Grading Modulus          |     | 0.98 | Unified Classification | SM        |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |     | 4    | TRB Classification     | A - 2 - 4 |
| 2.000      | 100       | 0.000      | 0         | Coefficient of curvature |     | 1.2  |                        |           |





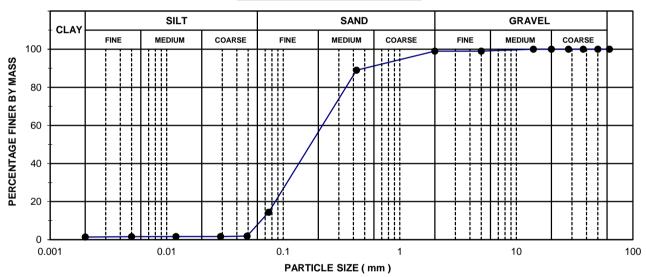



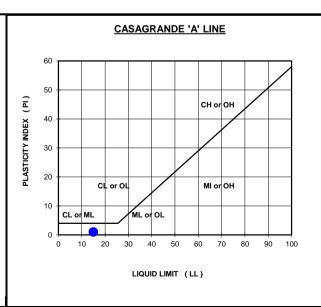

| TEST LOCATION | MTP01     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 1.0-2.7 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG LIMITS         |     | SOIL CLASSIFICATION |                        |       |
|------------|-----------|------------|-----------|--------------------------|-----|---------------------|------------------------|-------|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERG LIVITIS        |     |                     | BOIL CLASSIFICATION    |       |
| 63.000     | 100       | 0.425      | 85        | Liquid limit             | (%) | 19.0                | % Gravel               | 0     |
| 50.000     | 100       | 0.075      | 4         | Plastic limit            | (%) | 19                  | % Sand                 | 96    |
| 37.500     | 100       | 0.049      | 1         | Plasticity Index         | (%) | 0                   | % Silt                 | 3     |
| 28.000     | 100       | 0.029      | 1         | Weighted PI              | (%) | 0                   | % Clay                 | 0     |
| 20.000     | 100       | 0.012      | 1         | Linear Shrinkage         | (%) | 0.0                 | Activity               | 0.0   |
| 14.000     | 100       | 0.002      | 0         | Grading Modulus          |     | 1.11                | Unified Classification | SP-SM |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |     | 3                   | TRB Classification     | A - 3 |
| 2.000      | 100       | 0.000      | 0         | Coefficient of curvature |     | 1.1                 |                        |       |





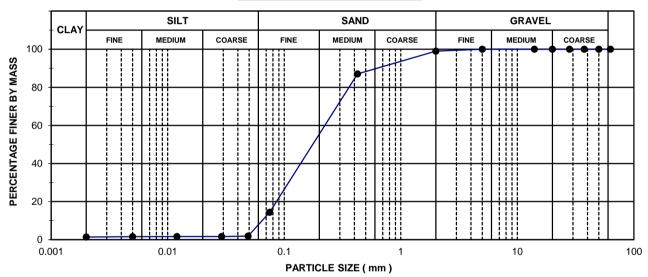


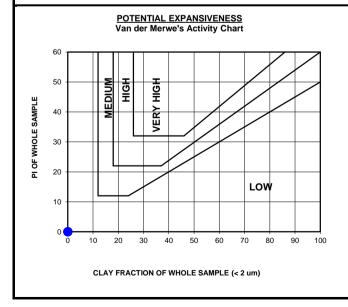



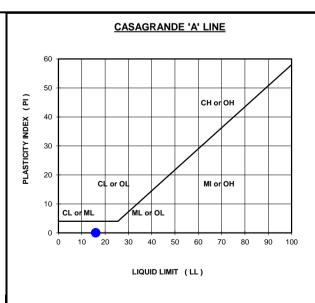

| TEST LOCATION | MTP05     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 0.3-2.3 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG L              | IMIT    | 2    | SOIL CLASSIFICATION    |           |  |  |
|------------|-----------|------------|-----------|--------------------------|---------|------|------------------------|-----------|--|--|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERGL               | 1111111 | 3    | SOIL CLASSIFICATION    |           |  |  |
| 63.000     | 100       | 0.425      | 89        | Liquid limit             | (%)     | 15.0 | % Gravel               | 1         |  |  |
| 50.000     | 100       | 0.075      | 14        | Plastic limit (%)        |         | 14   | % Sand                 | 85        |  |  |
| 37.500     | 100       | 0.049      | 2         | Plasticity Index (%      |         | 1    | % Silt                 | 13        |  |  |
| 28.000     | 100       | 0.029      | 2         | Weighted PI              | (%)     | 1    | % Clay                 | 1         |  |  |
| 20.000     | 100       | 0.012      | 2         | Linear Shrinkage         | (%)     | 0.0  | Activity               | 0.7       |  |  |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |         | 0.98 | Unified Classification | SM        |  |  |
| 5.000      | 99        | 0.000      | 0         | Uniformity coefficient   |         | 4    | TRB Classification     | A - 2 - 4 |  |  |
| 2.000      | 99        | 0.000      | 0         | Coefficient of curvature |         | 1.2  |                        |           |  |  |





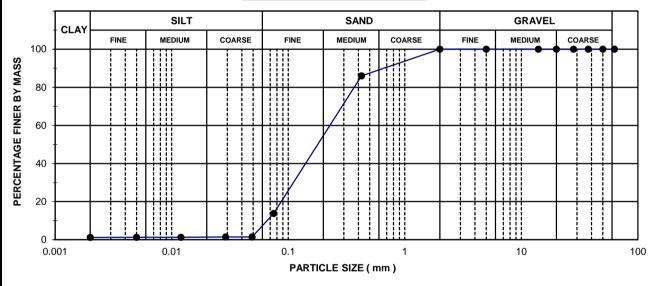



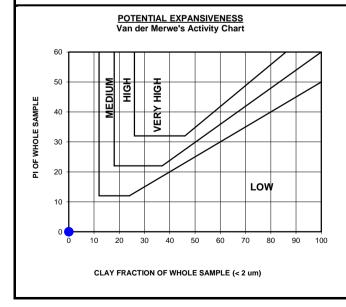



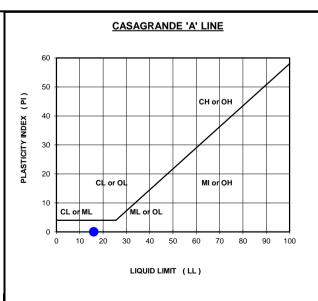

| TEST LOCATION | MTP09     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 0.2-2.1 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG I              | IMIT    | S    | SOIL CLASSIFICATION    |           |  |  |
|------------|-----------|------------|-----------|--------------------------|---------|------|------------------------|-----------|--|--|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERGI               | 7111111 | 3    | SOIL CLASSIFICATION    |           |  |  |
| 63.000     | 100       | 0.425      | 87        | Liquid limit             | (%)     | 16.0 | % Gravel               | 1         |  |  |
| 50.000     | 100       | 0.075      | 14        | Plastic limit            | (%)     | 16   | % Sand                 | 85        |  |  |
| 37.500     | 100       | 0.049      | 2         | Plasticity Index (%)     |         | 0    | % Silt                 | 13        |  |  |
| 28.000     | 100       | 0.029      | 2         | Weighted PI (%           |         | 0    | % Clay                 | 1         |  |  |
| 20.000     | 100       | 0.012      | 2         | Linear Shrinkage         | (%)     | 0.0  | Activity               | 0.0       |  |  |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |         | 1.00 | Unified Classification | SM        |  |  |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |         | 4    | TRB Classification     | A - 2 - 4 |  |  |
| 2.000      | 99        | 0.000      | 0         | Coefficient of curvature |         | 1.2  |                        |           |  |  |






| TEST LOCATION | MTP16     | PROJECT        | Project raptor             |
|---------------|-----------|----------------|----------------------------|
| SAMPLE NO.    |           | PROJECT NUMBER | 504733                     |
| DEPTH         | 0.1-2.7 m | SITE           | Wessels and Mamatwan mines |

|            | SIEVE A   | NALYSIS    |           | ATTERBERG I              | IMIT       | 2    | SOIL CLASSIFICATION    |           |  |  |
|------------|-----------|------------|-----------|--------------------------|------------|------|------------------------|-----------|--|--|
| Sieve (mm) | % Passing | Sieve (mm) | % Passing | ATTERDERGI               | 211V11 1 i | 3    | SOIL CLASSIFICATION    |           |  |  |
| 63.000     | 100       | 0.425      | 86        | Liquid limit             | (%)        | 16.0 | % Gravel               | 0         |  |  |
| 50.000     | 100       | 0.075      | 14        | Plastic limit            | (%)        | 16   | % Sand                 | 86        |  |  |
| 37.500     | 100       | 0.049      | 1         | Plasticity Index (%)     |            | 0    | % Silt                 | 13        |  |  |
| 28.000     | 100       | 0.029      | 1         | Weighted PI (            |            | 0    | % Clay                 | 1         |  |  |
| 20.000     | 100       | 0.012      | 1         | Linear Shrinkage         | (%)        | 0.0  | Activity               | 0.0       |  |  |
| 14.000     | 100       | 0.002      | 1         | Grading Modulus          |            | 1.00 | Unified Classification | SM        |  |  |
| 5.000      | 100       | 0.000      | 0         | Uniformity coefficient   |            | 4    | TRB Classification     | A - 2 - 4 |  |  |
| 2.000      | 100       | 0.000      | 0         | Coefficient of curvature |            | 1.2  |                        |           |  |  |







SOUTH AFRICA

Civil Engineering Materials Testing Laboratory

Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300

Attention: Mr Siya

Laboratories
Roadlab Givil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za

Date Reported: 08/07/2019

Client Ref.No.: None

Project : Wessles & Mamatwan Mine

#### Test Pit SANS 3001

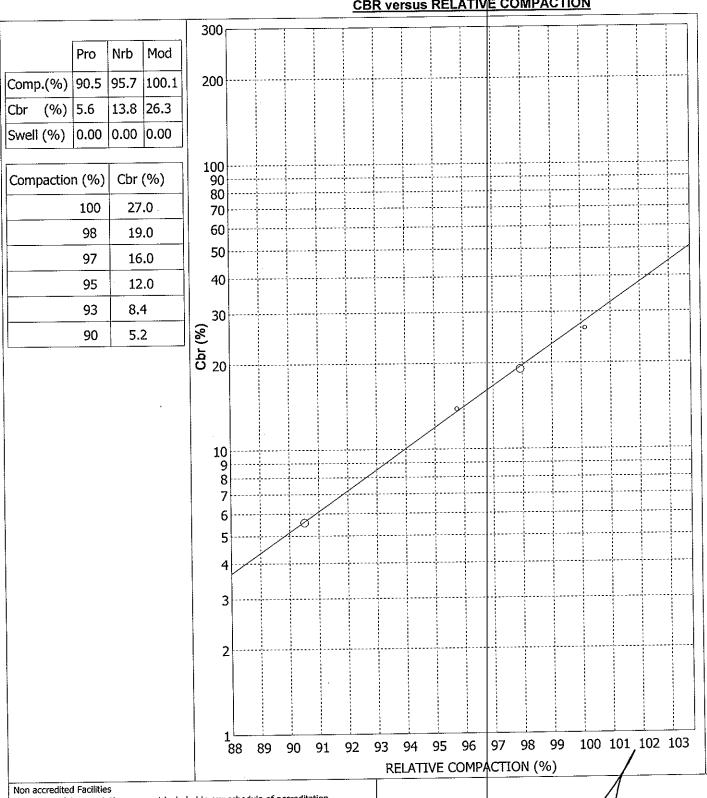
#### SAMPLE INFORMATION AND PROPERTIES

|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OANI LE III OI                     | MATION AND PROPERTIES     |                                                  |                     |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|--------------------------------------------------|---------------------|--|
| SAMPL                                                                                                       | E NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS5156                             | SS5157                    | SS5158                                           | SS5159              |  |
| HOLE NO./ Km                                                                                                | / CHAINAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WTP04 @ 0.5 - 2.5 m                | MTP01 @1.0 - 2.7m         | MTP05 @ 0.3 - 2.3m                               | MRP 09 @ 0.2 - 2.1m |  |
| ROAD NO                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wessels Mine                       | Mamatwan Mine             | Mamatwan Mine                                    | Mamatwan Mine       |  |
| LAYER TESTE                                                                                                 | D/SAMPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Pit                           | Test Pit                  | Test Pit                                         | Test Pit            |  |
| DATE SA                                                                                                     | MPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21/06/2019                         | 21/06/2019                | 21/06/2019                                       | 21/06/2019          |  |
| COLOUR O                                                                                                    | F SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not Specified                      | Not Specified             | Not Specified                                    | Not Specified       |  |
| TYPE OF                                                                                                     | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aeolian Sand                       | Aeolian Sand              | Aeolian Sand                                     | Aeolian Sand        |  |
|                                                                                                             | GRADING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANALYSIS - % PASSING SIE           | VES *(SANS 3001-GR1:2010, | SANS 3001-GR2:2010)                              |                     |  |
|                                                                                                             | 100.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                           |                                                  |                     |  |
|                                                                                                             | 75.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                           |                                                  |                     |  |
|                                                                                                             | 63,0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                           |                                                  |                     |  |
| -                                                                                                           | 50.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                           |                                                  |                     |  |
| CIEVE                                                                                                       | 37.5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                           |                                                  |                     |  |
| SIEVE<br>ANALYSIS                                                                                           | 28.0 mm<br>20.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                           |                                                  |                     |  |
| (GR 1)                                                                                                      | 14,0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                           | 100                                              |                     |  |
| % PASSING                                                                                                   | 5.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                           | 99                                               | 100                 |  |
|                                                                                                             | 2.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                | 100                       | 99                                               | 99                  |  |
|                                                                                                             | 0,425 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94                                 | 85                        | 89                                               | 87<br>16            |  |
|                                                                                                             | 0.075 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                  | 4                         | 14                                               | 1.0                 |  |
| RADING MODULUS                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0                                | 1.1                       |                                                  | 1.0                 |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | ALYSIS (SANS 3001-PR5:201 |                                                  | 13                  |  |
| COARSE SAND                                                                                                 | 2.000 - 0.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                  | 15                        | 10                                               | 16                  |  |
| OARSE FINE SAND                                                                                             | 0.425 - 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                 | 24                        | 16                                               | 25                  |  |
| TEDIUM FINE SAND                                                                                            | 0.250 - 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                 | 26                        | 26                                               | 31                  |  |
| FINE FINE SAND                                                                                              | 0.150 - 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                 |                           |                                                  |                     |  |
| SILT CLAY                                                                                                   | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                  | 4                         | 14                                               | 16                  |  |
|                                                                                                             | ATTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RBERG LIMITS ANALYSIS - *          | (SANS 3001-GR10:2010, SAN | S 3001-GR11:2010)                                |                     |  |
| ATTERBERG                                                                                                   | LIQUID LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                           |                                                  |                     |  |
| LIMITS (%)                                                                                                  | PLASTICITY INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NP                                 | NP                        | SP                                               | NP                  |  |
| SANS GR10,GR11                                                                                              | LINEAR SHRINKAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                           |                                                  | <u> </u>            |  |
|                                                                                                             | H.R.B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A-2-4(0)                           | A-2-4(0)                  | A-2-4(0)                                         | A-2-4(0)            |  |
| CLASSIFICATION                                                                                              | COLTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G9                                 | G9                        | . G8                                             | G9                  |  |
|                                                                                                             | TRH 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G10                                | G10                       | G9                                               | G10                 |  |
|                                                                                                             | CALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORNIA BEARING RATIO - *(           | SANS 3001-GR30:2010, SANS | 3001-GR40:2010)                                  |                     |  |
| MOD AASHTO                                                                                                  | OMC %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                                | 6.0                       | 6.9                                              | 6.9                 |  |
| SANS GR30                                                                                                   | MDD (kg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1860                               | 1899                      | 1966                                             | 1992                |  |
| • • • • • • • • • • • • • • • • • • • •                                                                     | COMP MC %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.9                                | 6.0                       | 6.8                                              | 7.0                 |  |
| SWELL % @                                                                                                   | MOD   NRB   PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00   0.00   0.00                 | 0.00   0.00   0.00        | 0.00   0.00   0.00                               | 0.00   0.00   0.00  |  |
| 01122277                                                                                                    | 100 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                 | 20                        | 22                                               | 22                  |  |
|                                                                                                             | 98 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                 | 15                        | 17                                               | 17                  |  |
| C.B.R.                                                                                                      | 97 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                 | 13                        | 15                                               | 15                  |  |
| SANS GR40                                                                                                   | 95 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                 | 10                        | 12                                               | 12                  |  |
| OANO GIVAO                                                                                                  | 93 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                  | 7                         | 10                                               | 9                   |  |
|                                                                                                             | 90 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                  | 5                         | 7                                                | 6                   |  |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                  | <u> </u>                  | <del>                                     </del> |                     |  |
|                                                                                                             | ER IN LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | <u> </u>                  | <del>                                     </del> | 1                   |  |
|                                                                                                             | ER ON SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M-4 000 1-4                        | Mod, CBR, Ind             | Mod, CBR, Ind                                    | Mod, CBR, Ind       |  |
|                                                                                                             | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mod, CBR, Ind                      |                           | THM5                                             | THM5                |  |
| SAMPLINI Non accredited Facilit                                                                             | G METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THM5                               | THM5                      | 1                                                |                     |  |
| Opinions and Interpre The samples were su The test results report Further use of the abo Documents may only | tations are not included in<br>bjected to analysis according the samples to the sam | esponsibility or liability of Road | STM).                     |                                                  | nical-Signatory     |  |



8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za


Established 2011

Client: Aurecon SA (Pty) Ltd

Job Request No.: RS4161

Sample No.: : SS5156

#### CBR versus RELATIVE COMPACTION



Opinions and Interpretations are not included in our schedule of accreditation. The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM).

The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by : Bernice Crafford

Prog.ver 9.5 (2019/0\$/24)

hnical Signatory:



8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za

Date Reported: 08/07/2019

Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300

Attention: Mr Siya

Client Ref.No.: None

Project : Wessles & Mamatwan Mine

#### Test Pit SANS 3001

| SAMPL                                   | E NO.             | SS5160                                | SS5161                       | SS5162             | \$\$5163                                         |  |
|-----------------------------------------|-------------------|---------------------------------------|------------------------------|--------------------|--------------------------------------------------|--|
| HOLE NO./ Km                            |                   | WTP11 @ 0.4 - 3m                      | WTP15 @ 120mm - 2700         | WTP16 @ 2.3 - 3m   | MTP 16 @ 0.1 - 2.7m                              |  |
| ROAD NO                                 |                   | Wessels Mine                          | Wessels Mine                 | Wessels Mine       | Mamatwan Mine                                    |  |
| LAYER TESTE                             |                   | Test Pit                              | Test Pit                     | Test Pit Test Pit  |                                                  |  |
| DATE SA                                 |                   | 21/06/2019                            | 21/06/2019                   | 21/06/2019         | 21/06/2019                                       |  |
| COLOUR O                                |                   | Not Specified                         | Not Specified                | Not Specified      | Not Specified                                    |  |
| TYPE OF                                 |                   | Aeolian Sand                          | Aeolian Sand                 | Aeolian Sand       | Aeolian Sand                                     |  |
| 111201                                  |                   |                                       | EVES *(SANS 3001-GR1:2010, S | ANS 3001-GR2:2010) | <u> </u>                                         |  |
|                                         | 100.0 mm          | 7777000                               |                              |                    |                                                  |  |
| ŀ                                       | 75.0 mm           |                                       |                              |                    |                                                  |  |
|                                         | 63.0 mm           |                                       |                              |                    |                                                  |  |
|                                         | 50.0 mm           |                                       |                              |                    |                                                  |  |
|                                         | 37.5 mm           |                                       |                              |                    |                                                  |  |
| SIEVE                                   | 28.0 mm           |                                       |                              |                    | <del> </del>                                     |  |
| ANALYSIS                                | 20.0 mm           |                                       |                              |                    |                                                  |  |
| (GR 1)<br>% PASSING                     | 14.0 mm<br>5.0 mm |                                       |                              |                    | <del>                                     </del> |  |
| ,01,100110                              | 2.0 mm            | 100                                   | 100                          | 100                | 100                                              |  |
|                                         | 0.425 mm          | 92                                    | 96                           | 96                 | 86                                               |  |
|                                         | 0.075 mm          | 10                                    | 8                            | 8                  | 14                                               |  |
| RADING MODULUS                          |                   | 1.0                                   | 1.0                          | 1.0                | 1.0                                              |  |
|                                         |                   | SOIL MORTAR A                         | NALYSIS (SANS 3001-PR5:2011  | )                  |                                                  |  |
| COARSE SAND                             | 2.000 - 0.425     | 7                                     | 4                            | 4                  | 14                                               |  |
| OARSE FINE SAND                         | 0.425 - 0.250     | 15                                    | 18                           | 18                 | 16                                               |  |
| MEDIUM FINE SAND                        | 0.250 - 0.150     | 39                                    | 48                           | 40                 | 26                                               |  |
| FINE FINE SAND                          | 0.150 - 0.075     | 29                                    | 23                           | 30                 | 30                                               |  |
| SILT CLAY                               | 0.075             | 10                                    | 8                            | 8                  | 14                                               |  |
|                                         | ATTER             | RBERG LIMITS ANALYSIS -               | *(SANS 3001-GR10:2010, SANS  | 3001-GR11:2010)    |                                                  |  |
| ATTERBERG                               | LIQUID LIMIT      |                                       |                              |                    |                                                  |  |
| LIMITS (%)                              | PLASTICITY INDEX  | NP                                    | NP                           | NP                 | NP                                               |  |
| SANS GR10, GR11                         | LINEAR SHRINKAGE  |                                       |                              |                    |                                                  |  |
|                                         | H.R.B.            | A-2-4(0)                              | A-2-4(0)                     | A-2-4(0)           | A-2-4(0)                                         |  |
| CLASSIFICATION                          | COLTO             | <b>G</b> 9                            | G9                           | G9                 | G10                                              |  |
| • • • • • • • • • • • • • • • • • • • • | TRH 14            | G10                                   | G10                          | G10                | G10                                              |  |
|                                         | CALIF             | ORNIA BEARING RATIO -                 | *(SANS 3001-GR30:2010, SANS  | 3001-GR40:2010)    |                                                  |  |
| MOD AASHTO                              | OMC %             | 5.8                                   | 5.8                          | 6.3                | 6.0                                              |  |
| SANS GR30                               | MDD (kg/m³)       | 1852                                  | 1834                         | 1809               | 1908                                             |  |
| V 2 2 2                                 | COMP MC %         | 5.7                                   | 5.7                          | 6.5                | 6.0                                              |  |
| SWELL % @                               | MOD   NRB   PRO   | 0.00   0.00   0.00                    | 0.00   0.00   0.00           | 0.00   0.00   0.00 | 0.00   0.00   0.00                               |  |
| 011111111111111111111111111111111111111 | 100 %             | 22                                    | 23                           | 25                 | 11                                               |  |
|                                         | 98 %              | 17                                    | 17                           | 19                 | 8                                                |  |
| C.B.R.                                  | 97 %              | 15                                    | 14                           | 16                 | 7                                                |  |
| SANS GR40                               | 95 %              | 11                                    | 10                           | 12                 | 6                                                |  |
| OF INTO OTHER                           | 93 %              | 8                                     | 8                            | 9                  | 4                                                |  |
|                                         | 90 %              | 6                                     | 5                            | 6                  | 3                                                |  |
|                                         | <u> </u>          | · · · · · · · · · · · · · · · · · · · |                              |                    |                                                  |  |
|                                         | ER IN LAB         |                                       |                              |                    | <del> </del>                                     |  |
|                                         | ER ON SITE        |                                       | Mod CDD Ind                  | Mod, CBR, Ind      | / Mod, CBR, Ind                                  |  |
| TEST                                    | TYPE              | Mod, CBR, Ind<br>THM5                 | Mod, CBR, Ind<br>THM5        | THM5               | THM5                                             |  |
|                                         | G METHOD.         |                                       | 1 HB//                       | כנעודהו ו          |                                                  |  |

The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab

Documents may only be reproduced or published in their full context. Report compiled by : Bernice Crafford

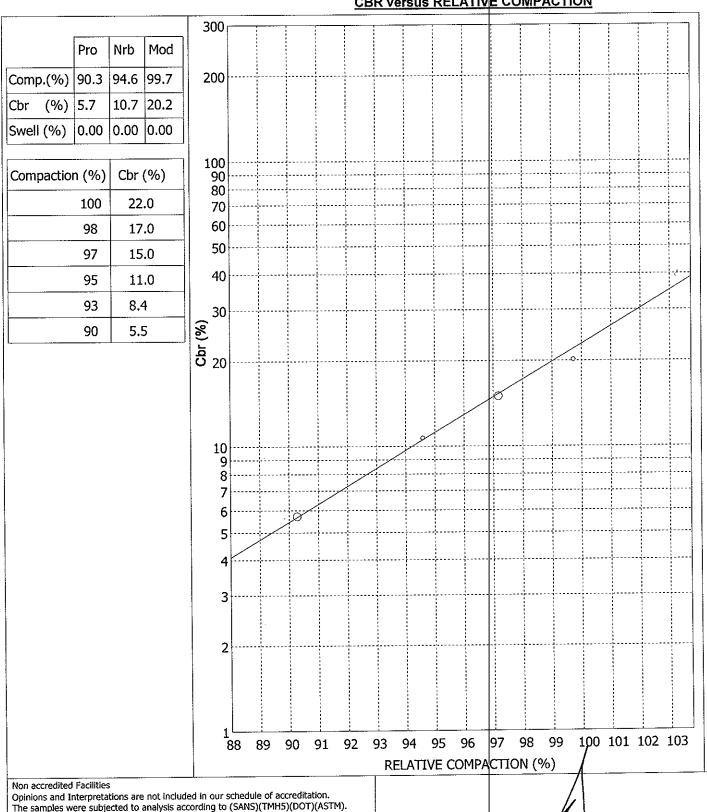
Prog.ver 9.5 (2019/05/24)

Technical Signatory



8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Web:


Established 2011

Client: Aurecon SA (Pty) Ltd

Job Request No.: RS4161

Sample No.:: SS5160

#### **CBR versus RELATIVE COMPACTION**



The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM).

The test results reported relate to the samples tested. Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by: Bernice Crafford

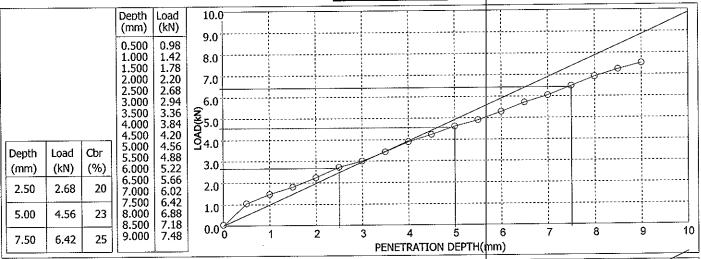
Prog.ver 9.5 (2019/05/24)

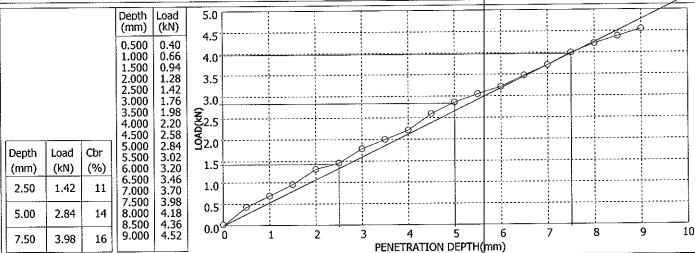
**-Technical Signatory** 

SOUTH AFRICA Civil Engineering Materials Testing Laboratory

Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446


Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za


Established 2011

Client: Aurecon SA (Pty) Ltd

Penetration Graph

Sample No.:: SS5160 Job Request No.: RS4161





|            |      |     | Depth<br>(mm)           | Load<br>(kN)         | 5.0                  |   |             |              |   |                                       |             |             |           |     |                             |             |          |    |
|------------|------|-----|-------------------------|----------------------|----------------------|---|-------------|--------------|---|---------------------------------------|-------------|-------------|-----------|-----|-----------------------------|-------------|----------|----|
|            |      |     | 0.500                   | 0.18                 | 4.5                  |   | ,<br>,<br>, |              |   |                                       |             |             |           |     | <b></b>                     |             |          |    |
|            |      |     | 1.000<br>1.500          | 0.28<br>0.42         | 4.0                  |   |             |              | 1 |                                       |             |             |           |     | <u> </u>                    |             | <u> </u> |    |
|            |      |     | 2.000<br>2.500          | 0.60<br>0.76         | 3.5                  |   | }           |              |   |                                       |             |             |           |     |                             |             |          |    |
|            |      |     | 3.000<br>3.500          | 0.84<br>1.00         | _3.0°                |   |             | 1            |   |                                       | ,           | -           |           |     | * • • • • • • • • • • • • • |             |          | -  |
|            |      |     | 4.000                   | 1.16<br>1.32         | (NX)<br>2.5<br>012.0 |   | ļ           |              |   |                                       |             |             |           |     |                             |             | ė        |    |
| Donth      | Load | Cbr | 4.500<br>5.000          | 1.44                 | 2.0∶                 |   | <u> </u>    |              |   |                                       |             | <del></del> |           | -0- | 7                           | <del></del> |          |    |
| Depth (mm) | (kN) | (%) | 5.500<br>6.000          | 1.56<br>1.68         | 1.5                  |   |             |              |   |                                       |             | 9           |           | ·   |                             |             |          |    |
| 2.50       | 0.76 | 5.7 | 6.500<br>7.000          | 1.74<br>1.80         | 1.0                  |   |             | <del>-</del> |   |                                       |             |             |           |     |                             |             |          |    |
| 5.00       | 1.44 | 7.2 | 7.500<br>8.000<br>8.500 | 1.88<br>1.94<br>2.06 | 0.5                  |   | 9           |              |   | · · · · · · · · · · · · · · · · · · · |             |             |           |     |                             |             |          |    |
| 7.50       | 1.88 | 7.4 | 9.000                   | 2.18                 | 0.0                  | Ő | 1           | 2            | 3 | 3<br>PENET                            | 4<br>RATION | 5<br>DEPTH  | 6<br>(mm) |     | 7<br>                       | 8           | 9        | 10 |

Non accredited Facilities

Opinions and Interpretations are not included in our schedule of accreditation. The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM).

The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by: Bernice Crafford

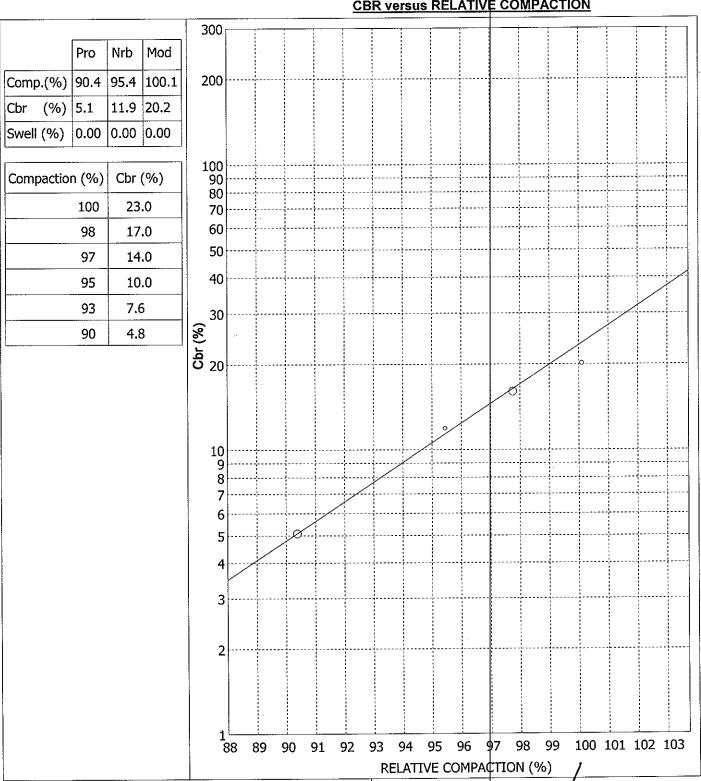
Prog.ver 9.5 (2019/05/24)





8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za


Established 2011

Client: Aurecon SA (Pty) Ltd

Job Request No.: RS4161

Sample No.: : SS5161

#### CBR versus RELATIVE COMPACTION



Non accredited Facilities

Opinions and Interpretations are not included in our schedule of accreditation. The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM). The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by: Bernice Crafford

Prog.ver 9.5 (2019/05/24)

<del>Tec</del>hnical Signatory

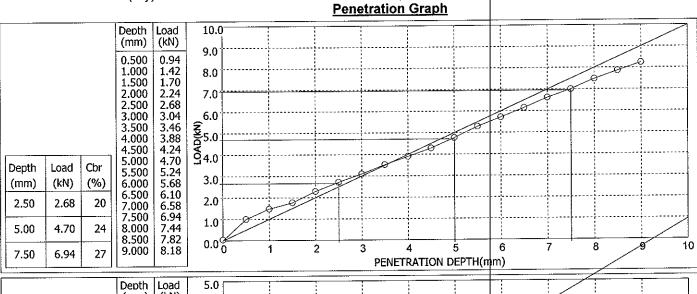
ROAD AB

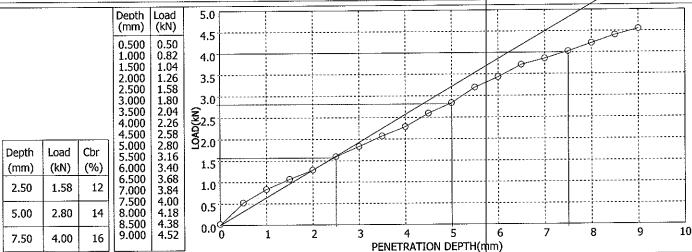
Civil Engineering Materials Testing Laboratory

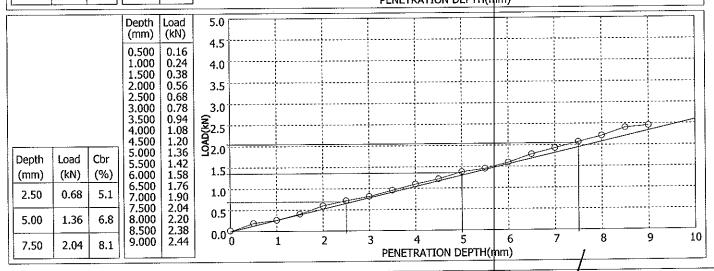
Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za


Jaulau.CU.2 NAIAL


Established 2011


Client: Aurecon SA (Pty) Ltd

Job Request No.: RS4161

Sample No.: : SS5161







Non accredited Facilities

Opinions and Interpretations are not included in our schedule of accreditation.

The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM).

The test results reported relate to the samples tested.

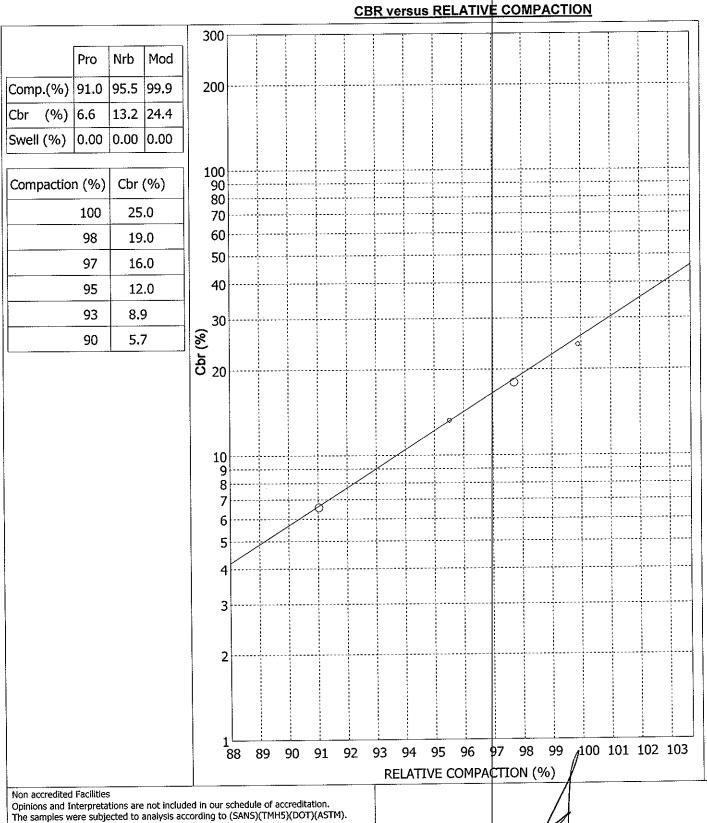
Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by : Bernice Crafford

Prog.ver 9.5 (2019/05/24)



8 Kalk Street Kathu 8446


Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Established 2011

Client: Aurecon SA (Pty) Ltd

Job Request No.: RS4161

Sample No.: : SS5162



The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM). The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by : Bernice Crafford

Prog.ver 9.5 (2019/05/24)

SOUTH AFRICA **Civil Engineering Materials Testing Laboratory** 

Laboratories
Roadlab Givil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Web:

Established 2011

Client: Aurecon SA (Pty) Ltd

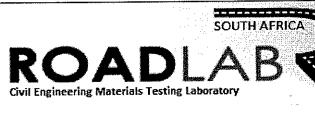
Job Request No.: RS4161

Sample No.: : SS5162

**Penetration Graph** 10.0 Depth Load (mm) (kN) 9.0 0.90 1.56 2.04 0.500 1.000 8.0 1.500 2.000 2.500 3.000 2.66 3.24 3.72 4.24 4.70 5.38 5.90 6.34 6.80 7.32 7.84 8.22 8.76 9.22 9.74 7.0 6.0 5.0 5.0 4.0 3.500 4.000 4.500 5.000 Depth Load Cbr 5.500 6.000 3.0 (mm) (kN) (%) 6.500 7.000 2.0 2.50 3.24 24 7.500 5.90 5.00 30 8.000 8.500 9.000  $0.0^{\circ}_{0}$ 9 10 6 5 7.50 8.22 33 PENETRATION DEPTH(mm)

|       |      |     | Depth<br>(mm)  | Load<br>(kN) | 10.0               | ) |              | ļ           |        |         |                |           |     |    |   |   |    |
|-------|------|-----|----------------|--------------|--------------------|---|--------------|-------------|--------|---------|----------------|-----------|-----|----|---|---|----|
|       |      |     | 0.500          | 0.52         | 9.0                |   |              |             |        |         |                |           |     |    |   |   |    |
|       |      |     | 1.000<br>1.500 | 0.84<br>1.26 | 8.0                |   |              |             |        |         |                |           |     |    |   |   |    |
|       |      |     | 2.000          | 1.48<br>1.76 | 7.0                |   |              |             |        |         |                |           |     |    |   |   |    |
|       |      |     | 3.000          | 1.94         | 6.0                |   |              |             |        |         |                |           |     |    |   |   |    |
|       |      |     | 3.500<br>4.000 | 2.26<br>2.58 | (NX)5.0<br>(NX)5.0 |   | ļ            |             |        |         | <b></b>        |           |     |    |   |   |    |
|       | Т    |     | 4.500<br>5.000 | 2.74<br>3.06 | <b>8</b> 4.0       |   |              |             |        |         |                |           | -0  | 00 | f |   |    |
| Depth | Load | Cbr | 5.500          | 3.36         | 3.0"               |   | <del> </del> | <del></del> | ****** |         |                | 0         |     |    | ļ |   |    |
| (mm)  | (kN) | (%) | 6.000<br>6.500 | 3.60<br>3.84 | 5.0                |   | -            |             |        |         |                |           |     |    |   |   |    |
| 2.50  | 1.76 | 13  | 7.000          | 4.02         | 2.0                |   | -            | 9           |        |         |                |           |     |    |   |   |    |
| 5.00  | 3.06 | 15  | 7.500<br>8.000 | 4.38<br>4.56 | 1.0                | 0 | 1            |             |        | <b></b> |                |           |     |    |   |   |    |
| 7.50  | 4.38 | 17  | 8.500<br>9.000 | 4.88<br>5.16 | 0.0                | 0 | 1            | 2           | 3      |         | 4              | 5         | 6   | 7  | 8 | 9 | 10 |
|       |      | 1   | L              |              | J                  |   |              |             |        | PENETI  | <i>N</i> OITAS | i DEPTH(n | ስm) |    |   |   |    |

|        |      |     | D11-           |              | F 0                  |          |              | .,          |     |          |              | -,             | $\overline{}$   |   |          |   |        | η                 |       |
|--------|------|-----|----------------|--------------|----------------------|----------|--------------|-------------|-----|----------|--------------|----------------|-----------------|---|----------|---|--------|-------------------|-------|
|        |      |     |                | Load         | 5.0                  |          | Ì            | }           |     |          | :            | 1              |                 |   |          |   |        | -                 | -   ! |
|        |      |     | (mm)           | (kN)         |                      |          |              |             |     |          |              |                |                 |   |          |   | i<br>* |                   |       |
|        |      |     | 0 -00          | 0.00         | 4.5                  | [        | 1            | 1           |     |          | !            | 1              | 1               |   |          |   | 1      | 1                 |       |
|        |      |     | 0.500          | 0.20         |                      | i        |              | 1           | i   |          | i            | -              | ;               |   | í        |   | Ì      | 1                 | ] '   |
| ĺ      |      |     | 1.000          | 0.38         | 4.0                  |          | [            |             |     |          | !            |                | 1               |   |          |   |        | 1                 |       |
|        |      |     | 1.500          | 0.56         | -                    |          |              |             | ;   |          | i            | j              |                 |   |          |   | 1      | 1                 |       |
|        |      |     | 2.000          | 0.64         | 3.5                  |          | ·            |             |     |          |              |                |                 |   | <u> </u> |   | ;      |                   |       |
|        |      |     | 2.500          | 0.88         | 3.3                  |          | i            | 1           |     |          |              | i              |                 |   |          |   |        | <b>d</b>          |       |
|        |      |     | 3.000          | 1.02         | 3.0                  |          | <del>-</del> |             |     |          |              |                |                 |   |          |   |        | · <del>{</del>    |       |
|        |      |     | 3.500          | 1.02         | ~3.0                 |          | 1            | i           |     |          | 1            | 1              |                 |   |          |   | 3      | 1                 | -   ' |
|        |      |     | 3.500          | 1.18<br>1.36 | - <del>Σ</del> 2 ε-  |          | <del></del>  | <del></del> |     | ******   | <del> </del> | ~ <del> </del> | <del> </del> -} | £ | 9        |   | }      | • • • • • • • • • |       |
|        |      |     | 4.000          | 1.30         | (NX)<br>2.5<br>O12.0 | [        | 1            | 1           | - 1 |          | i .          | :              | ;               |   |          |   | 1      | į                 |       |
|        |      |     | 4.500          | 1.52         | 5.0                  | <b>_</b> |              | -i          |     |          | <u> </u>     |                | -50             |   | <u></u>  |   | ļ      | · <del>{</del> -  |       |
| Depth  | Load | Cbr | 5.000          | 1.68         | 32.0                 |          | }            | ;           |     |          |              | 0              | T               |   | :        |   |        |                   |       |
| 11 - 1 |      |     | 5.500          | 1.80         |                      |          |              |             |     |          | -            | - J            |                 |   |          |   | }      | · <del>i</del> -  |       |
| (mm)   | (kN) | (%) | 6.000          | 1.96         | 1.5                  | !        | Í            | į           |     | اسسه     | 7            | 1.             | :               |   | 1        |   |        | ;                 |       |
|        |      |     | 6.500<br>7.000 | 2.16         |                      |          | <u> </u>     | _ [         |     | <u> </u> | ;<br>        |                | li.             | · | l        |   | i<br>  | . <del>ļ</del>    |       |
| 2.50   | 0.88 | 6.6 | 7 000          | 2.38         | 1.0                  |          | 1            |             | -   | 1        |              |                |                 |   |          |   |        |                   | - 1   |
| l L    |      |     | 7.500          | 2.52         | 1                    |          | - Orman      | <b>~</b>    | 1   |          |              |                | L.J.            |   | <u> </u> |   | 1      | <u>.;</u>         |       |
| F 00   | 1.68 | 8.4 | 8.000          | 2.68         | 0.5                  | ليسه     |              |             | [   |          | :            | 1              |                 |   | 1        |   | İ      | 1                 |       |
| 5.00   | 1.00 | 0.4 |                | 2.00         | l ,                  | -        | i            | į           |     |          | 1            |                |                 |   | :L       |   |        |                   |       |
|        |      |     | 8.500          | 2.90         | 0.0                  | <u> </u> | 4            | 2           | ٠   | 2        | 4            | 5              | 6               |   | 7        |   | 8      | 9                 | 10    |
| 7.50   | 2.52 | 10  | 9.000          | 3.14         |                      | U        | 1            | 2           | •   | _        | •            | _              |                 |   | ,        | 1 | v      | ,                 | 10    |
| L      |      |     |                |              | ]                    |          |              |             |     | PENET    | RATION       | DEPTH(r        | րт)             |   |          | / |        |                   |       |


Non accredited Facilities

Opinions and Interpretations are not included in our schedule of accreditation. The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM). The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by: Bernice Crafford

Prog.ver 9.5 (2019/05/24)



## Laboratories

Project : Wessles & Mamatwan Mine

**HEAD OFFICE** 

Tel: Fax: Email:

Client Ref.No.: None Date Reported : 08/07/2019

## Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300

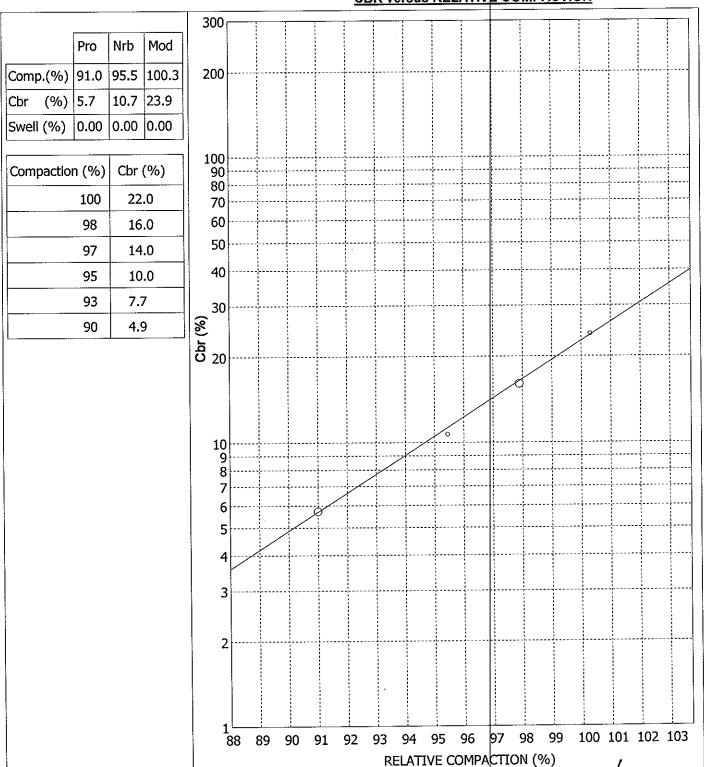
Attention : Mr Siya

| Attention . Wi Siya                                                                                                                   |                                                                                                                                            | Test Pit                                                                                                  | SANS 3001                                        |                     |         |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|---------|
|                                                                                                                                       |                                                                                                                                            |                                                                                                           | RMATION AND PROPERTI                             | ES                  |         |
| SAMPL                                                                                                                                 | ENO                                                                                                                                        | SS5164                                                                                                    | TANK TON AND THE EARTH                           |                     |         |
| HOLE NO./ Km                                                                                                                          |                                                                                                                                            | WTP18 @ 2.6 - 3.2m                                                                                        | -                                                |                     |         |
| ROAD NO                                                                                                                               |                                                                                                                                            | Wessels Mine                                                                                              | <del> </del>                                     |                     |         |
| LAYER TESTE                                                                                                                           |                                                                                                                                            | Test Pit                                                                                                  |                                                  |                     |         |
| DATE SA                                                                                                                               |                                                                                                                                            | 21/06/2019                                                                                                |                                                  |                     |         |
| COLOUR O                                                                                                                              |                                                                                                                                            | Not Specified                                                                                             |                                                  |                     |         |
| TYPE OF                                                                                                                               |                                                                                                                                            | Aeolian Sand                                                                                              |                                                  |                     |         |
| (11201                                                                                                                                |                                                                                                                                            | ANALYSIS - % PASSING SI                                                                                   | EVES *(SANS 3001-GR1:20                          | 10, SANS 3001-GR2:2 | 010)    |
|                                                                                                                                       | 100.0 mm                                                                                                                                   |                                                                                                           | T                                                |                     |         |
|                                                                                                                                       | 75.0 mm                                                                                                                                    |                                                                                                           |                                                  |                     |         |
|                                                                                                                                       | 63.0 mm                                                                                                                                    |                                                                                                           |                                                  |                     |         |
|                                                                                                                                       | 50.0 mm                                                                                                                                    | 100                                                                                                       | <u> </u>                                         |                     |         |
| SIEVE                                                                                                                                 | 37.5 mm                                                                                                                                    | 99<br>97                                                                                                  |                                                  |                     |         |
| ANALYSIS                                                                                                                              | 28.0 mm<br>20.0 mm                                                                                                                         | 95                                                                                                        | <del> </del>                                     | <del>-    </del>    |         |
| (GR 1)                                                                                                                                | 14.0 mm                                                                                                                                    | 92                                                                                                        | 1                                                |                     |         |
| % PASSING                                                                                                                             | 5.0 mm                                                                                                                                     | 89                                                                                                        |                                                  |                     |         |
| Į                                                                                                                                     | 2.0 mm                                                                                                                                     | 87                                                                                                        |                                                  |                     |         |
| ,                                                                                                                                     | 0.425 mm                                                                                                                                   | 82                                                                                                        |                                                  |                     |         |
| OD A DINIO MODULINO                                                                                                                   | 0.075 mm                                                                                                                                   | 12<br>1.2                                                                                                 |                                                  |                     |         |
| GRADING MODULUS                                                                                                                       |                                                                                                                                            |                                                                                                           | <br> NALYSIS (SANS 3001-PR5                      | 2011)               |         |
| COARSE SAND                                                                                                                           | 2.000 - 0.425                                                                                                                              | 5                                                                                                         | TANKET CHO (C) THE COOT I THE                    | .2011/              |         |
|                                                                                                                                       | 0.425 - 0.250                                                                                                                              | 15                                                                                                        |                                                  |                     |         |
| COARSE FINE SAND                                                                                                                      | 0.425 - 0.250                                                                                                                              | 36                                                                                                        | <del> </del>                                     |                     |         |
| FINE FINE SAND                                                                                                                        | 0.150 - 0.075                                                                                                                              | 30                                                                                                        | <del>                                     </del> |                     |         |
| SILT CLAY                                                                                                                             | 0.130 2 0.075                                                                                                                              | 14                                                                                                        | <del>-</del>                                     |                     |         |
| SILT CLAT                                                                                                                             |                                                                                                                                            | RBERG LIMITS ANALYSIS -                                                                                   | *(SANS 3001-GR10:2010, 5                         | SANS 3001-GR11:2010 | )       |
| ATTERBERG                                                                                                                             | LIQUID LIMIT                                                                                                                               | TOLING CHARTO MINICIONO                                                                                   | (6,410,0001,010,02010,0                          | <u></u>             | ,       |
| LIMITS (%)                                                                                                                            | PLASTICITY INDEX                                                                                                                           | NP                                                                                                        | <del> </del>                                     |                     |         |
| SANS GR10,GR11                                                                                                                        | LINEAR SHRINKAGE                                                                                                                           |                                                                                                           | <del></del>                                      |                     |         |
| SANS GRIU,GRIT                                                                                                                        | H.R.B.                                                                                                                                     | A-2-4(0)                                                                                                  |                                                  |                     |         |
| CLASSIFICATION                                                                                                                        | COLTO                                                                                                                                      | G9                                                                                                        |                                                  |                     |         |
| CLASSIFICATION                                                                                                                        | TRH 14                                                                                                                                     | G10                                                                                                       |                                                  |                     |         |
|                                                                                                                                       |                                                                                                                                            | FORNIA BEARING RATIO -                                                                                    | *(SANS 3001-GR30:2010, S                         | ANS 3001-GR40:2010) |         |
| MOD AASHTO                                                                                                                            | OMC %                                                                                                                                      | 6.5                                                                                                       | 1                                                |                     |         |
| SANS GR30                                                                                                                             | MDD (kg/m³)                                                                                                                                | 1815                                                                                                      |                                                  |                     |         |
| OANO CINO                                                                                                                             | COMP MC %                                                                                                                                  | 6.7                                                                                                       |                                                  |                     |         |
| SWELL % @                                                                                                                             | MOD   NRB   PRO                                                                                                                            | 0.00   0.00   0.00                                                                                        |                                                  |                     |         |
| OTTLLE AN GE                                                                                                                          | 100 %                                                                                                                                      | 26                                                                                                        |                                                  |                     |         |
|                                                                                                                                       | 98 %                                                                                                                                       | 18                                                                                                        |                                                  |                     |         |
| C.B.R.                                                                                                                                | 97 %                                                                                                                                       | 16                                                                                                        |                                                  |                     |         |
| SANS GR40                                                                                                                             | 95 %                                                                                                                                       | 11                                                                                                        |                                                  |                     |         |
| CANTO ON TO                                                                                                                           | 93 %                                                                                                                                       | 8                                                                                                         | -                                                |                     |         |
|                                                                                                                                       | 90 %                                                                                                                                       | 5                                                                                                         |                                                  |                     |         |
| CTADII IC                                                                                                                             | ER IN LAB                                                                                                                                  |                                                                                                           |                                                  |                     |         |
|                                                                                                                                       | R ON SITE                                                                                                                                  |                                                                                                           | +                                                |                     |         |
|                                                                                                                                       | TYPE                                                                                                                                       | Mod, CBR, Ind                                                                                             |                                                  |                     | 7       |
|                                                                                                                                       | 3 METHOD                                                                                                                                   | THM5                                                                                                      |                                                  |                     |         |
| Non accredited Faciliti Opinions and Interpret The samples were sul The test results report Further use of the abo Documents may only | ies ations are not included in ojected to analysis accord ed relate to the samples t we information is not the r be reproduced or publishe | our schedule of accreditation<br>ing to (SANS)(TMH5)(DOT)(<br>ested.<br>esponsibility or liability of Roa | ASTM).<br>adlab                                  |                     |         |
| Report compiled by : I                                                                                                                | Bernice Crafford                                                                                                                           |                                                                                                           | Prog.ver 9.                                      | 5 (2019/05/24)      | Manager |



8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za


Established 2011

Client: Aurecon SA (Pty) Ltd

Job Request No.: RS4161

Sample No.: : SS5164

## **CBR versus RELATIVE COMPACTION**



Non accredited Facilities

Opinions and Interpretations are not included in our schedule of accreditation. The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM).

The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

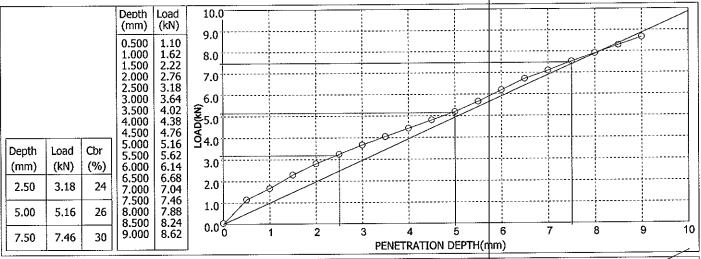
Report compiled by : Bernice Crafford

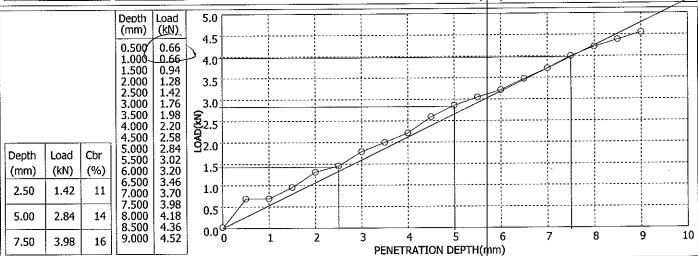
Prog.ver 9.5 (2019/05/24)

\_\_\_\_\_ SOUTH AFRICA Civil Engineering Materials Testing Laboratory

Laboratories

Roadlab Civil Engineering Materials Laboratory Pty Ltd


8 Kalk Street Kathu 8446


Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Established 2011

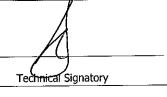
Client: Aurecon SA (Pty) Ltd

Sample No.: : SS5164 Job Request No.: RS4161 **Penetration Graph** 





|               | -    |     | Depth<br>(mm)           | Load<br>(kN)         | 5.0               |       | L |     |   |   |               |   |   |   |      |      |   |    |
|---------------|------|-----|-------------------------|----------------------|-------------------|-------|---|-----|---|---|---------------|---|---|---|------|------|---|----|
|               |      |     | 0.500<br>1.000<br>1.500 | 0.18<br>0.28<br>0.42 | 4.5<br>4.0        |       |   |     |   | · |               |   |   |   | •••• |      |   |    |
|               |      |     | 2.000<br>2.500          | 0.60<br>0.76         | 3.5               |       |   |     |   |   |               |   |   |   |      |      |   |    |
|               |      |     | 3.000<br>3.500<br>4.000 | 0.84<br>1.00<br>1.16 | 3.0               |       |   |     |   |   |               |   |   |   |      |      |   |    |
| Donth         | Load | Cbr | 4.500<br>5.000          | 1.32<br>1.44         | (N)2.5<br>QV012.0 |       |   |     |   |   |               |   |   | 0 | P    | -0-0 |   |    |
| Depth<br>(mm) | (kN) | (%) | 5.500<br>6.000<br>6.500 | 1.56<br>1.68<br>1.74 | 1.5               |       |   |     |   | ~ | 2             |   |   |   |      |      |   |    |
| 2.50          | 0.76 | 5.7 | 7.000<br>7.500          | 1.80                 | 1.0               |       |   | وسو | - |   | <br>          |   |   |   |      |      |   |    |
| 5.00          | 1.44 | 7.2 | 8.000<br>8.500          | 1.94<br>2.06         | 0.5°              | - O   |   |     |   |   |               | 5 | 6 |   | ,    | 8    | 9 | 10 |
| 7.50          | 1.88 | 7.4 | 9.000                   | 2.18                 |                   | U<br> | 1 | 2   |   | • | 4<br>RATION I | _ |   |   |      |      |   |    |


Non accredited Facilities

Opinions and Interpretations are not included in our schedule of accreditation. The samples were subjected to analysis according to (SANS)(TMH5)(DOT)(ASTM).

The test results reported relate to the samples tested.

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by: Bernice Crafford



Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Established 2011

Civil Engineering Materials Testing Laboratory

Documents may only be reproduced or published in their full context.

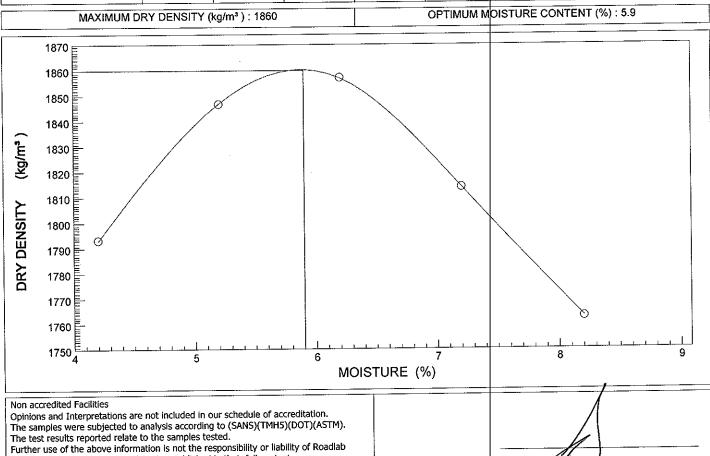
Report compiled by : Bernice Crafford

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300

Attention: Mr Siya

Client Ref.No.: None


Date Reported: 08/07/2019

Technical Signatory

Project : Wessels Mine & Mamatwan

WTP04 @ 0.5 - 2.5m SANS 3001

|                     |               |           | SANS 30     | :01  |         |               |               |         |
|---------------------|---------------|-----------|-------------|------|---------|---------------|---------------|---------|
|                     | SAMPLE NO.    |           |             |      |         | SS5156        |               |         |
| CONTA               | INER FOR SA   | MPLING    | <del></del> |      |         | Plastic Black | Bag           |         |
| SIZE / APP          | ROX. MASS C   | F SAMPLE  |             |      |         | 70KG          |               |         |
| MOISTURE            | CONDITION     | OF SAMPLE |             |      |         | Slightly Mo   | ist           |         |
| LAYER TE            | STED / SAMP   | LED FROM  |             |      | -       | Test Pit      |               |         |
| MATE                | RIAL DESCRI   | PTION     |             |      |         | Aeilian Sar   | nd            |         |
| HOLE                | NO./ km / CHA | INAGE     |             |      | 1       | NTP04 @ 0.5   | - 2.5m        |         |
|                     | ROAD NO.      |           |             |      |         | Wessels Mi    | ne            |         |
| D                   | ATE RECEIVE   | ED .      |             |      |         | 21/06/201     | 9             |         |
|                     | ATE SAMPLE    | D         |             |      |         | 21/06/201     | 9             |         |
| C                   | LIENT MARKI   | NG        |             |      |         | None          |               |         |
| CO                  | LOUR AND T    | YPE       |             |      |         | Not Specifi   | ed            |         |
| POINT NO.           | 1             | 2         | 3           | 4    | 5       |               |               |         |
| DRY DENSITY (kg/m³) | 1793          | 1847      | 1857        | 1814 | 1763    |               |               |         |
| MOISTURE (%)        | 4.2           | 5.2       | 6.2         | 7.2  | 8.2     |               |               |         |
|                     | 1             |           | <del></del> |      | OPTIMIN | MOISTURE CO   | ONITENIT (9/1 | V - 6.0 |



Civil Engineering Materials Testing Laboratory

Established 2011

Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446

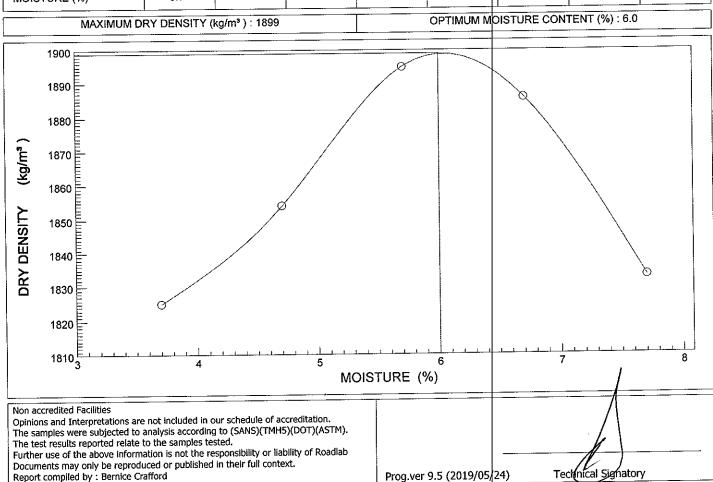
Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Date Reported: 08/07/2019

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300

Attention: Mr Siya


Report compiled by : Bernice Crafford

Client Ref.No.: None

Project: Wessels Mine & Mamatwan

MTP01 @ 1.0 - 2.7m SANS 3001

|                     |               |           | SANS 30    | 01          |                                         |                            |  |
|---------------------|---------------|-----------|------------|-------------|-----------------------------------------|----------------------------|--|
|                     | SAMPLE NO.    |           | -          |             |                                         | SS5157                     |  |
| CONTA               | NER FOR SA    | MPLING    |            |             |                                         | Plastic Black Bag          |  |
| SIZE / APP          | ROX. MASS C   | OF SAMPLE |            |             | ·                                       | 70KG                       |  |
|                     | CONDITION     |           |            |             |                                         | Slightly Moist             |  |
|                     | STED / SAMP   |           |            |             |                                         | Test Pit                   |  |
|                     | RIAL DESCRI   |           |            |             |                                         | Aeolian Sand               |  |
|                     | NO./ km / CHA |           |            |             |                                         | MTP01 @ 1.0 - 2.7m         |  |
|                     | ROAD NO.      |           |            |             |                                         | Mamatwan Mine              |  |
| D                   | ATE RECEIVE   | ΞD        |            |             |                                         | 21/06/2019                 |  |
|                     | ATE SAMPLE    | D         |            |             | ······································  | 21/06/2019                 |  |
| CI                  | LIENT MARKI   | NG        |            |             |                                         | None                       |  |
| CO                  | LOUR AND T    | YPE       |            |             |                                         | Not Specified              |  |
| POINT NO.           | 1             | 2         | 3          | 4           | 5                                       |                            |  |
| DRY DENSITY (kg/m³) | 1825          | 1854      | 1895       | 1886        | 1833                                    |                            |  |
| MOISTURE (%)        | 3.7           | 4.7       | 5.7        | 6.7         | 7.7                                     |                            |  |
|                     | <u> </u>      |           | <u>. l</u> | <del></del> | 000000000000000000000000000000000000000 | MOISTURE CONTENT (%) : 6.0 |  |



Established 2011

Client Ref.No.: None

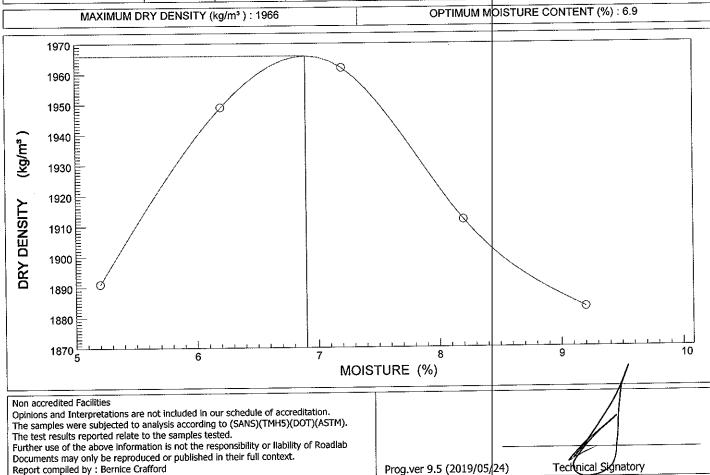
Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Date Reported: 08/07/2019

Job Request No.: RS4161 Aurecon SA (Pty) Ltd P O Box 416 Kimberley


Attention: Mr Siya

8300

Project : Wessels Mine & Mamatwan

MTP01 @ 0.3 - 2.3m

|                     |               |          | SANS 30 | 01       |            |                    |         |
|---------------------|---------------|----------|---------|----------|------------|--------------------|---------|
|                     | SAMPLE NO.    |          |         |          |            | SS5158             |         |
| CONTA               | INER FOR SA   | MPLING   |         |          |            | Plastic Black Bag  |         |
|                     | ROX. MASS (   |          |         |          |            | 70KG               |         |
| <u></u>             | CONDITION     |          |         |          |            | Slightly Moist     |         |
| LAYER TE            | STED / SAMP   | LED FROM |         | <u></u>  |            | Test Pit           |         |
| MATE                | RIAL DESCRI   | PTION    |         |          |            | Aeolian Sand       |         |
| HOLE                | NO./ km / CHA | AINAGE   |         |          |            | MTP05 @ 0.3 - 2.3m |         |
|                     | ROAD NO.      |          |         |          |            | Mamatwan Mine      |         |
| D                   | ATE RECEIVE   | ĒD       |         |          |            | 21/06/2019         |         |
|                     | ATE SAMPLE    | D        |         |          | -          | 21/06/2019         |         |
| C                   | LIENT MARKI   | NG       |         |          |            | None               |         |
| co                  | LOUR AND T    | YPE      |         |          |            | Not Specified      |         |
| POINT NO.           | 1             | 2        | 3       | 4        | 5          |                    |         |
| DRY DENSITY (kg/m³) | 1891          | 1949     | 1962    | 1912     | 1883       |                    |         |
| MOISTURE (%)        | 5.2           | 6.2      | 7.2     | 8.2      | 9.2        |                    |         |
|                     | <u> </u>      |          |         | <u> </u> | ODTIMALIMA | MOISTURE CONTENT   | (%) 6 9 |





8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Established 2011

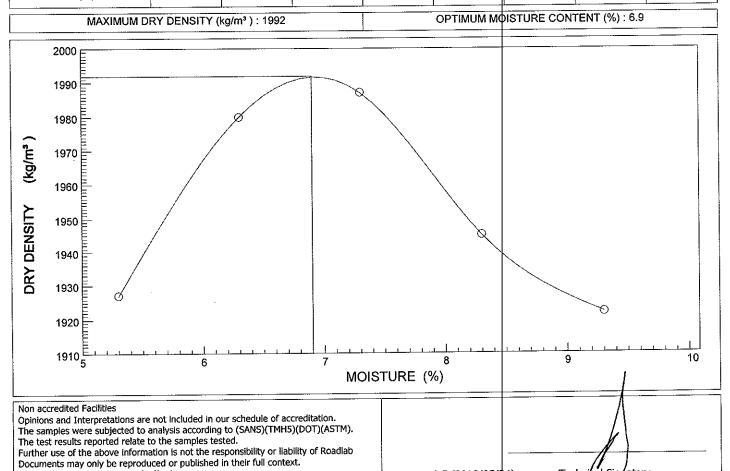
Job Request No.: RS4161 Aurecon SA (Pty) Ltd

Report compiled by : Bernice Crafford

P O Box 416 Kimberley 8300

Attention: Mr Siya

Client Ref.No.: None


Date Reported: 08/07/2019

Technical Signatory

Project : Wessels Mine & Mamatwan

MTP09 @ 0.2 - 2.1m SANS 3001

|                     |               |           | SANS 30 | JU I |      |                    |
|---------------------|---------------|-----------|---------|------|------|--------------------|
|                     | SAMPLE NO.    |           |         |      |      | SS5159             |
| CONTA               | INER FOR SA   | MPLING    |         |      |      | Plastic Black Bag  |
| SIZE / APF          | ROX. MASS (   | OF SAMPLE |         |      |      | 70KG               |
| MOISTURE            | CONDITION     | OF SAMPLE |         |      |      | Slightly Moist     |
| LAYER TE            | STED / SAMP   | LED FROM  |         |      |      | Test Pit           |
| MATE                | RIAL DESCRI   | PTION     |         | -    |      | Aeolian Sand       |
| HOLE                | NO./ km / CH/ | AINAGE    |         |      |      | MTP09 @ 0.2 - 2.1m |
|                     | ROAD NO.      |           |         | -    |      | Mamatwan Mine      |
|                     | ATE RECEIVI   | ΞD        |         |      |      | 21/06/2019         |
|                     | DATE SAMPLE   | D         |         |      |      | 21/06/2019         |
| C                   | LIENT MARKI   | NG        |         |      |      | None               |
| CC                  | LOUR AND T    | YPE       |         |      |      | Not Specified      |
| POINT NO.           | 1             | 2         | 3       | 4    | 5    |                    |
| DRY DENSITY (kg/m³) | 1927          | 1980      | 1987    | 1945 | 1922 |                    |
| MOISTURE (%)        | 5.3           | 6.3       | 7.3     | 8.3  | 9.3  |                    |





8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Established 2011

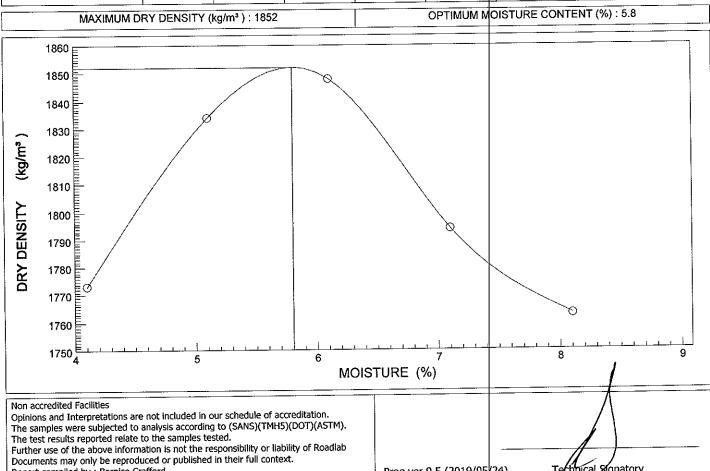
Job Request No.: RS4161 Aurecon SA (Pty) Ltd

Report compiled by : Bernice Crafford

P O Box 416 Kimberley 8300

Attention : Mr Siya

Client Ref.No.: None


Date Reported: 08/07/2019

chnical Signatory

Project : Wessels Mine & Mamatwan

WTP11 @ 0.4 - 3m SANS 3001

|               |                                                                                                                                          | SANS SU                                                                                                                                                                                       | UI                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE NO.    |                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | SS5160                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| NER FOR SA    | MPLING                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | Plastic Black I                                                                                                                                                                                                                          | 3ag                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| ROX. MASS C   | F SAMPLE                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | 70KG                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONDITION     | OF SAMPLE                                                                                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | Slightly Mois                                                                                                                                                                                                                            | st                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| STED / SAMP   | LED FROM                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | Test Pit                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| RIAL DESCRI   | PTION                                                                                                                                    | -                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | Aeolian San                                                                                                                                                                                                                              | d                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO./ km / CHA | INAGE                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | WTP11 @ 0.4                                                                                                                                                                                                                              | - 3m                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| ROAD NO.      |                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | Mamatwan M                                                                                                                                                                                                                               | ine                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATE RECEIVE   | D                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | 21/06/2019                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATE SAMPLE    | .D                                                                                                                                       |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | 21/06/2019                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| IENT MARKII   | NG                                                                                                                                       |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | None                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOUR AND T    | YPE                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | Not Specifie                                                                                                                                                                                                                             | d                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1             | 2                                                                                                                                        | 3                                                                                                                                                                                             | 4                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1773          | 1834                                                                                                                                     | 1848                                                                                                                                                                                          | 1794                                                                                                                                                                                                                        | 1763                                                                                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,1           | 5.1                                                                                                                                      | 6.1                                                                                                                                                                                           | 7.1                                                                                                                                                                                                                         | 8.1                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | NER FOR SA ROX. MASS C CONDITION ( STED / SAMP RIAL DESCRI NO./ km / CHA ROAD NO. ATE RECEIVE ATE SAMPLE LIENT MARKII LOUR AND T  1 1773 | NER FOR SAMPLING ROX. MASS OF SAMPLE CONDITION OF SAMPLE STED / SAMPLED FROM RIAL DESCRIPTION NO./ km / CHAINAGE ROAD NO. ATE RECEIVED ATE SAMPLED LIENT MARKING LOUR AND TYPE  1 2 1773 1834 | SAMPLE NO.  NER FOR SAMPLING  ROX. MASS OF SAMPLE  CONDITION OF SAMPLE  STED / SAMPLED FROM  RIAL DESCRIPTION  NO./ km / CHAINAGE  ROAD NO.  ATE RECEIVED  ATE SAMPLED  LIENT MARKING  LOUR AND TYPE  1 2 3  1773 1834 1848 | SAMPLE NO.  NER FOR SAMPLING  ROX. MASS OF SAMPLE  CONDITION OF SAMPLE  STED / SAMPLED FROM  RIAL DESCRIPTION  NO./ km / CHAINAGE  ROAD NO.  ATE RECEIVED  ATE SAMPLED  LIENT MARKING  LOUR AND TYPE  1 2 3 4  1773 1834 1848 1794 | SAMPLE NO.  NER FOR SAMPLING  ROX. MASS OF SAMPLE  CONDITION OF SAMPLE  STED / SAMPLED FROM  RIAL DESCRIPTION  NO./ km / CHAINAGE  ROAD NO.  ATE RECEIVED  ATE SAMPLED  LIENT MARKING  LOUR AND TYPE  1 2 3 4 5 1773 1834 1848 1794 1763 | SAMPLE NO.   SS5160     NER FOR SAMPLING   Plastic Black E     ROX. MASS OF SAMPLE   70KG     CONDITION OF SAMPLE   Slightly Mois     STED / SAMPLED FROM   Test Pit     RIAL DESCRIPTION   Aeolian San     NO./ km / CHAINAGE   WTP11 @ 0.4     ROAD NO.   Mamatwan M     ATE RECEIVED   21/06/2019     ATE SAMPLED   21/06/2019     IENT MARKING   None     LOUR AND TYPE   Not Specifie     1 | NER FOR SAMPLING | SAMPLE NO.   SS5160     NER FOR SAMPLING   Plastic Black Bag     ROX. MASS OF SAMPLE   70KG     CONDITION OF SAMPLE   Slightly Moist     STED / SAMPLED FROM   Test Pit     RIAL DESCRIPTION   Aeolian Sand     NO./ km / CHAINAGE   WTP11 @ 0.4 - 3m     ROAD NO.   Mamatwan Mine     ATE RECEIVED   21/06/2019     ATE SAMPLED   21/06/2019     LIENT MARKING   None     LOUR AND TYPE   Not Specified     1 |



SOUTH AFRICA Civil Engineering Materials Testing Laboratory

Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za

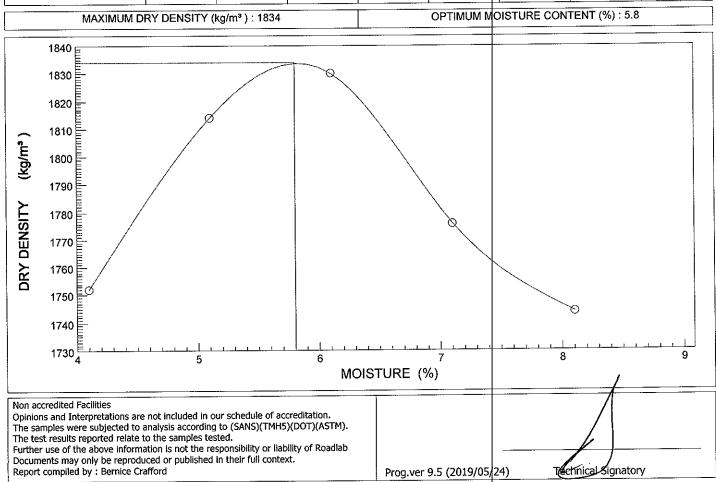
Date Reported: 08/07/2019

Technical Signatory

Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300


Attention: Mr Siya

Client Ref.No.: None

Project : Wessels Mine & Mamatwan

## WTP15 @ 120mm - 2700mm SANS 3001

|                     |               |           | SANS SU | 101  |      |               |          |  |  |
|---------------------|---------------|-----------|---------|------|------|---------------|----------|--|--|
|                     | SAMPLE NO.    |           |         |      |      | \$\$5161      |          |  |  |
| CONTAI              | NER FOR SA    | MPLING    |         |      |      | Plastic Black | Bag      |  |  |
| SIZE / APP          | ROX. MASS C   | OF SAMPLE |         |      | -    | 70KG          |          |  |  |
| MOISTURE            | CONDITION     | OF SAMPLE |         |      |      | Slightly Moi  | st       |  |  |
| LAYER TE            | STED / SAMP   | LED FROM  |         |      |      | Test Pit      |          |  |  |
| MATE                | RIAL DESCRI   | PTION     |         |      |      | Aeolian Sar   | nd       |  |  |
| HOLE                | NO./ km / CHA | AINAGE    |         |      | WTF  | 15 @ 120mm    | - 2700mm |  |  |
|                     | ROAD NO.      |           |         |      |      | Wessels Mi    | ne       |  |  |
| D.                  | ATE RECEIVE   | ΞD        |         |      |      | 21/06/201     | 9        |  |  |
| D                   | ATE SAMPLE    | D         |         |      |      | 21/06/201     | 9        |  |  |
| Cl                  | JENT MARKI    | NG        |         |      |      | None          |          |  |  |
| co                  | LOUR AND T    | YPE       |         |      |      | Not Specific  | ed       |  |  |
| POINT NO.           | 1             | 2         | 3       | 4    | 5    |               |          |  |  |
| DRY DENSITY (kg/m³) | 1752          | 1814      | 1830    | 1776 | 1744 |               |          |  |  |
| MOISTURE (%)        | 4.1           | 5.1       | 6.1     | 7.1  | 8.1  |               |          |  |  |





8 Kalk Street Kathu 8446

Tel: 053 723 1802 Fax: Email: sishen@roadlab.co.za

Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

The test results reported relate to the samples tested.

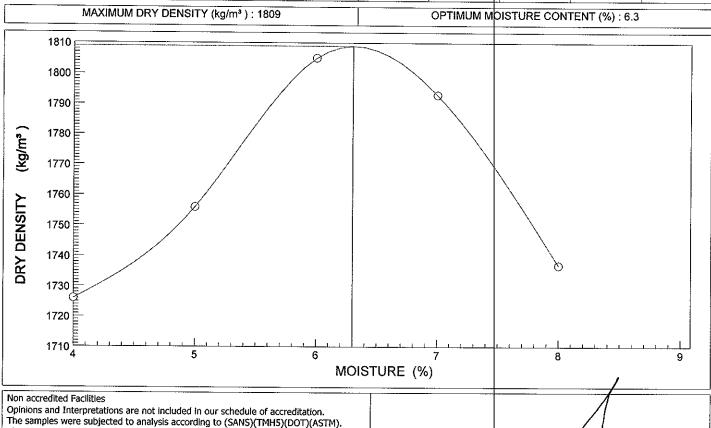
Report compiled by : Bernice Crafford

Further use of the above information is not the responsibility or liability of Roadlab

Documents may only be reproduced or published in their full context.

P O Box 416 Kimberley 8300

Attention: Mr Siya


Client Ref.No.: None

Date Reported: 08/07/2019

Project : Wessels Mine & Mamatwan

WTP16 @ 2.3m - 3m SANS 3001

|                     |               |                 | 0/1140 0 | 001                                   |         |                   |               |  |
|---------------------|---------------|-----------------|----------|---------------------------------------|---------|-------------------|---------------|--|
|                     | SAMPLE NO     | ).              |          |                                       |         | SS5162            |               |  |
| CONTA               | NER FOR SA    | AMPLING         |          |                                       |         | Plastic Black Bag |               |  |
| SIZE / API          | PROX. MASS    | OF SAMPLE       |          |                                       |         | 70KG              |               |  |
| MOISTURE            | CONDITION     | OF SAMPLE       |          |                                       |         | Slightly Moist    |               |  |
| LAYER TE            | STED / SAME   | PLED FROM       |          |                                       | ***     | Test Pit          | <del></del> - |  |
| MATE                | RIAL DESCR    | IPTION          |          | · · · · · · · · · · · · · · · · · · · |         | Aeolian Sand      |               |  |
| HOLE                | NO./ km / CH. | AINAGE          |          |                                       |         | WTP16 @ 2.3m - 3i | m             |  |
|                     | ROAD NO.      |                 |          |                                       |         | Wessels Mine      |               |  |
|                     | DATE RECEIV   | ED              |          |                                       |         | 21/06/2019        |               |  |
|                     | DATE SAMPLE   | D               |          |                                       |         | 21/06/2019        | <del></del>   |  |
| С                   | LIENT MARKI   | NG              |          |                                       |         | None              |               |  |
| CC                  | LOUR AND T    | YPE             |          |                                       |         | Not Specified     | <del></del>   |  |
| POINT NO.           | 1             | 2               | 3        | 4                                     | 5       |                   |               |  |
| DRY DENSITY (kg/m³) | 1726          | 1756            | 1805     | 1793                                  | 1737    |                   |               |  |
| MOISTURE (%)        | 4.0           | 5.0             | 6.0      | 7.0                                   | 8.0     |                   |               |  |
| MAXIMUM D           | RY DENSITY    | (ka/m³ ) · 1809 |          | <u> </u>                              | OPTIMUM | MOISTLIPE CONTE   | NT (0/) - C ( |  |



Prog.ver 9.5 (2019/05/24)

SOUTH AFRICA Civil Engineering Materials Testing Laboratory

Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context.

Report compiled by : Bernice Crafford

Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za

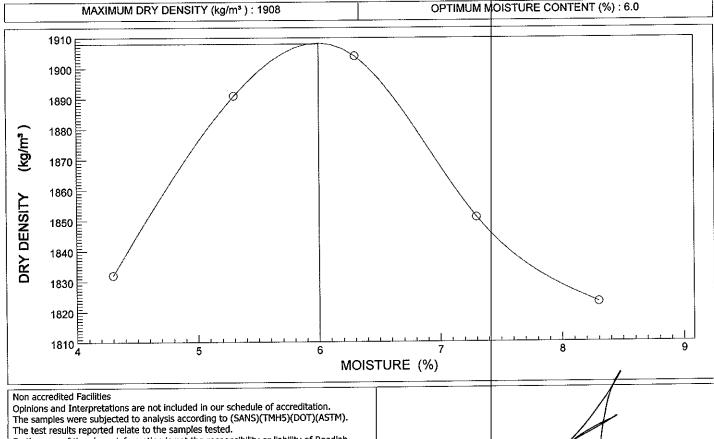
Date Reported: 08/07/2019

Technical Signatory

Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

P O Box 416 Kimberley 8300


Attention : Mr Siya

Client Ref.No.: None

Project : Wessels Mine & Mamatwan

MTP16 @ 0.1m - 2.7m SANS 3001

|                     |               |           | SANS 30 | 01   |                                        |                     |  |
|---------------------|---------------|-----------|---------|------|----------------------------------------|---------------------|--|
|                     | SAMPLE NO.    |           |         |      |                                        | SS5163              |  |
| CONTA               | INER FOR SA   | MPLING    |         |      |                                        | Plastic Black Bag   |  |
| SIZE / APP          | ROX. MASS C   | OF SAMPLE |         |      | ······································ | 70KG                |  |
| MOISTURE            | CONDITION     | OF SAMPLE |         |      |                                        | Slightly Moist      |  |
| LAYER TE            | STED / SAMP   | LED FROM  |         | -    |                                        | Test Pit            |  |
| MATE                | RIAL DESCRI   | PTION     |         |      |                                        | Aeolian Sand        |  |
| HOLE                | NO./ km / CHA | INAGE     |         |      | N                                      | 1 P16 @ 0.1m - 2.7m |  |
|                     | ROAD NO.      |           |         |      | · · ·                                  | Mamatwan            |  |
| D                   | ATE RECEIVE   | ED.       |         |      |                                        | 21/06/2019          |  |
|                     | ATE SAMPLE    | D         |         |      |                                        | 21/06/2019          |  |
| C                   | LIENT MARKII  | NG        |         |      |                                        | None                |  |
| CO                  | LOUR AND T    | YPE       |         |      |                                        | Not Specified       |  |
| POINT NO.           | 1             | 2         | 3       | 4    | 5                                      |                     |  |
| DRY DENSITY (kg/m³) | 1832          | 1891      | 1904    | 1851 | 1823                                   |                     |  |
| MOISTURE (%)        | 4.3           | 5.3       | 6.3     | 7.3  | 8.3                                    |                     |  |



Civil Engineering Materials Testing Laboratory

Established 2011

Job Request No.: RS4161 Aurecon SA (Pty) Ltd

Report compiled by : Bernice Crafford

P O Box 416 Kimberley 8300

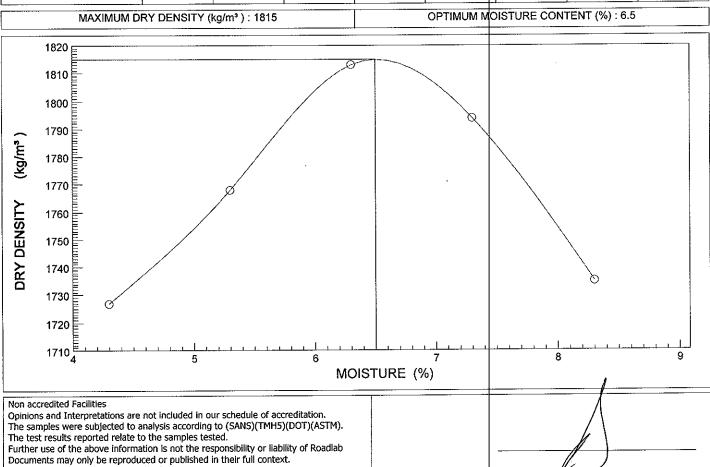
Attention: Mr Siya

Laboratories
Roadlab Civil Engineering Materials Laboratory Pty Ltd

8 Kalk Street Kathu 8446 Tel: 053 723 1802 Fax:

Email: sishen@roadlab.co.za

Date Reported: 08/07/2019


Technical Signatory

Client Ref.No.: None

Project : Wessels Mine & Mamatwan

MTP16 @ 0.1m - 2.7m SANS 3001

|                     |                       |            | 0, 0 |      |      |             |     |  |  |
|---------------------|-----------------------|------------|------|------|------|-------------|-----|--|--|
|                     | SS5164                |            |      |      |      |             |     |  |  |
| CONTA               | Plastic Black Bag     |            |      |      |      |             |     |  |  |
| SIZE / APF          | 70KG                  |            |      |      |      |             |     |  |  |
| MOISTURE            | Slightly Moist        |            |      |      |      |             |     |  |  |
| LAYER TE            | Test Pit              |            |      |      |      |             |     |  |  |
| MATE                | Aeolian Sand          |            |      |      |      |             |     |  |  |
| HOLE                | WTP18 @ 0.2.6m - 3.2m |            |      |      |      |             |     |  |  |
|                     | Wessels Mine          |            |      |      |      |             |     |  |  |
| D                   | 21/06/2019            |            |      |      |      |             |     |  |  |
|                     |                       | 21/06/2019 |      |      |      |             |     |  |  |
| С                   |                       |            | None |      |      |             |     |  |  |
| COLOUR AND TYPE     |                       |            |      |      |      | Not Specifi | ied |  |  |
| POINT NO.           | 1                     | 2          | 3    | 4    | 5    |             |     |  |  |
| DRY DENSITY (kg/m³) | 1727                  | 1768       | 1813 | 1794 | 1735 |             |     |  |  |
| MOISTURE (%)        | 4.3                   | 5.3        | 6.3  | 7.3  | 8.3  |             |     |  |  |
|                     |                       |            |      |      | !    | <del></del> |     |  |  |



RS4161 2019/07/05

Aurecon

Siya

Test Report : WESSELS MINE / MANATWAN MINE - pH & CONDUCTIVITY TEST RESULTS

Clients Marking: None Date Sampled: 2019-07-01

 Sample Number:
 \$3218-\$3223

 Sample delivered to:
 Roadlab

 Date Received:
 2019-07-01

| Sample Number | Layer / Road :  | Temperature<br>(°C) : Conductivity | Conductivity (ms/m) | Temperature<br>(°C) : pH | pH Value |
|---------------|-----------------|------------------------------------|---------------------|--------------------------|----------|
| S3218         | MTP14: 0.1-2.0m | 24,0                               | 5,0                 | 24,0                     | 6,55     |
| S3219         | WTP4: 0.5-2.5m  | 24,0                               | 33,0                | 24,0                     | 7,88     |
| S3217         | MTP09: 0.2-2.1m | 24,0                               | 22,0                | 24,0                     | 7,58     |
| S3221         | WTP18: 2.6-3.2m | 24,0                               | 37,0                | 24,0                     | 7,74     |
| S3216         | MTP03: 1.0-2.4m | 24,0                               | 12,0                | 24,0                     | 7,65     |
| S3220         | WTP8: 0.3-3.0m  | 24,0                               | 9,0                 | 24,0                     | 6,56     |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |
|               |                 |                                    |                     |                          |          |

### Remarks :

The samples were subjected to analysis according to TMH 1
The results reported relate only to the sample tested
Further use of the above information is not the responsibility or liability of Roadlab
Documents may only be reproduced or published in their full context
Compiled By: Chanel van Biljon



# Pre-Feasibility Study – Rapid Rail LOS Upgrade Wessels & Mamatwan Mines



## **GEOTECHNICAL INVESTIGATIONS REPORT**

Appendix D

Drawings

## Document prepared by

## Aurecon South Africa (Pty) Ltd

Reg No 1977/003711/07
Aurecon Centre
Lynnwood Bridge Office Park
4 Daventry Street
Lynnwood Manor 0081
PO Box 74381
Lynnwood Ridge 0040
South Africa

T +27 12 427 2000 F +27 86 556 0521 E tshwane@aurecongroup.com Waurecongroup.com





Aurecon offices are located in:
Angola, Australia, Botswana, China,
Ghana, Hong Kong, Indonesia, Kenya,
Lesotho, Macau, Mozambique,
Namibia, New Zealand, Nigeria,
Philippines, Qatar, Singapore, South Africa,
Swaziland, Tanzania, Thailand, Uganda,
United Arab Emirates, Vietnam.