FLOOD LINE DELINEATION OF THE 1:100 YEAR FLOOD LINES PROPOSED TOWNSHIP: A PORTION OF THE REMAINING EXTEND OF ERF 687 BARKLY WEST (DIKGATLONG LOCAL MUNICIPALITY)

CLIENT: MAXIM PLANNING SOLUTIONS

REPORT No. CWT 272020

DATE: 28 April 2020

Cas Coetzer Consultant in Water Technology BSc Eng(Civ)(Pret) PrEng MECSA MSAICE BSc Ing(Siv)(Pret) PrIng LECSA LSAISI

> TEL (012) 3311033 FAX (012) 3311033 CEL 083 230 8752

EMAIL cas52@mweb.co.za

CWT Consulting

CONTENTS

1. INTRODUCTION

2. LOCATION

3. HYDROLOGY

- 3.1 Rainfall Data
- 3.2 Catchments of the stream
- 3.3 Characteristics of the Catchments at the Study Sites

4. FLOOD PEAK

- 4.1 The Effect of Dams on the Flood Peak
- 4.2 Methods used to calculate the Flood Peak
 - 4.2.1 Analysis Methodology
 - 4.2.2 Statistical Methods
 - 4.2.3 Deterministic Methods
 - 4.2.4 Results of the Deterministic Flood Peak Calculations
 - 4.2.5 Recommended Flood Peak

5. DESCRIPTION OF CALCULATION

- 5.1 Hydraulic Model
- 5.2 Procedure

6. STREAMS GEOMETRY

7. RESULTS OF THE CALCULATION

- 8. REFERENCES
- 9. ADDENDA SEE NEXT PAGE

ADDENDA

- ADDENDUM 1 1:100 YEAR FLOOD LINES IN THE STREAMS
- ADDENDUM 2 LAYOUT OF ALL THE FLOOD LINE SECTIONS
- ADDENDUM 3 DETAIL: ALL STREAMS 1: 100 YEAR FLOOD LEVELS
- ADDENDUM 4 ALL CROSS SECTIONS: 1:100 YEAR FLOOD
- ADDENDUM 5 LONGITUDINAL SECTION 1: 100 YR FLOOD: STREAM 1
- ADDENDUM 6 SHEET FLOW: FLOOD PEAKS CALCULATIONS
- ADDENDUM 7 STREAM FLOW: FLOOD PEAKS CALCULATIONS

CLIENT

Company	MAXIM PLANNING SOLUTIONS
Contact Person	KOOT RAUBENHEIMER
Adress	Unit 35 Corpus Novem Office Park, 35 Dr Yusuf Dadoo Avenue, Wilkoppies, Klerksdorp, 2571 PO Box 6848, Flamwood, 2572
Tel No.	(018) 468 6366
Cell	083 263 4960
Fax No.	(018) 468 6378
E-mail	koot@maxim.co.za

1. INTRODUCTION

CWT Consulting was appointed by the *Maxim Planning Solutions* to calculate the 1:100 year flood levels in *a non-perennial stream* on a proposed new development at *Barkly West* in the *Dikgatlong Local Municipality* in the Northern Cape Province. According to section 144 of the National Water Act (ACT No. 36 of 1998) as amended, no person may establish a development unless the layout plan shows (in a form acceptable to the local authority concerned) lines indicating the maximum level likely to be reached by floodwaters on average once in every 100 years. The area is riparian to a non-perennial stream and the 1:100 year flood lines must therefore be shown on the layout plans.

2. LOCATION

The areas to be developed is shown below. The R31 road bisects the area to be developed.

3. Hydrology

3.1 Rainfall Data

The area to be developed is located in the **C91E Quaternary Drainage Region.** The rainfall data in **Table 2** below was derived using software to estimate the rainfall in any catchment where coordinates of a *reference point in the catchment* are used. This program implements procedures to estimate design rainfall in South Africa developed by JC Smithers and RE Schulze. Details of the procedures are contained in the **WRC Report No. 1060/1/03** entitled "Design Rainfall and Flood Estimation in South Africa" by JC Smithers and RE Schulze. The software was developed by MJ Gorven.

The Weather Bureau stations nearest to the reference point in the study area were used to determine the point storm rainfall depth for the 1:100 year storm associated with the two catchments. The nearest Weather Bureau stations used for the Storm Rainfall are listed in **Table 1**.

Name of the Weather Bureau station	Number of the Weather Bureau station	Distance from the Reference point km	Length of record Years
BARKLY WEST (TNK)	0290032_W	4	99
PLATFONTEIN	0290191_W	19,1	50
ROCKLANDS	0324202_W	20,1	69
DELPORTSHOOP (POL)	0323535_W	22,6	31
SMITHSDALE	0324449_W	23,7	25

The coordinates of the rainfall reference point in the catchment are:

Latitude: 28°31'15.06"S

Longitude: 24°29'21.46"E

Mean annual precipitation at the reference point: 376 mm

The Storm Precipitation in *mm* associated with the 1:100 year storm is given in Table2.

Storm	Precipitation of
Duration	1:100 Year
	Storm
(minutes)	(mm)
10	28
15	35
30	45
60	57
90	66
120	73
240	84

Table 2

The data was extracted from Daily Rainfall Estimate Database File.

3.2 Catchment of the Stream

The study of the contour survey revealed the following:

- The storm water flow regime North of the R31 road will be sheet flow. No flood lines will develop in this area. The storm water will be channelled to a point where it will flow over the R31 road into the channelled stream on the Southern property.
- 2. The storm water flow regime **South of the R31** road will be **channel flow** and therefore flood lines will develop here. The flood water from the Northern property will be included into the flood water generated on the Southern property.

Figure 2

3.3 Characteristics of the catchments at the study site

3.3.1 Northern Catchment

Area of catchment:	1,036	km²
Length of longest watercourse:	1,93	km
Equal area height difference:	10	m
Distance to catchment centroid:	0,9	km
Time of concentration	96	minutes

3.3.2 Southern Catchment

Area of catchment:	0,71	km²
Length of longest watercourse:	0,83	km
Equal area height difference:	9,7	m
10 – 85 slope height difference:	8,0	m
Distance to catchment centroid:	0,45	km
Time of concentration	19	minutes

4. FLOOD PEAKS

4.1 The Effect of Dams on the Flood Peak

The effect of any dam in the catchment was not taken into account with the use of the deterministic methods because the 1:100 year flood peak will be attenuated by 5% or more by a dam with a smaller storage capacity than at **least 6** *times the total mean annual runoff* of the catchment draining into the dam. No dam(s) exist in the catchment of the stream that will attenuate the 1:100 year flood peak.

4.2 Methods used to calculate the Flood Peak

4.2.1 Analysis Methodology

The final recommended 1:100 year flood peaks were calculated after considering both statistical methods or deterministic methods.

Both totally different types of flood peak calculation were therefore considered to determine the final recommended 1:100 year flood peaks at the study site.

4.2.2 Statistical Methods

No flood record for floods in this stream exists and Statistical Methods can therefore not be used.

4.2.3 Deterministic Methods

Various different deterministic methods were used to calculate the flood hydrology for the catchment as this increases the accuracy of the final flood peak calculation. All the methods used take the following into account:

- Evaporation during rain storm
- Wind during rainstorm
- Depth of rainstorm
- Infiltration
- Flow roughness of area.

The following deterministic methods were considered:

- 1. Rational method as implemented by the Department of Water Affairs.
- 2. Rational method using an alternative implementation.
- 3. Standard Design Flood (SDF) method as developed at Pretoria University.
- 4. The Unit Hydrograph method.
- 5. The Herbst Algorithm as developed at the Department of Water & Sanitation.
- 6. The HRU Algorithm as developed at the University of Witwatersrand.
- 7. The Stephenson & Ten Noordt Algorithms as developed at the University of Witwatersrand.

Due to the *size* of the catchments the results obtained from only the **first four methods** mentioned above are deemed to be applicable for this study. See *Addenda 6 and 7.*

4.2.4 Results of the Deterministic Flood Peak Calculations

The results for the storm return period of 1:100 year are listed in Table 2.

Method	Flood peak North m ³ /s	Flood peak South m³/s	Flood peak Stream m³/s
Rational Method as implemented by the Department of Water & Sanitation	4	8	12
Rational Method using Alternative Algorithms	6	11	17
Standard Design Flood Method (SDF) developed at the University of Pretoria	6	12	18
The Unit Hydrograph Method	15	7	12

Table 2

4.2.5 Recommended Flood Peaks

The flood peaks were calculated by applying the following algorithm:

 $Q_T = [RMDWS + RMA + SDF + UH] / N$

With:

Qτ	= Flood peak for return period T
т	= Return Period: either 50 Year or 100 Year
RMDWS	= Rational method DWS
RMA	 Rational method Alternative Algorithms
SDF	= SDF method
UH	 Unit Hydrograph Method
Ν	= 4

The recommended flood peaks in m³/s (cubic meter per second) at the sites are listed in **Table 4** below:

Return Period	Flood peak in the Stream
Year	m ³ /s
100	15

5. DESCRIPTION OF THE FLOOD LINE CALCULATION

5.1 Hydraulic Model

The HEC-RAS model was used to perform the calculations of the water levels.

HEC-RAS is an integrated package of hydraulic analysis programs. in which the user interacts with the system through the use of a Graphical User Interface (GUI).

HEC-RAS is equipped to model a network of channels. a dendritic system or a single river reach. Certain simplifications must be made in order to model some complex flow

situations using the HEC-RAS one-dimensional approach. It is capable of modeling subcritical, supercritical, and mixed flow regime flow along with the effects of bridges, culverts, weirs, and structures.

5.2 Procedure

The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences.

For unsteady flow. HEC-RAS solves the full. dynamic. Saint-Venant equation using an implicit. finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau's UNET package

6. STREAM GEOMETRY

The final detailed contour survey was supplied by the client on **21 April 2020.** The geometry of the stream at the study site was obtained from **13 cross sections.** These sections were used to compile the two geometric models. Sections were interpolated at **5 m** interval to facilitate the calculations. The layout of all the **cross sections** is shown in **Figure 3 (Addendum 2).**

Figure 3

The exact geo-referenced layout of all the cross sections can be found in **Addendum 2** (Plan CWT 272020/2).

7. RESULTS OF THE CALCULATION

The flow regime in the **Southern Catchment** will be **channel flow**. The flow regime in the **Northern Catchment** will be **sheet flow**. The sheet flow from the north will be dammed and diverted by the existing tarred Road R31 westwards to a point where it will flow southwards over the R31 Road into the stream where flood lines will develop. The flood peak generated from the Southern Catchment is also added to the final peak flow in the stream where the flood lines will develop. The 1:100 year flood lines are detailed in **Addendum 1 (Drawing CWT 272020/1).** The detailed flood peak calculations, water level calculations, cross sections and longitudinal sections are included in **Addenda 3 to 7**.

Figure 4

The1:100 year flood lines are shown in **Figure 4.** Relative low flow velocities will develop and no scour is expected. The flow depths will be less than 0,3 meter but the top width of the stream will vary from 90 meter to 233 m. – see **Addendum 3.** The existing road will be overtopped as indicated in **Addendum 1.** Refer to **Addenda 3 to 5** for all relevant hydraulic detail.

8. REFERENCES

- 1. Water Research Commission (WRC) Report TT 382/08.
- 2. Department of Water Affair's publication TR102.
- 3. Hydrological Research Unit Report No. 1/72.
- 4. Planet-GIS Geographic Information System (GIS) software suite.
- 5. Other relative documents and spreadsheets in my possession.
- 6. Department of Water Affair's publication Floods Database.
- 7. GN.704 of 4 June 1999.
- 8. GN.636 of 23 August 2013.
- 9. HRU. Report 2/78. Depth-Duration-Frequency diagram.
- 10. Hec-Ras model software.
- 11. Department of Transport. (2005) Road Infrastructure Strategic Framework for South Africa. (RISFSA).
- 12. Kruger. E.J. (editor)(2006) Drainage Manual South African Roads Agency Limited.
- 13. Design Rainfall and Flood Estimation in South Africa: WRC Report No. 1060/1/03
- 14. WRC Report WR2012 (updated to 2019)

autz Eng

C. J. COETZER (Pr Eng) ECSA REG NUMBER: 800339

28 April 2020

CWT 272020/1

Cas Coetzer PrEng BSc Eng (Civ)(Pret) MECSA MSAICE CWT Consultant in Water Technology

DO NOT SCALE IF NOT PLOTTED ON A3

5.

ADDENDUM 1

Cas Coetzer PrEng BSc Eng (Civ)(Pret) MECSA MSAICE CWT Consultant in Water Technology

DO NOT SCALE IF NOT PLOTTED ON A3

1.

ADDENDUM 2

Addendum 3

Section	Flow	Bed	Water	Flow	Flow	Тор	Froude
No	(m³/s)	level (m)	level (m)	Depth (m)	Velocity (m/s)	Width (m)	No
1	15	1124.50	1124.74	0.14	0.71	149.43	0.60
2	15	1125.62	1125.87	0.11	0.63	210.90	0.60
3	15	1126.15	1126.35	0.12	0.57	224.02	0.53
4	15	1126.78	1127.04	0.11	0.59	233.56	0.57
5	15	1127.19	1127.54	0.14	0.67	154.63	0.56
6	15	1127.85	1128.08	0.15	0.71	144.62	0.60
7	15	1128.40	1128.65	0.15	0.77	125.92	0.63
8	15	1129.00	1129.41	0.18	0.78	105.60	0.59
9	14	1129.66	1129.96	0.20	0.77	90.38	0.55
10	12	1130.33	1130.63	0.16	0.64	115.67	0.50
11	10	1130.71	1131.00	0.18	0.50	112.37	0.38
12	9	1131.00	1131.20	0.18	0.42	118.88	0.32
13	7.75	1131.00	1131.28	0.22	0.33	105.83	0.22

ADDENDUM 6

Rational Method

Project	= TASK 272020 BARKLEY WEST	
Analysed by	= C J COETZER	
Name of river	= BARKLEY WEST SHEET FLOW	
Description of site	= REMAINING EXTEND OF ERF 687 BARKLEY WEST	
Date	= 2020/04/22	
Area of catchment	= 1.036 km ²	
Dolomitic area	= 0.0 %	
Mean annual rainfall (MAR)	= 376.00 mm	
Length of longest watercourse	= 1.93 km	
Flow of water	= Overland flow	
Height difference	= 10.0 m	
Value of r for over land flow	= Sparse grass (r=0,3)	
Rainfall region	= Inland	
Area distribution	= Rural: 100 %, Urban: 0 %, Lakes: 0 %	
Catchment description - Urban	area (%)	
Lawns	Residential and industry Business	

				-		
Sandy,	flat (<2%)	0	Houses	0	City centre	0
Sandy,	steep (>7%)	0	Flats	0	Suburban	0

Heavy soil, steep (>7%)	0	Heavy industry	0	Maximum flood 0	
Catchment description -	Rural	area (%)			
Surface slopes		Permeability		Vegetation	
Lakes and pans	0	Very permeable	0	Thick bush & forests	0
Flat area	100	Permeable	0	Light bush & cultivated land	50
Hilly	0	Semi-permeable	100	Grasslands	50
Steep areas	0	Impermeable	0	Bare	0
Average slope		= 0.00518	8 m/m		
Time of concentration		= 1.60 h			
Run-off factor					
Rural - Cl		= 0.300			
Urban - C2		= 0.000			
Lakes - C3		= 0.000			
Combined - C		= 0.300			

Heavy soil, flat (<2%) 0 Light industry 0 Streets 0

The HRU, Report 2/78, Depth-Duration-Frequency diagram was used to determine the point rainfall.

Return	Time of	Point	ARF	Average	Factor	Runoff	Peak
Period	concentration	rainfall		intensity	Ft	coefficient	flow
(years)	(hours)	(mm)	(%)	(mm/h)		(%)	(m³/s)
1:2	1.60	22.4	100.0	14.0	0.75	22.5	0.908
1:5	1.60	30.5	99.9	19.1	0.80	24.0	1.318
1:10	1.60	38.6	99.9	24.1	0.85	25.5	1.772
1:20	1.60	47.7	99.9	29.8	0.90	27.0	2.316
1:50	1.60	62.0	99.9	38.7	0.95	28.5	3.178
1:100	1.60	76.3	99.9	47.7	1.00	30.0	4.116

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Alternative Rational Method

Project	= TASK 272020 BARKLEY WEST
Analysed by	= C J COETZER
Name of river	= BARKLEY WEST SHEET FLOW
Description of site	= REMAINING EXTEND OF ERF 687 BARKLEY WEST
Date	= 2020/04/22
Area of catchment	= 1.036 km ²
Dolomitic area	= 0.0 %
Length of longest watercourse	= 1.93 km
Flow of water	= Overland flow
Height difference	= 10.0 m
Value of r for over land flow	= Sparse grass (r=0,3)
Area distribution	= Rural: 100 %, Urban: 0 %, Lakes: 0 %

Catchment description - Urban area (%)

Lawns		Residential and	industry	Business	
Sandy, flat (<2%)	0	Houses	0	City centre	0
Sandy, steep (>7%)	0	Flats	0	Suburban	0
Heavy soil, flat (<2%)	0	Light industry	0	Streets	0
Heavy soil, steep (>7%)	0	Heavy industry	0	Maximum flood	0
Catchment description -	Rural	area (%)			
Surface slopes	Permeability		Vegetation		

Lakes and pans		0	Very perm	neable	(0	Thick bus	n & fo	rests		0	
Flat area		100	Permeable	e	(0	Light bus	n & cu	ltivated	land	50	
Hilly		0	Semi-perm	neable	:	100	Grassland	5			50	
Steep areas		0	Impermeak	ole	(0	Bare				0	
Days on which the	hunder wa	as hear	rd	= 60	days,	/year						
Weather Services	s statior	n numbe	er	= 290	032							
Weather Services	s statior	n locat	tion	= BAF	RKLY I	WEST						
Mean annual pred	cipitatio	on (MAI	2)	= 38	35 mr	m						
Duration 2	5 10	20	50	100	200							
1 day 43	61 75	91	114	134	156							
2 days 54	80 101	l 124	1 159	190	225							
3 days 59	87 109	9 133	3 169	200	235							
7 days 72	110 140) 173	3 223	266	314							
The modified real	calibrate	ed Hers	shfield re	elatior	nship	was ı	used to de	termin	e point	rainfal	11.	
												-
Average slope				= 0.0	0518	m/m						
Time of concent:	ration			= 1.6	50 h							
Run-off factor												
Rural - Cl				= 0.3	300							
Urban - C2				= 0.0	000							
Lakes - C3				= 0.0	000							
Combined - C				= 0.3	300							

Return	Time of	Point	ARF	Average	Factor	Runoff	Peak
period	concentration	rainfall		intensity	Ft	coefficient	flow
(years)	(hours)	(mm)	(%)	(mm/h)		(%)	(m³/s)
1:2	1.60	25.99	100.0	16.25	0.75	22.5	1.052
1:5	1.60	43.84	100.0	27.42	0.80	24.0	1.894
1:10	1.60	57.35	100.0	35.86	0.85	25.5	2.632
1:20	1.60	70.85	100.0	44.31	0.90	27.0	3.443
1:50	1.60	88.71	100.0	55.47	0.95	28.5	4.550
1:100	1.60	102.21	100.0	63.92	1.00	30.0	5.518

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Unit Hydrograph Method

Project	= TASK 272020 BARKLEY WEST
Analysed by	= C J COETZER
Name of river	= BARKLEY WEST SHEET FLOW
Description of site	= REMAINING EXTEND OF ERF 687 BARKLEY WEST
Date	= 2020/04/22
Area of catchment	= 1.036 km ²
Length of longest watercourse	= 1.93 km
Height difference along equal area slope	= 8.8 m
Distance to catchment centroid	= 0.897 km
Veld type	= Region 7
Duration interval	= 15 minutes

Slope of longest stream	= 0.0046 m/m
Catchment index	= 25.6
Catchment lag	= 0.608
Coefficient (Ku)	= 0.315 m^3/s - hours/km ²
Peak discharge of unit hydrograph (Qp)	= 0.536 m ³ /s

Return	Storm	Peak
period	duration	discharge
	(minutes)	(m³/s)
1:2 year	30	1.850
1:5 year	15	3.200
1:10 year	15	4.875
1:20 year	15	7.020
1:50 year	15	10.90
1:100 year	15	15.32

Standard Design Flood method

Project name	= TASK 272020 BARKLEY WEST
Analysed by	= C J COETZER
Name of river	= BARKLEY WEST SHEET FLOW
Description of site	= REMAINING EXTEND OF ERF 687 BARKLEY WEST
Date	= 2020/04/22
Catchment characteristics:	
Area of catchment	$= 1.036 \text{ km}^2$
Length of longest watercourse	= 1.93 km
1085 height difference	= 10 m
Average slope	= 0.0069 m/m
Drainage basin characteristics:	
Drainage basin number	= 8
Mean annual daily max rain	= 47 mm
Days on which thunder was heard	= 29 days
Runoff coefficient C2	= 5 %
Runoff coefficient C100	= 20 %
Basin mean annual precipitation	= 380 mm
Basin mean annual evaporation	= 2100 mm
Basin evaporation index MAE/MAP	= 5.53

RAINFALL DATA

The rainfall data in the table below are derived from two sources. The daily rainfall is from the Department of Water Affair's publication TR102 for the representative site. The modified Hershfield equation is used for durations up to four hours. Linear interpolation is used for values between 4 hours and one day.

Weather Services station ex TR102 = 322071 @ DANIELSKUIL

Point mean annual precipitation = 380 mm

Dur:	RP =2	5	10	20	50	100	200
.25 h	13	22	29	36	45	52	59
.50 h	17	29	38	47	59	68	77
1 h	21	36	47	58	72	83	94
2 h	25	42	56	69	86	99	112
4 h	29	49	64	80	100	115	130
1 day	47	69	86	104	132	156	183
2 days	60	91	116	144	187	224	267
3 days	65	100	128	160	208	250	297
7 days	79	126	164	207	272	329	393

CAUTION. The time of concentration is less than one hour.

Runoff coefficients C2 = 5 % C100 = 20 %

Return	Time of	Point	ARF	Catchment	Runoff	Peak
period	concentration	precipitation		precipitation	coefficient	flow
(years)	(hours)	(mm)	(%)	(mm)	(응)	(m³/s)
1:2	0.75	19.5	100.0	19.5	5.0	0.376
1:5	0.75	32.9	100.0	32.9	10.4	1.321
1:10	0.75	43.1	100.0	43.1	13.2	2.198
1:20	0.75	53.2	100.0	53.2	15.6	3.191
1:50	0.75	66.6	100.0	66.6	18.2	4.673
1:100	0.75	76.8	100.0	76.8	20.0	5.918

ADDENDUM 7

Rational Method

Project		= TASK 27	2020	BARKLY W	IEST		
Analysed by		= C J COE	TZER				
Name of river	:	= BARKLY	WEST	CHANNEL	FLOW		
Description of site		= REMAIN]	NG EX	TEND OF	ERF (687 BARKLY	WEST
Date		= 2020/04	/22				
Area of catchment		= 0.708 }	2 cm 2				
Dolomitic area		= 0.0 %					
Mean annual rainfall (MAR)		= 376.00	mm				
Length of longest watercour	se	= 0.829 }	zm				
Flow of water		= Defined	l wate	r course	2		
Height difference along 10-	85 slope	= 8.0 m					
Rainfall region		= Inland					
Area distribution		= Rural:	100 %	, Urban	ı: 0 ⁹	%, Lakes:	0 %
Catchment description - Urb	an area (%)						
Lawns	Residentia	l and inc	lustry	Busines	S		
Sandy, flat (<2%) 0	Houses		0	City ce	ntre	0	
Sandy, steep (>7%) 0	Flats		0	Suburba	ın	0	
Heavy soil, flat (<2%) 0	Light indu	stry	0	Streets		0	

Catchment description -	- Rural	area (%)			
Surface slopes		Permeability		Vegetation	
Lakes and pans	0	Very permeable	0	Thick bush & forests	0
Flat area	95	Permeable	0	Light bush & cultivated land	50
Hilly	5	Semi-permeable	100	Grasslands	50
Steep areas	0	Impermeable	0	Bare	0
Average slope		= 0.0128	7 m/m		
Time of concentration		= 18.4 m	in		
Run-off factor					
Rural - Cl		= 0.303			
Urban - C2		= 0.000			
Lakes - C3		= 0.000			
Combined - C		= 0.303			

Heavy soil, steep (>7%) 0 Heavy industry 0 Maximum flood 0

The HRU, Report 2/78, Depth-Duration-Frequency diagram was used to determine the point rainfall.

Return	Time of	Point	ARF	Average	Factor	Runoff	Peak
Period	concentration	rainfall		intensity	Ft	coefficient	flow
(years)	(hours)	(mm)	(%)	(mm/h)		(%)	(m³/s)
1:2	0.31	12.6	99.9	40.9	0.75	22.7	1.828
1:5	0.31	17.1	99.9	55.7	0.80	24.2	2.654
1:10	0.31	21.6	99.9	70.4	0.85	25.8	3.568
1:20	0.31	26.7	99.8	86.9	0.90	27.3	4.662
1:50	0.31	34.7	99.8	113.0	0.95	28.8	6.394
1:100	0.31	42.7	99.7	139.0	1.00	30.3	8.280

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Alternative Rational Method

Project			=	TASK 27	72020 1	BARKLY WEST		
Analysed by			=	C J COB	ETZER			
Name of river			=	BARKLY	WEST (CHANNEL FLOW		
Description of site			=	REMAINI	ING EXT	FEND OF ERF 687	BARKLY	WEST
Date			=	2020/04	1/22			
Area of catchment			=	0.708 }	CM 2			
Dolomitic area			=	0.0 %				
Length of longest watero	course		=	0.829 }	cm			
Flow of water			=	Defined	d wate	r course		
Height difference along	10-85	slope	=	8.0 m				
Area distribution			=	Rural:	100 %,	, Urban: 0 %,	Lakes:	0 %
Catchment description -	Urban	area (%)						
Lawns		Residentia	al	and inc	dustry	Business		
Sandy, flat (<2%)	0	Houses			0	City centre	0	
Sandy, steep (>7%)	0	Flats			0	Suburban	0	
Heavy soil, flat (<2%)	0	Light indu	ıst	cry	0	Streets	0	
Heavy soil, steep (>7%)	0	Heavy indu	ıst	ry	0	Maximum flood	0	
Catchment description -	Rural	area (%)						
Surface slopes		Permeabil:	ity	7		Vegetation		

Lakes and pans 0 Very permeable 0 Thick bush & forests 0

Flat area	a		95	Pe	ermeable	Э		0	Light bush & cultivat	ed land	50	
Hilly			5	Se	emi-perr	neable		100	Grasslands		50	
Steep are	eas		0	II	mpermeak	ole		0	Bare		0	
Days on w	which t	thunde	r was ł	neard		= 40	days	s/year				
Weather Services station number = 290032												
Weather :	Weather Services station location = BARKLYWEST											
Mean ann	Mean annual precipitation (MAP) = 385 mm											
Duration	2	5	10	20	50	100	200					
1 day	43	61	75	91	114	134	156					
2 days	54	80	101	124	159	190	225					
3 days	59	87	109	133	169	200	235					
7 days	72	110	140	173	223	266	314					
The modi:	fied re	ecalib	rated H	Hersh	field re	elation	nship	was 1	used to determine poin	t rainfa	11.	
Average :	slope					= 0.0	01287	/m/m				
Time of concentration = 18.4 mi						n						
Run-off :	factor											
Rural - (21					= 0.3	303					
Urban - (02					= 0.0	000					
Lakes - (23					= 0.0	000					
Combined	– C					= 0.3	303					

Return	Time of	Point	ARF	Average	Factor	Runoff	Peak
period	concentration	rainfall		intensity	Ft	coefficient	flow
(years)	(hours)	(mm)	(%)	(mm/h)		(응)	(m³/s)
1:2	0.31	14.44	100.0	47.08	0.75	22.7	2.104
1:5	0.31	24.37	100.0	79.43	0.80	24.2	3.786
1:10	0.31	31.87	100.0	103.89	0.85	25.8	5.262
1:20	0.31	39.38	100.0	128.36	0.90	27.3	6.884
1:50	0.31	49.31	100.0	160.71	0.95	28.8	9.098
1:100	0.31	56.81	100.0	185.18	1.00	30.3	11.03

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Unit Hydrograph Method

Project	= TASK 272020 BARKLY WEST
Analysed by	= C J COETZER
Name of river	= BARKLY WEST CHANNEL FLOW
Description of site	= REMAINING EXTEND OF ERF 687 BARKLY WEST
Date	= 2020/04/22
Area of catchment	= 0.708 km ²
Length of longest watercourse	= 0.829 km
Height difference along equal area slope	= 9.7 m
Distance to catchment centroid	= 0.451 km
Veld type	= Region 6
Duration interval	= 15 minutes

Slope of longest stream	= 0.0117 m/m
Catchment index	= 3.5
Catchment lag	= 0.293
Coefficient (Ku)	= $0.265 \text{ m}^3/\text{s} - \text{hours}/\text{km}^2$
Peak discharge of unit hydrograph (Qp)	= 0.639 m³/s

Return	Storm	Peak		
period	duration	discharge		
	(minutes)	(m³/s)		
1:2 year	15	1.451		
1:5 year	15	2.575		
1:10 year	15	3.924		
1:20 year	15	5.651		
1:50 year	15	8.781		
1:100 year	15	12.34		

Standard Design Flood method

Project name	= TASK 272020 BARKLY WEST
Analysed by	= C J COETZER
Name of river	= BARKLY WEST CHANNEL FLOW
Description of site	= REMAINING EXTEND OF ERF 687 BARKLY WEST
Date	= 2020/04/22
Catchment characteristics:	
Area of catchment	$= 0.708 \text{ km}^2$
Length of longest watercourse	= 0.829 km
1085 height difference	= 8 m
Average slope	= 0.0129 m/m
Drainage basin characteristics:	
Drainage basin number	= 8
Mean annual daily max rain	= 47 mm
Days on which thunder was heard	= 29 days
Runoff coefficient C2	= 5 %
Runoff coefficient C100	= 20 %
Basin mean annual precipitation	= 380 mm
Basin mean annual evaporation	= 2100 mm
Basin evaporation index MAE/MAP	= 5.53

RAINFALL DATA

The rainfall data in the table below are derived from two sources. The daily rainfall is from the Department of Water Affair's publication TR102 for the representative site. The modified Hershfield equation is used for durations up to four hours. Linear interpolation is used for values between 4 hours and one day.

Weather Services station ex TR102 = 322071 @ DANIELSKUIL

Point mean annual precipitation = 380 mm

Dur:	RP =2	5	10	20	50	100	200
.25 h	13	22	29	36	45	52	59
.50 h	17	29	38	47	59	68	77
1 h	21	36	47	58	72	83	94
2 h	25	42	56	69	86	99	112
4 h	29	49	64	80	100	115	130
1 day	47	69	86	104	132	156	183
2 days	60	91	116	144	187	224	267
3 days	65	100	128	160	208	250	297
7 days	79	126	164	207	272	329	393

CAUTION. The time of concentration is less than one hour.

Runoff coefficients C2 = 5 % C100 = 20 %

Return	Time of	Point	ARF	Catchment	Runoff	Peak
period	concentration	precipitation		precipitation	coefficient	flow
(years)	(hours)	(mm)	(१)	(mm)	(%)	(m³/s)
1:2	0.31	14.4	100.0	14.4	5.0	0.462
1:5	0.31	24.3	100.0	24.3	10.4	1.622
1:10	0.31	31.8	100.0	31.8	13.2	2.700
1:20	0.31	39.3	100.0	39.3	15.6	3.919
1:50	0.31	49.2	100.0	49.2	18.2	5.739
1:100	0.31	56.6	100.0	56.6	20.0	7.268
