

GEOTECHNIAL INVESTIGATION REPORT FOR SEWER PIPE BRIDGE IN PAUL ROUX, FREE STATE

MAY 2019

DRAFT

PREPARED FOR:

SELATILE MOLOI CONSULTING ENGINEERS 40 PRESIDENT STEYN STREET WESTDENE BLOEMFONTEIN, 9300

GEOTECHNICAL INVESTIGATION REPORT OF SEWER PIPE BRIDGE IN PAUL ROUX, FREE STATE

DATE: APRIL 2019

THIS DOCUMENT WAS COMPILED BY

MAGARENG CIVIL LABORATORY

7 Orleans Road, Bayswater, Bloemfontein, 9301

Tel: (078) 365 9862

Email: patric@mcivilab.co.za

QUALITY ASSURANCE ISSUE DATA

Report title:	Geotechnical Investigation Report (FINAL)
Client:	SELATILE MOLOI CONSULTING ENGINEERS
Project Name:	Geotechnical Investigation sewer Pipe Bridge in Paul Roux, Free State
Project Number:	
Revision Number:	00

REVISION HISTORY

Date	Report	Written by	Reviewed by	Issued to		
Date	Status	Witten by	neviewed by	Name	Institution	
25/04/2019	Draft	N. Klaas	W. Badenhorst	N/A	N/A	
15/05/2019	Final draft	N. Klaas	W. Badenhorst	R Schaaf	SMCE	

SUBMISSION

APPROVED:

DATE:

15/05/2019

TABLE OF CONTENTS

EXECUTIVE SUMMARY1
1. INTRODUCTION AND TERMS OF REFERENCE
2. DESCRIPTION OF THE SITE AND ACCESS
3. INVESTIGATION PROCEDURE
3.1 DESK STUDY
3.2 FIELD-WORK
3.3 LABORATORY TESTING
4. SITE GEOLOGY AND CLIMATE
4.1 GENERAL GEOLOGY
4.2 TOPOGRAPHY, DRAINAGE and SITE CLIMATE
4.3 GEOHYDROLOGY
5. SUMMARY OF LABORATORY RESULTS
5.1 POTENTIAL EXPANSIVENESS
5.2 EXCAVATION CLASSIFICATION
5.3 ERODABILITY
5.4 GROUND SLOPE STABILITY
5.5 CALIFORNIA BEARING RATIO TEST10
6. GEOTECHNICAL CONSIDERATIONS
6.1 ENGINEERING USE OF IN-SITU MATERIALS
6.2 FLOOD LINE
6.3 GENERAL
LIST OF REFERENCES
LIST OF APENDICES

TABLE OF FIGURES

Fig 1: Site Access	3
Fig 2: Site Layout Plan	3
Fig 3: Geological Map of the Study	.5
Fig 4: Macro-Climatic Regions of Southern Africa (Adapted from Weinert, 1980)	6
Fig 5: Regional Distribution of Expansive Clays	9

TABLE OF TABLES

Table 1: Reference Summary	2
Table 2: Summary of Laboratory Results	7
Table 3: Estimated Potential Heave	8

Geotechnical Investigation Report: Paul Roux

Fable 4: Estimated Ultimate Bearing Capacity	10
Fable 5: COLTO/TRH14 Classification of Materials	10

EXECUTIVE SUMMARY

Magareng Civil Laboratory was appointed by **SELATILE MOLOI CONSULTING ENGINEERS** to compile a geotechnical investigation report based on the conditions on site. The Investigation was carried out in April 2019.

The following activities were carried out to finalize this report:

- Desktop Study
- Site Visit
- Field mapping
- Soil profiling
- Laboratory testing

The coordinates of the site is 28°18'2.31"S 27°57'32.16"E.

Four (4) test pits were excavated to a depth of 2 meters or shallower refusal and the soil profiles were described according to the standard procedure.

The geological map from the Council for Geosciences indicates that the site is underlain by fine- to medium-grained, yellow and khaki-coloured sandstone, red, purple and green mudstone of the Tarkastad Subgroup as part of the Beaufort Group. The soil horizons consisted of silty, clayey and sandy materials with ferricrete, sandstone, mudstone and dolerite encountered in places. The profiles were recorded in the attached soil profiles included as Annexure A.

Ground water was encountered at a depth of 500mm to 1800mm in all of the test pits.

The potential expansiveness of the material encountered on the site could not be calculated according to the method proposed by Van der Merwe (1964) because the Plasticity Index could not be determined due to the seepage.

1. INTRODUCTION AND TERMS OF REFERENCE

Magareng Civil Laboratory was appointed by SELATILE MOLOI CONSULTING ENGINEERS to compile a materials report on the proposed sewer bridge in Paul Roux in the Free State Province. The site field investigation was undertaken according to the normal requirements for a pipeline project.

The following aspects were addressed in this report:

- 1.1 Geology and soil profiles
- 1.2 Geohydrology
- 1.3 Engineering properties of soil samples taken

The schedule of services include trial pits (4 for this project), with material classifications (classified according to COLTO/TRH14), grading analysis, Atterberg limits and potential expansiveness of the insitu material. For the purpose of this study, 4 foundation indicators were sampled with 4 maximum dry density, optimum moisture content and California Bearing Ratio samples.

Table 1: Reference Summary

Description	Quantity	Relevant method or specification				
Test Pits Excavated	4 test pits	As per quotation, excavated by hand as TLB broke.				
Fieldwork and Sampling	4 samples	Sampled according to TMH 5 with relevance to SAICE Geotechnical Investigations Manual. I deviations were recorded.				
Analysis of samples	4 samples	Subjected to analysis according to SANS 3001:2011 GR1, GR3, GR10, GR20, GR30 and GR40				
Dynamic Cone Penetration Tests (DCP)	4 tests	As per quotation.				
Material Classifications	4 classifications	According to COLTO 1998 and TRH14				

<u>Phase 1:</u> Fieldwork, which includes the excavation of 4 Test pits, profiled to at least 2m deep or to shallower refusal for soil profiling and sampling purposes as part of the contract.

<u>Phase 2:</u> Laboratory testing to establish the characteristics of the in-situ materials on site done by **MAGARENG CIVIL LABORATORY (PTY) LTD**

The testing includes:

- Sieve Analysis and Grading
- Moisture content testing
- Atterberg Limits
- Moisture Density Relationship and Californian Bearing Ratio

Phase 3: Assessment Reporting done by N Klaas (Bsc. Civil), which includes the following:

- Geotechnical assessment of the site conditions and recommendations thereon
- Any Precautions to be taken with regards to the geotechnical conditions for the proposed development.
- Other requirements

This report outlines the method of the investigation and describes the geological conditions encountered. The results of the investigation are evaluated and conclusions drawn with regard to the above objectives.

2. DESCRIPTION OF THE SITE AND ACCESS

Paul Roux is a small town in the Free State province of South Africa that produces poplar wood for the safety match industry. It is situated on the N5 highway just outside Bethlehem. It was named after a well-known Dutch Reformed Church leader – Reverend Paul Roux.

Paul Roux form part of Dihlabeng Local Municipality jurisdiction situated within the Thabo Mofutsanyana District. The site geographical coordinates are 28°18'2.31"S 27°57'32.16"E.

Four (4) test pits were excavated to a depth of 2 meters or shallower encountered underground and the soil profiles were described according to the standard proposed by Jennings, Brink and Williams (1973).

Access to the site is obtained as follows: (Figure 1)

Figure 1: Site Access

Figure 2: Site Layout Plan

3. INVESTIGATION PROCEDURE

3.1 DESK STUDY

A desk study involving the perusal of the 1:250 000 geological maps as well as a detailed geological description of the area by Brink (1979) was undertaken to establish broad geological boundaries. Geological information obtained from the Council of Geoscience is depicted in Figure 3 within section 4.1.

3.2 FIELD-WORK

The field-work included the excavation of 4 test pits, TP1 to TP4, across the site, in order to determine the soil formations of the underlying soil and to obtain samples for possible laboratory testing.

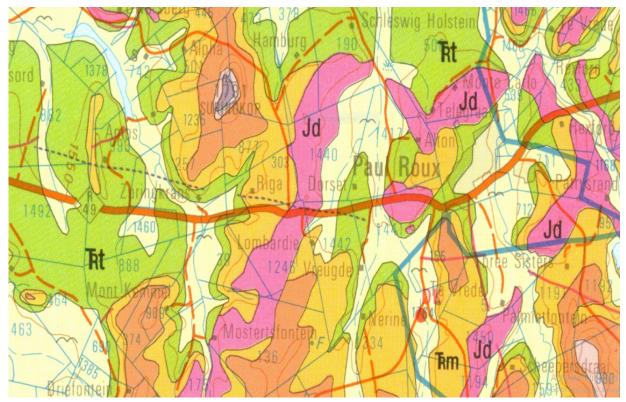
The test pits were excavated by hand to a depth of 2 meters or refusal. The test pits positions are indicated on Figure 2. The soil profiling of the 4 test pits was carried out according to the guidelines proposed by Jennings et al (1973). The profile logs of the test pits are given in Appendix A. Soil samples were taken from strategic horizons along the sides of the test pits for laboratory testing (Appendix B).

3.3 LABORATORY TESTING

Soil samples taken during the field-work stage were submitted to the laboratory for the following testing:

- a) Foundation Indicator Test: SANS 3001 GR1, GR10
- b) Optimum Moisture Content and Maximum Dry Density Test: SANS 3001: GR20 and GR30
- c) Californian Bearing Ratio of a Soil Sample: SANS 3001 GR40

The test results are included in Appendix B at the back of the report.



4. SITE GEOLOGY AND CLIMATE

4.1 GENERAL GEOLOGY

The geological map from the Council for Geosciences indicates that the site is underlain by fine- to medium-grained, yellow and khaki-coloured sandstone, red, purple and green mudstone of the Tarkastad Subgroup as part of the Beaufort Group. Post-Karoo dolerite intrusions may be encountered throughout the study area. The soil horizons consisted of silty, clayey and sandy materials with ferricrete, sandstone, mudstone and dolerite encountered in places. The profiles were recorded in the attached soil profiles included as Annexure A.

Figure 2: Geological Map of the Study Area

4.2 TOPOGRAPHY, DRAINAGE and SITE CLIMATE

Based on the macro-climatic regions as depicted in Figure 3, the site can be classified as moderate indicating that chemical weathering is the primary weathering mechanism in the warm wet summer periods, while mechanical weathering may be prominent in the cold dry winter periods.

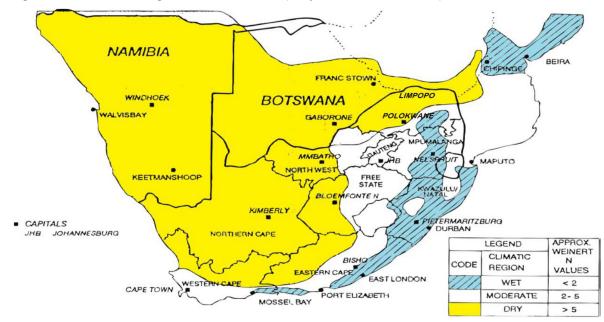


Figure 3: Macro-Climatic Regions of Southern Africa (Adapted from Weinert, 1980)

4.3 GEOHYDROLOGY

Seepage were encountered in all 4 test pits excavated indicating perched water tables due to the low permeabilities of the clayey materials typically encountered in the second and/or third layers in the soil profiles. It may also be due to the low permeability of bedrock encountered at depths ranging from 500mm to 1800mm.

5. SUMMARY OF LABORATORY RESULTS

Table 2: Summary of Laboratory Results

TEST PIT	DEPTH (mm)	MATERIAL DESCRIPTION	PLASTICITY INDEX	PASSING 0.425mm	PASSING 0.075mm	GRADING MODULUS	LIQUID LIMIT	MAXIMUM DRY DENSITY	OPTIMUM MOISTURE CONTENT	CBR AT 95% MOD AASHTO
1	980	Light Brown calcrete + sand	8.13	22	22.46	2.5154	26.24	1934	9.9	25
2	1100	River Sand	NP	87	36.34	0.8666	NP	1991	9.7	21
3	1200	Light brown, calcrete + Dolerate stone	NP	63	22.17	1.4283	NP	2139	7.7	21
4	1050	Light brown, calcrete + sand	NP	35	50.28	2.0272	NP	1839	14.7	26

The relevant engineering characteristics of the materials encountered have been evaluated by visual assessment during profiling and from the results of the field and laboratory testing; these may be summarized as follows:

5.1 POTENTIAL EXPANSIVENESS

The potential expansiveness of the materials encountered on the site was calculated according to the method proposed by Van der Merwe (1964). The following material characteristics are considered when applying this method:

- Clay content
- Plasticity index
- Liquid limit
- Linear shrinkage

The method of Van der Merwe (1964) was used to determine the potential heave of soil samples. In addition to Van der Merwe's method, the plasticity index and linear shrinkage of soil samples were used to indicate the soils potential expansiveness. From the laboratory test results the potential expansiveness of all soils on the site is as follows:

Test Pit	Depth (mm)	Plastic Index	Passing 0.045mm	Heave Potential	Estimated Heave (mm)
1	980	8.13	22	Low	0
2	1100	NP	87	N/A	N/A
3	1200	NP	63	N/A	N/A
4	1050	NP	35	N/A	N/A

Table 3 : Estimated Potential Heave

Low expansive encountered in Test Pit 1. The expansiveness could not be calculated for other Test Pits because the Plastic Index could not be determined.

Based on Van der Merwe's method (1964) heaving clays are considered to be a geotechnical constraint on site. Heaving clays may lead to significant upwards forces which may have an adverse effect on the proposed pipelines. Clayey materials should not be used for backfilling, bedding or blanket materials and should be cut to spoil in-so-far economically feasible.

The site classes are as indicated in Table 5, Section 7.1 of this report.

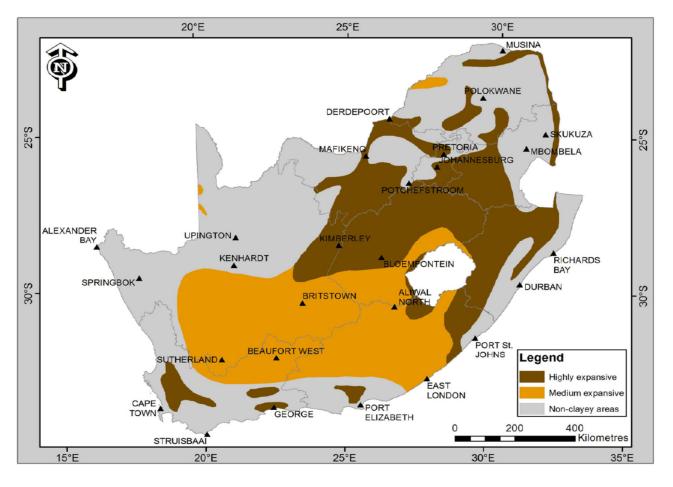


Figure 4: Regional Distribution of Expansive Clays

5.2 EXCAVATION CLASSIFICATION

Excavatibility is defined as the ease with which the ground can be dug to a depth of 1,5m. This is of importance for urban development as increased costs are associated with installing services or foundations in areas where difficulty is experienced during the investigation stage.

Generally the excavations on site can be described as **soft to intermediate** with an average depth of 1.082m being reached by hand.

In terms of the SABS 1200 the excavations can be classified as soft to intermediate to 1 meter in depth where after it becomes intermediate to hard.

5.3 ERODABILITY

The erosion of soils is a function of the resistance of slope materials to entrainment and transport, and the potential of slope processes that promotes erosion. The resistance of soil to erosion is also related to the mechanical strength, cohesion and particle size of the material self. There were signs of piping (erosion) on Test Pit 3.

5.4 GROUND SLOPE STABILITY

This refers to an area comprising unstable geological materials that can move either gradually (creep) or suddenly as a slump or a slide. The risk of movement is determined by factors such as the nature of the slope (solid rock, colluvial material), gradient of slope, role of water, type and nature of vegetation cover, seismicity and impact of human activities such as undermining of a slope. No such characteristics were observed during the investigation. The site and the gradient of slope are gentle and relatively flat. No unstable geological materials that can move either gradually (creep) or suddenly as a slump or a slide are visually present.

5.5 CALIFORNIA BEARING RATIO TEST

California Bearing Ratio (CBR) Tests were conducted to determine the estimated ultimate bearing capacity of the saturated material. This serves as a relatively conservative estimation of the bearing capacity of the in-situ material under the worst expected conditions with the assumption that naturally consolidated materials, especially those with overburden in excess of 500mm, will have the same (or higher) degree of consolidation than a MOD AASHTO of 95%.

A paper by W.P.M Black titled "The Calculation of Laboratory and In-situ Values of California Bearing Ratio from Bearing Capacity Data" indicates that the CBR values of material are roughly 10% of the ultimate bearing capacity (q_u) of the material. In the paper W.P.M Black suggests using a lower factor in order to obtain more conservative values.

The CBR values can be summarised as follows:

Test Pit	Depth (mm)	CBR value at 95% MOD AASHTO	ESTIMATED BEARING CAPACITY (kPa)
1	980	25	212.5
2	1100	21	178.5
3	1200	21	178.5
4	1050	26	221.0

Table 4: Estimated Ultimate Bearing Capacity (qu)

6. GEOTECHNICAL CONSIDERATIONS

6.1 ENGINEERING USE OF IN-SITU MATERIALS

It is not recommended to use the in-situ materials for bedding or blanket materials. Control testing should be conducted to exercise process control on the materials used for backfilling.

6.2 FLOOD LINE

An exact flood-line should be determined, but in this report it is suggested that 1:50 year flood line is adopted.

6.3 GENERAL

As the area is characterized by a potentially expansive material, good control and drainage of storm water runoff must be ensured to minimize ponding and ingress of water in the bedding profile. Moisture is often the trigger mechanism for swell in heaving soils and ingress of water can lead to significant differential heave and thus the following additional precautions should also be considered:

- a) Discharge of storm water/surface water in lined channels;
- It is recommended that site conditions be re-assessed once layout, invert levels and pipe diameters are finalized and where necessary additional geotechnical investigation be undertaken, especially if the material encountered on site varies from those described in this report.
- Please take note that although due care was taken to ensure an accurate and thorough report reflecting on the areas indicated by the design team the report is only applicable to the samples tested and the evaluations made by the on-site team.
- It should be noted that the surrounding area is associated with heaving clays, as is evident in the test results. Care should be taken with the in-situ materials. It is recommended that as much of the in-situ material as is economically feasible be removed from the site and backfilled with inert material, according to the design engineers' specifications.

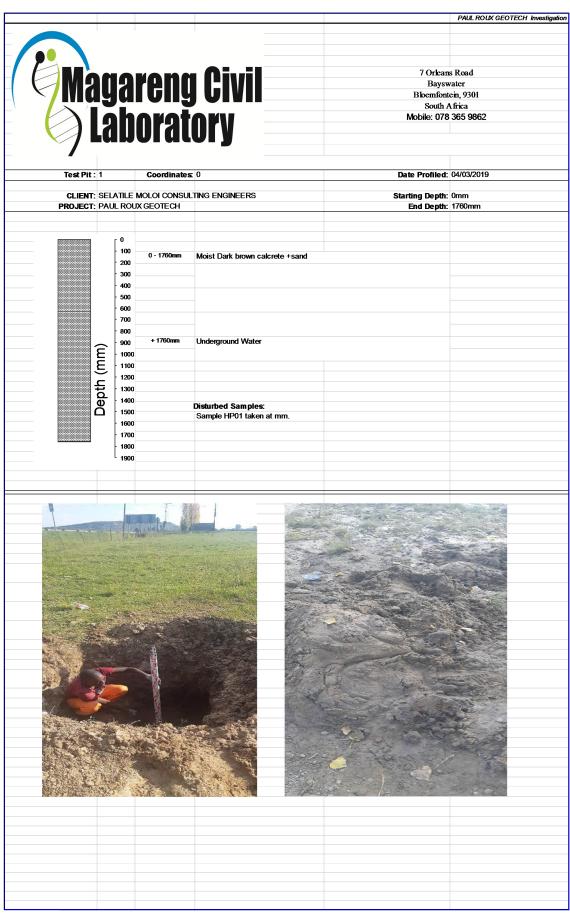
LIST OF REFERENCES

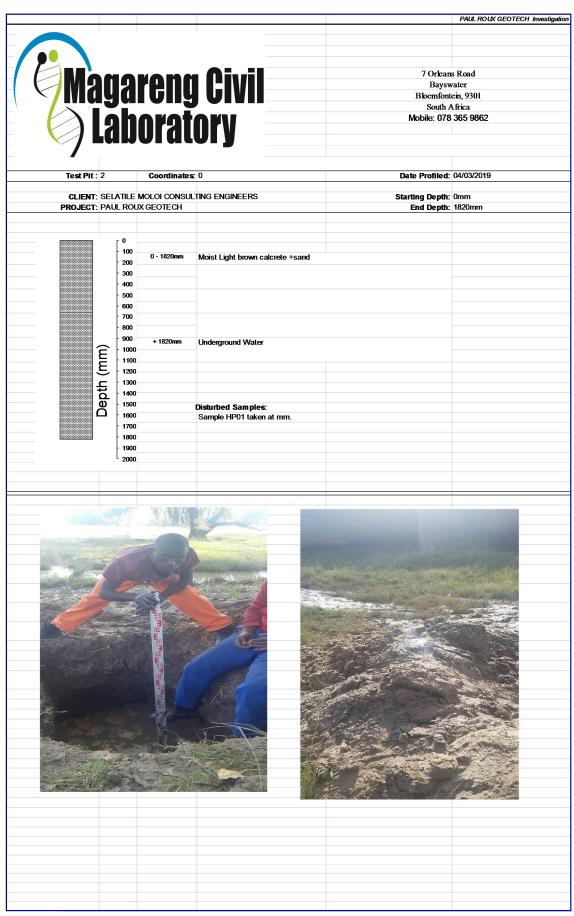
BRINK A B A. 1985.	ENGINEERING GEOLOGY OF SOUTHERN AFRICA. Building Publications: Pretoria.
DAS B M. 1994.	PRINCIPLES OF GEOTECHNICAL ENGINEERING . P W S Publishing Company: Boston.
HARMSE H J VON M.	DISPERSIEWE GROND EN HUL ONTSTAAN, IDENTIFIKASIE EN STABILISASIE. GROUND PROFILE NO. 22, APRIL 1980.
HANDY KH. 1973	COLLAPSIBLE IOESS IN IOWA. PROCEEDINGS OF THE SOIL SOCIETY OF AMERICA, VOL. 37, 281-284, 1973.
JENNINGS J E et al. 1973.	REVISED GUIDE TO SOIL PROFILING FOR CIVIL ENGINEERING PURPOSED IN SOUTHERN AFRICA. THE CIVIL ENGINEERING IN SOUTH AFRICA. Volume 15, No. 1, pp. 3-12. SAICE: Johannesburg.
JENNINGS J E & KNIGHT K. 1975.	A GUIDE TO CONSTRUCTION ON OR WITH MATERIALS EXHIBITING ADDITIONAL SETTLEMENT DUE TO "COLLAPSE" OF GRAIN STRUCTURE. PROCEEDINGS OF THE SIXTH REGIONAL CONFERENCE FOR AFRICA ON SOIL MECHANICS AND FOUNDATION ENGINEERING. pp. 99-105. Durban.
NHBRC. 1999.	NATIONAL HOME BUILDERS REGISTRATION COUNCIL, HOME BUILDING MANUAL PARTS 1 &2. REVISION NO.:1, 1999.
PECK R B et al. 1974.	FOUNDATION ENGINEERING. John Wiley & Sons: New York.
PRIKLONSKI V A, 1952	GRUNTOVEDENIE VITORAIC CHAST. GOSGEOLZDAT, MOSCOW, 1952. (ENGLISH: BELL F G, CULSHAW M G & NORTHMORE K J., THE METASTABILITY OF SOME GULL-FILL MATERIALS FROM ALLINGTON, KENT, UK. QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 36; ISSUE 3, 217 -229).
SCHMERTMANN J H. 1955.	THE UNDISTURBED CONSOLIDATION BEHAVIOUR OF CLAY. ASCE, Transactions, Volume 120.
SCHWARTZ K. 1985.	COLLAPSIBLE SOILS. THE CIVIL ENGINEERING IN SOUTH AFRICA, Volume 27, No. 7, pp. 379 - 393. SAICE: Johannesburg.
VAN DER MERWE D H. 1964.	THE PREDICTION OF HEAVE FROM THE PLASTICITY INDEX AND PERCENTAGE CLAY FRACTION OF CLAYS. CIVIL ENGINEER IN SOUTH AFRICA, 6, JUNE 1964.
SAVAGE P F. 2007.	EVALUATION OF POSSIBLE SWELLING POTENTIAL OF SOIL. Proceedings of the 26th South African Transport Conference (SATC 2007), 9 – 12 July 2007.

LIST OF APPENDICES

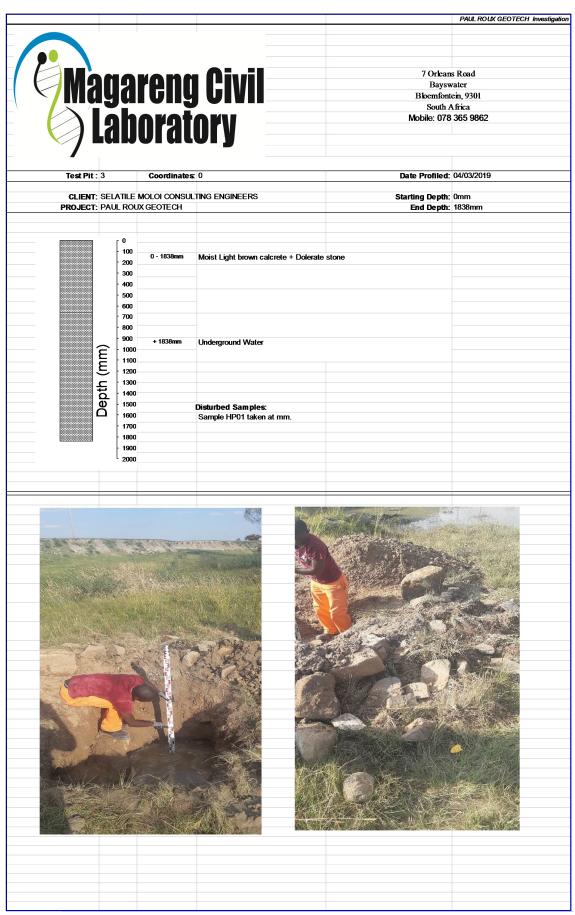
APPENDIX A: Soil Profile Sheets

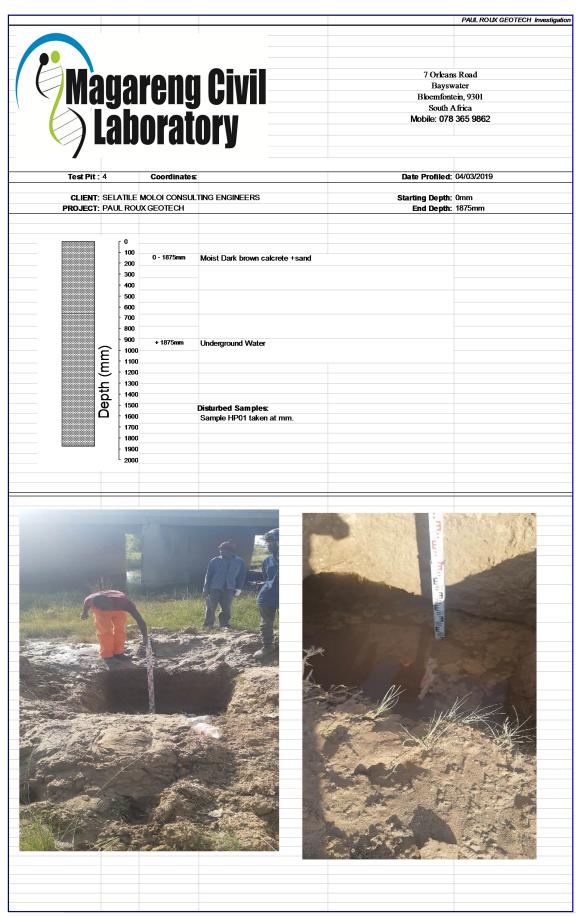
APPENDIX B: Laboratory Test Results


APPENDIX C: Dynamic Cone Penetrometer


APPENDIX A:

Soil Profile Sheets





7 Orleans Road, Bayswater, BLOEMFONTEIN, 9301 Tel: 078 365 9862 Email: patric@mcivilab.co.za

APPENDIX B:

Laboratory Test Results

Magareng Civil Laboratory		Project :		Investigation o Bridge Paul Roux	-	Lab No: Client No : Date :	MCL/SMCE/19 30-Apr-19
Km:			GPS X	Y Coordinates :			
				r oooramates .	South	East	Elevation
Layer :		1	1	1 Light Brow n	1		
Material descrip	tion :	Dark Brown Calcrete + Sand	Light Brow n Calcrete + Sand	Calcrete + Dolerate Stone	Light Brow n Calcrete + Sand		
Depth :		980	1100	1200	1050		
Chainage:							
Fest Point:		1	2	3	4		
Thickness mm :	:						
Rd/Sec/BP :							
ndication of	PHTH						
stabilisation :	HCL 75.0			05			
-	75.0 63.0			95 93			
	50.0	31		93			
-	37.5	51	100	86			
Sieve Analysis	28	79	100	85			
SANS 3001	20.0	74	99	82			
GR1-3	14	12	95	80			
-	5	8	92	76	4		
-	2.00	4	90	72	12		
-	0.425	22	87	63	35		
	0.075	22.46	36.34	22.17	50.28		
	2.0 - 0.425	22	87	63	96		
Soil Mortar	0.425 -0.300	2.31	83.17	57.61	94.1		
Son Mortar	0.300 -0.150	13.03	61.9	38.65	84.49		
70	0.150 -0.075	22.46	36.34	22.17	50.28		
	⊲0.075						
Atterberg	GM	2.5154	0.8666	1.4283	2.0272		
limits	LL	26.24	NP	NP	NP		
%	LS	4	NP	NP	NP		
SANS 3001 GR10	В	0.40	ND	ND			
GRIU	4000/	8.13 55	NP 53	NP 56	NP EQ		
California	100% 98%	40	36	38	59 43		
bearing		34	30	30	36		
Ratio	97% 95%	25	21	21	26		
%	93%	18	15	14	19		
SANS 3001GR40	90%	11	8	8	10		
	@ 100 %	2.19	0	0	0		
Swell %	@ 95 %	2.27	0	0	0	1	
	@ 90 %	2.39	0	0	0		
MDD SANS 3001 GR30&31	kg/m³	1934	1991	2139	1828		
OMC SANS 3001 GR30&31	%	9.9	9.7	7.7	14.7		
UCS	100%						
cPa	98%						
SANS 3001 GR	97%						
	95%						
	100%						
ITS	98%						
сPa	97%						
	95%						
nsitu Moist con							
COLTO	G-Class					.	00 4 40
Remarks :						Date :	30-Apr-19

APPENDIX C:

Dynamic Cone Penetrometer (DCP)

		0	Project :		PAUL ROUX	GEO Lab No:				
	Magareng Civil Laboratory		Rd name / No :			Client No:	MCL006			
			Section from :			Date :	5/4/2019			
		DYNA	AIC CON	IE PEN	ETROME	TER (DCP)				
				TMH 6 Met						
DCP	No.		1		Site					
Chain	age:				Layer type					
Offset:					Carriageway					
Field Data			Resolved Pa	arameters	Layer Summa	ary				
Depth Gnd Level (mm)	Interval (mm)	Blows	DPI (mm/Blow)	CBR (%)		mm/10 Blows				
40	0				0	50 100	0 150			
160	120	10	12.0	17						
260	100	10	10.0	22						
320	60	10	6.0	42						
345	25	10	2.5	>110	200					
380	35	10	3.5	84						
415	35	10	3.5	84						
470	55	10	5.5	47						
555	85	10	8.5	27	400	──┣╧┪────┤				
690	135	10	13.5	15						
830	140	10	14.0	14						
920	90	10	9.0	25						
1000	80	10	8.0	29	600		 			
							5			
					800		 _			
										
					1000					
					1200					
					1400					
					1600					
				<u> </u>	1800					
			1							
			+							
					2000					
			+		2000	· · ·				
REMARKS						Tech	:			
						Date				

	· · · · · · · · · · · · · · · · · · ·		Project :		PAUL ROUX C	SEO Lab No:		
- (() M	agareng	Civil	Rd name / No	:		Client No :	MCL	.006
- 🥎	agareng Laborato	ory —	Section from:			Date :	30-A	
		JYNAI		IE PEN TMH 6 Met	ETROMET	ER (DCP)		
DCF	^p No.		2		Site			
Chai	nage:				Layer type			
Offset:			Dec abrad De		Carriageway Layer Summar	-		
Depth Gnd			DPI	arameters		y		
Level (mm)	interval (mm)	Blow s	(mm/Blow)	CBR (%)		m m /10 Bi d		
40	0				0	100	200 3	800
80	40	10	4.0	70				
125	45	10	4.5	61				
175	50	10	5.0	53		1		
325	150	10	15.0	13	200			4
560	235	10	23.5	7				
765	205	10	20.5	9				
920	155	10	15.5	13		-		
					400			1
			1					
			+		600			1
	+				⊢			
						_		
	ļ				800			1
	ļ							
					1000			-
					1200			4
					1400			1
			+					
	+				⊢ ∣			
					-			
					1600			1
								1
					1800			-
								1
					2000			
					2000			
							1	
MARKS						Te	ech :	
	1						ate :	

			Project :		PAUL F	RUIX	SEO.	Lab No:			
- (🖏 Ma	gareng	Civil	Rd name / No		FAULT		JLO	Client No.		MCL006	
-	gareng aborato	Dry	Section from:				Date :		30-Apr-19		
								<u> </u>	0074010		
		DINA	MIC CON					DCF)		
				TMH 6 Met	hod ST6						
DCP No.			3								
Chain	age:				Layer	type					
Offset:				Carriag							
Field Data			Resolved Pa	arameters	Layer Su	mmar	у				
Depth Gnd ₋evel (mm)	Interval (mm)	Blows	DPI (mm/Blow)	CBR (%)			_	mm/10		170	
20	0				о	0	5	i0	100	150	
140	120	10	12.0	17							
260	120	10	12.0	17							
345	85	10	8.5	27							
390	45	10	4.5	61	200	+					
415	25	10	2.5	>110						J	
520	105	10	10.5	21	_						
580	60	10	6.0	42					-		
590 600	10 10	10 10	1.0	>110 >110	400	+					
600 605	5	10	0.5	>110							
610	5 5	10	0.5	>110							
615	5	10	0.5	>110							
620	5	10	0.5	>110	600	5					
625	5	10	0.5	>110		1					
635	10	10	1.0	>110		5					
645	10	10	1.0	>110	800						
650	5	10	0.5	>110			7				
660	10	10	1.0	>110			ل م				
670	10	10	1.0	>110							
680	10	10	1.0	>110	1000						
695	15	10	1.5	>110							
705	10	10	1.0	>110							
715	10	10	1.0	>110							
725	10	10	1.0	>110	1200	+					
740	15	10	1.5	>110							
755	15	10	1.5	>110							
775	20	10	2.0	>110							
810	35	10	3.5	84	1400	+					
850	40	10	4.0	70							
890	40	10	4.0	70 84							
925	35	10	3.5	04	-						
					1600						
					1800						
					1000						
					2000						
					1 _000						
REMARKS									Tech :		

Magareng Civil Laboratory		Project : Rd name / No	PAUL	ROUX	GEO	Lab No: Client No	:		CL006		
			Section from:				Date :		30	-Арг-19	
		DYNA	NIC CON	IE PEN	ETRO	MET	ER ((DCP)		
				TMH 6 Met							
DCP No.			4	Site							
Chain	age:				Layer	r type					
Offset: Field Data		Resolved Pa	Carriageway Layer Summary								
Depth Gnd Interval Level (mm) (mm)		Blows	DPI (mm/Blow)	CBR (%)	Layer Summary mm/10 Blows						
45	0		,,			-50	0	50	100	150	200
185	140	10	14.0	14							
285	100	10	10.0	22							
415	130	10	13.0	16							
572	157	10	15.7	12		-20]	
555	-17	10	-1.7	>110		20	-				
612	57	10	5.7	45							
647	35	10	3.5	84							
658	11	10	1.1	>110		40	o				
675	17	10	1.7	>110							
685	10	10	1.0	>110							
700	15	10	1.5	>110							
725	25	10	2.5	>110		-60	0				_
760	35	10	3.5	84			5				
815	55	10	5.5	47			ا ۳				
875	60	10	6.0	42				L,			
921	46	10	4.6	59		-80	0	_ L _	-	_	_
						100	0			_	-
						120	0				\neg
						140					
			-								
						400					
						-160					
						180					
							~				
						200					
						200					-
									_		
REMARKS									Tech :		

