FINAL

SASOL MINING MIDDELBULT - BLOCK 8 - SHONDONI

EIAR (NEMA, MPRDA & NEMWA)

APPENDICES

DATE: 29 FEBRUARY 2012 PROJECT REFERENCE: JMA/10391 JMA FILE REFERENCE: Prj5451 REPORT NUMBER: SMMB8S/EIAR/FEB-2012 DEA REFERENCE: 12/9/11/L623/6

VOLUME IV (b) OF V

APPENDIX 5.6(A)

SPECIALIST REPORT GROUND WATER

FINAL FOR I&AP REVIEW

SASOL MINING MIDDELBULT-SHONDONI GROUND WATER SPECIALIST REPORT

> Date: 13 August 2010 JMA Project No: 10391 JMA File Reference: Prj5449

TABLE OF CONTENTS

EXE(CUTIVE SUMMARYi			
1.	INTRODUCTION	1		
2.	THE NEMA AND MPRDA EIA PROCESS	3		
3.	CURRENT ENVIRONMENTAL STATUS	6		
3.1	REGIONAL GEOHYDROLOGICAL SETTING	6		
3.1.1	Regional Topography			
3.1.2	Regional Meteorology			
3.1.3	Regional Surface Drainage			
3.1.4	Regional Geology			
3.1.5	Regional Geohydrology			
3.1.6	Regional Historical Mining			
3.2	PHYSICAL AQUIFER DESCRIPTION			
3.2.1	Aquifer Matrix (Soil and Geological Matrix)			
3.2.2	Aquifer Types (Primary, Weathered, Fractured, Karst)			
3.2.3	Aquifer Zones (Unsaturated, Saturated)			
3.2.4	Lateral Aquifer Boundaries (Physical, Hydraulic, Arbitrary)			
3.2.5	Preferential Ground Water Flow Zones			
3.3	HYDRAULIC AQUIFER DESCRIPTION			
3.3.1	Borehole Yields			
3.3.2	Aquifer Permeability/Transmissivity			
3.3.3	Aquifer Storativity			
3.3.4	Aquifer Porosity			
3.4	AQUIFER DYNAMICS			
3.4.1	Rainfall Recharge			
3.4.2	Ground Water Level Depths and Fluctuations			
3.5	AQUIFER HYDROCHEMISTRY			
3.5.1	Background Ground Water Quality			
3.5.2	Current Site Specific Ground Water Quality			
3.5.3	Multi Parameter Profiling			
3.6	AQUIFER CLASSIFICATION			
3.7	GROUND WATER USE			

TABLE OF CONTENTS (continued)

4.	PROJECT/ACTIVITY DESCRIPTION
4.1	OPERATIONAL PHASE WATER BALANCE 49
4.1.1	Mining Schedule
4.1.2	Ground Water Make
4.1.3	Mine Floor Contours and Implications for Mine Water Flow
4.1.4	Mine Water Storage Capacity
4.2	POST CLOSURE WATER BALANCE
4.2	FOST CLOSURE WATER BALANCE
5.	ENVIRONMENTAL IMPACT ASSESSMENT61
5.1	IMPACT ASSESSMENT METHODOLOGY 61
5.2	CONSTRAINTS AND LIMITATIONS OF IMPACT ASSESSMENT 65
5.3	IDENTIFICATION OF ACTIVITIES
5.3.1	Construction Phase
5.3.2	Operational Phase
5.3.3	Decommissioning and Closure Phase
5.3.4	Post Closure Phase Residual Impacts
5.4	ASSESSMENT OF GEOHYDROLOGICAL IMPACTS
5.4.1	Construction Phase
5.4.2	Operational Phase
5.4.3	Decommissioning Phase
5.4.4	Post Closure Phase
6.	ENVIRONMENTAL MANAGEMENT MEASURES . 101
6.1	IMPACT SIGNIFICANCE ASSESSMENT SUMMARY TABLES 101
6.1.1	Construction Phase101
6.1.2	Operational Phase 105
6.1.3	Decommissioning Phase 110
6.1.4	Post Closure Phase 114
6.2	ENVIRONMENTAL MANAGEMENT OBJECTIVES AND MEASURES
6.2.1	Construction Phase
6.2.2	Operational Phase
6.2.3	Decommissioning Phase
6.2. 4	Post Closure Phase
7.	ENVIRONMENTAL MONITORING PLAN

APPENDICES

- **APPENDIX 2(A)** : **PERSONNEL CV's**
- APPENDIX 3(A) : BOREHOLE LOGS AND SITE INFORMATION REPORTS
- APPENDIX 3(B) : MULTI PARAMETER PROFILES
- APPENDIX 3.2(A) : BOREHOLE LOCALITY MAP AND NUMBERS
- APPENDIX 3.4(A) : GROUND WATER LEVEL DEPTHS

1. INTRODUCTION

Sasol Mining operates a number of underground coal mines in the Secunda Area. Middelbult Colliery represents one of the underground mines and has been in operation since 1981. During its existence Middelbult Colliery has gone through several expansions. Whilst some of the original shafts have already been closed and rehabilitated, new shafts have been developed to access coal within the Middelbult Reserves.

As part of this ongoing development to ensure access to exploitable reserves, Sasol Mining is now investigating options to replace the existing West Shaft with a new shaft (Shondoni) in the Block 8 reserves in order to increase its reserve utilisation of the existing Middelbult operations (original Middelbult Reserves and Block 8 Reserves). At the same time the current mine lease area is also extended to now include the Block 8 Northern Reserves, the Springbokdraai Reserves and the Leeuwpan Reserves.

The proposed expansions require Environmental Authorisations. As part of this, potential environmental impacts must be assessed and the Environmental Management Plan (EMP) must be amended in terms of the Mineral and Petroleum Resources Development Act 28 of 2002 (MPRDA). In order to achieve this, the current Environmental Impact Assessment (EIA) and Environmental Management Programme Report (EMPR) approved under the Minerals Act (Act 50 of 1991) must be amended.

Additionally, an Environmental Authorisation is required in terms of the National Environmental Management Act (NEMA) (Act 107 of 1998) for all listed activities related to the proposed expansion whilst an Integrated Water Use License Application (IWULA) is also required in terms of the National Water Act (NWA) (Act 36 of 1998) to authorize water uses related to the expansion.

The proposed infrastructure expansion of the Middelbult operations, comprise one additional shaft complex (Shondoni Shaft) with associated infrastructure in the Block 8 Reserves and a new overland conveyor to convey the coal to an existing conveyor in the south which will transport the coal to the Sasol Mining central coal stockpile area (Sasol Coal Supply or SCS), and of course the underground workings for the additional reserve blocks (Block 8 Northern Reserves, the Springbokdraai Reserves and the Leeuwpan Reserves).

The proposed future mining activities will be conducted by means of underground mining operations, utilising the bord-and-pillar and high extraction methods to extract coal from the No.4 and No.2 Coal Seams. It is anticipated that approximately 8.5 to 9.5 million tons of coal per year will be mined.

The increased utilisation of coal reserves will mean that Middelbult (Block 8) will continue mining (current schedule) for an additional 3 to 4 years. The long-term plan for Middelbult-Shondoni is to maximise its life thereby ensuring optimal coal reserve utilisation.

Since its inception in 1981, Middelbult Colliery has applied for, and has obtained approval for an EMPR (applied in 2001) as well as an EMPR Addendum (applied in 2003 for Block 8) in terms of the provisions of the old Minerals Act.

The intention of this current EMPR Addendum and EIA/EMP is to combine all the previous work done at Middelbult Colliery into one single integrated document which will represent the overall comprehensive Environmental Impact Assessment and Environmental Management Plan for Middelbult Colliery, including all new, as well as historic Shafts, Conveyors and Mining Operations, but now in compliance with the requirements of both the MPRDA as well as NEMA.

However, a clear distinction will be made in the report to separate all activities already authorized and new activities for which authorization are currently sought.

Figure 1(a) shown below, puts the project into an authorization time line perspective. The current Middelbult-Block 8 mine lease boundary is indicated with the **red** line.

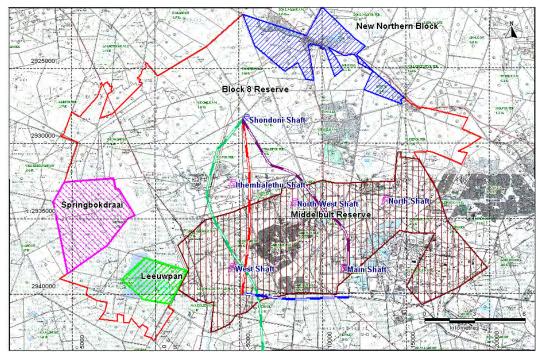


Figure 1(a): Middelbult-Block 8-Shondoni Project Area

The area highlighted with **brown vertical lines**, represents the original Middelbult Colliery area for which an EMPR was submitted to the DME **in 2001 and which was approved in 2002**. The approval included the highlighted Underground Mining Area (both the No.2 Seam and the No.4 Seam), the four shafts, Main Shaft, North Shaft, West Shaft and North-West Shaft, as well as the Coal Conveyor from the Main Shaft to the Sasol Central Coal Stockpile Area. Both North Shaft as well as North West Shaft have been decommissioned and closed and are not active any longer.

The area within the **red line** and which is not highlighted, represents the Block 8 EMPR Addendum which was submitted **in 2003 and approved in 2004**. This approval includes the Underground Mining on the No.2 Seam and the No.4 Seam within this area, as well as the Ithembalethu Shaft.

The **current application** therefore relates to the additional shaft indicated as Shondoni Shaft, the **green** coal conveyor belt from the Shondoni Shaft towards the south where it joins up with an existing conveyor belt, as well as the Underground Mining on the No.2 Seam and No.4 Seam for the areas highlighted in **green** (Leeuwpan Reserves), **magenta** (Springbokdraai Reserves) and **blue** (New Northern Block Reserves).

2. THE NEMA AND MPRDA EIA PROCESSES

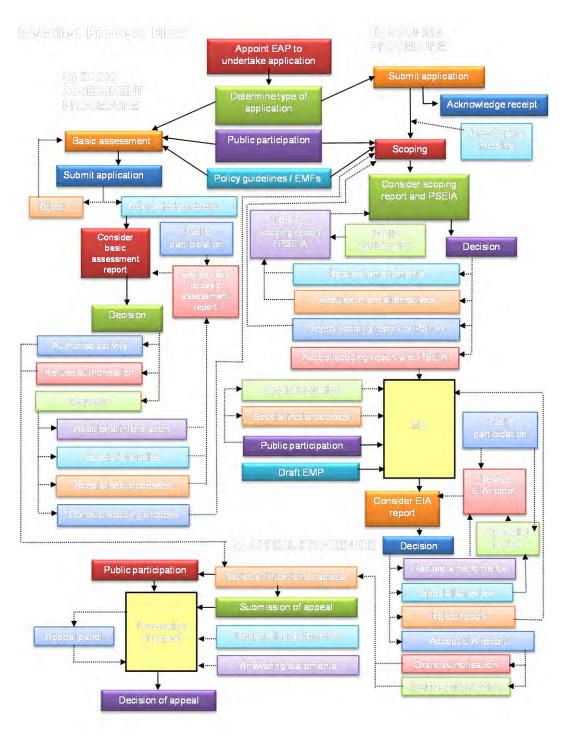
With effect from 3 July 2006, the listed activities and authorisation process promulgated in terms of the National Environmental Management Act 107 of 1998 (NEMA), commenced (**save for those listed activities in respect of mining which will commence at a date to be published**) and the relevant notices promulgated in terms of the Environment Conservation Act (ECA) (Act 73 of 1989) pertaining to identified activities and the Environmental Impact Assessment (EIA) Regulations have been repealed.

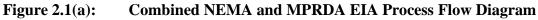
Section 24 of the NEMA, headed "Environmental Authorisations" sets out the provisions which are to give effect to the general objectives of Integrated Environmental Management (IEM). In terms of section 24(1), the potential consequences for or impacts on the environment of *inter alia* listed activities must be considered, investigated, assessed, and reported on to the competent authority and/or the Minister of Mineral Resources, except in respect of those activities that may commence without having to obtain an environmental authorisation in terms of the NEMA.

Accordingly, the listed activities have been promulgated in two different government notices, namely Government Notice R. 386 in Government Gazette No. 28753 of April 2006 (GNR 386), which identifies those activities for which a Basic Assessment must be undertaken in accordance with the procedure set out in regulation 22 to 26 of GNR 385, and Government Notice R. 387 in Government Gazette No. 28753 of 21 April 2006 (GNR 387), which identifies those activities for which a Scoping and Environmental Impact Assessment must be undertaken in accordance with the procedure set out in regulations 27 to 36 of GN R. 385.

The Schedules to both GNR 386 and GNR 387 set out those activities that have been identified in terms of section 24(2)(a) and (d) of the NEMA which may not commence without environmental authorisation from the competent authority and for which the investigation, assessment and communication of potential impacts of the activities must follow the procedure described in regulation 22 to 26 of the regulations in respect of those activities that require a "Basic Assessment" or in terms of Regulation 27 to 36 of the regulations in respect of those activities that require "Scoping and Environmental Impact Assessment".

This application for Middelbult Shondoni is an application *inter alia* in terms of section 24 of the NEMA referred to above, read with GNR 385 and in particular


the application for **Scoping and Environmental Impact Assessment** described in regulations 27 to 36. Various listed activities in both GNR 386 and GNR 387 will be undertaken in order to give effect to the project and these have been identified and listed in the application that will be submitted to the Department of Economic Development, Environment, and Tourism (DEDET).


However, in view of the fact that listed activities related to mining have not yet become part of the application to DEDET, these activities must be authorized by DMR in terms of the provisions of the MPRDA and the MPRDA Regulations GNR 527, which similarly also requires both the Scoping and EIA processes.

The diagram below, Figure 2.1(a), illustrates the processes for both a Basic Assessment, and a Scoping and Environmental Impact Assessment. As described in Section 2.1, various listed activities in both GNR 386 and GNR 387 have been identified for the Middelbult Shondoni Project and will be incorporated into one Scoping and Environmental Impact Assessment Process for this project.

However, the same EIA process will also be followed to give compliance with the requirements of the MPRDA Regulations, save that a formal application does not have to be lodged with DMR.

3. CURRENT ENVIRONMENTAL STATUS

3.1 REGIONAL GEOHYDROLOGICAL SETTING

The regional geohydrological setting is described with reference to available published regional information for the study area. The study area includes by the Middelbult Reserve, Block 8 Reserve, Springbokdraai Reserve, Leeuwpan Reserve and New Northern Block Reserve Extents. The regional geohydrological chapter will deal with the regional topography, meteorology, surface drainage, geology, geohydrology and historical mining, all of which will have an influence on the geohydrological setting of the study area.

3.1.1 Regional Topography

The study area is located within the Mpumalanga Province of South Africa. The topography of the Mpumalanga Province varies and has a distinctive mountainous north-eastern region and a flatter, expansive south-western region. The north-eastern region varies substantially in elevation (between 150 mamsl and 2200 mamsl) and covers the transition between the "Lowveld" and the "Highveld". The study area (located by the white dot on Figure 3.1.1(A)) falls within the elevated flatter south-eastern region of the province.

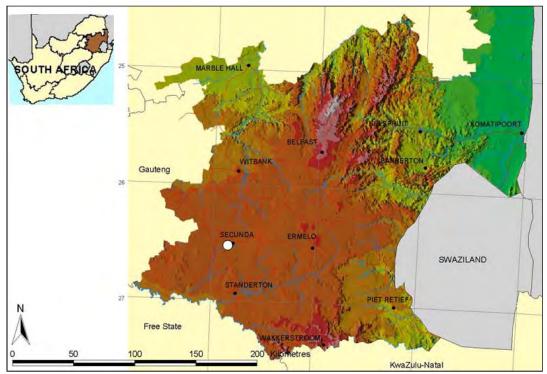
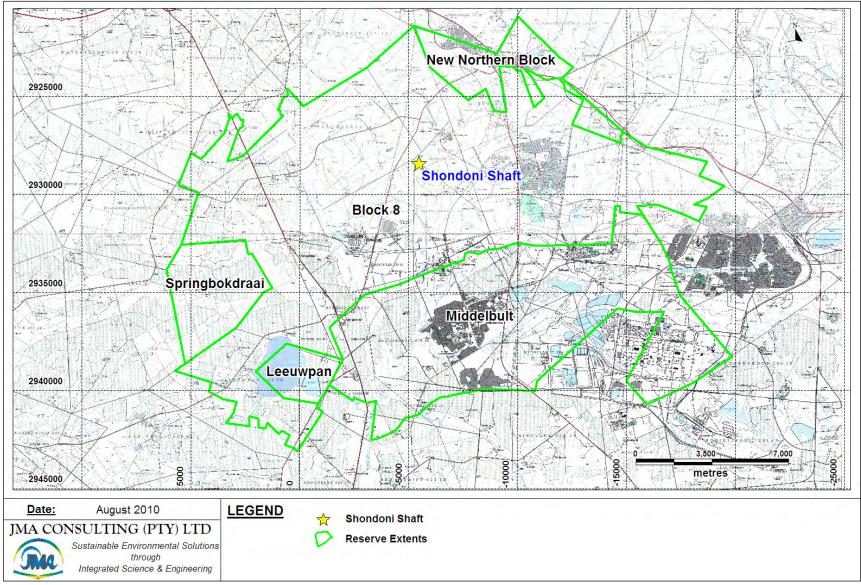



Figure 3.1.1(A): 3D Surface ENPAT map of Mpumalanga

Figure 3.1.1(A) is the 3D Image of Environmental Potential Atlas for the Mpumalanga Province Series, supplied by the Department of Environmental Affairs and Toursim, 2000 and illustrates the regional surface topography of Mpumalanga.

Figure 3.1.1(B): Regional Topography

The localized topography of the study area will be discussed with reference to the clipped region of the four (2628BD Leandra (3), 2628DB Willemsdal (3), 2629AC Evander (3) and 2629CA Secunda (3)) 1:50 000 Topographical Maps Sheets of South Africa, displayed as Figure 6.1.1(B). The natural topography of the study area is flat, slightly undulating and ranges in elevation between 1600 and 1650 mamsl (meters above mean sea level). The natural surface topography has however been altered as a result of the various anthropogenic and mining activities in the area. Several mine dumps, ash dumps, stockpiles and stream diversions etc are evident at across the surface of the study area.

3.1.2 Regional Meteorology

The climate of Mpumalanga contrasts vastly between the far eastern and northeastern "Lowveld" and the "Highveld", which covers most of the central and western extent of the province. The climate of the Lowveld is typically subtropical with hot, humid summer days in which temperatures often reach 40°C. The average temperatures may reach up to 30°C in the summer and up to 23°C during the winter months. The average minimum temperatures range between 19°C and 6°C during the summer and winter months respectively. Rainfall predominantly occurs during the summer and autumn months (September to May), whilst the winters are mild and dry. The climate of the Highveld is typically characterized by hot summer months, between October and March and cold winters from May through to August. The rainfall of the Highveld is highly seasonal and falls predominantly in the form of late afternoon thunder storms during the summer months. The winters are cold and dry and are often associated with vast early morning mist belts and frost.

Figure 3.1.2(B) is the Mean Annual Precipitation Map (per quaternary catchment) of the Environmental Potential Atlas for the Mpumalanga Province series, supplied by the Department of Environmental Affairs and Toursim, 2000 and indicates the rainfall distribution across the Mpumalanga Province. Figure 3.1.2(B) indicates that lowveld and low lying areas adjacent to Marble Hall have the lowest Mean Annual Precipitation (MAP) across the province (460 – 620 mm/annum). Figure 6.1.2(A) further indicates that the western and central regions of the Highveld have the lowest MAP (620 - 750 mm/annum). The MAP progressively increases towards the east across the Highveld with the MAP reaching 1040 to 1335 mm/annum across the most eastern regions of the Highveld and is closely related to the elevation of the region as well.

Figure 3.1.2(A): Regional MAP of Mpumalanga

The regional meteorology of the study area will be discussed with reference to the data obtained from the Bethal Monitoring Station. The climate across the study area is temperate and fairly uniform with warm summers and cold winters with sharp frost. The summer temperatures are mild with a maximum average of 25°C and a minimum average of 12°C. Winters are cold with a maximum average of 18°C and a minimum average of 1°C.

The MAP of the study area is 711 mm which occurs as showers and thunderstorms, and falls mainly from September to April. The winter months of June, July and August are dry and their combined rainfall comprises only 3.9% of the total annual precipitation. The Mean Annual Evaporation (MAE) of the study area, as determined using the A-Pan technique, is 1729 mm/annum.

The prevailing winds within the study area, are seasonal and blow from the southwest and northwest during winter months and from the east and northwest during the summer months.

3.1.3 Regional Surface Drainage

Figure 3.1.3(A) is map indicating the major surface water drainage systems of the Mpumalanga Province, and indicates the Mean Annual Runoff for each the quaternary catchments. It is evident from Figure 3.1.3(A) that there are three distinct surface water flow regimes in Mpumalanga. The northern (Komati/Crocodile River and Olifants River Primary Catchments) of the three drainage systems has a mean annual runoff of between 10 million m³ and 140 million m³, per quaternary catchment per annum. The eastern regime (Mfolozi/Pongola River Primary Catchment) has a mean annual runoff of between 810 million m³ and 1.6 billion m³, per quaternary catchment per annum. The study area is located within the western (Vaal River Primary Catchment) of the three

drainage systems, which has a mean annual runoff of between 140 million m³ and 280 million m³, per quaternary catchment per annum.

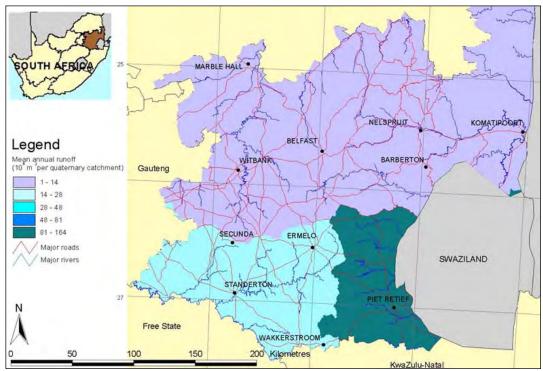


Figure 3.1.3(A): Regional Drainage Systems of Mpumalanga

The extent of the New Northern Block Reserves lies on the watershed that separates the C12D quaternary catchment from the B11D quaternary catchment, and is in fact the boundary between the Vaal River and the Olifants River Primary Catchments.

The study area falls within the northern extent of C12D quaternary catchment, which drains in a southerly direction within the study area (Figure 6.1.3(B)). The major surface water drainage bodies in the study area include the Grootspruit, Trichardtspruit, Kleinspruit, Wildebeestspruit, Watervalspruit, Kaalspruit and the Waterval River.

The Grootspruit drains in a southerly to south-westerly direction across the northeastern regins of the study area, whilst the Trichardtspruit and Kleinspruit drain in a westerly to south-westerly direction across the eastern extent of the study area. The Watervalspruit and Wildebeestspruit both drain in a south-easterly to easterly direction across the western and north-western regions of the study area. The Kaalspruit drains in an easterly to south-easterly direction across the southwestern regions of the study area. Each of the tributaries drain into the Waterval River which drains in a Southerly direction across the entire extent of the study area and ultimately drains in to the Vaal River.

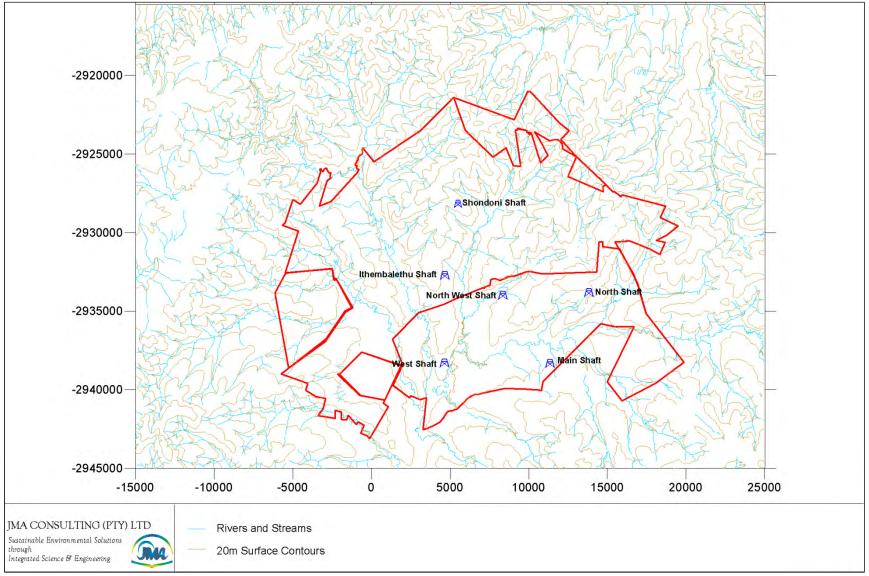
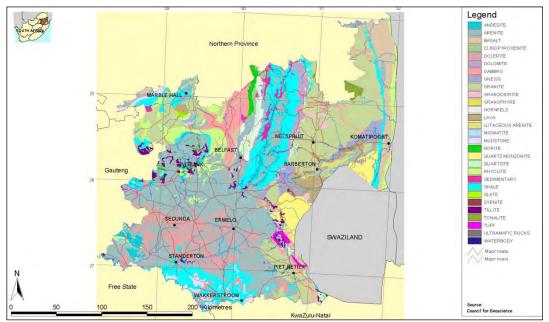
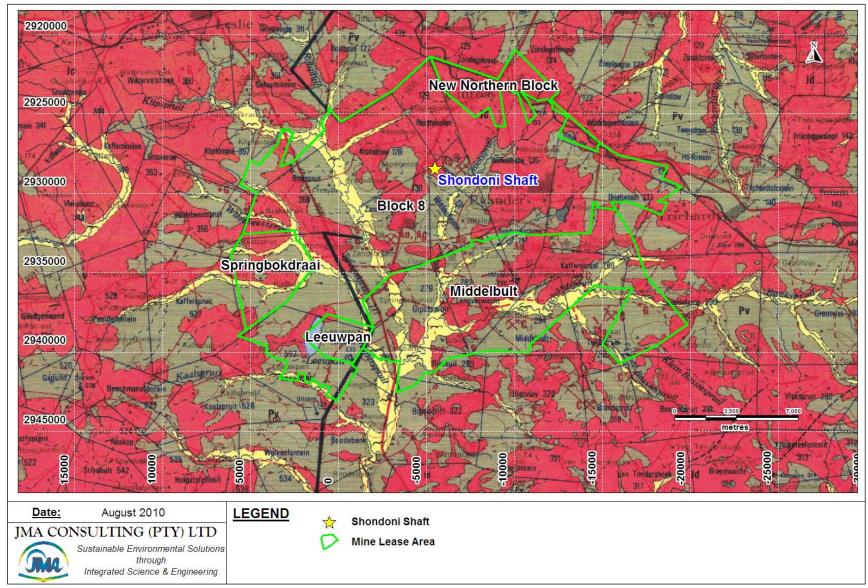


Figure 3.1.3(B): Major Surface Drainage Features of the Study Area

3.1.4 Regional Geology

The geology across the Mpumalanga Province is highly variable as indicated by the Environmental Potential Atlas for the Mpumalanga Province Series' Dominant Geology Map, supplied by the Department of Environmental Affairs and Toursim, 2000 (Figure 3.1.4(A)). Figure 3.1.4(A) indicates that the surface geology of the south-western extent of the province Karroo Sediments (shales, arenites, mudstones, tillite) as well as dolerite intrusions.




Figure 3.1.4(A): Mpumalanga Province Surface Geology

The occurrence and movement of ground water, as well as the ground water quality, are functions of the geological host rock in which the ground water occurs, including the alteration thereof as a result of human activities, such as mining. The regional geology of the across the extent of the study area will be discussed with reference to the clipped region of the 1:250 000 Geological Map Series of South Africa – Sheet 2628 EAST RAND, (1986), displayed as Figure 3.1.4(A). The Regional Geology Map (Figure 6.1.4(A)) depicts that the surface geology within and adjacent to the Study Area is dominated by the sedimentary rocks of the Vryheid Formation (Pv) as well as Jurassic Age Dolerite Intrusives (Jd).

The Vryheid Formation forms part of the Ecca Group of the Karroo Supergroup, and outcrops extensively across the study area. The Vryheid Formation generically consists of interbedded sandstones and shale layers. Carbonaceous shale and coal layers are generally associated with the Vryheid Formation as well. The dolerite present within the study area (Jd) is younger than the Vryheid Formation and intruded into and through the sedimentary rocks of the Vryheid Formation. The dolerite intrusions typically occur as dykes and sills and are often responsible for the devolatization of the coal adjacent to the dolerite intrusions. The river beds across the study are typically associated with the deposition of tertiary and quaternary sands and sediments.

Figure 3.1.4(A) indicates that gold (Au), silver (Ag) and coal (C) has been or is currently being mined within the study area as well.

Figure 3.1.4(A): Regional Geology of the Study Area

3.1.5 Regional Geohydrology

The regional geohydrology of the study area will be discussed with reference to the available information relevant to the map extract displayed as Figure 3.1.5(A). This map extract was clipped from the published 1:500 000 Hydrological Map Series of the Republic of South Africa, Sheet 2526 Johannesburg, 1999.

The regional geohydrological attributes of the study area are clearly a function of the geological formation distribution. Two distinctly separate surface stratigraphic sequences (Pe and Jd) occur within the study area, each with their own geohydrological manifestations. Both sequences outcrop extensively and interchangeably across the extent of the study area.

Geohydrological Zone 1: Permian Age Ecca Group Sediments

The surface geology within the southern extent of the study area is predominantly underlain by the argillaceous rocks (shale, mudstone and siltstone) and arenaceous (sandstone) of the Ecca Group – denoted by Pe on Figure 3.1.5(A).

The primary ground water occurrences within this zone are in joints and fractures associated with the contact zones, related to the heating and cooling of the country rock, caused by the intrusions of the dolerite dykes and sills. Ground water is also extensively present within the weathered zones of the Ecca Group litholgies.

The borehole yielding potential within this geohydrological zone is classified as d2, which indicates an average yield which varies between 0.1 l/s to 0.5 l/s, although much larger yields are often associated with more localized contact zones. The aquifer type is classified as intergranular and fractured, and no large scale ground water abstraction is indicated to occur from these aquifers within the bounds of the study area. The ground water potential for the western area is given as between 40 and 60%, which indicates the probability of drilling a successful borehole (yield > 0.1 l/s) whilst the probability of obtaining a yield in excess of 2 l/s is given as between 0% and 20%.

Geohydrological Zone 2: Jurassic Age Dolerite

The surface geology across the northern extent of the Block 8 Reserve as well as the New Northern Block Reserve consists almost entirely of ultramafic to mafic Jurassic Age Dolerite Intrusives – denoted by Jd on Figure 3.1.5(A).

The primary ground water occurrences within this zone are in joints and fractures associated with the contact zones, related to the heating and cooling of the intrusive bodies as well as in the contact zones with the host rock. The borehole yielding potential within this geohydrological zone is predominantly classified as d2, which indicates an average yield which varies between 0.1 I/s to 0.5 I/s, although much larger yields are often associated with more localized contact zones. The aquifer type is classified as intergranular and fractured, and no large scale ground water abstraction is indicated to occur from these aquifers within the bounds of the study area. There is however a localized area within the dolerite to the south-east of the study area that is classified as d3, indicating that the average

yield varies between 0.5 and 2.0 l/s. The aquifer type is still classified as intergranular and fractured.

aquifer type is classified as intergranular and fractured, and no large scale ground water abstraction is indicated to occur from these aquifers within the bounds of the study area. The ground water potential for the western area is given as between 40 and 60%, which indicates the probability of drilling a successful borehole (yield > 0.1 l/s) whilst the probability of obtaining a yield in excess of 2 l/s is given as between 0% and 20%.

The mean annual recharge (MAR) to the ground water system within the study area is estimated to be between 25 mm and 50 mm per annum, which relates to about 5% of the mean annual precipitation (MAP). The ground water contribution to surface stream base flow is relatively low, estimated to be less than 25 mm per annum. The aquifer storativity (S) for the fractured aquifers in this part of the study area is estimated to be between 0.001 and 0.01. The saturated interstice types (storage medium) are fractures which are restricted principally to the zone directly below the ground water level. The pristine ground water quality is good with a Total Dissolved Solids (TDS) range of between 300 mg/l to 500 mg/l. The ground water is classified to be of the hydrochemical type B, with dominant cations Ca²⁺ and Mg²⁺ and dominant anion being HCO₃⁻.

3.1.6 Regional Historical Mining

Figure 3.1.4(A) indicates that gold (Au), silver (Ag) and coal (C) has been or is currently being mined within the study area. The regional historical mining will however only be discussed with reference to Figure 3.1.6(A) and will not extend beyond the extent bound by the study area.

Figure 3.1.6(A) delineates the extents of the historically underground mined areas (pink) as well as the proposed underground mining extents of the No. 4 coal seam (light blue) and No. 2 coal seam (dark blue) respectively. The detailed mine layout and underground mining methods are discussed in the technical report and will not be addressed in this Groundwater Baseline report. Figure 3.1.6(A) indicates that the entire Middelbult Reserve has been mined out as well as the southern extent of the Block 8 Reserve. The No. 4 coal seam has been historically mined by standard board and pillar underground mining methods from these reserves.

The proposed underground mine layout however depicts that both the No. 4 and No. 2 coal seams will be mined out by underground mining methods in the future. The No. 4L seam ranges in elevation between 1436.20 mamsl and 1527.14 mamsl with an average elevation of 1483.43 mamsl. The No. 2 seam occurs some 20 to 30 meters below the No. 4L seam and ranges in elevation between 1408.98 mamsl and 1493.50 mamsl with an average elevation of 1449.734 mamsl.

It is evident from the Figure 3.1.6(A) that the current proposed underground mining extent of the No 4 Coal Seam is far larger than for the No 2 coal seam. The No. 4 coal seam will be mined out by standard Board and Pillar as well as High Extraction underground mining methods, whilst the No 2 seam will be entirely mined by standard Board and Pillar underground mining methods.

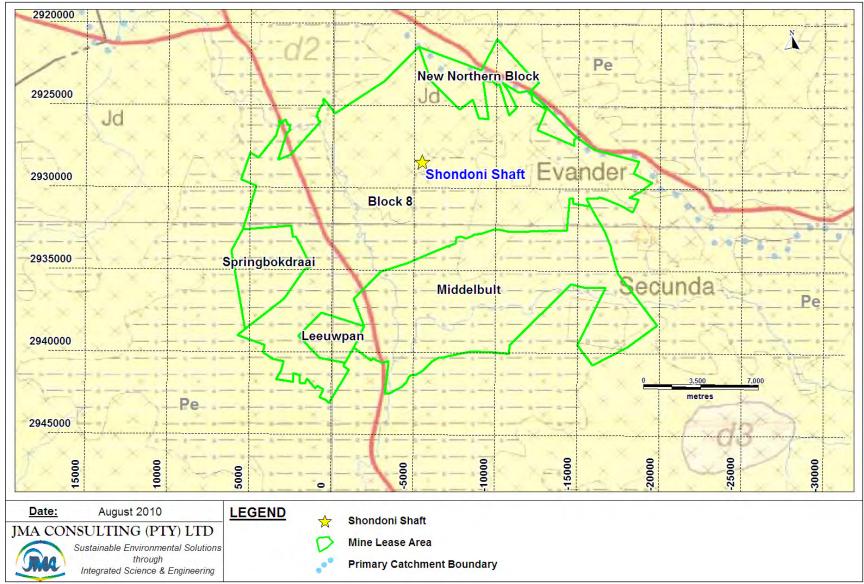


Figure 3.1.5(A): Regional Geohydrology of the Study Area

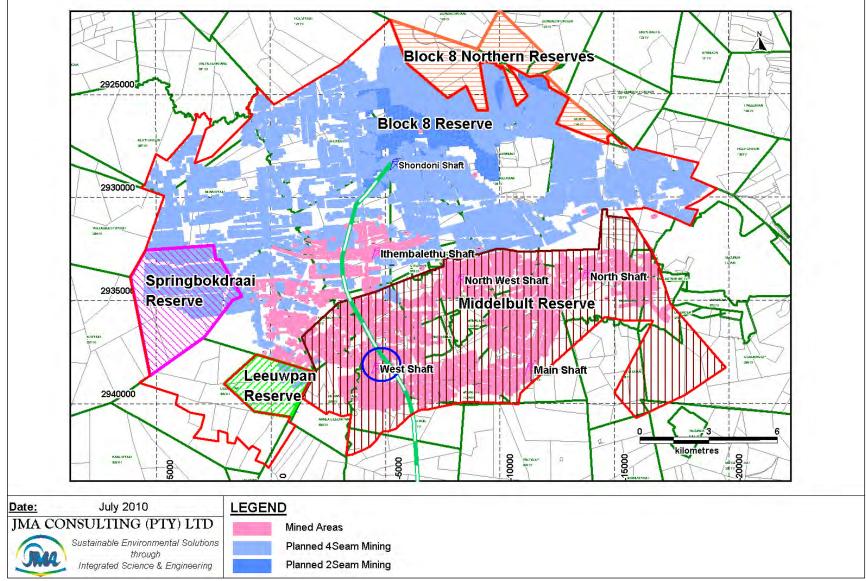


Figure 3.1.6(A): Regional Historical Mining

3.2 PHYSICAL AQUIFER DESCRIPTION

During a recent geohydrological investigation, a total of 30 monitoring boreholes were drilled specifically for geohydrological purposes. The boreholes were drilled in pairs, one shallow borehole (SSW-) of 30 m deep to investigate the shallow weathered zone aquifer(s), and one deep borehole (SDF-) ranging in depth between 80 - 150 m, to investigate the deep fractured aquifer. The shallow weathered zone aquifer(s) were sealed off in the deep boreholes (SDF-) with 30 m solid steel casing and sealed with cement and bentonite at the surface. The solid casing installed in the shallow boreholes (SSW-) ranged in depth between 2 m and 12 m, averaging at 6 m. The borehole logs and site reports, as well as multiparameter profiles for these boreholes were recorded and are attached as Appendix 3(A) and 3(B) respectively.

The boreholes were sited using geophysical (magnetic) methods with the aim of intersecting the following geological structures:

- Four boreholes pairs (SSW- & SDF- 4, -7, -10 & -13) were sited to intersect the large east-west orientated normal fault that stretches over a distance of roughly 16 km between Brandspruit 359 IR in the west and the town of Evander in the east. This large feature also intersects the Kinross Mines Ltd Slimes Dams to the west of Evander.
- One pair of boreholes (SSW- & SDF-2) were sited to intersect the smaller normal fault that stretches over a distance of roughly 4 km between Witkleifontein 131 IS in the west and Evander's Sewage Works and the Winkelhaak Mines Slimes Dams in the east.
- Two pairs of boreholes (SSW- & SDF-6 & -9) were sited to penetrate the two dykes intersecting both the Kinross Mines Ltd Slimes Dams and the Leslie Gold Mines Ltd Slimes Dams.
- One pair of boreholes (SSW- & SDF-3) was sited to intersect the 7 m thick sub-vertical rising B8 dolerite sill that compartmentalizes or separate most of the Block 8 reserve from the Middelbult underground workings.

In addition to information obtained from these boreholes, geohydrological and hydrochemical information from over 170 external user's boreholes (inclusive of 28 monitoring boreholes used for observation purposes by Kinross, Winkelhaak and Leslie Gold Mines Ltd), 1 dug well and 16 fountains were obtained during the various hydro-census'. The locations of the monitoring boreholes, external user boreholes, as well as the exploration boreholes are indicated in Figure 6.2(A). The locations of these boreholes and fountains, as well as their respective numbers are indicated on the Map attached as Appendix 3.2(A).

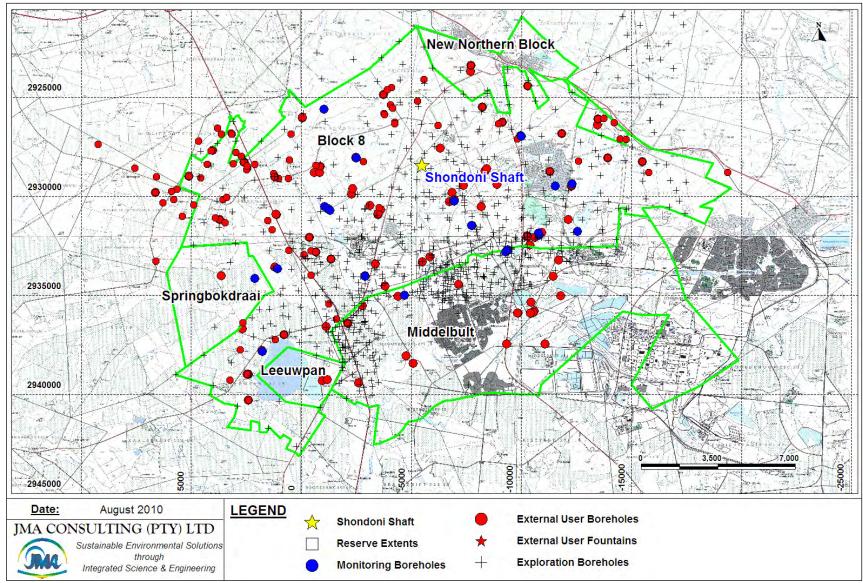


Figure 3.2(A): Borehole and Fountain Locations

3.2.1 Aquifer Matrix (Soil and Geological Matrix)

The surface of the study area consists predominantly of overburden and a dark brown to black, sandy clay layer, with an average thickness of between 1 and 2 meters thick. The clay layer is quite extensive across the extent of the study area and formed due to the weathering of the underlying lithologies. The nature of the clay layer is therefore dependent on the underlying host rock lithologies.

The host rock within the study area consists of sedimentary lithologies of the Vryheid Formation as well as Jurrassic Age dolerite intrusions. The Vryheid Formation forms part of the Ecca Group of the Karroo Supergroup, and consists of interbedded sandstone, mudstone and shale layers. Carbonaceous shale and coal layers are generally associated with the Vryheid Formation as well. The dolerite present within the study area is younger than the Vryheid Formation and intruded into and through the sedimentary rocks of the Vryheid Formation. The dolerite intrusions typically occur as dykes and sills and are often responsible for the devolatization of the coal adjacent to the dolerite intrusions.

The general lithological profile of the study area, up to, and including the No. 2 coal seam, comprises of:

- Soft overburden consisting of soils and weathered sandstone and some occasional highly weathered dolerite.
- Hard overburden consisting of fresh to slightly weathered dolerite, sandstone and shale units.
- No.5 coal seam (only present in some areas)
- Inter burden units of sandstone
- No.4H and/or 4L coal seam with a thin layer of sandstone in between if both are present
- o Karoo Sediments
- o No. 2 coal seam

3.2.2 Aquifer Types (Primary, Weathered, Fractured, Karst)

There are three major aquifer types present within the extent of the study area, namely:

- o shallow weathered zone perched aquifers
- o shallow weathered zone Karoo aquifers
- o deep fractured Karoo aquifers (zone below the weathered zone)

The shallow perched aquifers are essentially restricted to the soil (soft overburden) horizon and have a very limited vertical depth. These aquifers are however laterally very extensive and are exposed to unconfined atmospheric conditions.

The host rocks of the other two aquifer types are the Karoo sediments as well as the dolerite intrusions. The nature and physical parameters of these aquifers are dependent on the occurrence, geometry, size, spatial extent as well as the fracturing status (of both the dolerite and Karoo lithologies) associated with the intrusions. For example, dolerite dykes and sills may form aquifer boundaries or act as ground water conduits, depending on their size as well as their weathering

and fracturing conditions. In essence, the characteristics of all three aquifer systems may vary depending on the localized conditions.

It is important to note, that due to the complex nature of these dolerite intrusion, many different aquifer units or compartments exist. All these units are different, not only in terms of physical properties, but also in terms of geometry and size. This also implies that it is not always possible to unilaterally classify an aquifer zone, into any of the three categories listed above.

It is a known fact that different piezometric pressures exist both at depth, and for different aquifer units. The perched aquifer usually displays unconfined conditions, whilst the shallow weathered zone aquifer displays unconfined to semi-unconfined conditions, and the deep aquifer predominantly confined conditions. It is typical for Karoo type aquifers (both shallow weathered zone and deep) that the shallow part of an aquifer exists with a higher potential for exploitation, than the deeper aquifers.

Ground water flow in all three aquifer types is essentially horizontal, however, interconnection between the aquifer types, can introduce non-horizontal flow components. The ground water flow within the aquifers occurs primarily as a result of advection caused by gravity. Ground water flow in underground sections, which are not fully flooded, is also gravitational and therefore controlled by the mine floor contours, and only become pressure controlled when fully flooded.

3.2.3 Aquifer Zones (Unsaturated, Saturated)

The thickness of the unsaturated zone is taken as the distance from the surface down to the ground water level, whilst the thickness of the saturated zone is taken as the distance from the ground water level down the interface between the weathered/fractured zone and the fresh lithologies. The weathering and fracture status of the geology penetrated, was recorded during the drilling programme and is included in the borehole logs and site reports, attached as Appendix 3(A).

With reference to the available geological information from exploration boreholes, supplemented with data obtained during drilling of the geohydrological monitoring boreholes, the physical thicknesses for the three different aquifer types, are summarized in Table 3.2.3(A).

Aquifer Type	Aquifer Depths (mbgl)	Saturated Thickness (m)		
Shallow Perched Aquifer	0 m to 6.4 m	-		
Shallow Weathered Zone Aquifer	6.4 m to 15.2 m	3.9 m to 15 m		
Deep Karoo Aquifer	15.2 m to 165 m	74 m to 108 m		

Table 3.2.3(A): Aquifer Zone Thickness'

Table 3.2.3(A) indicates that depths below the surface at which each of the aquifers occur. It is evident from the table that shallow perched aquifer is underlain by the shallow weathered zone aquifer which is further underlain by the deeper Karoo aquifer. The thickness of these aquifers is dependent on the water levels as well as the depth of the interface between the weathered/fractured zones and the fresh host rock lithologies.

In each instance where an impact on an aquifer is assessed, the potential and/or sensitivity of the aquifer(s) impacted on, will contribute towards the impact assessment made. It is therefore important to arrive at an overall aquifer classification, based on the base line information generated. The overall classifications of the aquifers present within the study area are therefore classified as medium potential aquifers, as these aquifers have a viable exploitation potential for small scale domestic and stock-watering purposes. The aquifers will, however, not support formal irrigation or water provision for extensive areas or communities.

3.2.4 Lateral Aquifer Boundaries (Physical, Hydraulic, Arbitrary)

The lateral extent of the ground water zones within the study area is severely complex. The lateral extent of the perched aquifers is usually finite and varies as a function of the lateral extent of soil and clay lenses at the surface.

Due to the scale of the investigation as well as the interconnectivity of the underground mining activities, the physical extent of the Karoo aquifers can be taken as infinite. Their lateral extent within the study area would naturally be highly dependent on the distribution and interconnectivity of the dolerite dykes and sills. In certain areas across the extent of the study area, these intrusives intersect one another and would have compartmentalized the adjacent aquifers. The degree and extent of compartmentalization prior to mining would have been very localized and is currently undetermined, as these compartments have since been be affected to various degrees as a result of the underground mining activities.

In addition to the geological features, the maximum natural lateral extent of the ground water zone (prior to mining) within the study area is limited by hydraulic boundaries. These include those boundaries formed by the major rivers and streams which act as ground water discharge boundaries, topographical water sheds which act as no-flow boundaries and surface infiltration sources (tailings dams) which usually represent constant head influx boundaries. Several of the natural hydraulic boundaries identified are delineated in Figure 3.2.4(A).

However, when mining activities impact on the ground water level distribution, these hydraulic boundaries become dynamic, resulting in an induced hydraulic boundary, usually manifesting as a cone of de-watering. It is important to realize from the discussion above, that aquifer boundaries are both physical and hydraulic in nature, both of which become dynamic in the mining environment.

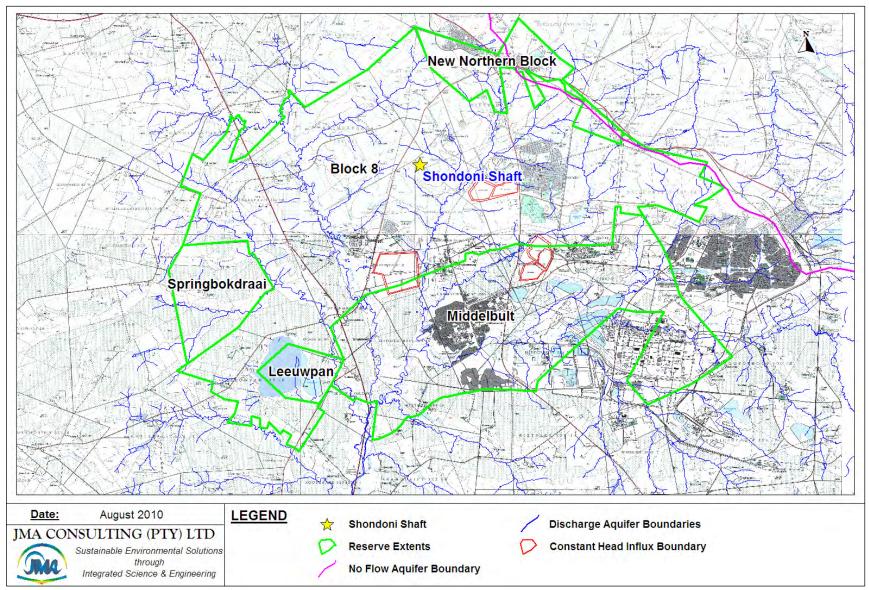


Figure 3.2.4(A): Natural Hydraulic Aquifer Boundaries (Including Slimes Dams)

3.2.5 Preferential Ground Water Flow Zones

In order to make an assessment of the ground water flow directions within the study area, the ground water level elevations in boreholes were used. Due to the nature of shallow weathered zone aquifers, the ground water contours essentially mimic those of the surface topography. It can therefore be stated that the natural regional ground water flow directions (in areas not impacted by mining), will be perpendicular to the surface topography contour lines and down towards the spruits and rivers.

The presence of the dolerite intrusions as well as the underground mining activities, do however effect the ground water flow of the area. During underground mining operations, ground water is removed from the aquifers and ultimately lowers the ground water level of the aquifer. This is known as "dewatering" and may have a significant impact on the ground water flow directions as well as the ground water flow velocities. The degree of impact is related to the volume of ground water extracted, the extent to which as well as the depth at which the dewatering takes place. Due to the scale of the study area as well as the impacts of the underground mining activities and dewatering, detailed ground water flow directions and flow velocities will not be defined for the purpose of the ground water baseline report.

The effect that the natural geological features may have on the ground water flow zone will however be discussed. The dolerite intrusions present within the study area may act as ground water flow barriers and may in fact cause preferential ground water flow zone, or both. Fresh dolerite is impermeable and if the extent thereof is sufficiently continuous, ground water will not be able to pass through the dolerite intrusives may from ground water barriers. The interconnectivity of these impermeable dolerite intrusions may result in the compartmentalization of the adjacent aquifers. It is important to note here that due to the impact of the underground mining activities, the extents and degree of the compartmentalization cannot be determined. The highly zone adjacent to the dolerite intrusions and country rock (Karoo Sediments), known as the contact zone, may be highly fractured. This contact zone generally has a high secondary porosity and may form a preferential ground water flow zone. The degree of fracturing as well as the interconnectivity of the fractures in this zone determines the effect that it may have as a preferential ground water flow zone.

3.3 HYDRAULIC AQUIFER DESCRIPTION

The hydraulic aquifer description relates to the parameters which determine the hydraulic ground water properties, such as the occurrence, availability, storage and movement of the ground water within the shallow weathered zone aquifer systems present within the study area. The hydraulic aquifer description will be based on the borehole yield information and geological logs obtained during drilling of the geohydrological boreholes, as well as from information generated during the profiling, sampling and aquifer testing conducted at the 30 monitoring boreholes. The borehole logs and site information reports as well as the EC profiles measured at the 30 monitoring boreholes are attached as Appendix 3(A) and 3(B) respectively.

3.3.1 Borehole Yields

Four pairs of boreholes (SSW- & SDF-4, -7, -10 and -13) were sited to intersect the large east-west striking normal fault. This fault was possibly intersected in boreholes SSW-7, SDF-7 and SDF-10. Major water strikes were encountered in boreholes SSW-7 and SDF-7, both located some 800 m west of the Kinross Mines Ltd Slimes Dams. Large calcified fracture planes with pyrite mineralisation, yielding ± 22 l/s were intersected, in the overlying B4 dolerite at a depth of 17-18 m, in borehole SSW-7. Borehole SDF-7, situated some 10 m south of borehole SSW-7, recorded a water strike of \pm 19 l/s, also at a depth of 17-18 m, in highly fractured B4 dolerite (no calcification observed). A further 10 l/s were measured at a depth of 41-43 m, along a fracture in a fresh sandstone/shale succession. Boreholes SSW- & SDF-2 were sited to intersect the smaller normal fault to the south of the larger one discussed above. There was however no evidence recorded that this structure was intersected by either of the two boreholes. In conclusion it can be stated that out of the 10 boreholes geophysically sited to intersect these two faults, only three intersections (of which only two were water bearing), were recorded with some degree of confidence.

Two borehole pairs (SSW- & SDF-6 and -9) were sited to penetrate the two dykes individually intersecting both the Kinross Mines Ltd Slimes Dams and the Leslie Mines Slimes Dams. No dolerite was intersected in borehole SSW-6, whilst borehole SDF-6, sited on the dyke intersecting the Kinross Mines Ltd Slimes Dam, penetrated the dyke at a depth of 5-15 m below the surface. Although this intersection was recorded as highly weathered between 5-8 m and weathered, fractured between 8-12 m, no water strike was encountered. No dolerite was intersected in borehole SSW-9, whilst borehole SDF-9, sited to intersect the dyke indicated to cut across the Leslie Mines Slimes Dam, some 420 m east of the dam, penetrated a B12 dolerite sill at a depth of 41-42 m below the surface. No water strike was encountered along this intersection.

One borehole pair (SSW- & SDF-3) was sited to intersect the 7 m thick subvertical rising B8 dolerite sill that compartmentalizes or separate most of the Block 8 reserve from the Middelbult reserve. Borehole SSW-3 intersected the B8 dolerite at depths of 1-7 m and 8-17 m below the surface. A water strike of \pm 0,10 l/s was recorded between 15-16 m. Borehole SDF-3 intersected B8 dolerite at a depth of 1-13 m below the surface. A water strike of \pm 0,30 l/s was recorded between 8-9 m. Another water strike of \pm 2,40 l/s was recorded between 17-20 m,

along a slightly weathered, fractured shale intersection, probably attributable to this dolerite intrusion.

Twenty-three dolerite intersections were recorded in twenty of the thirty newly drilled geohydrological boreholes. Thirteen water strikes, associated with host rock contacts as well as the contact between weathered and fresh dolerite, were recorded along these intersections. Three of these water strikes were recorded below the limit of weathering.

Six water strikes, ranging in depth between 6 m and 18 m were recorded in five of the fifteen newly drilled shallow weathered zone (SSW-Group) boreholes. Their estimated yields ranged between 0,1 l/s and 23 l/s, averaging at 4,25 l/s. Discarding the outlier associated with borehole SSW-7, the average estimated yield calculates to 0,70 l/s.

Only one water strike with an estimated yield of 0,40 l/s was recorded at a depth of 27-28 m, some 13 m below the limit of weathering in borehole SSW-8. Eight water strikes were recorded at depth below the limit of weathering in seven of the fifteen newly drilled deep Karoo aquifer (SDF-Group) boreholes. The water strikes ranged in depth between 27 m and 80 m and their estimated yields ranged between 0,10 l/s and 10 l/s, averaging at 1,51 l/s. Discarding the outlier associated with borehole SDF-7 and including the water strike recorded below the limit of weathering in borehole SSW-8, the average estimated yield calculates to 0,31 l/s.

Eight water strikes were recorded within the limit of weathering in five of the deep boreholes. They ranged in depth between 5 m and 33 m and their yields ranged between 0,1 l/s and 19 l/s, averaging at 4,1 l/s. Discarding the outlier associated with borehole SSW-7, the average estimated yield calculates to 1,99 l/s.

Analyses of the water strike information indicates that 81 % of the water strikes occurred at depths between 11 m and 33 m, while their reported yields ranged between 0,16 l/s and 6,11 l/s, averaging at 1,33 l/s. 19% of the strikes ranged in depth between 40 m and 80 m, while their reported yields ranged roughly between 0,25 l/s and 1,66 l/s, averaging at 0,93 l/s.

The 96 reported yields for the external user's boreholes ranged between 0,01 l/s and 8,3 l/s, averaging at 1,27 l/s. Statistical analyses of all water yielding borehole data - considered to represent the shallow weathered zone aquifer - calculates to an average yield of roughly 1,36 l/s. Analyses of all the water yielding borehole data considered representing the deep Karoo aquifer calculates to an average yield of roughly 0,62 l/s.

3.3.2 Aquifer Permeability/Transmissivity

The hydraulic conductivity or permeability (k) of an aquifer is a measure of the ease with which ground water can pass through the aquifer system. The permeability is defined as the volume of water discharged from a unit area of an aquifer under a unit hydraulic gradient per unit time (expressed as m/day). The permeability of the aquifer was determined by analyzing the rate of change in the water level of the shallow weathered zone aquifer during a permeability (slug) test.

Slug tests were performed in 13 of the shallow boreholes (SSW-Group) and 14 of the deep boreholes (SDF-Group), ranging in depth between 80 - 150 m, to determine the hydraulic conductivity distribution within the saturated Karoo aquifers.

The aquifer permeability distribution across the study area is depicted in Figure 3.3.2(A). A statistical summary of the permeability's for the Shallow Weathered Zone Aquifers and Deep Karoo Aquifers are listed in Tables 3.3.2(A) and 3.3.2(B) respectively.

Description of statistical analyses	Hydraulic conductivity (m/day)		
Minimum value	0.0003 m/day		
Maximum value	6.250 m/day (fault zone)		
Arithmetic Mean	0.060 m/day		
Geometric Mean	0.018 m/day		
Harmonic Mean	0.003 m/day		
Chosen for Shallow weathered zone aquifer	0.015 m/day		

Table 3.3.2(A): Shallow Weathered Zone Aquifers Permeability

Table 3.3.2(B): Deep Karoo Aquifers Permeability

Description of statistical analyses	Hydraulic conductivity (m/day)		
Minimum value	0.001 m/day		
Maximum value	5.819 m/day (fault zone)		
Arithmetic Mean	0.023 m/day		
Geometric Mean	0.007 m/day		
Harmonic Mean	0.002 m/day		
Chosen for deep Karoo aquifer	0.004 m/day		

Table 3.3.2(A) indicates that the calculated permeability values for the Shallow Weathered Zone Aquifers varied substantially between 0.0003 m/day and 6.250 m/day. Table 3.3.2(B) indicates that the calculated permeability values for the Deep Karoo Aquifers were higher and varied between 0.001 m/day and 5.819 m/day. The permeabilities assigned to the two aquifer systems were 0.015 m/day and 0.004 m/day for the Shallow Weathered Zone Aquifers and the Deep Karoo Aquifers respectively.

Additionally, statistical analyses of packer tests, conducted at different depths in 3 of the deep boreholes indicated the following:

- A mean hydraulic conductivity of 0.0043 m/day was calculated for fresh sandstone/siltstone intervals.
- A hydraulic conductivity of 0.0156 m/day was calculated for the 4 m fresh to slightly jointed B4 dolerite test section (30-34 m) in borehole SDF-11.
- A hydraulic conductivity of 0.573 m/day was calculated for the 4 m (fine grained sandstone) test section (60-64 m) across a water intersection roughly yielding 0,90 l/s in borehole SDF-14.

Hydraulic conductivities calculated for falling head tests, conducted in 2 of the deep boreholes (SDF-Group) compared well with the values obtained from the

slug tests performed in the same holes. Statistical assessment of hydraulic conductivities in South African hard rock aquifers, indicate the actual k-values to lie somewhere between the geometric and harmonic mean. A k-value of 0.02 m/day is therefore proposed as realistic value for the shallow weathered zone aquifers within the study area, while a value of 0.006 m/day, is proposed for the deep Karoo aquifers.

3.3.3 Aquifer Storativity

The storativity (S) of an aquifer is defined as the volume of water that an aquifer releases from, or takes into, storage per unit surface area of the aquifer per unit hydraulic gradient.

The storativity of the Karoo Aquifers within the study area was obtained from literature and is taken to be approximately 0.0001. The saturated interstice types or storage medium of the aquifer are the interstices and fractures present below the ground water level, as a result of weathering and the weathering related fractures of the host rock and dolerite intrusives.

3.3.4 Aquifer Porosity

The porosity of an aquifer is the ratio of the void space to the total volume of the aquifer. The porosity gives is an indication of the amount of water in the subsurface, but does not represent the volume that can be released from or taken into storage. The ratio between the volume of water that can be drained from the aquifer and the total volume of the aquifer is referred to as the effective porosity.

A total of 20 samples of the main sandstone units of the study area, were submitted to MATROLAB Civil Engineering Services for porosity testing. The saturation and buoyancy method - according to the SABS 0259 protocol (1990). The results obtained from the laboratory are summarized in Table 3.3.4(A).

Lithological Unit	Minimum	Maximum	Average
Fine grained Sandstone	0.3%	9.9%	4.1%
Medium to Coarse grained Sandstone	7.7%	14.4%	10.1%
Total Aquifer Average	0.3%	14.4%	5.8%

Table 3.3.4(A): Summary of the Aquifer Porosity within the Study Area

The large range in calculated porosity between the fine and medium grained sandstone is a function of the degree of pore-cementation and on the extent (depth) of weathering as well. The difference in porosity between the different grain-size sandstones is evident in Table 3.3.4(A). Based on the data obtained from MATROLAB and an average effective porosity for the shallow weathered zone is taken as 3.6 %, whilst the average effective porosity for the deep Karoo aquifer zone is taken as 0.58 %.

3.4 AQUIFER DYNAMICS

3.4.1 Rainfall Recharge

The mean annual precipitation (MAP) across the study area as recorded from the Bethal Monitoring Station is 711 mm per annum. The recharge to the shallow weathered zone aquifers within the study area will occur primarily through infiltration of the rain water and surface water bodies. The natural recharge to the Karoo aquifers within the study area has been influenced to varying degrees as a result of the underground mining activities. The recharge values obtained from the "SASOL MINE WATER MANAGEMENT TOOL" will be used and are summarized in Table 3.4.1(A) below.

Type of mining	Thick soils		Alluvium		Rocky Outcrops & Shallow Soils	
	Range	Ave	Range	Ave	Range	Ave
Board & Pillar Mining (Mining > 80 m deep)	1-2 %	1.5 %	1.5-3 %	2.0 %	2.5-3.5 %	3.0 %
Board & Pillar Mining (Mining < 80 m deep)	1-3 %	2.0 %	2-4 %	3.0 %	4-6 %	5.0 %
Board & Pillar Mining (Along major faults & dykes)	1-3 %	2.5 %	2-4 %	3.5 %	4-6 %	5.0 %
High Extraction Mining (free draining)	2-3.5 %	3.0 %	5-12 %	9.0 %	7-15 %	12 %
High Extraction Mining (non-free draining)	7-12 %	10 %	10-20 %	15 %	15-25 %	20 %

Table 3.4.1(A):Recharge values obtained from the "Sasol Mine Water
Management Tool".

The thick soils represent areas with low recharge values, the alluvium represents areas with medium recharge values and the rocky outcrops and shallow soils represent surface areas with high recharge potentials. Table 3.4.1(A) indicates that the different underground mining methods influence the recharge of surface water to the ground water to varying degrees as well. It is evident from Table 3.4.1(A) that areas where High Extraction Mining will take place will ultimately result in higher recharge areas than in areas that will be mined by Board and Pillar methods.

3.4.2 Ground Water Level Depths and Fluctuations

Ground water levels were recorded at 151 boreholes within the study area. A map, depicting the depth to water table distribution for the study area, is included at As Figure 3.4.2(A). The ground water level depths have not altered significantly over the past ten years, except for the areas that have been directly affected by aquifer dewatering associated with the underground mining activities.

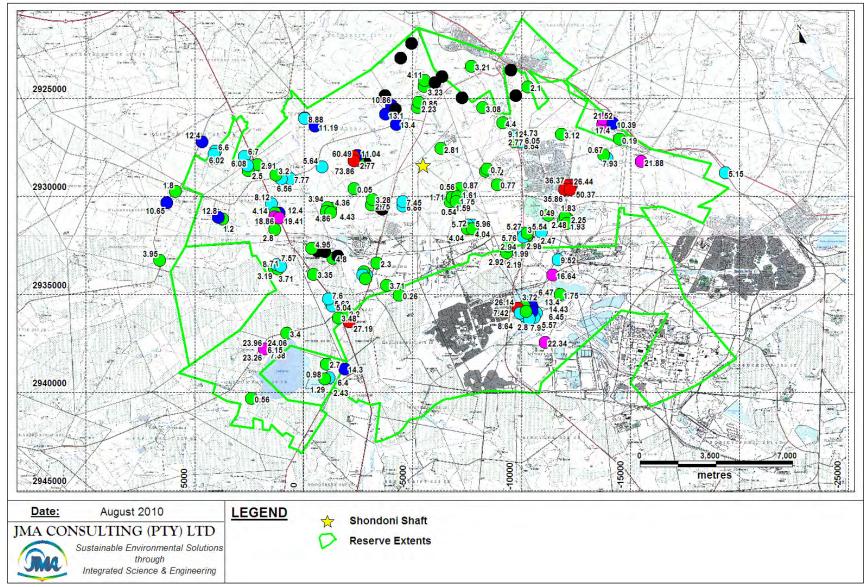


Figure 3.4.2(A): Ground Water Level Depth Distribution

The following observations are important regarding the depth to ground water tables:

- The depth to water level observed, varied between 0.05 m and 73.86 m, with a mean of 8.04 m.
- The depth to water level observed in the shallow weathered zone (SSW-) boreholes, varied between 0.27 m and 26.44 m, with a mean of 6.49 m.
- The depth to water level observed in the deep Karoo aquifer (SDF-) boreholes, varied between 0.24 m and 73.86 m, with a mean of 14.56 m
- The depth to water level observed in 74 external user's boreholes ranged between 0.05 m and 27.19 m, with an average depth of 6.23 m.
- The areas in which the water levels have been affected by dewatering are related to the panels of high extraction of underground mining activities.
- Figure 6.4.2(A) indicates that the water levels are in fact erratic across the study area and distinct linear trend is observed. There is also no definite step in the observed depth to water table on either side of the major fault zones.
- Due to the nature of shallow weathered zone aquifers, the ground water contours essentially mimic those of the surface topography. It can therefore be stated that the natural regional ground water flow directions (in areas not impacted by mining), will be perpendicular to the surface topography contour lines and down towards the spruits and rivers.

3.5 AQUIFER HYDROCHEMISTRY

A total of 114 water samples were collected throughout the extent of the study area, which included 109 ground water samples, 3 dam samples and 2 fountain samples. The aquifer hydrochemistry will be discussed with reference to the 104 ground water samples that were sampled from the various boreholes and wells. The locations of the ground water sampling points are indicated on Figure 3.5.1(A).

3.5.1 Background Ground Water Quality

The assessment of the background ground water quality was based on data obtained from the water samples collected from the newly drilled geohydrological monitoring boreholes, as well as from the external users' boreholes. The ground water samples were submitted to a laboratory and were analyzed for the following parameters: pH, EC, TDS, Ca, Mg, Na, K, Si, F, Total Alkalinity, Cl, SO4, NO3, Al, Fe and Mn. The concentrations of each of the elements in the ground water were then classified according to the SANS 241:2006 Drinking Water Standard and are listed in Table 3.5.1(A).

BH No.	pH	EC	TDS	Ca	Ma	Na	K	Cl	SO ₄	NO ₃	F	Al	Fe	Mn
	-				Mg			-	-	-	_		-	
GSS-1	7.44	61	367	47	27	51.5	7.5	40	86	6.26	0.41	0.04	0.10	0.01
GSS-2	7.50	60	338	40	23	65.6	5.1	70	42	0.26	0.43	0.06	0.12	0.01
GST-1	7.30	61	342	48	16	53.3	34.7	21	31	7.71	0.26	0.03	0.10	0.02
GWE-1	7.70	24	138	21	11	14.0	3.2	13	15	0.50	0.20	0.10	0.03	0.03
GWE-101	7.30	118	724	108	29	95.0	8.8	177	25	0.20	0.60	1.38	2.67	0.18
GWE-105	7.60	63	388	44	24	60.0	13.7	13	16	2.60	0.20	0.10	1.42	0.03
GWE-112	7.40	54	338	24	11	87.0	1.7	30	7	0.50	0.20	0.10	0.14	0.03
GWE-115	7.50	76	472	62	26	68.0	4.0	40	14	2.60	0.20	0.10	0.03	0.03
GWE-124	7.50	58	368	74	13	28.0	8.8	9	21	6.50	0.20	0.10	0.17	0.03
GWE-130	7.70	97	598	69	28	102.0	2.8	91	76	0.80	0.20	0.10	0.03	0.03
GWE-14	8.40	93	598	26	19	169.0	1.0	55	30	0.30	0.80	0.10	0.06	0.07
GWE-143	7.60	94	642	83	44	53.0	6.5	46	9	12.00	0.50	0.10	0.03	0.03
GWE-145	8.00	74	504	98	22	13.0	10.6	68	14	13.00	0.20	0.10	0.11	0.03
GWE-15	7.60	80	532	70	42	33.0	14.4	27	52	5.70	0.30	0.10	0.05	0.03
GWE-150	7.00	187	1300	204	108	65.0	8.7	265	147	31.00	0.40	0.10	0.03	0.03
GWE-159	7.70	49	306	28	10	73.0	1.9	22	5	0.80	0.50	0.10	0.22	0.14
GWE-168	7.80	65	400	60	25	47.0	4.9	39	46	1.10	0.20	0.10	0.03	0.05
GWE-17	8.50	73	512	30	30	51.0	44.0	40	75	5.60	0.40	0.10	0.03	0.03
GWE-19	7.60	76	496	47	22	97.0	2.3	24	27	0.40	0.60	0.10	0.03	0.03
GWE-22	8.00	93	584	19	6	173.0	2.0	99	26	0.50	3.20	0.10	0.03	0.03
GWE-25	7.60	84	580	82	49	30.0	1.1	12	114	8.00	0.30	0.10	0.25	0.03
GWE-31	7.70	78	514	28	14	141.0	2.2	15	13	0.70	0.30	0.16	0.57	0.04
GWE-48	8.00	77	500	58	36	44.0	27.0	16	5	0.40	0.50	0.44	6.79	0.06
GWE-54	8.20	56	334	21	38	37.0	4.9	36	5	0.20	0.20	0.10	1.96	0.03
GWE-56	7.60	89	504	69	44	55.0	2.7	55	5	2.40	0.30	0.10	0.03	0.03
GWE-6	7.70	89	604	80	43	53.0	5.1	37	81	1.80	0.40	0.10	0.30	0.03
GWE-7	7.50	113	734	96	67	69.0	1.0	30	107	2.80	0.50	0.10	0.19	0.03
GWE-70	7.80	133	868	62	62	122.0	3.4	233	43	1.80	0.40	0.21	0.61	0.03
GWE-73	7.40	176	1344	132	86	93.0	3.4	328	68	1.40	0.80	0.16	0.45	0.17
GWE-77	7.50	251	1760	95	108	290.0	2.7	576	110	0.60	1.30	7.71	15.00	0.52
GWE-78	7.40	98	608	48	30	129.0	2.0	64	5	0.20	0.60	0.61	1.48	0.12
GWE-79	7.30	77	486	72	36	52.0	1.0	18	6	3.30	0.40	0.23	0.40	0.03
GWE-85	7.20	304	2688	263	161	136.0	11.2	705	229	0.20	0.90	29.00	83.00	1.36
GWE-88	7.50	352	1982	16	5	702.0	3.4	913	242	0.20	0.40	0.30	0.49	0.08
GWE-9	7.30	125	884	124	77	50.0	1.1	57	139	10.00	0.30	0.75	3.01	0.07
GWE-90	7.10	1517	10650	543	979	935.0	9.8	2991	2717	0.20	0.20	0.14	14.00	5.63
GWE-92	7.30	127	1026	132	47	53.0	11.5	238	54	1.30	0.60	0.42	0.76	0.03
GWE-93	6.90	306	2528	273	165	65.0	10.3	870	77	0.80	0.20	0.10	0.50	0.03
GWE-95	6.90	334	2930	252	147	184.0	5.3	903	129	0.20	0.80	0.42	4.88	0.28
GWE-98	8.10	61	372	56	22	45.0	4.8	27	46	0.20	0.40	0.10	0.03	0.03
U 11 L-70	0.10	UI	314	50	<u> </u>	7J.U	7.0	41	7 U	U.4U	V.4 U	0.10	U.U J	0.03

 Table 3.5.1(A): Ground Water Quality Compliance

BH No.	pН	EC	TDS	Ca	Mg	Na	K	Cl	SO ₄	NO ₃	F	Al	Fe	Mn
GWE-99	7.80	52	344	60	18	29.0	7.8	14	18	2.30	0.30	0.10	0.03	0.03
HP-7-1 D	7.78	394	2720	140	89	708.0	8.3	1000	590	2.70	0.50	0.03	0.10	0.01
HP-7-2 D	7.76	227	1329	153	139	109.0	1.9	466	266	4.93	0.41	0.03	0.10	0.01
HP-7-2 S	7.60	81	502	85	59	24.3	0.7	21	109	5.12	0.51	0.03	0.10	0.01
KB-12 KB-13	7.38 7.75	633 133	3241 747	<u>248</u> 61	271	607.0 176.0	0.7 4.3	1483 207	251 38	2.26 0.31	0.48	0.02	0.12	0.02
КВ-15 КВ-15	6.90	68	361	48	33 27	50.9	4.3 4.7	72	- 30 - 46	0.31	0.65 0.33	0.03	0.16 0.17	0.02
KB-16	7.70	76	425	33	<u></u> 29	97.6	2.2	25	18	0.63	0.64	0.02	0.12	0.01
KB-5	7.43	395	2105	259	227	195.0	5.2	1013	263	0.79	0.23	0.02	0.11	0.01
KB-7	7.32	404	2176	226	138	375.0	2.7	1053	170	0.96	0.44	0.02	0.12	0.20
KD-1	7.57	93	604	102	64	38.2	1.7	41	94	14.00	0.22	0.03	0.10	0.01
KD-2 KD-F1	7.17 7.54	<u>120</u> 72	<u>697</u> 406	<u>61</u> 52	25 40	156.0 61.8	7.0 0.9	<u>35</u> 19	134 24	4.26 0.36	0.51 0.30	0.03	0.15 0.11	0.08
KD-F1 KSS-1	7.34	68	400	53	31	58.8	7.0	38	114	6.15	0.50	0.00	0.11	0.01
LB-2	7.34	169	904	184	57	81.4	18.3	376	72	1.27	0.08	0.03	0.10	0.01
LB-3	7.24	407	2135	365	205	90.6	14.0	1210	139	0.93	0.07	0.01	0.11	0.02
LM-9	7.20	25	141	18	13	17.5	4.6	9	21	0.29	0.21	0.38	0.42	0.05
LPB-4	7.64	50	276	55	18	30.9	9.2	13	21	1.29	0.16	0.03	0.10	0.01
LPB-5	7.18	683 141	4536	<u>853</u> 154	212 42	411.0 80.2	15.1	2664	198 24	0.29	0.35	0.02	0.10	0.17
LPB-6 LSS-1	7.54 7.35	141 53	784 314	<u>154</u> 40	42 23	89.2 45.8	12.1 7.3	<u>279</u> 41	24 53	4.31 5.24	0.49 0.33	0.03	0.10	0.04 0.01
LSS-1 LSS-2	7.05	64	314 393	40	25 26	45.0 58.7	7.5 9.8	41	55 58	5.24 13.00	0.33	0.07	0.15	0.01
REGM-120	7.65	84	474	62	60	28.3	1.4	38	<u>82</u>	2.41	0.55	0.02	0.10	0.01
REGM-122	7.64	841	5167	668	496	504.0	7.1	2037	1368	4.65	0.56	0.01	0.14	0.02
REGM-133	8.00	64	380	4	1	150.0	1.9	47	18	2.05	0.60	0.03	0.12	0.01
REGM-190	7.80	189	1108	74	143	146.0	0.6	177	162	0.32	5.50	0.02	0.46	0.22
REGM-194 REGM-197	7.58 5.73	89 1576	513 10797	<u>36</u> 1770	54 1100	87.9 767.0	1.8 2.9	9 5474	32 1654	1.38	0.73	0.02	0.12	0.37 1.34
RKL-7	8.35	87	530	86	1100 44	64.5	2.9 0.9	<u>5474</u> 72	62	0.01 3.47	0.11 0.26	0.03	0.20	0.02
RKL-8	7.40	48	268	40	13	52.9	5.1	17	1	0.21	0.08	0.03	0.74	0.03
SDF-1	7.50	77	468	44	22	84.0	2.4	40	17	0.20	0.30	1.68	18.00	0.12
SDF-10	7.80	64	404	43	24	58.0	2.7	11	33	0.20	0.20	2.68	27.00	0.27
SDF-11	8.20	234	1348	3	2	563.0	1.9	347	12	0.20	4.60	2.14	6.17	0.06
SDF-12 SDF-13	7.70 8.00	68 110	432 662	<u>44</u> 32	29 20	71.0 209.0	5.4 5.8	<u>18</u> 18	17 78	0.20	0.40 0.60	0.58 0.90	17.00 9.49	0.15 0.12
SDF-13 SDF-14	8.20	<u>69</u>	422	6	20	159.0	3.3	16	5	0.20	0.50	0.54	0.97	0.03
SDF-15	9.80	76	418	2	2	168.0	4.1	27	20	1.00	0.60	0.83	5.31	0.05
SDF-2	7.60	73	448	50	48	34.0	1.0	8	15	0.20	0.50	1.06	11.00	0.05
SDF-3	7.80	158	916	32	20	262.0	3.9	228	74	0.20	1.20	1.62	9.58	0.27
SDF-4	9.90	167	1156	2	2	380.0	5.2	120	33	1.10	12.00 1.40	7.96	7.38 2.85	0.06
SDF-5 SDF-6	8.10 8.00	68 85	406 516	20 22	10 10	113.0 147.0	2.4	<u>56</u> 53	5	0.20 0.20	1.40 0.30	1.23 3.93	2.85	0.05
SDF-0 SDF-7	7.70	73	460	37	10 27	81.0	2.8 1.9	16	17 5	0.20	1.00	0.56	4.94	0.07
SDF-8	7.80	277	1568	47	16	469.0	5.1	665	136	0.20	0.30	0.19	4.96	0.06
SDF-9	7.60	61	394	22	10	95.0	3.2	45	14	0.20	0.30	0.99	14.00	0.13
SSW 4	8.60	300	2162	13	7	659.0	0.0	104	1035	0.00	0.00	0.00	0.00	0.00
SSW-1 SSW-10	8.50	55	364	21	10 22	85.0 87.0	3.4	30	5	0.20	0.90	3.74	5.67 8.05	0.32
SSW-10 SSW-11	7.80 7.90	68 117	466 716	<u>36</u> 38	22 20	87.0 187.0	3.2 11.7	<u>11</u> 152	10 86	0.20	0.40 0.20	3.32 0.63	8.05 0.75	0.14 0.10
SSW-11 SSW-12	7.50	74	592	47	20 29	78.0	5.6	132	00 18	0.20	0.20	0.03	1.18	0.03
SSW-12 SSW-13	7.70	115	868	88	<u>65</u>	83.0	14.1	9	72	2.80	0.70	0.24	2.17	0.23
SSW-14	7.60	77	548	51	42	64.0	3.3	13	74	0.20	0.40	0.24	6.35	0.03
SSW-15	7.90	88	596	16	10	187.0	7.3	20	14	1.00	0.60	0.36	4.40	0.03
SSW-2	7.88	92	542	53	58 112	94.3	1.3	14	34	0.24	0.50	0.05	0.32	0.14
SSW-3 SSW-5	7.80 8.00	257 85	1776 508	<u>141</u> 16	112 8	207.0 170.0	6.1 2.6	<u>444</u> 80	200 5	0.20	0.50 1.30	2.28 2.55	5.53 10.00	0.27 0.10
SSW-5	8.10	79	492	30		121.0	3.9	45	19	0.20	0.40	0.64	4.18	0.06
SSW-7	8.00	73	462	35	28	83.0	2.4	16	5	0.20	1.10	0.25	2.03	0.03
SSW-8	7.70	313	1934	79	42	491.0	7.3	723	150	0.20	0.20	0.36	0.67	0.03
SSW-9	8.00	63	396	24	12	96.0	4.2	41	9	0.20	0.40	0.33	2.87	0.04
UTK-1	7.83	117	676	<u>98</u>	67	68.5 8(4.0	5.4	136	84	2.58	0.25	0.04	0.10	0.01
WB-4 WB-5	7.68 7.68	352 187	2199 1289	<u> </u>	2 57	864.0 313.0	3.3 8.8	<u>1015</u> 305	208 393	0.50	0.17 0.20	0.05	0.10 0.10	0.01 0.01
WB-5 WB-6	7.08	237	1289	08 154	57 126	233.0	8.8 7.7	503	595 560	0.20	0.20	0.04	0.10	0.01
WKH-10	7.63	79	456	73	47	38.4	19.0	23	58	4.05	0.40	0.03	0.11	0.01
WVR-1	7.22	26	156	19	13	19.2	4.4	10	34	0.32	0.22	0.69	0.80	0.02
ZFT-1	7.49	45	243	36	21	14.9	11.1	28	47	8.18	0.02	0.02	0.12	0.02
			•											

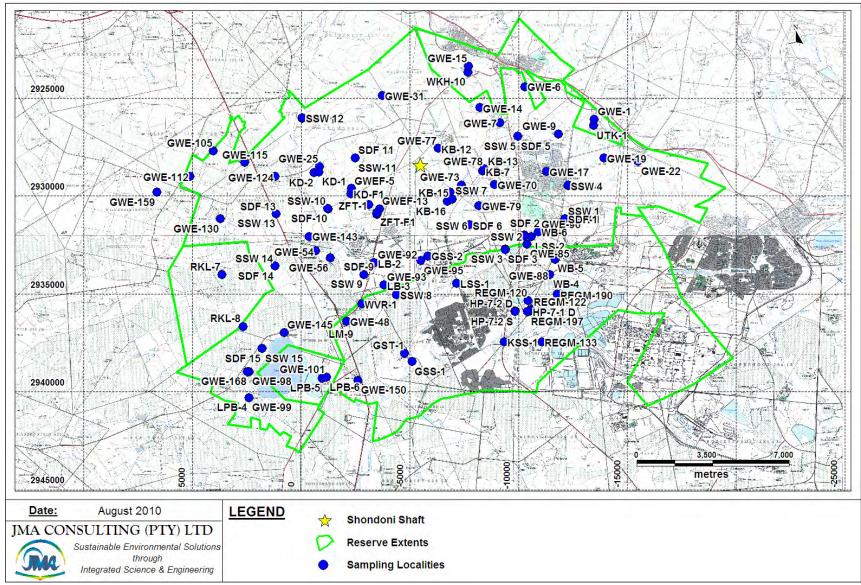


Figure 3.5.1(A): Ground Water Sampling Localities

The SANS Standard specifies two compliance classes namely Class I (Recommended) and Class II (Maximum Allowable). The colour coding for ground water quality used throughout this report interprets compliance with Class I as Full Compliance (green) and compliance with Class II as Marginal Compliance (orange). Exceedance of the Class II standard is interpreted as Non-Compliance (red).

The ground water geochemistry listed in Table 3.5.1(A) was determined from the ground water samples collected across the entire extent of the study area (Figure 3.5.1(A)). Due to the nature of the environment adjacent to several of the boreholes, the geochemistry of several boreholes was not used as the ground water quality at these boreholes had been affected by anthropogenic activities and do therefore not represent the background ground water quality.

Hydro-chemical imaging was used as a first screening tool, to eliminate boreholes, possibly influenced by any pollution source. This also meant that boreholes close to pollution sources (surface and sub-surface) were carefully scrutinised and discarded from this study group, if deemed necessary. After a statistical evaluation of Electrical Conductivity (EC) values, all boreholes with EC values in excess of 100 mS/m were discarded. Ground water samples are affected by mining-related pollution have lower pH values, and ground water samples that were classified as having non-compliant or marginally compliant pH values were therefore discarded as well. Elevated SO₄ and Fe concentrations are also indicators of possible mining-related contamination of the ground water. It should however be noted that the due to the nature of aquifer and associated host geology (naturally occurring Fe in the Karoo aquifers, as well as the weathering of dolerite dykes and sills), Fe is in fact naturally elevated in the ground water systems within the study area as well. Because of this, only SO₄ was used as a further screening tool, discarding all boreholes with SO₄ values exceeding 20 mg/l. Indicators, including NO₃ and Cl, were used to assess possible agricultural related influences, on external users' boreholes and springs. Some influences from agricultural activities were found, in the form of elevated NO₃ levels.

The remainder of the samples (33) where then screened to determine whether any individual outliers occurred for each of the individual parameters. Where the natural background value of any constituent was present at a natural elevated value (like F, Mn, Al and Fe), it was included in the background chemistry group. Through this screening process of elimination, a distinctive background image emerged, both in terms of hydro-chemical image, as well as water quality ranges, for the different water quality variables. A summary of the background ground water quality is listed in Table 3.5.1(B).

Element / Parameter	Min Value	Mean Value	Max Value	Range
рН	7.30	7.78	8.50	1.20
EC (mS/m)	24	69	98	74
TDS (mg/l)	138	433	608	470
Ca (mg/l)	4.3	34.9	72.0	67.7
Mg (mg/l)	1.3	20.5	48.0	46.7
Na (mg/l)	14	90	187	173
K (mg/l)	1	4	27	26
Cl (mg/l)	8	3	80	72
SO₄ (mg/l)	1.47	10.69	19.00	17.53
NO₃ (mg/l)	0.20	0.75	3.30	3.10
F (mg/l)	0.08	0.49	1.40	1.32
Al (mg/l)	0.02	0.80	3.93	3.91
Fe (mg/l)	0.03	4.26	18.00	17.98
Mn (mg/l)	0.01	0.06	0.32	0.31

 Table 3.5.1(B): Background Ground Water Quality Summary

Table 3.5.1(B) indicates that the average background ground water quality has fully compliant concentrations for the elements pH, E, TDS, Ca, Mg, Na, K, Cl, SO_4 , NO_3 , F and Mn, whilst the average Al and Fe concentrations have non compliant qualities. The majority of the samples had fully compliant concentrations for each element analyzed for. Al and Fe had the most elevated concentrations in the background ground water samples, followed by NO_3 and Mn.

Hydrochemical imaging was performed for the samples that were used to determine the background ground water quality and composition within the study area. Piper and Durov diagrams were compiled using the macro chemistry variables pH, EC, Ca, Mg, Na, K, Total Alkalinity, Cl, SO_4 and NO_3 . The resulting Piper and Durov Diagrams depicting the background ground water hydrochemical image are shown in Figure 3.5.1(B) and Figure 3.5.1(C) respectively.

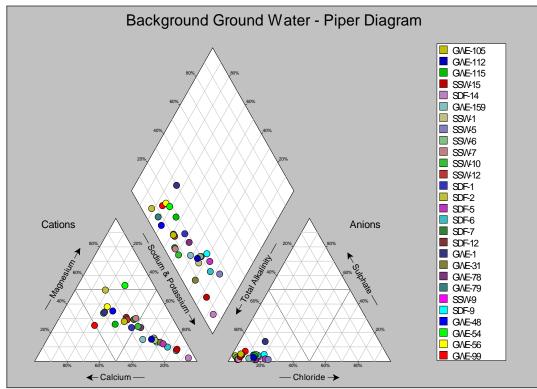


Figure 3.5.1(B): Background Ground Water Piper Diagram

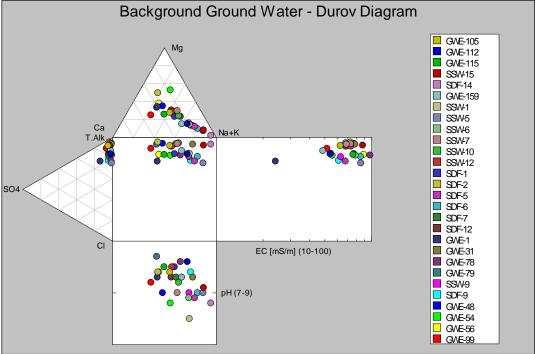


Figure 3.5.1(C): Background ground water Durov Diagram

The Pier and Durov Diagrams indicate that the ground water is classified as having a Type B and Type C hydrochemical facies. The dominant cation is variable, with most samples being dominant in Na + K. Interesting to note is that the ratio between the equivalent Ca and Mg concentrations remains constant for most of the background ground water samples collected. The dominant anion is clearly bicarbonate (T.Alk). Several of the background ground water samples had elevated NO3 concentrations (not seen on the Piper or Durov Diagrams), indicating sporadic influences as a result of agricultural activities within the study area. Fe and Al values have elevated concentrations as well, which predominantly result from the influence of the adjacent host rocks.

The pH of the background ground water is slightly alkaline and ranges between 7.3 and 8.5 with an average pH of 7.78. The EC of the Background ground water samples ranges between 24 mS/m and 98 mS/m, with an average EC value of 69 mS/m. The majority of the background ground water samples have EC values greater than 70 mS/m.

The background ground water quality, including the possible influences from the agricultural activities, remains of a very good quality and plots as "recent and unpolluted" ground water. This further supports the statement that water in the area emanating from springs and external user's boreholes are probably not from deep circulation, but rather from the saturation of the shallow weathered zone and/or perched aquifers. Any mining related impacts on the ground water are expected to result in a decrease in the pH, as well as an increase in the TDS and SO_4 concentrations.

3.5.2 Current Site Specific Ground Water Quality

The assessment of the status of the ground water quality within the study area is based on the water quality data generated from samples taken at the 30 monitoring boreholes. The quality of the ground water sampled at the monitoring boreholes was assessed according to the SANS 241:2006 Drinking Water Standard and is depicted in Table 3.5.2(A).

BH No.	pН	EC	TDS	Ca	Mg	Na	K	Cl	SO4	NO3	F	Al	Fe	Mn
SSW-1	8.50	55	364	21	10	85.0	3.4	30	5	0.20	0.90	3.74	5.67	0.32
SSW-2	7.88	92	542	53	58	94.3	1.3	14	34	0.20	0.50	0.05	0.32	0.14
SSW-3	7.80	257	1776	141	112	207.0	6.1	444	200	0.20	0.50	2.28	5.53	0.27
SSW 4	8.60	300	2162	13	7	659.0	0.0	104	1035	0.00	0.00	0.00	0.00	0.00
SSW-5	8.00	85	508	16	8	170.0	2.6	80	5	0.20	1.30	2.55	10.00	0.10
SSW-6	8.10	79	492	30	16	121.0	3.9	45	19	0.20	0.40	0.64	4.18	0.06
SSW-7	8.00	73	462	35	28	83.0	2.4	16	5	0.20	1.10	0.25	2.03	0.03
SSW-8	7.70	313	1934	79	42	491.0	7.3	723	150	0.20	0.20	0.36	0.67	0.03
SSW-9	8.00	63	396	24	12	96.0	4.2	41	9	0.20	0.40	0.33	2.87	0.04
SSW-10	7.80	68	466	36	22	87.0	3.2	11	10	0.20	0.40	3.32	8.05	0.14
SSW-11	7.90	117	716	38	20	187.0	11.7	152	86	0.20	0.20	0.63	0.75	0.10
SSW-12	7.50	74	592	47	29	78.0	5.6	18	18	0.20	0.30	0.58	1.18	0.03
SSW-13	7.70	115	868	88	65	83.0	14.1	9	72	2.80	0.70	0.24	2.17	0.23
SSW-14	7.60	77	548	51	42	64.0	3.3	13	74	0.20	0.40	0.24	6.35	0.03
SSW-15	7.90	88	596	16	10	187.0	7.3	20	14	1.00	0.60	0.36	4.40	0.03
SDF-1	7.50	77	468	44	22	84.0	2.4	40	17	0.20	0.30	1.68	18.00	0.12
SDF-2	7.60	73	448	50	48	34.0	1.0	8	15	0.20	0.50	1.06	11.00	0.05
SDF-3	7.80	158	916	32	20	262.0	3.9	228	74	0.20	1.20	1.62	9.58	0.27
SDF-4	9.90	167	1156	2	2	380.0	5.2	120	33	1.10	12.00	7.96	7.38	0.06
SDF-5	8.10	68	406	20	10	113.0	2.4	56	5	0.20	1.40	1.23	2.85	0.05
SDF-6	8.00	85	516	22	10	147.0	2.8	53	17	0.20	0.30	3.93	11.00	0.09
SDF-7	7.70	73	460	37	27	81.0	1.9	16	5	0.20	1.00	0.56	4.94	0.07
SDF-8	7.80	277	1568	47	16	469.0	5.1	665	136	0.20	0.30	0.19	4.96	0.06
SDF-9	7.60	61	394	22	10	95.0	3.2	45	14	0.20	0.30	0.99	14.00	0.13
SDF-10	7.80	64	404	43	24	58.0	2.7	11	33	0.20	0.20	2.68	27.00	0.27
SDF-11	8.20	234	1348	3	2	563.0	1.9	347	12	0.20	4.60	2.14	6.17	0.06
SDF-12	7.70	68	432	44	29	71.0	5.4	18	17	0.20	0.40	0.58	17.00	0.15
SDF-13	8.00	110	662	32	20	209.0	5.8	18	78	0.20	0.60	0.90	9.49	0.12
SDF-14	8.20	<u>69</u>	422	6	2	159.0	3.3	16	5	0.20	0.50	0.54	0.97	0.03
SDF-15	9.80	76	418	2	2	168.0	4.1	27	20	1.00	0.60	0.83	5.31	0.05

Table 3.5.2(A): Monitoring Borehole Compliance – SANS 241:2006

Table 3.5.2(A) indicates that in addition to Al and Fe (which were naturally elevated in the ground water), Mg, Na, Cl, SO_4 and F had elevated concentrations with several samples having "non-compliant" concentrations. Several of the pH values were more alkaline and were classified as "marginally compliant" with regards to the SANS 241:2006 Drinking Water Standard. The EC, TDS and Mn also had slightly more elevated concentrations and several of the samples were classified as having "marginally compliant" concentrations.

A summary of the ground water geochemistry within the study area is listed in Table 3.5.2(B). The table summarises the geochemistry of the ground water sampled from SSW- and SDF monitoring boreholes. The data given in Table 3.5.2(B) has have been classified according to the SANS 241:2006 Drinking Water Standard.

Element /	5	SSW-Sample	s		SDF-Samples	8
Parameter	Min Value	Mean Value	Max Value	Min Value	Mean Value	Max Value
pН	7.50	7.93	8.6	7.5	8.11	9.9
EC (mS/m)	55	124	313	61	111	277
TDS (mg/l)	364	828	2162	394	668	1568
Ca (mg/l)	13	46	141	2	27	50
Mg (mg/l)	7	32	112	2	16	48
Na (mg/l)	64	179	659	34	193	563
K (mg/l)	ND	5.09	14.1	1	3.41	5.8
Cl (mg/l)	9	115	723	8	111	665
SO₄ (mg/l)	5	116	1035	5	32	136
NO ₃ (mg/l)	ND	0.42	2.8	0.2	0.31	1.1
F (mg/l)	ND	0.53	1.3	0.2	1.61	12
Al (mg/l)	ND	1.04	3.74	0.19	1.79	7.96
Fe (mg/l)	ND	3.61	10	0.97	9.98	27
Mn (mg/l)	ND	0.10	0.32	0.03	0.11	0.27

Table 3.5.2(B): SSW- and SDF- Ground Water Quality Summary

Table 3.5.2(B) indicates that the average quality of the ground water within the study area sampled from the SSW-boreholes has the same compliance as the background ground water quality, with the exception of Mn. The average Mn concentration was classified as "fully compliant" in the background ground water quality but has an average "marginal compliance" quality in the SSW boreholes. The SDF samples displayed a similar situation, except that the average F concentration was elevated to a "non-compliant" quality.

Table 3.5.2(B) indicates that several samples sampled from both the SSW- and SDF- boreholes had non-compliant Na and Cl concentrations. Mg and SO₄ were also elevated to non compliant concentrations in the SSW- samples and may indicate a possible mining related impact on the ground water quality. Table 3.5.2(B) also indicates that the SSW- ground water samples had a poorer quality than the SDF- ground water samples, which further indicates that possible anthropogenic surface or mining related activities may have had an effect on the ground water quality within the study area.

The geochemistry of the ground water sampled from the 30 monitoring boreholes within the study area was then assessed and compared to the geochemistry of the background ground water, in order to determine whether impacts could be determined. Piper and Durov diagrams were again compiled using the macro chemistry variables pH, EC, Ca, Mg, Na, K, Total Alkalinity, Cl, SO₄ and NO₃. The resulting Piper and Durov Diagrams depicting the hydrochemical image of the ground water in the study area are shown in Figure 3.5.2(A) and Figure 3.5.2(B) respectively.

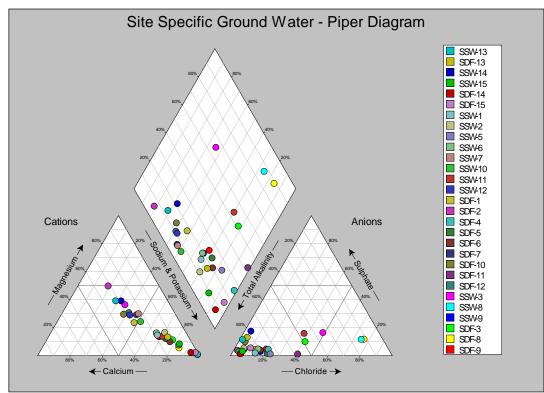


Figure 3.5.2(A): Study Area Ground Water Piper Diagram

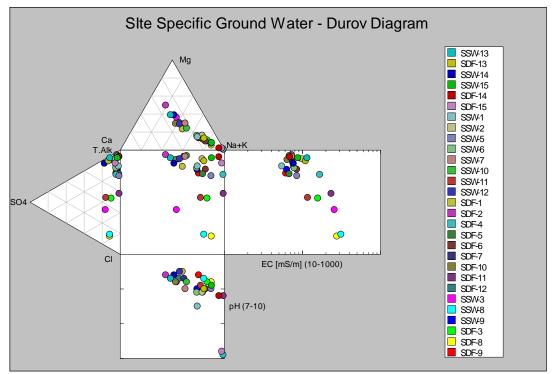


Figure 3.5.2(B): Study Area Ground Water Durov Diagram

It is evident from Figures 3.5.2(A) and 3.5.2(B) that there has been a distinct shift in the hydrochemical image in several of the ground water samples taken from the monitoring boreholes. The most notable of these include the ground water samples taken from SSW-3, SSW-8, SSW-11, SDF-3 and SDF-8.

The equivalent major cation concentration distribution remained relatively similar to the background ground water quality, and the relative Ca:Mg ratio remained constant as well. The equivalent major cation concentration distribution had altered significantly with several of the samples having significantly higher equivalent Cl concentrations. Several samples had higher equivalent SO₄ concentrations as well.

The shift in the geochemistry signature of several ground water samples, predominantly SSW- samples, it is determined that several localized anthropogenic surface and mining related activities have had an impact on and altered the ground water geochemistry to varying degrees within the study area.

3.5.3 Multi Parameter Profiling

Multi-parameter profiles at each of the 30 monitoring boreholes were performed. These profiles are attached as Appendix 3(B) and include the following:

- Temperature (°C)
- Conductivity (mS/m)
- Dissolved Oxygen Concentration (mg/l)
- o pH
- ORP (Oxidation-Reduction Potential) (mV)

The following observations are made regarding the profiles, and specific reference is made to ground water where pyrite is present:

- The temperature of mine ground water in a geohydrological borehole is generally in the range between 16 and 19°C. Locally elevated temperatures observed in the profiles occur as a result of the exothermic oxidation of pyrite, and are the product of bacteriological workings. The bacteria are optimal at a temperature of about 30°C.
- For the oxidation process of pyrite by oxygen, bacteria needs oxygen, thus the higher the dissolved oxygen, the more the oxidation of pyrite and the lower the pH becomes. In reducing environments, no oxidation of pyrite will occur and some microbes will even produce pyrite in anoxic-sulfidic conditions. Pyrite oxidation may still occur just above the water table in the unsaturated zone (where more oxygen is present) if pyrite is present. The dissolved oxygen in rainwater is 8 mg/l. Most boreholes show elevated dissolved oxygen at top because of the contact with the atmosphere.
- The temperature at the top of the boreholes is often elevated because of the naturally warmer water of the unsaturated zone that travels down the borehole as well as the result of naturally warmer air in contact with the surface of the boreholes.
- The results of the profiles for the each of the parameters profile din the boreholes complement each other directly or indirectly. These profiles are used to ain in the interpretation of the geohydrology of the sub-surface as well.

- Boreholes SDF-9 and SDF-6 were drilled into the deeper Karoo aquifer and the multi-parameter profiles were done from about 5 m to a depth of about 75 m in the deeper boreholes.
- The boreholes have a constant temperature around 18°C for the first 40 m. SDF-6 does show a slight elevation in temperature at the top. After 40 m the temperature start rising slowly to about 19°C.
- The dissolved oxygen is at about 8 mg/l at the top of the boreholes and decrease to about 2 mg/l at 19 m and to nearly 0 mg/l deeper down.
- The Electrical Conductivity is constant in the boreholes for the first 60 m, in borehole SDF-9 at about 105 mS/m, in borehole SDF-6 around 150 mS/m. At the interval of the profile from about 60 to 75 m, the conductivity rises in SDF-9 to 165 mS/m and in SDF-6 to 175 mS/m.
- The pH also stays around 7.4 in both boreholes but at the same interval mentioned above, 60 to 75 m, the pH starts rising to 8.4 in SDF-9 and to 9.3 in SDF-6.
- Both profiles show a slight increase in reducing conditions in the profiles but after the interval from 60 to 75 m, much more stronger reducing conditions are present.
- The increase of pH and Conductivity, with the strong decrease in reducing conditions at the interval from about 60 to 75 m are very evident and show definite stratification deep in the borehole. The ground water samples of both boreholes were taken in this interval and are very similar in the sense that the same parameters are elevated or reduced.
- Boreholes indicating similar profiles are boreholes SDF-13, SDF-12, SDF-14 that are also drilled into the deeper Karoo aquifer. Shallower boreholes with similar profiles are SSW-2 and SSW-11.

SDF-8 and SDF-13

- Borehole SDF-8 was drilled into the deep Karoo aquifer and SSW-7, SSW-9 and SSW-13 were drilled into the shallow weathered zone aquifer. The multi-parameter profiles were performed from the top of the water level to about 30 m in the shallow boreholes; and to about 80 m in SDF-8.
- All the boreholes show significantly elevated temperatures at the top and the maximum temperatures are much higher than that of other profiles done within the study area. SDF-8 and SSW-13 show maximum temperatures elevated just above 28°C and SSW-7 and SSW-9 just above 23°C. Because of this significant elevation one could expect bacteriological working and, because it is in an oxygen-rich environment, the oxidation of pyrite.
- In borehole SDF-8 the conductivity is slightly elevated at the top and then decline constantly deeper down the borehole. Boreholes SSW-7 and SSW-9 show a rise in conductivity in the first few meters until 4 m and 7 m respectively, after which it stays about constant deeper down.
- In boreholes SDF-8 and SSW-13 the dissolved oxygen starts to decline after a few meters to just above 0 mg/l. Boreholes SSW-7 and SSW-9 show very similar profiles. What is evident in all four boreholes is the slight depletion in dissolved oxygen at the top. This may be because the bacteria that show their presence with the elevated temperature at the top, are using oxygen and thus give rise to a slight depletion in oxygen at the top.

- Contrasting to the above, the pH stays relatively high in all four boreholes. This indicates no bacterial working but rather that enough alkalinity is present in the surrounding rocks to neutralize any acid produced.
- The important indicator of pyrite oxidation is elevated SO4. In the ground water samples of SDF-8 and SSW-13, SO4 values are elevated at 136 and 72 mg/l, higher than the maximum background SO4 value of 20 mg/l.
- Microbiological activity is clear in boreholes SDF-8 and SSW-13. Although elevated temperature occurs in SSW-7 and SSW-9, not enough evidence is present to justify significant oxidation of pyrite. The deeper borehole SDF-7 near SSW-7 also shows slightly elevated temperature (nearly 22°C) at the top, but no indication of contamination of the water is present.
- Borehole SDF-8 is drilled close to an old gold mine dump and confirms the presence of ground water contamination. The geology of the borehole consists mostly of sandstone and shale layers throughout the borehole. Dolerite is present from 18 to 45 m and carbonaceous shale and a thin coal layer at 72 to 74 m.

SDF-1, SDF-2, SDF-3, SDF-10, SSW-1, SSW-3, SSW-6, SSW-14 and SSW-15

- All boreholes show slightly elevated temperatures at the top, but the temperature is seldom higher than 20°C. This indicates no or insignificant pyrite oxidation.
- There is a lower electrical conductivity at the top, which may be due to water that falls constantly from above and dilute the water at the top of the borehole.
- All boreholes show high dissolved oxygen at the top of about 8.26 mg/l. The oxygen decreases further down the borehole to nearly 0 mg/l.
- The pH profile also starts a bit higher and decline further down the borehole and in most boreholes starts rising slightly again deeper down.
- In all boreholes, except SSW-15, the conditions become more reducing deeper down which may also indicate that the deeper water are not circulated very often and are older. No drastic variation in any parameter indicates any sharp stratification.

SDF-4, SDF-5, SDF-11, SSW-5 and SSW-12

- SDF-4, SDF-5 and SSW-12 show slight elevation in temperature at the top, which may be because of natural reasons as discussed above but boreholes SDF-11 and SSW-5 show constant temperatures from top to bottom.
- SDF-4, SDF-5 and SSW-12 show elevated pH that decline further down the boreholes. Boreholes SDF-4 and 11 show slight declined pH at the top but the pH's stay about constant deeper down the boreholes.
- SDF-4 and SSW-12 show more oxidizing conditions downwards and SDF-5, SDF-11 and SSW-5 becomes more reducing downwards. No drastic variation in any parameter indicates any sharp stratification.

3.6 AQUIFER CLASSIFICATION

The aquifer classification is done in accordance with the formal DWAF protocol "South African Aquifer System Management Classification, December 1995." Special attributes of aquifers related to structural features (such as fracturing along dyke/fault contact zones, or karst development) have been incorporated into the classification through the "Second Variable Classification".

Classification is done in accordance with the following definitions for Aquifer System Management Classes:

Sole Aquifer System:

An aquifer which is used to supply 50 per cent or more of domestic water for a given area, and for which there is no reasonably available alternative sources should the aquifer be impacted upon or depleted. Aquifer yields and natural water quality are immaterial.

Major Aquifer System:

Highly permeable formations, usually with a known, or probable, presence of significant fracturing. They may be highly productive and able to support large abstractions for public supply and other purposes. Water quality is generally very good (less than 150 mS/m Electrical Conductivity).

Minor Aquifer System:

These can be fractured or potentially fractured rocks which do not have a high primary permeability, or other formations of variable permeability. Aquifer extent may be limited and water quality variable. Although these aquifers seldom produce large quantities of water, they are important for local supplies and in supplying base flow for rivers.

Non-Aquifer System:

These are formations with negligible permeability that are regarded as not containing ground water in exploitable quantities. Water quality may also be such that it renders the aquifer unusable. However, ground water flow through such rocks, although imperceptible, does take place, and needs to be considered when assessing the risk associated with persistent pollutants.

1				
Aquifer System N	Janagement Classification	n		
Class	Points	Karoo Aquifers		
Sole Source Aquifer System:	6	-		
Major Aquifer System:	4	-		
Minor Aquifer System:	2	2		
Non-Aquifer System:	0	-		
Special Aquifer System:	0 - 6	-		
Second Variable Classifica	ation – Mining Related D	ewatering		
Class	Points	Karoo Aquifers		
High:	3	-		
Medium:	2	-		
Low:	1	1		

Aquifer System Management and Second Variable Classifications

The Karoo Aquifers present within the study area appear to have been locally impacted by underground mining operations as a result of dewatering. This is observed by the localized drop in the water levels across the study area.

<u>Aquifer System Management Classification Points = 3</u>

Aquifer System Management Classification								
Class	Points	Karoo Aquifers						
Sole Source Aquifer System:	6	-						
Major Aquifer System:	4	-						
Minor Aquifer System:	2	2						
Non-Aquifer System:	0	-						
Special Aquifer System:	0-6	-						
Aquifer Vulne	rability Classification							
Class	Points	Karoo Aquifers						
High:	3	-						
Medium:	2	-						
Low:	1	1						

Ground Water Quality Management Classification

<u>Aquifer System Management Classification Points = 3</u>

The indicated level of ground water protection is derived from the Ground Water Quality Management Index (GQM Index).

GQM Index	=	Aquifer System Management Classification x Aquifer Vulnerability Classification
	=	3 x 3
	=	9

Indicated Level of Ground Water Protection

GQM Index	Level of Protection	Karoo Aquifers
<1	Limited	-
1 - 3	Low Level	-
3 - 6	Medium Level	-
6 - 10	High Level	9
>10	Strictly Non-Degradation	-

Aquifer Protection Classification

The ratings for the Aquifer System Management Classification and Aquifer Vulnerability Classification yield a Ground Water Quality Management Index of 12 for the Karoo Aquifers within the study area, indicating that High Level of ground water protection is required.

3.7 GROUND WATER USE

A borehole and spring hydrocensus, was performed within a one km radius of the study area. A total of 170 boreholes, 1 dug well and 16 fountains were identified. The localities of these boreholes, well and fountains are located in Figure 3.7(A). These localities as well as their borehole/well/fountain numbers are indicated on the map attached as Appendix 3.2(A).

98 of the boreholes surveyed, including one dug well, were found to be in use, while 17 were found to have been destroyed. As far as the application status and use of the boreholes are concerned, the following information was gathered:

- o 17 boreholes are used solely for domestic purposes.
- o 33 boreholes are used for agricultural and domestic purposes.
- o 18 boreholes are used solely for stock watering.
- o 2 boreholes are used solely for domestic garden purposes.
- 28 monitoring boreholes are used for observation purposes by Kinross, Winkelhaak and Leslie Gold Mines Ltd.

The above boreholes supply roughly 721 people, 38 gardens, one nursery, 5862 large stock units, 6 dairies, 965 small stock units, 27050 poultry units and water to irrigate roughly 7 hectares.

Four (4) of the 16 fountains surveyed are in use. As far as the application status of the fountains is concerned, 2 fountains are used solely for stock watering and the other two are used for agricultural and domestic purposes. The fountains supply water to 10 people, 325 large stock units and 150 small stock units.

The following observations, related to geohydrological aspects, have relevance to the information obtained:

- The reported depths for the external user's boreholes ranged between 13 m and 150 m, averaging at 55 m.
- The depths of water strikes for the external user's boreholes ranged between 11 m and 100 m, averaging at 32 m.
- The reported yields for the external user's boreholes ranged between 0.01 l/s and 8.30 l/s, averaging at 1.27 l/s.
- The estimated yields for the external user's fountains ranged between 0.05 l/s and 2.00 l/s, averaging at 0.47 l/s.
- The depth to water level observed for the external user's boreholes and fountains ranged between 0 m and 27.19 m, averaging at 4.75 m.

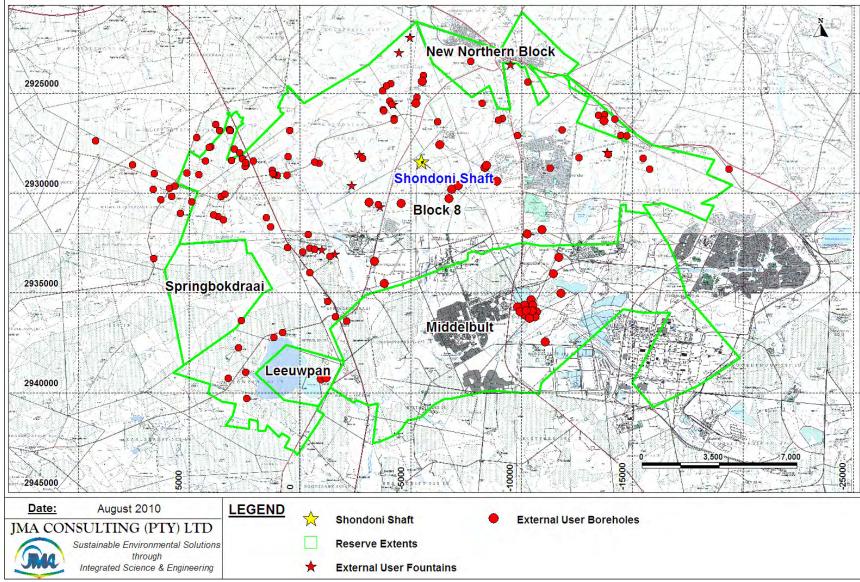


Figure 3.7(A): Hydrocensus Sampling Localities

4. **PROJECT/ACTIVITY DESCRIPTION**

4.1. OPERATIONAL PHASE WATER BALANCE

4.1.1 Mining schedule

The proposed Sasol Shondoni No. 2 and 4 coal seam workings are scheduled from FY21 to FY48 and from FY10 to FY48 respectively. A total of 2 702 ha and 10 406 ha of No. 2 and 4 coal seam mining are planned respectively. Almost 22% of the No. 4 coal seam workings will undergo further high extraction. The mining schedules for the proposed No. 2 and 4 coal seam workings are depicted in **Figure 4.1.1(A)** and **Figure 4.1.1(B)** below:

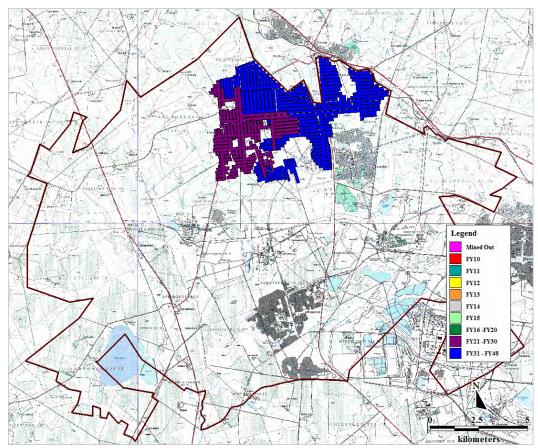


Figure 4.1.1(A). No. 2 coal seam underground mining schedule.

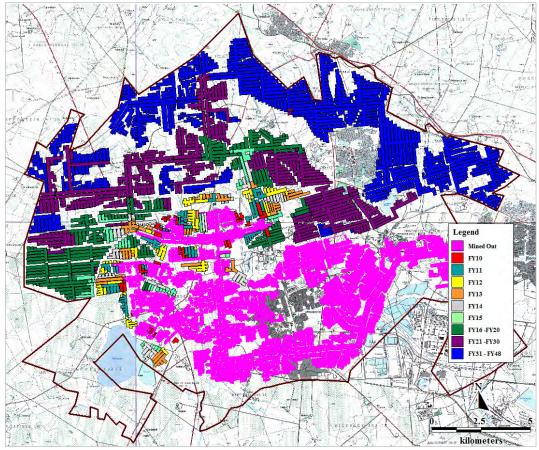


Figure 4.1.1(B). No. 4 coal seam underground mining schedule.

4.1.2 Ground water make

The groundwater make calculations for the Sasol Shondoni No 2 and 4 coal seam workings are given in **Table 4.1.2(A)** and **(B)** below.

From **Table 4.1.2(A)** and **(B)** the following conclusions could be made:

- For the No. 2 coal seam workings a total of 2 702 ha of bord and pillar mining (at an extraction rate of 47%) is planned.
- For the No. 4 coal seam workings a total of 10 406 ha of bord and pillar mining (at an extraction rate of 55%) is planned and almost 22% thereof will be undergo further high extraction (at an extraction rate of 60%).
- The total post-closure groundwater make for the Sasol Shondoni No. 2 and No. 4 coal seam workings will be 189 133 m^3/d and 2 561 811 m^3/d .

Year of Mining	Area Bord & Pillar(m ²)	Cumulative Area Board & Pillar (m ²)	Recharge (m ³ /a)	Recharge (m ³ /d)
FY 21	918 900	918 900	3 216	9
FY 22	918 900	1 837 800	9 648	27
FY 23	918 900	2 756 700	16 081	45
FY 24	918 900	3 675 600	22 513	63
FY 25	918 900	4 594 500	28 945	81
FY 26	918 900	5 513 400	35 378	99
FY 27	918 900	6 432 300	41 810	117
FY 28	918 900	7 351 200	48 242	136
FY 29	918 900	8 270 100	54 675	154
FY 30	918 900	9 189 000	61 107	172
FY 31	990 556	10 179 556	67 790	190
FY 32	990 556	11 170 111	74 724	210
FY 33	990 556	12 160 667	81 658	229
FY 34	990 556	13 151 222	88 592	249
FY 35	990 556	14 141 778	95 526	268
FY 36	990 556	15 132 333	102 459	288
FY 37	990 556	16 122 889	109 393	307
FY 38	990 556	17 113 444	116 327	327
FY 39	990 556	18 104 000	123 261	346
FY 40	990 556	19 094 556	130 195	366
FY 41	990 556	20 085 111	137 129	385
FY 42	990 556	21 075 667	144 063	405
FY 43	990 556	22 066 222	150 997	424
FY 44	990 556	23 056 778	157 931	444
FY 45	990 556	24 047 333	164 864	463
FY 46	990 556	25 037 889	171 798	483
FY 47	990 556	26 028 444	178 732	502
FY 48	990 556	27 019 000	185 666	522
Post-closure New UG	0	27 019 000	189 133	531

Table 4.1.2(A). Groundwater balance for the proposed No. 2 coal seam workings.

Year of Mining	Area High Extraction (m ²)	Cumulative Area High Extraction (m ²)	Area Bord & Pillar (m²)	Cumulative Area Board & Pillar (m ²)	Total Mining Area (m ²)	Liberation from Overlying Units (m ³ /a)	Recharge (m³/a)	Total Water Make (m³/a)	Total Water Make (m ³ /d)
FY 10	122 300	122 300	1 289 700	1 289 700	1 412 000	64 208	12 880	77 088	36
FY 11	94 680	216 980	2 686 320	3 976 020	4 193 000	49 707	47 547	97 254	134
FY 12	183 706	400 686	2 656 294	6 632 314	7 033 000	96 446	93 715	190 160	263
FY 13	144 900	545 586	2 828 100	9 460 414	10 006 000	76 073	142 457	218 529	400
FY 14	227 000	772 586	2 677 000	12 137 414	12 910 000	119 175	192 707	311 882	541
FY 15	315 700	1 088 286	2 618 300	14 755 714	15 844 000	165 743	246 869	412 612	693
FY 16	298 800	1 387 086	2 791 200	17 546 914	18 934 000	156 870	304 093	460 963	854
FY 17	298 800	1 685 886	2 791 200	20 338 114	22 024 000	156 870	361 994	518 864	1 017
FY 18	298 800	1 984 686	2 791 200	23 129 314	25 114 000	156 870	419 895	576 765	1 179
FY 19	298 800	2 283 486	2 791 200	25 920 514	28 204 000	156 870	477 796	634 666	1 342
FY 20	298 800	2 582 286	2 791 200	28 711 714	31 294 000	156 870	535 697	692 567	1 505
FY 21	601 700	3 183 986	2 155 300	30 867 014	34 051 000	315 893	598 689	914 581	1 682
FY 22	601 700	3 785 686	2 155 300	33 022 314	36 808 000	315 893	666 770	982 662	1 873
FY 23	601 700	4 387 386	2 155 300	35 177 614	39 565 000	315 893	734 851	1 050 744	2 064
FY 24	601 700	4 989 086	2 155 300	37 332 914	42 322 000	315 893	802 933	1 118 825	2 255
FY 25	601 700	5 590 786	2 155 300	39 488 214	45 079 000	315 893	871 014	1 186 906	2 447
FY 26	601 700	6 192 486	2 155 300	41 643 514	47 836 000	315 893	939 095	1 254 988	2 638
FY 27	601 700	6 794 186	2 155 300	43 798 814	50 593 000	315 893	1 007 176	1 323 069	2 829
FY 28	601 700	7 395 886	2 155 300	45 954 114	53 350 000	315 893	1 075 258	1 391 150	3 020
FY 29	601 700	7 997 586	2 155 300	48 109 414	56 107 000	315 893	1 143 339	1 459 232	3 212

Year of Mining	Area High Extraction (m ²)	Cumulative Area High Extraction (m ²)	Area Bord & Pillar (m²)	Cumulative Area Board & Pillar (m ²)	Total Mining Area (m ²)	Liberation from Overlying Units (m ³ /a)	Recharge (m³/a)	Total Water Make (m³/a)	Total Water Make (m ³ /d)
FY 30	601 700	8 599 286	2 155 300	50 264 714	58 864 000	315 893	1 211 420	1 527 313	3 403
FY 31	775 000	9 374 286	1 736 111	52 000 825	61 375 111	406 875	1 282 026	1 688 901	3 601
FY 32	775 000	10 149 286	1 736 111	53 736 936	63 886 222	406 875	1 355 157	1 762 032	3 807
FY 33	775 000	10 924 286	1 736 111	55 473 047	66 397 333	406 875	1 428 287	1 835 162	4 012
FY 34	775 000	11 699 286	1 736 111	57 209 158	68 908 444	406 875	1 501 418	1 908 293	4 217
FY 35	775 000	12 474 286	1 736 111	58 945 270	71 419 556	406 875	1 574 549	1 981 424	4 423
FY 36	775 000	13 249 286	1 736 111	60 681 381	73 930 667	406 875	1 647 679	2 054 554	4 628
FY 37	775 000	14 024 286	1 736 111	62 417 492	76 441 778	406 875	1 720 810	2 127 685	4 834
FY 38	775 000	14 799 286	1 736 111	64 153 603	78 952 889	406 875	1 793 940	2 200 815	5 039
FY 39	775 000	15 574 286	1 736 111	65 889 714	81 464 000	406 875	1 867 071	2 273 946	5 245
FY 40	775 000	16 349 286	1 736 111	67 625 825	83 975 111	406 875	1 940 201	2 347 076	5 450
FY 41	775 000	17 124 286	1 736 111	69 361 936	86 486 222	406 875	2 013 332	2 420 207	5 655
FY 42	775 000	17 899 286	1 736 111	71 098 047	88 997 333	406 875	2 086 462	2 493 337	5 861
FY 43	775 000	18 674 286	1 736 111	72 834 158	91 508 444	406 875	2 159 593	2 566 468	6 066
FY 44	775 000	19 449 286	1 736 111	74 570 270	94 019 556	406 875	2 232 724	2 639 599	6 272
FY 45	775 000	20 224 286	1 736 111	76 306 381	96 530 667	406 875	2 305 854	2 712 729	6 477
FY 46	775 000	20 999 286	1 736 111	78 042 492	99 041 778	406 875	2 378 985	2 785 860	6 683
FY 47	775 000	21 774 286	1 736 111	79 778 603	101 552 889	406 875	2 452 115	2 858 990	6 888
FY 48	775 000	22 549 286	1 736 111	81 514 714	104 064 000	406 875	2 525 246	2 932 121	7 093
Post-closure New UG	0	22 549 286	0	81 514 714	104 064 000	0	2 561 811	2 561 811	7 196

4.1.3 Mine floor contours and implications for mine water flow

The mine floor contours and the general directions of mine water flow for the No. 2 and 4 coal seam workings are depicted in **Figures 4.1.3**(**A**) and (**B**) below:

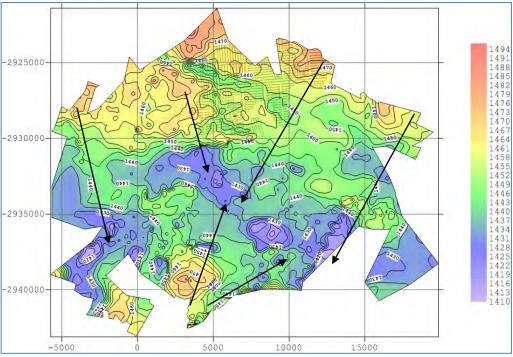


Figure 4.1.3(A). No 2 coal seam floor contour and mine water flow directions.

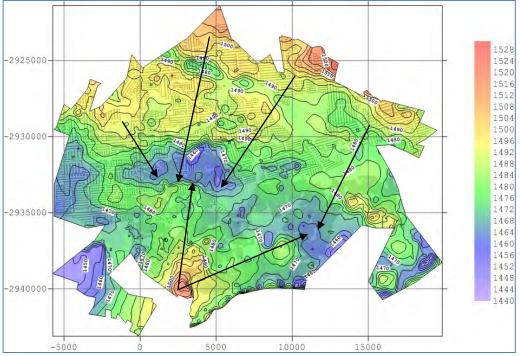


Figure 4.1.3(B). No 4 coal seam floor contour and mine water flow directions.

From the above figures the following observations could be made:

• In the extent of the mine boundary the No. 2 coal seam floor at Sasol Shondoni is elevated above 1 450 mamsl in the north-eastern, northern, north-western and southern parts. The mining floor dips from these regions towards the central (1 410 - 1 450 mamsl) part.

The floor of the proposed No. 2 coal seam workings ranges between 1 439 - 1 479 mamsl.

• In the extent of the mine boundary the No. 4 coal seam floor at Sasol Shondoni is elevated above 1 490 mamsl in the north-eastern, northern and southern parts. The mining floor dips from these regions towards the central (1 442 - 1 490 mamsl) parts.

The floor of the proposed No. 4 coal seam workings ranges between 1 455 - 1 527 mamsl.

• Mine water will flow perpendicular to the mine floor contours as indicated in the figures above.

4.1.4 Mine water storage capacity

The mine water storage capacity for the No. 2 and 4 coal seam workings was calculated and are depicted in **Figure 4.1.4**(**A**) and (**B**) respectively below. **Table 4.1.4**(**A**) below summarizes the post-closure water storage capacity at Sasol Shondoni.

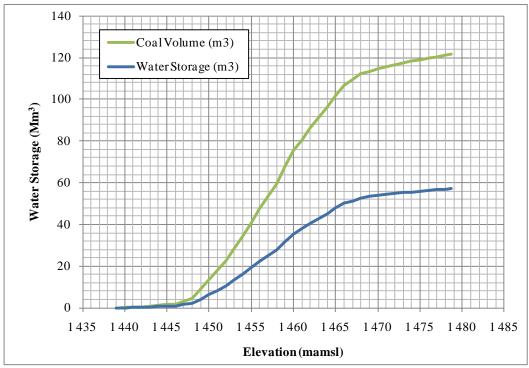


Figure 4.1.4(A). Stage curve for the proposed No. 2 coal seam workings.

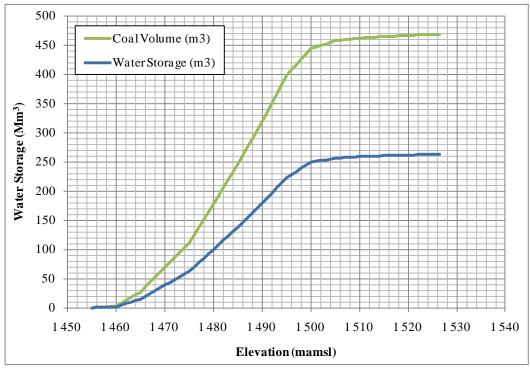


Figure 4.1.4(B). Stage curve for the proposed No. 4 coal seam workings.

Mining Area	No. 2 Coal Seam Mine Workings	No. 4 Coal Seam Mine Workings
Total Area (Mm ²)	27	104
Bord and Pillar Area (Mm ²)	27	82
High Extraction (Mm ²)	0	23
Minimum Floor Elevation (mamsl)	1 439	1 455
Maximum Floor Elevation (mamsl)	1 479	1 527
Coal Volume (m ³) (at thickness 4.5 m)	122	468
Extraction Yield - Bord and Pillar	0.47	0.55
Extraction Yield - High Extraction	-	0.60
Water Storage (Mm ³)	57	263

 Table 4.1.4(A). Storage capacity for proposed mining at Sasol Shondoni.

From the above the following observations could be made:

• For the No. 2 coal seam workings a total of 2 702 ha of bord-and-pillar mining (at an extraction rate of 47%) is planned.

With a bord and pillar extraction rate of 47%, the post-closure water storage for the No. 2 coal seam workings will be 57 Mm^3 .

• For the No. 4 coal seam workings an initial total of 10 406 ha bord and pillar mining is planned and almost 22% thereof will be undergo further high extraction.

With a bord and pillar extraction rate of 55% and selective high extraction of 60%, the post-closure water storage for the No. 4 coal seam workings will be 263 Mm^3 .

4.2 Post closure water balance

The following discussion on the life of mine water balance is an extract from the Jones and Wagener specialist report. JMA reported the water make for average rainfall over the life of mine, while J&W took into consideration seasonality (wet and dry extreme cycles). Note that the water balance diagrams show the cumulative water make to be expected, while the flat water make curve after FY2050 shows the expected flooding rate post closure:

Water make refers to the water generated through the mining activities. This includes rainfall related inflows as well as groundwater inflows.

The total water make from the underground mining areas is given in Figure 4.2(A) for the period through to closure showing seasonality. Note that these water makes include the bord and pillar areas already mined, since the storage calculations are also for both the historical and future mining at Block 8.

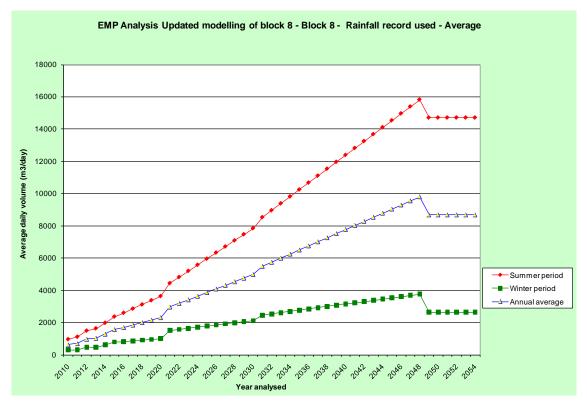
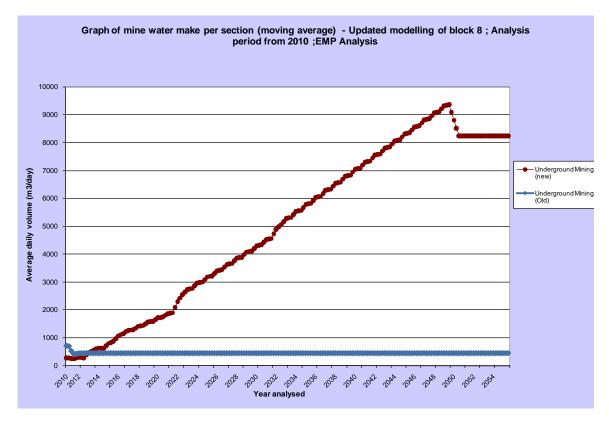



Figure 4.2(A) Current predicted water make at Middelbult Shondoni Block 8 for average rainfall.

Key points to note include:

- The mining of 2 seam workings only commences around 2020, indicated as a small increase in the water make trend.
- Post closure, the dewatering of the aquifer associated with high extraction mining reduces, with an associated reduction in the overall water make.
- The assessment is based on a macro level review of mine water make, and there is a need for detailed review of the high extraction areas as the project progresses to ensure that inflows from non-free draining areas are minimised.

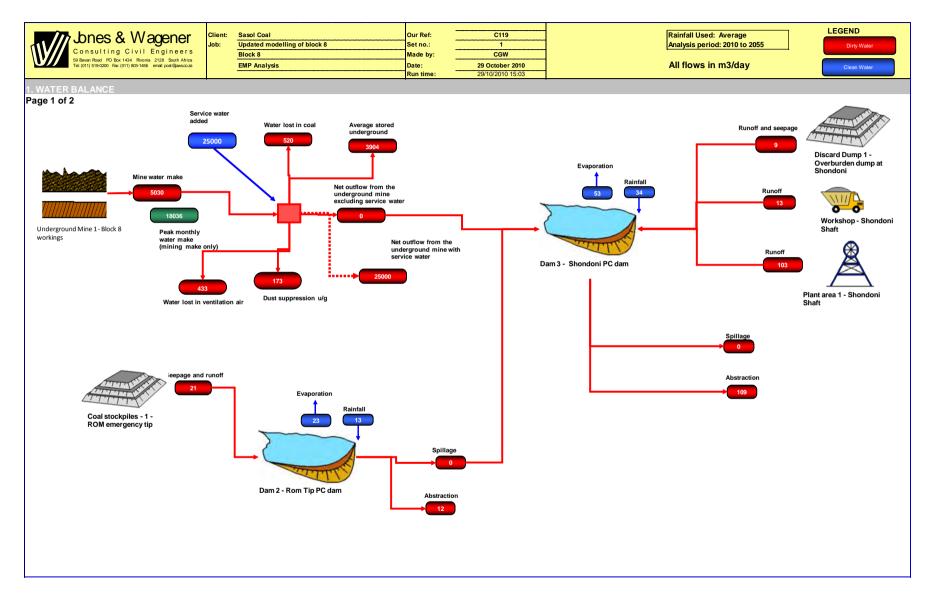

The contribution of the various mining areas to the net water make is given in Figure 4.2(B).

Figure 4.2(B) Contribution of the various areas to the net water make.

It is apparent that the bord and pillar mining in the current workings contributes very little to the overall water make compared to the new high extraction developments to the north.

A schematic of the overall water balance for the life of the mine is given in Figure 4.2(C).

Figure 4.2(C) Schematic water balance over the life of mine.

5. ENVIRONMENTAL IMPACT ASSESSMENT

5.1 IMPACT ASSESSMENT METHODOLOGY

The impact assessment methodology at Sasol Shondoni is based on a Sasol Coal Standard impact assessment rating. A series of steps are taken to go through a process of

- 1. Identifying and quantifying an impact (determining the severity). **Step 1**.
- 2. Calculating the likelihood of an impact happening. Step 2.
- 3. Quantification of the level of magnitude attached to the impact. Step 3.

During the identification process the following aspects are considered:

- The physical quantity of the potential impact (be it a volume, concentration or quantitative measurement).
- The toxicity of impact, measured against a pre-defined hazard rating.
- The measurement of the extent of an impact.
- The duration of the impact, measured in years.
- The Environmental status of the impact.
- The regulatory impact in terms of legislation that has relevance.
- The impact on any Interested and Affected parties.

A quantitative rating system is used to assign a value to each of the above aspects:

Criteria	Definition	Points
Quantity	The quantity (Volume) that will impact on the	
	environment	
	Less than $1m^3$ / incident or > 10 mg/ m ³ or < 61dBa	0
	More than 1 m ³ but less than 10 m ³ per incident or > 25	1
	mg/m^3	
	More than 10 m ³ but less than 100 m ³ per incident > 50	2
	mg/m^3 or > 61dBa	
	More than 100 m ³ but less than 1000 m ³ per incident or $>$	3
	100mg/m^3	
	More than 1000 m ³ per incident \setminus continuous or > 120	4
	mg/m^3 or > 85dBa	

Toxicity	Hazard rating (Dangerous properties of hazardous material)	
	Non-hazardous – (substances which will not result in any	0
	risk)	0
	Hazard rating 1 – (Substances which could result in	1
	relatively low risk)	-
	Hazard rating 2 – (Substances which could result in	2
	serious risk)	
	Hazard rating 3 – (Substance which could result in severe	3
	risk)	
Extent	How far does the impact extend?	
	Limited to Business unit	0
	Limited to mine lease area	1
	Regional (Refer to TEKSA area)	2
	National (Refer to Mpumalanga area)	3
	International (refer to beyond South Africa's boundaries)	4
Duration	How long will the impact last?	
Duration	Less than 5 years	0
		-
	Between 5 – 15 years	$\frac{1}{2}$
	Exceeding mine lifetime	2
~	Impact permanently present	3
Status	Status of impact	
	Beneficial (Improve the environment) – no risk reduction	-1
	needed	0
	Neutral (No change to the environment) – No risk	0
	reduction needed	1
	Adverse (Degradation of the environment) – Risk reduction needed	1
Legislation	Are there any regulatory requirements applicable to	
Degisiation	aspects – impacts?	
	None	0
	Yes, No fines, not cause loss of operating permit, but still	1
	reportable incident	
	Yes, and will result in / prosecution or loss in production	2
	Yes, and will cause loss of operating permit or mine	3
	stoppage.	
	Yes, and may lead to closing down of mine	4
I & AP's	Interested and affected parties (I&AP)	
	No impact	0
	Impact to employees in unit	1
	Impact to local community / stakeholders	2
	Impact to general public – beyond TEKSA area (Bad	3
	publicity)	5
$\mathbf{T_{abla} 5 1(A)}$	Impact Assessment Criteria used at Sasol Shondoni.	

 Table 5.1(A). Impact Assessment Criteria used at Sasol Shondoni.

Once a sum value has been determined for a specific impact, an Impact Severity Score is calculated (C-number) as **Step 1**, based on the Table below:

Severity score	Risk matrix Consequence category
21 - 22	C7
19 - 20	C6
17 - 18	C5
14 - 16	C4
10 - 13	C3
5 - 9	C2
Less than 5	C1

 Table 5.1(B). Impact Assessment Criteria used at Sasol Shondoni.

During **Step 2** the likelihood of an impact occurring/re-occurring is assessed at the hand of the Table provided below:

Likelihood Descriptors	Probability Intervals	Likelihood Definitions	P-value
Unforeseen	0-0.1%	The event is not foreseen to occur	P1
Highly unlikely	0.1 - 1%	The event may occur in exceptional circumstances (very remote)	P2
Very unlikely	1 – 5%	The event may occur in certain circumstances (remote chance)	P3
Low	5 - 15%	The event could occur (moderate chance)	P4
Possible	15 - 40%	The event may occur (realistic chance)	P5
Likely	40 - 75%	The event will probably occur (significant chance)	P6
Almost Certain	75 – 100%	The event is expected to occur or occurs regularly	P7

 Table 5.1(C). Likelihood of an impact occurring (P-value).

Finally, the overall impact is quantified in a "Level of Risk" matrix, by combining the C-value (calculated in **Step 1**) with the P-value (calculated in **Step 2**) in the matrix provided below (**Step 3**). The overall impacts will be ranked based on the Level of Risk, as identified below:

	P1	P2	P3	P4	P5	P6	P7
C7	Level 3	Level 3	Level 3	Level 1	Level 1	Level 1	Level 1
	Risk						
C6	Level 3	Level 3	Level 3	Level 2	Level 2	Level 2	Level 1
	Risk						
C5	Level 4	Level 4	Level 4	Level 3	Level 2	Level 2	Level 2
	Risk						
C4	Level 5	Level 5	Level 5	Level 3	Level 3	Level 3	Level 3
	Risk						
C3	Level 6	Level 6	Level 6	Level 5	Level 5	Level 5	Level
	Risk	Risk	Risk	Risk	Risk	Risk	4Risk
C2	Level 6	Level 5					
	Risk						
C1	Level 6						
	Risk						

 Table 5.1(D). Level of Risk Matrix for impacts at Sasol Shondoni.

5.2 CONSTRAINTS AND LIMITATIONS OF IMPACT ASSESSMENTS

The following constraints and limitations can be present at the ground water impact assessment study:

Quantity:	The quantification of ground water related impacts are sometimes based on the results of ground water models and/or analytical calculations. These quantities are calibrated with known similar geohydrological conditions. However, the exact impact can only be determined during the operational phase activities when monitoring/measurement devices are used. In the event where a loss in borehole yield takes place, this loss in volume is based on information sourced from 3 rd parties.
Toxicity:	The toxicity of ground water quality deterioration is measured against SABS Drinking Water Standards. No detailed Toxicological studies were performed. The Standard use is deemed sufficient for the study.
Extent:	A high degree of certainty can be attached to this parameter. The most ground water related impacts take place within the Business Unit.
Duration: Status:	The duration of ground water related impacts can be assessed at the hand of the time of impact, i.e. Operational Phase, Close Phase, etc. The duration of long term impacts is a function of the calibration of flooding models. No single mining operation is the same, and flooding rates will differ. Continuous monitoring will increase the confidence levels of models. No limitations or constraints exist for these criteria.
Status.	No minitations of constraints exist for these criteria.
Legislation:	The legislation pertaining to EIA applications, MPRDA regulations and DWAF regulations is very clear.
I & AP:	No limitations or constraints exist for these criteria.

5.3 IDENTIFICATION OF ACTIVITIES

5.3.1 Construction Phase

5.3.1.1 NEMA EIA Listed Activities (GNR 386 & GNR 387)

Activity Description	Impact Identification/Description				
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998 GNR 386 ACTIVITIES					
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The construction of a 15 000t ROM coal stockpile area at Shondoni Shaft. The construction activities consist of the preparation of a suitable footprint area and will in itself not lead to any potential ground water pollution.				
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	The Conveyor Pedestal will not intersect ground water, therefore no impact will take place.				
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The construction of a Storm Water Pollution Control Dam that can lead to a deterioration of ground water quality directly beneath the facility.				
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	Conveyor Pedestal will not intersect ground water, so no ground water related impact will take place.				
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The storage of diesel fuel in storage tanks can lead to ground water pollution due to spillages/leaks.				
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	Clearance of vegetation will not intersect ground water, so no impact will take place.				
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to facilitate the efficient continuation of mining and for the safety of people - Activity 13.	Any water removed from the No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas, or pumped to surface to the Storm Water Pollution Control Dam (SWPCD).				
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	Installation of Radio System will not intersect ground water, so no ground water related impact will take place.				
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	The construction of an access road will not intersect ground water, so no ground water related impact will take place.				
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 387 ACTIVITIES					
Construction of a Double Circuit 132 kV Overhead Power line from Eskom Supply Point (SOL B) to Shondoni Mine Transmission Feeder Bays - Activity 1 (l).	The construction of the Overhead Power line will not intersect ground water, so no ground water related impact will take place.				
Construction of a Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area) at a rate of more than 50 cubic meters per day -	The construction of a coal conveyor belt will not intersect ground water, so no ground water related impact will take place.				

Activity 1 (j).	
Development of an area including shaft surface infrastructure and conveyor route where more than 20 hectares is disturbed - Activity 2.	This activity only refers to surface disturbance. Since no ground water is intersected, no ground water related impact will take place.

5.3.1.2 NWA Water Uses

Activity Description	Impact Identification/Description
NATIONAL WATER ACT (ACT 36 OF 1998): SECTION 40	
Taking water from a water resource - Section 21 (a).	Ground water seepage into the shaft complex during construction activities, through weathered and fresh aquifer units (to a depth of 120 meters).
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	Not Applicable.
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	Not Applicable.
Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g).	Ground water seepage captured in the shaft complex during construction activities will be pumped to pollution control dams on surface. Since the water originated in a construction area, it is considered polluted.
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	Not Applicable.
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j).	Any water removed from the No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas. A detailed mine optimisation plan has been designed to create the necessary storage of water in mined out areas for the total Life of Mine.

5.3.1.3 GNR 704 Activity Exemptions

Activity Description	Impact Identification/Description
Exemptions from GNR 704	
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.
No person in control of a mine or activity may, except in relation to a matter contemplated in Regulation 10 (winning sand and alluvial minerals), carry on any underground or opencast mining, prospecting or any other operation or activity under or within the 1:50 year flood line or within a horizontal distance of 100 metres from any water course or estuary, whichever is the greatest - Regulation 4(b).	Not Applicable.
No person in control of a mine or activity may use any area or locate any sanitary convenience, fuel depots, reservoir or depots for any substance which causes or is likely to cause pollution of a water resource within the 1:50 year flood line of any water course or estuary - Regulation 4(d).	Not Applicable.
No person in control of a mine or activity may use any residue or substance which causes or is likely to cause pollution of a water resource for the construction of any dam or other impoundment or any embankment, road or railway, or for any other purpose which is likely to cause pollution of a water resource - Regulation 5.	Not Applicable.
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.

5.3.1.4 NEMWA Listed Waste Management Activities

Activity Description	Impact Identification/Description
NATIONAL ENVIRONMENTAL MANAGEMENT ACT: WASTE ACT, ACT NO. 59 OF 2008	
NEMWA Section 19(3) and GN 718.	Not Applicable.

5.3.1.5 Shondoni Surface Shaft Activities

Activity Description	Impact Identification/Description
SHONDONI SHAFT AREA	
Construction and commissioning of the shaft complex at Shondoni.	Depletion in ground water availability as a result of ground water seepage during the construction of the shaft complex.
Construction and commissioning of the shaft complex at Shondoni	Deterioration in ground water quality as a result of ground water seepage into the shaft complex during construction activities.

5.3.1.6 Shondoni Underground Mining Activities

Activity Description	Impact Identification/Description	
UNDERGROUND MINING ACTIVITIES OF THE NO.S 2 AND 4 COAL SEAM		
Construction and commissioning of the shaft complex at Shondoni.	No mining activities will commence at Shondoni before the shaft complex is completed, so no ground water related impact will take place.	

5.3.1.7 Shondoni Coal Conveyor Activities

Activity Description	Impact Identification/Description
CONVEYOR BELT ROUTE	
Construction of a Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area).	The construction of a coal conveyor belt will not intersect ground water, so no ground water related impact will take place.

5.3.2 Operational Phase

5.3.2.1 NEMA EIA Listed Activities (GNR 386 & GNR 387)

Activity Description	Impact Identification/Description	
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 386 ACTIVITIES		
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The operation of a 15 000t ROM coal stockpile area at Shondoni Shaft. Seepage from the stockpile area can lead to ground water pollution, if not managed correctly.	
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	The Conveyor Pedestal will not intersect ground water, so no impact will take place.	
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The operation of a Storm Water Pollution Control Dam (SWPCD) that can lead to a deterioration of ground water quality directly beneath the facility.	
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	Conveyor Pedestal will not intersect ground water, so no ground water related impact will take place.	
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The storage of diesel fuel in storage tanks can lead to ground water pollution due to spillages/leaks.	
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	Not Applicable.	
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to facilitate the efficient continuation of mining and for the safety of people - Activity 13.	Any water removed from the No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas, or pumped to surface to the Storm Water Pollution Control Dam (SWPCD).	
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	Not Applicable.	
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	Not Applicable.	
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 387 ACTIVITIES		
Construction of a Double Circuit 132 kV Overhead Power line from Eskom Supply Point (SOL B) to Shondoni Mine Transmission Feeder Bays - Activity 1 (l).	The operation of the Overhead Power line will not intersect ground water, so no impact will take place.	
Construction of a Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area) at a rate of more than 50 cubic meters per day - Activity 1 (j).	The operation of a coal conveyor belt will not intersect ground water, so no ground water related impact will take place.	

Development of an area including shaft surface infrastructure and conveyor route where more than 20 hectares is disturbed - Activity 2.	This activity only refers to surface disturbance. Since no ground water is intersected, no impact will take place.
--	--

5.3.2.2 NWA Water Uses

Activity Description	Impact Identification/Description
NATIONAL WATER ACT (ACT 36 OF 1998): SECTION 40	
Taking water from a water resource - Section 21 (a).	All underground water accruing in mining sections during the operational phase will be stored in mined-out underground mine workings (storage reservoirs). This component will only be triggered if any water is pumped to surface. No 21(a) application is required at this stage. If and when this happens, an amendment to the WULA will be done.
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	Not Applicable.
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	Not Applicable.
Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g).	Ground water seepage captured from the ROM stockpile (maximum 2000m ³ /a) at Shondoni Shaft Complex will be pumped to the Storm Water Pollution Control Dam (SWPCD).
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	Not Applicable.
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j).	Any water removed from the No.2 and No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas. A detailed mine optimisation plan has been designed to create the necessary storage of water in mined out areas for the total Life of Mine.

5.3.2.3 GNR 704 Activity Exemptions

Activity Description	Impact Identification/Description
Exemptions from GNR 704	
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.
No person in control of a mine or activity may, except in relation to a matter contemplated in Regulation 10 (winning sand and alluvial minerals), carry on any underground or opencast mining, prospecting or any other operation or activity under or within the 1:50 year flood line or within a horizontal distance of 100 metres from any water course or estuary, whichever is the greatest - Regulation 4(b).	Not Applicable.
No person in control of a mine or activity may use any area or locate any sanitary convenience, fuel depots, reservoir or depots for any substance which causes or is likely to cause pollution of a water resource within the 1:50 year flood line of any water course or estuary - Regulation 4(d).	Not Applicable.
No person in control of a mine or activity may use any residue or substance which causes or is likely to cause pollution of a water resource for the construction of any dam or other impoundment or any embankment, road or railway, or for any other purpose which is likely to cause pollution of a water resource - Regulation 5.	Not Applicable.
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.

5.3.2.4 NEMWA Listed Waste Management Activities

Activity Description	Impact Identification/Description
NATIONAL ENVIRONMENTAL MANAGEMENT ACT: WASTE ACT, ACT NO. 59 OF 2008	
NEMWA Section 19(3) and GN 718.	Not Applicable.

5.3.2.5 Shondoni Surface Shaft Activities

Activity Description	Impact Identification/Description
SHONDONI SHAFT AREA	
Operating the shaft complex at Shondoni for the Life of Mine.	Depletion in ground water availability and deterioration of ground water quality in the Shaft as a result of ground water seepage during the operational phase of the shaft complex. The shaft complex will be sealed/grouted, so little to no impact will take place.

5.3.2.6 Shondoni Underground Mining Activities

Activity Description	Impact Identification/Description
UNDERGROUND MINING ACTIVITIES OF THE NO.S 2 AND 4 COAL SEAM	
The influx of groundwater recharge into	Ground water recharge from surface will enter
mine workings due to bord and pillar	areas of bord and pillar mining due to the fact
mining of the No's 2 and 4 coal seam.	that mining will create an increasing void.
The increased influx of groundwater into	An increased ground water recharge from
mine workings due to pillar extraction	surface will take place due to sub-surface
activities of the No.4 coal seam.	subsidence on the No.4 coal seam.
Inter-mine and inter-section flow of ground water during the operational phase.	Ground water resources stored in underground mining units can migrate from one mine/section to an adjacent mine/section, due to a difference in hydraulic pressure. Flow can also be induced where flooding compartments decant into surrounding compartments due to a roll in the coal seam floor.
Depletion of external users' groundwater	Bord and pillar mining activities can intersect
resources and fountains due to bord and	external user's boreholes directly and can lead to
pillar mining activities of the No's 2 and 4	a reduction/complete depletion of external user's
coal seams.	borehole yields.
Depletion of external users' groundwater	Pillar extraction mining activities can lead to
resources and fountains due to pillar	sub-surface subsidence that in turn will lead to a
extraction mining activities of the No. 4	reduction /complete depletion of external user's

coal seam.	borehole yields.
Depletion of stream base flow due to sub- surface subsidence of the No.4 coal seam.	Pillar extraction mining activities can lead to sub-surface subsidence that in turn will lead to a reduction /complete depletion of ground water base flow to rivers and non-perennial streams.
Deterioration in groundwater quality in all underground sections, and migration into the receiving environment.	Ground water recharge to underground mining units that remains in reservoirs will come in contact with coal pillars, mine floors and roofs. A gradual deterioration in ground water quality will take place over time, depending amongst other things, residence times, natural buffer capacity and mixing ratios of ground water from different sources.
Groundwater pollution originating from the ROM coal stock pile at the Shondoni Shaft Complex.	The operation of a 15 000t ROM coal stockpile area at Shondoni Shaft. Seepage from the stockpile area can lead to ground water pollution, if not managed correctly.
Groundwater pollution originating from the Storm Water Pollution Control Dam (SWPCD).	The operation of a Storm Water Pollution Control Dam (SWPCD) that can lead to a deterioration in ground water quality directly beneath the facility.

5.3.2.7 Shondoni Coal Conveyor Activities

Activity Description	Impact Identification/Description
CONVEYOR BELT ROUTE	
Operation of a Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area).	The Life of Mine operation of a coal conveyor belt will not intersect/impact ground water resources, so no ground water related impact will take place.

5.3.3 Decommissioning Phase

5.3.3.1 NEMA EIA Listed Activities (GNR 386 & GNR 387)

Activity Description	Impact Identification/Description		
LISTED ACTIVITIES AT SHONDONI I GNR 386 ACTIVITIES	LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 386 ACTIVITIES		
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The decommissioning of a 15 000t ROM coal stockpile area at Shondoni Shaft. Residual seepage from the stockpile footprint area can lead to further ground water pollution.		
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	The Conveyor Pedestal will not intersect ground water, so no impact will take place during decommissioning of the infrastructure.		
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The decommissioning of the Storm Water Pollution Control Dam (SWPCD) footprint can lead to residual ground water pollution.		
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	The Conveyor Pedestal will not intersect ground water, so no ground water related impact will take place during decommissioning of the infrastructure.		
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The decommissioning of diesel fuel storage tanks can lead to residual ground water pollution.		
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	Not Applicable.		
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to facilitate the efficient continuation of mining and for the safety of people - Activity 13.	Not Applicable.		
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	Not Applicable.		
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	Not Applicable.		
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 387 ACTIVITIES			
Construction of a Double Circuit 132 kV Overhead Power line from Eskom Supply Point (SOL B) to Shondoni Mine Transmission Feeder Bays - Activity 1 (l).	The decommissioning of the Overhead Power line will not intersect ground water, so no ground water related impact will take place.		
Construction of a Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area) at a rate of more than 50 cubic meters per day - Activity 1 (j).	The decommissioning of a coal conveyor belt will not intersect ground water, so no ground water related impact will take place.		

Development of an area including shaft surface infrastructure and conveyor route where more than 20 hectares is disturbed - Activity 2.	This activity only refers to surface disturbance. Since no ground water is intersected, no ground water related impact will take place.
--	---

5.3.3.2 NWA Water Uses

Activity Description	Impact Identification/Description
NATIONAL WATER ACT (ACT 36 OF 1998): SECTION 40	
Taking water from a water resource - Section 21 (a).	Not Applicable, since no water will be pumped to surface during the decommissioning phase.
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	Not Applicable.
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	Not Applicable.
Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g).	Not Applicable, since no water will be captured from any ROM stock piles (decommissioned).
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	Not Applicable.
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j).	Not Applicable, since no water will be moved around for decommissioning purposes.

5.3.3.3 GNR 704 Activity Exemptions

Activity Description	Impact Identification/Description
Exemptions from GNR 704	
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.
No person in control of a mine or activity may, except in relation to a matter contemplated in Regulation 10 (winning sand and alluvial minerals), carry on any underground or opencast mining, prospecting or any other operation or activity under or within the 1:50 year flood line or within a horizontal distance of 100 metres from any water course or estuary, whichever is the greatest - Regulation 4(b).	Not Applicable.
No person in control of a mine or activity may use any area or locate any sanitary convenience, fuel depots, reservoir or depots for any substance which causes or is likely to cause pollution of a water resource within the 1:50 year flood line of any water course or estuary - Regulation 4(d).	Not Applicable.
No person in control of a mine or activity may use any residue or substance which causes or is likely to cause pollution of a water resource for the construction of any dam or other impoundment or any embankment, road or railway, or for any other purpose which is likely to cause pollution of a water resource - Regulation 5.	Not Applicable.
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.

5.3.3.4 NEMWA Listed Waste Management Activities

Activity Description	Impact Identification/Description	
NATIONAL ENVIRONMENTAL MANAGEMENT ACT: WASTE ACT, ACT NO. 59 OF 2008		
NEMWA Section 19(3) and GN 718.	Not Applicable.	

5.3.3.5 Shondoni Surface Shaft Activities

Activity Description	Impact Identification/Description
SHONDONI SHAFT AREA	
Closing the shaft complex at Shondoni.	Localized depletion of ground water (if it occurred during the operational phase) will be reversed, and ground water levels will start to return to pre-mining ground water levels.

5.3.3.6 Shondoni Underground Mining Activities

Activity Description	Impact Identification/Description	
UNDERGROUND MINING ACTIVITIES OF THE NO.S 2 AND 4 COAL SEAM		
The continuous influx of groundwater recharge into mine workings due to bord and pillar mining of the No's 2 and 4 coal seam, during the decommissioning phase.	Ground water recharge due to operational phase mining activities will continue during the decommissioning phase. The impact will persist well beyond the post-closure phase and will be addressed in that section.	
The increased influx of groundwater into mine workings due to pillar extraction activities of the No.4 coal seam, during the decommissioning phase.	Ground water recharge due to operational phase mining activities will continue during the decommissioning phase. The impact will persist well beyond the post-closure phase and will be addressed in that section.	

5.3.3.7 Shondoni Coal Conveyor Activities

Activity Description	Impact Identification/Description
CONVEYOR BELT ROUTE	
Decommissioning of the Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area).	The decommissioning of the coal conveyor belt will not intersect/impact ground water resources, so no ground water related impact will take place.

5.3.4 **Post-closure Phase**

5.3.4.1 NEMA EIA Listed Activities (GNR 386 & GNR 387)

Activity Description	Impact Identification/Description	
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 386 ACTIVITIES		
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The final closure of a 15 000t ROM coal stockpile area at Shondoni Shaft. Residual seepage from the stockpile footprint area can lead to further ground water pollution.	
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	The Conveyor Pedestal will not intersect ground water, so no ground water related impact will take place during final closure.	
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The closure and final rehabilitation of the Storm Water Pollution Control Dam (SWPCD) footprint can lead to ground water pollution.	
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	The Conveyor Pedestal will not intersect ground water, so no impact will take place during final closure of the infrastructure.	
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The removal of diesel fuel storage tanks. No free product will be left, so no ground water related impact is possible.	
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	Not Applicable.	
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to facilitate the efficient continuation of mining and for the safety of people - Activity 13.	Not Applicable.	
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	Not Applicable.	
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	Not Applicable.	
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GNR 387 ACTIVITIES		
Construction of a Double Circuit 132 kV Overhead Power line from Eskom Supply Point (SOL B) to Shondoni Mine Transmission Feeder Bays - Activity 1 (l).	The removal of the Overhead Power line will not intersect ground water, so no ground water related impact will take place.	
Construction of a Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area) at a rate of more than 50 cubic meters per day - Activity 1 (j).	The final removal of the coal conveyor belt will not intersect ground water, so no ground water related impact will take place.	

Development of an area including shaft surface infrastructure and conveyor route where more than 20 hectares is disturbed - Activity 2.	This activity only refers to surface disturbance. Since no ground water is intersected, no impact will take place.
--	--

5.3.4.2 NWA Water Uses

Activity Description	Impact Identification/Description
NATIONAL WATER ACT (ACT 36 OF	1998): SECTION 40
Taking water from a water resource - Section 21 (a).	After final flooding of mining sections, water will be stored in underground mining sections. IF surface treatment of ground water is required, the appropriate amendment to the WULA will be made to register this water use
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	Not Applicable.
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	Not Applicable.
Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g).	Not Applicable, since no water will be captured from any ROM stock piles removed during closure phase).
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	Not Applicable.
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j).	Not Applicable, since no water will be moved around for closure purposes.

5.3.4.3 GNR 704 Activity Exemptions

Activity Description	Impact Identification/Description	
Exemptions from GNR 704		
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.	
No person in control of a mine or activity may, except in relation to a matter contemplated in Regulation 10 (winning sand and alluvial minerals), carry on any underground or opencast mining, prospecting or any other operation or activity under or within the 1:50 year flood line or within a horizontal distance of 100 metres from any water course or estuary, whichever is the greatest - Regulation 4(b).	Not Applicable.	
No person in control of a mine or activity may use any area or locate any sanitary convenience, fuel depots, reservoir or depots for any substance which causes or is likely to cause pollution of a water resource within the 1:50 year flood line of any water course or estuary - Regulation 4(d).	Not Applicable.	
No person in control of a mine or activity may use any residue or substance which causes or is likely to cause pollution of a water resource for the construction of any dam or other impoundment or any embankment, road or railway, or for any other purpose which is likely to cause pollution of a water resource - Regulation 5.	Not Applicable.	
No person in control of a mine or activity may locate or place any residue deposit, dam, reservoir together with any associated structure or any other facility within the 1:100 year flood line or within a horizontal distance of 100 metres from any water course or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on water-logged ground, or on ground likely to become water- logged, undermined, unstable or cracked - Regulation 4(a).	Not Applicable.	

5.3.4.4 NEMWA Listed Waste Management Activities

Activity Description	Impact Identification/Description	
NATIONAL ENVIRONMENTAL MANAGEMENT ACT: WASTE ACT, ACT NO. 59 OF 2008		
NEMWA Section 19(3) and GN 718.	Not Applicable.	

5.3.2.5 Shondoni Surface Shaft Activities

Activity Description	Impact Identification/Description
SHONDONI SHAFT AREA	
Final closure of the shaft complex at Shondoni.	Localized depletion of ground water (if it occurred during the operational phase) will be reversed, and ground water levels will finally return to pre-mining ground water levels.

5.3.4.6 Shondoni Underground Mining Activities

Activity Description	Impact Identification/Description
UNDERGROUND MINING ACTIVITIE	S OF THE NO.S 2 AND 4 COAL SEAM
The continuous influx of groundwater recharge into mine workings until all mining units is flooded.	Ground water recharge from surface will enter areas of bord and pillar and high extraction mining until all mining units are flooded.
The decant of underground mine water to surface, after total flooding of mining units.	After final flooding of mining sections, ground water can seep to surface due to conduit flow from high extraction subsidence areas.
Inter-mine and inter-section flow of ground water during the post closure phase.	Ground water resources stored in Shondoni underground mining units can migrate from one mine/section to an adjacent mine/section, due to a difference in hydraulic pressure. Flow can also be induced where flooding compartments decant into surrounding compartments due to a roll in the coal seam floor.
Continuous depletion of external users' groundwater resources and fountains due to pillar extraction mining activities of the No. 4 coal seam.	Pillar extraction mining activities can lead to sub-surface subsicence that in turn will lead to a reduction /complete depletion of external user's borehole yields, for indefinite time frames.
Depletion of stream base flow due to sub- surface subsidence of the No.4 coal seam, post-closure.	Pillar extraction mining activities can lead to sub-surface subsidence, that in turn will lead to a reduction/complete depletion of ground water base flow to rivers and non-perennial streams., for indefinite periods of time.

Deterioration in groundwater quality in all underground sections, and migration into the receiving environment, after mining activities have stopped.	Ground water recharge to underground mining units that remains in reservoirs will come in contact with coal pillars, mine floors and roofs. A gradual deterioration in ground water quality will take place over time, eventually leading to total acidification of underground mine water.
Groundwater pollution originating from the ROM coal stock pile footprint at the Shondoni Shaft Complex after closure.	Seepage from the stockpile area footprint can lead to ground water pollution, if not rehabilitated correctly.
Groundwater pollution originating from the Storm Water Pollution Control Dam (SWPCD) footprint after closure.	Seepage from the SWPCD footprint can lead to ground water pollution, if not rehabilitated correctly.

5.3.4.7 Shondoni Coal Conveyor Activities

Activity Description	Impact Identification/Description
CONVEYOR BELT ROUTE	
Final removal of the Coal Conveyor from Shondoni Shaft to Middelbult Main Shaft (to the central Sasol Coal Supply area).	The removal of the coal conveyor belt will not intersect/impact ground water resources, so no ground water related impact will take place.

5.4 ASSESSMENT OF GEOHYDROLOGICAL IMPACTS

The geohydrological impact description is based on individual ground water impacts for the different stages of operation at Sasol Shondoni, namely for the:

- Construction Phase
- Operational Phase
- Decommissioning Phase
- Post-closure Phase

The overall description and quantification of any given geohydrological impact will be the same for all of the given Regulatory processes:

- NEMA EIA Listed Activities (GNR 386 & GNR 387.
- NWA Water Uses
- GNR 704 Activity Exemptions
- NEMWA Listed Waste Management Activities
- Shondoni Surface Shaft Activities
- Shondoni Underground Mining Activities
- Shondoni Coal Conveyor Activities

All impacts will therefore be discussed and quantified for the stage of mining operation.

5.4.1 Construction phase

5.4.1.1 Impact on the availability of ground water

Bord and pillar mining and Pillar Extraction mining

The impact on the availability of ground water will be insignificant. This is due to the fact that no structural instabilities are expected in the shaft complexes, and related impacts on the physical and hydraulic aquifer characteristics are insignificant. Although ground water will flow through the walls of the vertical shafts during construction, influxes will be grouted immediately, preventing the establishment of a significant cone of de-watering around the vertical shafts.

5.4.1.2 Impact on the quality of ground water

Influxes of ground water into the vertical shafts during the construction phase are expected to be insignificant. The water that does enter the excavations will however, have increased solids in suspension, due to the construction activities.

Deterioration in ground water quality due to the oxidation of pyritic material in the vertical shafts is very unlikely during the construction phase. This is mainly due to the short contact time of ground water with material in the excavations, as well as the fact that the ground water entering the vertical shafts has a natural

buffering capacity in short-residence geohydrological environments (refer to Part 3). All unwanted water resulting from excavations will be discharged.

5.4.2 Operational phase

5.4.2.1 The influx of ground water into mine workings due to bord and pillar mining and pillar extraction activities

During bord and pillar mining significant influxes of ground water to the underground mines will only occur with the intersection of preferential ground water flow zones, during mining of the No.2 and 4L coal seams, including dolerite dyke contact zones, dolerite sill contact zones, faults or fissures.

Insufficient information currently exists to accurately delineate <u>all</u> the localities of these flow zones on the No.2 and 4L coal seam horizons. As such, calculation of influx rates from these features is not possible. The magnitude of influxes related to these features seldom cause extensive cones of depression in the ground water regime. However, the ground water resources of external users located the mine-intersected feature could be affected.

The detailed water make in this section can be seen in TABLE 4.1.2(A). The TABLE below gives a summary of the water balance on an annual basis:

Schedule	Cumulative rainfall recharge:2 Seam (m ³ /a)	Total ground water recharge (m ³ /day)
FY21	3 216	9
FY25	28 945	81
FY30	61 107	172
FY35	95 526	268
FY40	130 195	366
FY45	164 864	463
TOTAL (FY48)	189 133	531

TABLE 5.4.2.1(A)

Recharge in the No.2 seam bord and pillar areas mined from FY2021- 2048

The cumulative ground water recharge for this section comes to 189 133 m³/a, or **531** m³/day for year 2048. This flooding rate will remain stable until all mining units are flooded.

Bord and pillar mining and pillar extraction of the No.4L coal seam

As can be seen in FIGURE 4.1.1(B), an area roughly 22% of the total FY2010 – FY2048 schedule is recommended for pillar extraction. The bord and pillar mining sections of the No.2 coal seam and the above mentioned sections were split in terms of water make, since these areas can be managed individually.

The volumes of water make to be expected in the bord and pillar sections to the north of the fault will be in the same order as for the southern reserves (1.1 - 1.6% of MAP). Pillar extraction will, however, yield greater water make volumes due to potential surface subsidence.

Pillar extraction with subsequent roof collapse will increase the hydraulic conductivity of the geological strata above the mine. This activity will result in the release of ground water stored in the formations above the pillar extraction panels and cause an influx of ground water into the workings over the immediate, short and medium term. Ground water contained in formations immediately above the pillar extraction panels will drain into the mine within a matter of days/weeks. Lateral inflows from undisturbed formations (possibly above and from surrounding rock) will occur for a more extended time period (months).

De-watering and the coincidental influx of ground water into the mine workings, as a result of total extraction mining, is therefore much more severe than for bord & pillar underground mining activities.

The main contributors to the influx volumes are:

- annual rainfall recharge.
- lateral inflows from the surrounding rock mass deep aquifer.
- water released from storage in the overlying rock mass shallow and deep aquifers.
- inflows related to geological features.
- inflows from surrounding mined out areas.

Some of the above contributors cannot be quantified at this stage, or is insignificant in terms of the total water make. The ground water components for the overall water balance were calculated and can be seen in TABLE 4.1.2(B).

TABLE 5.4.2.1 summarises the results:

Schedule	Cumulative rainfall recharge (m ³ /a)	Total ground water recharge (m ³ /day)
FY10	77 088	36
FY15	412 612	693
FY20	692 567	1 505
FY25	1 186 906	2 447
FY30	1 527 313	3 403
FY35	1 981 424	4 423
FY40	2 347 946	5 245
FY45	2 712 729	6 477
TOTAL (FY48)	2 932 121	7 196

TABLE 5.4.2.1(B)Recharge in all mining sections of the No4 Coal seam (FY2010-2048)

The maximum recharge for this section comes to 2 931 121 m³/a, or **7 196** m³/day for year 2048.

The actual increase in ground water recharge will be a function of:

- The actual extent of the surface depressions forming ponds on surface;
- The occurrence of areas which have a higher recharge potential because of the type of soil and vegetative cover; and
- The dimensions of apertures (cracks), and the infilling of these cracks with sediment.

From TABLE 4.1.2(B) it is evident that the release in storage of water in overlying stratigraphical units is the main contributor to the ground water make during the operational phase. The management of this water will be a priority during the operational phase of the Sasol Middelbult Shondoni mine. Please refer to the Jones & Wagener specialist report for more detail on this water management.

5.4.2.2 Intermine flow during the operational phase

Inter-mine flow can occur between two neighbouring mines/sections if hydraulic continuity exits between them, and if a hydraulic gradient between water in the two mines/sections exists.

Quantification of the actual inter mine flow is a complex process. Not only is high integrity information on hydraulic inter-connectivity and water level gradients a fundamental pre-requisite, but the hydraulic gradient response is of a transient nature. However, <u>inter-mine flow usually only occurs during the post</u> <u>closure mining phase</u>, as underground mines are not flooded to a significant degree during the operational phase, due to water balance use, selective storage and de-watering.

The likelihood of inter-mine flow during the operational phase at Block 8 mining sections is remote for the following reasons:

- As stated earlier, mining units are usually dewatered and thus unsaturated during the operational phase.
- The water balance of the bord and pillar sections adjacent to the Middelbult Mine (2010 2015) will be managed as part of the Middelbult Mine water balance.
- A major reservoir for storage will become available at the Springbokdraai reserve areas after this section is mined out (2020). Storage capacity of at least 30 Mm³ will be available for mine water management during the operational phase.

5.4.2.3 Depletion of external user's ground water resources and fountains

Bord and pillar mining does not lead to a drop in ground water levels in the shallow weathered zone aquifer, providing that pillars remain structurally stable. Where deeper boreholes penetrate into/close to mine workings, a drop in water level can be expected.

In pillar extraction panels, declining ground water levels within and around the goafs, will manifest as a cone of depression, stretching in all directions around areas of pillar extraction. The extent of this cone of depression is a function of the magnitude in the water level decline and subject to the hydraulic conductivity of the surrounding aquifer host rock. Physical and hydraulic aquifer boundaries will also influence the final delineation of such a cone of depression.

Potential pillar extraction mining at Sasol Middelbult Shondoni will take place between 85 m and 160 m below surface. Modelling performed for the pillar extraction areas yielded a radius of between 250 m and 500 m from the pillar extraction panels for the cone of depression.

Since the exact areas of pillar extraction have not been finalised yet, it is not possible at this stage to distinguish between external users falling above bord and pillar areas, from the external users falling above high extraction areas. All boreholes <u>currently in use</u> (as confirmed by the owner/foreman/manager), and all fountains falling above the Block 8 underground reserves, are listed in APPENDIX 3.

5.4.2.4 Depletion of stream base flow

Impact on surface water resources will be restricted to areas where mining intersects a preferential ground water flow zone, in hydraulic continuity with a surface water feature. With safety measures associated with bord and pillar mining, no structural problems, which can lead to surface subsidence, are expected.

The areas allocated for potential pillar extraction mining, as indicated on FIGURE 4.1.1(B) avoided all wetlands, flood plains, drainage lines, river systems and dams. These areas will be further refined, as to comply with the prescribed distances that pillar extraction mining must be from any surface water resource.

5.4.2.5 Deterioration of ground water quality in the underground sections and migration into the receiving environment, during the operational phase.

Bord and pillar mining

Ground water draining into the mine workings will initially be of a good quality. The pH will be alkaline due to the presence of bicarbonate species. However, once the ground water reaches the mine, the material that it comes into contact with will influence its quality.

The following sequence of chemical reactions will occur:

- The water seeping into the mine will generally be of good quality, except for suspended solids present. Most, if not all of the water resulting from operations, will be used during the operational phase. Isolated areas of water make can however be present, and will drain to the lowest point of the mine.
- The water present will be alkaline, but the Total Dissolved Solids content will increase due to the contact with the coal floor/pillars.
- Ground water will continue to percolate through the roof downward to the saturated areas. This will lead to the mixing of initially alkaline to neutral ground water, with relative stagnant, alkaline ground water on the mined horizon.
- With the current proposed water management measures, regional acidification is not expected during the operational phase.

Pillar extraction mining

The following sequence of chemical reactions will occur:

- The water liberated in the stratigraphical units above pillar extraction panels, as well as the water seeping into the mine, will generally be of good quality, but contain suspended solids, in the form of sediment and carbonaceous material e.g. shale and coal.
- The majority of ground water saturation on the mined horizon (average thickness of 4.6 m) will take place in a matter of days to weeks, due to the reduction in storativity of the mine void, during goaf formation. Very little, if any, pyrite oxidation will take place in this saturated zone. The quality of this ground water will initially remain constant, providing that water is not continuously pumped out of this zone.
- Pyrite oxidation will commence in the unsaturated areas of the mined void (if any), as well as in the unsaturated zones of the goaf. The rate of oxidation will vary considerably, depending on the rate of ingress of ground water (the residence time), the rate of ingress of oxygen and the contact areas available for oxidation.
- This initial acidification will be neutralised by the natural buffering capacity in the overlying rock. This will take place for many years, until all the neutralising potential is depleted. Isolated areas of buffering depletion might take place quickly, but regional acidification in the total goaf area will not occur for many years.
- Ground water will percolate through the unsaturated goaf areas downward to the saturated mined void. This will lead to the mixing of initially alkaline to neutral ground water, with relative stagnant, alkaline ground water on the mined horizon.
- Isolated areas of buffering depletion will take place. This will lead to the formation of acidic conditions in the goaf area, with low pH ground water that will percolate downwards to the saturated zones.
- It is believed that, with the current proposed water management measures, regional acidification is not expected during the operational phase. During the operational phase the quality of the ground water will remain alkaline to neutral, with elevated levels of Total Dissolved Solids.

TABLE 5.4.2.5 (A) below gives an indication of ground water quality that can be expected, if large volumes of water are stored underground during the total operational phase:

Parameter	Operational storage quality
рН	6.6
EC (mS/m)	160 - 250
Ca (mg/l)	200 - 350
Mg (mg/l)	120 - 200
Na (mg/l)	25
K (mg/l)	20
T.Alk. (mg/l)	80
Cl (mg/l)	15
SO ₄ (mg/l)	500 - 650
F (mg/l)	0.9
Al (mg/l)	0
Mn (mg/l)	1 – 2
Fe (mg/l)	1

TABLE 5.4.2.5(A) Ground water qualities expected at Sasol Middelbult Shondoni during operational phase storage

5.4.2.6 Ground water pollution originating from potential pollution sources on surface

Infrastructure that could lead to ground water pollution in the Sasol Middelbult Shondoni reserve area is the Run of Mine Coal Stockpile (Capacity 15 000tons) and the Surface Water Pollution Control Dam (SWPCD). The quantification and extent of potential pollution from these sites are quantified in Part 6 of this report.

Additional potential pollution sources present at surface is a number of gold mine slimes dams. Contaminants from these features can percolate through the unsaturated zone to the saturated zone, situated above/within the Sasol Middelbult Shondoni coal reserves. Once contaminants reach the ground water table, lateral migration along the ground water gradients will occur and ground water contaminant plumes will establish. Depending on local conditions, these ground water contaminant plumes may result in <u>primary aquifer contamination</u>.

<u>Secondary contamination</u> of surface water resources may also result where the contaminant plumes establish hydraulic continuity with surface water resources (streams, rivers, pans, dams).

Of greater importance to this study is the potential for <u>tertiary contamination</u> of the Sasol Middelbult Shondoni coal horizon, in the event of direct geohydrological continuity between primary pollution and the coal seam horizon. This will happen in the event of coal mining taking place to close to and/or under the gold mine slimes dams.

Geohydrological sampling indicated elevated values for EC, TDS, Cl and especially SO_4 in some monitoring boreholes (GWE-30, GWE-85, GWE-88, GWE-95, SDF-8, SSW-8) drilled around the old gold mine dumps. Of note are the three boreholes around the Winkelhaak slimes dams that show marginal to non-compliance with the S.A Drinking Water Standard.

The potential impact on infiltration is directly related to the extent and magnitude of the ground water mounds around infiltration sources, as well as the quality of the infiltrated water. Increased ground water monitoring around these facilities is crucial in determining the quantity and quality of infiltration from the proposed facilities.

5.4.3 Decommissioning phase

5.4.3.1 All ground water impacts

During the decommissioning phase, final rehabilitation of underground mining sections will take place. The decommissioning activities themselves are not expected to result in additional impacts to the geological or ground water regimes. In the underground sections, water levels will continue to accumulate, as water will no longer be used as part of the operational phase water management.

Estimates for the post closure mine water balance included mine flooding rates as well as post closure decant rates, for both the underground sections. Sources of ground water in rehabilitated mining sections during post closure include surface decant, ground water seepage and inter-mine flow.

Measures will be put in place during decommissioning to manage all seepage as part of the post-closure water balance. More detail will be given in the postclosure water balance of the Jones and Wagener report. Measures to manage all ground water related impacts are proposed for the operational phase, and these measures must be completed during the decommissioning phase to ensure minimisation of post closure and long-term ground water impacts.

5.4.4 Post-closure phase

5.4.4.1 Potential surface decant from the underground sections

No.2 Seam Bord and pillar mining (2021 – 2048)

These mine workings at Sasol Middelbult Shondoni underground section after closure, will consist of decommissioned and closed-off No.2 seam coal seam compartments.

The following post-closure information is relevant to the given mine scheduling plan:

Flooding status	Total area mined (m ³)	Time of average flooding (years)	Recharge/Deca nt rate (m ³ /day)
Before 2021	27 019 000	~	531
Post closure	27 019 000	290 - 354	502

TABLE 5.4.4.1(A)Post closure recharge/decant assessment for the No.2 seambord and pillar sections mined from 2021 - 2048

The time of "average" flooding includes increased influx of the known preferential flow zones, as well as the potential inter-section flow. Not all preferential influx zones are known at this point, so the volumes might increase, as more operational phase information becomes available. Since active storage of water from potential pillar extraction compartments, in these bord and pillar compartments is seen as a management option, the time of flooding can be reduced. Refer to Section 4.1 for the volumes of water-make and various water management options, during the operational and post-closure phases.

The likelihood of underground bord and pillar mine workings decanting directly onto the surface is dependent on the proximity of such workings to the surface and the hydraulic pressure exerted on the underground water mass towards the point(s) of possible decant.

The mining of the No.2 coal seam will take place at depths generally deeper than 120m, and the potential volume of decant is very small. With the exception of vertical shafts, no other known hydraulic pressure points exist that will force water under gradient towards the surface.

The time before underground flooding for these compartments is also considerable. For this reason, the underground bord and pillar sections can be used as storage for water from the pillar extraction panels, to reduce the overall flooding time.

No.4L Coal seam Bord and pillar mining and pillar extraction (2010 – 2048)

These mine workings at Sasol Middelbult Shondoni underground section after closure, will consist of decommissioned and closed-off No.4L coal seam bord and pillar compartments, as well as closed-off pillar extraction compartments, provided that only the recommended areas for pillar extraction are mined.

The following post-closure information is relevant to the given mine scheduling plan:

pinar extraction sections (2010 – 2048)											
Mining status	Total area mined (m ³)	Time of average flooding (years)	Recharge/Decant rate (m ³ /day)								
Bord and pillar	81 514 700	290	1 594								
Pillar extraction	~22 550 000	40 - 70	5 600								
TOTAL	104 064 000	90 - 110	7 194								

TABLE 5.4.4.1(B)Post closure recharge/decant assessment for the bord and pillar and
pillar extraction sections (2010 – 2048)

The time of "average" flooding does include increased influx of the known preferential flow zones, as well as the potential inter-section flow. Not all preferential influx zones are known at this point, so the volumes might increase, as more operational phase information becomes available.

The difference in water make between the bord and pillar sections and the pillar extraction sections is evident. The active storage of water from pillar extraction areas in any bord and pillar section of the Sasol Middelbult Shondoni reserve is part of the mining water management plan. Refer to Section 4 for the volumes of water-make and various water management options, during the operational and post-closure phases.

The likelihood of pillar extraction compartments decanting directly onto the surface is also dependent on the proximity of such workings to the surface and the hydraulic pressure exerted on the underground water mass towards the point(s) of possible decant.

Although mining of the No.4L coal seam will take place at depths generally deeper than 100m, the formation of sub-vertical hydraulic pressure zones could result, forcing water under gradient towards the surface. The volumes of potential decant are also much higher than that of bord and pillar compartments, contributing to the hydraulic pressure in these compartments.

5.4.4.2 Mine water seepage

Bord and pillar and pillar extraction mining

Mine water seepage occurs as a result of hydraulic gradients, and relates to the mining status of neighbouring mines, in terms of aquifer saturation and flooding status.

The following hydraulic/mining scenarios are relevant for the Sasol Middelbult Shondoni underground sections:

- The ground water regimes to the north, west and south-west of Sasol Middelbult Shondoni underground mine are undisturbed. The ground water seepage rates to the mine workings will resemble those of undisturbed geohydrological environments.
- The Syferfontein underground/strip mine will be situated some 2000 m to the north-east of the Sasol Middelbult Shondoni underground mine. The ground water seepage rates between these two sections will resemble those of undisturbed geohydrological environments, Regional inter-mine flow will only occur if no management measures are put in place at these mining sections.
- The southern and south-eastern boundary of the Sasol Middelbult Shondoni underground workings is dominated by the direct link with the Middelbult Colliery (2010-2015. However, in a post-closure environment, these closed-off sections could have ground water flow-interaction, which will influence the influx rates of both sections.
- A major reservoir for storage will be available at the Springbokdraai reserve areas after this section is mined out (2020). Storage capacity of at least 30 Mm³ will be available for mine water management during the operational phase. The remainder of the water balance will be successfully managed after closure. After planned mining stop after 2048, the mine will flood along contour lines, as indicated in Figures 4.1.3(A and B).
- A series of perennial and non-perennial river systems are present above the Sasol Middelbult Shondoni reserve. Depending on the mining technique used, increased influx of these features can take place towards the mining horizon.
- A number of gold mine slimes dams are present above the Sasol Middelbult Shondoni reserve. Depending on the mining technique, and the distance of mining from these features, increased influx polluted water can take place downwards to the mining horizon.

All anticipated influx volumes were investigated with a 2-layered finite difference flow model. The results generated are for 2 different underground mining horizons. The model includes the possible interaction between the Sasol

Middelbult Shondoni mining sections, all surrounding mines, as well as faults and dykes identified to date.

In order to make the results obtained applicable to other mining areas, modelling results indicates the influx as converted to volume/unit length/month $(m^3/km/month)$.

- The ground water influx from undisturbed surrounding aquifers to the mining sections was calculated using the hydraulic data generated during the baseline studies. The volume of ground water influx is 450 550m³/km/month. This value is the same as for the pre-mining (undisturbed) ground water fluxes.
- The <u>increase</u> in ground water flux due to pillar extraction activities close to the non-perennial and perennial streams in the study area, is an additional 600 m³/km/month. This value is applicable for a minimum mining distance of **100 m from river systems**.
- The potential increase in ground water flux due to inter-mine flow between the sealed-off sections Sasol Middelbult Shondoni and Middelbult Colliery is an additional 2000 m³/km/month. This value is applicable for a **50 m wide barrier** pillar left between the underground sections. The influx is reduced to 1000 m³/km/month with a **barrier pillar of 100 m**.

Pillar Extraction Proximity to Slimes Dams	Increase in Ground water Influx
300 m	250 m ³ /km/month
200 m	460 m ³ /km/month
150 m	770 m ³ /km/month
100 m	1100 m ³ /km/month
50 m	2100 m ³ /km/month
0 m	3800 m ³ /km/month

• The <u>increase</u> in ground water flux due to pillar extraction (pe) activities close to the gold mine slimes dams, can be summarised as follows:

The potential volume of polluted ground water that can drain into the mine from the gold mine slimes dams is evident. For this reason, a minimum distance of 300 m of pillar extraction mining from the gold mine slimes dams perimeters are recommended.

5.4.4.3 Long-term quality of all decant/mine water/seepage

Bord and pillar mining

Detailed acid-base accounting was performed on coal samples and stratigraphic units directly above the No.4L coal seam of the Sasol Middelbult Shondoni underground sections. Additional leaching tests were also performed to determine the leaching characteristics of these stratigraphical units, as well as the long-term water quality trends.

The following reaction sequence in terms of long-term ground water quality can be expected from the bord and pillar underground sections, post-closure:

- Pyrite oxidation on the mined horizons will be extensive due to the slow flooding during the post-closure phase.
- Initial acidification will be neutralised by the natural buffering capacity in the coal seam, as well as from ground water flooding the sections. This will take place over many years, until all the neutralising potential is depleted.
- Poor quality ground water will be present on the mine horizon when total flooding is completed.
- As stated earlier the likelihood of the water on the mine horizon decanting on surface is very small. Stratification of ground water will take place above the bord and pillar mining horizons, with only shallow weathered zone aquifer discharge "decanting" on surface.

Pillar extraction mining

The following reaction sequence in terms of long-term ground water quality can be expected from the pillar extraction section post-closure:

- Pyrite oxidation on the mined horizon will be limited due to the relative fast saturation of this zone during the operational phase. Provided that no water is pumped from these voids, these waters will remain alkaline to neutral for many years, past post-closure.
- Pyrite oxidation will continue in the unsaturated areas of the goafs, until a hydraulic equilibrium is reached. The rate of acidification will be reduced in the saturated areas of the goaf.
- All initial acidification will be neutralised by the natural buffering capacity in the overlying rock. This will take place for many years, until all the neutralising potential is depleted.
- Isolated areas of buffering depletion will take place in both the saturated and unsaturated zones. This will lead to the formation of acidic conditions in the goaf area, with low pH "hot spots" that will percolate downwards to the saturated zones.

- Depending on the size and distribution of these "hot spots", the overall buffering capacity will continue to be reduced/depleted many years after closure. Eventual acidification of the total complex will take place.
- The total water make at Sasol Middelbult Shondoni pillar extraction section will consist of a mixture/stratification of:
 - > Initial alkaline ground water on the mined horizon.
 - Initial alkaline ground water percolating through the goafs and stratigraphical units to the saturated zone.
 - Neutral ground water recharging in the goaf after mining has ceased (returns to geohydrological equilibrium). The neutral state of this water can be attributed to the sporadic depletion of buffering capacity.
 - Low pH ground water on the mined horizon, once buffering depletion and bacteriological action has commenced. The rate of acidification will again be lower because of saturated conditions.
 - Low pH ground water formed in the unsaturated areas of the goaf.
 - Recharge of rainwater into the total system

The different qualities of ground water to be expected at Sasol Middelbult Shondoni , in different mining sections, are shown in TABLE 5.4.1.3 (A)

TABLE 5.4.1.3(A) Ground water qualities expected at Sasol Middelbult Shondoni during storage and post closure

Parameter	Operational storage quality	Surface seepage quality after total flooding – bord and pillar sections	Surface seepage quality after total flooding – pillar extraction sections		
pН	6.6	7.5	2.5		
EC (mS/m)	160 - 250	70 - 110	600 - 800		
Ca (mg/l)	200 - 350	60	100 - 200		
Mg (mg/l)	120 - 200	25	100 - 140		
Na (mg/l)	25	20	60		
K (mg/l)	20	10	30		
T.Alk. (mg/l)	80	300	0		
Cl (mg/l)	15	25	40		

SO ₄ (mg/l)	500 - 650	< 50	2500 - 3200
F (mg/l)	0.9	0.9	1.7
Al (mg/l)	0	0	50 - 70
Mn (mg/l)	1 - 2	0.5	10 - 20
Fe (mg/l)	1	1	20 - 50

Stratification of waters with differing salinity is a well understood phenomenon, and has been studied and researched in great depth, inter alia in studies related to sea-water intrusion in coastal aquifers.

It has been shown in these studies that in the absence of induced hydraulic stresses (e.g. pumping) the actual salinity interface is quite sharp with the diffuse interface zone restricted to a scale of a few meters, even for concentration gradients of 30 000 mg/l: 1000 mg/l.

This suggests that unless induced hydraulic stresses occur within the flooded mining environment, stratification is most likely to occur, thus effectively containing high salinity waters on the horizons at which they occurred/accumulated.

Therefore, unless hydraulic mechanisms occur, which can transport high salinity waters from the mined horizon, through the overlying saturated formations, onto surface, the high salinity water will most probably stay on the mined horizon.

It should be remembered that in the saturated overlying weathered zone aquifers, ground water flow will essentially be horizontal, thus preferentially causing surface discharge of recently recharged water from surface.

The probability for the presence/occurrence of non-equilibrium hydraulic stresses in a total extraction mining area could be higher than in conventional bord & pillar mining areas, due to the structural modifications present in such areas.

In the end, each mine will have to be assessed on a site specific basis, as aspects such as depth of mining, presence of dykes and faults, extent of structural disturbance, rate of flooding and inter-connectivity with other mines, may influence the post-closure decant scenario for that mine.

6. ENVIRONMENTAL MANAGEMENT MEASURES

6.1 IMPACT SIGNIFICANCE ASSESSMENT SUMMARY TABLES

6.1.1 Construction phase

Activity description		Cr	iteria	for de	termir	ning se	verity		SEVERITY C- NUMBER	Degree Of Likelihood	Risk level before mitigation
	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL			
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GN 386 ACTIVITIES											
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	2	1	0	0	0	3	1	7	C2	Almost Certain	Level 5 Risk
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	~	~	~	~	~	~	~	0	~	~	~
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	4	1	0	0	0	3	1	9	C2	Almost Certain	Level 5 Risk
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	۲	2	2	~	~	2	۲	0	~	~	~
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	2	3	0	2	1	3	2	13	C3	Highly Unlikely	Level 6 Risk

Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	~	~	~	~	~	~	~	0	~	~	~
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to facilitate the efficient continuation of mining and for the safety of people - Activity 13.	4	1	1	0	0	3	1	10	С3	Very unlikely	Level 6 Risk
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	~	1	1	1	~	1	۲	0	~	۲	~
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	~	1	1	1	~	1	1	0	~	~	~

		Criteria for determining severity								đ	
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY NUMBER	Degree Of Likelihood	Risk level before mitigation
NATIONAL WATER ACT (AC	NATIONAL WATER ACT (ACT 36 OF 1998): SECTION 40										
Taking water from a water resource - Section 21 (a). Ground water seepage into the shaft complex.	2	0	0	0	1	2	1	6	C2	Likely	Level 6 Risk
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	~	2	~	~	~	~	2	0	~	~	~
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	2	2	1	1	~	۲	۲	0	~	~	~

Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g). Deterioration of ground water seepage in the shaft complex.	2	0	0	0	1	2	1	6	C2	Likely	Level 6 Risk
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	~	~	~	~	~	~	~	0	~	~	~
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j). Any water removed from the No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas.	4	1	1	0	0	3	1	10	C3	Very unlikely	Level 6 Risk

		Cr	iteria	for de	termir	ing se	verity		ч К С	Of	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY NUMBER	Degree Of Likelihood	Risk level before mitigation
SHONDONI SHAFT AREA											
Construction and commissioning of the shaft complex at Shondoni can lead to a reduction in ground water yield around the shaft complex.	2	0	1	0	1	2	1	7	C2	Likely	Level 6 Risk
Construction and commissioning of the shaft complex at Shondoni can lead to a reduction in ground water quality around the shaft complex.	2	1	1	0	1	2	1	8	C2	Likely	Level 6 Risk

		Cr	iteria	for de	termir	ning se	verity		°.	Of Dod	efore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY	Degree Of Likelihood	Risk level before mitigation
UNDERGROUND MINING AC	CTIVIT	TIES O	F THE	E NO.S	2 ANI	0 4 CO	AL SE	AM			
Construction and commissioning of the shaft complex at Shondoni. No mining will commence in the Shondoni part of the mine. Restricted mining activities will take place at Middelbult.	2	2	~	2	2	2	~	0	~	~	~

6.1.2 Operational phase

		Cr	iteria	for de	termin	ing se	verity		Ů,	f	ore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY C- NUMBER	Degree Of Likelihood	Risk level before mitigation
LISTED ACTIVITIES AT SHO	NDON	NI IN T	ERMS	S OF N	EMA (ACT 1	07 OF	1998): GN	N 386 ACTI	VITIES	
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	4	1	0	2	1	3	1	12	C3	Very Unlikely	Level 6 Risk
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	۲	2	2	2	۲	~	2	0	~	~	~
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	4	2	1	2	1	3	2	15	C4	Almost Certain	Level 3 Risk
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	~	~	~	~	~	~	~	0	~	~	~
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	2	3	1	2	1	3	2	14	C4	Highly Unlikely	Level 5 Risk
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	~	2	2	2	2	2	2	0	~	~	~
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to	4	2	1	2	1	3	2	15	C4	Almost Certain	Level 3 Risk

facilitate the efficient continuation of mining and for the safety of people - Activity 13.											
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	2	~	~	2	2	~	2	0	~	~	~
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	~	~	2	~	2	~	~	0	~	~	~

		Cr	iteria	for de	termir	ning se	verity		ڻ چ)f od	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY	Degree Of Likelihood	Risk level before mitigation
NATIONAL WATER ACT (AC	CT 36 ()F 199	8): SE(CTION	40						
Taking water from a water resource - Section 21 (a). All underground water accruing in mining sections during the operational phase will be stored in mined-out underground mine workings (storage reservoirs). This component will only be triggered if any water is pumped to surface. No 21(a) application is required at this stage. If and when this happens, an amendment to the WULA will be done.	~	~	~	~	~	~	~	0	~	~	~
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	~	~	~	~	~	~	~	0	~	~	~
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	2	~	1	2	~	~	~	0	~	~	~

Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g). Ground water seepage captured from the ROM stockpile (maximum 2000m ³ /a) at Shondoni Shaft Complex will be pumped to the Storm Water Pollution Control Dam (SWPCD).	4	1	0	2	1	2	1	11	C3	Almost Certain	Level 4 Risk
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	2	2	~	~	2	2	۲	0	~	~	~
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j). Any water removed from the No.2 and No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas. A detailed mine optimisation plan has been designed to create the necessary storage of water in mined out areas for the total Life of Mine.	4	1	1	2	1	4	2	15	C4	Almost Certain	Level 3 Risk

		Cr	iteria	for de	termin	ning se	verity		ن س	Of	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY NUMBER	Degree Of Likelihood	Risk level before mitigation
SHONDONI SHAFT AREA											
Depletion in ground water availability and deterioration of ground water quality in the Shaft as a result of ground water seepage during the operational phase of the shaft complex. The shaft complex will be sealed/grouted, so little to no impact will take place.	1	0	0	2	1	1	1	6	C2	Highly Unlikely	Level 6 Risk

		Cr	iteria	for de	termir	ning se	verity		స్త)f od	fore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY C- NUMBER	Degree Of Likelihood	Risk level before mitigation
UNDERGROUND MINING AC	CTIVI	TIES O	F THF	E NO.S	2 ANI	0 4 CO.	AL SE	AM			
The influx of groundwater recharge into mine workings due to bord and pillar mining of the No's 2 and 4 coal seam.	4	0	1	2	1	3	1	12	С3	Almost Certain	Level 4 Risk
The increased influx of groundwater into mine workings due to pillar extraction activities of the No.4 coal seam.	4	0	1	2	1	3	1	12	C3	Almost Certain	Level 4 Risk
Inter-mine and inter-section flow of ground water during the operational phase.	4	1	1	2	0	2	1	11	C3	Possible	Level 5 Risk
Depletion of external users' groundwater resources and fountains due to bord and pillar mining activities of the No's 2 and 4 coal seams.	1	0	0	2	1	3	2	9	C2	Unforeseen	Level 6 Risk
Depletion of external users' groundwater resources and fountains due to pillar extraction mining activities of the No. 4 coal seam.	2	0	1	2	1	3	2	11	C3	Low	Level 5 Risk
Depletion of stream base flow due to sub-surface subsidence of the No.4 coal seam.	4	0	2	2	1	3	2	14	C4	Low	Level 3 Risk
Deterioration in groundwater quality in all underground sections, and migration into the receiving environment.	4	2	1	3	1	3	1	15	C4	Almost Certain	Level 3 Risk
Groundwater pollution originating from the ROM coal stock pile at the Shondoni Shaft Complex.	2	2	0	2	1	3	1	11	С3	Almost Certain	Level 4 Risk

Groundwater pollution originating from the Storm Water Pollution Control Dam (SWPCD).	4 2	4 2 1 2	1 3	2 15	C4	Almost Certain	Level 4 Risk
---	-----	---------	-----	------	----	----------------	--------------

6.1.3 Decommissioning phase

		Cr	iteria	for de	termir	ning se	verity		Ů,	Jf od	ore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY C- NUMBER	Degree Of Likelihood	Risk level before mitigation
LISTED ACTIVITIES AT SHO	NDON	NI IN T	ERMS	S OF N	EMA (ACT 1	07 OF	1998): GN	1 386 ACTI	VITIES	
The decommissioning of a coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	1	1	0	0	1	1	0	4	C1	Possible	Level 6 Risk
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	~	~	~	~	~	~	~	0	~	~	~
The decommissioning of Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	2	2	1	0	1	1	0	7	C2	Almost Certain	Level 5 Risk
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	~	~	~	~	~	~	~	0	~	~	~
The decommissioning of Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	1	3	0	0	1	1	0	6	C2	Very Unlikely	Level 6 Risk
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	2	1	1	1	1	1	1	0	~	~	~
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to	1	1	1	1	1	1	۲	0	۲	~	~

facilitate the efficient continuation of mining and for the safety of people - Activity 13.											
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	2	~	~	~	2	~	2	0	4	~	~
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	1	1	۲	~	~	۲	۲	0	~	~	~

		Cr	iteria	for de	termin	ing se	verity		Ċ.)f od	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY	Degree Of Likelihood	Risk level before mitigation
NATIONAL WATER ACT (AC	CT 36 C)F 1998	8): SE(CTION	40						
Taking water from a water resource - Section 21 (a). All underground water accruing in mining sections during the decommissioning phase will be stored in mined-out underground mine workings (storage reservoirs). This component will only be triggered if any water is pumped to surface. No 21(a) application is required at this stage. If and when this happens, an amendment to the WULA will be done.	~	~	~	~	~	~	~	0	~	~	~
Impeding or diverting the flow of water in a watercourse - Section 21 (c).	~	~	~	~	~	~	~	0	~	~	~
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).	~	2	~	~	2	~	~	0	~	~	~

Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g). Ground water seepage captured from the ROM stockpile (maximum 2000m ³ /a) at Shondoni Shaft Complex will be pumped to the Storm Water Pollution Control Dam (SWPCD).	~	~	~	~	~	~	~	0	~	~	~
Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).	~	~	~	~	~	~	~	0	~	~	~
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j). Any water removed from the No.2 and No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas.	~	~	~	~	~	~	~	0	~	~	~

		Cr	iteria	for de	termir	ning se	verity		ċ.~	f d	ore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY NUMBER	Degree Of Likelihood	Risk level before mitigation
SHONDONI SHAFT AREA											
Localized depletion of ground water (if it occurred during the operational phase) will be reversed, and ground water levels will start to return to pre-mining ground water levels.	2	0	0	1	0	0	0	3	C1	Almost Certain	Level 6 Risk

		Cr	iteria 1	for de	termin	ing se	verity		ن س)f od	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY NUMBER	Degree Of Likelihood	Risk level before mitigation
UNDERGROUND MINING AC	CTIVIT	TIES O	F THE	C NO.S	2 AND	0 4 CO .	AL SE	AM			
The continuous influx of groundwater recharge into mine workings due to bord and pillar mining of the No's 2 and 4 coal seam, during the decommissioning phase.	4	1	1	0	1	0	1	8	C2	Almost Certain	Level 5 Risk
The increased influx of groundwater into mine workings due to pillar extraction activities of the No.4 coal seam, during the decommissioning phase.	4	1	1	0	1	0	1	8	C2	Almost Certain	Level 5 Risk

6.1.4 **Post-closure phase**

		Cr	iteria	for de	termin	ing se	verity		ڻ ڀ)f od	fore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY C- NUMBER	Degree Of Likelihood	Risk level before mitigation
LISTED ACTIVITIES AT SHO	NDON	NI IN T	ERMS	S OF N	EMA (ACT 1	07 OF	1998): GN	N 386 ACTI	VITIES	
The final closure of a coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	1	1	0	0	1	1	0	4	C1	Possible	Level 6 Risk
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	2	2	2	2	۲	~	۲	0	~	~	~
The final closure of Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	0	1	1	0	1	1	0	4	C2	Almost Certain	Level 6 Risk
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	~	~	~	~	2	~	۲	0	~	~	~
The final closure of Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	1	0	0	0	1	1	0	3	C2	Very Unlikely	Level 6 Risk
Removal of Indigenous Vegetation of 3 hectares or more during Site Clearance for Construction of Shondoni Shaft Complex and related Infrastructure - Activity 12.	~	2	2	2	2	2	~	0	~	~	~
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to	2	2	2	2	2	2	2	0	۲	~	~

facilitate the efficient continuation of mining and for the safety of people - Activity 13.											
Installation of a Tetra Radio System above ground at the Shaft Complex Area - Activity 14.	2	~	~	~	2	~	2	0	~	~	~
Construction of an Access Road (wider than 4m) to Shondoni Shaft Complex from Tar road R547 - Activity 15.	1	1	۲	~	1	۲	۲	0	~	~	~

		Cr	iteria	for de	termir	ning se	verity		ڻ چ)f od	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY	Degree Of Likelihood	Risk level before mitigation
NATIONAL WATER ACT (AC	CT 36 ()F 199	8): SE(CTION	40						
Taking water from a water resource - Section 21 (a). After final flooding of mining sections, water will be stored in underground mining sections. If surface treatment of ground water is required, the appropriate amendment to the WULA will be made to register this water use.	4	2	1	3	1	2	2	15	C4	Almost Certain	Level 3 Risk
Impeding or diverting the flow of water in a watercourse - Section 21 (c).											
Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit - Section 21 (f).											
Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g).											

Altering the bed, banks, course or characteristics of a watercourse - Section 21 (i).						
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j).						

		Cr	iteria	for de	termin	ning se	verity		ċ	Of	fore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY NUMBER	Degree Of Likelihood	Risk level before mitigation
SHONDONI SHAFT AREA											
Final closure of the shaft complex. Localized depletion of ground water (if it occurred during the operational phase) will be reversed, and ground water levels will finally return to pre-mining ground water levels.	0	0	0	1	0	0	0	1	C1	Almost Certain	Level 6 Risk

		Cr	iteria	for de	termir	ing se	verity		Ċ,)f od	lore
Activity description	Quantity	Toxicity	Extent	Duration	Status	Legislation	I & AP's	SEVERITY TOTAL	SEVERITY C- NUMBER	Degree Of Likelihood	Risk level before mitigation
UNDERGROUND MINING AC	CTIVII	TIES O	F THF	E NO.S	2 ANI	0 4 CO.	AL SE	AM			
The continuous influx of groundwater recharge into mine workings until all mining units is flooded.	4	1	1	2	1	3	2	14	C4	Almost Certain	Level 3 Risk
The decant of underground mine water to surface, after total flooding of mining units.	4	1	0	2	1	2	2	12	C3	Low	Level 5 Risk
Inter-mine and inter-section flow of ground water during the post closure phase.	4	1	2	3	1	4	3	18	C5	Possible	Level 2 Risk
Continuous depletion of external users' groundwater resources and fountains due to pillar extraction mining activities of the No. 4 coal seam.	2	0	1	3	1	2	2	11	C3	Low	Level 5 Risk
Depletion of stream base flow due to sub-surface subsidence of the No.4 coal seam, post-closure.	4	0	1	2	1	3	2	13	C3	Very Unlikely	Level 6 Risk
Deterioration in groundwater quality in all underground sections, and migration into the receiving environment, after mining activities have stopped.	4	2	1	3	1	3	2	16	C4	Almost Certain	Level 3 Risk
Groundwater pollution originating from the ROM coal stock pile footprint at the Shondoni Shaft Complex after closure.	2	1	0	1	1	1	1	7	C2	Very Unlikely	Level 6 Risk
Groundwater pollution originating from the Storm Water Pollution Control Dam (SWPCD) footprint after closure.	2	1	0	1	1	1	1	7	C2	Very Unlikely	Level 6 Risk

6.2 ENVIRONMENTAL MANAGEMENT OBJECTIVES AND MEASURES

6.2.1 Construction phase

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation
LISTED ACTIVITIES	AT SHONDONI IN TERMS (OF NEM	A (ACT	' 107 OF 1998): GN 386 A	ACTIVITIES	
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The construction of a 15 000t ROM coal stockpile area at Shondoni Shaft. The construction activities consist of the preparation of a suitable footprint area and will in itself not lead to any potential ground water pollution.	Level 5 Risk	LOW	Ensure that construction activities do not introduce any substance into the sub- surface that can lead to ground water pollution.	Prevent spillages of any hazardous liquid or solid substance used during the construction of the ROM stockpile footprint.	Level 5 Risk
Conveyor Pedestal for crossing of Trichardt Spruit (in the 1:10 year flood line) - Activity 1 (m).	Conveyor Pedestal will not intersect ground water, so no impact will take place.	Level 5 Risk	LOW	Ensure that construction activities do not introduce any substance into the sub- surface that can lead to ground water pollution.	Prevent spillages of any hazardous liquid or solid substance used during the construction of the Pollution Control Dam.	Level 5 Risk
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The construction of a Storm Water Pollution Control Dam that can lead to a deterioration of ground water quality directly beneath the facility.	Level 6 Risk	LOW	Ensure that diesel tanks are placed in industry-standard bunkers with the appropriate lining systems to prevent the leakage of any diesel spill away from the bunker.	All spillages must be captured inside the bunded areas before any spillage to the surrounding environment takes place.	Level 6 Risk
Excavation for Coal Conveyor Pedestal for crossing of Trichardt Spruit, removing more than 5 cubic meters of material - Activity 4.	Conveyor Pedestal will not intersect ground water, so no impact will take place.	Level 6 Risk	LOW	Minimise the volumes of water to be pumped to surface to surface pollution control dams.	Optimise storage space in old underground units to prevent the need to pump water from underground mine workings to surface water pollution control dams.	Level 6 Risk

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation
NATIONAL WATER A	ACT (ACT 36 OF 1998): SECT	FION 40				
Taking water from a water resource - Section 21 (a).	Ground water seepage into the shaft complex during construction activities, through weathered and fresh aquifer units (to a depth of 120 meters).	Level 6 Risk	LOW	If significant influxes of ground water occur, remove the water from the shaft construction area.	Grout/seal influx zones and pump seepage water to the appropriate surface water control dam.	Level 6 Risk
Disposing of waste in a manner which may detrimentally impact on a water resource - Section 21 (g).	Ground water seepage captured in the shaft complex during construction activities will be pumped to pollution control dams on surface. Since the water originated in a construction area, it is considered polluted.	Level 6 Risk	LOW	If significant influxes of ground water occur, remove the water from the shaft construction area.	Pump excess ground water to pollution control dams on surface.	Level 6 Risk
Removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people - Section 21 (j).	Any water removed from the No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas. A detailed mine optimisation plan has been designed to create the necessary storage of water in mined out areas for the total Life of Mine.	Level 6 Risk	LOW	Minimise the volumes of water to be pumped to surface to surface pollution control dams.	Optimise storage space in old underground units to prevent the need to pump water from underground mine workings to surface water pollution control dams.	Level 6 Risk

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation		
SHONDONI SHAFT AREA								
Construction and commissioning of the shaft complex at Shondoni.	Depletion in ground water availability as a result of ground water seepage during the construction of the shaft complex.	Level 6 Risk	LOW	Prevent influx of ground water into the shaft complex.	Grout/seal influx zones and pump seepage water to the appropriate surface water control dam.	Level 6 Risk		
Construction and commissioning of the shaft complex at Shondoni	Deterioration in ground water quality as a result of ground water seepage into the shaft complex during construction activities.	Level 6 Risk	LOW	Prevent long residence time of ground water accumulation in the shaft complex.	Grout/seal influx zones and pump seepage water to the appropriate surface water control dam.	Level 6 Risk		

6.2.2 **Operational phase**

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GN 386 ACTIVITIES									
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The operation of a 15 000t ROM coal stockpile area at Shondoni Shaft. Seepage from the stockpile area can lead to ground water pollution, if not managed correctly.	Level 6 Risk	LOW	To prevent the seepage of contaminated water from the ROM stockpile entering the underlying aquifer units.	The ROM stockpile must be operated on a lined surface. Any surface water run-off will be captured and handled as dirty water in the Surface Water Dam.	Level 6 Risk			
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The operation of a Storm Water Pollution Control Dam (SWPCD) that can lead to a deterioration of ground water quality directly beneath the facility.	Level 3 Risk	MEDI UM	To prevent the seepage of contaminated water from the Storm Water Pollution Control Dam (SWPCD) entering the underlying aquifer units.	Prevent seepages and spillages of polluted water from the SWPCD by implementing the appropriate lining system. Excess run-off from the facility must be captured and managed as part of the operational phase water balance.	Level 4 Risk			
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The storage of diesel fuel in storage tanks can lead to ground water pollution due to spillages/leaks.	Level 5 Risk	HIGH	Ensure that diesel tanks are placed in industry-standard bunkers with the appropriate lining systems to prevent the leakage of any diesel spill away from the bunker.	All spillages must be captured inside the bunded areas before any spillage to the surrounding environment takes place. Suitably qualified personnel will be responsible for the clean-up of any diesel spills of any size and nature (Hazmat).	Level 6 Risk			
Removal of water found in the underground workings on the No.4 Seam and the No.2 Seam workings to facilitate the efficient continuation of mining and for the safety of people - Activity 13.	Any water removed from the No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas, or pumped to surface to the Storm Water Pollution Control Dam (SWPCD).	Level 3 Risk	LOW	Minimise the volumes of water to be pumped to surface to the Storm Water Pollution Control Dam (SWPCD).	Optimise storage space in old underground units to prevent the need to pump water from underground mine workings to the Storm Water Pollution Control Dam (SWPCD).	Level 4 Risk			

Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
NATIONAL WATER ACT (ACT 36 OF 1998): SECTION 40								
Ground water seepage captured from the ROM stockpile (maximum 2000m ³ /a) at Shondoni Shaft Complex will be pumped to the Storm Water Pollution Control Dam (SWPCD).	Level 4 Risk	LOW	To prevent the seepage of contaminated water from the ROM Stockpiles entering the underlying aquifer units.	Pump excess ground water seepage to the Storm Water Pollution Control Dam (SWPCD).	Level 5 Risk			
Any water removed from the No.2 and No.4 Coal seam will be deemed polluted and stored in other sections of mined out areas. A detailed mine optimisation plan has been designed o create the necessary storage of water in mined out areas for the otal Life of Mine.	Level 3 Risk	MEDI UM	 Minimise the volumes of water to be pumped to the Storm Water Pollution Control Dam (SWPCD). Optimise underground storage reservoirs to ensure safe and responsible mining during the LOM. 	Manage the operational phase water balance responsibly to reduce water make and optimise underground storage space available.	Level 4 Risk			
	T (ACT 36 OF 1998): SECT round water seepage captured om the ROM stockpile (maximum)00m ³ /a) at Shondoni Shaft omplex will be pumped to the orm Water Pollution Control Dam WPCD). ny water removed from the No.2 dd No.4 Coal seam will be deemed olluted and stored in other sections i mined out areas. A detailed mine otimisation plan has been designed create the necessary storage of ater in mined out areas for the	F (ACT 36 OF 1998): SECTION 40 round water seepage captured om the ROM stockpile (maximum) $000m^3/a$) at Shondoni Shaft omHex will be pumped to the orm Water Pollution Control Dam WPCD). ny water removed from the No.2 od No.4 Coal seam will be deemed olluted and stored in other sections mined out areas. A detailed mine otimisation plan has been designed create the necessary storage of ater in mined out areas for the	F (ACT 36 OF 1998): SECTION 40 round water seepage captured om the ROM stockpile (maximum 000m ³ /a) at Shondoni Shaft omplex will be pumped to the orm Water Pollution Control Dam WPCD). Level 4 Risk LOW ny water removed from the No.2 dd No.4 Coal seam will be deemed olluted and stored in other sections rimined out areas. A detailed mine timinsation plan has been designed create the necessary storage of ater in mined out areas for the MEDI	F (ACT 36 OF 1998): SECTION 40 round water seepage captured om the ROM stockpile (maximum 000m ³ /a) at Shondoni Shaft omplex will be pumped to the orm Water Pollution Control Dam WPCD). Level 4 Risk LOW To prevent the seepage of contaminated water from the ROM Stockpiles entering the underlying aquifer units. wPCD). ny water removed from the No.2 dd No.4 Coal seam will be deemed olluted and stored in other sections rimined out areas. A detailed mine timisation plan has been designed create the necessary storage of ater in mined out areas for the MEDI Risk MEDI UM 1. Minimise the volumes of water to be pumped to the Storm Water Pollution Control Dam (SWPCD).	T (ACT 36 OF 1998): SECTION 40 round water seepage captured om the ROM stockpile (maximum 000m ³ /a) at Shondoni Shaft omplex will be pumped to the orm Water Pollution Control Dam WPCD). Level 4 Risk LOW To prevent the seepage of contaminated water from the ROM Stockpiles entering the underlying aquifer units. Pump excess ground water seepage to the Storm Water Pollution Control Dam (SWPCD). ny water removed from the No.2 dd No.4 Coal seam will be deemed biluted and stored in other sections 'mined out areas. A detailed mine timinsation plan has been designed create the necessary storage of ater in mined out areas for the MEDI Risk MEDI UM 1. Minimise the volumes of water to be pumped to the Storm Water Pollution Control Dam (SWPCD). Manage the operational phase water balance responsibly to reduce water make and optimise underground storage reservoirs to ensure safe and responsible mining Manage the operational phase water balance responsibly to reduce water make and optimise underground storage space available.			

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
SHONDONI SHAFT AREA									
Operating the shaft complex at Shondoni for the Life of Mine.	Depletion in ground water availability and deterioration of ground water quality in the Shaft as a result of ground water seepage during the operational phase of the shaft complex. The shaft complex will be sealed/grouted, so little to no impact will take place.	Level 6 Risk	LOW	Prevent influx of ground water into the shaft complex.	Grout/seal influx zones and pump seepage water to the Storm Water Pollution Control Dam (SWPCD).	Level 6 Risk			

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation				
UNDERGROUND MINING ACTIVITIES OF THE NO.S 2 AND 4 COAL SEAM										
The influx of groundwater recharge into mine workings due to bord and pillar mining of the No's 2 and 4 coal seam.	Ground water recharge from surface will enter areas of bord and pillar mining due to the fact that mining will create an increasing void.	Level 4 Risk	LOW	Manage the influx of normal ground water recharge as part of the operational phase water balance.	Manage the operational phase water balance responsibly to reduce water make and optimise underground storage space available.	Level 4 Risk				
The increased influx of groundwater into mine workings due to pillar extraction activities of the No.4 coal seam.	An increased ground water recharge from surface will take place due to sub-surface subsidence on the No.4 coal seam.	Level 4 Risk	HIGH	Manage the influx of additional ground water make due to pillar extraction activities.	Manage the operational phase water balance responsibly to reduce water make and optimise underground storage space available.	Level 4 Risk				
Inter-mine and inter-section flow of ground water during the operational phase.	Ground water resources stored in underground mining units can migrate from one mine/section to an adjacent mine/section, due to a difference in hydraulic pressure. Flow can also be induced where flooding compartments decant into surrounding compartments due to a roll in the coal seam floor.	Level 5 Risk	LOW	Calculate and allocate low- lying reservoirs for underground water storage.	Measure water levels in reservoirs to ensure that no unit is over-utilized. Move between storage compartments (reservoirs) before inter-mine or inter-section flow takes place.	Level 5 Risk				
Depletion of external users' groundwater resources and fountains due to bord and pillar mining activities of the No's 2 and 4 coal seams.	Bord and pillar mining activities can intersect external user's boreholes directly and can lead to a reduction/complete depletion of external user's borehole yields.	Level 6 Risk	LOW	Monitor all external users' boreholes for 1) yield and 2) quality deterioration, based on a structured monitoring protocol.	Supply external users with supplementary water in the cases where a mining-related impact can be proven.	Level 6 Risk				
Depletion of external users' groundwater resources and fountains due to pillar extraction mining activities of the No. 4 coal seam.	Pillar extraction mining activities can lead to sub-surface subsidence, that in turn will lead to a reduction/complete depletion of external user's borehole yields.	Level 5 Risk	HIGH	Monitor all external users' boreholes for 1) yield and 2) quality deterioration, based on a structured monitoring protocol.	Supply external users with supplementary water in the cases where a mining-related impact can be proven.	Level 5 Risk				
Depletion of stream base flow due to sub-surface subsidence of the No.4 coal seam.	Pillar extraction mining activities can lead to sub-surface subsidence, that in turn will lead to a reduction/complete depletion of ground water base flow to rivers and non-perennial streams.	Level 3 Risk	HIGH	Avoid pillar extraction activities below surface streams or obtain rock- mechanical evidence that no surface subsidence will take place.	In the event that surface water streams or non-perennial streams is intersected by surface subsidence, rehabilitate the stream as soon as possible, to prevent further ingress of surface water to underground mining units.	Level 3 Risk				

Deterioration in groundwater quality in all underground sections, and migration into the receiving environment.	Ground water recharge to underground mining units that remains in reservoirs will come in contact with coal pillars, mine floors and roofs. A gradual deterioration in ground water quality will take place over time, depending amongst other things, residence times, natural buffer capacity and mixing ratios of ground water from different sources.	Level 3 Risk	HIGH	The deterioration of ground water in underground units is a given. The migration of polluted ground water will be avoided by managing the water in underground storage compartments.	Monitor underground ground water qualities on a quarterly basis. Prevent the mixing of poor and good quality water in the same reservoir - rather keep in separate reservoirs.	Level 3 Risk
Groundwater pollution originating from the ROM coal stock pile at the Shondoni Shaft Complex.	The operation of a 15 000t ROM coal stockpile area at Shondoni Shaft. Seepage from the stockpile area can lead to ground water pollution, if not managed correctly.	Level 4 Risk	LOW	To prevent the seepage of contaminated water from the ROM stockpile entering the underlying aquifer units.	The ROM stockpile must be operated on a lined surface. Any surface water run-off will be captured and handled as dirty water in the Surface Water Dam.	Level 4 Risk
Groundwater pollution originating from the Storm Water Pollution Control Dam (SWPCD).	The operation of a Storm Water Pollution Control Dam (SWPCD) that can lead to a deterioration in ground water quality directly beneath the facility.	Level 4 Risk	LOW	To prevent the seepage of contaminated water from the Storm Water Pollution Control Dam (SWPCD) entering the underlying aquifer units.	Prevent seepages and spillages of polluted water from the SWPCD by implementing the appropriate lining system. Excess run-off from the facility must be captured and managed as part of the operational phase water balance.	Level 4 Risk

6.2.3 Decommissioning phase

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GN 386 ACTIVITIES									
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The decommissioning of a 15 000t ROM coal stockpile area at Shondoni Shaft. Residual seepage from the stockpile footprint area can lead to further ground water pollution.	Level 6 Risk	LOW	To prevent the residual seepage of contaminated water from the ROM stockpile entering the underlying aquifer units.	The ROM stockpile footprint must be rehabilitated to pre- mining surface- and topographical conditions.	Level 6 Risk			
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The decommissioning of the Storm Water Pollution Control Dam (SWPCD) footprint.	Level 5 Risk	LOW	To prevent the residual seepage of contaminated water from the Storm Water Pollution Control Dam (SWPCD) footprint entering the underlying aquifer units.	Prevent residual seepages and spillages of polluted water from the SWPCD footprint by rehabilitating the surface area to pre-mining surface- and topographical conditions.	Level 5 Risk			
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The decommissioning of diesel fuel storage tanks can lead to residual ground water pollution.	Level 6 Risk	LOW	Ensure that the diesel tanks and associated infrastructure is empty when decommissioning, to prevent the leakage of any diesel spill away from the bunker footprint.	All residual spillages must be captured inside the footprint areas before any spillage to the surrounding environment takes place.	Level 6 Risk			

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
SHONDONI SHAFT AREA									
Closing the shaft complex at Shondoni.	Localized depletion of ground water (if it occurred during the operational phase) will be reversed, and ground water levels will start to return to pre-mining ground water levels.	Level 6 Risk	LOW	The return of ground water levels to pre-mining levels is a positive impact.	None	Level 6 Risk			
Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
UNDERGROUND MIN	NING ACTIVITIES OF THE	NO.S 2 A	ND 4 C	OAL SEAM					
The continuous influx of groundwater recharge into mine workings due to bord and pillar mining of the No's 2 and 4 coal seam, during the decommissioning phase.	Ground water recharge due to operational phase mining activities will continue during the decommissioning phase. The impact will persist well beyond the post-closure phase and will be addressed in that section.	Level 5 Risk	LOW	Manage the influx of normal ground water recharge as part of the closure phase water balance.	Refer to mitigation measures proposed for the closure phase.	Level 5 Risk			
The increased influx of groundwater into mine workings due to pillar extraction activities of the No.4 coal seam, during the decommissioning phase.	Ground water recharge due to operational phase mining activities will continue during the decommissioning phase. The impact will persist well beyond the post-closure phase and will be addressed in that section.	Level 5 Risk	LOW	Manage the influx of additional ground water make due to pillar extraction activities as part of the closure phase water balance.	Refer to mitigation measures proposed for the closure phase.	Level 5 Risk			

6.2.4 **Post-closure phase**

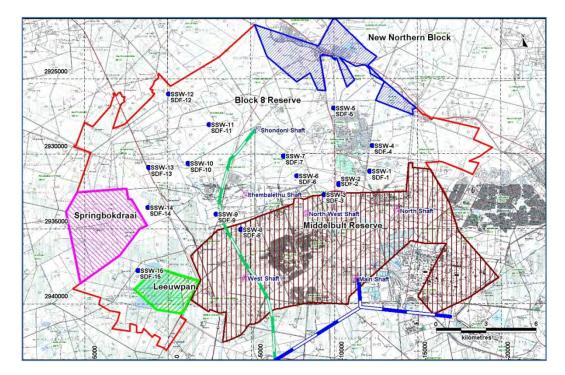
Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation			
LISTED ACTIVITIES AT SHONDONI IN TERMS OF NEMA (ACT 107 OF 1998): GN 386 ACTIVITIES									
Coal throw out stockpile area at Shondoni Shaft with a storage of more than 250 tons but less than 100 000 tons - Activity 1 (c).	The final closure of a 15 000t ROM coal stockpile area at Shondoni Shaft. Residual seepage from the stockpile footprint area can lead to further ground water pollution.	Level 6 Risk	LOW	To prevent the residual seepage of contaminated soils from the ROM stockpile entering the underlying aquifer units.	The ROM stockpile footprint must be rehabilitated to pre- mining surface- and topographical conditions.	Level 6 Risk			
Service Water Dams and Storm Water Pollution Control Dam at Shondoni Shaft Complex with a capacity of 50 000 cubic metres or more - Activity 1 (n).	The closure and final rehabilitation of the Storm Water Pollution Control Dam (SWPCD) footprint.	Level 6 Risk	LOW	To prevent the residual seepage of contaminated soils from the Storm Water Pollution Control Dam (SWPCD) footprint entering the underlying aquifer units.	Prevent residual seepages and spillages of polluted water from the SWPCD footprint by rehabilitating the surface area to pre-mining surface- and topographical conditions.	Level 6 Risk			
Diesel Fuel Storage Tanks at Shondoni Shaft Complex with a combined capacity of more than 30 cubic metres but less than 1 000 cubic metres - Activity 7.	The removal of diesel fuel storage tanks.	Level 6 Risk	LOW	All risks are removed at this stage	No spillages can happen at this stage.	Level 6 Risk			

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation		
NATIONAL WATER ACT (ACT 36 OF 1998): SECTION 40								
Taking water from a water resource - Section 21 (a).	After final flooding of mining sections, water will be stored in underground mining sections. If surface treatment of ground water is required, the appropriate amendment to the WULA will be made to register this water use.	Level 3 Risk	LOW	To treat polluted water from underground facilities, to prevent the decant of polluted water.	Desalinate polluted underground water on surface.	Level 3 Risk		

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation		
SHONDONI SHAFT AREA								
Final closure of the shaft complex at Shondoni.	Localized depletion of ground water (if it occurred during the operational phase) will be reversed, and ground water levels will finally return to pre-mining ground water levels.	Level 6 Risk	LOW	The return of ground water levels to pre-mining levels is a positive impact.	None	Level 6 Risk		

Activity Description	Impact Description	Risk level before mitigation	Mitigatory difficulty	Mitigation/Management objective	Proposed Mitigation Measure	Risk level after mitigation				
UNDERGROUND MINING ACTIVITIES OF THE NO.S 2 AND 4 COAL SEAM										
The continuous influx of groundwater recharge into mine workings until all mining units are flooded.	Ground water recharge from surface will enter areas of bord and pillar and high extraction mining until all mining units are flooded.	Level 3 Risk	LOW	Manage the influx of normal ground water recharge as part of the post closure phase water balance.	Manage the post-closure phase water balance responsibly to reduce water make and optimise underground storage space available, until all mining units are flooded.	Level 3 Risk				
The decant of underground mine water to surface, after total flooding of mining units.	After final flooding of mining sections, ground water can seep to surface due to conduit flow from high extraction subsidence areas.	Level 5 Risk	HIGH	Prevent uncontrollable decant of underground mine water on surface.	If surface decant takes place, manipulate ground water elevations in the total mining complex by pumping and treating polluted water on surface.	Level 5 Risk				
Inter-mine and inter-section flow of ground water during the post closure phase.	Ground water resources stored in Shondoni underground mining units can migrate from one mine/section to an adjacent mine/section, due to a difference in hydraulic pressure. Flow can also be induced where flooding compartments decant into surrounding compartments due to a roll in the coal seam floor.	Level 2 Risk	HIGH	Manage the overall water balance of the total Sasol Coal mining complex to prefent uncontrollable inter- mine flow to surrounding mines.	Measure water levels in the overal Sasol Coal reservoirs to ensure that no unit is over- utilized, and allowed to migrate or decant. Move between storage compartments (reservoirs) before inter-mine or inter-section flow takes place or pump excess water to surface where water can be desalinated.	Level 3 Risk				
Continuous depletion of external users' groundwater resources and fountains due to pillar extraction mining activities of the No. 4 coal seam.	Pillar extraction mining activities can lead to sub-surface subsidence, that in turn will lead to a reduction/complete depletion of external user's borehole yields, for indefinite time frames.	Level 5 Risk	HIGH	Monitor all external user's boreholes for 1) yield and 2) quality deterioration, based on a structured monitoring protocol.	Supply external users with supplementary water in the cases where a mining-related impact can be proven.	Level 5 Risk				
Depletion of stream base flow due to sub-surface subsidence of the No.4 coal seam, post-closure.	Pillar extraction mining activities can lead to sub-surface subsidence, that in turn will lead to a reduction/complete depletion of ground water base flow to rivers and non-perennial streams, for indefinite periods of time.	Level 6 Risk	HIGH	Surface rehabilitation of subsidence areas must reduce the reduction of stream base flow.	In the event that surface water streams or non-perennial streams is intersected by surface subsidence, rehabilitate the stream as soon as possible, to prevent further ingress of surface water to underground mining units.	Level 6 Risk				

Deterioration in groundwater quality in all underground sections, and migration into the receiving environment, after mining activities have stopped.	Ground water recharge to underground mining units that remains in reservoirs will come in contact with coal pillars, mine floors and roofs. A gradual deterioration in ground water quality will take place over time, eventually leading to total acidification of underground mine water.	Level 3 Risk	HIGH	The deterioration of ground water in underground units is a given. The migration of polluted ground water will be avoided by managing the water in underground storage compartments.	Monitor underground ground water qualities on a quarterly basis. Excess water in the total Sasol Mine area must be pumped to surface and desalinated.	Level 3 Risk
Groundwater pollution originating from the ROM coal stock pile footprint at the Shondoni Shaft Complex after closure.	Seepage from the stockpile area footprint can lead to ground water pollution, if not rehabilitated correctly.	Level 6 Risk	LOW	Prevent residual seepage of contaminated water from the ROM stockpile footprint by rehabilitating the footprint correctly.	Rehabilitate footprints to SABS 0268 Standards to remove any residual contaminants.	Level 6 Risk
Groundwater pollution originating from the Storm Water Pollution Control Dam (SWPCD) footprint after closure.	Seepage from the SWPCD footprint can lead to ground water pollution, if not rehabilitated correctly.	Level 6 Risk	LOW	Prevent residual seepage of contaminated water from the SWPCD footprint by rehabilitating the footprint correctly.	Rehabilitate footprints to SABS 0268 Standards to remove any residual contaminants.	Level 6 Risk



7. ENVIRONMENTAL MONITORING PLAN

The ground water monitoring plan at Sasol Middelbult Shondoni will concentrate on two ground water related impacts, namely:

- The potential impact of bord and pillar mining activities on ground water yield and ground water quality of external users in the shallow weathered aquifers.
- The potential impact of increased extraction mining activities on ground water yield and ground water quality of external users in the shallow weathered aquifers

A ground water monitoring system is in place for the greater Sasol Mining Division – the so-called REGM monitoring system. In addition to that, the following monitoring boreholes were drilled during the 2002 Block 8 investigation. JMA suggests that these localities are added to the REGM monitoring system. This system recommends a 6-monthly monitoring for borehole yield and qualities, and is reported on a bi-annual basis to the Department of Water Affairs:

Number:	Latitude [°]	Longitude [°]
SDF-1	26.49249	29.12165
SDF-2	26.49995	29.10294
SDF-3	26.50655	29.09408
SDF-4	26.4771	29.12309
SDF-5	26.45441	29.09984
SDF-6	26.49529	29.07769

Number:	Latitude [°]	Longitude [°]
SDF-7	26.48346	29.06966
SDF-8	26.5275	29.04399
SDF-9	26.51831	29.02895
SDF-10	26.48788	29.01239
SDF-11	26.46438	29.02486
SDF-12	26.44611	29.00048
SDF-13	26.4903	28.98851
SDF-14	26.5143	28.98789
SDF-15	26.55214	28.98191

Number:	Latitude [°]	Longitude [°]
SSW-1	26.49244	29.12163
SSW-2	26.50047	29.10296
SSW-3	26.50667	29.09406
SSW-4	26.477	29.12309
SSW-5	26.45445	29.09981
SSW-6	26.49527	29.07764
SSW-7	26.48336	29.06965
SSW-8	26.52751	29.04393
SSW-9	26.51825	29.02896
SSW-10	26.48775	29.01225
SSW-11	26.46433	29.02488
SSW-12	26.44606	29.00049
SSW-13	26.49019	28.98846
SSW-14	26.5143	28.98783
SSW-15	26.55214	28.98196

When high-extraction activities commence over the total mine lease area, the monitoring system must be upgraded on an annual basis:

- All external user's boreholes (yielding more than 0.2 l/s), within a radius of 500m of proposed increased extraction activities must be monitored for ground water level response, on a quarterly basis.
- Additional monitoring boreholes will be drilled after consultation with an independent Geohydrologist.

Respectfully submitted

Jaco van der Berg (Pr.Sci.Nat.)

Shane Turner (Cand.Sci.Nat.)

Prj5449

APPENDIX 2(A)

PERSONNEL CV's

Jasper L Müller (Pr.Sci.Nat.)

Date of Birth:16 November 1957Nationality:S A CitizenPosition in firm:Managing Director

Qualification:

B. Sc.: Geology and Geohydrology, UOFS, 1979B. Sc. (Hons): Geohydrology, UOFS, 1980M. Sc. (Cum Laude): Geohydrology, UOFS, 1984

Memberships:

Geological Society of SA : Ground Water Division South African Council for Natural Scientific Professions National Groundwater Association.

Period employed:

1981 Hydrologist with Dept. of Water Affairs.1983 Researcher with Institute for Ground Water Studies, UOFS.1987 Divisional Head, Geohydrology, Environmental Science Services1988 Founded Jasper Müller Associates.

Jasper Müller received his training as geohydrologist at the Institute for Ground Water Studies (University of the Freestate). He worked at IGS as Researcher / Lecturer, specialising in numerical aquifer analyses.

He left IGS in 1986 and joined the consulting firm Terradata, where he was involved in projects related to ground water pollution and water supply.

In 1987 he was appointed at the consulting firm Environmental Science Services. His responsibility was to structure and build a division for water sciences (ground water and surface water). During his tenure at ESS he also floated a division on ground water monitoring.

During 1988, Jasper founded JMA, which has since evolved into a consulting firm employing 17 people. JMA is a multi-disciplinary team specialising in geohydrology.

Since 1988 Jasper Müller was involved on a consulting level on more than 200 JMA projects related to water supply, aquifer management, ground water quality investigations, ground water monitoring, ground water impact and risk modelling, ground water pollution remediation and litigative consultative work.

E-mail: jasper@jmaconsult.co.za

Jaco van der Berg (Pr.Sci.Nat.)

Date of Birth: <u>Nationality:</u> Position in firm:

19 May 1972 S A Citizen

Director : Mining Division

(Shareholder)

Qualification:

B. Sc.: Geology/Geochemistry, UOFS, 1993B. Sc. (Hons): Geochemistry, UOFS, 1994M. Sc.: Geohydrology, UOFS, 1998

Memberships:

South African Council for Natural Scientific Professions

Period employed:

1995 Geologist with Anglo American Corporation of SA 1999 Project Geohydrologist with Jasper Müller Associates

Jaco van der Berg received his training as geologist at the Geology Department of the University of the Freestate. He was an Anglo American Corporation of South Africa Bursary holder from 1991 - 1994.

He worked as a geologist-in-training at Freddies No.5 shaft during 1995. From there, he was transferred to Western Holdings No.9 shaft until the end of 1996. His main responsibilities during these two years, were:

- •Underground geological mapping of development ends, raises and stopes
- •Updating geological data sheets
- •Structural geology planning
- •Core drilling and logging
- •Attending scrutiny and planning meetings
- •Reserve planning

He left Anglo American in 1997 to do his M Sc at the Institute of Ground Water Studies (University of the Freestate). His thesis was on the application of power station fly ash in rehabilitation of mining environments.

He was appointed as project geohydrologist at JMA in 1998. His main line of responsibilities was the compilation of ground water inputs for mine EMPR's and geochemical modeling and risk assessment of mine residue deposits.

E-mail: jaco@jmaconsult.co.za

Shane Turner (Cand.Sci.Nat.)

Date of Birth:

7 October 1986

<u>Nationality:</u>

S A Citizen

Position in firm:

Junior Scientist (Geohydrology)

Qualification:

B. Sc. Geology: Earth Science, US, 2007 B. Sc. (Hons) Geology, US, 2008

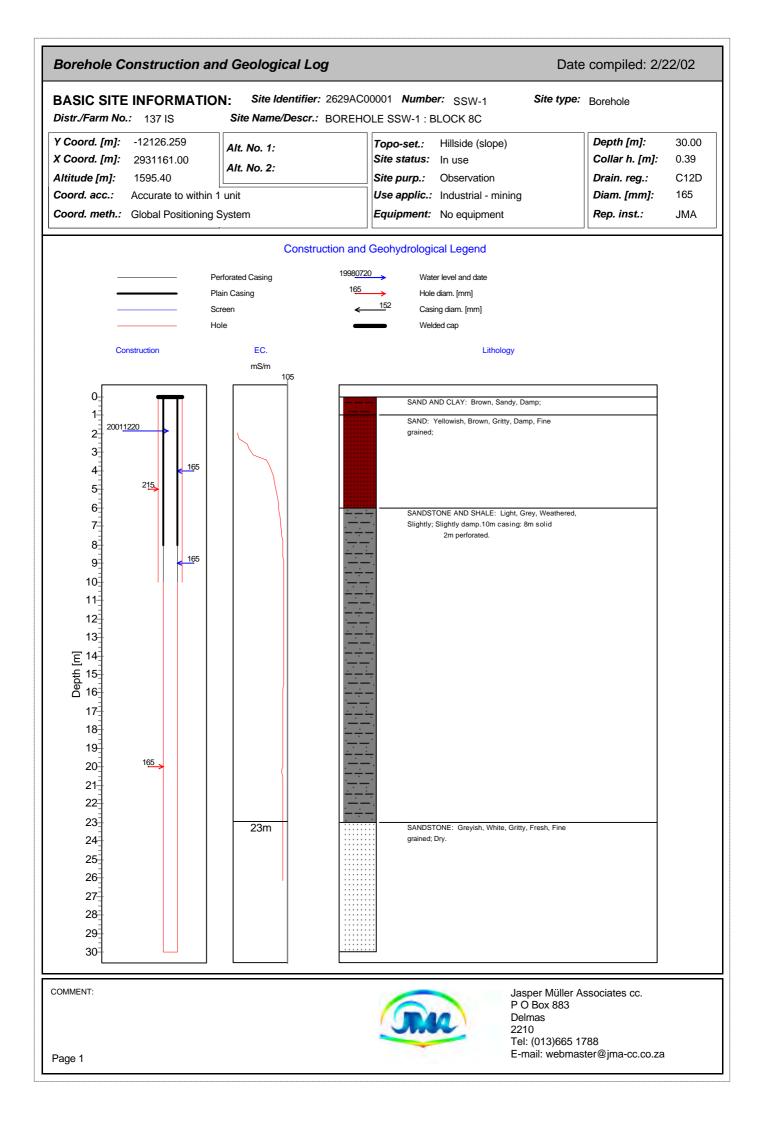
Memberships:

South African Council for Natural Scientific Professions Golden Key International Honour Society

Period employed:

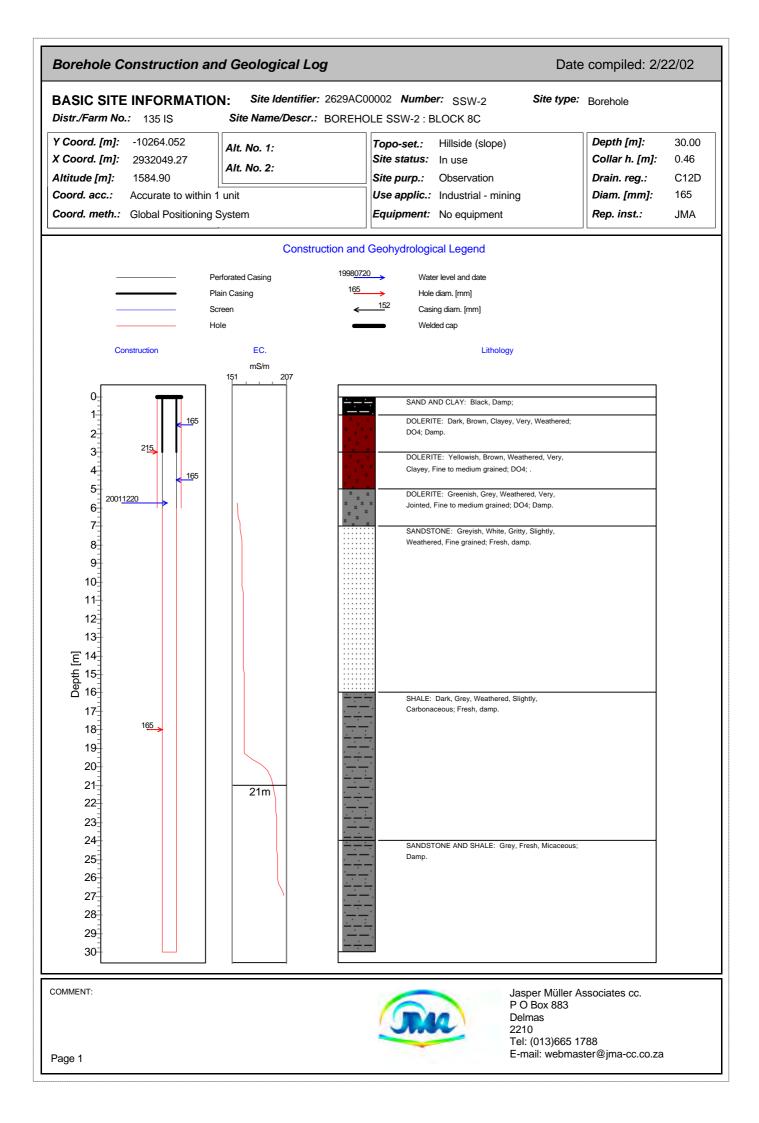
2009 Junior Scientist at JMA

E-mail: shane@jmaconsult.co.za

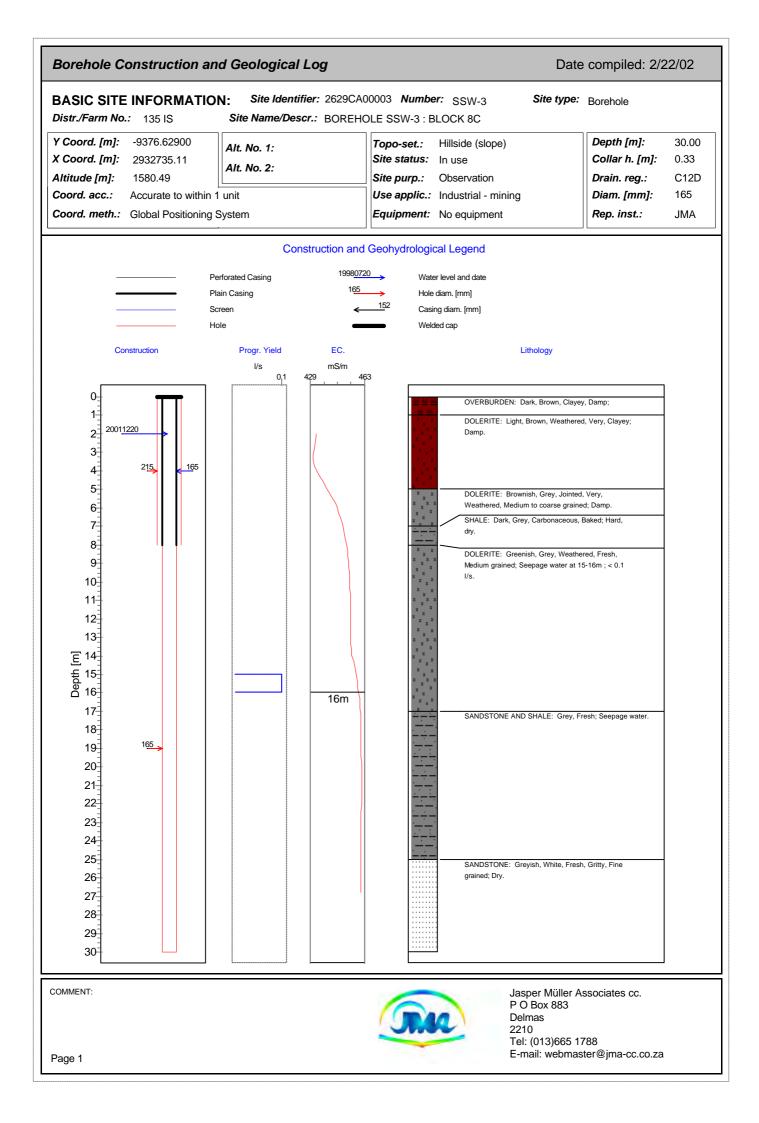

APPENDIX 3(A)

BOREHOLE LOGS AND SITE INFORMATION REPORTS

SITE INFORM	IATION	REPORT						Date co	mpiled:	2/22/02
BASIC SITE I	NFORM	ATION:	Site Ide	ntifier: 2629AC	00001 <i>Number:</i>	SSW-1	Site typ	be: Bore	hole	
Distr./Farm No.:	137 IS	5	Site Nam	e/Des.: BORE	HOLE SSW-1 : BL	OCK 8C				
Region Type:				Reg	iion Descr.:SHAL	LOW WEAT	HERED ZOI	NE AQUIF	ER	
Y Coord. [m]:	12126.259) Reg./	/DD -		Topo-set.: +	lillside (slope))	Dep	oth [m]:	30.00
X Coord. [m]: 2	2931161.0	03			Site status: In	n use		Col	. ht. [m]:	0.39
Altitude [m]:	1595.40	G-Nr.	:		Site purp.: C	Observation		Dra	in. reg.:	C12D
Coord. acc.: A	ccurate to	within 1 unit			Use applic.: In	ndustrial - mir	ning	Dia	m. [mm]:	165
Coord. meth.:	Blobal Posi	tioning System			Equipment: N	lo equipment		Rep	. inst.:	JMA
HOLE DIAME Rep. Inst.	TER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] Da	ate const.	Comme	ent	
JMA		0.00		10.00	215	20	011106	CASED	TO 165	
JMA		10.00		30.00	165	20	011106	NO CAS	SING	
CASING DET Date inst. De	AILS:	[m] Bot. [m]	Diam. [mm]	Material	Thick [mm			Length		Hori. Vert. dist. dist.
20011106	0.00	8.00	165	Steel	2					
20011106	8.00	10.00	165	Steel	2	Perforated	l or slotted	250	2	43 250
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	le	Colour Primar	Secondary	Texture		Feature Primary	Sec	ondary
0.00	1.00	SAND AND C	LAY	Brown				Sandy	Da	mp
1.00	6.00	SAND		Brown	Yellowish	Fine		Gritty	Da	mp
6.00	23.00	SANDSTONE	AND SH	IALE Grey	Light			Weathered	I	
23.00		SANDSTONE		White	Greyish	Fine		Gritty	Fre	esh
WATER LEVE Meth. meas.	EL: Level s	status	Piez. In	fo source	Date meas.	Time meas	. Sec. W	ater lev. [m] Com	ment
Electrical contact	Static		0 Fie	eld checked	20011220	1430	0.00	1.8	3 SLUC	GTEST
TESTING DE	TAILS:	Date started	Durat.	Depth to		I. Recovery				_
Description		started	[s]	intk. [m]	rate[l/s] [m]	[m] %	[min] [m²	aj [m/a	Storat.	Comment



Jasper Müller Associates cc. P O Box 883 Delmas 2210 Tel: (013)665 1788 E-mail: webmaster@jma-cc.co.za


SITE INFOR	MATION	REPORT						Dat	te com	npiled:	2/22/	02
BASIC SITE	INFORM	IATION:	Site Ide	ntifier: 2629AC0	0002 Number	: SSW-2	Site	e type:	Boreho	ole		
Distr./Farm No.:	: 135 IS		Site Nam	e/Des.: BOREH	OLE SSW-2 : B	LOCK 8C						
Region Type:				Reg	ion Descr.:SHA	LLOW WEAT	HERED	ZONE A	QUIFE	R		
Y Coord. [m]:	-10264.05	2	/D.D.		Topo-set.:	Hillside (slope)			Dept	h [m]:	30.0	00
X Coord. [m]:	2932049.2				Site status:	· · ·			Col. I	 ht. [m]:	0.46	6
Altitude [m]:	1584.90	G-Nr	.:		Site purp.:	Observation			Drain	. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.:	Industrial - mir	ning		Diam	. [mm]:	165	,
Coord. meth.:	Global Pos	itioning System			Equipment:	No equipment	-		Rep.	inst.:	JM	4
HOLE DIAM	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [n	nm] D	ate cons	st. Co	ommen	t		
JMA		0.00		6.00	215	20	011114	C	ASED T	O 165		
JMA		6.00		30.00	165	20	011114	N	O CASI	NG		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Material	Thicl [mn	_, 0		Lei	ngth N	Vidth	Hori. dist.	Vert. dist.
20011114	0.00	3.00	165	Steel		2						
20011114	3.00	6.00	165	Steel		2 Perforated	l or slotte	ed 2	250	2	43	250
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de	Colour Primary	Secondary	Texture		Feat Prin		Se	condar	y
0.00	1.00	SAND AND C	LAY	Black				Dam	р			
1.00	3.00	DOLERITE		Brown	Dark			Clay	,	W	eathere	d
3.00	5.00	DOLERITE		Brown	Yellowish	Fine to medi			thered		ayey	
5.00	7.00	DOLERITE	_	Grey	Greenish	Fine to medi	um		thered		inted	
7.00	16.00	SANDSTONE		White	Greyish	Fine		Gritty	/		eathere	-
16.00 24.00		SHALE SANDSTONE		Grey IALE Grey	Dark			vv ea Fres	thered		arbonac caceou:	
WATER LEV		SANDSTONE		IALE GIEY				ries		IVI	Laceous	5
Meth. meas.	Level :	status	Piez. In	fo source	Date meas	. Time meas	. Sec.	Water	lev. [m] Com	ment	
Electrical contact	t Static		0 Fie	eld checked	20011220	1215	0.00		5.76	SLU	GTEST	
TESTING DE	ETAILS:	Date started	Durat. [s]	Depth to intk. [m]	Disch. Draw rate[l/s] [m]	d. Recovery [%		Trans. [m²/d]		Storat.	Com	nent
SLUGTEST		20011220	1800	0					0.033			

SITE INFORI	ΝΑΤΙΟΝ	REPORT							Date cor	npiled: 2/22/02
BASIC SITE	INFORM	IATION:	Site Ic	lentifier	2629CA0	0003 Number:	SSW-3	Site	<i>type:</i> Boreh	ole
Distr./Farm No.:	135 IS		Site Na	me/Des		OLE SSW-3 : BI				
Region Type:					Regi	on Descr.:SHA	LLOW WEAT	HERED Z	ONE AQUIFE	R
Y Coord. [m]:	-9376.629	Reg./	/BB.:			Topo-set.:	Hillside (slope)	· ·	h [m]: 30.00
X Coord. [m]:	2932735.1	12 G-Nr				Site status:	n use		Col.	ht. [m]: 0.33
Altitude [m]:	1580.49					Site purp.:	Observation		Draii	n. reg.: C12D
Coord. acc.:	Accurate to	within 1 unit				Use applic.:	ndustrial - mi	ning	Dian	n. [mm]: 165
Coord. meth.:	Global Posi	itioning System				Equipment: N	No equipment		Rep.	inst.: JMA
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Dept Bott	h to om [m]	Diameter [n	nm] D	ate const.	Commer	nt
JMA		0.00			8.00	215	2	0011106	CASED 1	FO 165
JMA		8.00			30.00	165	2	0011106	NO CASI	NG
CASING DET Date inst. D	FAILS: Dep. to top	[m] Bot. [m]	Diar [mr		erial	Thick [mm			Length	Hori. Ver Width dist. dis
20011106	0.00	8.00	16	5 Stee	I	2	2			
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	-	hod meas	s. Aquif	er type	Info so	urce	Comment
JMA	15.00	16.00	0.1	10 Estir	nated					SEEPAGE WAT
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de		Colour Primary	Secondary	Texture		Feature Primary	Secondary
0.00	1.00	OVERBURDE	EN		Brown	Dark			Clayey	Damp
1.00	5.00	DOLERITE			Brown	Light			Weathered	Clayey
5.00	7.00	DOLERITE			Grey	Brownish	Medium to c	oarse	Jointed	Weathered
7.00	8.00	SHALE			Grey	Dark			Carbonaced	ous Baked
8.00	17.00	DOLERITE			Grey	Greenish	Medium		Weathered	Fresh
17.00	25.00	SANDSTONE		SHALE	Grey	_			Fresh	
25.00	30.00	SANDSTONE			White	Greyish	Fine		Fresh	Gritty
		ototuo	Piez	Info sou	rce	Date meas.	Time meas	s. Sec.	Water lev. [n	n] Comment
WATER LEV Meth. meas.	Levels	sidius								-
		status		Field che	cked	20011220	1820	0.00	1.99	
Meth. meas.	Static	Date started		t. Dep	oth to		d. Recovery	r: T	rans. Perm.	

BASIC SITE		IATION: S	ite Ider	tifier: 2629AC0	0004 Number:	SSW-4 Site	ty pe: Bore	hole		
Distr./Farm No	 : 135 IS	Si	te Name	e/Des.: BOREH	OLE SSW-4 : BL	OCK 8C				
Region Type:				Regi	on Descr.:SHAL	LOW WEATHERED Z	ONE AQUIF	ER		
Y Coord. [m]:	-12273.566	6 Reg./B	B·		Topo-set.: H	illside (slope)	Dep	oth [m]:	30.	00
X Coord. [m]:	2929450.1		D		Site status: In	use	Col	l. ht. [m]:	0.4	0
Altitude [m]:	1643.42	G-Nr.:			Site purp.: 0	bservation	Dra	in. reg.:	C1	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: In	dustrial - mining	Dia	m. [mm]	: 165	5
Coord. meth.:	Global Posi	tioning System			Equipment: N	o equipment	Rep	o. inst.:	JM	A
	IETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] Date const.	Comme	ent		
Rep. Inst.	METER:	•			Diameter [mi 215	m] Date const. 20011121		ent TO 165		
Rep. Inst. JMA	METER:	Top [m]		Bottom [m]	-	-		TO 165		
Rep. Inst. IMA IMA CASING DE		Top [m] 0.00 6.00	Diam. [mm]	Bottom [m] 6.00	- 215	20011121 20011121 n. Opening	CASED	TO 165	Hori. dist.	
Rep. Inst. IMA IMA CASING DE Date inst.	ETAILS:	Top [m] 0.00 6.00	Diam.	Bottom [m] 6.00 30.00	215 165 Thicki	20011121 20011121 . Opening Type	CASED NO CAS	TO 165 SING		
Rep. Inst. JMA JMA CASING DE	ETAILS: Dep. to top	Top [m] 0.00 6.00 [m] Bot. [m]	Diam. [mm]	Bottom [m] 6.00 30.00 Material	215 165 Thickr [mm]	20011121 20011121 Opening Type	CASED NO CAS	TO 165 SING		Ve di
Rep. Inst. IMA CASING DE Date inst. 20011121 20011121 GEOLOGY:	ETAILS: <i>Dep. to top</i> 0.00 3.00	Top [m] 0.00 6.00 [m] Bot. [m] 3.00	Diam. [mm] 165 165	Bottom [m] 6.00 30.00 Material Steel	215 165 Thickr [mm] 2 2 2	20011121 20011121 . Opening Type	CASED NO CAS	TO 165 SING <i>Width</i> 2	dist.	di
Rep. Inst. JMA JMA CASING DE Date inst. 20011121 20011121 GEOLOGY:	ETAILS: Dep. to top 0.00 3.00	Top [m] 0.00 6.00 [m] Bot. [m] 3.00 6.00	Diam. [mm] 165 165	Bottom [m] 6.00 30.00 Material Steel Steel Colour	215 165 Thickr [mm] 2 2 2	20011121 20011121 Dening Type Perforated or slotted	CASED NO CAS Length 250 Feature	2 TO 165 SING Width 2 Se	dist. 43	di
Rep. Inst. JMA CASING DE Date inst. 20011121 20011121 GEOLOGY: Dep. Top [m]	TAILS: Dep. to top 0.00 3.00 Bot. [m] 1.00	Top [m] 0.00 6.00 [m] Bot. [m] 3.00 6.00	Diam. [mm] 165 165	Bottom [m] 6.00 30.00 Material Steel Steel Colour Primary	215 165 Thickr [mm] 2 2 2 Secondary Dark	20011121 20011121 Dening Type Perforated or slotted	CASED NO CAS Length 250 Feature Primary	2 70 165 SING <i>Width</i> 2 Se Sa	dist. 43 econdar	di
20011121 GEOLOGY: Dep. Top [m] 0.00	TAILS: Dep. to top 0.00 3.00 Bot. [m] 1.00	Top [m] 0.00 6.00 [m] Bot. [m] 3.00 6.00	Diam. [mm] 165 165	Bottom [m] 6.00 30.00 Material Steel Steel Colour Primary Brown	215 165 Thickr [mm] 2 2 2 Secondary Dark	20011121 20011121 . Opening Type Perforated or slotted Texture	CASED NO CAS Length 250 Feature Primary Clayey	TO 165 SING Width 2 Se Se G	dist. 43 econdar andy	di 2

Grey

Grey

Greenish

Greenish

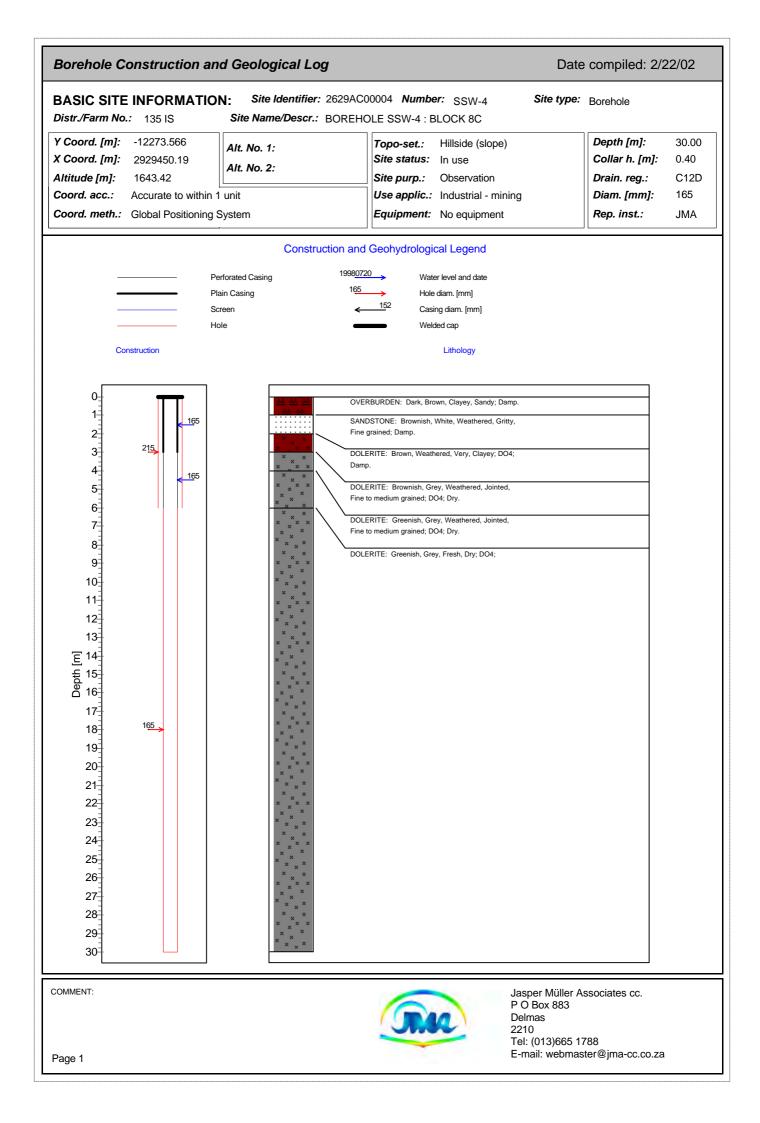
Fine to medium

Weathered

Fresh

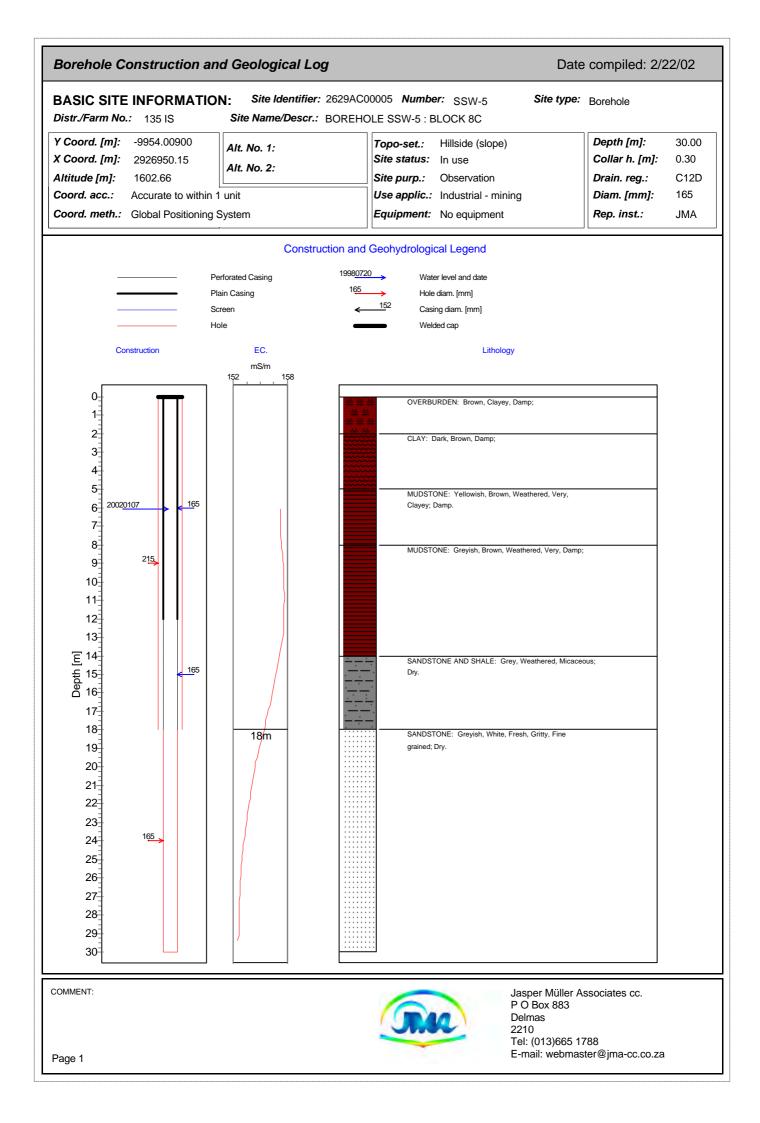
Jointed

Dry

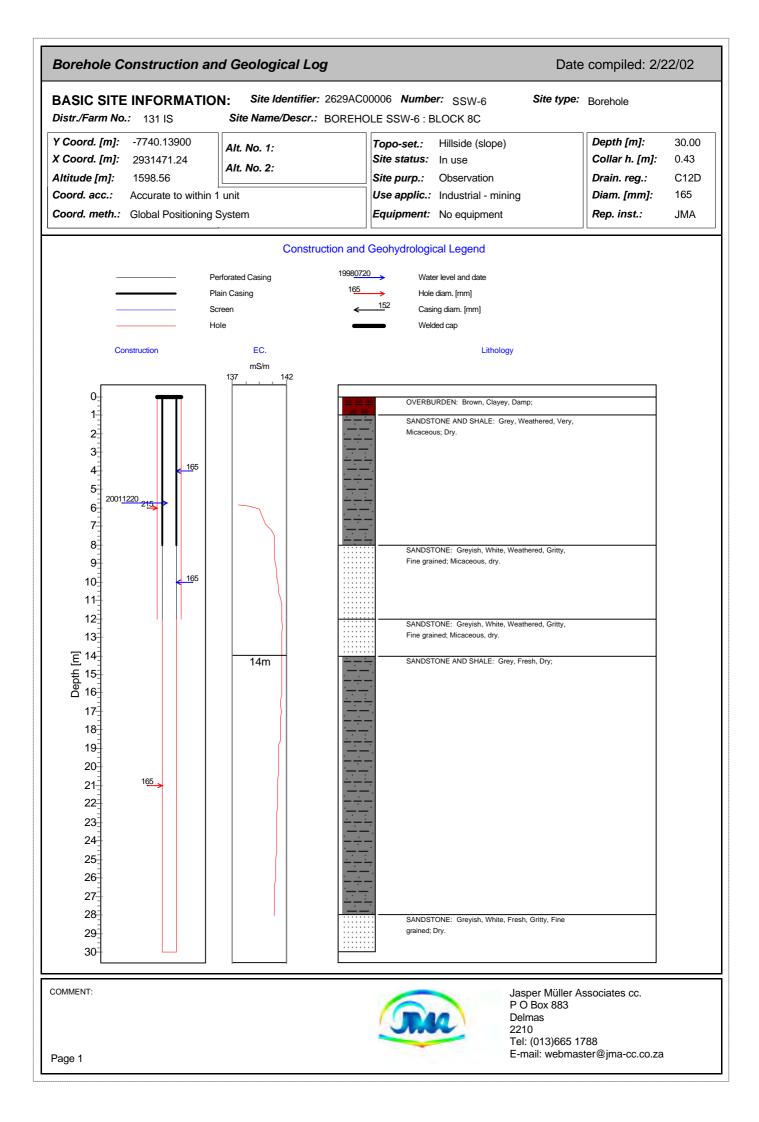

Jasper Müller Associates cc. P O Box 883 Delmas 2210 Tel: (013)665 1788 E-mail: webmaster@jma-cc.co.za

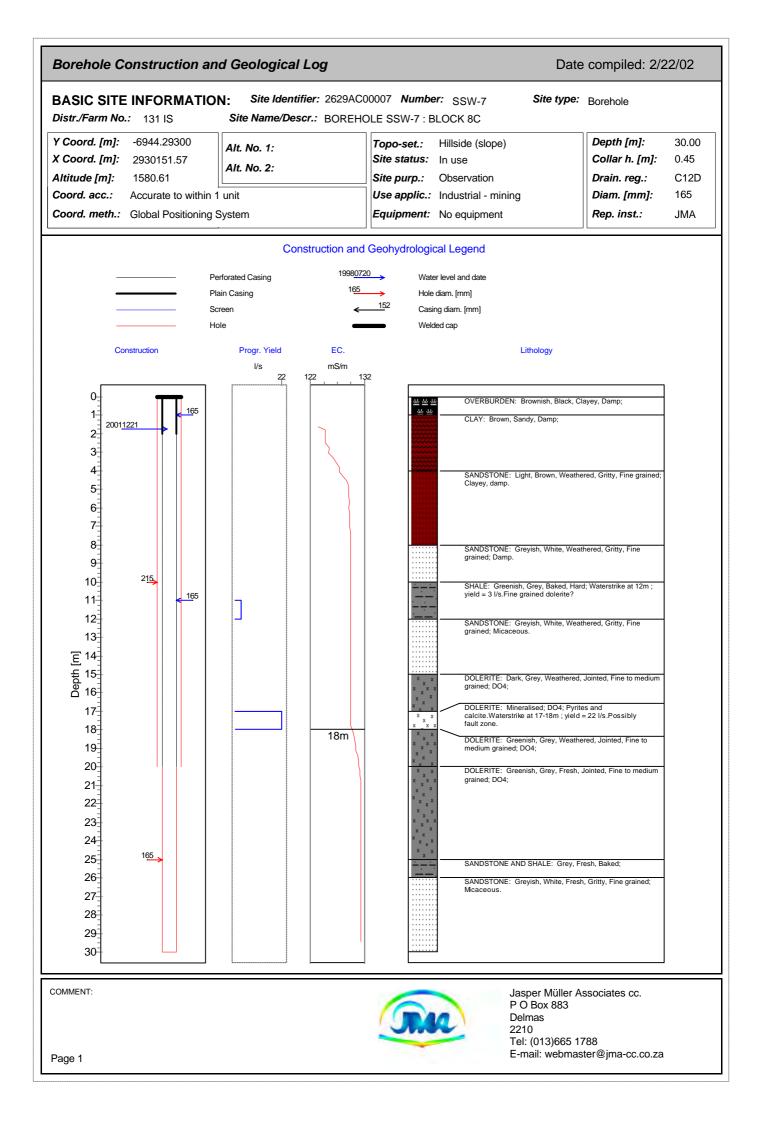
4.00

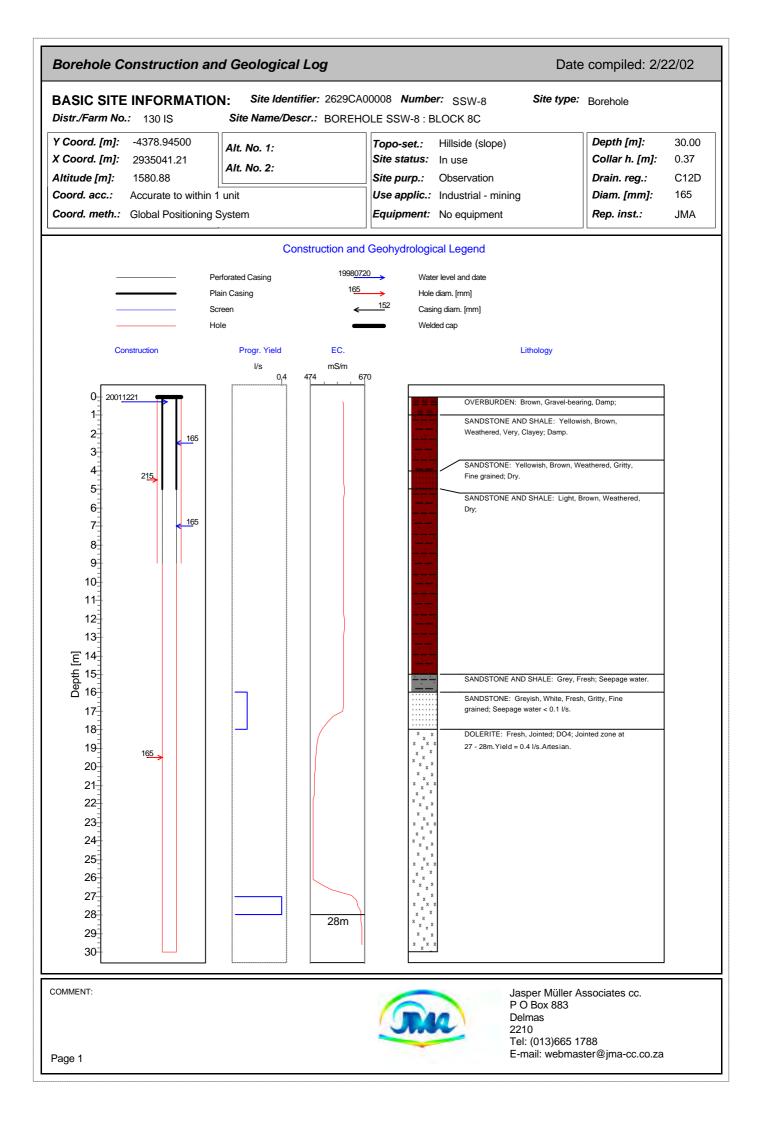
6.00

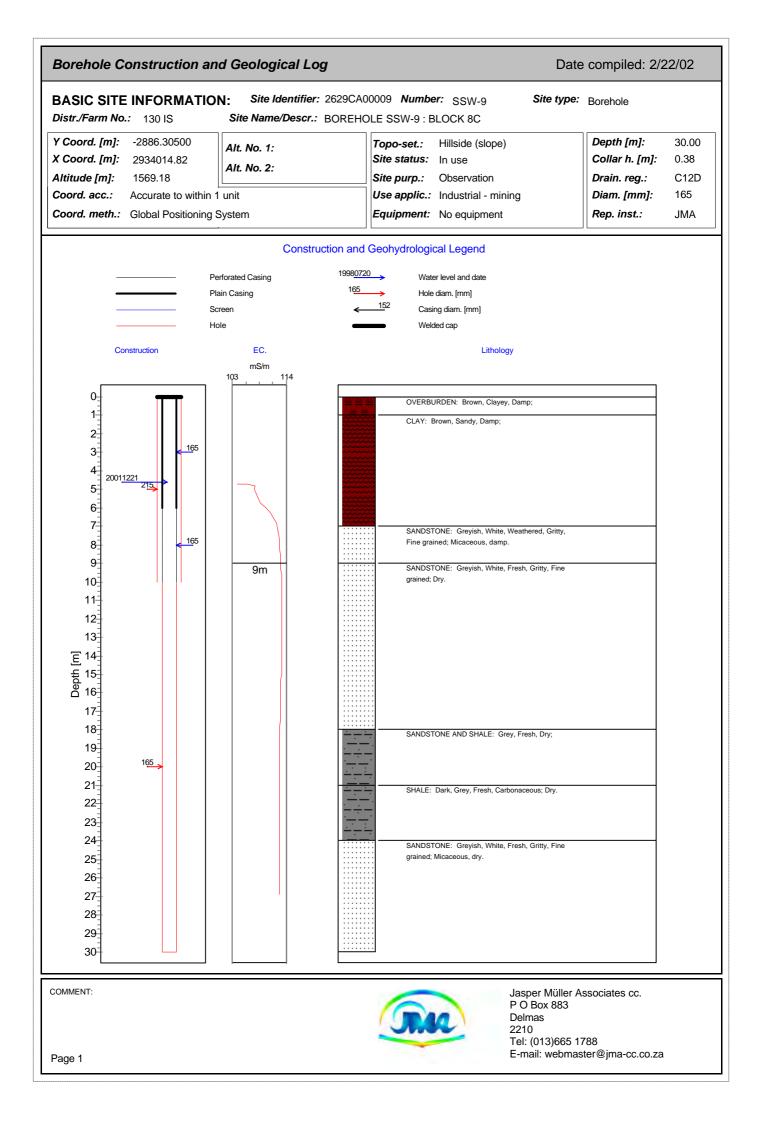

6.00 DOLERITE

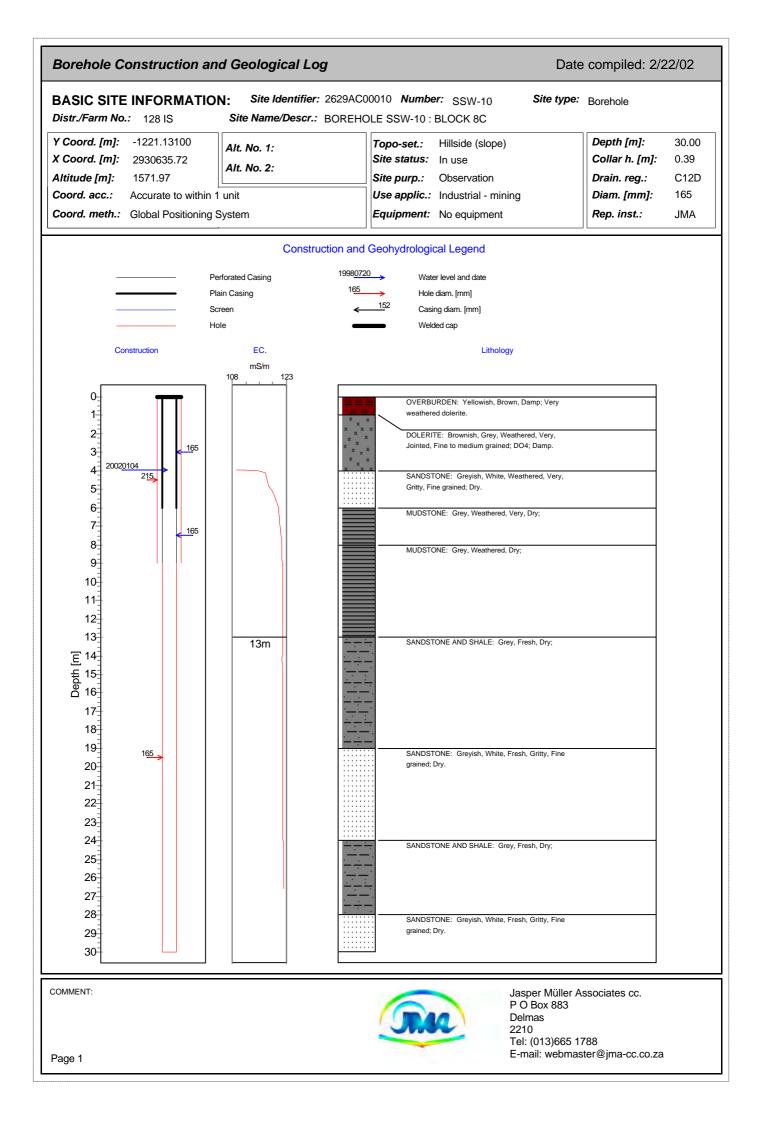
30.00 DOLERITE

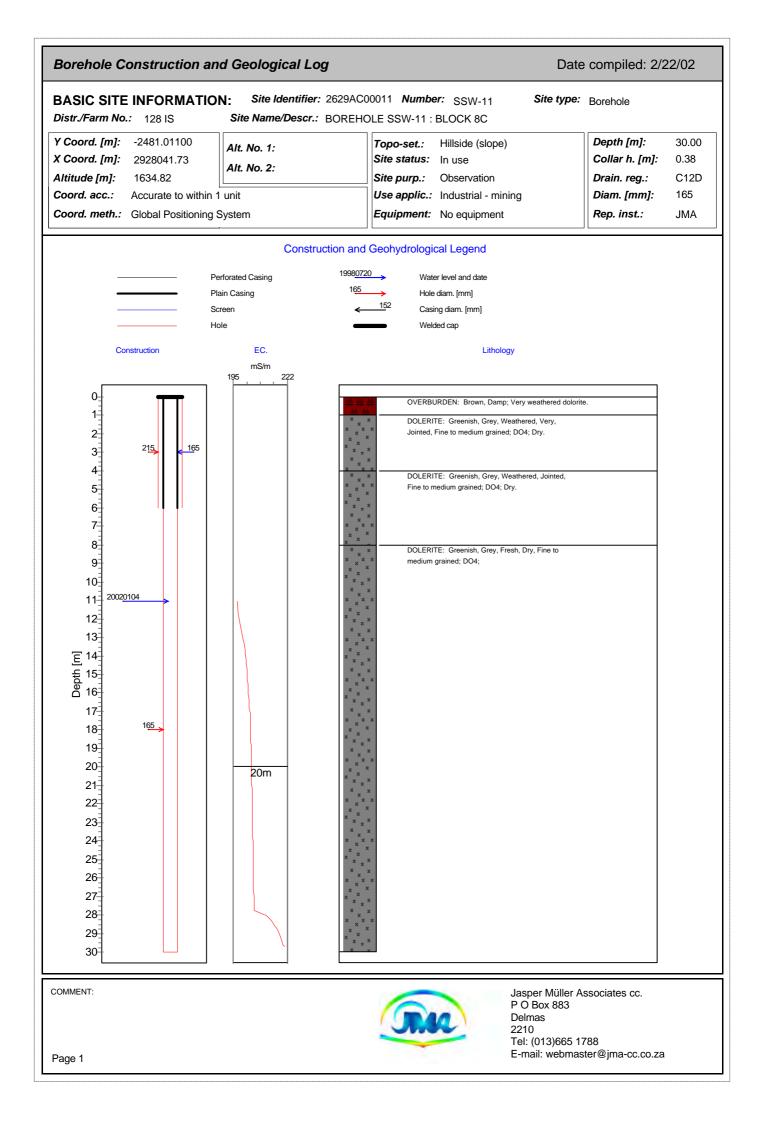

SITE INFOR	MATION	REPORT						Date co	ompiled:	2/22/	02
BASIC SITE	INFORM	IATION:	Site Ide	ntifier: 2629AC0	00005 <i>Number:</i>	SSW-5	Site	<i>type:</i> Bor	ehole		
Distr./Farm No.:	: 135 IS		Site Nan	ne/Des.: BOREH	OLE SSW-5 : BL	OCK 8C					
Region Type:				Reg	ion Descr.:SHAL	LOW WEA	THERED Z	ONE AQUI	FER		
Y Coord. [m]:	-9954.009	Bog	./BB.:		Topo-set.: ⊢	lillside (slope	e)	De	pth [m]:	30.0	00
X Coord. [m]:	2926950.1	48			Site status: Ir	n use	,	Co	l. ht. [m]:	0.30)
Altitude [m]:	1602.66	G-N	r.:		Site purp.: C	Observation		Dra	ain. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: Ir	ndustrial - m	ining	Dia	am. [mm]:	165	
Coord. meth.:	Global Pos	itioning Systen	า		Equipment: N	lo equipmen	t	Re	p. inst.:	JMA	4
											_
HOLE DIAM	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] L	Date const.	. Comm	ent		
JMA		0.00		18.00	215	2	20011127	CASE	D TO 165		
JMA		18.00		30.00	165	2	20011127	NO CA	SING		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m	Diam. [mm]		Thick [mm]		9	Length	Width	Hori. dist.	Ver dis
20011127	0.00	12.00	165	Steel	2	2					
20011127	12.00	18.00	165	Steel	2	Perforate	ed or slotted	250	2	43	25
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de	Colour Primary	Secondary	Texture		Feature Primary	Se	condary	y
0.00	2.00	OVERBURD	EN	Brown				Clayey	Da	amp	
2.00	5.00	CLAY		Brown	Dark			Damp			
5.00	8.00	MUDSTONE		Brown	Yellowish			Weathere	d Cla	ayey	
8.00	14.00	MUDSTONE		Brown	Greyish			Weathere	ed Da	amp	
14.00	18.00	SANDSTON	-)				Weathere		caceous	5
18.00		SANDSTON	E	White	Greyish	Fine		Fresh	Gr	itty	
WATER LEV Meth. meas.	/EL: Level	status	Piez. In	fo source	Date meas.	Time mea	s. Sec.	Water lev.	[m] Com	ment	
Electrical contact	t Static		0 Fi	eld checked	20020107	1055	0.00	6.	05 SLU	GTEST	
TESTING DE	ETAILS:	Date started	Durat. [s]	Depth to intk. [m]	Disch. Drawc rate[l/s] [m]	I. Recover [m] %	· .	ˈrans. Peri m²/d] [m/d	m. d] Storat.	Comn	nent
SLUGTEST		20020107	1800	0				0.02			

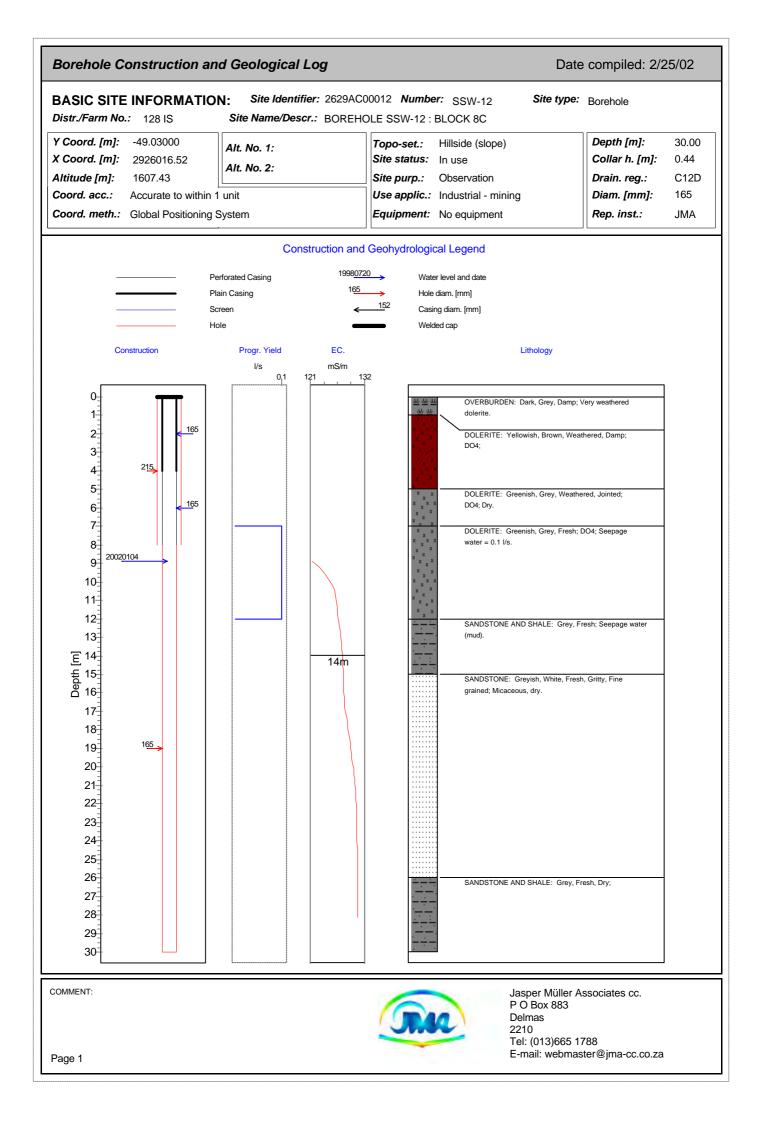

BASIC SITE	INFORM	IATION:	Site Ide	entifier: 262	9AC00006	lumber:	SSW-6	Site	type: B	Borehole		
Distr./Farm No.	: 131 IS		Site Nan	n e/Des.: BC	OREHOLE SS	W-6 : BL	OCK 8C					
Region Type:					Region Des	cr.:SHAL	LOW WEA	THERED Z	ZONE AQ	UIFER		
Y Coord. [m]:	-7740.139	Rea	/BB.:		Торо-	set.: H	lillside (slop	e)		Depth [I	m]: 30	0.00
X Coord. [m]:	2931471.2				Site s	t atus: Ir	nuse			Col. ht.	[m]: 0.	.43
Altitude [m]:	1598.56	G-N	r.:		Site p	u rp. : C	Observation			Drain. re	e g.: C	12D
Coord. acc.:	Accurate to	within 1 unit			Use a	o plic.: Ir	ndustrial - m	nining		Diam. [r	nm]: 10	65
Coord. meth.:	Global Pos	itioning System	า		Equip	ment: N	lo equipmer	nt		Rep. ins	st.: Ji	MA
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom	[m] Dia	neter [m	m] I	Date const	. Com	nment		
JMA		0.00		12.0	0	215	2	20011106	CAS	ED TO	165	
JMA		12.00		30.0	0	165	2	20011106	NO (CASING)	
CASING DE Date inst.		[m] Bot. [m	Diam [mm]			Thick [mm]		g	Leng	th Wic	Hori. hth dist.	
20011106	0.00	8.00	165	5 Steel		2	2					
20011106	8.00	12.00	165	5 Steel		2	Perforate	ed or slotted	d 250	0 2	2 43	3 25
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de		lour mary Sec	ondary	Texture		Featur Primai		Seconda	ary
0.00	1.00	OVERBURD	EN	Bro	wn				Clayey		Damp	
1.00	8.00	SANDSTON	E AND SI	HALE Gre	ey .				Weathe	ered	Micaceo	ous
8.00	12.00	SANDSTON	Ξ	Wh	ite Grey	rish	Fine		Weathe	ered	Gritty	
12.00	14.00	SANDSTON	Ξ	Wh	ite Grey	rish	Fine		Weathe	ered	Gritty	
14.00	28.00	SANDSTON	E AND SI	HALE Gre	ey .				Fresh		Dry	
28.00		SANDSTON		Wh	ite Grey	rish	Fine		Fresh		Gritty	
WATER LEV Meth. meas.	EL: Level	status	Piez. In	nfo source	Dat	e meas.	Time mea	is. Sec.	Water le	v. [m]	Comment	t
Electrical contact	t Static		0 Fi	ield checke	20	011220	1655	0.00		5.72	SLUGTES	т
TESTING DE	ETAILS:	Date started	Durat. [s]	Depth t intk. [n		Drawo [m]	l. Recover [m] %	· ,		erm. m/d] St	orat. Con	nmen
SLUGTEST		20011220	1800		0			_		.007		

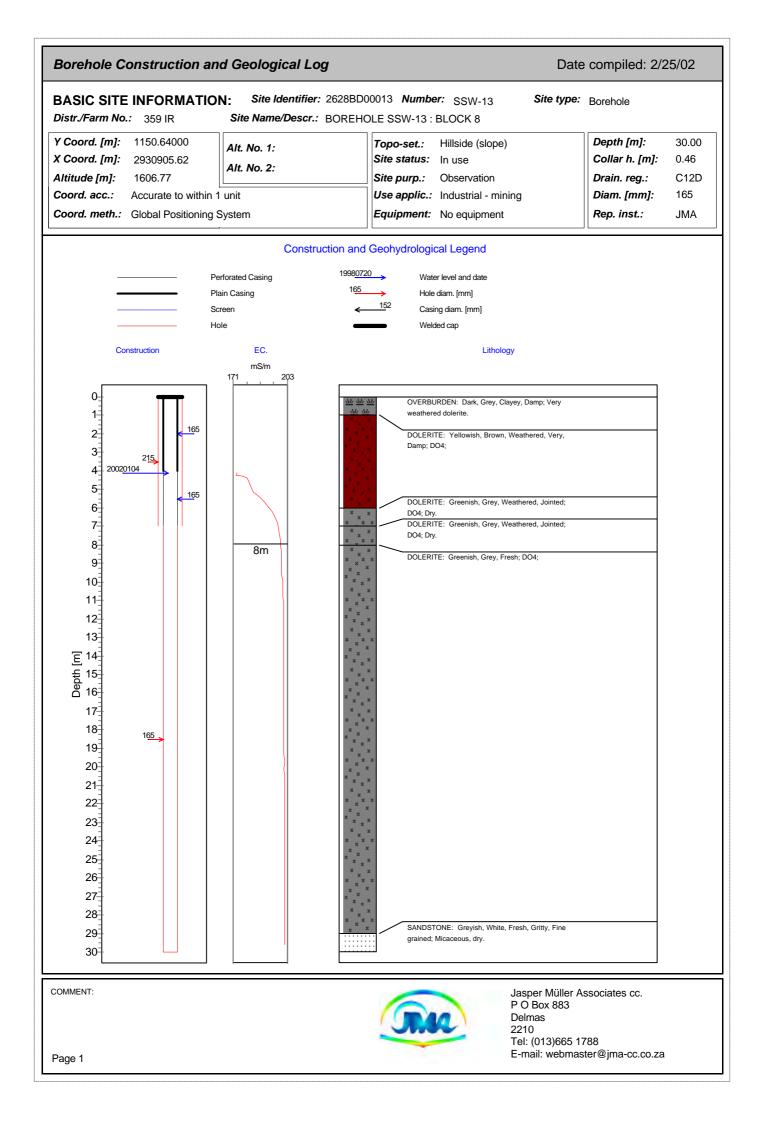

SITE INFOR	VIATION	REPORT						Date co	mpiled	: 2/22	/02
BASIC SITE	INFORM	IATION: ខ	Site Ider	ntifier: 2629AC	00007 Number:	SSW-7	Site ty	/pe: Bore	hole		
Distr./Farm No.:	131 IS	Si	ite Nam	e/ Des.: BOREH	IOLE SSW-7 : BL	LOCK 8C					
Region Type:				Reg	ion Descr.:SHAL	LOW WEA	THERED ZC	NE AQUIF	ER		
Y Coord. [m]:	-6944.293	Reg./B			Topo-set.: +	Hillside (slope	e)	Dep	oth [m]:	30.	.00
X Coord. [m]:	2930151.5	7	<i>D</i>			n use	,	Col	. ht. [m]:	0.4	5
Altitude [m]:	1580.61	G-Nr.:			Site purp.: 0	Observation		Dra	in. reg.:	C1	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: In	ndustrial - mi	ning	Dia	m. [mm]	: 16	5
Coord. meth.:	Global Posi	itioning System			Equipment: N	No equipmen	t	Rep	. inst.:	JM	A
HOLE DIAMI Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	nm1 D	Date const.	Comme	ent		
JMA		0.00		20.00	215	-	0011107	CASED	TO 165		
JMA		20.00		30.00	165	2	0011107	NO CAS	SING		
CASING DE			Diam.		Thick		1			Hori.	Ver
Date inst. D	Dep. to top	[m] Bot. [m]	[mm]	Material	[mm] Туре		Length	Width	dist.	dis
20011107	0.00	2.00	165	Steel	2						
20011107	2.00	20.00	165	Steel	2	2 Perforate	d or slotted	250	2	43	25
AQUIFER: Rep. Inst.	Depth Top [m]	Bot. [m]	Yield [l/s]	Method mea	s. Aauife	er type	Info sou	rce	Con	nment	
, JMA	11.00	12.00	3.00	Estimated	•						
JMA	17.00	18.00	22.00	Estimated							
GEOLOGY:	Det [m]			Colour	. Cocondom.	Taxtura		Feature	6	aanda	
Dep. Top [m]	Bot. [m]			Primary	Secondary Brownish	Texture		Primary	-	conda	'y
0.00 1.00	1.00	OVERBURDEN CLAY	N	Black Brown	DIOWIIISII			Clayey Sandy		amp amp	
4.00				Brown	Light	Fine		Weathered		ritty	
8.00		SANDSTONE		White	Greyish	Fine		Weathered	-	ritty	
10.00				Grey	Greenish	1 110		Baked	_	ard	
12.00		SANDSTONE		White	Greyish	Fine		Weathered		ritty	
15.00		DOLERITE		Grey	Dark	Fine to med	lium	Weathered	_	pinted	
17.00	18.00	DOLERITE						Mineralised	ł		
18.00	20.00	DOLERITE		Grey	Greenish	Fine to med	lium	Weathered	l Jo	binted	
20.00	25.00	DOLERITE		Grey	Greenish	Fine to med	lium	Fresh	Jo	binted	
25.00	26.00	SANDSTONE A	AND SH	ALE Grey				Fresh	Ba	aked	
26.00		SANDSTONE		White	Greyish	Fine		Fresh	G	ritty	
	'EL: Level s	status P	iez. In	o source	Date meas.	Time mea	s. Sec. V	Vater lev. [l	m] Con	nment	
WATER LEV Meth. meas.			0 Fie	ld checked	20011221	1300	0.00	1.7	1 SLU	GTEST	Г
WATER LEV	Static					_	-				
WATER LEV Meth. meas.			Durat. [s]	Depth to intk. [m]	Disch. Drawo rate[l/s] [m]	d. Recovery [m] %		ans. Perm ² /d] [m/d	n.] Storat	. Com	ment

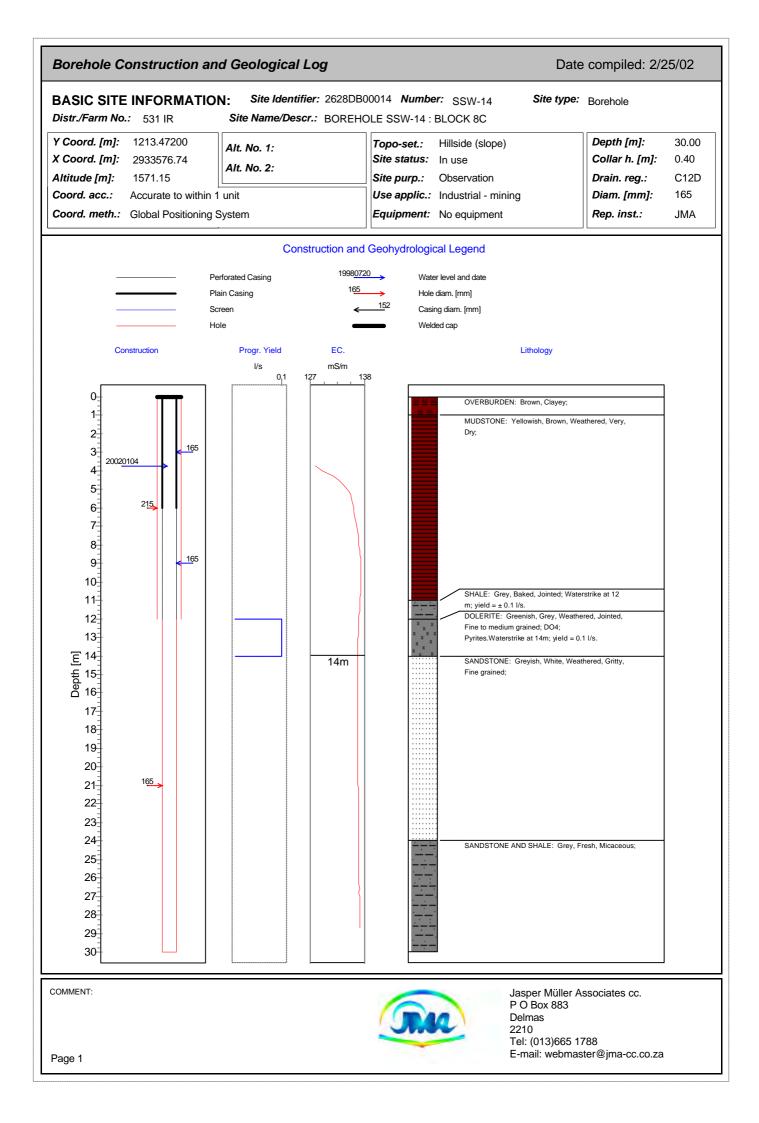

SITE INFORI	MATION	REPORT							Date com	piled:	2/22/	02
BASIC SITE	INFORM		Site Ide	entifier:	2629CA00	0008 <i>Number:</i>	SSW-8	Site	type: Boreho	le		
Distr./Farm No.:	130 IS	S	ite Nan	ne/Des.	.: BOREHO	DLE SSW-8 : BL	OCK 8C					
Region Type:					Regio	on Descr.:SHAL	LOW WEA	THERED Z	ONE AQUIFER	ર		
Y Coord. [m]: X Coord. [m]:	-4378.945 2935041.2	Reg./				•	lillside (slop n use	e)	Depth Col. h	[m]: t. [m]:	30.0 0.3	
Altitude [m]:	1580.88	G-Nr.:				Site purp.:	Observation		Drain.	reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit				Use applic.: In	ndustrial - n	nining	Diam.	[mm]:	165	,
Coord. meth.:	Global Pos	itioning System				Equipment: N	lo equipme	nt	Rep. i	nst.:	JM/	4
									-			
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Deptl Bott	h to om [m]	Diameter [m	m]	Date const.	Comment			
JMA		0.00			9.00	215		20011109	CASED TO	D 165		
JMA		9.00		:	30.00	165		20011109	NO CASIN	IG		
CASING DET Date inst. D	FAILS: Dep. to top	[m] Bot. [m]	Diam [mm	-	erial	Thick [mm		g	Length W		Hori. dist.	Ver dis
20011109	0.00	5.00	165	5 Stee	I	2	2					
20011109	5.00	9.00	165	5 Stee	l	2	Perforat	ed or slotted	250	2	43	25
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Meti	hod meas.	Aquife	er type	Info so	ource	Com	ment	
JMA	16.00	18.00	0.10) Estin	nated							
JMA	27.00	28.00	0.40) Estir	nated					ARTE	SIAN	
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	е		Colour Primary	Secondary	Texture		Feature Primary	Sec	ondar	y
0.00	1.00	OVERBURDE	N		Brown				Gravel-bearin	ig Da	mp	
1.00	4.00	SANDSTONE	AND S	HALE	Brown	Yellowish			Weathered	Cla	yey	
4.00	5.00	SANDSTONE			Brown	Yellowish	Fine		Weathered	Gri	tty	
5.00	15.00	SANDSTONE	-		Brown	Light			Weathered	Dry	/	
15.00	16.00	SANDSTONE	AND S	HALE	Grey				Fresh			
16.00	18.00	SANDSTONE			White	Greyish	Fine		Fresh	Gri	-	
18.00		DOLERITE							Fresh	Joi	nted	
WATER LEV Meth. meas.	EL: Level :	status F	Piez. Ir	nfo sou	rce	Date meas.	Time me	as. Sec.	Water lev. [m]	Com	ment	
Electrical contact	Static		0 F	ield che	cked	20011221	1105	0.00	0.27	ARTE	SIAN	

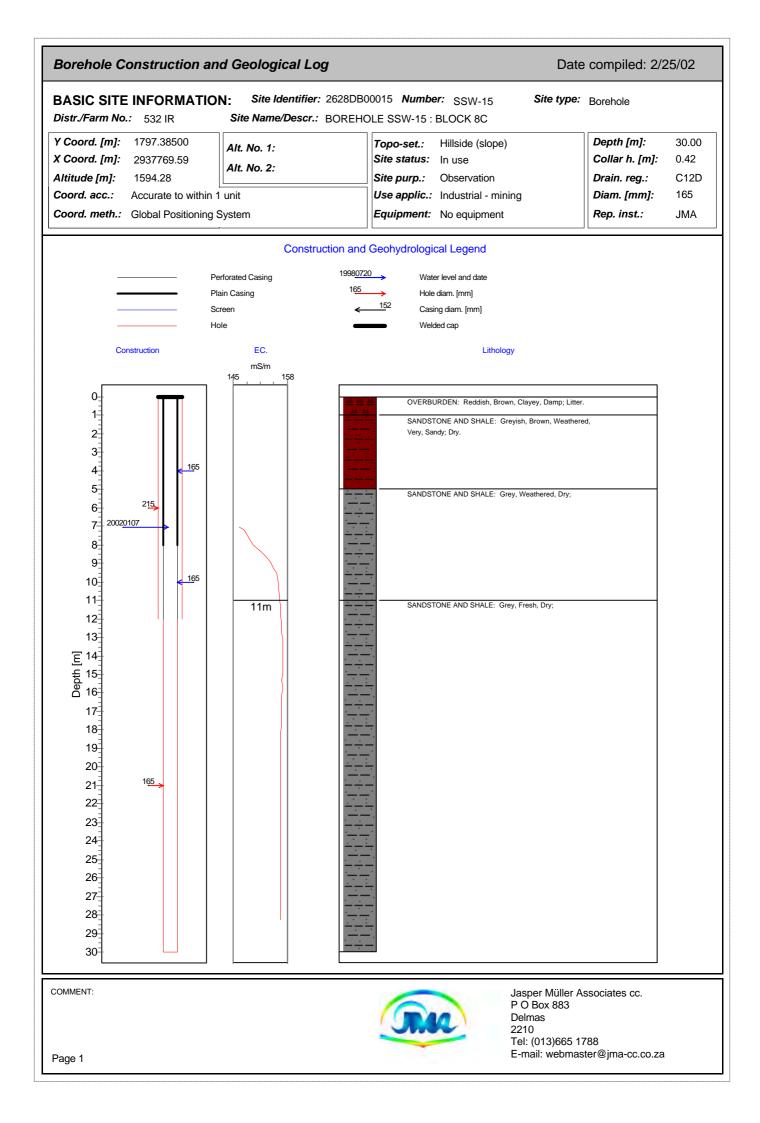

SITE INFOR	MATION	REPORT						Date	compiled	l: 2/22/	02
BASIC SITE	INFORM	IATION:	Site Ider	ntifier: 2629CA0	0009 Number :	SSW-9	Site	type: Bo	orehole		
Distr./Farm No.	: 130 IS		Site Nam	e/ Des.: BOREH	OLE SSW-9 : BI	LOCK 8C					
Region Type:				Reg	ion Descr.:SHA	LLOW WEAT	HERED	ZONE AQU	JIFER		
Y Coord. [m]:	-2886.305	Derr	/DD -		Topo-set.:	Hillside (slope)	D	epth [m]:	30.0	00
X Coord. [m]:	2934014.8	816			Site status:	· ·	/	c	ol. ht. [m]	: 0.38	в
Altitude [m]:	1569.18	G-Nr			Site purp.:	Observation		ם	rain. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.:	ndustrial - mi	ning	D	iam. [mm]: 165	ó
Coord. meth.:	Global Pos	itioning System			Equipment:	No equipment	•	R	ep. inst.:	JMA	Ą
HOLE DIAM	ETER:	Depth to		Depth to							
Rep. Inst.		Top [m]		Bottom [m]	Diameter [n	nm] D	ate cons	t. Com	ment		
JMA		0.00		10.00	215	2	0011108	CASE	D TO 165		
JMA		10.00		30.00	165	2	0011108	NO C	ASING		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Material	Thick [mm			Lengtl	h Width	Hori. dist.	Vert dist
20011108	0.00	6.00	165	Steel	2	2					
20011108	6.00	10.00	165	Steel		2 Perforate	d or slotte	d 250	2	43	25
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de	Colour Primary	Secondary	Texture		Feature Primary		econdar	y
0.00	1.00	OVERBURD	EN	Brown				Clayey	D	amp	
1.00	7.00	CLAY		Brown				Sandy	D	amp	
7.00	9.00	SANDSTONE		White	Greyish	Fine		Weathe	red G	Gritty	
9.00	18.00	SANDSTONE	Ē	White	Greyish	Fine		Fresh	G	Gritty	
18.00		SANDSTONE	AND SH	ALE Grey				Fresh		ry	
21.00		SHALE		Grey	Dark			Fresh	-	arbonac	eous
24.00		SANDSTONE	-	White	Greyish	Fine		Fresh	G	Britty	
WATER LEV Meth. meas.	/EL: Level :	status	Piez. Int	o source	Date meas.	Time meas	s. Sec.	Water lev	. [m] Coi	nment	
Electrical contac	t Static		0 Fie	eld checked	20011221	1405	0.00	4	1.62 SLL	JGTEST	
TESTING DE Description	ETAILS:	Date started	Durat. [s]	Depth to intk. [m]	Disch. Draw rate[l/s] [m]	d. Recovery [%	-	Trans. Pe [m²/d] [m	rm. n/d] Stora	t. Comr	nent
SLUGTEST		20011221	1800	0)12		

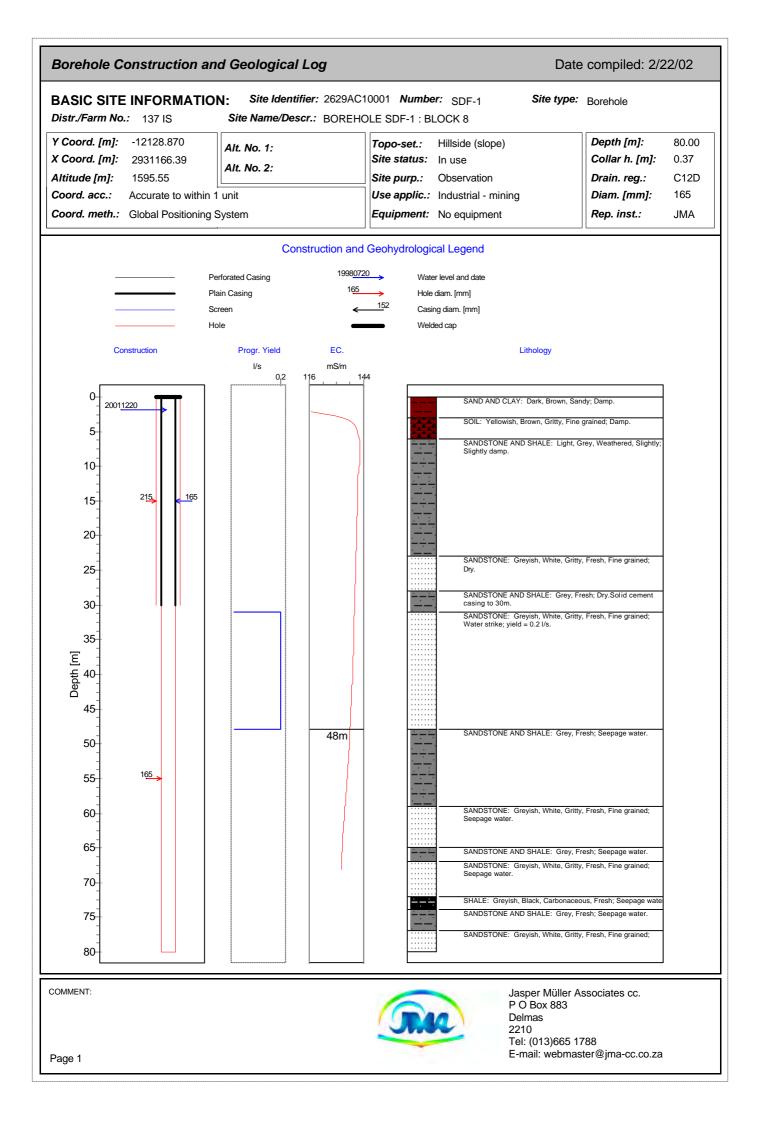

SITE INFOR	MATION	REPORT							Dat	e comp	oiled: 2/22/	/02
BASIC SITE	INFORM	IATION:	Site I	dentifie	er:2629AC0	0010 Number :	SSW-1	0 Site	type:	Borehol	е	
Distr./Farm No	: 128 IS		Site N	ame/De	s.: BOREH	OLE SSW-10 : E	BLOCK 8C	;				
Region Type:					Regi	on Descr.:SHA	LLOW WE	ATHERED	ZONE A	QUIFER		
Y Coord. [m]:	-1221.131		<i>(</i> D D			Topo-set.:	Hillside (slo	nce)		Depth	[m]: 30.	00
 X Coord. [m]:	2930635.7	716 Reg.					n use	(20)		Col. ht		9
Altitude [m]:	1571.97	G-Nr	:			Site purp.:	Observatio	n		Drain.	reg.: C12	2D
	Accurate to	within 1 unit				Use applic.:	ndustrial -	minina		Diam.	•	5
Coord. meth.:	Global Pos	itioning System				Equipment:		0		Rep. ir	nst.: JM	А
												·
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]			oth to ottom [m]	Diameter [n	nm]	Date cons	t. Co	omment		
JMA		0.00			9.00	215		20011113	CA	SED TC) 165	
JMA		9.00			30.00	165		20011113	NC) CASIN	G	
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m]	Dia [m		aterial	Thick [mm		ing	Len	gth W	Hori. idth dist.	Ve dis
20011113	0.00	6.00	1	65 Ste	el	:	2					
20011113	6.00	9.00	1	65 Ste	el		2 Perfora	ated or slotted	d 2	50	2 43	2
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de		Colour Primary	Secondary	Texture		Featu Prim		Secondar	у
0.00	1.00	OVERBURD	N		Brown	Yellowish			Damp)		
1.00	4.00	DOLERITE			Grey	Brownish	Fine to m	edium	Weat	hered	Jointed	
4.00	6.00	SANDSTONE			White	Greyish	Fine		Weat	hered	Gritty	
6.00	8.00	MUDSTONE			Grey				Weat	hered	Dry	
8.00	13.00	MUDSTONE			Grey					hered	Dry	
13.00	19.00	SANDSTONE		SHALE	/				Fresh		Dry	
19.00	24.00	SANDSTONE		- =	White	Greyish	Fine		Fresh	-	Gritty	
24.00	28.00	SANDSTONE		SHALE	/	o · ·	_ .		Fresh	-	Dry	
28.00		SANDSTONE		_	White	Greyish	Fine		Fresh	ו	Gritty	_
WATER LEV Meth. meas.	EL: Level	status	Piez.	Info so	ource	Date meas.	Time m	eas. Sec.	Water	lev. [m]	Comment	
Electrical contact	t Static		0	Field cl	necked	20020104	1325			3.94	SLUGTEST	
TESTING DE	TAILS:	Date started	Dura [s]		epth to htk. [m]	Disch. Draw rate[l/s] [m]	d. Recov [m]			Perm. [m/d] s	Storat. Comi	men

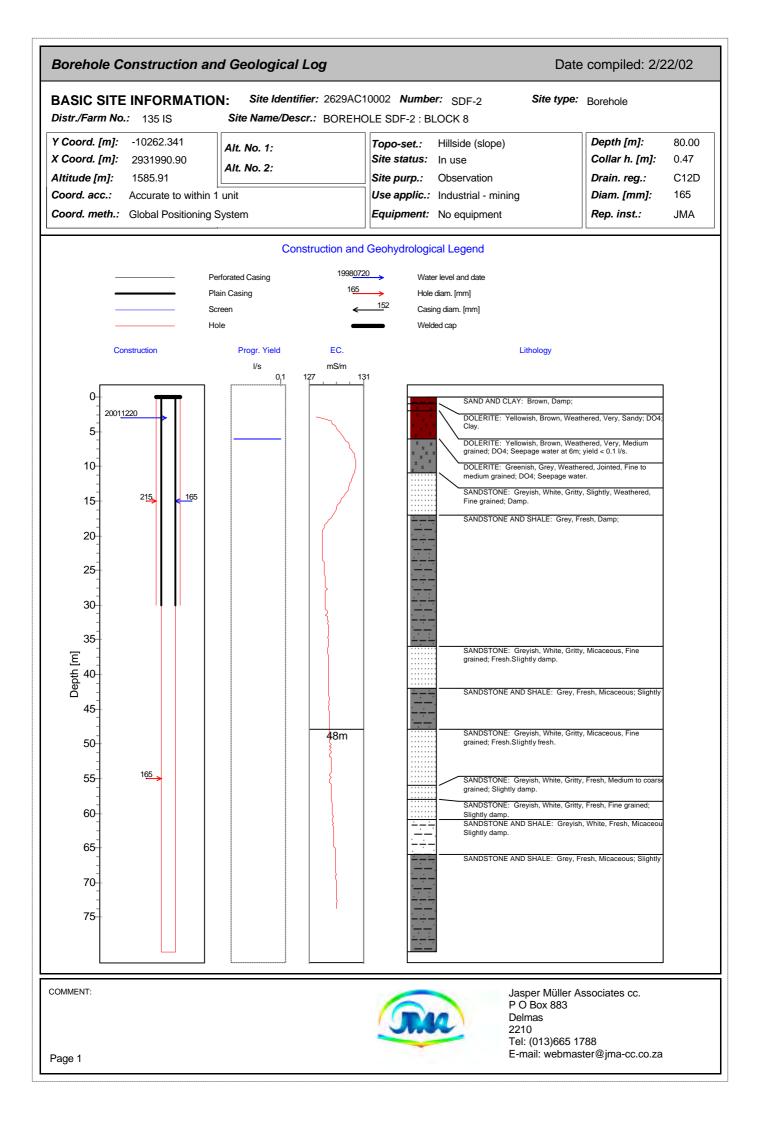

SITE INFOR	MATION	REPORT						Date	e com	piled: 2/22	2/02
BASIC SITE	INFORM	IATION:	Site Ide	ntifier: 2629AC0	0011 Number:	SSW-11	Site	e type:	Borehol	e	
Distr./Farm No.:	: 128 IS		Site Nam	e/Des.: BOREH	OLE SSW-11 : E	BLOCK 8C					
Region Type:				Regi	on Descr.:SHAL	LOW WEA	THERED	ZONE A	QUIFER	2	
Y Coord. [m]:	-2481.011	Reg.	/RR ·		Topo-set.: ⊦	lillside (slop	e)		Depth	[m]: 30	0.00
X Coord. [m]:	2928041.7				Site status: In	n use			Col. ht	t. [m]: 0.3	38
Altitude [m]:	1634.82	G-INI			Site purp.: C	Observation			Drain.	reg.: C1	12D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: In	ndustrial - m	ining		Diam.	[mm]: 16	;5
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipmer	t		Rep. ir	nst.: JN	ΛA
JMA JMA Casing de "		0.00 6.00	Diam.	6.00 30.00	215 165 Thick	n. Opening	20011110 20011110 3	NC	SED TO CASIN	G Hori.	Ve
Date inst. L	Dep. to top	[m] Bot. [m]	[mm]	Material	[mm	ј Туре		Len	gth W	idth dist.	dis
20011110	0.00	6.00	165		2	2					
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de	Colour Primary	Secondary	Texture		Featu Prim		Seconda	iry
0.00	1.00	OVERBURDE	ΞN	Brown				Damp	р		
1.00	4.00	DOLERITE		Grey	Greenish	Fine to mee			thered	Jointed	
4.00	8.00	DOLERITE		Grey	Greenish	Fine to med			thered	Jointed	
8.00 WATER LEV		DOLERITE		Grey	Greenish	Fine to me	muit	Fresh	1	Dry	
WAIER LEV Meth. meas.	Level	status	Piez. In	fo source	Date meas.	Time mea	s. Sec.	Water	lev. [m]	Comment	
Electrical contact	t Static		0 Fie	eld checked	20020104	0950	0.00		11.04	SLUGTES	Т
TESTING DE	ETAILS:	Date started	Durat. [s]		Disch. Drawc rate[l/s] [m]	l. Recover [m] %	•		Perm. [m/d] g	Storat. Con	nmen
SLUGTEST		20020104	1800	0				0).0003		

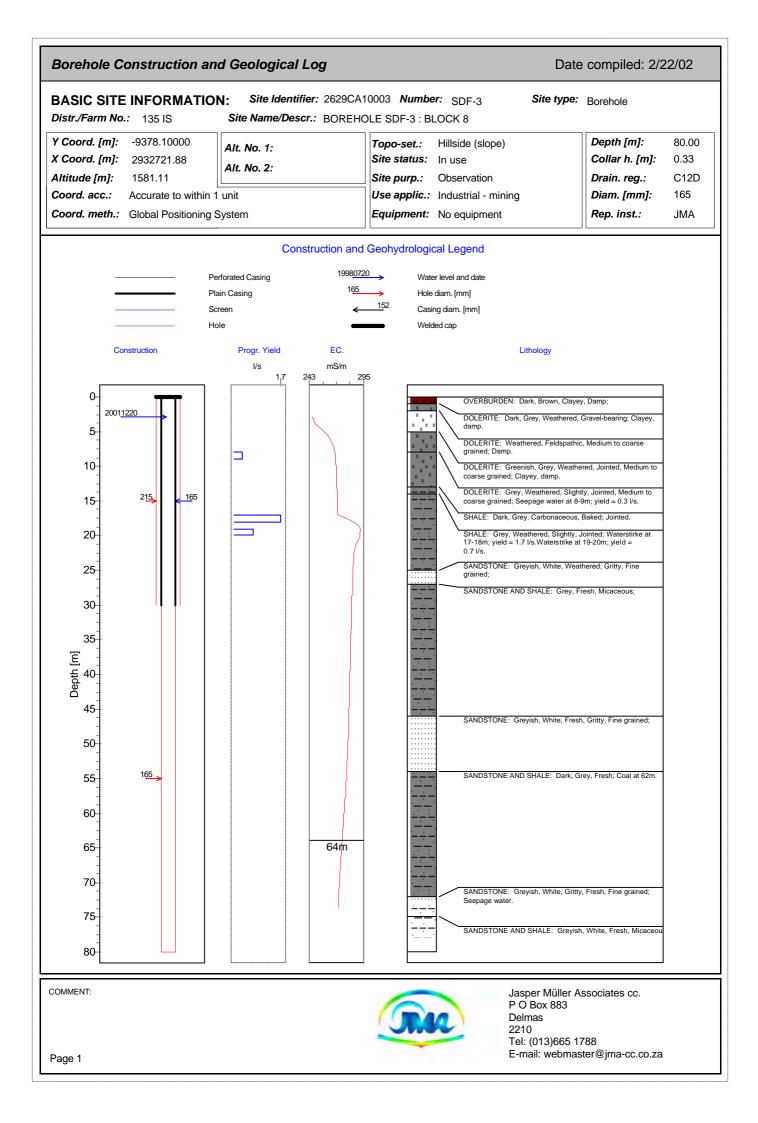

SITE INFORI	MATION	REPORT									Da	ite co	mpiled	: 2/22/	/02
BASIC SITE Distr./Farm No.: Region Type:					: BOREH	00012 Nu IOLE SSW ion Descr	/-12 : B		C		zone <i>,</i>	Borel AQUIF			
Altitude [m]:		within 1 unit				Topo-se Site sta Site pui Use app Equipm	<i>tus:</i> In <i>'p.:</i> O <i>plic.:</i> In		on - mini	ng		Col. Drai Diai	th [m]: ht. [m]: in. reg.: n. [mm] . inst.:	C1:	4 2D 5
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Depti Botte	n to om [m]	Diam	eter [m	m]	Da	te cons	st. C	comme	nt		
JMA JMA		0.00 8.00			8.00 30.00		215 165			011109 011109	-	ASED	TO 165 SING		
CASING DET Date inst.	FAILS: Dep. to top	[m] Bot. [m]	Dian [mn		erial		Thickr [mm]		•		Le	ngth	Width	Hori. dist.	Vert. dist
20011109	0.00	4.00	16	5 Stee	1		2								
20011109	4.00	8.00	16	5 Stee			2	Perfo	rated	or slotte	ed	250	2	43	25
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]		nod meas	5.	Aquife	r type		Info s	ource		Con	nment	
JMA	7.00	12.00	0.1	I0 Estin	nated								SEE	PAGE	WAT
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	de		Colour Primary	Secor	ndary	Textur	e			ture nary	Se	condar	у
0.00	1.00	OVERBURDE	N		Grey	Dark					Dan	np			
1.00	5.00	DOLERITE			Brown	Yellow	vish				Wea	athered	Da	amp	
5.00	7.00	DOLERITE			Grey	Green	ish				Wea	athered	Jo	ointed	
7.00	12.00	DOLERITE			Grey	Green	ish				Free				
12.00	15.00	SANDSTONE		SHALE	Grey	_					Free				
15.00	26.00	SANDSTONE			White	Greyis	sh	Fine			Fres			ritty	
26.00 WATER LEV Meth. meas.		SANDSTONE		SHALE Info sou	Grey	Date	meas.	Time r	neas.	Sec.	Fres Wate		D n] Con	<u>,</u>	
Electrical contact	Static		0	Field che	cked	2002	20104	114	18	0.00		8.9	SLU	GTEST	•
TESTING DE Description	TAILS:	Date started	Durat [s]		oth to c. [m]	Disch. rate[l/s]	Drawd [m]	. Reco [m]	very: %		Trans. [m²/d]		Storat	. Com	ment
SLUGTEST		20020104	900		0							0.21			

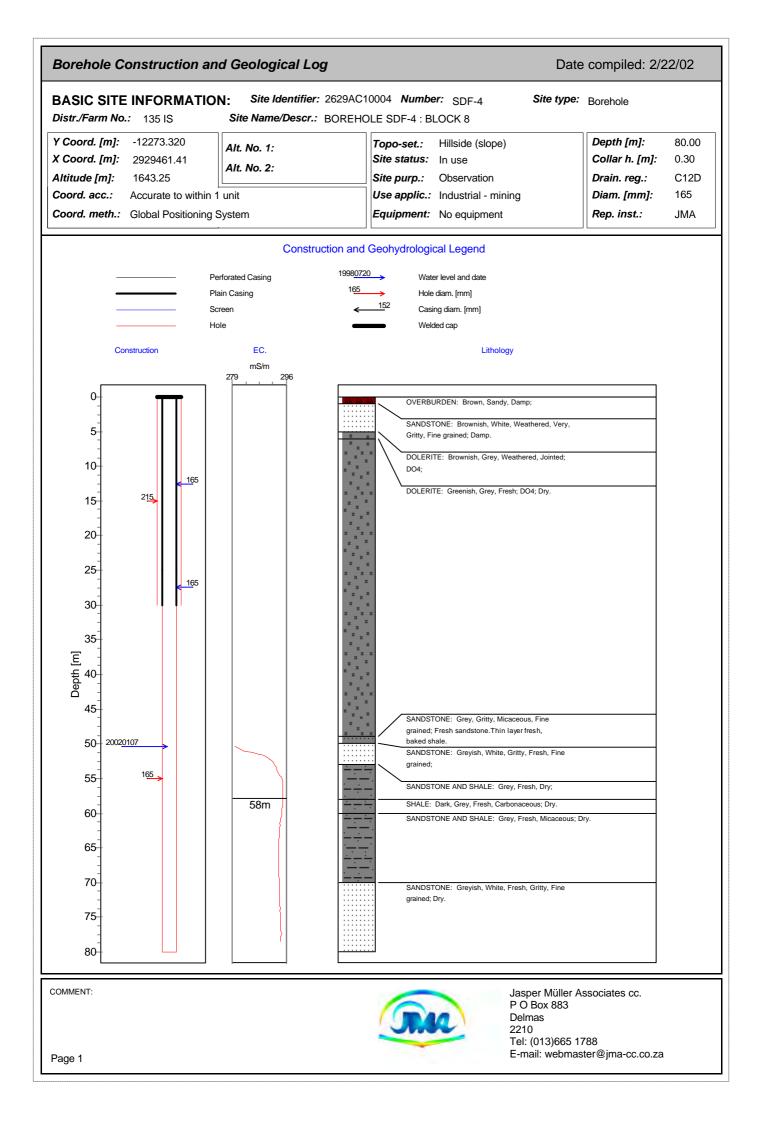

SITE INFOR	MATION	REPORT						Date co	mpiled	: 2/22/	/02
BASIC SITE	INFORM	IATION:	Site Ide	entifier: 2628BD0	00013 Number:	SSW-13	Site ty	/ pe: Bore	hole		
Distr./Farm No.	: 359 IR	:	Site Nar	ne/Des.: BOREH	IOLE SSW-13 : B	LOCK 8					
Region Type:				Regi	ion Descr.:SHAL	LOW WEAT	HERED ZO	ONE AQUIF	ER		
Y Coord. [m]:	1150.64	Reg./			Topo-set.: H	lillside (slope)		Dep	oth [m]:	30.0	00
Coord. [m]:	2930905.6	515 II Č				n use		Col	. ht. [m].	: 0.40	6
Altitude [m]:	1606.77	G-Nr.			Site purp.: C	bservation		Dra	in. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: Ir	ndustrial - min	ing	Dia	m. [mmj	: 165	5
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipment		Rep	o. inst.:	JM/	A
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] Da	ate const.	Comme	ent		
IMA		0.00		7.00	215	- 20	011123	CASED	TO 165		
IMA		7.00		30.00	165	20	011123	NO CAS	SING		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m]	Diam [mm]	-	Thick [mm]	_, 0		Length	Width	Hori. dist.	Ve di
20011123	0.00	4.00	165	5 Steel	2						
20011123	4.00	7.00	165	5 Steel	2	Perforated	or slotted	250	2	43	2
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	de	Colour Primary	Secondary	Texture		Feature Primary	Se	econdar	у
0.00	1.00	OVERBURDE	ΞN	Grey	Dark			Clayey	D	amp	
1.00	6.00	DOLERITE		Brown	Yellowish			Weathered	d D	amp	
6.00	7.00	DOLERITE		Grey	Greenish			Weathered		ointed	
7.00	8.00	DOLERITE		Grey	Greenish			Weathered	d Jo	ointed	
8.00	29.00	DOLERITE	-	Grey	Greenish	- :		Fresh	~		
00.00		SANDSTONE	:	White	Greyish	Fine		Fresh	G	ritty	
29.00			Piez li	nfo source	Date meas.	Time meas	Sec.	Water lev. [m] Cor	nment	
WATER LEV	Level s	status	1102. 11								
NATER LEV Meth. meas.	Level	status		ield checked	20020104	1435	0.00	4.1	4 SLL	IGTEST	
29.00 WATER LEV Meth. meas. Electrical contact TESTING DE Description	Level s t Static	status Date started		Depth to		I. Recovery	: Tr	ans. Pern			

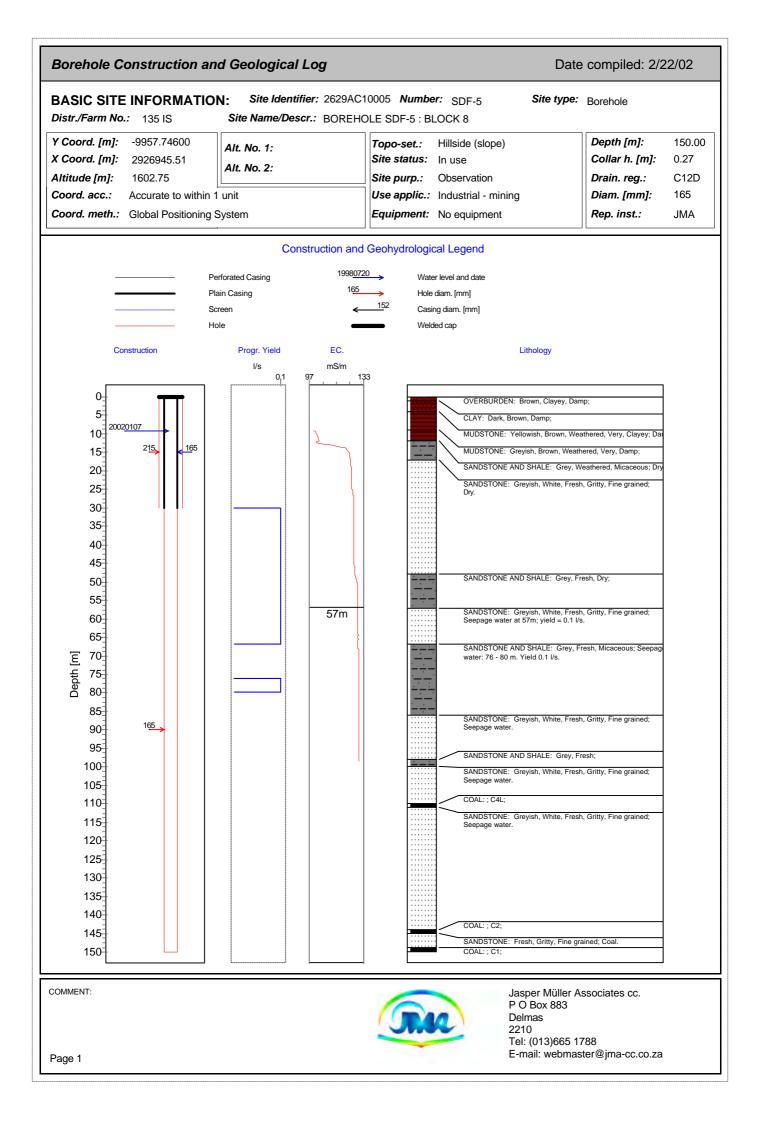

SITE INFORI	MATION	REPORT					Date co	mpiled: 2/22/0	02
BASIC SITE					0014 Number:		te type: Bore	hole	
Distr./Farm No.: Region Type:	531 IR	:	Site Nam		OLE SSW-14 : BL on Descr.:SHALL	.OCK 8C .OW WEATHEREI) ZONE AQUIF	ER	
Y Coord. [m]: X Coord. [m]: Altitude [m]:		within 1 unit			Topo-set.: Hil Site status: In	lside (slope) use oservation dustrial - mining	Dep Col. Dra. Diai	<i>int.</i> [<i>m</i>]: 30.0 <i>int.</i> [<i>m</i>]: 0.40 <i>in. reg.:</i> C121 <i>m.</i> [<i>mm</i>]: 165 <i>o. inst.:</i> JMA) 2D
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [mn	n] Date cor	nst. Comme	ent	
JMA		0.00		12.00	215	2001112	4 CASED	TO 165	
JMA		12.00		30.00	165	2001112	4 NO CAS	SING	
CASING DET Date inst. D	AILS:	[m] Bot. [m]	Diam. [mm]	Material	Thickn [mm]	. Opening Type	Length		Vert. dist
20011124	0.00	6.00	165	Steel	2				
20011124	6.00	12.00	165	Steel	2	Perforated or slot	ted 250	2 43	250
AQUIFER: Rep. Inst.	Depth Top [m]	то Bot. [m]	Yield [l/s]	Method meas	. Aquifer	type Info	source	Comment	
JMA	12.00	14.00	0.10	Estimated					
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	de	Colour Primary	Secondary	Texture	Feature Primary	Secondary	/
0.00	1.00	OVERBURDE	N	Brown			Clayey		
1.00	11.00	MUDSTONE		Brown	Yellowish		Weathered	,	
11.00		SHALE		Grey	Graaniah	Tine to medium	Baked	Jointed	
12.00 14.00		DOLERITE SANDSTONE		Grey White		Fine to medium	W eathered W eathered		
24.00		SANDSTONE			Стерізіт г	in G	Fresh	Micaceous	\$
WATER LEV Meth. meas.			-	to source	Date meas.	Time meas. Sec.	Water lev. [i		
Electrical contact	Static		0 Fie	eld checked	20020104	1655 0.0	0 3.7	1 SLUGTEST	
TESTING DE Description	TAILS:	Date started	Durat. [s]		Disch. Drawd. rate[l/s] [m]	Recovery: [m] % [min]	Trans. Perm [m²/d] [m/d	n.] Storat. Comm	nent
Description						[] /* []			

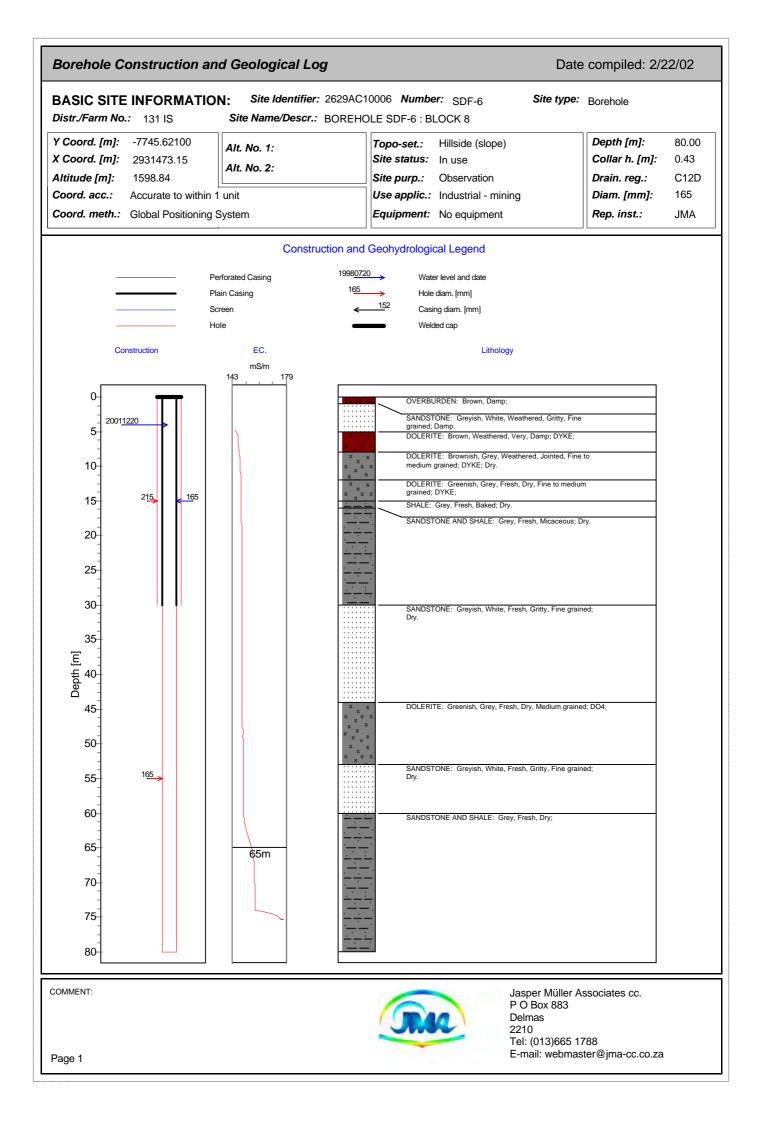

SITE INFORM	NATION	REPORT								Da	ate co	mpileo	d: 2/22/	′02
BASIC SITE	NFORM	IATION:	Site Id	entifier: 2	628DB0	0015 Num t	er:	SSW-15	Site	e type:	Bore	hole		
Distr./Farm No.:	532 IR		Site Na	me/Des.:	BOREH	OLE SSW-18	5 : E	BLOCK 8C						
Region Type:					Regi	ion Descr.:S	HAL	LOW WEA	THERED	ZONE	AQUIF	ER		
Y Coord. [m]:	1797.385	Bo	~ /DD .			Topo-set.:	F	lillside (slop	e)		Dep	oth [m]:	30.0	00
X Coord. [m]:	2937769.5	92	g./BB.:			Site status		n use	- /		Col	. ht. [m]	: 0.42	2
Altitude [m]:	1594.28	G-I	Nr.:			Site purp.:	C	Observation			Dra	in. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit				Use applic	: Ir	ndustrial - m	ining		Dia	m. [mm]: 165	;
Coord. meth.:	Global Posi	tioning Syste	m			Equipment	: N	lo equipme	nt		Rep	o. inst.:	JM	Ą
HOLE DIAME Rep. Inst.	TER:	Depth to Top [m])	Depth Botto		Diameter	· [m	nm]	Date cons	st. C	comme	ent		
JMA		0.00		12	2.00	2	15		20011109	C	ASED	TO 165		
JMA		12.00		30	0.00	1	65		20011109	Ν	IO CAS	SING		
CASING DET Date inst. De	AILS: ep. to top	[m] Bot. [ı	Dian n] [mm		ial		ick nm		g	Le	ngth	Width	Hori. dist.	Ver dis
20011109	0.00	8.00	16	5 Steel			2	2						
20011109	8.00	12.00	16				2	2 Perforat	ed or slotte	d	250	2	43	25
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology c	ode		Colour Primary	Seconda	ry	Texture			nture mary	S	econdar	y
0.00	1.00	OVERBUR	DEN	E	Brown	Reddish				Clay	/ey	C	amp	
1.00	5.00	SANDSTON	NE AND S	HALE E	Brown	Greyish				We	athered	d S	Sandy	
5.00	11.00	SANDSTON	NE AND S	HALE C	Grey					We	athered	d D	Ory	
11.00	30.00	SANDSTON	NE AND S	HALE C	Grey					Fre	sh	D	Dry	
WATER LEVI Meth. meas.	EL: Levels	status	Piez. I	nfo sourc	ce	Date me	as.	Time mea	is. Sec.	Wate	r lev. [m] Co	mment	
Electrical contact	Static		0 F	ield checl	ked	200201	07	1755	0.00		7.0	5 SLI	JGTEST	
TESTING DE Description	TAILS:	Date started	Durat. [s]	Depti intk.			awo [m]	d. Recove [m] %		Trans. [m²/d]			t. Comr	nent
SLUGTEST		2002010	7 1800		0						0.00			

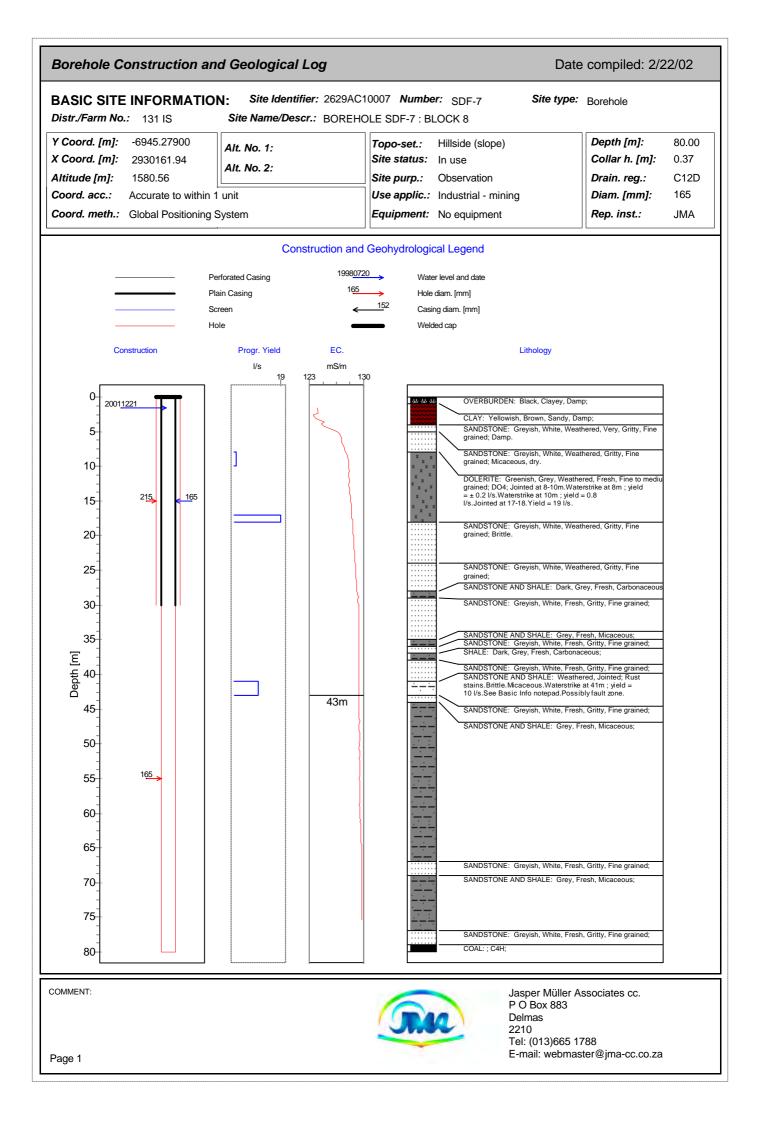

SITE INFOR	WATION	REPORT						Date c	compiled	. 2/22	/02
BASIC SITE			Site Iden	tifier: 2629AC	0001 Number:	SDF-1	Site	type: Bo	rehole		
Distr./Farm No.	: 137 IS	s	ite Name	/Des.: BOREF	IOLE SDF-1 : BL	OCK 8					
Region Type:				Reg	ion Descr.:DEEF	P FRACT	URED AQUI	FER			
Y Coord. [m]:	-12128.87	Deg //	. חר		Topo-set.: +	lillside (s	ope)	D	epth [m]:	80.	.00
X Coord. [m]:	2931166.3	166.389			Site status: In	``			ol. ht. [m]:	0.3	7
Altitude [m]:	1595.55	G-Nr.:			Site purp.: 0	Observatio	on	D	rain. reg.:	C1	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: In	ndustrial	- mining	D	iam. [mm]	: 16	5
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipn	nent	R	ep. inst.:	JM	A
									-		
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]	,	Depth to Bottom [m]	Diameter [m	ml	Date cons	t. Comr	nont		
JMA		0.00		30.00	215		20011106		D TO 165		
JMA JMA		30.00		30.00 80.00	165		20011106		ASING		
		30.00	Diam.	00.00	Thick	n. Oper		110 0/		Hori.	Ve
	Dep. to top	[m] Bot. [m]	[mm]	Material	[mm		g	Length	width	dist.	dis
20011106	0.00	30.00	165	Steel	2	2					
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method mea	n Aquif	er type	Info s	ourco	Cor	nment	
JMA	31.00	48.00	0.20	Estimated	. Aquin	ei type		gist, technici		TER ST	אוס.
GEOLOGY:	01.00	-0.00	0.20	Colour			0000	Feature	,		
Dep. Top [m]	Bot. [m]	Lithology cod	e	Primary	Secondary	Texture		Primary	_	econda	ry
0.00	3.00	SAND AND CL	AY	Brown	Dark			Sandy			
3.00	6.00	SOIL		Brown	Yellowish	Fine		Gritty			
6.00	23.00	SANDSTONE	AND SH	ALE Grey	Light			Weather	ed		
23.00	28.00	SANDSTONE		White	Greyish	Fine		Gritty	F	resh	
28.00	31.00	SANDSTONE	AND SH	,				Fresh			
31.00	48.00	SANDSTONE		White	Greyish	Fine		Gritty	F	resh	
48.00	59.00	SANDSTONE	AND SH	/				Fresh			
59.00	65.00			White	Greyish	Fine		Gritty	F	resh	
65.00	67.00	SANDSTONE	AND SH		Oraș înt	Tin :		Fresh	-		
67.00 72.00		SANDSTONE		White	Greyish	Fine		Gritty		resh	
72.00 74.00		SHALE SANDSTONE		Black	Greyish			Carbona Fresh	Leous Fl	resh	
74.00		SANDSTONE		White	Grevish	Fine		Gritty	F	resh	
WATER LE		STREET ONL		WINC .				Cinty	1	0011	
Meth. meas.	Level	status P	Piez. Infe	o source	Date meas.	Time n	neas. Sec.	Water lev.	.[m] Con	nment	
Electrical contac	t Static		0 Fie	ld checked	20011220	150	5 0.00	1	.93 SLU	GTEST	-
TESTING D	ETAILS:	Date started	Durat. [s]	Depth to intk. [m]	Disch. Drawo rate[l/s] [m]	d. Reco [m]		Trans. Pei [m²/d] [m	rm. /d] Storat	. Com	men
SLUGTEST		20011220	1800	0				0.0			

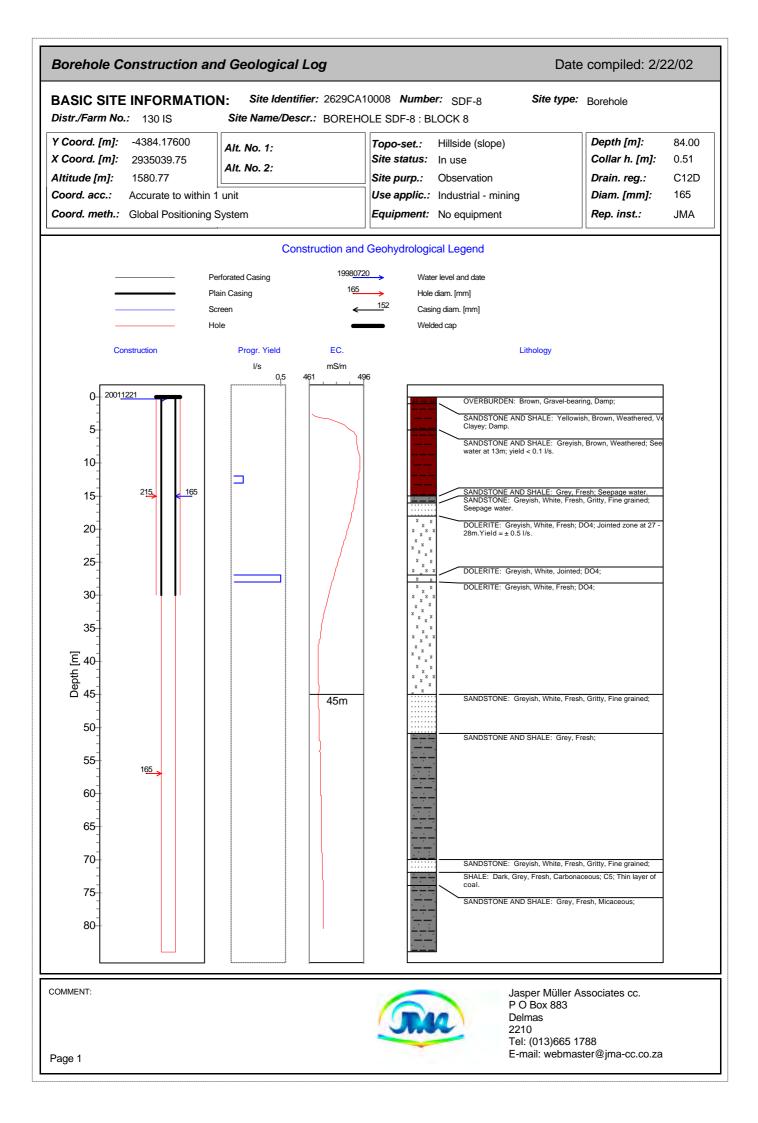

		REPORT						Dui	0 0011	piled:	,,	
BASIC SITE		IATION: S	Site Iden	<i>tifier:</i> 2629AC1	0002 Number:	SDF-2	Site	type:	Boreho	ble		
Distr./Farm No.	.: 135 IS	Si	ite Name	/Des.: BOREH	OLE SDF-2 : BL	OCK 8						
Region Type:				Regi	on Descr.:DEE	P FRACTU	RED AQUIF	ER				
Y Coord. [m]:	-10262.34	0262.341			Topo-set.: +	lillside (slor	pe)		Dept	h [m]:	80.0	00
Coord. [m]:	2931990.8	1990.899				n use	/		Col. ł	nt. [m]:	0.4	7
Altitude [m]:	1585.91	G-Nr.:			Site purp.:	Observation			Drain	. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: I	ndustrial - r	nining		Diam	. [mm]:	165	;
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipme	nt		Rep.	inst.:	JM	A
HOLE DIAM Rep. Inst.	IETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	ml	Date const	. Co	mmen	t		
IMA		0.00		30.00	215		20011114		SED T			
IMA		30.00		80.00	165		20011114		CASI			
CASING DE			Diam.		Thick	n. Openir					Hori.	Ve
Date inst.	Dep. to top	[m] Bot. [m]	[mm]	Material	[mm	ј Туре		Len	gth V	Vidth	dist.	di
20011114	0.00	30.00	165	Steel	2	2						
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas	Δαυίf	er type	Info so	urce		Com	nment	
MA	6.00	6.00	0.10	Estimated	i iquit	, ., ., .					PAGE	WA ⁻
GEOLOGY:				Colour				Featu	ure			
Dep. Top [m]	Bot. [m]	Lithology code	•	Primary	Secondary	Texture		Prima	ary	Se	condar	y
0.00	1.00	SAND AND CL	AY	Brown				Damp)			
1.00	2.00	DOLERITE		Brown	Yellowish			Weat		Sa	andy	
2.00	6.00	DOLERITE		Brown	Yellowish	Medium		Weat				
6.00	11.00			Grey	Greenish	Fine to me	edium	Weat			inted	
11.00 17.00	17.00 36.00	SANDSTONE		White ALE Grey	Greyish	Fine		Gritty Fresh			eathere amp	u
36.00	42.00	SANDSTONE	רוט שאוי/	White	Greyish	Fine		Gritty			caceou	s
42.00	48.00	SANDSTONE /	AND SH		0.091011			Fresh			caceou	
48.00	56.00	SANDSTONE		White	Greyish	Fine		Gritty			caceou	
56.00		SANDSTONE		White	Greyish	Medium to	coarse	Gritty			esh	
58.00	61.00	SANDSTONE		White	Greyish	Fine		Gritty		Fr	esh	
61.00	66.00	SANDSTONE /	AND SH	ALE White	Greyish			Fresh	ı	Mi	caceou	s
66.00		SANDSTONE /	AND SH	ALE Grey				Fresh	1	Mi	caceou	S
NATER LEV Meth. meas.	VEL: Level :	status P	iez. Infe	o source	Date meas.	Time me	as. Sec.	Water I	lev. [m] Com	nment	
Electrical contac	ct Static		0 Fie	ld checked	20011220	1325	0.00		3.00	SLU	GTEST	
ESTING D Description	ETAILS:	Date started	Durat. [s]		Disch. Drawo rate[l/s] [m]	l. Recove [m] %		[rans. [m²/d]		Storat.	Comr	nen
SLUGTEST		20011220	1800	0			-		0.003			

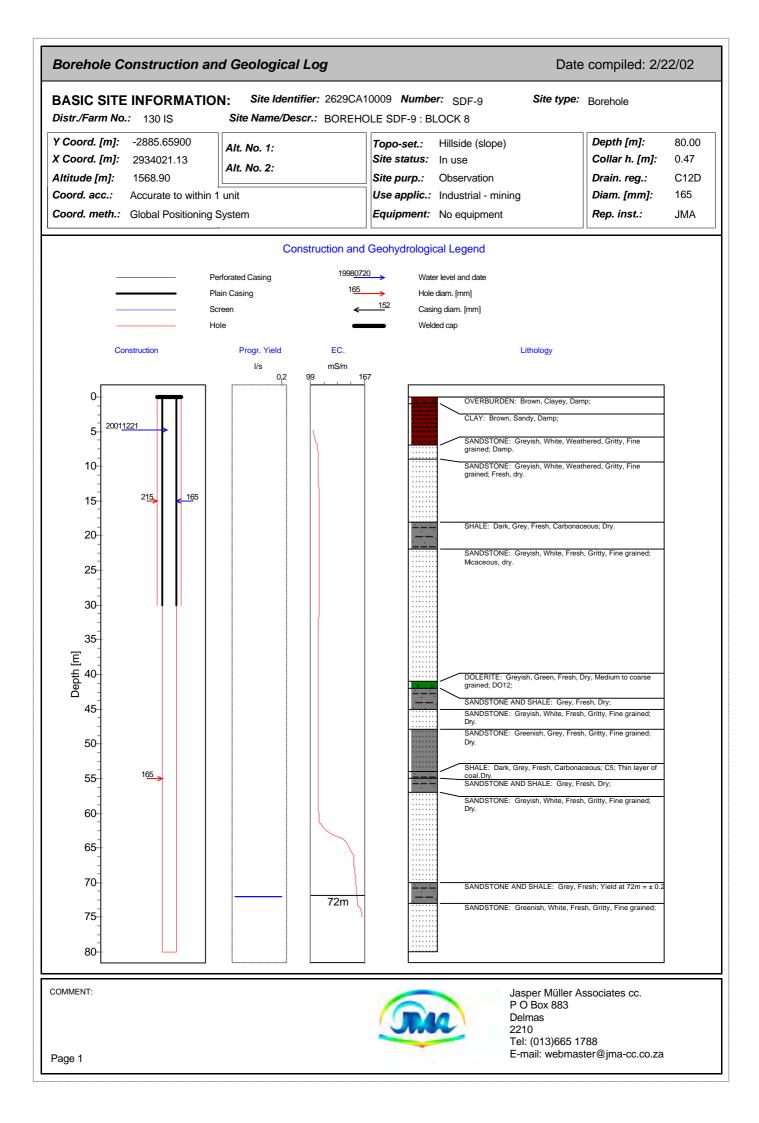

SITE INFOR	MATION	REPORT						Date com	piled: 2/22/02
BASIC SITE	INFORM	IATION: S	Site Iden	tifier: 2629CA1	0003 Number:	SDF-3	Site	type: Borehol	e
Distr./Farm No.:	: 135 IS	Si	ite Name	e/Des.: BOREH	OLE SDF-3 : BL	OCK 8			
Region Type:				Regi	on Descr.:DEEF	P FRACTUR	ED AQUIF	ER	
Y Coord. [m]:	-9378.1				Topo-set.: +	Hillside (slope	<u></u>	Depth	<i>[m]:</i> 80.00
X Coord. [m]:	2932721.8	Reg./E	3B.:		-	n use	-)	Col. ht	
Altitude [m]:	1581.11	G-Nr.:				Observation		Drain.	
		within 1 unit			Use applic.: In		nina	Diam.	0
		itioning System			Equipment: N		0	Rep. ir	nst.: JMA
HOLE DIAMI Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	nm] D	Date const.	Comment	
JMA		0.00		30.00	215	-	0011105	CASED TO	0 165
JMA		30.00		80.00	165		0011105	NO CASIN	
CASING DET Date inst. D	TAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Material	Thick [mm	_, .	1	Length W	Hori. Ve lidth dist. dis
20011105	0.00	30.00	165	Other material	2	2			
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas	. Aquif	er type	Info so	urce	Comment
JMA	8.00	9.00	0.30	Estimated					SEEPAGE WA
JMA	17.00	18.00	1.70	Estimated					
JMA	19.00	20.00	0.70	Estimated					
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code	e	Colour Primary	Secondary	Texture		Feature Primary	Secondary
0.00	1.00	OVERBURDEN	٧	Brown	Dark			Clayey	Damp
1.00	2.00	DOLERITE		Grey	Dark			Weathered	Gravel-bearin
2.00	5.00	DOLERITE				Medium to o	coarse	Weathered	Feldspathic
5.00	8.00	DOLERITE		Grey	Greenish	Medium to o		Weathered	Jointed
8.00	13.00	DOLERITE		Grey		Medium to o	coarse	Weathered	Jointed
13.00	14.00			Grey	Dark			Carbonaceou	
14.00 25.00	25.00 27.00	SHALE SANDSTONE		Grey White	Grevish	Fine		Weathered Weathered	Jointed
25.00 27.00		SANDSTONE A	AND SH		Greyisti			Fresh	Gritty Micaceous
46.00		SANDSTONE		White	Greyish	Fine		Fresh	Gritty
54.00		SANDSTONE A	AND SH		Dark			Fresh	<i>,</i>
72.00		SANDSTONE		White	Greyish	Fine		Gritty	Fresh
75.00	80.00	SANDSTONE A	AND SH		Greyish			Fresh	Micaceous
WATER LEV Meth. meas.	'EL: Level s	status P	Piez. Inf	o source		Time mea	s. Sec.	Water lev. [m]	Comment
Electrical contact	t Static		0 Fie	ld checked	20011220	1740	0.00	2.92	SLUGTEST
	TAILS:		Durat.			d. Recovery		rans. Perm. m²/d] [m/d] g	
TESTING DE		started	[s]	intk. [m] I	rate[l/s] [m]	[m] %	[min] [^{II}		Storat. Commen

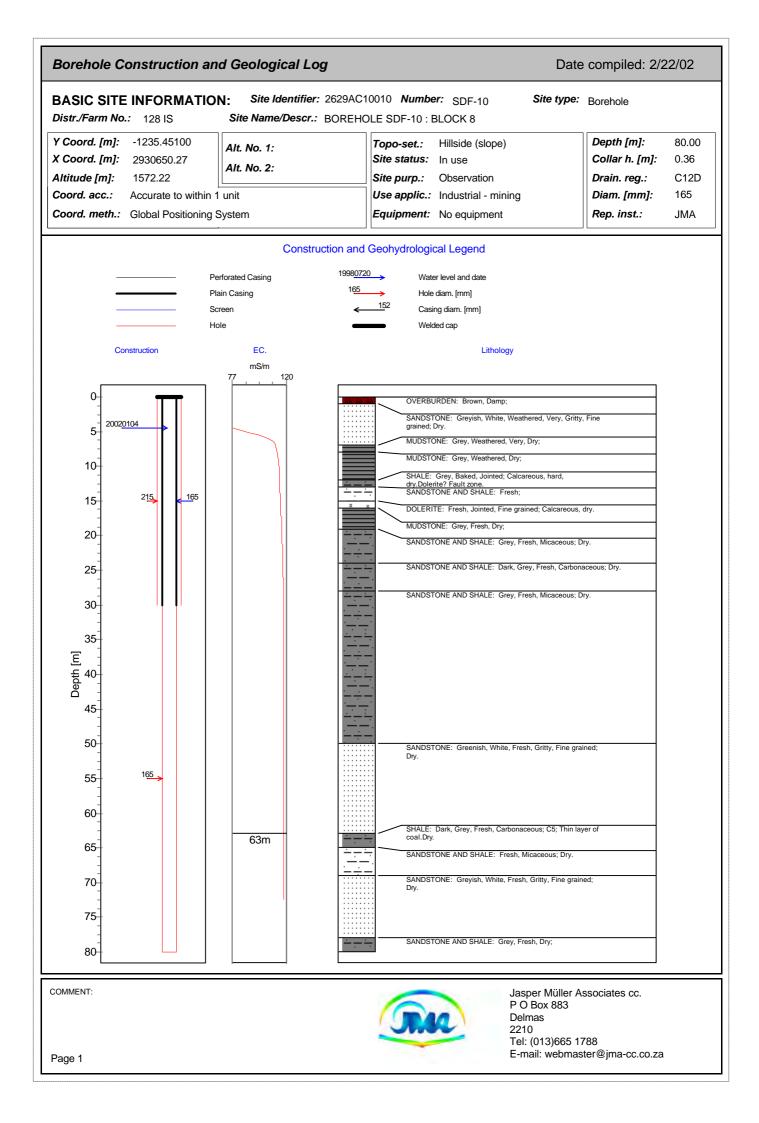

SITE INFOR	MATION	REPORT									Da	te cor	npiled:	2/22/	02
BASIC SITE		IATION:	Site Ide	entifier	2629AC1	0004 N u	ımber:	SDF	-4	Site	type:	Boreł	nole		
Distr./Farm No.	.: 135 IS	3	Site Nan	ne/Des	.: BOREH	OLE SDF	-4 : BL0	OCK 8							
Region Type:					Reg	ion Descr	::DEEF	P FRAC	TURE	D AQUI	FER				
Y Coord. [m]:	oord. [m]: -12273.32					Topo-se	e <i>t.:</i> ⊢	lillside (slope)			Dep	th [m]:	80.	00
X Coord. [m]:	[m]: 2929461.409					Site sta	<i>tus:</i> Ir	n use `	• •			Col.	ht. [m]:	0.3	0
Altitude [m]:	1643.25	G-Nr.	:			Site pu	тр.: С	bservat	tion			Drai	n. reg.:	C12	2D
Coord. acc.:	Accurate to	within 1 unit				Use app	olic.: Ir	ndustria	l - min	ing		Dian	n. [mm]:	165	5
Coord. meth.:	Global Pos	itioning System				Equipm	ent: N	lo equip	ment	U		Rep.	inst.:	JM	A
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]		Dept Bott	h to om [m]	Diam	eter [m	m]	Da	te cons	t.C	omme	nt		
JMA		0.00			30.00		215		20	011121	С	ASED	TO 165		_
JMA		30.00			80.00		165		20	011121	Ν	O CAS	ING		
CASING DE		[m] Bot. [m]	Diam [mm	-	erial		Thick [mm]		ening e		Le	ngth	Width	Hori. dist.	Ver dis
20011121	0.00	25.00	165	5 Stee	:I		2								
20011121	25.00	30.00	165	5 Stee			2								
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	le		Colour Primary	Seco	ndary	Textur	re		Fea Prin	ture nary	Se	condar	y
0.00	1.00	OVERBURDE	N		Brown						San	dy	Da	amp	
1.00	5.00	SANDSTONE			White	Brown	ish	Fine			Wea	athered	Gr	itty	
5.00	6.00	DOLERITE			Grey	Brown	ish				Wea	athered	Jo	inted	
6.00	49.00				Grey	Green	ish				Fres				
49.00	50.00	SANDSTONE			Grey	-		Fine			Gritt			caceou	S
50.00	53.00			–	White	Greyis	sh	Fine			Gritt	, ,		esh	
53.00		SANDSTONE	AND S	HALE	Grey	F .					Fres		Dr	,	
58.00		SHALE			Grey	Dark					Fres			arbonac	
60.00 70.00	70.00 80.00		-	HALE	Grey White	Crowin	. h	Fine			Fres Fres				5
WATER LE			Piez. Ir	nfo sou		Greyis Date		Time	meas.	Sec.		r lev. [n		itty ment	
Electrical contac				ield che			20107	08		0.00		50.37	-	GTEST	
TESTING D		Date started	Durat. [s]	Dep	oth to	Disch. rate[l/s]		I. Reco [m]	overy:		Trans. [m²/d]	Perm			
								1			_	0.002		2.5	

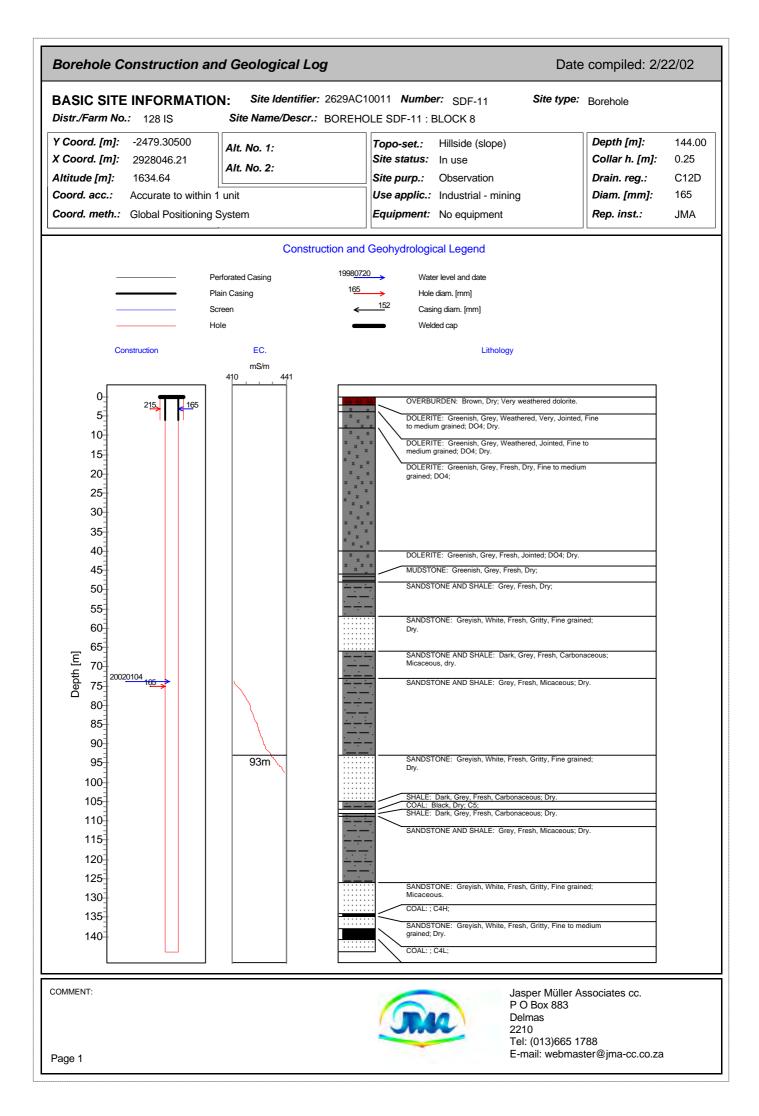

SITE INFORI	MATION	REPORT							Dat	te com	oiled: 2/22	2/02
BASIC SITE	INFORM		Site Ide	ntifier	:2629AC10	0005 Number:	SDF-5	Site	type:	Borehol	e	
Distr./Farm No.:	135 IS	S	ite Nam	e/Des	BOREHO	DLE SDF-5 : BL	OCK 8					
Region Type:					Regio	on Descr.:DEE	P FRACTL	IRED AQUI	FER			
Y Coord. [m]:	-9957.746	Reg./E				Topo-set.: +	lillside (slo	pe)		Depth	[m]: 15	50.00
X Coord. [m]:	2926945.5	07				-	n use	1 - 7		Col. ht	. [m]: 0.2	27
Altitude [m]:	1602.75	G-Nr.:				Site purp.:	Observatior	ı		Drain.	reg.: C1	12D
Coord. acc.:	Accurate to	within 1 unit				Use applic.: In	ndustrial -	mining		Diam.	[mm]: 16	i5
Coord. meth.:	Global Posi	tioning System				Equipment: N	No equipme	ent		Rep. ir	nst.: JN	ЛA
	TED.	Danéh és	_	Dané	h (a							
HOLE DIAMI Rep. Inst.	ETER:	Depth to Top [m]		Dept Bot	n to tom [m]	Diameter [m	nm]	Date cons	t. Co	omment		
JMA		0.00			30.00	215	-	20011127	CA	ASED TO	0 165	
JMA		30.00		1	50.00	165		20011127	NC) CASIN	G	
CASING DET Date inst. D	FAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]		erial	Thick [mm		ng	Len	ngth W	Hori. idth dist.	Ver dis
20011127	0.00	30.00	165	PVC)	2	2					
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Met	hod meas.	. Aquife	er type	Info s	ource		Comment	
JMA	30.00	67.00	0.10	Esti	mated						SEEPAGE	WAT
JMA	76.00	80.00	0.10	Esti	mated						SEEPAGE	WAT
GEOLOGY:	Det [m]	Litheless	_		Colour	Coordona	Tautuma		Feat		Seconda	
Dep. Top [m]	Bot. [m]				Primary	Secondary	Texture		Prim	•	Seconda	iry
0.00 1.00	1.00	OVERBURDEN CLAY	N		Brown Brown	Dark			Claye Dam		Damp	
4.00	4.00 9.00	MUDSTONE			Brown	Yellowish				p thered	Clayey	
9.00	12.00	MUDSTONE			Brown	Greyish				thered	Damp	
12.00	17.00	SANDSTONE	AND SH		Grey	Creyion				thered	Micaceo	us
17.00	48.00	SANDSTONE			White	Greyish	Fine		Fres		Gritty	ae
48.00	57.00	SANDSTONE	AND SH	IALE	Grey				Fres	h	Dry	
57.00	67.00	SANDSTONE			White	Greyish	Fine		Fres	h	Gritty	
67.00	86.00	SANDSTONE	AND SH	IALE	Grey	-			Fres	h	Micaceo	us
86.00	98.00	SANDSTONE			White	Greyish	Fine		Fres	h	Gritty	
98.00	100.00	SANDSTONE	AND SH	IALE	Grey				Fres	h		
100.00	110.00	SANDSTONE			White	Greyish	Fine		Fres	h	Gritty	
110.00	111.00	COAL										
111.00	144.00	SANDSTONE			White	Greyish	Fine		Fres	h	Gritty	
144.00	145.00	COAL										
145.00		SANDSTONE					Fine		Fres	h	Gritty	
149.00	150.00	COAL		_								
WATER LEV Meth. meas.	EL: Level s	status P	Piez. In	fo sou	ırce	Date meas.	Time me	eas. Sec.	Water	lev. [m]	Comment	
Electrical contact				eld che		20020107	1005			9.12	SLUGTES	
TESTING DE		Date started	Durat. [s]	De	pth to		d. Recove	ery:	Trans. [m²/d]	Perm.	Storat. Con	
							,, /					

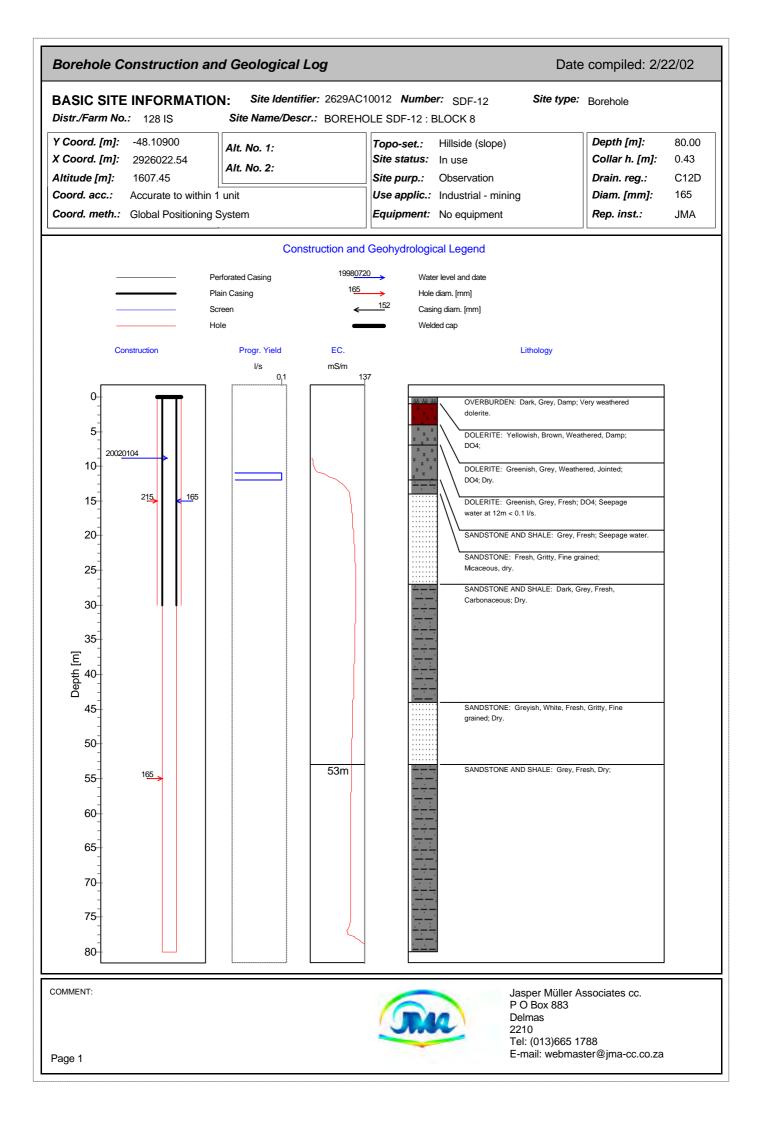

SITE INFORM	ΛΑΤΙΟΝ	REPORT						Date com	piled: 2/22/02
BASIC SITE I	NFORM	IATION: Sin	te Iden	ti fier: 2629AC1	0006 Number:	SDF-6	Site ty	pe: Boreho	le
Distr./Farm No.:	131 IS	Site	Name	/ Des.: BOREH	OLE SDF-6 : BL	OCK 8			
Region Type:				Regi	ion Descr.:DEEF	P FRACTURED	AQUIFE	R	
Y Coord. [m]:	-7745.621				Topo-set.: +	lillside (slope)		Depth	<i>[m]:</i> 80.00
	2931473.1	5 Reg./BE	8.:		-	n use		Col. h	
	1598.84	G-Nr.:				Observation		Drain.	
		within 1 unit				ndustrial - minin	a		[mm]: 165
Coord. meth.:					Equipment: N		9	Rep. i	
					_90.0.00.0				
HOLE DIAME Rep. Inst.	TER:	Depth to Top [m]	l	Depth to Bottom [m]	Diameter [m	m] Date	e const.	Comment	
JMA		0.00		30.00	215	200	11107	CASED TO	J 165
JMA		30.00		80.00	165	200	11107	NO CASIN	IG
CASING DET Date inst. De	AILS: ep. to top		Diam. [mm]	Material	Thick [mm			Length W	Hori. Ver /idth dist. dis
20011107	0.00	30.00	165	Steel	2	2			
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code		Colour Primary	Secondary	Texture		Feature Primary	Secondary
0.00	1.00	OVERBURDEN		Brown				Damp	
1.00	5.00	SANDSTONE		White	Greyish	Fine		Weathered	Gritty
5.00	8.00	DOLERITE		Brown				Weathered	Damp
8.00	12.00	DOLERITE		Grey	Brownish	Fine to medium	n	Weathered	Jointed
12.00	15.00	DOLERITE		Grey	Greenish	Fine to mediun	n	Fresh	Dry
15.00	16.00	SHALE		Grey				Fresh	Baked
16.00	30.00	SANDSTONE AN	ND SHA	LE Grey				Fresh	Micaceous
30.00	44.00	SANDSTONE		White	Greyish	Fine		Fresh	Gritty
44.00	53.00	DOLERITE		Grey	Greenish	Medium		Fresh	Dry
53.00	60.00	SANDSTONE		White	Greyish	Fine		Fresh	Gritty
60.00		SANDSTONE AN	ND SHA	LE Grey				Fresh	Dry
WATER LEVE Meth. meas.	EL: Level s	status Pie	ez. Info	source	Date meas.	Time meas.	Sec. N	/ater lev. [m]	Comment
Electrical contact	Static	0	Fiel	d checked	20011220	1620	0.00	4.04	SLUGTEST
TESTING DE Description	TAILS:		urat. [s]		Disch. Drawo rate[l/s] [m]	l. Recovery: [m] % [ı		ns. Perm. ²/d] [m/d] ;	Storat. Comment

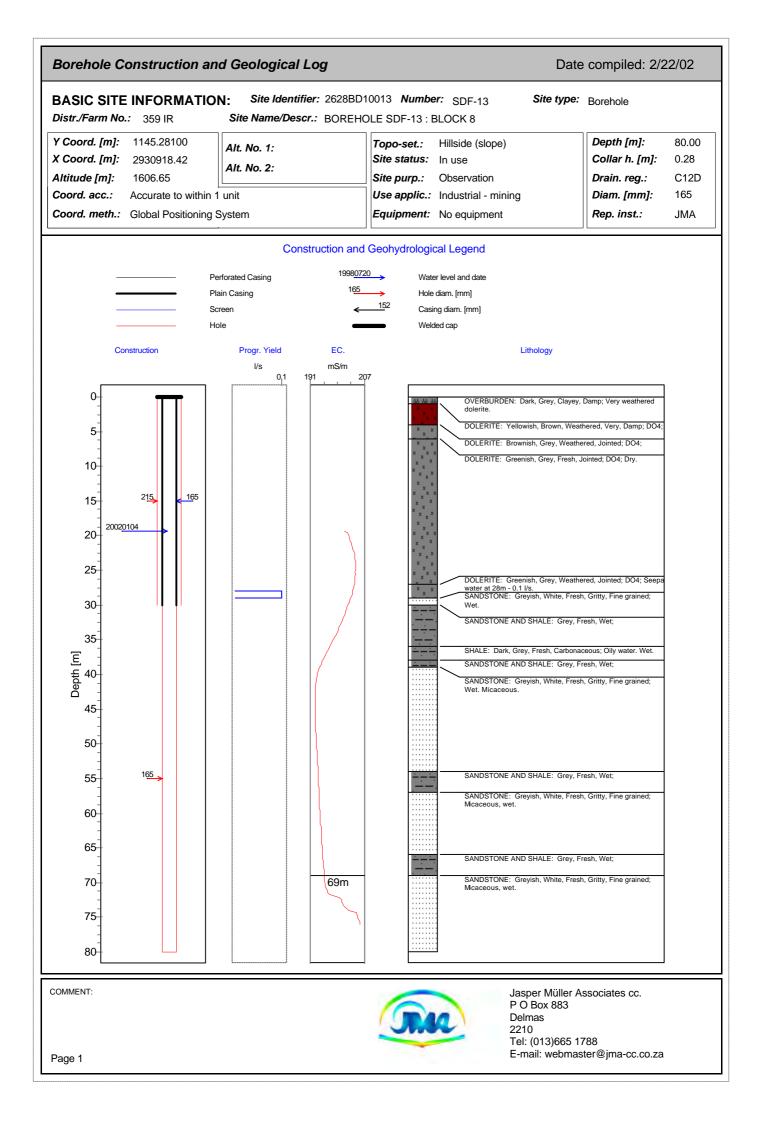

BASIC SITE		IATION:	Site Ide	ntifier	:2629AC10	0007 <i>Number:</i>	SDF-7	Site	type:	Borehol	e	
Distr./Farm No.	.: 131 IS		Site Nam	e/Des	.: BOREHO	DLE SDF-7 : BL	OCK 8					
Region Type:					Regio	on Descr.:DEEF	P FRACTL	JRED AQUI	FER			
Y Coord. [m]:	-6945.279	Bog	/BB.:			Topo-set.: ⊢	lillside (slo	pe)		Depth	[m]: 80	0.00
X Coord. [m]:	2930161.9	41				Site status: Ir	n use			Col. ht	t. [m]: 0.1	37
Altitude [m]:	1580.56	G-Nr	.:			Site purp.: C) bservation	า		Drain.	<i>reg.:</i> C ⁻	12D
Coord. acc.:	Accurate to	within 1 unit				Use applic.: Ir	ndustrial -	mining		Diam.	[mm]: 16	65
Coord. meth.:	Global Pos	itioning System	1			Equipment: N	lo equipme	ent		Rep. ir	nst.: JN	ЛA
HOLE DIAM Rep. Inst.	IETER:	Depth to Top [m]		Dept	h to tom [m]	Diameter [m	m1	Date cons	t Co	mment		
JMA		0.00		Dou	30.00	215	<i></i>	20011114		SED TC	165	
JMA		30.00			80.00	165		20011114				
		50.00	Diam.		00.00	Thick	n. Openi		110	OAOIN	Hori.	Ve
	Dep. to top	[m] Bot. [m]		Mat	erial	[mm]			Leng	gth W	idth dist.	dis
20011114	0.00	30.00	165	Stee	el	2						
AQUIFER:	Depth		Yield									
Rep. Inst.	Top [m]	Bot. [m]	[I/s]	Met	hod meas.	Aquife	er type	Info s	ource		Comment	
JMA	8.00	10.00	1.00		mated							
JMA	17.00	18.00	19.00		mated							
JMA	41.00	43.00	10.00	Esti	mated							
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de		Colour Primary	Secondary	Texture		Featu Prima		Seconda	ary
0.00	1.00	OVERBURDE	EN		Black				Claye	y	Damp	
1.00	4.00	CLAY			Brown	Yellowish			Sandy	/	Damp	
4.00	5.00	SANDSTONE	2		White	Greyish	Fine		Weat	nered	Gritty	
5.00	8.00	SANDSTONE	Ξ		White	Greyish	Fine		Weat	nered	Gritty	
8.00	18.00	DOLERITE			Grey	Greenish	Fine to m	edium	Weat	nered	Fresh	
18.00	24.00	SANDSTONE	Ξ		White	Greyish	Fine		Weat	nered	Gritty	
24.00	28.00	SANDSTONE	1		White	Greyish	Fine		Weat	nered	Gritty	
28.00	29.00	SANDSTONE	AND SH	IALE	Grey	Dark			Fresh		Carbona	ceou
29.00	35.00	SANDSTONE	÷		White	Greyish	Fine		Fresh		Gritty	
		SANDSTONE		IALE	Grey				Fresh		Micaceo	us
35.00	27.00	SANDSTONE	-		White	Greyish	Fine		Fresh		Gritty	
36.00									Fresh		Carbona	ceou
36.00 37.00	38.00	SHALE			Grey	Dark	-				Gritty	
36.00 37.00 38.00	38.00 41.00	SHALE SANDSTONE			Grey White	Dark Greyish	Fine		Fresh			
36.00 37.00 38.00 41.00	38.00 41.00 43.00	SHALE SANDSTONE SANDSTONE	E AND SH	IALE	White	Greyish			Weat	nered	Jointed	
36.00 37.00 38.00 41.00 43.00	38.00 41.00 43.00 44.00	SHALE SANDSTONE SANDSTONE SANDSTONE	E AND SH		White		Fine Fine		Weat Fresh	nered	Gritty	
36.00 37.00 38.00 41.00 43.00 44.00	38.00 41.00 43.00 44.00 67.00	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	E AND SH E E AND SH		White White Grey	Greyish Greyish	Fine		Weath Fresh Fresh	nered	Gritty Micaceo	us
36.00 37.00 38.00 41.00 43.00 44.00 67.00	38.00 41.00 43.00 44.00 67.00 69.00	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	E AND SH E E AND SH	IALE	White White Grey White	Greyish			Weath Fresh Fresh Fresh	nered	Gritty Micaceo Gritty	
36.00 37.00 38.00 41.00 43.00 44.00 67.00 69.00	38.00 41.00 43.00 44.00 67.00 69.00 77.00	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	E AND SH E AND SH E AND SH	IALE	White White Grey White Grey	Greyish Greyish Greyish	Fine Fine		Weatt Fresh Fresh Fresh Fresh	nered	Gritty Micaceo Gritty Micaceo	
36.00 37.00 38.00 41.00 43.00 44.00 67.00 69.00 77.00	38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	E AND SH E AND SH E AND SH	IALE	White White Grey White	Greyish Greyish	Fine		Weath Fresh Fresh Fresh	nered	Gritty Micaceo Gritty	
36.00 37.00 38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 WATER LEV	38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 80.00 VEL:	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE COAL	E AND SH E E AND SH E E AND SH	IALE	White White Grey White Grey White	Greyish Greyish Greyish Greyish	Fine Fine Fine		Weatt Fresh Fresh Fresh Fresh	nered	Gritty Micaceo Gritty Micaceo Gritty	us
36.00 37.00 38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 WATER LEY Meth. meas.	38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 80.00 VEL: <i>Level</i> 3	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE COAL	AND SH AND SH AND SH AND SH Piez. In	IALE IALE	White White Grey White Grey White	Greyish Greyish Greyish Greyish Date meas.	Fine Fine Fine		Weatt Fresh Fresh Fresh Fresh	ev. [m]	Gritty Micaceo Gritty Micaceo Gritty Comment	us
36.00 37.00 38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 WATER LEY Meth. meas.	38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 80.00 VEL: <i>Level</i> static	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE COAL	AND SH AND SH AND SH AND SH Piez. In 0 Fie	IALE IALE fo sou	White White Grey White Grey White	Greyish Greyish Greyish Greyish Date meas. 20011221	Fine Fine Fine Time me 1310	0.00	Weatt Fresh Fresh Fresh Fresh	nered ev. [m] 1.59	Gritty Micaceo Gritty Micaceo Gritty	us
36.00 37.00 38.00 41.00 43.00 44.00 67.00 69.00 77.00	38.00 41.00 43.00 44.00 67.00 69.00 77.00 79.00 80.00 VEL: <i>Level</i> static	SHALE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE SANDSTONE COAL	AND SH AND SH AND SH AND SH Piez. In	IALE IALE fo sou	White White Grey White Grey White	Greyish Greyish Greyish Greyish Date meas. 20011221	Fine Fine Fine Time me 1310 d. Recove	0.00 ery:	Weatt Fresh Fresh Fresh Fresh Water I	ev. [m] 1.59 Perm.	Gritty Micaceo Gritty Micaceo Gritty Comment	us T

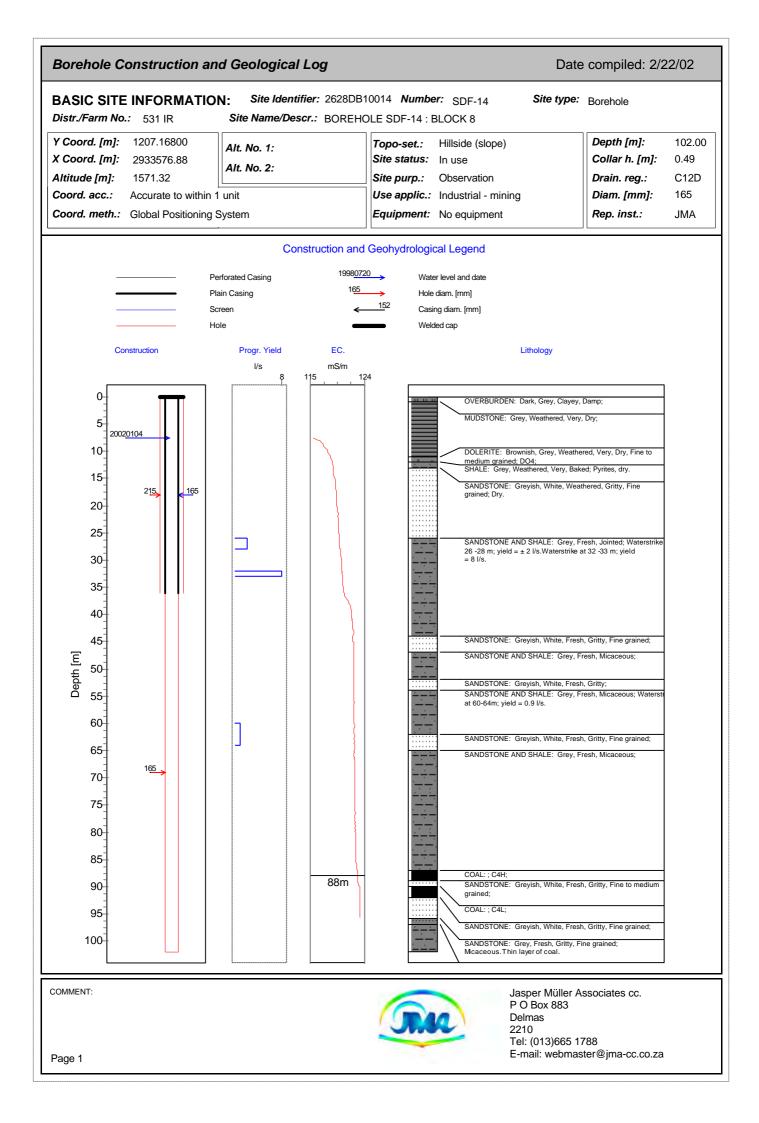

	MATION	REPOR	RT						Date comp	iled: 2/22/02
BASIC SITE	INFORM	IATION:	Site I	dentifie	er: 2629CA1	008 <i>Number:</i>	SDF-8	Site	type: Borehole	•
Distr./Farm No.:	: 130 IS		Site N	ame/De	es.: BOREHO	DLE SDF-8 : BL	OCK 8			
Region Type:					Regio	on Descr.:DEE	P FRACTURE	D AQUIF	ER	
Y Coord. [m]:	-4384.176				_	Topo-set.: +	Hillside (slope)		Depth [m]: 84.00
X Coord. [m]:	2935039.7		Reg./BB.:			Site status:	· · · /		Col. ht.	
Altitude [m]:	1580.77	0	G-Nr.:				Observation		Drain. r	
	Accurate to	within 1 ur	nit			Use applic.: I		na	Diam. [I	0
	Global Pos					Equipment:			Rep. ins	-
ooora. mean	01000011 03		biom			Equipment.	to equipment			3
HOLE DIAM	ETER:	Depth Top [n			oth to ottom [m]	Diameter [m	uml Da	te const.	Comment	
JMA		0.0	-		30.00	215	-	011108	CASED TO	165
JMA		30.0			84.00	165	-	011108	NO CASING	
CASING DE	TAILS: Dep. to top		Dia [m] [m]		aterial	Thick [mm	n. Opening			Hori. Ve dth dist. dis
20011108	0.00	30.0		-	eel	. 2	•		U U	
							-			
AQUIFER:	Depth	to	Yie	ld						
	Depth Top [m]	to Bot. [m			ethod meas.	Aquife	er type	Info so	urce	Comment
AQUIFER: <i>Rep. Inst.</i> JMA	•		n] [l/s	s] M	ethod meas. stimated	Aquife	er type	Info so	urce	
Rep. Inst. JMA JMA	Тор [m]	Bot. [m	[] [] /s	5] M .10 Es		Aquif	er type	Info so	urce	Comment SEEPAGE WAT
Rep. Inst. JMA JMA	Top [m] 12.00	Bot. [m 13.00	a] [l/ s) 0.	5] M .10 Es	stimated	Aquifo	er type Texture	Info so	urce Feature Primary	
Rep. Inst. JMA JMA GEOLOGY:	Top [m] 12.00 27.00	Bot. [m 13.00 28.00	n] [l/ s) 0.) 0. / code	5] M .10 Es	stimated stimated Colour			Info so	Feature	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m]	Top [m] 12.00 27.00 Bot. [m]	Bot. [m 13.00 28.00 Lithology OVERBU	n] [l/ s) 0.) 0. / code	5] M .10 Es .50 Es	stimated stimated Colour Primary Brown			Info so	Feature Primary	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00	Top [m] 12.00 27.00 Bot. [m] 1.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO	6] [1/s 0 0. 0 0. / code RDEN	5] M .10 Es .50 Es	stimated stimated Colour Primary Brown Brown	Secondary		Info so	<i>Feature</i> <i>Primary</i> Gravel-bearing	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO	n] [<i>I</i> /s) 0.) 0. / <i>code</i> RDEN ONE AND	5] M .10 Es .50 Es SHALE SHALE	stimated stimated Colour Primary Brown Brown Brown Brown	Secondary Yellowish		Info so	<i>Feature</i> <i>Primary</i> Gravel-bearing Weathered	SEEPAGE WA Secondary Damp
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO	I [I/s] 0 0. 0 0. 7 code RDEN ONE AND ONE AND ONE AND ONE AND ONE AND	5] M .10 Es .50 Es SHALE SHALE	stimated stimated Colour Primary Brown E Brown E Brown	Secondary Yellowish		Info so	Feature Primary Gravel-bearing Weathered Weathered	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO	I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. ONE AND 0. ONE AND 0. ONE AND 0.	5] M .10 Es .50 Es SHALE SHALE	stimated stimated Colour Primary Brown Brown Brown Brown Grey	Secondary Yellowish Greyish	Texture	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh	SEEPAGE WA Secondary Damp Clayey
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00 18.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO	I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. ONE AND 0. ONE AND 0. ONE AND 0. ONE AND 0. ONE TE 0.	5] M .10 Es .50 Es SHALE SHALE	timated timated Colour Primary Brown Brown Brown Brown Grey White	Secondary Yellowish Greyish Greyish	Texture	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00 18.00 27.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT	I [1/3] 0 0 0 0 7 code RDEN 0 ONE AND 0 ONE AND 0 ONE AND 0 ONE	5] M .10 Es .50 Es SHALE SHALE	stimated stimated Colour Primary Brown Brown Brown Brown Grey White White	Secondary Yellowish Greyish Greyish Greyish	Texture	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00 27.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00 18.00 27.00 28.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT	I [1/3] 0 0 0 0 7 code RDEN 0 ONE AND 0 ONE AND 0 ONE AND 0 ONE AND ONE E E E E E	5] M .10 Es .50 Es SHALE SHALE	timated timated Colour Primary Brown Brown Brown Brown Grey White White White	Secondary Yellowish Greyish Greyish Greyish Greyish	Texture	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Jointed	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00 27.00 28.00 45.00 51.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00 18.00 27.00 28.00 45.00 51.00 70.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT SANDSTO SANDSTO	I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. 0 0. 7 code RDEN 0. 0 0.	SHALE SHALE	timated timated Colour Primary Brown Brown Brown Brown Grey White White White White White White	Secondary Yellowish Greyish Greyish Greyish Greyish Greyish	<i>Texture</i> Fine	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Jointed Fresh	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00 27.00 28.00 45.00 51.00 70.00	Top [m] 12.00 27.00 Bot. [m] 1.00 <td>Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT SANDSTO SANDSTO</td> <td>I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. 0 0. 7 code RDEN 0. 0 0.</td> <td>SHALE SHALE</td> <td>timated timated Colour Primary Brown Brown Brown Brown Grey White White White White White White</td> <td>Secondary Yellowish Greyish Greyish Greyish Greyish Greyish</td> <td><i>Texture</i> Fine</td> <td>Info so</td> <td>Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Jointed Fresh Fresh Fresh</td> <td>SEEPAGE WA</td>	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT SANDSTO SANDSTO	I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. 0 0. 7 code RDEN 0. 0 0.	SHALE SHALE	timated timated Colour Primary Brown Brown Brown Brown Grey White White White White White White	Secondary Yellowish Greyish Greyish Greyish Greyish Greyish	<i>Texture</i> Fine	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Jointed Fresh Fresh Fresh	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00 27.00 28.00 45.00 51.00	Top [m] 12.00 27.00 Bot. [m] 1.00 <td>Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT SANDSTO SANDSTO</td> <td>I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. 0 0. 7 code RDEN 0. 0 0.</td> <td>SHALE SHALE</td> <td>stimated stimated Colour Primary Brown Brown Brown Brown Grey White White White White White White White White White Grey</td> <td>Secondary Yellowish Greyish Greyish Greyish Greyish Greyish Greyish</td> <td>Texture Fine</td> <td>Info so</td> <td>Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Jointed Fresh Fresh Fresh Fresh</td> <td>SEEPAGE WA</td>	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT SANDSTO SANDSTO	I [1/5] 0 0. 0 0. 0 0. 7 code RDEN 0. 0 0. 7 code RDEN 0. 0 0.	SHALE SHALE	stimated stimated Colour Primary Brown Brown Brown Brown Grey White White White White White White White White White Grey	Secondary Yellowish Greyish Greyish Greyish Greyish Greyish Greyish	Texture Fine	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Jointed Fresh Fresh Fresh Fresh	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00 27.00 28.00 45.00 51.00 70.00 72.00 74.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00 27.00 28.00 45.00 51.00 70.00 72.00 74.00 84.00	Bot. [m 13.00 28.00 Lithology OVERBU SANDSTO SANDSTO SANDSTO DOLERIT DOLERIT SANDSTO SANDSTO	I [V:s] 0 0 0 0 7 code RDEN 0 ONE AND ONE AND ONE AND ONE TE TE ONE AND ONE TE ONE AND ONE ONE	SHALE SHALE SHALE SHALE	timated timated Colour Primary Brown Brown Brown Grey White	Secondary Yellowish Greyish Greyish Greyish Greyish Greyish Greyish	Texture Fine	Info so	Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Fresh Fresh Fresh Fresh Fresh Fresh	SEEPAGE WA
Rep. Inst. JMA JMA GEOLOGY: Dep. Top [m] 0.00 1.00 5.00 15.00 16.00 18.00 27.00 28.00 45.00 51.00 70.00 72.00	Top [m] 12.00 27.00 Bot. [m] 1.00 5.00 15.00 16.00 27.00 28.00 45.00 51.00 70.00 72.00 74.00 84.00	Bot. [m 13.00 28.00 UERBU SANDSTO SANDSTO SANDSTO SANDSTO SANDSTO SANDSTO SANDSTO SANDSTO SANDSTO	I [1/3] 0 0 0 0 7 code RDEN 0 ONE AND	SHALE SHALE SHALE SHALE	timated timated timated Colour Primary Brown Brown Brown Grey White White White White White White Grey White Grey White Grey White Grey White Grey White Grey White Grey White Grey White Grey White Colour Colour Primary White White Colour Colour Primary White Colour Colour Primary White White Colour Colour Primary White White Colour Colour Primary White Colour Colour Primary White Colour Colour Primary White Colour Colour Primary White Colour Colour Colour Primary Colour Colour Colour Colour Primary White Colour Co	Secondary Yellowish Greyish Greyish Greyish Greyish Greyish Greyish	Texture Fine Fine		Feature Primary Gravel-bearing Weathered Weathered Fresh Fresh Fresh Fresh Fresh Fresh Fresh Fresh Fresh	SEEPAGE WA

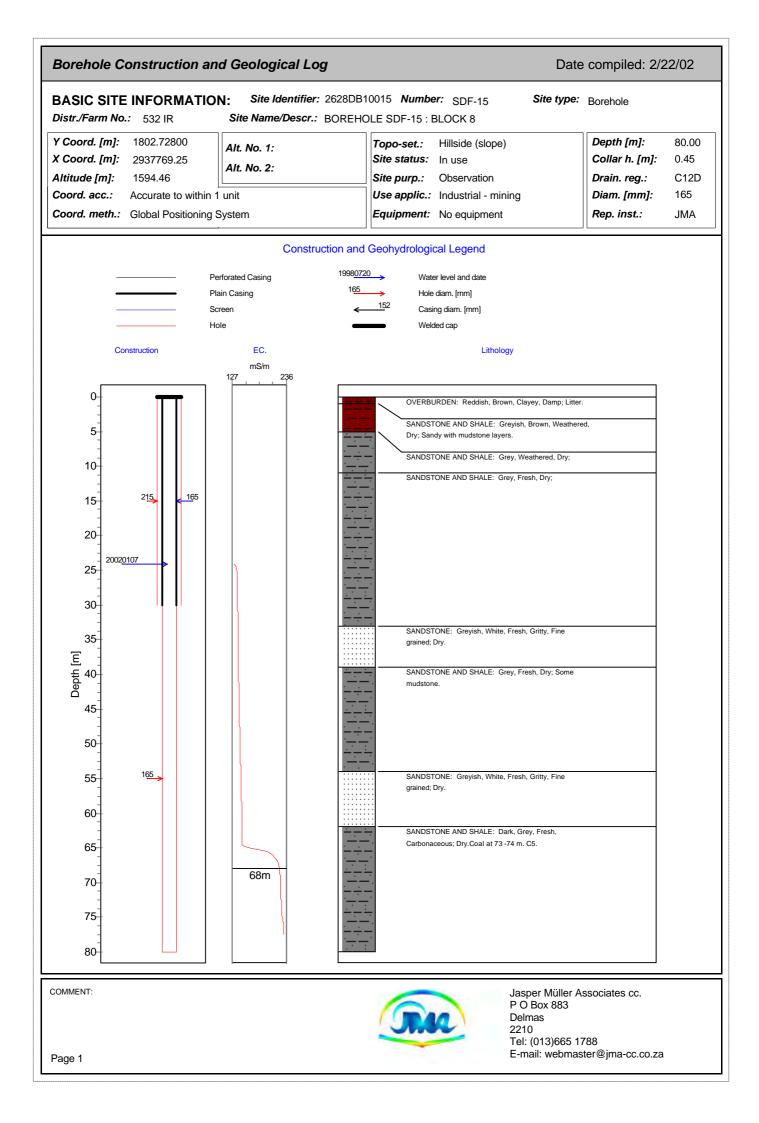

SITE INFOR	MATION	REPORT					Da	ate compil	led: 2/22/02
BASIC SITE	INFORM	IATION:	Site Iden	tifier: 2629CA1	0009 <i>Number:</i>	SDF-9	Site type:	Borehole	
Distr./Farm No.:	130 IS	ę	Site Name	Des.: BOREH	OLE SDF-9 : BL	OCK 8			
Region Type:				Regie	on Descr.:DEE	P FRACTURE	D AQUIFER		
Y Coord. [m]:	-2885.659	Der	/DD -		Topo-set.: +	Hillside (slope)		Depth [n	n]: 80.00
X Coord. [m]:	2934021.1	26 Reg. /			-	n use		Col. ht. [[m]: 0.47
Altitude [m]:	1568.90	G-Nr.	:		Site purp.:	Observation		Drain. re	 C12D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: In	ndustrial - min	ing	Diam. [n	16 5 וווו
Coord. meth.:	Global Posi	itioning System			Equipment: N	Vo equipment		Rep. ins	<i>t.:</i> JMA
HOLE DIAMI Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	nm] De	ate const. (Comment	
JMA		0.00		30.00	215	20	011108 0	CASED TO 1	65
JMA		30.00		80.00	165	20	011108	O CASING	
CASING DET Date inst.	FAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Material	Thick [mm		Le	ength Wid	Hori. Ve th dist. dis
20011108	0.00	30.00	165	Steel	2	2			
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas	. Aquif	er type	Info source	(Comment
JMA	72.00	72.00	0.20	Estimated					
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	le	Colour Primary	Secondary	Texture		ature mary	Secondary
0.00	1.00	OVERBURDE	N	Brown			Cla	yey	Damp
1.00	7.00	CLAY		Brown			Sar	ndy	Damp
7.00	9.00	SANDSTONE		White	Greyish	Fine	We	athered	Gritty
9.00	18.00	SANDSTONE		White	Greyish	Fine	We	athered	Gritty
18.00	22.00	SHALE		Grey	Dark		Fre	sh	Carbonaceou
22.00	41.00	SANDSTONE		White	Greyish	Fine	Fre	sh	Gritty
41.00	42.00	DOLERITE		Green	Greyish	Medium to co	barse Fre	sh	Dry
42.00	45.00	SANDSTONE	AND SH	ALE Grey			Fre	sh	Dry
45.00	48.00	SANDSTONE		White	Greyish	Fine	Fre		Gritty
48.00		SANDSTONE		Grey	Greenish	Fine	Fre		Gritty
54.00		SHALE		Grey	Dark		Fre		Carbonaceou
55.00		SANDSTONE		,		-	Fre		Dry
57.00		SANDSTONE		White	Greyish	Fine	Fre		Gritty
70.00		SANDSTONE			Crossie	Fine	Fre		Critte
73.00 VATER LEV	EL:	SANDSTONE		White	Greenish	Fine	Fre		Gritty
Meth. meas.	Level s	status	Piez. Info			Time meas		er lev. [m] (
Electrical contact		Date started	0 Fiel Durat. [s]		20011221 Disch. Drawo rate[l/s] [m]	1440 d. Recovery. [m] %	0.00 Trans. [min] [m²/d]	Perm.	SLUGTEST
Description						1111 /0			nat. commen

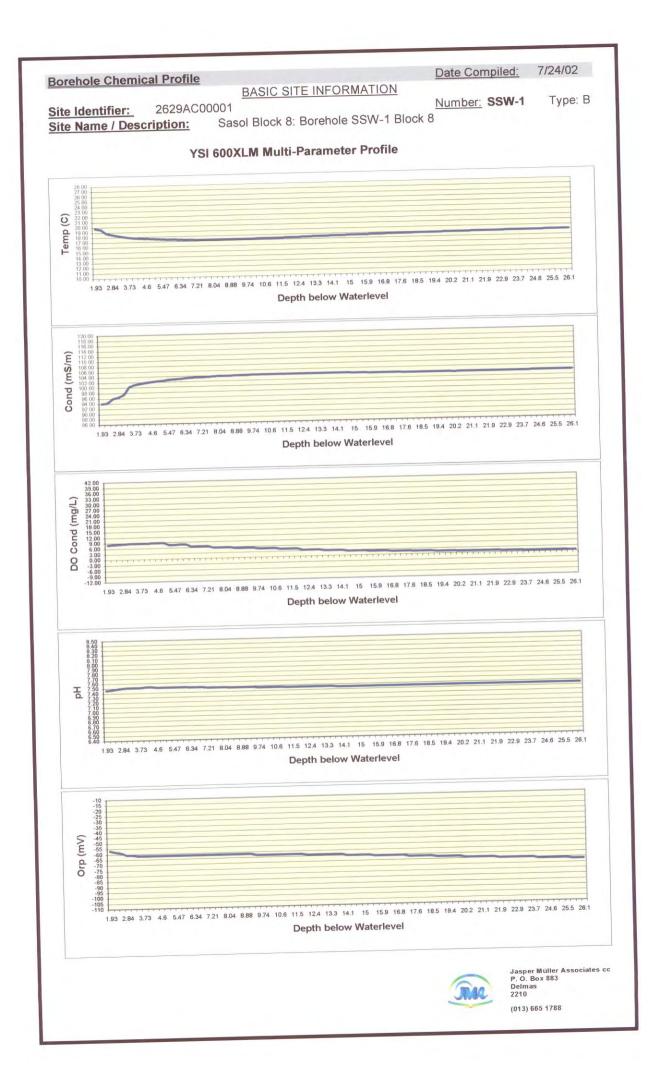

SITE INFOR	MATION	REPORT				Date com	piled: 2/22/02
BASIC SITE	INFORM	IATION: Site	Identifier: 2629AC	10010 Number:	SDF-10 Site	type: Borehol	e
Distr./Farm No.:	128 IS	Site I	Name/Des.: BORE	HOLE SDF-10 : BL	OCK 8		
Region Type:			Reg	gion Descr.:DEEP	FRACTURED AQUI	-ER	
Y Coord. [m]:	-1235.451	Reg./BB.:		Topo-set.: H	illside (slope)	Depth	[m]: 80.00
X Coord. [m]:	2930650.2	69		11 -	use	Col. ht	t. [m]: 0.36
Altitude [m]:	1572.22	G-Nr.:		Site purp.: O	bservation	Drain.	reg.: C12D
Coord. acc.:	Accurate to	within 1 unit		Use applic.: In	dustrial - mining	Diam.	[mm]: 165
Coord. meth.:	Global Posi	tioning System		Equipment: N	o equipment	Rep. ir	nst.: JMA
					••		
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]	Depth to Bottom [m]	Diameter [mi	m] Date const	t. Comment	
JMA		0.00	30.00	215	20011112	CASED TO) 165
JMA		30.00	80.00	165	20011112	NO CASIN	G
CASING DET Date inst. D	FAILS: Dep. to top		am. nm] Material	Thickr [mm]		Length W	Hori. Ve lidth dist. dis
20011112	0.00	30.00	165 Steel	2			
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code	Colour Primar		Texture	Feature Primary	Secondary
0.00	1.00	OVERBURDEN	Brown			Damp	
1.00	7.00	SANDSTONE	White	Greyish	Fine	Weathered	Gritty
7.00	8.00	MUDSTONE	Grey			Weathered	Dry
8.00	12.00	MUDSTONE	Grey			Weathered	Dry
12.00	13.00	SHALE	Grey			Baked	Jointed
13.00	15.00	SANDSTONE AND) SHALE			Fresh	
15.00	16.00	DOLERITE			Fine	Fresh	Jointed
16.00	19.00	MUDSTONE	Grey			Fresh	Dry
19.00	24.00	SANDSTONE AND	,			Fresh	Micaceous
24.00	28.00	SANDSTONE AND	,	Dark		Fresh	Carbonaceou
28.00	50.00	SANDSTONE AND	,	o · · ·	-	Fresh	Micaceous
50.00	63.00	SANDSTONE	White		Fine	Fresh	Gritty
63.00		SHALE	Grey	Dark		Fresh	Carbonaceou
65.00 69.00		SANDSTONE AND SANDSTONE		Greyish	Fino	Fresh Fresh	Micaceous
69.00 78.00		SANDSTONE SANDSTONE AND	White SHALE Grev	GreyISH	Fine	Fresh	Gritty Dry
WATER LEV			GIALL GIEY			11001	
Meth. meas.	Level s	status Piez	Info source	Date meas.	Time meas. Sec.	Water lev. [m]	Comment
Electrical contact	Static	0	Field checked	20020104	1250 0.00	4.43	SLUGTEST
TESTING DE Description	TAILS:	Date Dur started [s		Disch. Drawd rate[l/s] [m]	•	Trans. Perm. [m²/d] [m/d] g	Storat. Commen
SLUGTEST		20020104 180				0.004	

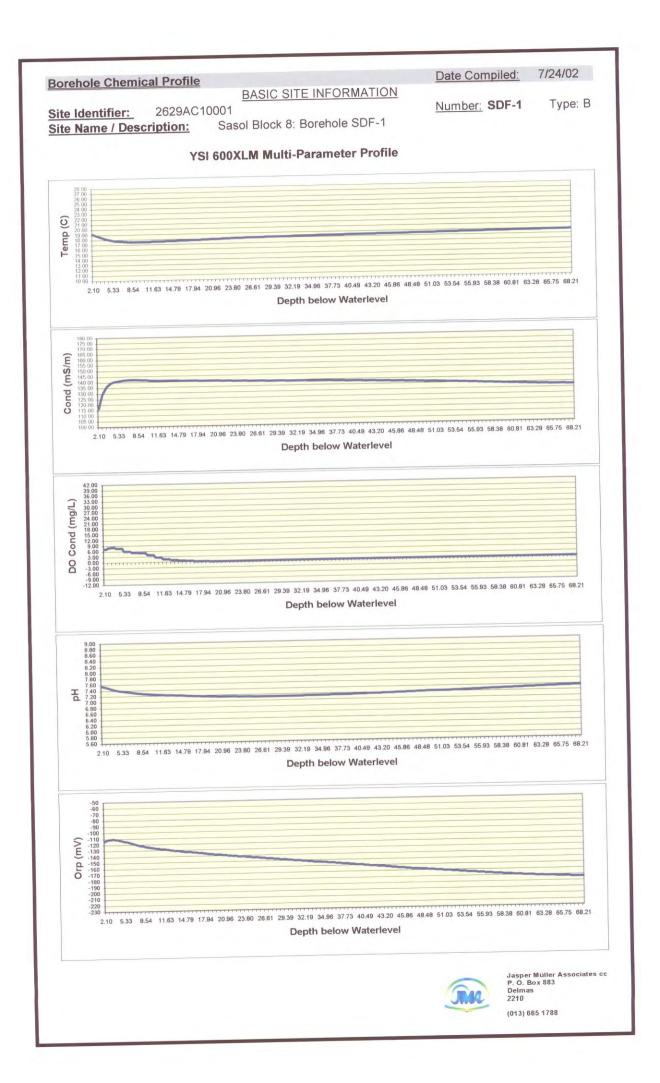

	WATION	REPORT								Dat	e com	piled:	: 2/22	/02
BASIC SITE	INFORM	IATION: s	Site Ider	ntifier	:2629AC1	0011 Number :	SDF-	11	Site ty	/pe:	Boreho	le		
Distr./Farm No.:	128 IS	Si	te Nam	e/Des	.: BOREH	OLE SDF-11 : B	LOCK 8							
Region Type:					Regi	on Descr.:DEE	P FRAC	URED /	AQUIFE	R				
Y Coord. [m]:	-2479.305		_			Topo-set.:	Hillside (s				Depth	[m]:	14	4.00
	2928046.2	06 Reg./B	B.:			•	n use	iopc)			-	t. [m]:		
	1634.64	G-Nr.:					 Observati	on			Drain.			2D
		within 1 unit]	Use applic.:						[mm]:	_	
								0						
Coord. meth.: (GIODAI POSI	tioning System				Equipment:	vo equipi	neni			Rep. i	nst.:	JM	A
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Dept Bot	h to tom [m]	Diameter [n	nm]	Date	const.	Co	omment			
IMA		0.00			6.00	215		2001	1126	CA	SED TO	J 165		
IMA		6.00		1	44.00	165		2001	1126	NC	CASIN	IG		
CASING DET	AILS:	[m] Bot. [m]	Diam. [mm]	Mat	erial	Thick [mm		•		Len	gth V	Vidth	Hori. dist.	Ve di
20011126	0.00	6.00	165	PVC)	2	2							
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code	•		Colour Primary	Secondary	Textur	9		Feati Prim		Se	conda	ry
0.00	2.00	OVERBURDEN	I		Brown					Dry				
2.00	4.00	DOLERITE			Grey	Greenish	Fine to	medium		Weat	hered	Jo	ointed	
4.00	8.00	DOLERITE			Grey	Greenish	Fine to	medium		Weat	hered	Jo	ointed	
8.00	40.00	DOLERITE			Grey	Greenish	Fine to	medium		Fresh	า	Dr	ry	
40.00	46.00	DOLERITE			Grey	Greenish				Fresh	ו	Jo	ointed	
46.00	48.00	MUDSTONE			Grey	Greenish				Fresh	า	Dr	ry	
48.00	57.00	SANDSTONE A	AND SH	ALE	Grey					Fresh	ı	Dr	ry	
57.00	66.00	SANDSTONE			White	Greyish	Fine			Fresh	า	Gr	ritty	
66.00	73.00	SANDSTONE A	AND SH	ALE	Grey	Dark				Fresh	۱	Ca	arbonad	ceou
73.00	93.00	SANDSTONE A	AND SH	ALE	Grey					Fresh	۱	Mi	icaceou	JS
93.00	105.00	SANDSTONE			White	Greyish	Fine			Fresh	۱	Gr	ritty	
105.00	107.00	SHALE			Grey	Dark				Fresh	۱	Ca	arbonad	ceou
107.00	108.00	COAL			Black					Dry				
108.00	109.00	SHALE			Grey	Dark				Fresh	ı	Ca	arbonad	ceou
109.00	126.00	SANDSTONE A	AND SH	ALE	Grey					Fresh	ı	Mi	icaceou	JS
126.00		SANDSTONE			White	Greyish	Fine			Fresh	ı	Gr	ritty	
134.00	135.00													
135.00		SANDSTONE			White	Greyish	Fine to	medium		Fresh	۱	Gr	ritty	
138.00	141.00													
141.00		SANDSTONE		_	White	Greyish	Fine			Fresh	۱ 	Gr	ritty	
NATER LEV Weth. meas.	EL: Level s	status P	iez. Inf	ο soι	ırce	Date meas.	Time ı	neas. S	ec. I	Nater	lev. [m]	Con	nment	
Electrical contact	Static		0 Fie	ld che		20020104	09′	0	0.00		73.86	SLU	GTEST	Г
TESTING DE Description	TAILS:	Date I started	Durat. [s]			Disch. Draw rate[l/s] [m]	d. Reco [m]	-	-		Perm.		. Com	

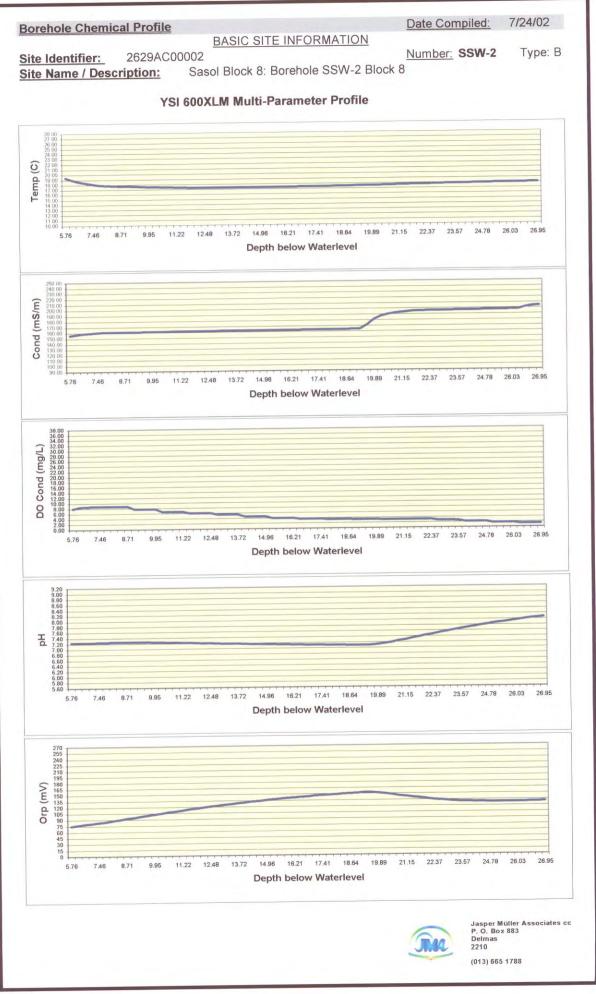

	MATION	REPORT						Date com	npiled: 2/22/02
BASIC SITE	INFORM	IATION:	Site Ide	ntifier: 2629AC1	0012 Number:	SDF-12	Site	type: Boreho	ble
Distr./Farm No.:	128 IS	:	Site Nam	ne/Des.: BOREH	OLE SDF-12 : BI	LOCK 8			
Region Type:				Regi	on Descr.:DEEF	FRACTUR	ED AQUII	FER	
Y Coord. [m]:	-48.109	Dem	/ .		Topo-set.: H	lillside (slope)	Depth	h [m]: 80.00
X Coord. [m]:	2926022.5	41 Reg. /			Site status: In	· ·	/	Col. h	nt. [m]: 0.43
Altitude [m]:	1607.45	G-Nr.	:		Site purp.: C	bservation		Drain	. reg.: C12D
Coord. acc.:	Accurate to	within 1 unit			Use applic.: Ir	ndustrial - mii	ning	Diam.	. [mm]: 165
Coord. meth.:	Global Posi	tioning System			Equipment: N	lo equipment		Rep. i	inst.: JMA
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] D	ate cons	t. Comment	t
JMA		0.00		30.00	215	2	0011109	CASED T	O 165
JMA		30.00		80.00	165	2	0011109	NO CASI	NG
CASING DET Date inst. D	FAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]		Thick [mm]			Length V	Hori. Ve Vidth dist. dis
20011109	0.00	30.00	165	Steel	2				
AQUIFER:	Depth	to	Yield						
Rep. Inst.	Top [m]	Bot. [m]	[l/s]	Method meas	. Aquife	er type	Info s	ource	Comment
Rep. Inst. JMA	Top [m] 11.00				. Aquife	er type	Info se	ource	Comment
JMA GEOLOGY:		Bot. [m]	[I/s] 0.10		. Aquife Secondary	er type Texture	Info se	ource Feature Primary	Comment Secondary
JMA GEOLOGY:	11.00	Bot. [m] 12.00	[I/s] 0.10 de	Estimated			Info se	Feature	
JMA GEOLOGY: Dep. Top [m]	11.00 Bot. [m]	Bot. [m] 12.00 Lithology cod	[I/s] 0.10 de	Estimated Colour Primary	Secondary		Info se	Feature Primary	
JMA GEOLOGY: <i>Dep. Top [m]</i> 0.00 1.00 4.00	11.00 Bot. [m] 1.00 4.00 7.00	Bot. [m] 12.00 Lithology cod OVERBURDE DOLERITE DOLERITE	[I/s] 0.10 de	Estimated Colour Primary Grey Brown Grey	Secondary Dark Yellowish Greenish		Info se	Feature Primary Damp Weathered Weathered	Secondary
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00	11.00 Bot. [m] 1.00 4.00 7.00 12.00	Bot. [m] 12.00 DVERBURDE DOLERITE DOLERITE DOLERITE	[I/s] 0.10 de EN	Estimated Colour Primary Grey Brown Grey Grey	Secondary Dark Yellowish		Info se	Feature Primary Damp Weathered Weathered Fresh	Secondary Damp
JMA GEOLOGY: <i>Dep. Top [m]</i> 0.00 1.00 4.00 7.00 12.00	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00	Bot. [m] 12.00 Lithology cod OVERBURDE DOLERITE DOLERITE SANDSTONE	[1/s] 0.10 de N	Estimated Colour Primary Grey Brown Grey Grey	Secondary Dark Yellowish Greenish	Texture	Info se	Feature Primary Damp Weathered Weathered Fresh Fresh	Secondary Damp Jointed
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00 12.00 14.00	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00 27.00	Bot. [m] 12.00 Lithology cod OVERBURDE DOLERITE DOLERITE SANDSTONE SANDSTONE	[//s] 0.10 de N	Estimated Colour Primary Grey Brown Grey Grey HALE Grey	Secondary Dark Yellowish Greenish Greenish		Info se	Feature Primary Damp Weathered Weathered Fresh Fresh Fresh	Secondary Damp Jointed Gritty
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00 12.00 14.00 27.00	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00 27.00 44.00	Bot. [m] 12.00 DVERBURDE DOLERITE DOLERITE DOLERITE SANDSTONE SANDSTONE	[//s] 0.10 de N AND SH	Estimated Colour Primary Grey Brown Grey Grey HALE Grey	Secondary Dark Yellowish Greenish Greenish Dark	<i>Texture</i> Fine	Info se	Feature Primary Damp Weathered Weathered Fresh Fresh Fresh Fresh	Secondary Damp Jointed Gritty Carbonaceous
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00 12.00 14.00	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00 27.00 44.00 53.00	Bot. [m] 12.00 Uithology cod OVERBURDE DOLERITE DOLERITE SANDSTONE SANDSTONE SANDSTONE	[//s] 0.10 de N AND SF	Estimated Colour Primary Grey Brown Grey Grey HALE Grey White	Secondary Dark Yellowish Greenish Greenish	Texture	Info se	Feature Primary Damp Weathered Weathered Fresh Fresh Fresh	Secondary Damp Jointed Gritty Carbonaceous Gritty
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00 12.00 14.00 27.00 44.00	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00 27.00 44.00 53.00 80.00	Bot. [m] 12.00 Uithology cod OVERBURDE DOLERITE DOLERITE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	[I/s] 0.10 de N AND SH AND SH	Estimated Colour Primary Grey Brown Grey Grey HALE Grey White	Secondary Dark Yellowish Greenish Greenish Dark	<i>Texture</i> Fine Fine		Feature Primary Damp Weathered Weathered Fresh Fresh Fresh Fresh Fresh Fresh	Secondary Damp Jointed Gritty Carbonaceous Gritty Dry
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00 12.00 14.00 27.00 44.00 53.00 WATER LEV	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00 27.00 44.00 53.00 80.00 EL: Level s	Bot. [m] 12.00 Uithology cod OVERBURDE DOLERITE DOLERITE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	[//s] 0.10 de N AND SH AND SH Piez. In	Estimated Colour Primary Grey Brown Grey Grey HALE Grey White HALE Grey	Secondary Dark Yellowish Greenish Greenish Dark Greyish	<i>Texture</i> Fine Fine		Feature Primary Damp Weathered Weathered Fresh Fresh Fresh Fresh Fresh	Secondary Damp Jointed Gritty Carbonaceous Gritty Dry
JMA GEOLOGY: Dep. Top [m] 0.00 1.00 4.00 7.00 12.00 14.00 27.00 44.00 53.00 WATER LEV Meth. meas.	11.00 Bot. [m] 1.00 4.00 7.00 12.00 14.00 27.00 44.00 53.00 80.00 EL: Level s Static	Bot. [m] 12.00 Uithology cod OVERBURDE DOLERITE DOLERITE SANDSTONE SANDSTONE SANDSTONE SANDSTONE	[//s] 0.10 de N AND SH AND SH Piez. In	Estimated Colour Primary Grey Brown Grey Grey HALE Grey HALE Grey White HALE Grey White HALE Grey	Secondary Dark Yellowish Greenish Greenish Dark Greyish Date meas. 20020104	Texture Fine Fine Time meas 1135 . Recovery	5. Sec. 0.00	Feature Primary Damp Weathered Weathered Fresh Fresh Fresh Fresh Fresh Fresh Fresh Kater lev. [m] 8.88	Secondary Damp Jointed Gritty Carbonaceous Gritty Dry 1 Comment

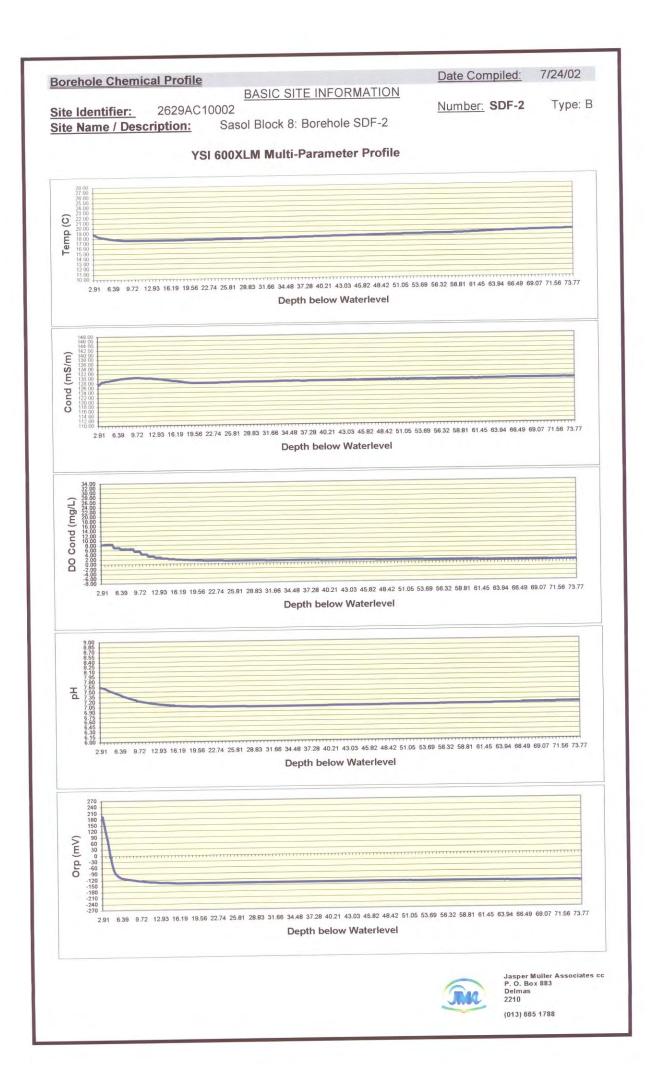

		REPORT								Da	ite con	nplied		102
BASIC SITE	INFORM	IATION:	Site Ide	entifier	r:2628BD10	0013 Number:	5	SDF-13	Site	e type:	Boreh	ole		
Distr./Farm No.:	359 IR	;	Site Nar	ne/Des	.: BOREHO	OLE SDF-13 : B	LOC	CK 8						
Region Type:					Regi	on Descr.:DEE	PFF	RACTUR	ED AQU	IFER				
Y Coord. [m]:	1145.281	Dom	/DD -			Topo-set.: +	Hillsi	ide (slope)		Dept	h [m]:	80.	.00
X Coord. [m]:	2930918.4	.19 Reg. /					n us	· ·	,		Col.	ht. [m].	0.2	:8
Altitude [m]:	1606.65	G-Nr.				Site purp.:	Dbse	ervation			Drair	n. reg.:	C1	2D
Coord. acc.:	Accurate to	within 1 unit				Use applic.: I	ndus	strial - mi	ning		Diam	n. [mm]	: 16	5
Coord. meth.:	Global Posi	itioning System				Equipment: N	√o e	quipment			Rep.	inst.:	JM	A
HOLE DIAMI Rep. Inst.	ETER:	Depth to Top [m]		Dept Bot	th to tom [m]	Diameter [m	nm]	D	ate cons	st. C	ommen	nt		
JMA		0.00			30.00	215		2	0011124	C	ASED T	FO 165		
JMA		30.00			80.00	165		2	0011124	N	IO CASI	NG		
CASING DE			Diam			Thick		Opening		_			Hori.	Ver
	Dep. to top		-	-	terial	[mm	-	Туре		Le	ngth	Width	dist.	dis
20011124	0.00	30.00	16	5 Stee	el	2	2							
AQUIFER: Rep. Inst.	Depth Top [m]	то Bot. [m]	Yield [l/s]	Mei	thod meas	. Aquif	er fv	vpe	Info s	ource		Con	nment	
JMA	28.00	29.00	0.1	-	mated		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
GEOLOGY:	20100	20100			Colour					Fea	ture			
Dep. Top [m]	Bot. [m]	Lithology co	le		Primary	Secondary	Te	xture		Prir	mary	Se	econda	ry
0.00	1.00	OVERBURDE	N		Grey	Dark				Clay	/ey	D	amp	
1.00	4.00	DOLERITE			Brown	Yellowish				We	athered	D	amp	
4.00	6.00	DOLERITE			Grey	Brownish				We	athered		pinted	
6.00	27.00	DOLERITE			Grey	Greenish				Free		-	pinted	
27.00	29.00	DOLERITE			Grey	Greenish					athered		pinted	
29.00	30.00	SANDSTONE			White	Greyish	Fin	ne		Free			ritty /t	
30.00	36.00	SANDSTONE	AND S	HALE	Grey	Dork				Free			/et	
36.00 38.00	38.00 39.00	SHALE SANDSTONE			Grey	Dark				Fre: Fre:			arbonac / et	;eous
38.00 39.00		SANDSTONE	-		Grey White	Grevish	Fin	he		Free			ritty	
54.00		SANDSTONE				Greyian	1.111			Free			/et	
57.00		SANDSTONE		,	White	Greyish	Fin	ne		Free			ritty	
66.00		SANDSTONE		HALE		0.0,1011				Free			/et	
69.00		SANDSTONE			White	Greyish	Fin	ne		Free			ritty	
WATER LEV	EL:					,							-	
Meth. meas.	Levels	status	Piez. II			Date meas.	Ti				r lev. [m			-
Electrical contact		Dete		ield ch		20020104		1550	0.00		19.41		IGTEST	
TESTING DE Description	AILS:	Date started	Durat. [s]			Disch. Drawo ate[l/s] [m]		Recovery [m] %		Trans. [m²/d]	Perm. [m/d]		. Com	men
SLUGTEST		20020104	1800		0			-			0.024			

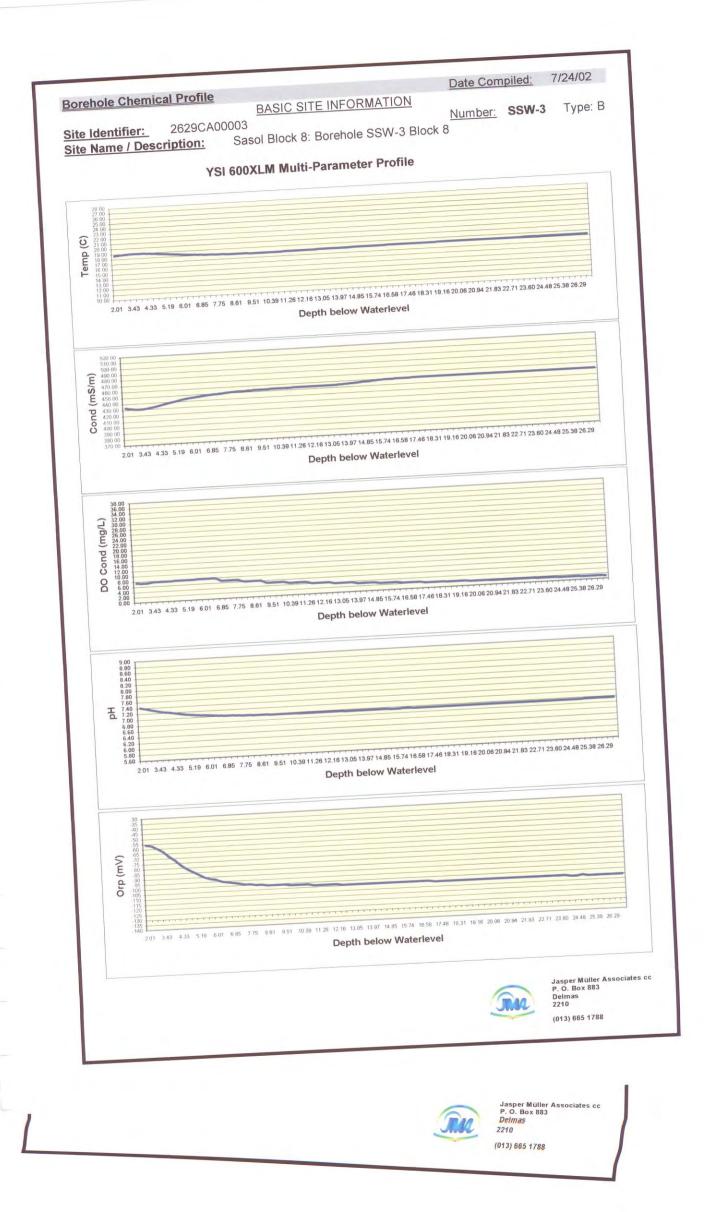

SITE INFOR	MATION	REPORT								Da	ite com	oiled: 2/	22/02
BASIC SITE	INFORM	IATION:	Site I	dentifi	er: 2628DB1	0014 Num	ber:	SDF-1	4 S i	ite type:	Borehol	e	
Distr./Farm No.:	: 531 IR	s	ite N	ame/De	es.: BOREH	OLE SDE-14	1 : BI (DCK 8					
Region Type:		-				on Descr.:[URED AQI	JIFER			
Y Coord. [m]:	1207.168	Reg./	3B.:			Topo-set.:	Hil	lside (slo	ope)		Depth	[m]:	102.00
X Coord. [m]:	2933576.8	75 G-Nr.				Site statu:	s: In	use			Col. h	t. [m]:	0.49
Altitude [m]:	1571.32	0-11-1				Site purp.	Ob	servatio	n		Drain.	reg.:	C12D
Coord. acc.:	Accurate to	within 1 unit				Use applie	. <i>:</i> Inc	lustrial -	mining		Diam.	[mm]:	165
Coord. meth.:	Global Posi	tioning System				Equipmen	<i>t:</i> No	equipm	ent		Rep. ii	nst.:	JMA
HOLE DIAM	ETER:	Depth to Top [m]			oth to ottom [m]	Diamete	er [mn	ı]	Date cor	nst. C	comment		
JMA		0.00			36.00		215		2001112	4 C	ASED TO	0 165	
JMA		36.00			102.00		165		2001112	4 N	O CASIN	G	
CASING DE		Iml Dat Iml	Dia				hickn		ing	10	nath M	Ho	
	Dep. to top		[m	-	aterial		[mm]	Туре		Le	ngth W	idth dis	st. di
20011124	0.00 Depth	36.00	Yie	65 P\	/0		2						
Rep. Inst.	Top [m]	Bot. [m]	[l/s		ethod meas	. A	quifer	type	Info	source		Comme	nt
JMA	26.00	28.00	2.	.00 Es	timated								
JMA	32.00	33.00	8.	.00 Es	stimated								
JMA	60.00	64.00	0.	.90 Es	stimated								
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology cod	e		Colour Primary	Seconda	ary 1	Texture			ture nary	Secon	dary
0.00	1.00	OVERBURDE	N		Grey	Dark				Clay	/ey	Damp	
1.00	11.00	MUDSTONE			Grey					Wea	athered	Dry	
11.00	12.00	DOLERITE			Grey	Brownish	n F	ine to m	nedium	Wea	athered	Dry	
12.00	13.00	SHALE			Grey					Wea	athered	Baked	
13.00	26.00	SANDSTONE			White	Greyish	F	ine		Wea	athered	Gritty	
26.00	44.00	SANDSTONE	AND	SHALE	Grey					Free	sh	Jointe	d
44.00		SANDSTONE			White	Greyish	F	ine		Free		Gritty	
47.00		SANDSTONE	AND	SHALE	/	-				Free		Micac	
52.00		SANDSTONE		o	White	Greyish				Free		Gritty	
54.00		SANDSTONE	AND	SHALE		0	_			Free		Micac	eous
62.00		SANDSTONE	A N I	CI 1 A 1 -	White	Greyish	F	ine		Free		Gritty	
65.00		SANDSTONE	AND	SHALL	Grey					Free	51]	Micac	eous
87.00		COAL SANDSTONE			\//b:+o	Crowiek	-	ino to	odium	F	.	C -:++	
89.00 90.00		COAL			White	Greyish	F	ine to m	lealam	Fres	511	Gritty	
90.00 92.00		SANDSTONE			White	Greyish		ine		Fres	sh	Gritty	
92.00 96.00		SANDSTONE			Grey	Creyiali		ine		Free		Gritty	
90.00 97.00		SANDSTONE		SHAI F			ſ			Free		Chity	
WATER LEV Meth. meas.				Info s	,	Date m	eas.	Time m	eas. Sec.			Comme	nt
Electrical contact			0		hecked	20020		173			7.57	SLUGTE	
TESTING DE		Date	Dura	nt. D	epth to	Disch. D	rawd.	Recov	ery:	Trans.			
Description		started	[s]			aleji/Si	[m]	[m]	% [min]	111-701	111/01	Storat C	ommon

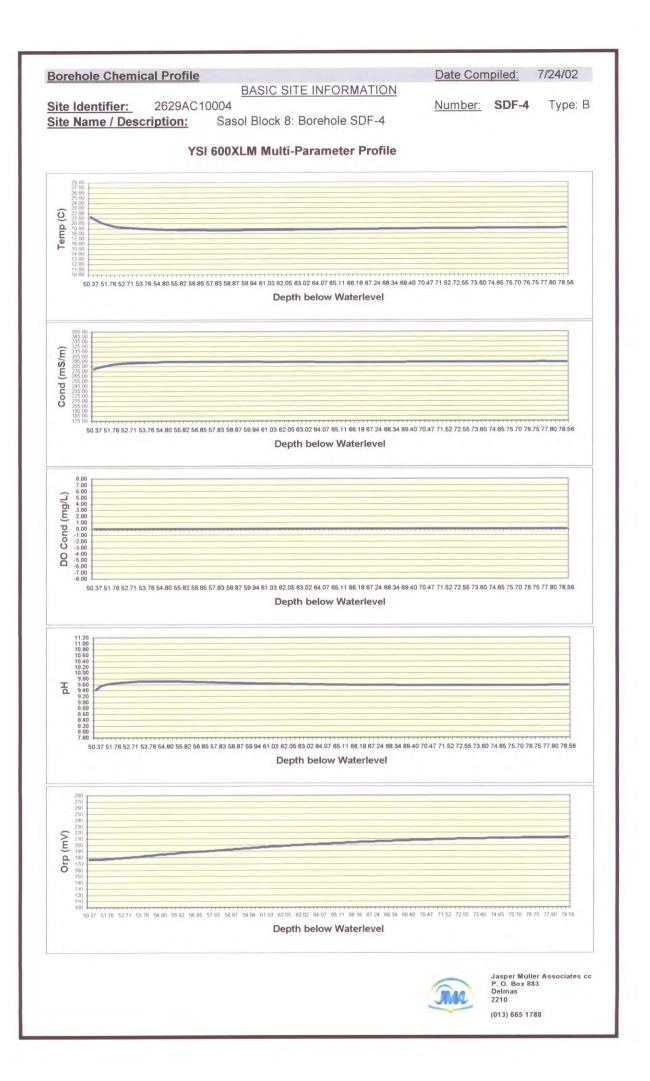

	NATION	REPORT							Date c	ompiled:	2/22/02
BASIC SITE	INFORM	ATION:	Site Ide	ntifier:	2628DB1	0015 Number:	SDF-15	Site t	ype: Boi	rehole	
Distr./Farm No.:	532 IR	;	Site Nam	e/Des.	: BOREH	OLE SDF-15 : BI	LOCK 8				
Region Type:					Regi	on Descr.:DEEF	• FRACTU	RED AQUIF	ER		
Y Coord. [m]:	1802.728	Reg.	/RR ·			Topo-set.: H	lillside (slop	be)	De	epth [m]:	80.00
Coord. [m]:	2937769.24					Site status: Ir	n use		Co	ol. ht. [m]:	0.45
Altitude [m]:	1594.46	G-IVI				Site purp.: C	Observation		Dr	ain. reg.:	C12D
Coord. acc.:	Accurate to	within 1 unit				Use applic.: Ir	ndustrial - n	nining	Di	am. [mm]:	165
Coord. meth.:	Global Posi [,]	tioning System				Equipment: N	lo equipme	nt	Re	ep. inst.:	JMA
HOLE DIAME Rep. Inst.	TER:	Depth to Top [m]		Depti Bott	h to om [m]	Diameter [m	m]	Date const.	Comn	nent	
IMA		0.00		:	30.00	215		20011109	CASE	D TO 165	
IMA		30.00			80.00	165		20011109	NO CA	ASING	
Date inst.	FAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Mate	erial	Thick [mm]	_'	g	Length		Hori. Ve dist. di
20011109	0.00	30.00	165	Stee	I	2					
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de		Colour Primary	Secondary	Texture		Feature Primary	Sec	condary
0.00	1.00	OVERBURDE	EN		Brown	Reddish			Clayey	Da	mp
1.00	5.00	SANDSTONE	AND SH	IALE	Brown	Greyish			Weathere	ed Dr	/
= 00	11.00	SANDSTONE	-		Grey				Weathere		
5.00					-				Fresh	Dr	/
11.00		SANDSTONE		IALE	Grey	Quality	F ¹			~	
11.00 33.00	39.00	SANDSTONE			White	Greyish	Fine		Fresh	Gri	,
11.00 33.00 39.00	39.00 54.00	SANDSTONE	AND SH		White Grey	,			Fresh	Dr	/
11.00 33.00 39.00 54.00	39.00 54.00 62.00	SANDSTONE SANDSTONE SANDSTONE	AND SH	IALE	White Grey White	Greyish	Fine Fine		Fresh Fresh	Dr <u>i</u> Gri	/ itty
11.00 33.00 39.00 54.00 62.00 WATER LEV	39.00 54.00 62.00 80.00	SANDSTONE SANDSTONE SANDSTONE SANDSTONE	AND SH	IALE	White Grey White Grey	,	Fine	as. Sec.	Fresh	Dr <u>i</u> Gri Ca	y itty rbonaceou
11.00 33.00 39.00 54.00 62.00 WATER LEV Meth. meas.	39.00 54.00 62.00 80.00 EL: <i>Level</i> s	SANDSTONE SANDSTONE SANDSTONE SANDSTONE	AND SHE AND SHE AND SH	IALE	White Grey White Grey	Greyish Dark	Fine	as. Sec. 0.00	Fresh Fresh Fresh	Dr <u>y</u> Gri Ca [<i>m</i>] Com	y itty rbonaceou
11.00 33.00 39.00 54.00	39.00 54.00 62.00 80.00 EL: <i>Level</i> s Static	SANDSTONE SANDSTONE SANDSTONE SANDSTONE	AND SHE AND SHE AND SH	IALE IALE fo sou eld che Dep	White Grey White Grey rce cked oth to	Greyish Dark Date meas.	Fine Time me 1715 I. Recove	0.00 ry: T	Fresh Fresh Fresh Water lev. 24. rans. Per	Dr. Gri Ca [<i>m</i>] Com .06 SLUC	y ttty rbonaceou: ment GTEST

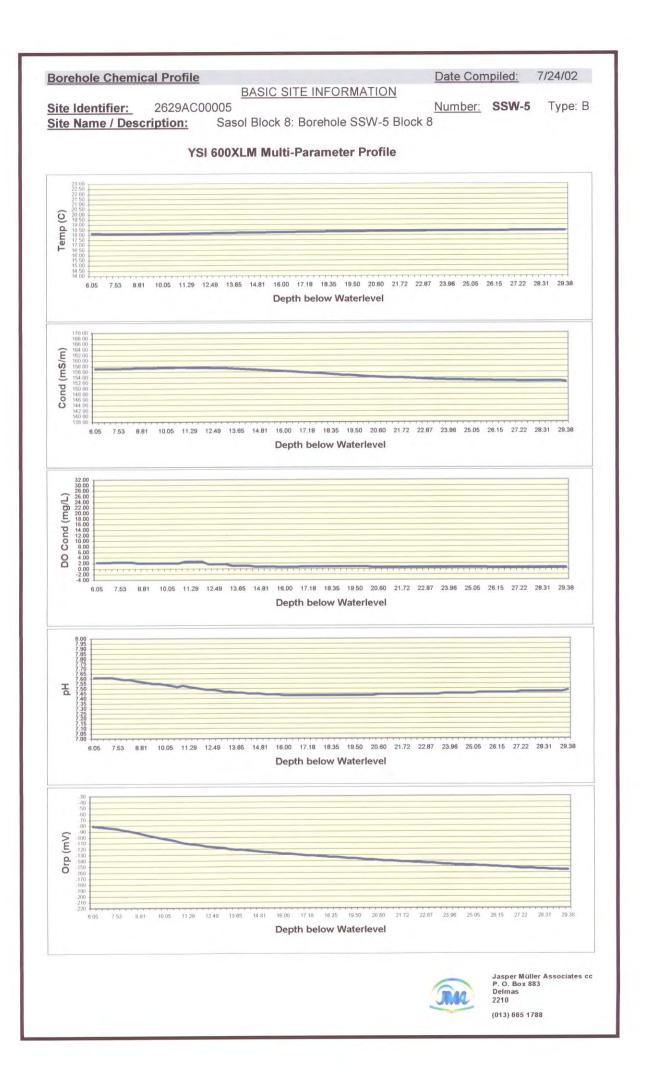


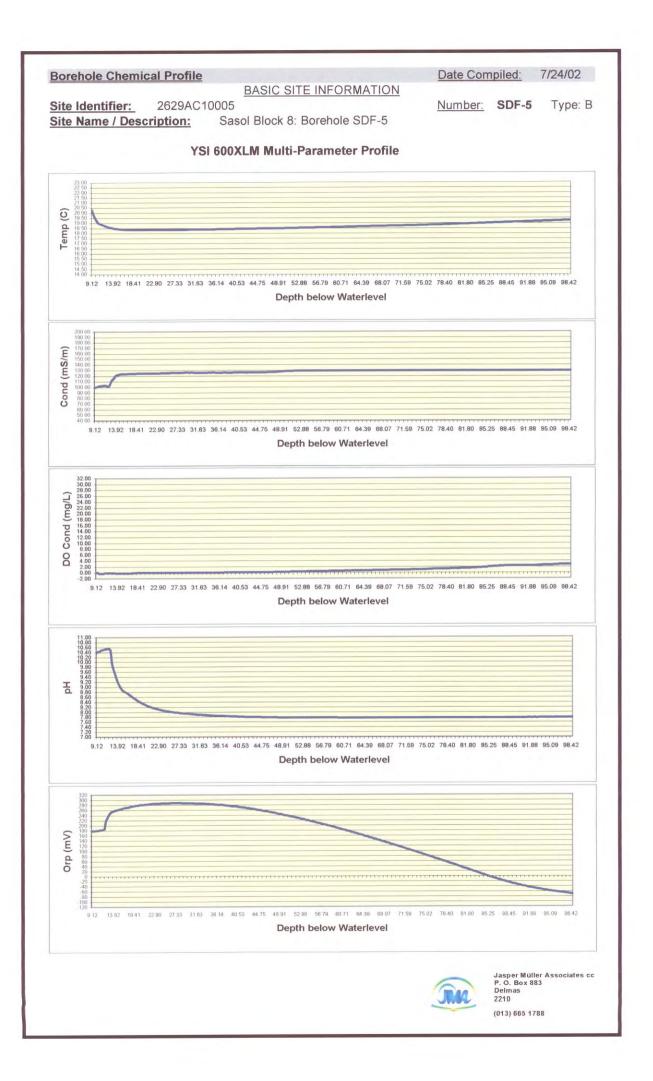


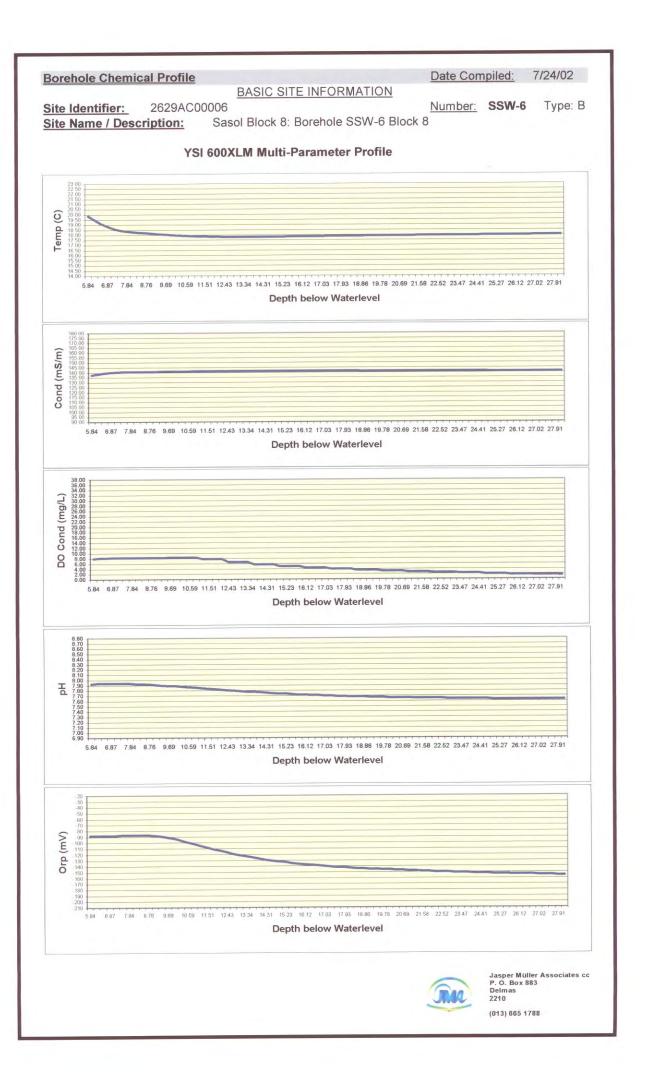

APPENDIX 3(B)

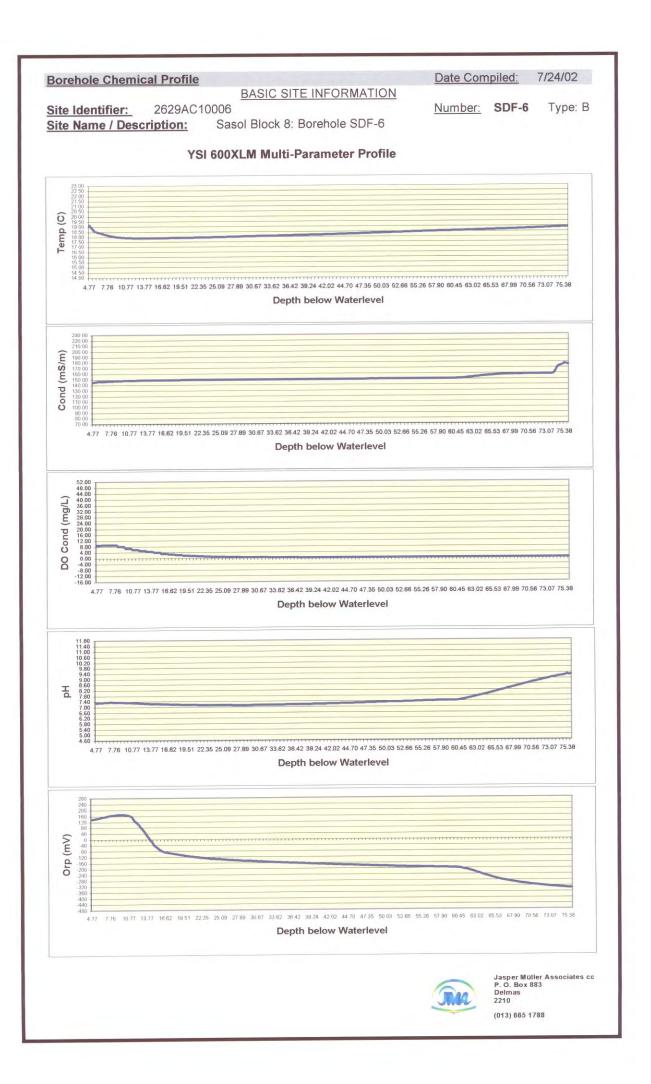

MULTI PARAMETER PROFILES

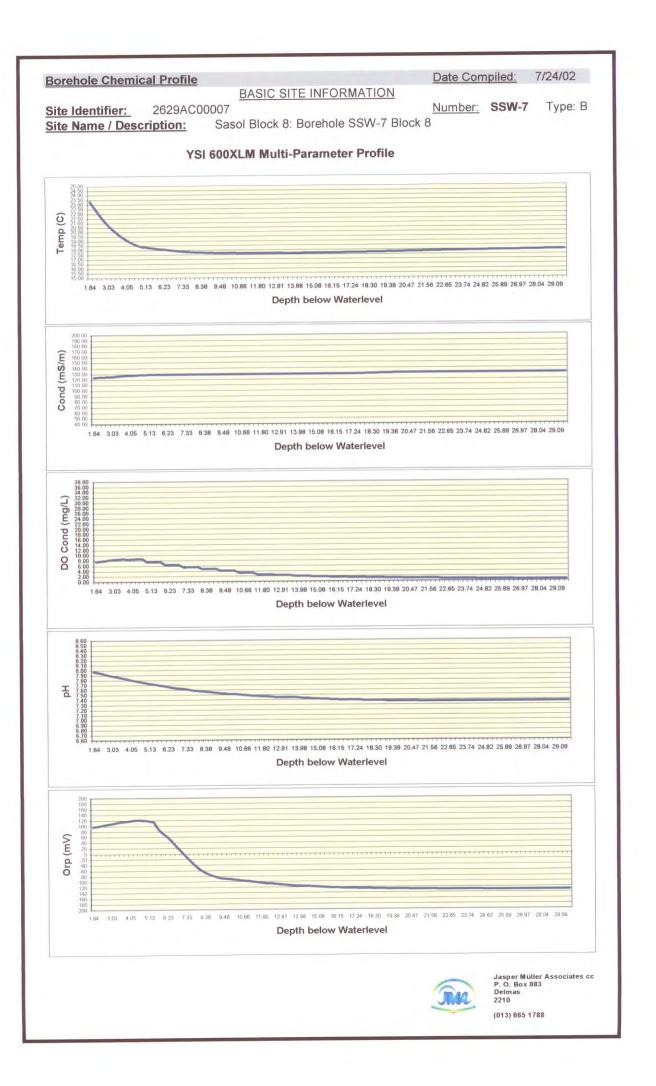


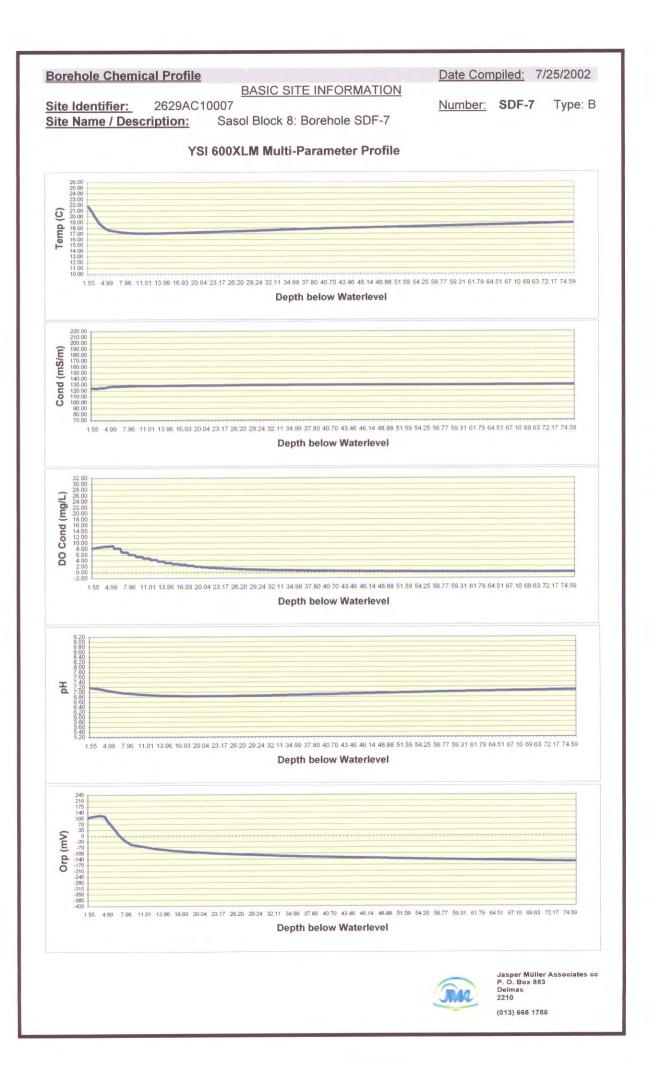


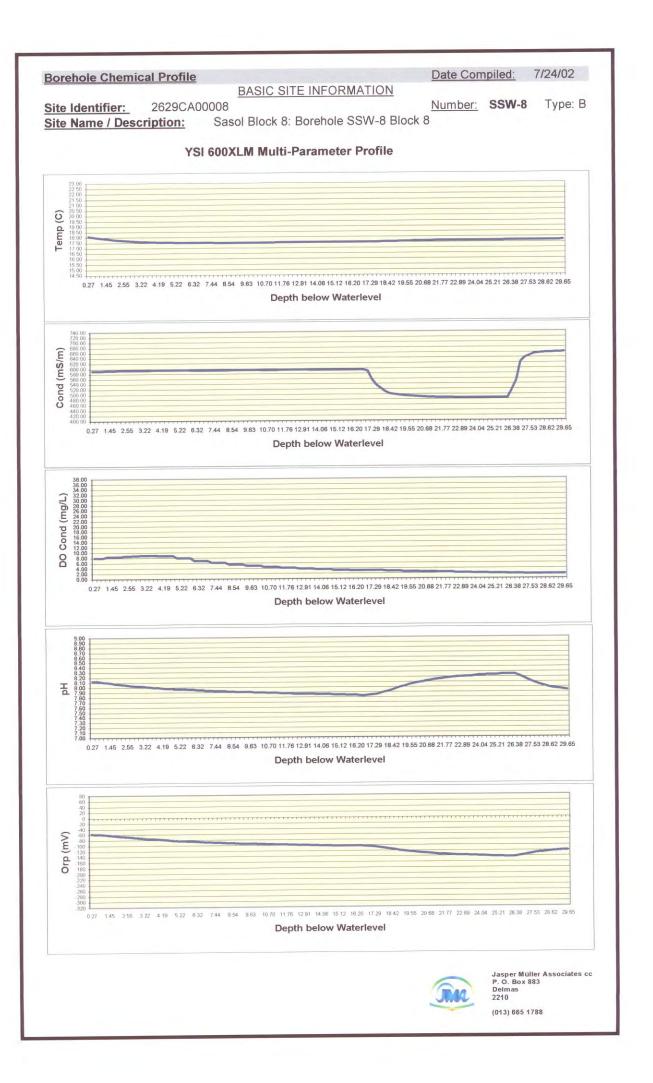


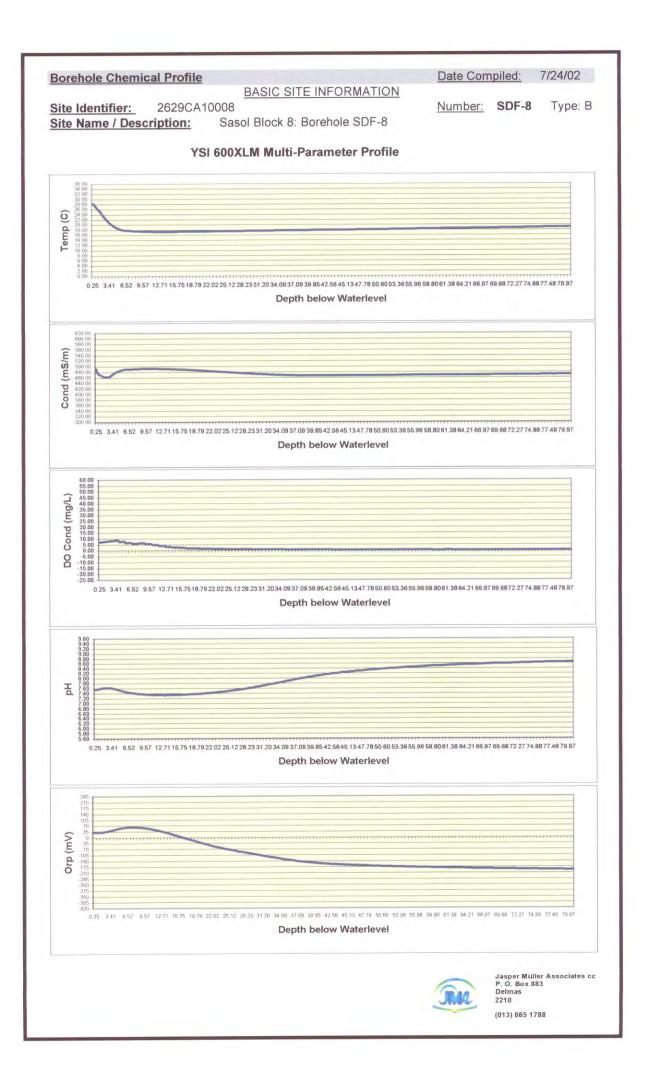


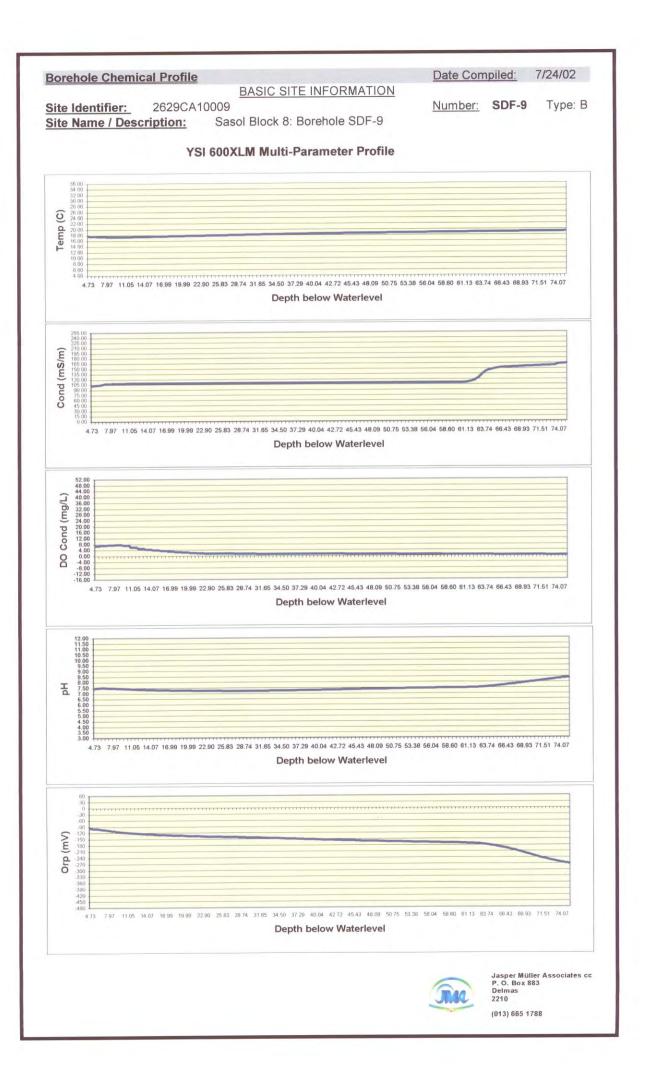


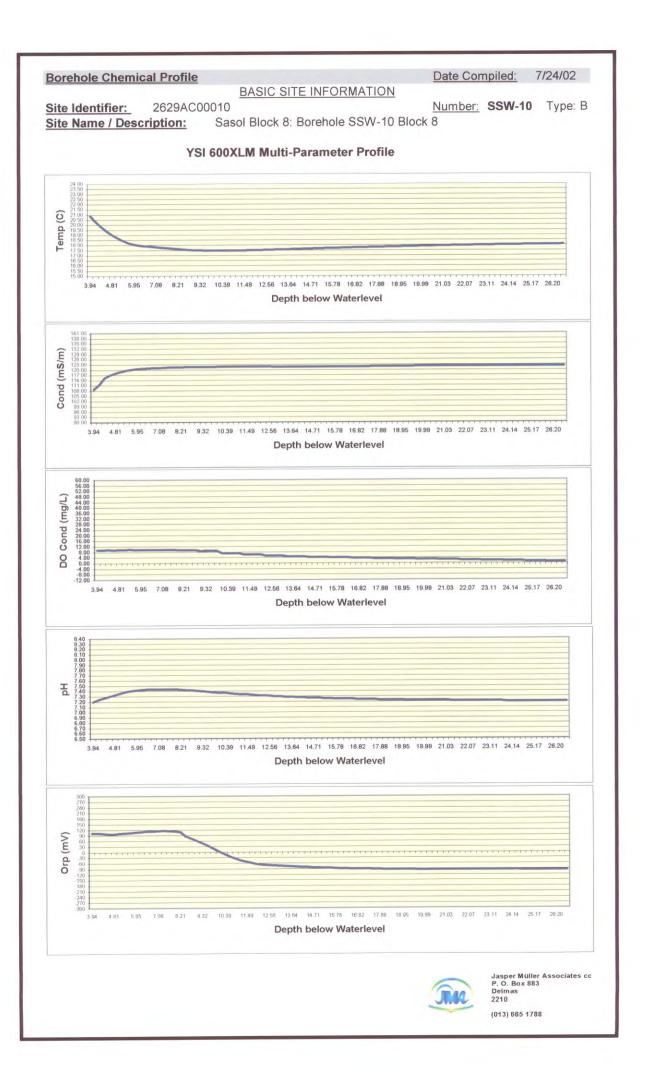


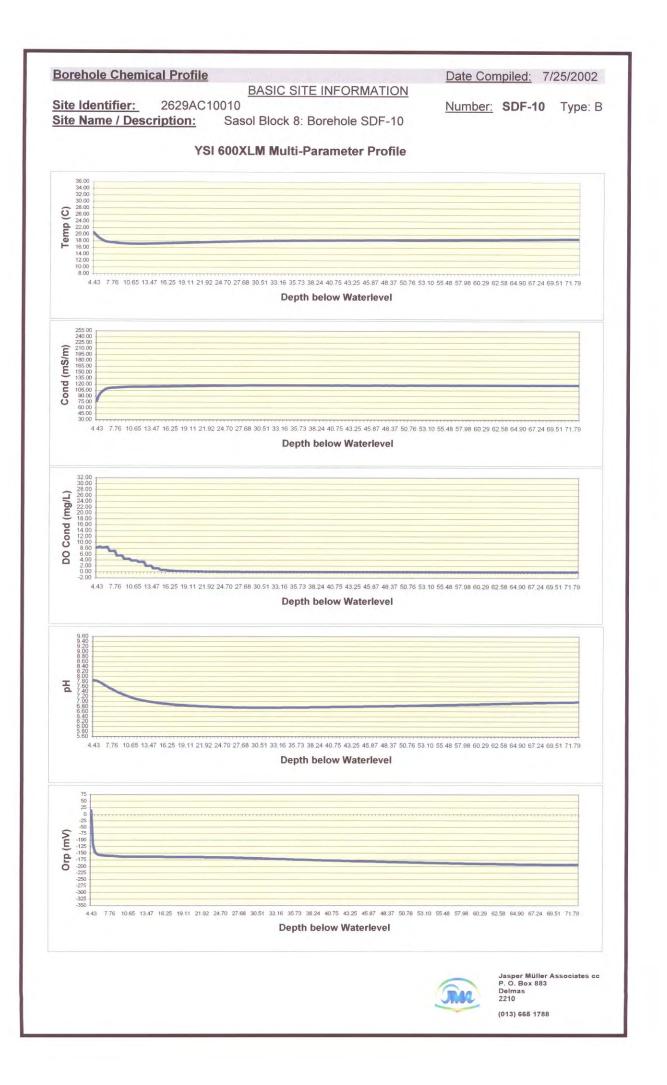


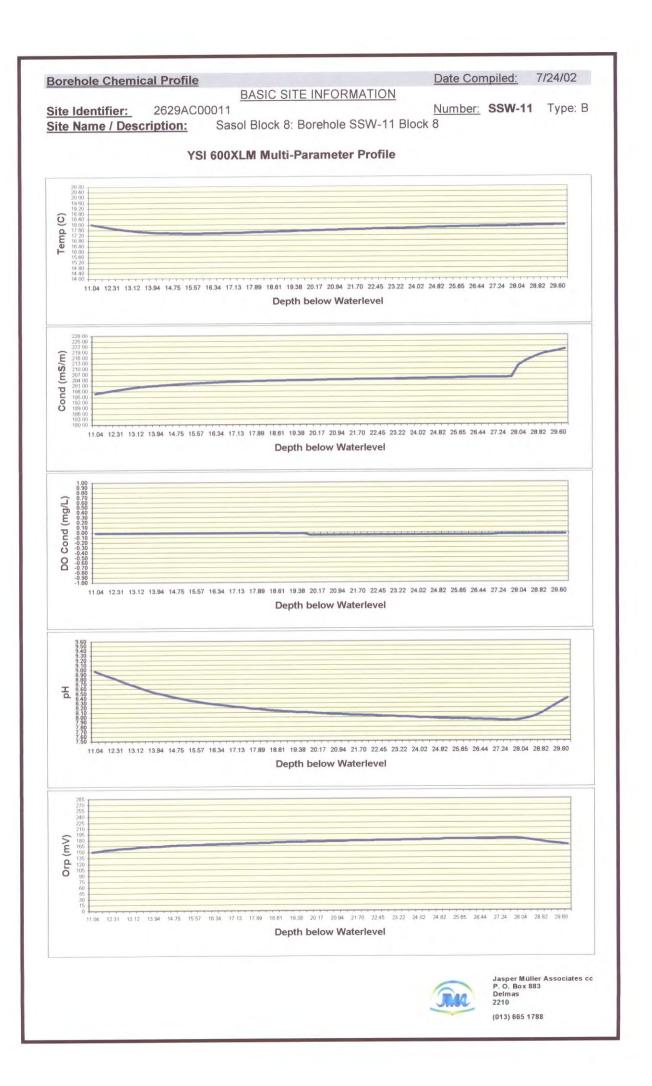


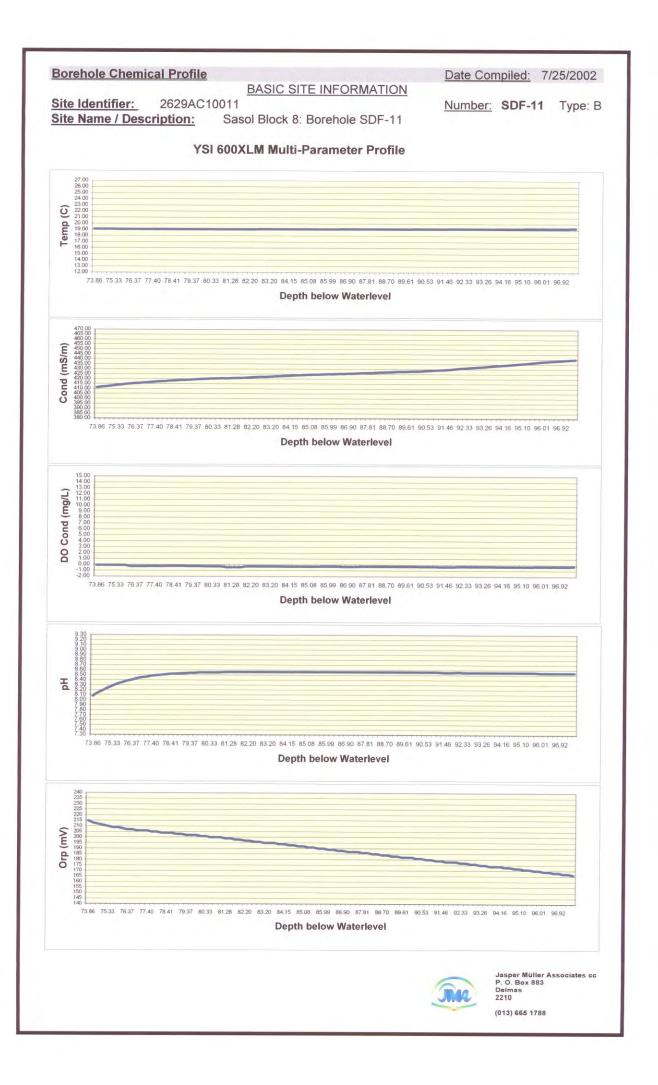


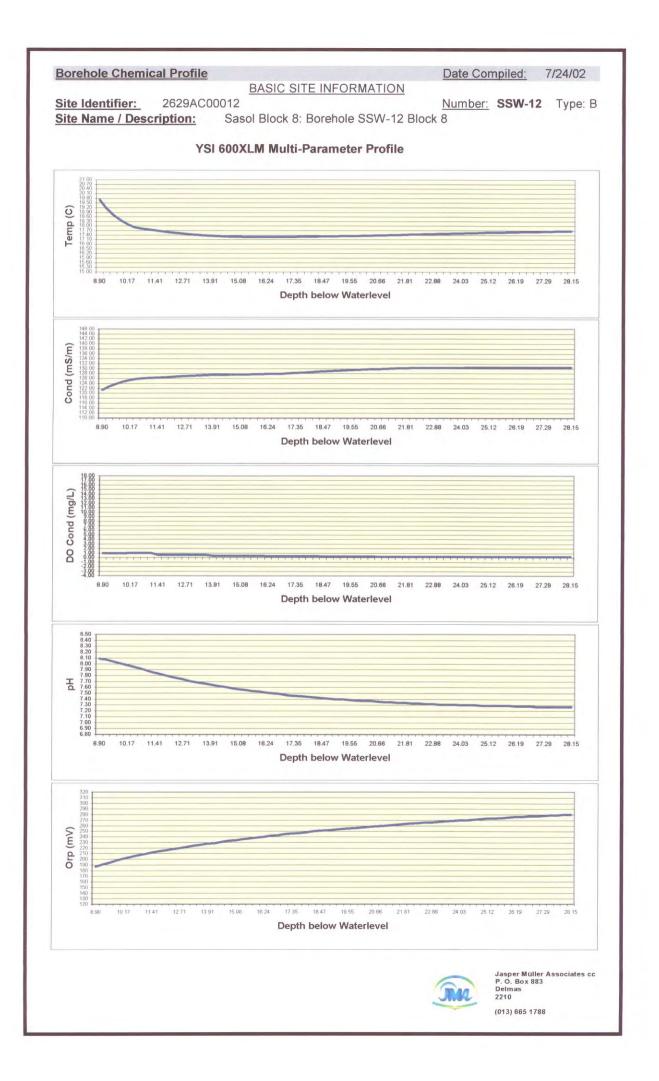


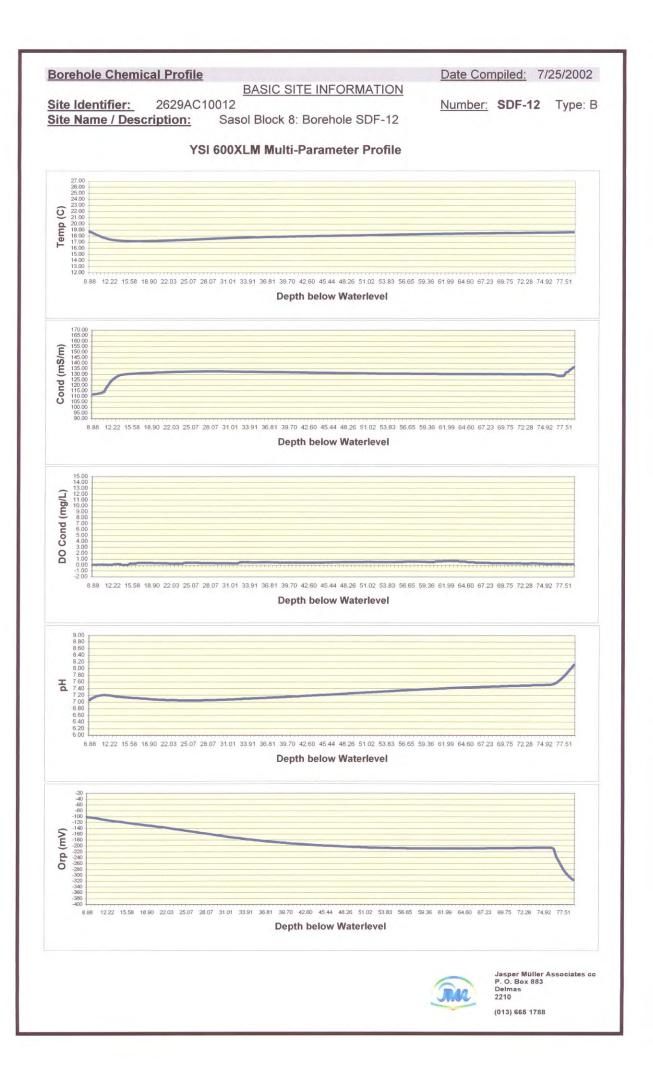


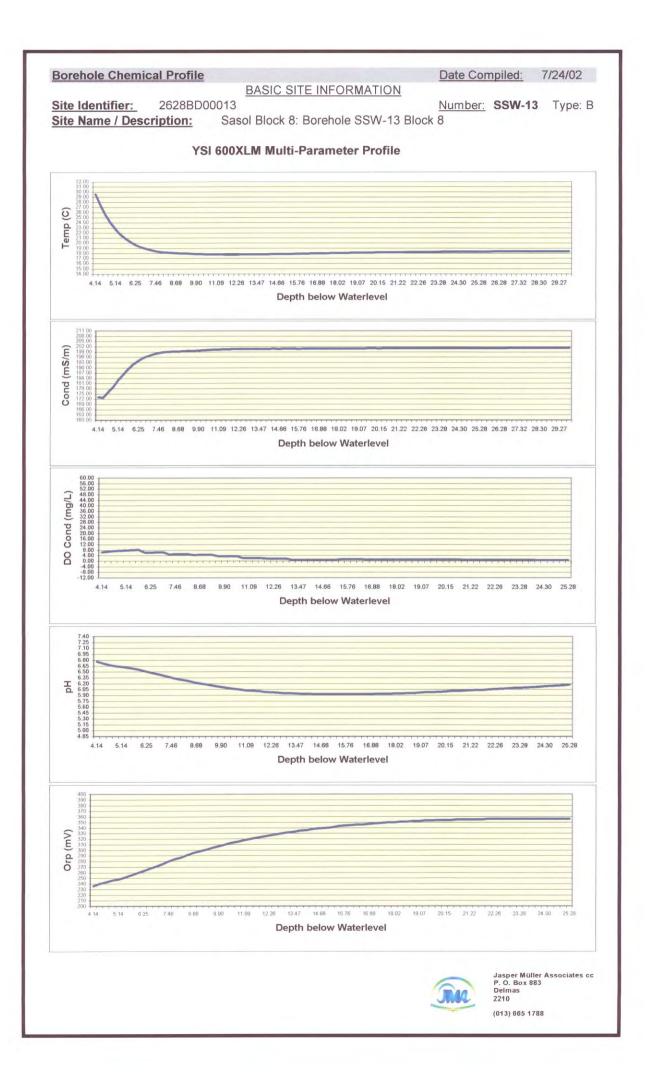


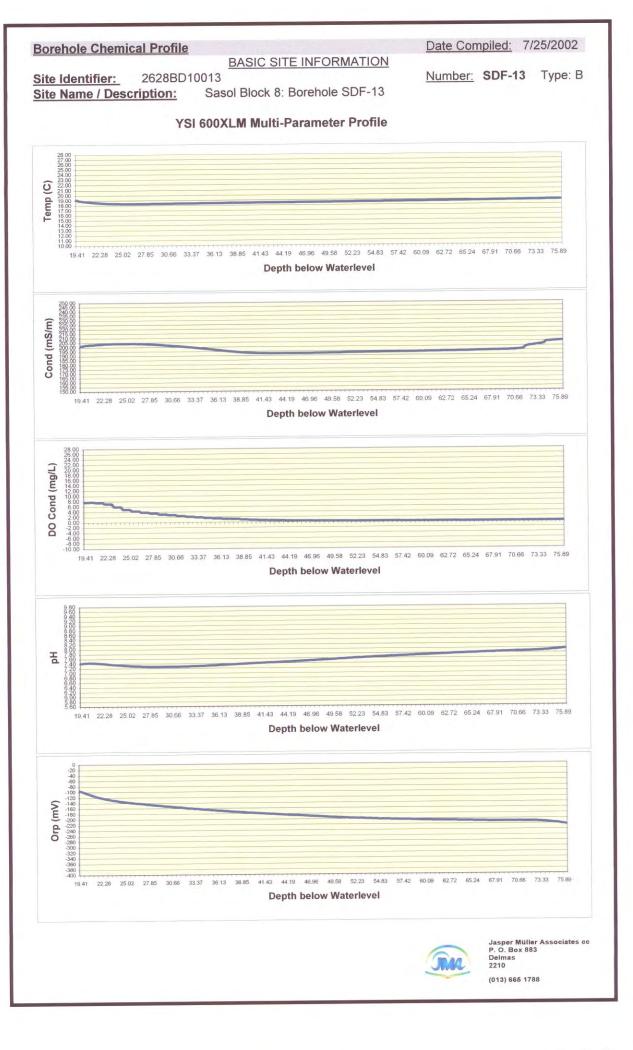


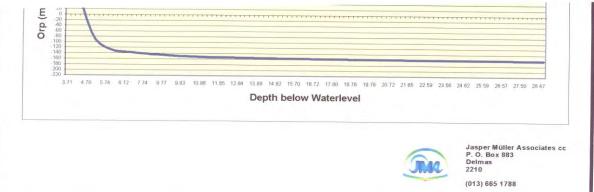


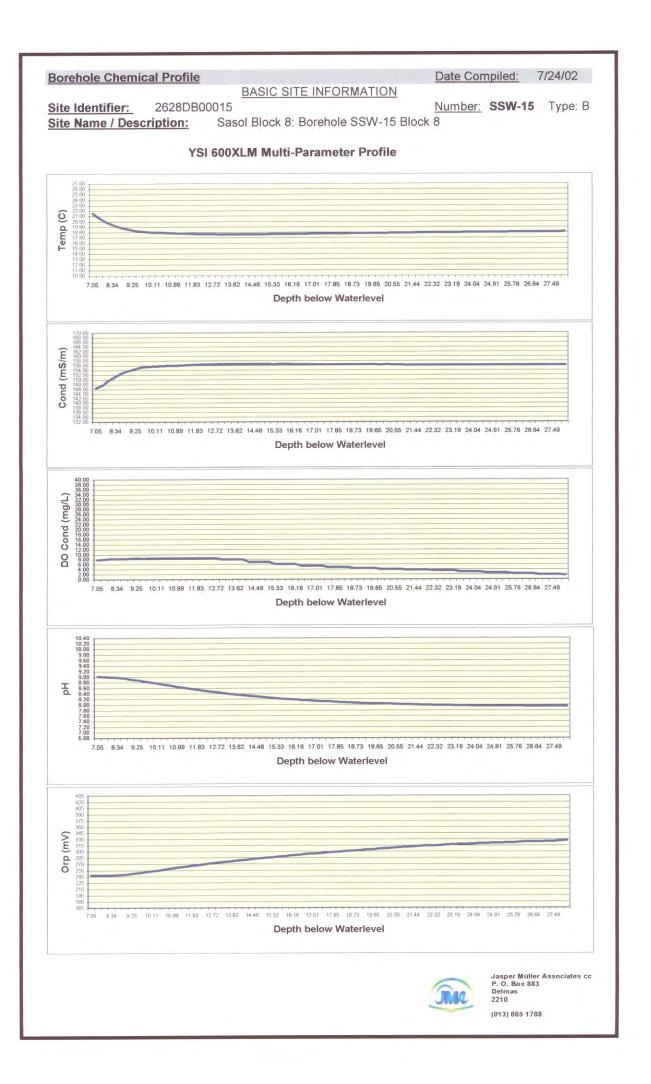


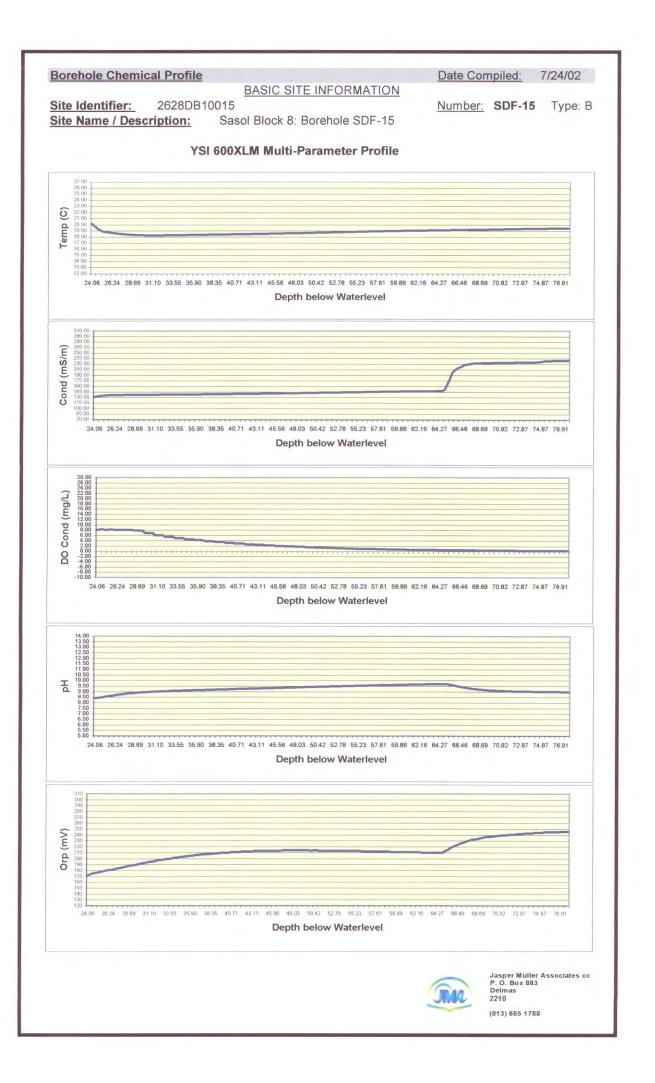


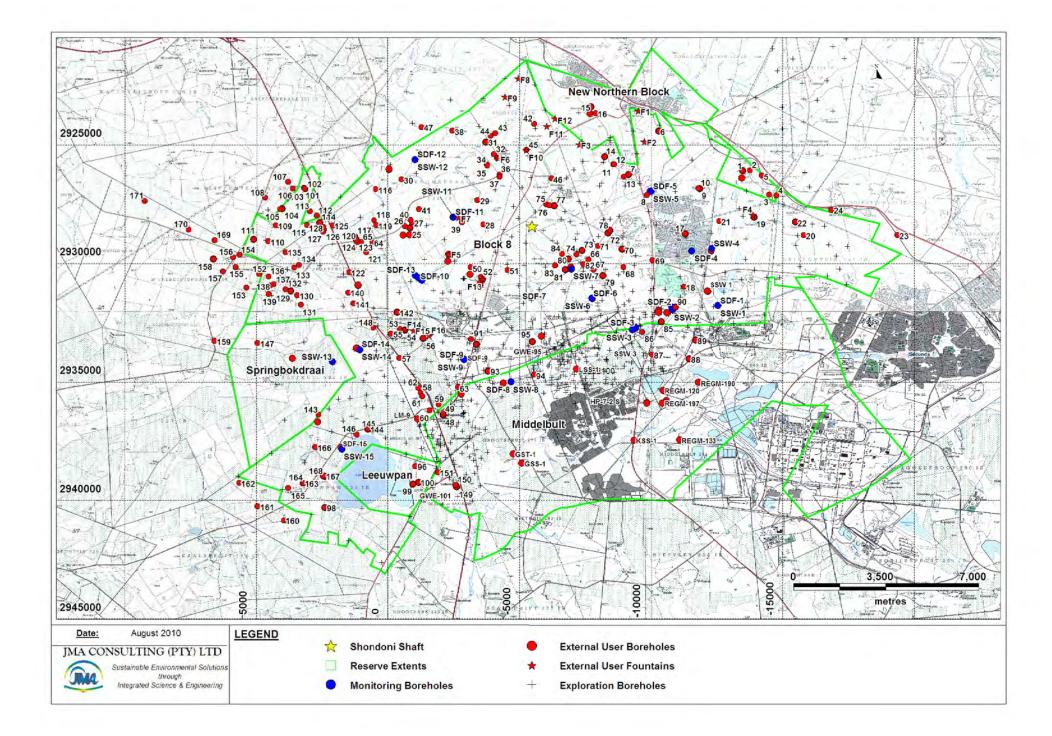












APPENDIX 3.2(A)

BOREHOLE LOCALITY MAP AND NUMBERS

APPENDIX 3.4(A)

GROUND WATER LEVEL DEPTHS

Ground Water Level Depths

Site ID	BH No.	WL	Site ID	BH No.	WL	Site ID	BH No.	WL
2628BD00013	SSW-13	4.14	2629AC00012	SSW-12	8.9	2629AC20050	GWE-50	3.28
2628BD00013	SSW-13	12.4	2629AC00012	SSW-12	9.44	2629AC20051	GWE-51	7.45
2628BD10013	SDF-13	18.86	2629AC00015	KB-7	1.42	2629AC20142	GWE-142	2.8
2628BD10013	SDF-13	19.41	2629AC00017	KB-9	0.87	2629AC30004	GWEF-4	0.67
2628BD20064	GWE-64	7.77	2629AC00020	KB-12	2.81	2629AC30005	GWEF-5	0.05
2628BD20065	GWE-65	6.56	2629AC00021	KB-13	0.7	2629CA00002	KB-5	0.77
2628BD20101	GWE-101	6.4	2629AC00023	KB-15	0.56	2629CA00003	SSW-3	1.99
2628BD20105	GWE-105	6.6	2629AC00024	KB-16	0.54	2629CA00003	SSW-3	2.19
2628BD20106	GWE-106	6.02	2629AC00026	RTK-1	3.23	2629CA00006	WB-4	16.64
2628BD20109	GWE-109	12.4	2629AC00029	RTK-4	2.23	2629CA00007	WB-5	9.52
2628BD20113	GWE-113	6.7	2629AC00032	UTK-2	17.4	2629CA00008	SSW-8	0.27
2628BD20123	GWE-123	8.12	2629AC00035	SSW-2	2.98	2629CA00008	SSW-8	0.28
2628BD20125	GWE-125	3.2	2629AC10001	SDF-1	1.93	2629CA00008	WB-6	5.54
2628BD20126	GWE-126	2.91	2629AC10001	SDF-1	2.48	2629CA00009	SSW-9	4.62
2628BD20128	GWE-128	2.5	2629AC10002	SDF-2	2.47	2629CA00009	SSW-9	5.55
2628BD20129	GWE-129	6.08	2629AC10002	SDF-2	3	2629CA00010	LB-2	2.3
2628BD20130	GWE-130	1.2	2629AC10004	SDF-4	35.86	2629CA00011	LB-3	3.71
2628BD20133	GWE-133	12.8	2629AC10004	SDF-4	36.37	2629CA00016	LPB-5	0.98
2628BD20152	GWE-152	14.3	2629AC10004	SDF-4	50.37	2629CA00017	LPB-6	2.43
2628BD20157	GWE-157	1.8	2629AC10005	SDF-5	8.54	2629CA00022	REGM-120	6.47
2628BD20158	GWE-158	10.65	2629AC10005	SDF-5	9.12	2629CA00023	REGM-122	13.4
2628DB00014	SSW-14	3.19	2629AC10006	SDF-6	4.04	2629CA00024	REGM-133	22.34
2628DB00014	SSW-14	3.71	2629AC10006	SDF-6	4.04	2629CA00025	REGM-190	1.75
2628DB00015	SSW-15	6.15	2629AC10007	SDF-7	1.59	2629CA00029	REGM-196	6.45
2628DB00015	SSW-15	7.05	2629AC10007	SDF-7	1.61	2629CA00030	REGM-197	3.72
2628DB00015	SSW-15	7.38	2629AC10010	SDF-10	4.43	2629CA00031	REGM-198	8.64
2628DB10014	SDF-14	7.57	2629AC10010	SDF-10	4.86	2629CA00032	REGM-199	5.57
2628DB10014	SDF-14	8.71	2629AC10011	SDF-11	60.49	2629CA00033	HP-7-2 D	26.14
2628DB10015	SDF-15	23.26	2629AC10011	SDF-11	73.86	2629CA00034	HP-7-2 S	7.42
2628DB10015	SDF-15	23.96	2629AC10012	SDF-12	8.88	2629CA00035	HP-7-1 D	14.43
2628DB10015	SDF-15	24.06	2629AC10012	SDF-12	9.4	2629CA00036	HP-7-1 M	7.95
2628DB20145	GWE-145	3.4	2629AC20002	GWE-2	21.52	2629CA00037	HP-1-7 S	2.8
2628DB20160	GWE-160	3.95	2629AC20003	GWE-3	0.19	2629CA10003	SDF-3	2.92
2629AC00001	SSW-1	1.83	2629AC20005	GWE-5	10.39	2629CA10003	SDF-3	2.94
2629AC00001	SSW-1	2.25	2629AC20006	GWE-6	2.1	2629CA10008	SDF-8	0.24
2629AC00001	ZFT-1		2629AC20007	GWE-7	4.4	2629CA10008	SDF-8	0.26
2629AC00002	SSW-2		2629AC20008	GWE-8	2.77	2629CA10009	SDF-9	4.79
2629AC00002	SSW-2	5.76	2629AC20009	GWE-9	3.12	2629CA10009	SDF-9	5.61
2629AC00002	ZFT-2	6.86	2629AC20014	GWE-14	3.08	2629CA20048	GWE-48	27.19
2629AC00004	SSW-4	25.5	2629AC20015	GWE-15	3.21	2629CA20053	GWE-53	4.95
2629AC00004	SSW-4	26.44	2629AC20018	GWE-18	0.49	2629CA20056	GWE-56	4.8
2629AC00005	SSW-5	4.73	2629AC20019	GWE-19	7.93	2629CA20057	GWE-57	3.35
2629AC00005	SSW-5	6.05	2629AC20022	GWE-22	21.88	2629CA20058	GWE-58	5.63
2629AC00006	SSW-6	5.72	2629AC20023	GWE-23	5.15	2629CA20059	GWE-59	2.2
2629AC00006	SSW-6	5.96	2629AC20025	GWE-25	5.64	2629CA20060	GWE-60	3.48
2629AC00007	SSW-7	1.71	2629AC20030	GWE-30	11.19	2629CA20061	GWE-61	5.04
2629AC00007	SSW-7 SSW-7	1.71	2629AC20032	GWE-32	10.86	2629CA20062	GWE-62	7.6
2629AC00010	SSW-10	3.94	2629AC20032	GWE-32 GWE-34	13.1	2629CA20096	GWE-96	2.7
2629AC00010	SSW-10	4.36	2629AC20034	GWE-34 GWE-37	13.4	2629CA20090	GWE-90 GWE-99	0.56
2629AC00010	SSW-10	2.77	2629AC20037	GWE-42	4.11	2629CA20099	GWE-99 GWE-100	1.29
2629AC00011 2629AC00011	SSW-11 SSW-11	11.04	2629AC20042 2629AC20045	GWE-42 GWE-45	0.85	2027CA20100	U W L-100	1.29
2027AC00011	99 M-11	11.04	2027AC20043	UWE-43	0.00			