
AVIFAUNAL SPECIALIST STATEMENT

PART 1 EA AMENDMENT APPLICATION - SPECIALIST STATEMENT:
AMENDMENT OF THE ENVIRONMENTAL AUTHORISATION FOR THE PROPOSED
75MW PLATSJAMBOK EAST PHOTOVOLTAIC (PV) SOLAR ENERGY FACILITY
(SEF), LOCATED NEAR PRIESKA IN THE NORTHERN CAPE PROVINCE OF SOUTH
AFRICA ON SEPTEMBER 2012 (DFFE REFERENCE NO.: 12/12/20/2320/2).

Expertise of Specialist

Curriculum vitae: Chris van Rooyen

Profession/Specialisation : Avifaunal Specialist

Highest Qualification : BA LLB

Nationality : South African

Years of experience : 26 years

Key Experience

Chris van Rooyen has decades of experience in the assessment of avifaunal interactions with industrial infrastructure. He was employed by the Endangered Wildlife Trust as head of the Eskom-EWT Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has consulted in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. He also has extensive project management experience and he has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author and/or co-author of 17 conference papers, co-author of two book chapters, several research reports and the current best practice guidelines for avifaunal monitoring at wind farm sites. He has completed around 130 power line assessments; and has to date been employed as specialist avifaunal consultant on more than 50 renewable energy generation projects. He has also conducted numerous risk assessments on existing power lines infrastructure. He also works outside the electricity industry and he has done a wide range of bird impact assessment studies associated with various residential and industrial developments. He serves on the Birds and Wind Energy Specialist Group which was formed in 2011 to serve as a liaison body between the ornithological community and the wind industry.

Expertise of Specialist

Curriculum vitae: Albert Froneman

Profession/Specialisation : Avifaunal Specialist

Highest Qualification : MSc (Conservation Biology)

Nationality : South African Years of experience : 24 years

Key Qualifications

Albert Froneman (Pr.Sci.Nat) has more than 18 years' experience in the management of avifaunal interactions with industrial infrastructure. He holds a M.Sc. degree in Conservation Biology from the University of Cape Town. He managed the Airports Company South Africa (ACSA) – Endangered Wildlife Trust Strategic Partnership from 1999 to 2008 which has been internationally recognized for its achievements in addressing airport wildlife hazards in an environmentally sensitive manner at ACSA's airports across South Africa. Albert is recognized worldwide as an expert in the field of bird hazard management on airports and has worked in South Africa, Swaziland, Botswana, Namibia, Kenya, Israel, and the USA. He has served as the vice chairman of the International Bird Strike Committee and has presented various papers at

international conferences and workshops. At present he is consulting to ACSA with wildlife hazard management on all their airports. He also an accomplished specialist ornithological consultant outside the aviation industry and has completed a wide range of bird impact assessment studies. He has co-authored many avifaunal specialist studies and pre-construction monitoring reports for proposed renewable energy developments across South Africa. He also has vast experience in using Geographic Information Systems to analyse and interpret avifaunal data spatially and derive meaningful conclusions. Since 2009 Albert has been a registered Professional Natural Scientist (reg. nr 400177/09) with The South African Council for Natural Scientific Professions, specialising in Zoological Science.

1 BACKGROUND

South Africa Mainstream Renewable Power Platsjambok East (Pty) Ltd (hereafter referred to as "Mainstream") was issued with an Environmental Authorisation (EA) for the proposed 75MW Platsjambok Photovoltaic (PV) Solar Energy Facility (SEF), located near Prieska in the Siyathemba Local Municipality, Pixley ka Seme District Municipality in the Northern Cape Province of South Africa on September 2012 (DFFE Reference No.: 12/12/20/2320/2).

Subsequent to the issuing of the original EA in September 2012, the following amendments have been undertaken and granted for the authorised SEF:

- The EA was amended on 19 of June 2015 to extend the validity period of the EA and to change the contact details of the EA holder (DFFE Reference No.: 12/12/20/2320/4/AM1).
- The EA was amended on 22 of September 2017 to extend the validity period of the EA (DFFE Reference No.: 12/12/20/2320/4/AM2).
- The EA was amended on 07 of September 2020 to extend the validity period of the EA and change contact details of EA holder (DFFE Reference No.: 12/12/20/2320/4/AM3).
- The EA was amended on 21 May 2021 to split the EA into two portions, the IPP portion (DFFE Reference No.: 12/12/20/2320/4/1).
- The EA was amended on 21 May 2021 to split the EA into two portions, the Eskom portion (DFFE Reference No.: 12/12/20/2320/4/2).

The Platsjambok East Photovoltaic (PV) Solar Energy Facility is to be constructed on the Remainder of Platsjambok Farm No 102.

The following infrastructure have been authorised by the DFFE:

- Solar PV facility with a capacity to generate 75MW
- The panel arrays of approximately 15m x 4m in the area
- Office and maintenance buildings
- Internal access roads
- Cabling to connect PV arrays to DC to AC inverters
- On-site 33/132kV IPP sub-station
- 132kV overhead power lines to connect to an existing power line that traverses the site or Kronos substation (i.e. three power lines authorised but only one will be constructed). The overhead power lines will be assessed in a separate specialist statement.

See Figure 1 and 2 for the location and lay-out of the proposed PV development.

Mainstream is now proposing to undertake a Part 1 EA Amendment process to extend the validity of the Environmental Authorisation by an additional 3 years.

The key motivating factor for the request to amend the EA validity period, is to ensure that the applicant has a project that is compliant with the requirements of the Department of Mineral Resources and Energy ("DMRE") (previously the Department of Energy) Renewable Energy Independent Power Producer

Procurement ("REIPPP") Programme, specifically with regards to the requirement for a valid EA. Due to various reasons, outside of the Applicant's control, the planned announcements and roll-out of bidding rounds have not occurred as previously planned for. As a result, the REIPPP Programme has been delayed, resulting in the project not yet being selected as a preferred bidder, further necessitating the need for the EA validity period to be extended.

Extension of the validity of the EA will ensure that the EA remains valid for the undertaking of the authorised activities such that the project can be bid into future bidding rounds of the REIPPP Programme or similar programmes.

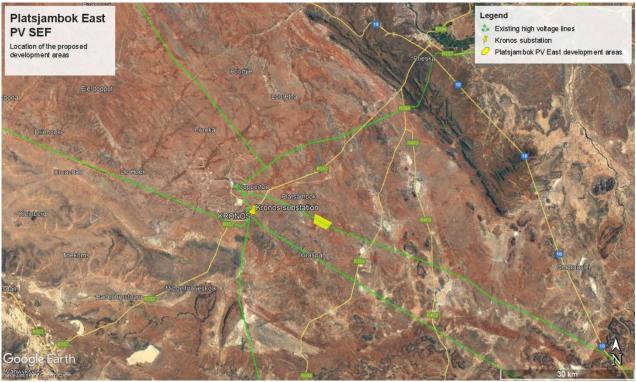


Figure 1: The locality of the proposed development area, showing the location of the Kronos Substation and existing high voltage powerlines.

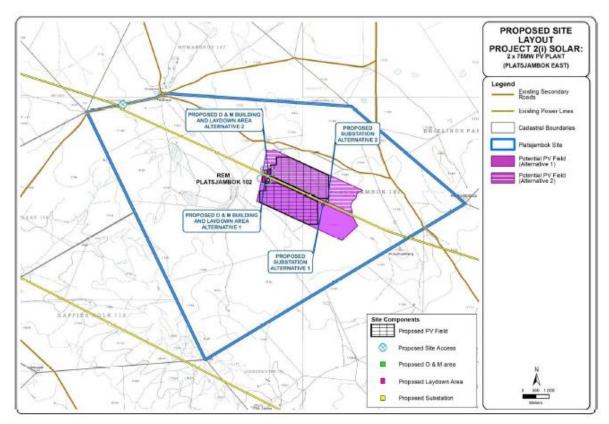


Figure 2: The layout of the proposed Platsjambok East PV development.

2 TERMS OF REFERENCE

The following terms of reference are applicable to this specialist comment:

- Undertake a site visit to the authorised Platsjambok East PV project site and compile a specialist comment/ statement addressing the following:
 - The implications of the proposed amendment, if any, in terms of the potential impacts within your area of expertise;
 - An investigation to determine if the baseline environment has changed significantly since the original assessment, which was conducted approximately 10 years ago. This will be required for the proposed amendment to extend the validity period of the EA.
 - A statement as to whether or not the proposed amendments will result in an increased level or change in the nature of the impact, which was initially assessed and considered when application was made for the environmental authorisation.
 - o If the mitigation measures provided in the initial assessment are still applicable; or if there are any new mitigation measures which need to be included into the EA, should the request to extend the commencement period be granted by the Department.

3 FINDINGS OF PREVIOUS ASSESSMENTS

The key findings relevant to the Platsjambok East site in the original avifaunal impact assessment report by Paul da Cruz (SiVEST 2013) are summarised below:

- The climate of the study area has important limiting influence on the biota on the site. The very low rainfall, coupled with significant extremes in average temperatures entails that the area is a hostile environment that is not suitable for a high density of biota, including bird life. Naturally- occurring surface water is completely absent from the site, and there is not an abundance of plant or faunal life to support large or diverse bird populations.
- Rocky Karoo scrubland plains is the predominant natural habitat type that occurs across most of the site. Very low Karoo-type scrubveld vegetation characterised by a very low density of vegetation occurs on very flat to gently undulating plains. These plains are often very rocky, with a sparse density of open ground, with very little grass cover. These plains appear to be very important for the game bird species on the site as both Korhaan species and the Ludwig's Bustards recorded on the site were mostly encountered in this habitat type. They are also inhabited by a number of smaller bird species typically encountered in such vegetation all over the Karoo.
- Sandy Bushmanland grassy Shrubland habitat type appears to be exclusively associated with areas of sandy soils. These sandy soils appear to be of alluvial origin, and provide suitable rooting areas for a few grass species that occur, including a few Stipagrostis species and some Eragrostis species. Karootype scrubs also occur in this habitat type, but are typically larger in size than the scrubs found on the above habitat type. There is typically a much greater vegetation cover in this habitat type. These sandy grassy plains also appear to be well-utilised by both Korhaan species encountered on the site, as well as a similar range of smaller bird species typical of the Karoo.
- Low quartzite ridges occur exclusively in the eastern-most part of the Platsjambok East component of the development site. These occur as very low, linear features. Importantly however, the presence of extensive bedrock outcropping on these ridges has allowed the proliferation of *Vachellia melifera* shrubs, as well as a reasonable number of Shepherds Trees (*Boscia foetida*). This appears to be natural habitat on the site with the most diverse avifaunal life encountered, with a number of mostly passerine species encountered (especially where the rocky ridges intersect ephemeral drainage lines along which similar vegetation is present). A number of ephemeral drainage lines are present across the site. In places these drainage lines are no more than a poorly defined valley bottom with no discernible vegetation change, but some drainage lines are characterised by taller shrubs that the surrounding Karoo plains and are thus important. Due to this factor, the drainage lines are likely to support a slightly higher density of bird species.
- Although not a habitat as such, other human-related infrastructure that occurs site is very important for a number of bird species, particularly as roosting, perching and even nesting areas. The Hydra Cuprum 132kV overhead line (OHL) traverses the site, and it is well-utilised by a number of species for perching and roosting, including Pied Crows, and some raptor species. There appears to be evidence from information provided by local farmers and from bird sightings on the site that certain raptors utilise the existing power lines as 'corridors' along which to move, and also as roosting perches when visiting the area.
- Both alternatives are located within the rocky Karoo scrubveld habitat which is common on the site (although the areas for both extend into the sensitive area associated with the quartzite ridges, but the proposed layouts do not extend into this area). Thus in terms of habitat destruction, the transformation associated with either alternative in a habitat context is relatively small in terms of the percentage of the total area covered by this habitat type on the site and in the wider study area.

- Although the eastern PV component on the Platsjambok site is not considered a fatal flaw, it is strongly
 recommended that the eastern PV component be shifted to the south of the current alternatives, away
 from a 'movement corridor' between the quartzite ridges and the pans, thus not being located in close
 proximity to the most sensitive areas on the site.
- No detailed bird monitoring has been undertaken on the site to establish trends of species occurrence
 in terms of species-specific spatial distribution and seasonality. There is thus insufficient data on which
 to confidently assess the likely impacts of the proposed development on the priority species that occur
 in the study area.
- A number of Red Data species could occur at the site. These are listed in Table 1:

Table 1: Red Data species potentially occurring at the proposed Mierdam PV site (SiVEST 2013)

Species	Scientific Name	Conservation Status (Taylor <i>et al.</i> 2015)	Recorded site?	on	the
Common name	Scientific name	Category			
White-backed Vulture	Gyps africanus	Critically Endangered			
Secretarybird	Sagittarius serpentarius	Vulnerable	Y		
Tawny Eagle	Aquila rapax	Endangered			
Martial Eagle	Polemaetus bellicosus	Endangered			
Lanner Falcon	Falco biarmicus	Vulnerable			
Blue Crane	Anthropoides paradiseus	Near threatened			
Kori Bustard	Ardeotis kori	Near threatened			
Ludwig's Bustard	Neotis Iudwigii	Endangered	Υ		
Sclater's Lark Red Lark	Spizocorys sclateri Certhilauda burra	Near Threatened Vulnerable	Y		

A number of overall impact tables have been prepared in terms of three primary impacts
that the solar components could exert on the avifauna on the site. These are presented
below.

Loss of Physical Habitat

IMPACT TABLE							
Environmental Parameter	Loss of / transformation of habitat associated with						
	the proposed solar plant						
Issue/Impact/Environmental Effect/Nature	The construction of the PV arrays could result in loss of physical habitat for birds in the study area, thus potentially having an impact on the occurrence of birds on the site.						

Extent	Site (1)						
Probability	Definite (4)						
Reversibility	Partly reversible (2)						
Irreplaceable loss of resources	Marginal loss of resources (2)						
Duration	Long term (3)						
Cumulative effect	Low cumulative impact (2)						
Intensity/magnitude	Medium (2)						
Significance Rating	Medium Negative Impact						
		Post mitigation					
	Pre-mitigation impact rating	impact rating					
Extent	1	1					
Probability	4	4					
Reversibility	2	2					
Irreplaceable loss	2	2					
Duration	3	3					
Cumulative effect	2	2					
Intensity/magnitude	2	2					
Significance rating	-28 (low negative)	- 28 (low negative)					
	Due to the limitations of this stu	dy described in various					
	earlier parts of this report, it is cri	tical that a full seasonal					
A Area Constitution of the	bird monitoring programme be						
Mitigation measures	(the pre-construction bird mon	-					
		prematurely at the request of the proponent due to					
	uncertainties relating to the proposed SKA project). This						
		monitoring would be critical to acquire a better					
	understanding of the trends rela	-					
	on the site of the priority specie	•					
	monitoring should comply w	iui uie best practice					
	guidelines for avian monitoring.						

Disturbance Factor / Creation of Barrier effect

	MPACT TABLE					
Environmental Parameter	Disturbance Factor / Creation of	f Barrier effect				
Issue/Impact/Environmental Effect/Nature	The construction of the PV	arrays could result in				
·	disturbance of birds and crea	te a barrier effect that				
	could affect the continued prese	ence of sensitive species				
	in the area, and which coul	•				
	of birds onto the, and within the	site.				
Extent	Local / District (2)					
Probability	Possible (2)					
Reversibility	Partly reversible (2)					
	(2)					
Irreplaceable loss of resources	Marginal loss of resources (2)					
Duration	Long term (3)					
Cumulative effect	Low cumulative impact (2)					
Intensity/magnitude	Medium (2)					
Significance Rating	Medium Negative Impact					
		Post mitigation				
	Pre-mitigation impact rating	impact rating				
Extent	2	2				
Probability	2	2				
Reversibility	2	2				
Irreplaceable loss	2	2				
Duration	3	3				
Cumulative effect	2	2				
Intensity/magnitude	2	2				
Significance rating	-26 (low negative)	- 26 (low negative)				
Mitigation measures	Due to the limitations of this st	udy described in various				
	earlier parts of this report, it is o	ritical that a full seasonal				
	bird monitoring programme be r	einstated on the site (the				
	pre-construction bird monitor	oring was terminated				
	prematurely at the request of the proponent due to					
	uncertainties relating to the proposed SKA project). This					
	monitoring would be critical	to acquire a better				
	understanding of the trends rela	ting to the occurrence on				
	the site of the priority specie	s. The pre-construction				
	monitoring should comply v	vith the best practice				
	guidelines for avian monitoring.					

4 SUBSEQUENT ASSESSMENTS

The site was inspected on 05 October 2022 to assess whether the conditions at the site have changed materially from when the original assessment was done in March 2012. The development area was inspected with a 4 x 4 vehicle and on foot for one day. Photographs of the development area were taken to record the habitat and a bird list was compiled.

5 RECEIVING ENVIRONMENT

5.1 DFFE National Screening Tool

The project development area is classified as **High** sensitivity for avifauna, according to the DFFE online screening tool. The development sites contain confirmed habitat for species of conservation concern (SCC), as defined in the Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020)¹, namely listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as Critically Endangered, Endangered, Vulnerable, Near threatened or Data Deficient. The classification of High sensitivity is linked to the potential occurrence of Ludwig's Bustard *Neotis ludwigii* (Regionally and Globally Endangered) (Figure 3).

The occurrence of SCC was confirmed during the original surveys in March 2012. Ludwig's Bustard, Secretarybird (Globally Endangered, Regionally Vulnerable) and Sclater's Lark (Globally and Regionally Near threatened) were recorded at the site. The subsequent site visit in October 2022 confirmed that the habitat has not changed and that habitat for the above listed SCC, as well as the other SCC listed in Table 1, and Lappet-faced Vulture *Torgos tracheliotis* (Globally and Regionally Endangered) exists at the development area. This classification is assessed to be accurate as far as the potential presence of SCC is concerned, based on actual conditions recorded on the ground during the site visits in March 2012, and the subsequent site visit conducted in October 2022.

See Appendix 1 for the Site Sensitivity Report

¹ The wind theme is only applicable to developments that are located in Renewable Energy Development Zones.

Where only a sensitive plant unique number or sensitive animal unique number is provided in the screening report and an assessment is required, the environmental assessment practitioner (EAP) or specialist is required to email SANBI at eiadatarequests@sanbi.org.za listing all sensitive species with their unique identifiers for which information is required. The name has been withheld as the species may be prone to illegal harvesting and must be protected. SANBI will release the actual species name after the details of the EAP or specialist have been documented.

Very High sensitivity	High sensitivity	Medium sensitivity	Low sensitivity
	X	3	111111111

Sensitivity Features:

Sensitivity	Feature(s)
High	Aves-Neotis ludwigii

Figure 3: The classification of the Project Site according to the animal species theme in the DFFE National Screening Tool. The High sensitivity is linked to the possible occurrence of Ludwig's Bustard *Neotis Iudwigii* (Regionally and Globally Endangered).

5.2 Avifauna

Bird distribution data of the South African Bird Atlas 2 (SABAP 2) was obtained from the University of Cape Town (2022), as a means to ascertain which species occur within the broader area i.e., within a block consisting of 8 pentads where the proposed project development area will be located (Figure 4). A pentad

grid cell covers 5 minutes of latitude by 5 minutes of longitude (5' \times 5'). Each pentad is approximately 8 \times 7.6 km. From 2007 to date, a total of 68 full protocol lists (i.e., surveys lasting a minimum of two hours each) have been completed for this area. In addition, 36 ad hoc protocol lists (i.e., surveys lasting less than two hours but still yielding valuable data) have been completed. The broader area was selected on the basis of the number of checklists that had been completed, in order to get a more representative view of the avifauna that could occur at the project site.

According to the SABAP2 project surveys, a total of 152 species occurs in the broader area (Table 1). The species that were recorded on and around the project development area during the site visit on 5 October 2022 are listed in Table 1.

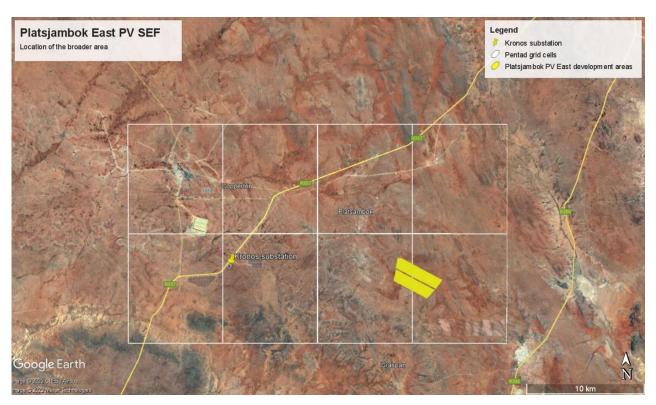


Figure 4: The broader area where the project development area is located.

Table 2: Avifauna recorded by SABAP 2 and during surveys in the broader area in March 2012 and at the Platsjambok East and West development areas in October 2022. Species of conservation concern (SCC) are shaded in green

Species name	Scientific name	Full protocol reporting rate	Ad hoc protocol reporting rate	Global status	Regional status		Recorded during monitoring in the broader area 2012	Recorded at Platsjambok East and West 2022
Acacia Pied Barbet	Tricholaema leucomelas	54.41	11.11	-	-	х		
African Black Swift	Apus barbatus	0.00	2.78	-	-	Х		
African Hoopoe	Upupa africana	17.65	0.00	-	-			
African Palm Swift	Cypsiurus parvus	1.47	0.00	-	-			
African Pipit	Anthus cinnamomeus	10.29	5.56	-	-	х		
African Red-eyed Bulbul	Pycnonotus nigricans	25.00	2.78	-	-	х		
African Sacred Ibis	Threskiornis aethiopicus	1.47	0.00	-	-			
Alpine Swift	Tachymarptis melba	5.88	0.00	-	-			

Succion name	Scientifia nome	Full protocol reporting rate	Ad hoc protocol reporting rate	Global status	Regional status	Recorded during monitoring in the broader area 2012	Recorded at Platsjambok East and West 2022
Species name Ant-eating Chat	Scientific name Myrmecocichla formicivora	66.18	25.00	-	-	_	x
	Melaniparus cinerascens	19.12	0.00	-	-	Х	^
Ashy Tit Barn Swallow	Hirundo rustica	38.24	5.56	-	-	V	х
Black-chested Prinia	Prinia flavicans	72.06	11.11	-	-	X	^
Black-chested Snake Eagle	Circaetus pectoralis	10.29	2.78	-	-	X	
Black-eared Sparrow-Lark	Eremopterix australis	33.82	5.56	_	-	^	
Black-faced Waxbill	Brunhilda erythronotos	2.94	0.00		-		
Black-headed Canary	Serinus alario	2.94	5.56		-		
Blacksmith Lapwing	Vanellus armatus	10.29	2.78	-	-	х	Х
Black-throated Canary	Crithagra atrogularis	25.00	2.78	-	-		Α
Black-winged Kite	Elanus caeruleus	0.00	2.78	-	-	Х	
Black-winged Stilt	Himantopus himantopus	2.94	8.33	-	-		х
Bokmakierie	Telophorus zeylonus	60.29	0.00	-	-		Α
	Hieraaetus pennatus	7.35	0.00	-	-	Х	
Booted Eagle Bradfield's Swift	Apus bradfieldi	2.94	0.00	-	-		
	Anthus vaalensis	0.00	5.56	-	-		
Buffy Pipit Burchell's Courser	Cursorius rufus	1.47	0.00	_	VU		
Cape Bunting	Emberiza capensis	16.18	0.00	-	-		
	<u>'</u>	8.82	0.00	-	-		
Cape Crow Cape Penduline Tit	Corvus capensis	11.76	8.33	-	-		
	Anthoscopus minutus			-			Х
Cape Robin-Chat Cape Shoveler	Cossypha caffra Spatula smithii	7.35 1.47	0.00	-	-		Α
Cape Shoveler Cape Sparrow	Passer melanurus	77.94	16.67	-	-	Х	
Cape Sparrow Cape Teal	Anas capensis	2.94	0.00	_	-	^	
Cape Teal Cape Turtle Dove	Streptopelia capicola	61.76	0.00	-	-	Х	
Cape Vulture	Gyps coprotheres	0.00	2.78	VU	EN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Cape Wagtail	Motacilla capensis	36.76	5.56	-	-	v	
Cape Wagtali Cape Weaver	Ploceus capensis	1.47	0.00	-	-	Х	
Cape White-eye	Zosterops virens	1.47	0.00		-		
Capped Wheatear	Oenanthe pileata	33.82	22.22	_	-	Х	
Chat Flycatcher	Melaenornis infuscatus	70.59	16.67	_	-	X	х
Chestnut-vented Warbler	Curruca subcoerulea	36.76	0.00		_	X	
Cloud Cisticola	Cisticola textrix	0.00	0.00	_	-	^	
Common Buzzard	Buteo buteo	2.94	0.00	_	-		
Common Greenshank	Tringa nebularia	1.47	0.00	_	_		
Common Ostrich	Struthio camelus	1.47	2.78	_	_	х	
Common Quail	Coturnix coturnix	1.47	0.00	_	_	^	
Common Sandpiper	Actitis hypoleucos	1.47	0.00	_	_		
Common Swift	Apus apus	13.24	0.00	-	_	х	Х
Crested Barbet	Trachyphonus vaillantii	1.47	0.00	_	_	, A	
Crowned Lapwing	Vanellus coronatus	10.29	2.78	_	-		
Desert Cisticola	Cisticola aridulus	42.65	2.78	_	-	Х	
Diederik Cuckoo	Chrysococcyx caprius	7.35	2.78	_	-		
Double-banded Courser	Rhinoptilus africanus	32.35	2.78	_	_	Х	
Dusky Sunbird	Cinnyris fuscus	26.47	5.56	_	-	X	
-	-	63.24	11.11	-	-	X	
Eastern Clapper Lark	I Miratra fasciolata	(),) / 4					
Eastern Clapper Lark Egyptian Goose	Mirafra fasciolata Alopochen aegyptiaca	23.53	2.78	_	_	x	

Species name	Scientific name	Full protocol reporting rate	Ad hoc protocol reporting rate	Global status	Regional status	Recorded during monitoring in the broader area 2012	Recorded at Platsjambok East and West 2022
Fairy Flycatcher	Stenostira scita	5.88	0.00	-	_	_	
Familiar Chat	Oenanthe familiaris	48.53	16.67	_	_	х	
Fawn-colored Lark	Calendulauda africanoides	41.18	5.56	-	-	x	
Fiscal Flycatcher	Melaenornis silens	17.65	2.78	_	_	x	
Greater Kestrel	Falco rupicoloides	29.41	11.11	-	-	x	
Greater Striped Swallow	Cecropis cucullata	38.24	5.56	-	-	х	
Grey Tit	Melaniparus afer	4.41	0.00	-	-		
Grey-backed Cisticola	Cisticola subruficapilla	23.53	0.00	-	-	х	Х
Grey-backed Sparrow-Lark	Eremopterix verticalis	54.41	5.56	-	-	х	
Hadada Ibis	Bostrychia hagedash	23.53	2.78	-	-	х	
Helmeted Guineafowl	Numida meleagris	25.00	0.00	-	-	х	Х
House Sparrow	Passer domesticus	41.18	11.11	-	-	х	
Jackal Buzzard	Buteo rufofuscus	2.94	0.00	-	-		Х
Kalahari Scrub Robin	Cercotrichas paena	50.00	0.00	-	-	х	
Karoo Chat	Emarginata schlegelii	5.88	0.00	-	-		
Karoo Eremomela	Eremomela gregalis	2.94	0.00	-	-		Х
Karoo Korhaan	Eupodotis vigorsii	73.53	36.11	_	NT	х	
Karoo Long-billed Lark	Certhilauda subcoronata	36.76	0.00	-	-	х	
Karoo Prinia	Prinia maculosa	1.47	0.00	-	-		
Karoo Scrub Robin	Cercotrichas coryphoeus	51.47	11.11	-	-	х	Х
Karoo Thrush	Turdus smithi	14.71	0.00	-	-		
Kittlitz's Plover	Charadrius pecuarius	1.47	0.00	-	-		
Kori Bustard	Ardeotis kori	16.18	2.78	NT	NT		
Lanner Falcon	Falco biarmicus	5.88	0.00	-	VU		
Lappet-faced Vulture	Torgos tracheliotos	1.47	0.00	EN	EN		
Large-billed Lark	Galerida magnirostris	16.18	11.11	-	-	х	
Lark-like Bunting	Emberiza impetuani	69.12	25.00	-	-	х	
Laughing Dove	Spilopelia senegalensis	41.18	5.56	-	-	х	Х
Layard's Warbler	Curruca layardi	5.88	0.00	-	-		
Lesser Grey Shrike	Lanius minor	5.88	2.78	-	-		
Lesser Kestrel	Falco naumanni	0.00	5.56	-	-		
Little Grebe	Tachybaptus ruficollis	2.94	0.00	-	-		
Little Swift	Apus affinis	30.88	0.00	-	-	х	
Long-billed Crombec	Sylvietta rufescens	25.00	0.00	-	-	х	
Ludwig's Bustard	Neotis ludwigii	41.18	16.67	EN	EN	х	Х
Martial Eagle	Polemaetus bellicosus	2.94	5.56	EN	EN		
Mountain Wheatear	Myrmecocichla monticola	13.24	8.33	-	-	х	
Namaqua Dove	Oena capensis	36.76	8.33	-	-	х	
Namaqua Sandgrouse	Pterocles namaqua	50.00	5.56	-	-	х	
Nicholson's Pipit	Anthus nicholsoni	17.65	5.56	-	-		
Northern Black Korhaan	Afrotis afraoides	80.88	25.00	-	-	х	Х
Orange River White-eye	Zosterops pallidus	0.00	2.78	-	-		Х
Pale Chanting Goshawk	Melierax canorus	82.35	22.22	-	-	х	Х
Pale-winged Starling	Onychognathus nabouroup	4.41	0.00	-	-		
Pied Crow	Corvus albus	83.82	33.33	-	-	х	
Pied Starling	Lamprotornis bicolor	1.47	0.00	-	-		Х
Plain-backed Pipit	Anthus leucophrys	2.94	0.00	-	-		Х
Pririt Batis	Batis pririt	25.00	2.78	-	-	х	

Species name	Scientific name	Full protocol reporting rate	Ad hoc protocol reporting rate	Global status	Regional status	Recorded during monitoring in the broader area 2012	Recorded at Platsjambok East and West 2022
Species name Pygmy Falcon	Polihierax semitorquatus	10.29	2.78	-	_	x	
Quailfinch	Ortygospiza atricollis	1.47	0.00		_	X	
Red-backed Shrike	Lanius collurio	1.47	0.00	-	-	^	х
Red-billed Quelea	Quelea guelea	5.88	0.00	_	_	Х	
Red-billed Teal	Anas erythrorhyncha	1.47	0.00	_	_	^	х
Red-capped Lark	Calandrella cinerea	11.76	2.78	_	_	Х	
Red-eyed Dove	Streptopelia semitorquata	2.94	0.00	_	_	^	
Red-faced Mousebird	Urocolius indicus	7.35	0.00	_	_	Х	
Red-headed Finch	Amadina erythrocephala	35.29	5.56	_	-	x	
Rock Dove	Columba livia	4.41	0.00	_	_		
Rock Kestrel	Falco rupicolus	11.76	11.11	_	_		
Rock Martin	Ptyonoprogne fuligula	52.94	11.11	_	_	х	
Rufous-cheeked Nightjar	Caprimulgus rufigena	4.41	0.00	_	_		
Rufous-eared Warbler	Malcorus pectoralis	86.76	13.89	-	_	х	Х
Sabota Lark	Calendulauda sabota	79.41	30.56	-	_	x	
Scaly-feathered Weaver	Sporopipes squamifrons	38.24	5.56	_	_	х	
Sclater's Lark	Spizocorys sclateri	10.29	0.00	NT	NT	х	
Secretarybird	Sagittarius serpentarius	7.35	5.56	EN	VU	х	
Short-toed Rock Thrush	Monticola brevipes	2.94	2.78	-	-		
Sickle-winged Chat	Emarginata sinuata	16.18	2.78	-	-		
Sociable Weaver	Philetairus socius	67.65	27.78	-	-	х	
South African Shelduck	Tadorna cana	11.76	2.78	-	-		
Southern Fiscal	Lanius collaris	57.35	16.67	-	-	х	
Southern Grey-headed Sparrow	Passer diffusus	4.41	0.00	-	-	х	
Southern Masked Weaver	Ploceus velatus	60.29	8.33	-	-	х	
Southern Red Bishop	Euplectes orix	1.47	0.00	-	-	х	
Speckled Pigeon	Columba guinea	54.41	2.78	-	-	х	
Spike-heeled Lark	Chersomanes albofasciata	79.41	19.44	-	-	х	Х
Spotted Eagle-Owl	Bubo africanus	20.59	2.78	-	-	х	Х
Spotted Flycatcher	Muscicapa striata	1.47	0.00	-	-		
Spotted Thick-knee	Burhinus capensis	20.59	0.00	-	-	х	
Spur-winged Goose	Plectropterus gambensis	5.88	0.00	-	-		
Stark's Lark	Spizocorys starki	32.35	5.56	-	-		
Three-banded Plover	Charadrius tricollaris	4.41	0.00	-	-		Х
Tractrac Chat	Emarginata tractrac	20.59	0.00	-	-	х	
Verreaux's Eagle	Aquila verreauxii	2.94	2.78	-	VU		
Wattled Starling	Creatophora cinerea	2.94	2.78	-	-		
Western Barn Owl	Tyto alba	2.94	0.00	-	-		
White-backed Mousebird	Colius colius	29.41	0.00	-	-	х	
White-bellied Sunbird	Cinnyris talatala	1.47	0.00	-	-		
White-browed Sparrow-Weaver	Plocepasser mahali	51.47	8.33	-	-	х	
White-necked Raven	Corvus albicollis	1.47	0.00	-	-		
White-rumped Swift	Apus caffer	23.53	2.78	-	-	х	
White-throated Canary	Crithagra albogularis	50.00	2.78	-	-	х	
White-throated Swallow	Hirundo albigularis	1.47	0.00	-	-		
Yellow Canary	Crithagra flaviventris	39.71	16.67	-	-	х	
Yellow-bellied Eremomela	Eremomela icteropygialis	44.12	22.22	-	-		
Temminck's Courser	Cursorius temminckii	0.00	0.00	-	-		

6 CUMULATIVE IMPACTS

Cumulative effects are commonly understood to be impacts from different projects that combine to result in significant change in an area, which could be larger than the sum of all the individual impacts. The assessment of cumulative effects therefore needs to consider all renewable energy projects within a 30 km radius that have received an EA or are in process at the time of starting the environmental impact process, as well as the proposed Platsjambok East SEF. There are currently forty (40) renewable energy projects authorised, operational or in process within a 30 km radius around the proposed Platsjambok East SEF (excluding those who have been withdrawn, lapsed or refused) (Table 3 and Figure 5). The projects were identified using the latest (2022) Renewable Energy EIA Application Database for SA from the Department of Fisheries, Forestry and Environment (DFFE).

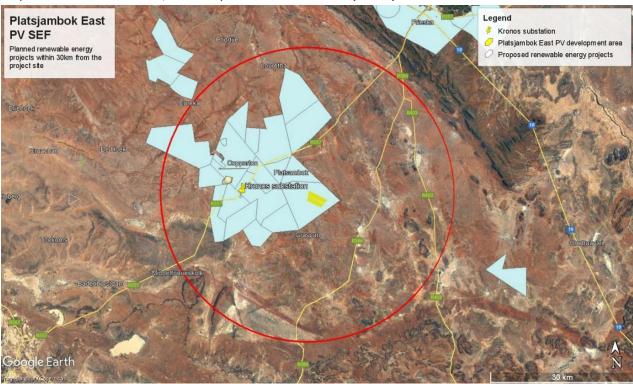


Figure 5: The planned renewable energy project land parcels within a 30km radius around the proposed Platsjambok East PV project.

Table 3: Red Data species potentially occurring at the proposed Mierdam PV site (SiVEST 2013)

Name	DFFE registration	Status
8 Infinite energy (PTY) LTR 140mw wind energy facility near Copperton, Northern Cape Province	12/12/20/2099	Approved
Construction of a 40MW Solar Photovoltaic Facility on Mierdam Farm near Prieska, within the Siyathemba Local Municipality in the Northern Cape Province	12/12/20/2320/2	Approved
Proposed Helena Solar 3: 75mW Solar pV Energy Facility near Copperton within Siyathemba Local Municipality in Northern Cape Province	14/12/16/3/3/2/767	Approved

Name	DFFE registration	Status
Proposed Helena Solar 2: 75 mW Solar pV Energy Facility near Copperton, Northern Cape Province	14/12/16/3/3/2/766	Approved
Proposed Helena Solar 3: 75mW Solar pV Energy Facility near Copperton within Siyathemba Local Municipality in Northern Cape Province	14/12/16/3/3/2/765	Approved
Proposed PV2 Photovoltaic (Solar) energy facility on farm Klipgats Pan near Cooperton, Northern Cape Province	14/12/16/3/3/2/491	Approved
Proposed PV6 energy plants o Farm Klipgats Pan near Copperton, Northern Cape Province	14/12/16/3/3/2/490	In process
Proposed PV5 energy plants o Farm Klipgats Pan near Copperton, Northern Cape Province	14/12/16/3/3/2/489	In process
Proposed PV4 energy plants o Farm Klipgats Pan near Copperton, Northern Cape Province	14/12/16/3/3/2/488	In process
Proposed PV3 energy plants o Farm Klipgats Pan near Copperton, Northern Cape Province	14/12/16/3/3/2/487	In process
Proposed PV2 energy plants o Farm Klipgats Pan near Copperton, Northern Cape Province	14/12/16/3/3/2/486	In process
100MW Photovoltaic (PV) Facility on portion 4 of the farm No 117, farm Klipgats Pan, Copperton, Northern Cape Province	12/12/20/2501	Approved
Proposed establishment of a PV Solar facility (Plamtsjambok) in Prieska, Siyathemba Local Municipality, Northern Cape Province	12/12/20/2320/3	In process
Construction of a Solar Photovoltaic Facility near Prieska, within the Siyathemba Local Municipality in the Northern Cape Province	12/12/20/2320	Approved
Construction of a 75MW Solar Photovoltaic Facility on the western portion of the Platsjambok Farm (Platsjambok West) near Prieska, within the Siyathemba Local Municipality in the Northern Cape Province	12/12/20/2320/5	Approved
	12/12/20/2020/0	7.66.0100
Proposed RE Capital 14 (Pty) Ltd development within! Kai Garib LM	14/12/16/3/3/2/708	In process
Proposed PV11 PV solar energy plant on farm Hoekplaas, near Copperton, Northern Cape Province	14/12/16/3/3/2/502	In process
Proposed PV10 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/501	In process
Proposed PV9 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/500	In process
Proposed PV8 energy plants on Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/499	In process
Proposed PV7 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/498	In process
Proposed PV6 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/497	In process
Proposed PV5 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/496	In process

Name	DFFE registration	Status
Proposed PV4 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/495	In process
Proposed PV3 energy plants o Farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/494	In process
Proposed PV2 energy plants on farm Hoekplaas near Copperton, Northern Cape Province	14/12/16/3/3/2/493	In process
Mulilo Sonnedix Prieska PV	12/12/20/2503	Approved
75MW Hermanus PV3 solar energy facility and its associated infrastructureon the farm Hermansrus No 147 in the Northern Cape Province	14/12/16/3/3/2/888	In process
75MW Hermanus PV4 solar energy facility and its associated infrastructureon the farm Hermansrus No 147 in the Northern Cape Province	14/12/16/3/3/2/887	In process
Humansrus Solar PV Energy Facility (Pty) Ltd	14/12/16/3/3/2/707	In process
Proposed Garob Wind Energy fascility project near Copperton in the Northern Cape Province	14/12/16/3/3/2/279	Approved
The Proposed Garob Wind Farm To Kronos Substation, 132kv Power Line, Near Copperton, Within The Siyathemba Local Municipality, Of The Pixley Ka Seme District Municipality In The Northern Cape Province	14/12/16/3/3/1/769	Approved
Proposed Bosjesmansberg solar energy facility site near Copperton, Siyathemba Local Municipality, Northern Cape Province	14/12/16/3/3/2/579/3	Approved
Proposed Moiblox soar project within Pixley Ka Seme District Municipality, Northern Cape Province	14/12/16/3/3/2/547	In process
Proposed wind energy facility near Copperton, Northern Cape Province	12/12/20/2099	Approved
Proposed PV energy plant on farm Struisbult near Copperton, Northern Cape Province	12/12/20/2502	Approved
Proposed construction of a photovoltaic power generation facility, Prieska, Nothern Cape Province	12/12/20/1722	Approved
Proposed Badudex solar project withing Pixley Ka Seme District municipality, Northern Cape Province	14/12/16/3/3/2/546	In process
The proposed Mulilo photovoltaic solar energy plant Copperton Mine in the Northren Cape Province	14/12/16/3/3/1/454	Approved

The total affected land parcel area taken up by authorised and planned renewable energy projects within the 30 km radius, including the Platsjambok East PV Project is approximately 678 km². The total affected land parcel area affected by the Platsjambok East PV Project equates to approximately 71 km². The proposed Platsjambok East PV Project land parcel area thus constitute approximately 10% of the total areas taken up by the authorised and planned renewable energy projects. The cumulative impact of the proposed Platsjambok PV Project is thus anticipated to be **low**.

The total area within the 30km radius around the proposed Platsjambok PV Project equates to about 3036km² of similar habitat (excluding developed areas). The total combined size of the land parcels potentially affected by renewable energy projects will equate to approximately 22% of the available untransformed habitat in the 30km radius. Assuming that all the projects are actually constructed, the cumulative impact of all the proposed renewable energy projects is estimated to be **high**. However, the actual physical footprint of the renewable energy facilities will be much smaller than the land parcel areas themselves. Furthermore, several of these projects must still be subject to a competitive bidding process where only the most competitive projects will win a power purchase agreement required for the project to proceed to construction. If all mitigation measures listed in the specialist reports are strictly implemented the cumulative impact could be reduced to **medium**.

7 FINDINGS AND CONCLUSIONS

- No new avifaunal sensitivities were recorded during the site inspection in October 2022 that had not already been identified previously in the Avian Impact Assessment Report (SiVEST 2013).
- No nests of Red Data priority species were recorded during the site inspection in October 2022.
- The site inspection in October 2022 confirmed that the findings of the Avian Impact Assessment Report (SiVEST 2022) are still valid and applicable, as the receiving environment had not changed in any material way.
- No additional mitigation measures were identified as a result of the site inspection in March 2022.

8 RECOMMENDATION

The proposed amendments are acceptable from an avifaunal perspective and will not change the nature or level of impact assessed. No additional mitigation measures will be required other than what was recommended in the original Avian Impact Assessment Report (SiVEST 2013). It is therefore recommended that the validity of the Environmental Authorisation be extended by an additional 3 years.

9 REFERENCES

- Da Cruz, P. 2013. Construction of three photovoltaic energy facilities near De Aar, Northern Cape, Avifaunal Impact Assessment. Proposed Construction of a 75MW Solar Photovoltaic (PV) Plant on Mierdam Farm near Prieska, Northern Cape Province of South Africa: Avifaunal Impact Assessment Report, Amendment Application.
- University Of Cape Town. 2022. The southern African Bird Atlas Project 2. University of Cape Town. http://sabap2.adu.org.za.
- Taylor, M.R., Peacock F, & Wanless R.W (eds.) 2015. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg, South Africa.
- IUCN. 2022 IUCN Red List of Threatened Species 2022.1 (http://www.iucnredlist.org/).

APPENDIX 1: SITE SENSITIVITY VERIFICATION REPORT

SITE SENSITIVITY VERIFICATION REPORT (IN TERMS OF THE PROCEDURES FOR THE ASSESSMENT AND MINIMUM CRITERIA FOR REPORTING ON IDENTIFIED ENVIRONMENTAL THEMES PUBLISHED IN GN 1150 ON 30 OCTOBER 2020)

1 Introduction

In accordance with the National Environmental Management Act (Act 107 of 1998, as amended) (NEMA) Environmental Impact Assessment (EIA) Regulations of 2014, a site verification visit has been undertaken in order to confirm the current land use and environmental sensitivity of the proposed project area as identified by the National Web-Based Environmental Screening Tool (Screening Tool).

2 Site Sensitivity Verification

The following methods and sources were used to compile this report:

- Bird distribution data of the South African Bird Atlas 2 (SABAP 2) was obtained from the University of Cape Town (2022), as a means to ascertain which species occur within the broader area i.e., within a block consisting of 8 pentads. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5'x 5'). Each pentad is approximately 8 x 7.6 km. From 2007 to date, a total of 68 full protocol lists (i.e. surveys lasting a minimum of two hours each) have been completed for this area. In addition, 36 ad hoc protocol lists (i.e., surveys lasting less than two hours but still yielding valuable data) have been completed.
- The national threatened status of all priority species was determined with the use of the most recent edition of the Red Data Book of Birds of South Africa (Taylor *et al.* 2015).
- The global threatened status of all priority species was determined by consulting the (2022) IUCN Red List of Threatened Species (http://www.iucnredlist.org/).
- A classification of the vegetation in the SEF application site was obtained from the Atlas of Southern
 African Birds 1 (SABAP 1) (Harrison et al. 1997) and the National Vegetation Map (2018) from the
 South African National Biodiversity Institute website (Mucina & Rutherford 2006 &
 http://bgisviewer.sanbi.org).
- Satellite imagery (Google Earth ©2022) was used in order to view the broader area on a landscape level and to help identify sensitive bird habitat.
- The DFFE National Screening Tool was used to determine the assigned avian sensitivity of the SEF application site.
- A one-day site survey was conducted in October 2022 to assess the habitat and record the avifauna at the development area. See Appendix 1 for the avifauna recorded during the site survey.

3 Outcome of Site Sensitivity Verification

The proposed site is situated approximately 21km south-east of the town of Copperton, in the Northern Cape Province. The habitat in the broader development area is highly homogenous and consists of extensive sandy and gravel plains with low shrub. The vegetation on the site itself consists mostly of shrubs scattered between bare patches of sand and gravel. The dominant vegetation is a mixture of Bushmanland Arid Grassland and Bushmanland Basin Shrubland. These vegetation types consist of dwarf shrubland dominated by a mixture of low, sturdy and spiny (and sometimes also succulent) shrubs (*Rhigozum sp., Salsola sp., Pentzia sp.,* and *Eriocephalus sp.*), 'white' grasses (*Stipagrostis sp.*) and in years of high rainfall also abundant annual flowering plants such as species of *Gazania sp.* and *Leysera sp.* (Mucina & Rutherford 2006). The closest Important Bird Area (IBA), the Platberg Karoo Conservancy, is located approximately 160km to the east (Birdlife 2014) and falls outside the zone of influence of this development.

SABAP1 recognises six primary vegetation divisions within South Africa, namely (1) Fynbos (2) Succulent Karoo (3) Nama Karoo (4) Grassland (5) Savanna and (6) Forest (Harrison *et al.* 1997). The criteria used by the authors to amalgamate botanically defined vegetation units, or to keep them separate were (1) the existence of clear differences in vegetation structure, likely to be relevant to birds, and (2) the results of published community studies on bird/vegetation associations. It is important to note that no new vegetation unit boundaries were created, with use being made only of previously published data. Using this classification system, the natural vegetation in the study area is classified as Nama Karoo.

Nama Karoo as dominated by low shrubs and grasses; peak rainfall occurs in summer from December to May. Average temperatures range between 35°C in January and 18°C July (http://www.worldweatheronline.com/Copperton-weather-averages/Northern-Cape/ZA.aspx). Trees, e.g. Vachellia karroo are mainly restricted to ephemeral watercourses, but in the proposed development area, due to the extreme aridity (average annual precipitation of only 147mm in 12 years from 2000 - 2012 http://www.worldweatheronline.com) the ephemeral watercourses are devoid of trees. In comparison with the Succulent Karoo, the Nama Karoo has higher proportions of grass and tree cover. The two Karoo vegetation types support a particularly high diversity of bird species endemic to Southern Africa, particularly in the family Alaudidae (Larks). Its avifauna typically comprises ground-dwelling species of open habitats. Because rainfall in the Nama Karoo falls mainly in summer, while peak rainfall in the Succulent Karoo occurs mainly in winter, it provides opportunities for birds to migrate between the Succulent and Nama Karoo, to exploit the enhanced conditions associated with rainfall. Many typical karroid species are nomads, able to use resources that are patchy in time and space (Barnes 1998).

Figure 1 below is a sample of the typical habitat at the Platsjambok East PV development area

Figure 1: Bushmanland Arid Grassland, and Bushmanland Basin Shrubland are the dominant habitat at the proposed Platsjambok West PV 1 development area. The powerline is the Hydra-Cuprum 132kV overhead line which runs between the two development alternatives.

The existing Hydra - Cuprum 132kV overhead line runs in an east-west direction between the two development alternatives, and acts as an important perching substrate for raptors and vultures (Figure 1).

4 National Environmental Screening Tool

The project development area is classified as **High** sensitivity for avifauna, according to the DFFE online screening tool. The development sites contain confirmed habitat for species of conservation concern (SCC), as defined in the Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020)², namely listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as Critically Endangered, Endangered, Vulnerable, Near threatened or Data Deficient. The classification of High sensitivity is linked to the potential occurrence of Ludwig's Bustard (Globally and Regionally Endangered) (Figure 3).

The occurrence of SCC was confirmed during the original surveys in March 2012. Ludwig's Bustard, Secretarybird (Globally Endangered, Regionally Vulnerable) and Sclater's Lark (Globally and Regionally Near threatened) were recorded at the site. The subsequent site visit in October 2022 confirmed that the habitat has not changed and that habitat for the above listed SCC, as well as the other SCC listed in Table

1, and Lappet-faced Vulture *Torgos tracheliotis* (Globally and Regionally Endangered) exists at the development area. This classification is assessed to be accurate as far as the potential presence of SCC is concerned, based on actual conditions recorded on the ground during the site visits in March 2012, and the subsequent site visit conducted in October 2022.

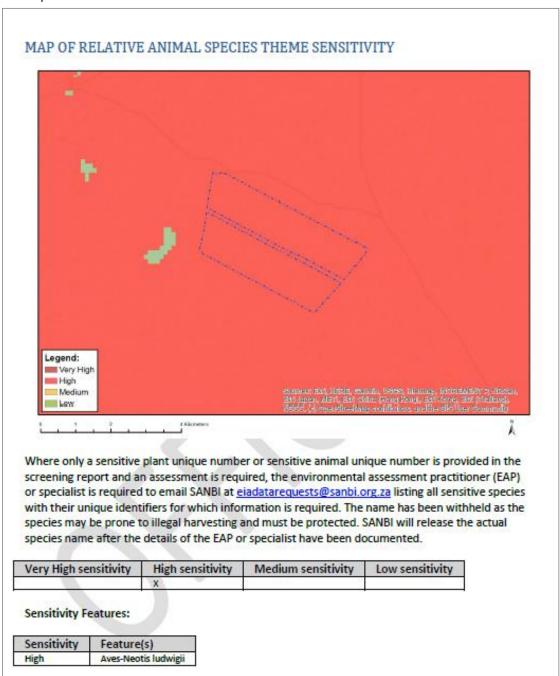


Figure 3: The classification of the Project Site according to the animal species theme in the DFFE National Screening Tool. The High sensitivity is linked to the possible occurrence of Lanner Falcon *Falco biarmicus* (Regionally Vulnerable).

5 Conclusion

The proposed classification of **High Sensitivity** in the screening tool was confirmed during the site sensitivity verification survey which was conducted on 5 October 2022.

6 References

- University Of Cape Town. 2022. The southern African Bird Atlas Project 2. University of Cape Town. http://sabap2.adu.org.za.
- Taylor, M.R., Peacock F, & Wanless R.W (eds.) 2015. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg, South Africa.
- IUCN. 2022 IUCN Red List of Threatened Species 2022.1 (http://www.iucnredlist.org/).
- Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V & Brown, C.J. (eds).
 1997. The atlas of southern African birds. Vol 1 & 2. BirdLife South Africa, Johannesburg.
- South African National Biodiversity Institute, 2018. The Vegetation Map of South Africa, Lesotho and Swaziland. [Online] Available at: http://bgis.sanbi.org/Projects/Detail/186

APPENDIX A: AVIFAUNA RECORDED DURING THE SITE SENSITIVITY SURVEY

Species name	Scientific name	Full protocol reporting rate	Ad hoc protocol reporting rate	Global status	Regional status	Recorded at Platsjambok East and West 2022
Acacia Pied Barbet	Tricholaema leucomelas	54.41	11.11	-	-	Χ
African Hoopoe	Upupa africana	17.65	0.00	-	-	Χ
Ant-eating Chat	Myrmecocichla formicivora	66.18	25.00	-	-	Χ
Black-chested Prinia	Prinia flavicans	72.06	11.11	-	-	Χ
Bokmakierie	Telophorus zeylonus	60.29	0.00	-	-	Х
Cape Sparrow	Passer melanurus	77.94	16.67	-	-	Χ
Chat Flycatcher	Melaenornis infuscatus	70.59	16.67	-	-	Х
European Bee-eater	Merops apiaster	0.00	0.00			Х
Fawn-colored Lark	Calendulauda africanoides	41.18	5.56	-	-	Х
Greater Kestrel	Falco rupicoloides	29.41	11.11	-	-	Х
Grey-backed Cisticola	Cisticola subruficapilla	23.53	0.00	-	-	Х
House Sparrow	Passer domesticus	41.18	11.11	-	-	Х
Karoo Scrub Robin	Cercotrichas coryphoeus	51.47	11.11	-	-	Х
Lark-like Bunting	Emberiza impetuani	69.12	25.00	-	-	Х
Little Swift	Apus affinis	30.88	0.00	-	-	Х
Long-billed Crombec	Sylvietta rufescens	25.00	0.00	-	-	Х
Ludwig's Bustard	Neotis ludwigii	41.18	16.67	EN	EN	Х
Namaqua Dove	Oena capensis	36.76	8.33	-	-	Х
Namaqua Sandgrouse	Pterocles namaqua	50.00	5.56	-	-	Х
Pale Chanting Goshawk	Melierax canorus	82.35	22.22	-	-	Х
Pied Crow	Corvus albus	83.82	33.33	-	-	Х
Red-capped Lark	Calandrella cinerea	11.76	2.78	-	-	Х
Sickle-winged Chat	Emarginata sinuata	16.18	2.78	-	-	Х
Sociable Weaver	Philetairus socius	67.65	27.78	-	-	Х
Southern Red Bishop	Euplectes orix	1.47	0.00	-	-	Х
White-throated Canary	Crithagra albogularis	50.00	2.78	-	-	Х
Yellow Canary	Crithagra flaviventris	39.71	16.67	-	-	Х
Temminck's Courser	Cursorius temminckii	0.00	0.00	-	-	Х