PHASE 1 NEAR SURFACE GEOTECHNICAL INVESTIGATION FOR THE PROPOSED TOWNSHIP ESTABLISHMENT TO BE SITUATED ON PORTION 1 OF THE FARM NEWINGTON 255 KU, MPUMALANGA PROVINCE OF SOUTH AFRICA

Report Prepared for:

Report Prepared by:

Nkanivo Development Consultants

Unit 79, Block 5, Lombardy Business Park

66 Graham Road

Pretoria,

0084

P.O Box 11948

Silver Lakes

0054

Tell: +27 (0) 12 807 7445

Cell: +27 (0) 83 277 7347

info@nkanivo.co.za

www.nkanivo.co.za

Contact Person: Samuel Chauke (Managing

Director)

Zwandazwashu Consulting (Pty) Ltd

Unit 01A Stanford Park

817 16th Road

Randjespark

Midrand

1685

Cell: 079 0812369 / 067 706 9904

Email: admin@zwandazwashu.co.za

Website: www.zwandazwashu.co.za

Prepared & Compiled by: Neduvhuledza

Nduvho (Cand.Sci.Nat)

Reviewed by: Mavhetha Lavhelesani (GSSA

Member) (Pr.Sci.Nat)

TABLE OF CONTENT

TAB	BLE (OF C	ONTENT	ii
LIST	ГОБ	FIG	JRES	iii
LIST	ГОБ	TAB	LES	iii
ACF	RON	YMS	AND ABBREVATIONS	iv
EXE	CU	TIVE	SUMMARY	V
1.		INTE	RODUCTION	1
1	.1	Purp	ose	1
1	.2	Back	ground	1
2.		SITE	DESCRIPTION	2
2	.1	Loca	tion	2
2	.2	Topo	graphy	3
2	.3	Clima	ate	3
3.		GEO	HAZARDS	4
3	.1	Seisı	mic Hazard / Activities	4
3	.2	Grou	nd Subsidence	6
3	.3	Sinkl	nole Formation	6
3	.4	Land	Islides and Mudslides	7
3	.5	Falls	and Rockslides	7
3	.6	Volca	anic Activities	7
4.		MET	HOD OF INVESTIGATION	7
4	.1	Desk	Study	7
4	.2	Test	Pits	8
4	.3	Labo	ratory Tests	11
5.		REG	IONAL & SITE GEOLOGY	15
5	.1	Regi	onal Geology	15
5	.2	Site	Geology	15
	5.2	2.1	Topsoil	16
	5.2	2.2	Residual soil	16
	5.2	2.3	Granite Bedrock	16
6.		HYD	ROGEOLOGY	16
6	.1	Seep	page and Groundwater	16
7.		GEO	TECHNICAL EVALUATION	17
7	.1	Expa	nsive soils	19
7	.2	Colla	psible soil	19

7.3	Compressible soils	19								
7.4	Soil site classification	19								
7.5	Construction Monitoring	21								
8.	RECOMMENDATIONS	21								
8.1	Foundations	21								
8.	.1.1 Foundations on residual soils	21								
8.	.1.2 Foundations on weathered Granite	22								
9.	CONCLUSIONS	22								
10.	REPORT PROVISIONS	22								
11.	REPORT SIGNATURE									
12.	REFERENCES	25								
13.	APPENDIX A: SITE PICTURES	26								
14.	APPENDIX B: LABORATORY RESULTS	32								
15.	APPENDIX C: SOIL PROFILES	33								
16.	APPENDIX D: SITE LAYOUT PLAN	34								
LIST	OF FIGURES									
Figure :	1: Location of the proposed site (Topographic Map 2431CD)	2								
•	2: Seismic hazard map of South Africa (I)									
	3:Seismic Hazard Map of South Africa (SANS 10160-4, 2011)									
	4: Test pit position									
•	5: Geological setting of the site									
•										
riguie	7: Geotechnical zone/ soil class designation	20								
LIST	OF TABLES									
Table 1	: Summary of test pit information	8								
Table 2	2: Summary of the foundation test results	13								
Table 3										
	3: Summary of the CBR test results	16								
	B: Summary of the CBR test results									

ACRONYMS AND ABBREVATIONS

AASHTO: American Association of State Highway and Transportation Officials

ARS : Acceleration Response Spectra

DCP: Dynamic Cone Penetrometer

DSI : Dolomite Stability Investigation

CBR: Californian Bearing Ratio

M : Meter

MDD : Maximum Dry Density

MBGL: Meters Below Ground Level

NHBRC: The National Home Builders Registration Council

OMC: Optimum Moisture Content

CL : Clay

TP: Trial Pit

TLB: Tractor Loader Backhoe

SANS: South African National Standards

SANAS: South African National Accreditation System

SACNASP: South African Council Natural Scientific Professions

USC: Unified Soil Classification

EXECUTIVE SUMMARY

The project is the proposed township establishment to be situated on portion 1 of the farm Newington 255 KU. The site is located at the following approximate coordinates: Latitude 24°46'53"S and Longitude 31°18'54"E, time zone is GMT+2 hours. The area of interest for investigation is situated between villages of Dumphries, and Matshaye, access to site is via the unnamed gravel which connects the Dumphries and Matshaye Village. The site is 15km northeast of Thulamahashe in Mpumalanga Province.

Forty Six (46) test pits were excavated by means of Tractor loader Backhoe (TLB) in order to obtain information on the subsurface soil. Each test pit which was deemed safe to enter was marked, photographed and profiled by a field engineering geologist in accordance with the "Guidelines for Soil and Rock Logging in South Africa", 2nd Impression 2002, sampled as necessary and then loosely backfilled. Test pit soil profiles are attached in Appendix C.

Twelve bulk samples were collected from the slightly moist, light brown, Coarse grained, gravelly SAND. The granite bedrock was slightly weathered and fractured. The bedrock was friable and excavatable as gravel size fragments. The granite grades with depth from slightly weathered medium hard rock to consolidated high strength granite bedrock. Homogeneity of material underlying the site was observed hence a choice of twelve bulk representative samples. The samples were found to be non-plastic. The PI along with the clay content indicated that the samples exhibit low potential expansiveness. The sample indicated CBR of 38 at 95% MOD AASHTO with a grading modulus of 2.0 for TP2, a CBR of 72 at 95% MOD AASHTO with a grading modulus of 1.9 for TP10. Based on the grading modulus, Atterberg limits and CBR the area under investigation were classified as G5 material. The area can be classified as Non-corrosive (NC). Having said that, does not mean corrosive materials (pipelines) installation must not include measures against corrosion.

The area investigated is underlain by top soils of sand, including residual soils derived from the in-situ weathering of Granite. Residual soil from Granite is well developed and was encountered in the entire site an average depth of 1.9m below existing ground level. The excavation on site is likely to classify as "soft" to an average depth of 1.9m below existing ground level. Below this, "intermediate to hard" excavation is expected. This due to the underlining granite bedrock

A review of the test pit data indicates that the site is generally underlined by granite bedrocks. The laboratory tests indicated that material underlying the site exhibits low potential expansiveness. The development potential has been broadly classified in terms of

a Geotechnical Sub-Area based on field observations/investigation (geological, hydrogeological, and geomorphological), and laboratory soil testing of soil samples. From the above discussion the site is classified into main soil area namely compressible and potential collapsible soils: According to AASHTO and COLTO the soil samples were classified as A-1-b(0) and G5 respectively. The foundation design options as per SANS10400 H- NHBRC soil symbol is "R/C/C1". The recommended Foundation types in accordance with SANS 10400H- Normal Strip Foundation / Reinforced Deep Strip Foundation.

Therefore, the recommended foundation type is a <u>reinforced strip foundation founded on</u> <u>a G5/G6 engineered soil mattress</u>. The in-situ material can be utilised for founding material as there are of G5 material on residual soils. Reinforcement should be designed by a competent person. Moreover, a <u>normal strip foundation</u> onto the medium hard rock granite.

During the construction phase, it is highly recommended that qualified personnel should regularly inspect and monitor, to track and record deviations in the actual foundation conditions from those predicted as reported in this geotechnical site investigation report

1. INTRODUCTION

Zwandazwashu Consulting Pty (Ltd) was appointed by Nkanivo Development Consultants to conduct phase 1 near surface geotechnical investigation for the proposed township to be situated on portion 1 of the farm Newington 255 KU, on behalf of Bushbuckridge Local Municipality of the Ehlanzeni District Municipality in Mpumalanga Province of South Africa.

1.1 Purpose

The primary objective of the investigation was to assess the soil and rock profile across the sites and obtain engineering parameters for the design of foundations for the development of proposed site.

This report evaluates the geotechnical characteristics associated with the underlying geology and any geotechnical constraints that might affect structural integrity of the subject property. It is also important to identify engineering properties' potential influence on the design, construction and operation of the intended infrastructures.

The main objective of the investigation was aimed at defining the founding materials and establishing broader geotechnical conditions and their suitability to the establishment of township. This report presents practical recommendations for site preparation (earthworks), soil and rock excavatibility and for the design and construction of foundations. The report provides geotechnical parameters on which the foundation and superstructure designs may be based. The geotechnical investigation was carried out in accordance with SAIEG and GFSH-2 guidelines and all NHBRC Home Building Manuals guidelines.

The terms of reference for this investigation are as follows:

- Present the fieldwork carried out during the geotechnical investigation;
- Provide an overview of the geology of the site;
- · Discuss the soil profile encountered;
- Comment on the suitability of the site for the proposed development;
- Recommend specific foundations for the structure.
- Comment on groundwater (if encountered in the limits of investigation).
- Discuss the potential geotechnical limiting factors by determining the behaviour and suitability of soil/rocks and their effects on the intended development;

1.2 Background

The project area is approximately 88.41 hectares in extent, which is expected to yield approximately 562 stands

The engineering geotechnical investigation was carried out to determine the prevailing ground conditions below the site with a specific interest in the depth to a competent founding horizon.

The fieldwork for the engineering geotechnical investigation was carried out on the 13th of November 2020 and entailed the following:

- Site walkover reconnaissance followed by the following;
- Excavation of twenty seven (27) test pits across the site to a depth of refusal using a Tractor-Loader Backhoe (TLB);
- Recovery of selected disturbed samples for laboratory tests. Samples were sent to Civilab Booysen Johannesburg.

2. SITE DESCRIPTION

The project is the proposed township establishment to be situated on portion 1 of the farm Newington 255 KU. The area of interest for investigation is situated between villages of Dumphries, and Matshaye, access to site is via the unnamed gravel which connects the Dumphries and Matshaye Village. The site is 15km northeast of Thulamahashe in Mpumalanga Province. The magisterial of the site is Ehlanzeni District Municipality in Bushbuckridge Local Municipality.

2.1 Location

The site is located at the following approximate coordinates: Latitude 24°46'53"S and Longitude 31°18'54"E, time zone is GMT+2 hours. Figure 1 shows location of site.

Figure 1: Location of the proposed site (Topographic Map 2431CD)

2.2 Topography

It was noted during site observation survey and actual geotechnical fieldwork procedures that the site topography is slightly steep slope from east to west. This was expected since the engineering geologist conducted geological and topographic studies using ArcGISpro software prior site visit. During the investigation the proposed site was accessible by a four-wheeled drive vehicle as there are few tracks or trails on site.

2.3 Climate

The Dumphries can be characterised as semiarid climate which receive approximately 353mm precipitation annually. The average temperatures in Dumphries ranges from 29°C in January and 22°C is the lowest which occurs in the month of July.

The climatic conditions of the site under investigation play significant role in weathering of rocks through chemical weathering. Thus, climate is the principle player in the development of a soil profile and the weathering of rock. Weinert (1964) demonstrated that chemical decomposition is the predominant mode of rock weathering in areas where the climatic "N-value" is less than 5. In areas where the climatic N-value is between 5 and 10, disintegration is the predominant form of weathering,

although some chemical decomposition of the primary rock minerals still takes place. Where the climatic N-value is greater than 10, secondary minerals do not develop to an appreciable extent and all weathering takes place by mechanical disintegration of the rock.

Weinert's climatic N-value for the study area is less than 5. This implies that rocks are extensively weathered, often to depths of several metres, and decomposition is pronounced.

3. **GEOHAZARDS**

3.1 Seismic Hazard / Activities

The Seismic-hazard can be described as being the physical effects of an earthquake or earth tremor. Examples of such phenomenon include surface faulting, ground shaking and liquefaction (Kijko A et al, 2004). According to the published (Council for Geosciences) Seismic Hazard Identification Maps of South Africa, Site falls under an area with a 10% probabilistic of >0.12g (peak ground acceleration) being exceeded in a 50 year period. The peak ground acceleration is the maximum acceleration of the ground shaking during an earthquake.

For masonry and concrete structures, a 4 to 5 Hz Spectral Acceleration is assumed. This natural frequency of the structure can give an indication of the spectral part of the earthquake motion time history that has the capacity to introduce energy into the structure. Spectral Acceleration (ARS – acceleration-response spectra) is the movement experienced by the structure during an earthquake / seismic event.

This phenomenon is known as resonance. Resonance is where the frequency of the applied harmonic force is consistent with the natural frequency of a vibrating body. At resonance, the vibrating body will exhibit the maximum amplitude of response displacement leading to extremely high structural distress similar to popular example of the Tacoma Narrows Bridge that was situated in Washington State, near Puget Sound. Therefore, frequencies far away - either lower or higher - from the natural frequency of the structure have little capability of damaging the structure.

Figure 2: Seismic hazard map of South Africa (I)

Seismic hazard maps of South Africa produced by Kijko (2003), show the site is situated in the area where the peak ground acceleration is greater than 10% probabilistic of exceedance in a 50-year period is approximately 0.12 to 0.20g. This area is a low seismic hazard area and the construction materials to be used (gravel) are in harmony with the naturally occurring site conditions. As a result, no major problems are foreseen in this regard.

Two types of seismic activities occur in South Africa, namely:

- Regions of natural seismic activity (Zone I), and
- Regions of mining-induced and natural seismic activity (Zone II).

In accordance with the seismic hazard zones contained in SANS 10160-4 (2011), the site does not fall within either Zone I or Zone II, as shown in Figure 3.

Figure 3:Seismic Hazard Zones of South Africa (SANS 10160-4, 2011)

3.2 Ground Subsidence

Subsidence occurs in areas with large underground cavities typically resulting from large scale shallow to very shallow mining and from dolomite/limestone dissolution. It may also appear where thick deposits of unconsolidated material exist.

Note: No signs of previous subsidence were evident during the site investigation and no underground mining activity has occurred in this area.

3.3 Sinkhole Formation

Similar to subsidence, sinkhole formation happens in areas with very large to extremely large underground cavities resulting from mining poorly designed shallow underground activities. Coal Mines in Mpumalanga Province and Gold Mines in Limpopo Province are typical examples of such calamity. Dissolution of dolomites or limestone over millions of years also lead to cavity formations that might later manifest into sinkhole formation as evidenced very much so in Limpopo and Gauteng Provinces.

According to the research done, there are no records of wide shallow underground mining activities directly below this site. There is no dolomite or limestone underlying the site so the chances of dolomite related sinkhole formation are unlikely. However, the presence of a Granite rock within the site needs to be monitored as it is a carbonate rock.

Note: The available geological maps indicate that the site is not underlain by dolomite.

3.4 Landslides and Mudslides

The probability of landslides and mudslides occurring at this area are rare. This is primarily due to the low relief, relatively slightly steep (<15°) gradient of the area, climatic conditions and composition of residual and transported materials in this particular area. Furthermore, the soil on site is relatively compacted and its void ratio doesn't promote infiltration and percolation which are among the primary factors in occurrence of landslide and mudslide.

3.5 Falls and Rockslides

There is no chance of occurrence of rock falls and rockslides due to the low relief and shallow gradient.

3.6 Volcanic Activities

South Africa has seen its last volcanic activity approximately 65 million years ago during the massive historical eruption of the Drakensberg Lava forming the Basaltic Drakensberg Mountain Ranges that we see today. The site indicates no signs of volcanic eruption in the foreseeable future.

4. METHOD OF INVESTIGATION

Based on the "Site Investigation Code of Practice" (SAICE Geotechnical Division, 2010), which provides standards for "acceptable engineering practice", a total of twenty seven (27) test pits were planned for the proposed development.

The method of investigation was based on a near surface investigation, to a maximum depth of 2.5m below existing ground level, for the proposed activity.

The site investigation, which was carried out on the 13th of November 2020, comprised the excavation of test pits in order to profile the subsurface. The layout of the test positions is shown in Figure 5.

4.1 Desk Study

The desk study comprises the review of existing regional, site and surface information. Sources of information include:

- Topographic maps, geological data such as lithology of nearby rock outcrops, landforms and erosion patterns;
- Existing geotechnical reports prepared for areas in close proximity to the site;

Data on seismic aspects, such as ground motion and liquefaction potential.

4.2 Test Pits

Forty Six (46) test pits were excavated by means of Tractor loader Backhoe (TLB) in order to obtain information on the subsurface soil. Each test pit which was deemed safe to enter was marked, photographed and profiled by a field engineering geologist in accordance with the "Guidelines for Soil and Rock Logging in South Africa", 2nd Impression 2002, sampled as necessary and then loosely backfilled. Test pit soil profiles are attached in Appendix C.

A summary of information obtained from the test pits is shown in Table 1 and test pit position in figure 4.

Table 1: Summary of test pit information

	I law dia al	d ODC Coordina	4		Depth (m	1)	
	Handnei	d GPS Coordina	ites		o Ië		Comment
TP ID.	Longitude	Latitude	Altitude	ioi	Residual Soil Granite)	Bedrock (granitic)	
	(E)	(S)	(m)	Topsoil	Residual (Granite)	Bedı (graı	
TP1	31°18'40.4"E	24°47'11.2"S	434m	0.4	1.6	2.3	Refusal on granite bedrock
TP2	31°18'34.91"E	24°47'9.19"S	437m	0.47	1.3	1.6	Refusal on granite bedrock
TP3	31°18'33.61"E	24°47'5.73"S	430m	0.3	0.7	1.37	Refusal on granite bedrock
TP4	31°18'36.88"E	24°47'3.96"S	431m	0.4	0.6	0.8	Refusal on granite bedrock
TP5	31°18'41.65"E	24°47'6.13"S	436m	0.4	1	1.7	Refusal on granite bedrock
TP6	31°18'41.69"E	24°47'9.04"S	440m	0.55	1.2	1.7	Refusal on granite bedrock
TP7	31°18'45.49"E	24°47'6.27"S	428m	0.45	1.2	1.9	Refusal on granite bedrock
TP8	31°18'46.87"E	24°47'4.46"S	440m	0.3	0.9	1.7	Refusal on granite bedrock
TP9	31°18'39.73"E	24°47'0.89"S	437m	0.3	0.7	1.3	Refusal on granite

							bedrock
TP10	04040144 0005	0.40.40150.75110	435m	0.05		4.5	Refusal on granite
11 10	31°18'41.88"E	24°46'58.75"S	100111	0.35	1	1.5	bedrock
TP11	31°18'46.85"E	24°46'55.7"S	442m	0.4	1.4	2.1	Refusal on granite
	01 10 40.00 E	24 40 00.7 0		0.4	1	2.1	bedrock
TP12	31°18'51.02"E	24°46'51.98"S	436m	0.6	1.5	2.3	Refusal on granite bedrock
							Refusal on granite
TP13	31°18'56.7"E	24°46'45.52"S	438m	0.55	1.4	2.3	bedrock
TD4.4			400				Refusal on granite
TP14	31°18'59.40"E	24°46'45"S	439m	0.42	1.25	2.2	bedrock
TP15	24040104015	0.40.40.70.07110	444m				Refusal on granite
1113	31°19'0.43"E	24°46'50.05"S	444111	0.54	1.2	1.8	bedrock
TP16	31°18'54.29"E	24°46'54.01"S	448m	0.54	1.5	2	Refusal on granite
11 10	31-18 54.29 E	24 46 54.01 5	110111	0.54	1.5	2	bedrock
TP17	31°18'51.59"E	24°46'57.58"S	451m	0.35	1.95	2,5	Refusal on granite
	01 1001.00 E	21 1007.000		0.00	1.00	2,0	bedrock Refusal on granite
TP18	31°18'48.97"E	24°47'2.26"S	446m	0.6	1.3	1.8	bedrock
							Refusal on granite
TP19	31°19'7.23"E	24°46'44.46"S	432m	0.4	1	1.9	bedrock
							Refusal on granite
TP20	31°19'4.42"E	24°46'41.47"S	430m	0.38	1.3	1.8	bedrock
TP21			430m				Refusal on granite
IPZI	31°19'7.70"E	24°46'39.73"S	430111	0.37	1.1	1.8	bedrock
TP22	0404010 00115	0.40.4014.4.40110	440m	0.0	4.0		Refusal on granite
11 22	31°18'8.86"E	24°46'44.12"S	440111	0.6	1.6	2.2	bedrock
TP23	31°19'4.44"E	24°46'47.86"S	434m	0.35	1.9	2.2	Refusal on granite
	31 194.44 L	24 40 47 .00 3		0.33	1.9	2.2	bedrock
TP24	31°18'57.95"E	24°46'55.85"S	436m	0.5	1.8	2.4	Refusal on granite
	01 1007.00 2	21 10 00.00 0		0.0	1.0		bedrock
TP25	31°18'53.88"E	24°46'59.85"S	430m	0.42	1.7	2.5	Refusal on granite bedrock
							Refusal on granite
TP26	31°18'46.45"E	24°46'59.86"S	445m	0.45	1.85	2.1	bedrock

	1	T.	1	1	1	1	1
TP1A	31°18'30.00"E	24°47'03.30"S	434m	0.36	0.6	1.1	Refusal on granite bedrock
							Refusal on granite
TP2A	31°18'26.53"E	24°47'00.77"S	437m	0.48	2.2	2.3	bedrock
							Refusal on granite
TP3A	31°18'29.15"E	24°46'58.52"S	430m	0.37	1.3	1.4	bedrock
			404				Refusal on granite
TP4A	31°18'31.91"E	24°47'01.20"S	431m	0.4	0.6	0.8	bedrock
TP5A	31°18'37.52"E	24°46'57.87"S	436m	0.55	2.8	_	Sandy gravel
11 5/4	31 10 37.32 L	24 40 07 .07 0	430111	0.00	2.0		D ()
TP6A	04040100 54115	0.40.40150.44110	440m	0.5	0.0	0.0	Refusal on granite
11 0/4	31°18'33.51"E	24°46'56.41"S	440111	0.5	0.9	2.2	bedrock
TP7A	31°18'38.35"E	24°46'50.71"S	428m	0.45	3		Sandy gravel
IFIA	31 10 30.33 E	24 40 50.71 5	420111	0.43	3	-	
TP8A	31°18'41.53"E	24°46'53.39"S	440m	0.4	2.8	_	Sandy gravel
11 0/1	31 10 41.33 L	24 40 33.33 3	440111	0.4	2.0	_	
TP9A	31°18'46.14"E	24°46'49.12"S	437m	0.38	2.5	_	Sandy gravel
11 5/1	01 10 40.14 L	24 40 43.12 0	407111	0.00	2.0		O a mathe supposed
TP10A	31°18'42.31"E	24°46'45.93"S	435m	0.3	2.55	_	Sandy gravel
	0. 10 12.01 2	2	100111	0.0	2.00		Sandy gravel
TP11A	31°18'37.24"E	24°46'42.92"S	442m	0.43	2.6	_	Sandy graver
							Refusal on granite
TP12A	31°18'31.21"E	24°46'53.88"S	436m	0.6	1.8	2	
	31 1031.21 L	24 40 00.00 0		0.0	1.0		bedrock
TD404			400				Refusal on granite
TP13A	31°18'38.59"E	24°46'47.68"S	438m	0.58	1.7	1.8	bedrock
							Refusal on granite
TP14A	31°18'33.59"E	24°46'45.89"S	439m	0.4	1.2	1.3	bedrock
TP15A	31°18'34.29"E	24°46'50.50"S	444m	0.38	1.5	1.6	Refusal on granite
	31 10 34.29 E	24 46 50.50 5		0.36	1.5	1.0	bedrock
TD464			440				Refusal on granite
TP16A	31°18'29.71"E	24°46'48.99"S	448m	0.45	1.6	1.7	bedrock
							Refusal on granite
TP17A	31°18'25.56"E	24°46'52.24"S	451m	0.4	1.83	1.9	
TP18A	31°18'22 17"⊑	24°46'52 01"9	446m	0.3	1 1	1.2	
	01 1022.11 E	27 70 00.81 0		0.5	1.1	1.4	
			400				Refusal on granite
1P19A	31°18'27.14"E	24°46'55.37"S	432M	0.35	1.5	1.7	bedrock
	31°18'25.56"E 31°18'22.17"E	24°46'52.24"S 24°46'53.91"S	451m	0.4	1.83	1.9	Refusal on granite bedrock Refusal on granite bedrock Refusal on granite

							Refusal on granite
TP20A	31°18'21.98"E	24°46'56.54"S	430m	0.48	1.98	2.04	bedrock

The position of the test pits are indicated on the layout below.

Figure 4: Test pit position

4.3 Laboratory Tests

The field work indicated a general homogeneity of the subsurface soils comprising of Slightly moist, light brown, Coarse grained, **gravelly SAND**, Slightly weathered granite bedrock. Representative disturbed subsoil samples retrieved from the inspection pits during the investigation were taken to a commercial laboratory for testing. These tests aid in assessing the behavior of soils due to moisture changes particularly below foundations. The following tests were conducted on soil samples taken during the field work phase by a suitable SANAS accredited soils laboratory (Civilab, Johannesburg (Booysens): Gauteng Province) and (RoadLab, Germiston, JHB, and Gauteng Province) respectively:

Standard foundation indicator tests were conducted on disturbed soil samples in order to determine its composition, to evaluate the heave and compressibility potential of these soils, and to calculate the maximum heave and/or differential settlement that can be expected. The following tests were conducted:

- 33 Atterberg Limits (plastic limit, liquid limit and plasticity index);
- 33 Grading analysis and;
- 5 MOD and 5 CBR,

• 2 pH and 2 Conductivity

The laboratory tests were conducted in order to assist with the classification, description, and delineation of homogenous zones. The results of the foundation indicator, MOD and CBR tests are presented in Appendix B and are summarized in Table 2 and Table 3 respectively. The samples were taken from the test pit position denoted in the same manner.

<u>Topsoil Material</u> – Topsoil layer was observed in all of the trial pits. The material didn't show road bearing capacity. There was no sample taken from this layer. The layer has average thickness of 0.4m in the range 0 to 0.4m below ground level. It is characterised by non-cohesive materials typically described as "Dry to Slightly moist, greyish, intact, Dense, **Sandy SILT**."

Residual soils – Twelve bulk samples were collected from the slightly moist, light brown, Coarse grained, gravelly SAND. The granite bedrock was slightly weathered and fractured. The bedrock was friable and excavatable as gravel size fragments. The granite grades with depth from slightly weathered medium hard rock to consolidated high strength granite bedrock. Homogeneity of material underlying the site was observed hence a choice of twelve bulk representative samples. The samples were found to be non-plastic. The PI along with the clay content indicated that the samples exhibit low potential expansiveness. The sample indicated CBR of 38 at 95% MOD AASHTO with a grading modulus of 2.0 for TP2, a CBR of 72 at 95% MOD AASHTO with a grading modulus of 1.9 for TP10. Based on the grading modulus, Atterberg limits and CBR the area under investigation were classified as G5 material.

<u>PH and Conductivity – pH</u> measurements conducted indicated that the pH of the area is 6.7 for TP02 at a depth of 0.47-1.2m and 6 for TP17 at depth of 0.35-1.5m. This pH of the site indicates more of acidic to neutral. Acidic as it ranges from 6 to 6.7. Conductivity measurements indicated that the conductivity of the area is 0.017 Ms/m for TP02 at a depth of 0.47-1.2m, 0.007 Ms/m for TP17 at depth of 0.35-1.5m. The area can be classified as Non-corrosive (NC). Having said that, does not mean corrosive materials (pipelines) installation must not include measures against corrosion.

Table 2: Summary of the foundation test results

Sample	HRB	Depth	At	terberg Liı	mit	GM	G	rading a	%)	Potential	
No.	(AASTO)	(m)	LL %	LS %	PI %		Clay	Silt	Sand	Gravel	expansiveness
TP01	A-1-b(0)	0.4 – 1.6	-	1	NP	1.53	4	6	78	12	LOW
TP01	A-1-b(0)	1.6 – 2.3	-	0.5	NP	2.17	1	2	56	41	LOW
TP02	A-2-4(0)	0.47 – 1.2	23	3	7	2.02	1	5	57	37	LOW
TP03	A-1-b(0)	0.3 – 0.7	-	-	NP	2.16	1	1	58	40	LOW
TP05	A-2-4(0)	0.4 – 1	27	4.5	10	2.24	1	3	46	50	LOW
TP07	A-2-6(0)	0.45 – 1.2	26	5.0	14	2.27	2	2	41	55	LOW
TP10	A-1-b(0)	0.35 – 1	-	-	NP	1.90	1	5	61	33	LOW
TP12	A-1-b(0)	0.6 – 1.5	-	-	NP	1.55	1	6	86	7	LOW
TP14	A-1-b(0)	0.42 – 1.25	-	1	SP	2.04	1	5	51	43	LOW

TP16	A-1-b(0)	0.54 – 1.2	-	-	NP	1.58	5	5	68	22	LOW
TP17	A-1-b(0)	0.35– 1.5	-	-	NP	1.64	3	2	83	12	LOW
TP19	A-1-b(0)	0.4-1.0	-	-	NP	1.73	4	7	60	29	LOW
TP1A	A-2-6(1)	0.6-1.1	31	11	22	1.56	17	7	53.9	22	LOW
TP2A	A-1-b(0)	0.48-2.2	1	-	NP	2.13	3.7	5.7	41.2	49.4	LOW
TP3A	A-1-b(0)	0.37-1.3	ı	-	NP	2.13	2.1	3.1	57.4	37.4	LOW
TP5A	A-1-a(0)	0.9-2.2	20	1.5	3	2.43	1.8	2.6	31.5	64.1	LOW
TP5B	A-6(2)	0.5-0.9	37	7	14	1.05	28.3	12.1	48.6	11.0	LOW
TP6A	A-1-a(0)	0.48-1.8	1	-	NP	2.15	5.4	5.4	38.2	51.1	LOW
TP7A	A-1-b(0)	0.45-3	-	-	NP	1.85	7.3	5.5	58.1	29.1	LOW
TP8A	A-1-b(0)	0.4-2.7	-	-	NP	1.76	6.1	6.4	60.8	26.7	LOW

TP9A	A-1-b(0)	0.8-2.5	-	-	NP	1.94	5.7	5.4	52.2	36.7	LOW
TP10A	A-1-b(0)	0.3-2.5	-	-	NP	1.96	4.1	6.4	50.9	38.6	LOW
TP11A	A-1-b(0)	0.43-2.6	-	-	NP	1.89	5.4	6.1	56.9	31.6	LOW
TP12A	A-1-b(0)	0.6-1.8	-	1	NP	2.06	3.3	5.3	48	43.4	LOW
TP13A	A-1-b(0)	0.58-1.7	-	1	NP	2.17	3.4	4.2	45.7	46.7	LOW
TP14A	A-1-b(0)	0.4-1.2	-	-	NP	2.04	3.9	7.0	42	47.1	LOW
TP15A	A-1-b(0)	0.38-1.5	-	1	NP	1.91	4.2	5.8	58.9	31	LOW
TP16A	A-1-b(0)	0.45-1.6	-	1	NP	2.08	3.8	4.7	47.6	44	LOW
TP17A	A-1-b(0)	0.4-1.83	-	1	NP	2.06	5.3	4.6	48.4	41.6	LOW
TP18A	A-1-b(0)	0.3-1.1	-	-	NP	1.83	5.3	7	56.7	31	LOW
TP19A	A-1-b(0)	0.35-1.5	-	-	NP	2.05	5.6	5	46.2	43.1	LOW

TP20A	A-1-b(0)	0.48-1.98	-	-	NP	2.01	5.4	5.7	47.7	41.2	LOW

LL: Liquid Limit PI: Plasticity Index LS: Linear Shrinkage GM: Grading Modulus NP: Non-Plastic

Table 3: Summary of the CBR test results

Sample						CBR @	9			Max.		Max Dry	
No.	HRB (AASTO)	Depth (m)	90 %	93%	95%	97%	98%	100%	GM	Swell (%)	OMC (%)	Density (kg/m³)	COLTO Classification
TP02	A-2-4(0)	0.47-1.2	22	31	38	48	54	68	2.0	0.2	6.6	2077	G5
TP10	A-1-b(0)	0.35–1.0	43	59	72	89	99	122	1.9	0.1	6.2	2114	G5
TP17	A-1-b(0)	0.35-1.5	1	1	1	1	1	1	1.6	0.1	6.3	2040	-
TP2A	A-1-b(0)	0.48-2.2	13	20	26	35	41	55	2.13	0.1	5.5	2024	G6
TP5A	A-1-a(0)	0.9-2.2	11	15	21	29	37	56	2.43	0.09	4.8	2081	G7
TP7A	A-1-b(0)	0.45-3	15	18	24	35	42	55	1.87	0.07	5.2	2037	G7
TP12A	A-1-b(0)	0.6-1.8	10	15	21	25	29	36	2.06	0.08	4.3	1995	G7
TP19A	A-1-b(0)	0.35-1.5	11	19	28	41	50	73	2.05	0.08	4.8	2103	G6

GM:

Grading

PI: Plasticity Index Modulus OMC: Optimum Moisture Content CBR: California Bearing Ratio

REGIONAL & SITE GEOLOGY

5.1 Regional Geology

The site under investigation falls under the cunning moor tonalite of the archaean granitic basement which is situated adjacent to the Mpuluzi Granite and Barberton greenstone belt. It must be noted that outcrops which were observed during site geological examination reveal the phaneritic texture granatoid rocks which are predominately composed of felsic minerals such as quartz, plagioclase feldspars and mafic (amphiboles and pyroxene) accessory minerals. Based on the physical properties of the rock samples and geological maps review of the site; the lithology of the site is coarse grained granite. The site doesn't have many exposed outcrops, majority of the site overlaid by thick strata of sandy silt at the top and medium to coarse gravel before to the base of the granitic bedrock. The geological map in figure 5 indicates the geological setting of the site and its surrounding.

Figure 5: Geological setting of the site

5.2 Site Geology

From observation, the following generalised soil and rock profiles were encountered on site.

5.2.1 Topsoil

The topsoil is characterised by an upper stratum of sandy silt which have an average thickness of 0.4m in the range 0 to 0.4m below ground level. It is characterised by non-cohesive materials typically described as "Dry to Slightly moist, greyish, intact, Dense, **Sandy SILT**."

5.2.2 Residual soil

Residual soil was encountered in all test pits with an average thickness of 1.3m in the range 0.7 to 1.95m below ground level.

These soils originate from the in-situ weathering of the granite parent rock of Cunning Moor Tonalite stratigraphic unit. This stratum is typically described as "Slightly moist, light brown, Coarse grained, gravelly SAND."

5.2.3 Granite Bedrock

The granite parent rock of tonalite type underlies the residual soil and was encountered in all test pits at average depth 1.9m.

The granite bedrock was slightly weathered and fractured. The bedrock was friable and excavatable as gravel size fragments. The granite grades with depth from slightly weathered medium hard rock to consolidated high strength **granite bedrock**.

6. HYDROGEOLOGY

6.1 Seepage and Groundwater

Natural ground water seepage was encountered at an average of 2.1m onsite at an area that is classified as C1 in terms of soil site designation as shown in figure 6, which can be regarded as a wetland. However, in the area that area covered by soil site designation of R and C the no water seepage encountered any and there is no indication of temporary perched water tables in the soil profile, not even at the contact between soil and bedrock. It is therefore expected that if temporary perched water was to at the site, it would occur at bedrock level and only after unusually prolonged and substantial rain. Groundwater seepage is not expected to be problematic at shallow depths on this site.

Figure 6: Water seepage map

7. GEOTECHNICAL EVALUATION

This report focuses on the geotechnical site investigation aimed at determining various geotechnical properties of the near surface soil horizons in accordance with SAICE Code of Practice, SANS guidelines and NHBRC guidelines and the GFSH-2 document. Table 4 gives the basis of the soil site classification that was applied during the investigation and Table 5 gives the geotechnical classification for urban development.

Table 4: Residential site class designations

TYPICAL FOUNDING	CHARACTER OF	EXPECTED	ASSUMED	SITE
MATERIAL	FOUNDING	RANGE OF	DIFFERENTIAL	CLASS
	MATERIAL	TOTAL SOIL	MOVEMENT (%OF	
		MOVEMENTS	TOTAL)	
		(mm)		
Rock (excluding mud rocks	STABLE	NEGLIGIBLE	-	R
which may exhibit swelling to				
some depth)				

Fine grained soils with	EXPANSIVE	<7,5	50%	Н
moderate to very high plasticity		7,5-15	50%	H1
		·		
(clays, silty clays, clayey silts		15-30	50%	H2
and sandy clays)		>30	50%	H3
Silty sands, sands, sandy and	COMPRESSIBLE	<5,0	75%	С
gravelly soils	AND	5,0-10	75%	C1
	POTENTIALLY	>10	75%	C2
	COLLAPSIBLE			
	SOILS			
Fine grained soils (clayey silts	COMPRESSIBLE	<10	50%	S
and clayey sands of low	SOIL	10-20	50%	S1
plasticity), sands, sandy and		>20	50%	S2
gravelly soils				
Contaminated soils, Controlled	VARIABLE	VARIABLE		Р
fill, Dolomitic areas, Landslip				
Land fill, Marshy areas				
Mine waste fill				
Mining subsidence				
Reclaimed areas				
Very soft silt/silty clays				
Uncontrolled fill				

Table 5: Geotechnical classification for urban development (GFSH-2 Document)

Geotechnical Sub-Area	Definition			
1	Areas recommended or favorable for development			
2	Areas where development can be considered with certain precautionary measures.			
3	Areas that are not recommended for development			

Other related engineering geological characteristics such as collapse settlement, compressibility, slope stability groundwater etc. were evaluated. The geotechnical properties relevant to the development are discussed below.

7.1 Expansive soils

Active/expansive soils are defined as fine grained soils (generally with high clay content) that change in volume in response to the change in moisture content. These soils may increase in volume (heave/swell) upon wetting and decrease in volume (shrink) upon drying out. These soils are classified as (H) according to the SAICE site classes. Depending on the severity of the predicted movement, expansive soils can be classified as H, H1, H2 or H3 (Table 4).

The site is predominately underlain by Granite fragments> silt >with low content of clay. The laboratory results of all the samples analyzed exhibit a low potential expansiveness. Therefore, the site is not classified as class H according to the GFSH-2 classification.

7.2 Collapsible soil

Collapsible soils are defined as soils that have a potential for collapse and are commonly open textured with a high void ratio (Brink, 1985). These soils are typically silty sands, sands, sandy and gravelly soils commonly found in colluvial and aeolian sands. Soils which exhibit potentially collapsible characteristics are classified with the soil site class 'C' according to the SAICE site classification system (Table 4).

The soils encountered on the site typically comprise of granite fragments and silty sand with no visual open-textured structures such as voids and pinholes which indicate collapse potential. Due to the crumbly nature of the soils on site, undisturbed soil samples could not be retrieved for collapse potential testing. From the site observations it is anticipated that the site will exhibit low collapse potential. Therefore, the **site is classified as site class C/C1** according to the GFSH-2 classification.

7.3 Compressible soils

Compressible soils are soils in which the bulk volume of the soil may gradually decrease with time when subjected to an applied load. These soils typically comprise fine grained soils such as clay, clayey sand and clayey silt with low plasticity, gravelly and sandy soil. According to the SAICE soil site class these soils are denoted as class 'S' and may very (S, S1, S2) depending on the severity of the bulk volume change (Table 4).

The site is generally underlain by non-cohesive soils with low plasticity index. The laboratory results indicate that the samples have a low clay content and high sand content.

7.4 Soil site classification

A review of the test pit data indicates that the site is generally underlined by granite bedrocks. The laboratory tests indicated that material underlying the site exhibits low potential expansiveness. The development potential has been broadly classified in terms of a Geotechnical Sub-Area based on field observations/investigation (geological, hydrogeological, and geomorphological), and laboratory

soil testing of soil samples. From the above discussion the site is classified into main soil area namely compressible and potential collapsible soils: According to AASHTO and COLTO the soil samples were classified as A-1-b(0) and G5 respectively. The foundation design options as per SANS10400 H- NHBRC soil symbol is "R/C/C1". The recommended Foundation types in accordance with SANS 10400H- *Normal Strip Foundation / Reinforced Deep Strip Foundation*.

The in-situ soils and slightly weathered Granite bedrock were excavated to an average depth of 1.9m below ground level.

Figure 7: Geotechnical zone/ soil class designation

Based on the test pits excavations, it is anticipated that site should classify as "soft excavation" to an average depth of 1.9m, in accordance with SANS 1200 DA classification using similar plant as employed during this investigation. This means it can easily be removed by a tractor loader backhoe (TLB) of flywheel power >0.10 kW per mm of tined bucket width.

Allowance should be made for "intermediate to hard excavation" where deeper excavations are required from a depth 1 m where Granite bedrock starts.

7.5 Construction Monitoring

During the construction phase, it is highly recommended that qualified personnel should regularly inspect and monitor, to track and record deviations in the actual foundation conditions from those predicted as reported in this geotechnical site investigation report

8. **RECOMMENDATIONS**

8.1 Foundations

It is important to note that foundation recommendations are subject to confirmation of laboratory test results. Based on site conditions and evaluation described in section 5, 6 & 7 the following foundation types are provisionally recommended.

8.1.1 Foundations on residual soils

Residual soil and its parent rock were encountered at various, uneven depths ranging from 0.7 to 1.95m below the ground level.

Therefore, the recommended foundation type is a <u>reinforced strip foundation founded on a G5/G6</u> <u>engineered soil mattress</u>. The in-situ material can be utilised for founding material as there are of G5 material. Reinforcement should be designed by a competent person. The following construction procedures apply.

- All topsoil to be stripped to spoil;
- Foundation trenches for 500mm wide strip footing to be over-excavated to 1.0m wide by 1.6m deep below existing ground level;
- Excavation to be backfill with G6 quality material to a depth of 0.6m existing ground level;
- G6 material to be compacted in 150mm thick layers to 93% Mod AASHTO density at –1% to +2% OMC;
- Strip footings 500mm wide and adequately reinforced should be constructed at a depth of 0.6m;
- The allowable bearing capacity should be limited to 150kPa on the engineered soil mattress;
- Articulation joints at some internal doors and all external doors;
- Light reinforcement in masonry;
- Good site drainage requirements.

8.1.2 Foundations on weathered Granite

The slightly weathered granite hard rock is encountered at a depth of 0.8m below existing ground level. The recommended foundation type is a <u>normal strip foundation</u> onto the medium hard rock granite. The following construction procedures apply:

- All topsoil to be stripped to spoil;
- Foundation excavation to the moderately weathered, highly fractured, medium hard rock at an average depth of 1.9 m below existing ground level;
- The excavation onto the weathered Granite to be hand cleaned and all loose material to be removed;
- A concrete blinding to be cast to onto cleaned rock surface prior to casting foundations;
- The allowable bearing capacity should be limited to 300kPa on the weathered Granite bedrock.

9. CONCLUSIONS

From the above discussion, the following conclusions may be drawn:

- The area investigated is underlain by top soils of sand, including residual soils derived from the in-situ weathering of Granite.
- Residual soil from Granite is well developed and was encountered in the entire site an average depth of 1.9m below existing ground level.
- The excavation on site is likely to classify as "soft" to an average depth of 1.9m below existing ground level. Below this, "intermediate to hard" excavation is expected. This due to the underlining granite bedrock
- Foundation recommendations include <u>reinforced deep strip foundations</u> on an engineering soil mattress for residual soils and <u>Normal Strip Foundation</u> on medium hard rock Granite

10. REPORT PROVISIONS

This investigation is aimed at providing the engineers with an indication of the prevailing geological and geotechnical conditions in the study area, with reference to the proposed township establishment to be situated on portion 1 of the farm Newington 255 KU, Mpumalanga province of South Africa.

While every effort has been made during the fieldwork investigation to identify the various soil horizons, their problems and distribution, it is impossible to guarantee that isolated zones of varying

material have not been missed. The investigation was, however, thorough and conditions are not expected to vary a great deal from that described in this report.

The engineers are, nevertheless, strongly urged to inspect all excavations to assure themselves that conditions are not at variance with those described in this report.

Please note:

- Test pits were backfilled after the field investigation but were not re-compacted.
- Some test pits positions occur within the footprints of proposed structures.
- The recommendations provided in this report are provisional and a final interpretive geotechnical report will be prepared when these become available.

11. REPORT SIGNATURE

Geotechnical site investigation report prepared by;

Zwandazwashu Consulting (Pty) Ltd

Unit 01A Stanford Business Park

817 16th Road, Randjespark

Midrand

1685

Cell: 079 081 2369/ 067 706 9904

Compiled by: Neduvhuledza Nduvho (Cand.Nat.Sci) SACNAPS Registration No: 120301

Reviewed by: Mavhetha Lavhelesani (GSSA Member) Registration No: 970200

(Pr.Nat.Sci) SACNAPS Registration No: 126057

Signature of Mr. Mavhetha Lavhelesani

12. REFERENCES

- SAICE (1995). Code of Practise for Foundations and Superstructures for Single Storey Residential buildings of Masonry Construction. First Edition. The Joint Structural Division, Johannesburg. ISBN 0-620-19317-4.
- Jennings, J E B, Brink, A B a Williams, A B, Revised Guide to Soil Profiling for civil Engineering Purposes in Southern Africa. The Civil Engineer in S A, P 3-12 January 1973.
- Van der Merwe, DH. The prediction of heave from the plasticity index and the percentage of clay fraction of soil. The Civil Engineer in South Africa, p.103-107. June 1973.
- National Institute for Transport and Road Research, "Guidelines for Road Construction Materials" TRH14, Pretoria CSIR, 1987.
- Home Building Manual: Part 1 & 2: Revision No.1 dated February 1999, published the NHBRC.
- SAIGE-AEG-SAICE (Geotech Div.). Guidelines for Soil and Rock Logging in SA
- SABS-0160 (1989). The general procedures and loadings to be adopted in the design of building.
 First Revision. ISBN 0-626-09815-7.
- South African Geological data: Geology.shp
- Topographical Map data: 2431CD.shp

13. APPENDIX A: SITE PICTURES

14. APPENDIX B: LABORATORY RESULTS

- Materials Testing
- Geotechnical & Road Investigations
- Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279
info@roadlab.co.za
www.roadlab.co.za
vox Rietfontein Rd,
Germiston, JHB, 1400

Ref- 92/NKA001-02/0001/21

Date - 2021/05/24

Nkanivo Development Consultants

P.O 11948

Silver Lakes

Pretoria

Attention: Mr. L Mavhetha

Re: Dumphries Township Establishment - Foundation Indicator Test Results

Herewith please find attached the test results for the above-mentioned project as tested by Roadlab Laboratories.

Thank you

Kind Regards

Mr N Herbst / Mr R Potgieter

Technical Signatory / Manager

Page 1of1 RLG.s.032.01

- Materials Testing
- Geotechnical & Road Investigations
- Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279
info@roadlab.co.za
www.roadlab.co.za
vox Rietfontein Rd,
Germiston, JHB, 1400

Ref- 92/NKA001-02/0001/21

Date - 2021/05/24

Nkanivo Development Consultants

P.O 11948

Silver Lakes

Pretoria

Attention: Mr. L Mavhetha

Re: Dumphries Township Establishment - Foundation Indicator Test Results

Herewith please find attached the test results for the above-mentioned project as tested by Roadlab Laboratories.

Thank you

Kind Regards

Mr N Herbst / Mr R Potgieter

Technical Signatory / Manager

Page 1of1 RLG.s.032.01

Materials Testing
Geotechnical & Road Investigations
Mobile Lab Services
Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

Ref -92/NKA001-02/0001/21 Job no-RG 16732 Date-2021/05/24

Nkanivo Development Consultants P.O.Box 11948 Silver Lakes Pretoria

ATTENTION: Mr. L Mavtetha

> Test Report : **DUMPHRIES TOWNSHIP ESTABLISHMENT - pH & CONDUCTIVITY TEST RESULTS**

Clients Marking: None Date Sampled: 2021/05/04

Sample Number: S/8450 - S/8455 Sample delivered to: Roadlab Date Received: 2021/05/04

Sample Number	Layer / Road :	Temperature (°C) : Conductivity	Conductivity (ms/m)	Temperature (°C) : pH	pH Value
S/8450	TP12A:0.48-2.2m	24.0	15.0	24.0	6.28
S/8455	TP7A:0.45-3.0m	24.0	14.0	24.0	7.40
					PAGE 1/1

Remarks:

The samples were subjected to analysis according to TMH 1 The results reported relate only to the sample tested Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context Compiled By: Linda van Niekerk

Kind Regards

Mr N Herbst / Mr R Potgieter Technical Signatory / Manager

> Page 1 of 1 RLG.s.037.01

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP1A **LAYER:** 0.6-1.1m **SAMPLE No.**: S/8449

SAMPLE DESCRIPTION : Light Red Brown

Clayey Gravelly Sand

We	eighted PI	8.8	NDICATOR - (SANS 300 Specifc Gravity	2.59		
	100.0	100	opromo manag			
	75.0	100	POTENTIAL	EXPANSIVENES	PLAS	TICITY CHART
	63.0	100			70	
n	50.0	100	70 L M H		70	
.ES	37.5	100	60 0 10 1	Very	60 -	
ba	28.0	99	w d g	High	X 50 -	CASGRANDE "A" LINE
ysis tage	20.0	99	MW 50			ONGONANDE A EINE
Sieve analysis Cumulative percentage passing (mm)	14.0	99	w d g i h		91.4 STICTY INDEX 90 - 90 - 90 - 90 - 90 - 90 - 90 - 90	
ber (n	5.00	95	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH
Sic	2.000	78	→ 30 → → → → → → → → → → → → → → → → → →			O _{CL} OH and MH
ng B	0.425	40	20		20 -	On and Min
Ö	0.250	34	1 <u></u> └──		10 - CL - ML	ML and OL
	0.150	30	10			7
	0.075	26	0		0 10 20	30 40 50 60 70 80 90 100
	50 μm	23	0 10 20	30 40 50	60 70	
	5 μm	20	CLAY P	ERCENTAGE		LIQUID LIMIT (LL)
	2 μm	17.0				
. =	2.000 - 0.425	49				
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	7	550	PERF	ORMANCE AS WEARING COU	/RSE
al Me 2.0	0.250 - 0.150	6				
% × %	0.150 - 0.075	4	500 -			
	< 0.075	34	450 -		OSlippery	
Effective size		0.002	400 -			
Uniformity (629.1	§ 350 ·			
Curvature C		9.7	200 -		Good - dusty	
Oversize Ind		0.0	Erodi	ble		
Shrinkage Pi		438.1	- \$ Mater	ials		Ravels
Grading Coe		20.0	₹ 200 -		Good	
Grading mod		1.56	あ 150 -			
ō	Liquid Limit	31	100			
Atter-berg Limits	Plasticity Index	22	50		Ravels and Corrugates	
Affe Lir	Linear Shrinkage	11.0			raives and corragates	
`	PI < 0.075	28	0 1 5	10 15	20 25 30	35 40 45 50
Unified Soil	Classification	SC			GRADING COEFFICIENT	
II S Highway	y Classification	A-2-6 (1)				

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
17.0	7.0	53.9	22.0

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP2A **LAYER:** 0.48-2.2m **SAMPLE No.:** S/8450

SAMPLE DESCRIPTION: Light Brown

Sandy Gravel

	F	OUNDATION IN	DICATOR	- (SANS 3001	-GR1, SANS 30	001-GR10) 8	& (ASTM	Method	D422)			
We	eighted PI	-	Speci	fc Gravity	2.63							
	100.0	100				•		D/ 40	TIQITY QI	MDT.		
	75.0	100		POTENTIAL EX	(PANSIVENES			PLAS	TICITY CH	ARI		
	63.0	100	70 —				70					\neg
ρ	50.0	100		L M H								
assi	37.5	100	I I	o le li l w ld la	Very High		60 -					/
Sieve analysis Cumulative percentage passing (mm)	28.0	100	97 AU	w d g l	nigii		PLASTICITY INDEX			CASGRANDE	"A" LINE	
alysi ntag	20.0	100	SAM	u ''			≤ } 40 -					
ans	14.0	99	40 t-				10.40			сн		
eve e pe	5.00	94] ¥ 30				30 ·			CH/		
Sative	2.000	51				1	집 20 -		CL /	OH ar	d MH	
l m	0.425	23	₫ 20				20					
õ	0.250	19	10				10 -	CL - ML	ML an	OL		
	0.150	17	10]				۰					
	0.075	14	ه لـر				0	10 20	30 40	50 60 70	80 90	0 100
	50 μm	7	0	10 20 3	30 40 50	60 70						
	5 μm	5		CLAY PER	CENTAGE				LIQUID LI	MIT (LL)		
	2 μm	3.7										
. =	2.000 - 0.425	56										
ortar sis Omr	0.425 - 0.250	6	550 r		PERF	ORMANCE A	AS WEAR	ING COU	RSE			
Soil Mortar Analysis % < 2.00mm	0.250 - 0.150	5	500 -									
S × %	0.150 - 0.075	6										
	< 0.075	27	450 -				Slippery					
Effective size		0.060	400 -									
Uniformity C	Coefficient	44.1	S 350									-
Curvature C	Coefficient	4.5	Q 300 -			C	lood - dusty					
Oversize Ind		0.0	٩	Erodible								
Shrinkage Pr		0	250 -	Materials	ŀ					Rave	ls	
Grading Coef		46.4	₹ 200 -				Good					
Grading mod		2.13	ර් ₁₅₀ -				Good					
Б	Liquid Limit	-	100									
-ber	Plasticity Index	NP	50 -			D	avels and Corru					
Atter-berg Limits	Linear Shrinkage	-				K	aveis and Corru	gates				
4	PI < 0.075	6	0 +	5	10 15	20	25	30	35	40	45	50
Unified Soil	Classification	SM	Ĭ	-	,		COEFFICIEN					30
IIS Highway	v Classification	A-1-b (0)										

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
3.7	5.7	41.2	49.4

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP3A **LAYER:** 0.37-1.3m **SAMPLE No.:** S/8451

SAMPLE DESCRIPTION: Light Brown Gravelly Sand

	F	OUNDATION IN	DICATOR	- (SANS 3001-	GR1, SANS 30	01-GR10) 8	& (ASTM Method	l D422)			
We	eighted PI	-	Spec	ifc Gravity	2.66						
	100.0	100			•	•	51.44		4.0.		
	75.0	100		POTENTIAL EX	PANSIVENES		PLAS	STICITY CH	ARI		
	63.0	100	70 —				70				_
бu	50.0	100	1 "	L M H							
Sieve analysis Cumulative percentage passing (mm)	37.5	100	60	0 e i	Very High		60 -			,	4
s e	28.0	100	₩ 50	w d g l	nign		PLASTICITY INDEX		CASGRANDE	"A" LINE	
alysi ntag	20.0	100	0F WHOLE SAMPL 30	u "			≧ } 40 -				
ans	14.0	99	9 40				10.		сн		
eve e pe	5.00	94] ₩ ₃₀				30 ·				
ativ. S	2.000	63					ਰੋ ₂₀ -	CL /	OH and	MH	
<u> </u>	0.425	16	₫ 20								
3	0.250	15	10				10 - CL - ML	ML and	OL		
	0.150	11] "				0				
	0.075	8	0 10	10 20 3	0 40 50	60 70	0 10 20	30 40 5	0 60 70	80 90	100
	50 μm	4	U	10 20 3	0 40 50	60 70					
	5 μm	3		CLAY PERC	CENTAGE			LIQUID LII	IIT (LL)		
	2 μm	2.1									
<u>.</u> E	2.000 - 0.425	74			DEDE	ODMANCE	AS WEARING CO	UDCE			
Soil Mortar Analysis 6 < 2.00mm	0.425 - 0.250	2	550 T		PERF	OKMANCE A	AS WEAKING CO	UKSE			
oii M	0.250 - 0.150	6	500 -								
ος *,	0.150 - 0.075	5				Slippery					
	< 0.075	13	450 -				Suppery				
Effective size		0.118	400 ·								
Uniformity C		16.2 3.5	350								
Curvature C			- 0 300 -			G	ood - dusty				
Oversize Ind		0.0	SHRINKAGE PRODUCT - 020	Erodible					Rave	ls	
Shrinkage Pr Grading Coef		35.1	¥ 200	Materials					Kave		
Grading coel		2.13	_ \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)				Good				
	Liquid Limit	-	o 150 -								
0.0	Plasticity Index	NP	100 -								\dashv
Atter-berg Limits			50 -			Ra	ivels and Corrugates				
Affe	Linear Shrinkage		- ,								
	PI < 0.075	4	ď	5	10 15	20	25 30	35	40	45	50
Unified Soil (SM	4			GRADING	COEFFICIENT				
U.S. Highway	Classification	A-1-b (0)									

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
2.1	3.1	57.4	37.4

- Materials TestingGeotechnical & Road InvestigationsMobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment

PI < 0.075

Unified Soil Classification

10

SM

DATE RECEIVED: 04-May-21 POSITION: TP5A **LAYER:** 0.9-2.2m SAMPLE No.: S/8453A

SAMPLE DESCRIPTION: Light Brown Sandy Gravel

	F	FOUNDATION IN	DICATOR	- (SANS 3001-	GR1, SANS 3	001-GR10)	& (ASTM Method	D422)
We	ighted PI	0.4	Spec	ifc Gravity	2.63			
	100.0	100					DI 40	TIOITY OUA DT
	75.0	100		POTENTIAL EXP	PANSIVENES		PLAS	TICITY CHART
	63.0	97	70 —				70	
Вu	50.0	94		L M H	.]		00	
Sieve analysis Cumulative percentage passing (mm)	37.5	88	60	0 e i	Very High		60 -	
စ ညိ	28.0	79	91 OF WHOLE SAMPLE 100 WHOLE SAMPLE	w d g	підп		PLASTICITY INDEX	CASGRANDE "A" LINE
Sieve analysis ve percentage (mm)	20.0	66	SAM	u "			₹ } 40 -	
ans	14.0	62	9 40	— m - +	-+-+-		101	CH
e pe	5.00	56	N 30				AST 30 ·	
ative	2.000	36	96				ਰੋ 20 -	CL OH and MH
E S	0.425	13	₫ 20					
õ	0.250	11	10				10 - CL - ML	ML and OL
	0.150	10] "					
	0.075	8	0 k c)	10 50	<u> </u>		30 40 50 60 70 80 90 100
İ	50 μm	3	0	10 20 30	40 50	60 70		
	5 μm	2		CLAY PERC	ENTAGE			LIQUID LIMIT (LL)
	2 μm	1.8						
_ د	2.000 - 0.425	64					- :	
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	5	550 1		PERI	FORMANCI	E AS WEARING COU	VRSE
naly 2.0	0.250 - 0.150	4						
So A %	0.150 - 0.075	5	500 -					
	< 0.075	23	450 -				Slippery	
Effective size		0.152	400 -					
Uniformity Co		73.0	SHRINKAGE PRODUCT 500 - 020 1100			1		
Curvature Co	oefficient	1.5	200 - 200 -				Good - dusty	
Oversize Inde	ex	11.7	E P!	Erodible				
Shrinkage Pr		19.6	250 - KAG	Materials				Ravels
Grading Coef		23.8	200 -				Good	
Grading mod		2.43	∯ ₁₅₀ -				Good	
D	Liquid Limit	20	100 -					
tter-berg Limits	Plasticity Index	3	50 -					
Lin	Linear Shrinkage	1.5	50 -				Ravels and Corrugates	

10

20

25

35

45

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
1.8	2.6	31.5	64.1

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP5B **LAYER:** 0.5-0.9m SAMPLE No.: S/8453B

SAMPLE DESCRIPTION: Dark Brown

Gravelly Silty Clayey Sand

Sieve analysis Cumulative percentage passing (mm)	100.0 75.0 63.0 50.0 37.5 28.0 20.0 14.0 5.00 2.000 0.425 0.250	9.0 100 100 100 100 100 100 100 1	70 60 - 60 - 40 - 40 - 40 - 30	Po L o w	Gravity OTENTIAL EX M H e i i d g i h u m	2.57 (PANSIVENES Very High		70 F 60 -	PLAST	TICITY CH	ART		
Sieve analysis mulative percentage passing (mm)	75.0 63.0 50.0 37.5 28.0 20.0 14.0 5.00 2.000 0.425	100 100 100 100 100 100 100 100 97 89	60	L o w	M H e i d g i h u	Very		60 -	PLAS1	FICITY CH	ART		\neg
Sieve analysis mulative percentage passing (mm)	63.0 50.0 37.5 28.0 20.0 14.0 5.00 2.000 0.425	100 100 100 100 100 100 100 97 89	60	L o w	M H e i d g i h u	Very		60 -					\neg
Sieve analysis mulative percentage passing (mm)	50.0 37.5 28.0 20.0 14.0 5.00 2.000 0.425	100 100 100 100 100 100 97 89	60	L w	e i g i h u			60 -					
Sieve analysis mulative percentage passing (mm)	37.5 28.0 20.0 14.0 5.00 2.000 0.425	100 100 100 100 97 89		w w	e i g i h u								
Sieve analysis mulative percentage pas (mm)	28.0 20.0 14.0 5.00 2.000 0.425	100 100 100 97 89		w	d g i h u			×					
Sieve analysis mulative percentage (mm)	20.0 14.0 5.00 2.000 0.425	100 100 97 89	JAWHOLE SAMP	0	i h u							/	/
Sieve analy mulative percents (mm)	14.0 5.00 2.000 0.425	100 97 89	S 3 40 - 0HM 40					N 50 -			CASGRANDE	"A" LINE	
Sieve a mulative perc	5.00 2.000 0.425	97 89	- 30 - WHOLL					PLASTICITY INDEX			,		
Siev mulative p	2.000 0.425	89	- N 30	. I	111			30 .			СН		
mulati	0.425		Õ	⁰ †				7 30 I					
Ē			ā 20					20 -		CL /	OH an	d MH	
2		55	- 20	' [10 -	CL - ML	9			
· –	0.250	44	10	· 	+			10]		ML an	d OL		
	0.130	42	- ,					o L	10 20 3	30 40 5	50 60 70	80 90	100
	50 μm	39	-	0	10 20 3	0 40 50	60 70	U	10 20 .	30 40 3	50 60 70	00 90	100
	5 μm	36	_		CLAY PER	CENTAGE				LIQUID LII	MIT (LL)		
	2 μm	28.3			CLATTEN	SENTAGE				LIGOID LII	WIT (LL)		
-	2.000 - 0.425	28											
s s	Second S					PER	FORMANO	CE AS WEA	ARING COU	RSE			
Mor 2.00	0.250 - 0.150	12	- 5	550									
Soil Ang	0.150 - 0.075	9	5	600 -									
* * -	< 0.075	41	4	50 -		0		Slippery					
Effective size		0.002	4	100									
Uniformity Coeff	ficient	172.5					ı						_
Curvature Coeffi		0.0	nac	50 -				Good - dusty					
Oversize Index		0.0	A 3	00 -				Good dusty					
Shrinkage Produ	ıct	451.4	SHRINKAGE PRODUCT	250 -	Erodible Materials						Rave	ls	
Grading Coefficie	ent	10.7	¥ 2	200									
Grading modulus	s	1.05	#S 1	50 -				Good					
Lic	quid Limit	37											
B £ Pla	asticity Index	14		00						•			
After-berg Limits Fire Porg	near Shrinkage	7.0	1	50 -				Ravels and Co	orrugates				
₹ PI	< 0.075	20		0 —	<u> </u>	+ +			+		+	+	
Unified Soil Class		SC		0	5	10 15		25 DING COEFFIC	30 IFNT	35	40	45	50
U.S. Highway Clas	-	A-6 (2)					27012						

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
28.3	12.1	48.6	11.0

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP6A **LAYER:** 0.48-1.8m SAMPLE No.: S/8454

SAMPLE DESCRIPTION: Light Red Brown

Sandy Gravel

	E	COUNDATION IN	DICATO	CANC 2001	CD1 CANC	0001 CD10)	9 (ACTM Mothod)	1422)			
We	eighted PI	-		cifc Gravity	2.61	UU1-GK1Uj	& (ASTM Method I	1422)			
	100.0	100	Брес	one dravity	2.01						
	75.0	100		POTENTIAL EX	<i>(PANSIVENES</i>		PLAST	ICITY CHA	RT		
	63.0	100	70 -				70				_
б	50.0	100	1 ′° [L M H							
issi	37.5	100	60 -	-o e i	Very		60 -				/
Sieve analysis Cumulative percentage passing (mm)	28.0	99	¥ 50 +	w d g	High		PLASTICITY INDEX 00 - 05	c.	ASGRANDE	"A" LINE	
ılysi: ıtagı)	20.0	96	OF WHOLE SAMPL	u "			×				
ana	14.0	95	9 40 -	— m 			E 40 -		au /		
eve - De	5.00	76	M 30	L			30 -		СН		
ative	2.000	49	96 20				ਰ 20 -	CL	OH an	d MH	
a l	0.425	23	₫ 20 -								
3	0.250	21	10				10 - CL - ML	ML and C	DL		
	0.150	17	"								
	0.075	13	0 	10 20	30 40 50	60 70		0 40 50	60 70	80 90	100
	50 μm	10	0	10 20 .	30 40 50	60 70					
	5 μm	8		CLAY PER	CENTAGE			LIQUID LIMI	T (LL)		
	2 μm	5.4									
<u>.</u> E	2.000 - 0.425	54			DED	EODMANCE	AC WEADING COU	DCE			
orta ysis 00m	0.425 - 0.250	4	550	PERFORMANCE AS WEARING COURSE 550							
Soil Mortar Analysis % < 2.00mm	0.250 - 0.150	8	500]							
ος *,	0.150 - 0.075	8					or.				
	< 0.075	27	450	1			Slippery				
Effective size		0.053	400 ►	1							
Uniformity C		61.5	350	-							
Curvature C		4.4 0.0	g 300				Good - dusty				
Oversize Ind Shrinkage Pr		0.0	9 250	Erodible					Rave	ls	
Grading Coef		37.7	SHRINKAGE PRODUCT	Materials						-	
Grading mod		2.15	H Z				Good				
	Liquid Limit	-	[©] 150	1							
erg s	Plasticity Index	NP	100			1					\dashv
Atter-berg Limits	Linear Shrinkage	NF	50	-			Ravels and Corrugates				
Att	PI < 0.075	2	0			+					
Unified Soil (SM		0 5	10 15		25 30 IG COEFFICIENT	35	40	45	50
	Classification	A-1-a (0)				GRADIN	O COLI I IOILIVI				
		- (-)	1								

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
5.4	5.4	38.2	51.1

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP7A **LAYER:** 0.45-3.0m **SAMPLE No.:** S/8455

SAMPLE DESCRIPTION: Light Red Brown

We	eighted PI	-	Speci	fc Gravity	2.47							
	100.0	100				· ·						
	75.0	100		POTENTIAL EX	PANSIVENE	S		PLAS	TICITY CI	HART		
	63.0	100	70 —									$\overline{}$
Б	50.0	100		L M H								
Sieve analysis Cumulative percentage passing (mm)	37.5	97		o e +i -	Very High		60 ·					/
s e e b	28.0	97	J 4 50	w d g	nign		Š			CASGRANDE	"A" LINE	
alysi ntag	20.0	96	0F WHOLE SAMPLE	u "			PLASTICITY INDEX					
ang	14.0	95	9 40 							СН		
eve e be	5.00	92	₩ 30 L				AS7 30			CH/		
ative	2.000	71	96				d 20		CL	OH ar	nd MH	
Ë	0.425	31	₫ 20					0. 10				
3	0.250	22	10				10	CL - ML	MLa	nd OL		
	0.150	15	10				0 -					
	0.075	13	0 -	- 			⊣	0 10 20	30 40	50 60 7	0 80 90	10
	50 μm	11	0	10 20 3	0 40 5	0 60	70					
	5 μm	9		CLAY PER	CENTAGE				LIQUID L	IMIT (LL)		
	2 μm	7.3										
2.000 - 0.425 5		56										
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	13	550 -	PERFORMANCE AS WEARING COURSE 550								
naly 2.0	0.250 - 0.150	10	500 -									
S ∝ %	0.150 - 0.075	7										
	< 0.075	15	450 -				Slippery					
ffective size		0.022	400 -									
niformity C		71.7	200 - 250 -									_
urvature C		4.7	200 J				Good - dus	ty				
versize Ind		2.7	ы 9 250 -	Erodible								
nrinkage Pr		0	A 250 1	Materials						Rave	els	
rading Coef		24.3	₹ 200 -				Good					
rading mod		1.85	් ₁₅₀ -									
Ð	Liquid Limit	-	100									
-be nits	Plasticity Index	NP	50 -				Ravels and	Corrugates				
Atter-berg Limits	Linear Shrinkage	-					Kaveis aliu	corragates				
4	PI < 0.075	NP	0 +	5	10	15 2	20 25	30	35	40	45	
nified Soil (Classification	SM					RADING COEFFI					
C Highway	/ Classification	A-1-b (0)										

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
7.3	5.5	58.1	29.1

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP8A **LAYER**: 0.4-2.7m SAMPLE No.: S/8456

SAMPLE DESCRIPTION: Light Brown Gravelly Sand

	F	OUNDATION IN	DICATOR	- (SANS 3001-	GR1, SANS 30	01-GR10) 8	& (ASTM Method	D422)			
We	eighted PI	-	Spec	ifc Gravity	2.64						
	100.0	100			•	•	51.46	TIOIT / O	D.T.		
	75.0	100		POTENTIAL EX	PANSIVENES		PLASTICITY CHART				
	63.0	100	70 —				70				\neg
вu	50.0	97	1 1	L M H	_]		60 -				
Sieve analysis Cumulative percentage passing (mm)	37.5	96	60	o e i w d a	Very High					/	4
s e	28.0	95	1 J	w d g l	nigii		PLASTICITY INDEX	c	ASGRANDE	A" LINE	
alysi ntag	20.0	95	OF WHOLE SAMPL	u "			≦ ≿ 40 -				
ang mm	14.0	95	97 40	 m 			10. 40]		сн		
eve e pe)	5.00	90	₩ 30	L			30 ·				
ativ. S	2.000	73					ਰੋ 20 -	CL	OH and	MH	
<u> </u>	0.425	36	₫ 20								
3	0.250	28	10				10 - CL - ML	ML and	OL		
	0.150	22] "								
	0.075	15	0 	10 20 3	0 40 50	60 70	0 10 20	30 40 50	60 70	80 90	100
	50 μm	11	U	10 20 3	0 40 50	60 70					
	5 μm	8		CLAY PERC	CENTAGE			LIQUID LIM	IT (LL)		
	2 μm	6.1									
- ε	2.000 - 0.425	51			DEDE	OBMANCE	AC WEADING GO	IDGE.			
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	10	550 -		PERFORMANCE AS WEARING COURSE						_
inaly M	0.250 - 0.150	9	500 -								
S 4 %	0.150 - 0.075	9				Climary					
	< 0.075	21	450 -				Slippery				
Effective size		0.032	400 -								
Uniformity C		44.9	350 -								\neg
Curvature C		1.8	- 300 -			G	ood - dusty				
Oversize Ind		4.2	SHRINKAGE PRODUCT - 000 - 020 - 020	Erodible					Ravel		
Shrinkage Pr		0	. KA	Materials					Kave	5	
Grading Coef		19.7 1.76	- AN 200 -				Good				
Grading mod			o 150 -								
D	Liquid Limit	-	100 -								\dashv
mits	Plasticity Index	NP	50 -			Ra	avels and Corrugates	gates			
Atter-berg Limits	Linear Shrinkage	-									
	PI < 0.075	2		5	10 15	20	25 30	35	40	45	50
Unified Soil (SM	1			GRADING	COEFFICIENT				
U.S. Highway	Classification	A-1-b (0)	1								

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
6.1	6.4	60.8	26.7

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP9A **LAYER:** 0.8-2.5m SAMPLE No.: S/8457

SAMPLE DESCRIPTION: Light Red Orange

We	eighted PI	-	Speci	ifc Gravity	2.58							
	100.0	100				•		D/ 40T	10171/01	MOT		
	75.0	100		POTENTIAL EX	PLASTICITY CHART							
	63.0	100	70 —				70			1		_
р	50.0	100	1 "	L M H								
assi	37.5	100	60	o e i	Very High		60 -					/
s e b	28.0	100	J 4 50	w d g	nign		Š 50 -			CASGRANDE	"A" LINE	
Sieve analysis Cumulative percentage passing (mm)	20.0	100	OF WHOLE SAMPLE	u "			PLASTICITY INDEX					
ang Licer	14.0	100	9 40 				10,40			CH /		
eve - De	5.00	95] × 30		-		30 ·			CH		
ative Si	2.000	63	9-1-0				립 20 -		CL /	OH ar	nd MH	
ä	0.425	30	₫ 20				20]		/			
ਠੌ	0.250	27	10				10 -	CL - ML	ML ar	OL.		
	0.150	19	10				ه ا					
	0.075	13	0 ├	\circ				0 20 3	0 40	50 60 7	0 80 90	100
	50 μm	10	0	10 20 30	0 40 50	60 70						
	5 μm	7		CLAY PERC	ENTAGE				LIQUID L	MIT (LL)		
	2 μm	5.7										
	2.000 - 0.425	53										
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	4	550 -	PERFORMANCE AS WEARING COURSE								
Z.O.	0.250 - 0.150	13										
Soi A Aoi	0.150 - 0.075	9	500 -									
	< 0.075	20	450 -				Slippery					
Effective size	9	0.051	400 -									
Jniformity C	Coefficient	36.2	SHRINKAGE PRODUCT									
Curvature C	oefficient	2.0	300 -				Good - dusty					
Oversize Ind	ex	0.0	H 200 1	Erodible								
Shrinkage Pr	oduct	0	99 250 -	Materials	-					Rave	els	
Grading Coef	fficient	34.9	₹ 200 -				Good					
Grading mod	lulus	1.94	S 150 -				Good					
D	Liquid Limit	-	100									
ber	Plasticity Index	NP										
Atter-berg Limits	Linear Shrinkage	-	50 -				Ravels and Corruga	ates				
∢	PI < 0.075	NP] o l	5	10 15	20	25	30	35	40	45	5
Jnified Soil (Classification	SM	1 "	, 3	10 15		IG COEFFICIENT		33	40	40	3
	Classification	A-1-b (0)	1									

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
5.7	5.4	52.2	36.7

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
 Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP10A **LAYER:** 0.3-2.5mm **SAMPLE No.:** S/8458

SAMPLE DESCRIPTION: Light Red Orange

Gravelly Sand

T
GRANDE "A" LINE
_H /
/
OH and MH
60 70 80 90 100
(LL)
Ravels
40 45 5
•

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
4.1	6.4	50.9	38.6

Sand

Medium

0.200 0.300

SIEVE SIZE (BY LOG SCALE)

0.400 0.500 0.600 0.800 0.900 1.00

Coarse

3.00 5.00 6.00 8.00 9.00

Fine

20.0

Gravel

Medium

30.0 50.0 60.0 60.0 60.0

Coarse

Sobbles

0.030 0.040 0.050 0.060 0.070 0.080 0.080

Coarse

0.020

Silt

Medium

0.004 0.005 0.006 0.008 0.009

Fine

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP11A **LAYER:** 0.43-2.6m **SAMPLE No.:** S/8459

SAMPLE DESCRIPTION: Light Red Orange

	F	OUNDATION IN	DICATOR	? - (SANS 3001-	GR1, SANS 3	001-GR10) & (ASTM Method I	0422)
We	eighted PI	-	1	ifc Gravity	2.64			,
	100.0	100			l .	•	DI ACT	COLTY OLIA DE
	75.0	100	POTENTIAL EXPANSIVENES		PLASTICITY CHART			
	63.0	100	70 —				70	
ē	50.0	100		L MHH			60 -	
Sieve analysis Cumulative percentage passing (mm)	37.5	100	60	o e i w d a	Very High		00]	
ig e	28.0	100	OF WHOLE SAMPLE	w d g	ı ngıı	PLASTICITY INDEX	50 -	CASGRANDE "A" LINE
alysi ntag	20.0	100	SAM	u "			40 -	
ang arcel	14.0	100	J 40				40	СН
e pe	5.00	95	¥ 30	L		→	30 -	9
ativ	2.000	68					20 -	CL OH and MH
E E	0.425	30	₫ 20				CL-ML	
ਠੋ	0.250	27	10				10 - CL - ML	ML and OL
	0.150	20						
	0.075	13	0 1	10 20 3	0 40 50	60 70	0 10 20 3	0 40 50 60 70 80 90 100
	50 μm	11		10 20 3	0 40 50	60 70		
	5 μm	9		CLAY PERO	CENTAGE			LIQUID LIMIT (LL)
	2 μm	5.4						
<u>.</u> E	2.000 - 0.425	57			DEDI	EODMANCE AS	WEARING COUL	nce
orta ysis 00m	0.425 - 0.250	3	550 -		PEKI	OKMANCE AS	WEAKING COUL	RSE
Soil Mortar Analysis % < 2.00mm	0.250 - 0.150	11	500 -					
ος *	0.150 - 0.075	10				CH-		
	< 0.075	19	450 -			SIIĮ	pery	
Effective size		0.035	400 -					
Uniformity C		47.4	350 -					
Curvature C		3.3 0.0	SHRINKAGE PRODUCT 500 - 020 120 - 030 120 - 030			Good	- dusty	
Oversize Ind Shrinkage Pr		0.0	. ij 250 -	Erodible				Ravels
Grading Coef		30.0	. § 200 -	Materials				
Grading mod		1.89	. HR			Ge	ood	
	Liquid Limit	-	130					
Atter-berg Limits	Plasticity Index	NP	100 -					•
Limi te	Linear Shrinkage	-	50 -			Ravels	and Corrugates	
¥ _	PI < 0.075	NP	0 -	5	10 15	20	+ O 25 30	35 40 45 50
Unified Soil (SM	1 '	5	10 15	GRADING CO		30 40 45 50
-	Classification	A-1-h (0)	1					

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
5.4	6.1	56.9	31.6

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP12A **LAYER:** 0.6-1.8m **SAMPLE No.**: S/8460

SAMPLE DESCRIPTION: Light Red Brown

	F	OUNDATION IN	DICATOR	- (SANS 3001-	GR1, SANS 30	001-GR10) &	& (ASTM Meth	od D422)			
We	eighted PI	-	Spec	ifc Gravity	2.72						
	100.0	100					-		4.0.7		
	75.0	100		POTENTIAL EX	PANSIVENES		PL	LASTICITY CH	ARI		
	63.0	100	70				70				\neg
вu	50.0	100	1 1	L M H			00				
Sieve analysis Cumulative percentage passing (mm)	37.5	100	60	o e i	Very High		60 -			,	/
လ <u>ရာ</u>	28.0	99	1PLE	w d g l	nign		PLASTICITY INDEX		CASGRANDE	"A" LINE	
alysi ntag	20.0	96	SAMPL!	u "			≤ ≥ 40 .				
ang Licer	14.0	93	9 40		-+-+-		59. 40 1		сн		
eve - D	5.00	90	970HM 30				30 ·		CH /		
ative	2.000	57	0F			1	20	CL	OH an	MH.	
a la	0.425	25	₫ 20								
3	0.250	20	10				10 - CL-1	ML and	OL		
	0.150	16] "				0				
	0.075	13	ا ه ا		- 10 50	<u> </u>		20 30 40 5	0 60 70	80 90	100
	50 μm	7	0	10 20 3	0 40 50	60 70					
	5 μm	5		CLAY PERO	CENTAGE			LIQUID LIN	MIT (LL)		
	2 μm	3.3									
	2.000 - 0.425	57									
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	8	550 T		PERF	ORMANCE .	AS WEARING (COURSE			
naly 2.0	0.250 - 0.150	7	500 -								
S < %	0.150 - 0.075	6									
	< 0.075	23	450 -				Slippery				
Effective size		0.063	400 -								
Uniformity C	Coefficient	36.5	SHRINKAGE PROBUCT - 020								\dashv
Curvature C		3.3	300 -			C	Good - dusty				
Oversize Ind		0.0	H P	Erodible							
Shrinkage Pr		0	750 - VA 07-	Materials	-				Rave	ls	
Grading Coef		38.1	₹ 200 -				Good				
Grading mod		2.06	ශ් ₁₅₀ -				0004				
50	Liquid Limit	-	100								
nits	Plasticity Index	NP	50 -			р	avels and Corrugates				
Atter-berg Limits	Linear Shrinkage	-				K	aveis and Corrugates				
4	PI < 0.075	NP	0 +	5	10 15	20	25 30	35	40	45	50
Unified Soil (Classification	SM					COEFFICIENT				
U.S. Highway	Classification	A-1-b (0)									

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
3.3	5.3	48.0	43.4

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP13A **LAYER:** 0.58-1.7m **SAMPLE No.:** S/8461

SAMPLE DESCRIPTION: Light Red Brown

Sandy Gravel

	F	OUNDATION IN	DICATOR	R - (SANS 3001-	GR1, SANS 30	001-GR10) & (AST	M Method D4	122)		
We	ighted PI	-		rifc Gravity	2.64					
	100.0	100				•	5, 407,	VT. / O/ / A D.T.		
	75.0	100		POTENTIAL EX	PANSIVENES		PLASTIC	CITY CHART		
	63.0	95	70 -			70 -				٦.
DG U	50.0	95		L M H		60				
assi	37.5	92	60 +	- 0 e i -	Very High				/	1
Sieve analysis Cumulative percentage passing (mm)	28.0	91	OF WHOLE SAMPLE	w d g	nigii	91A 30 - 40 - 50 - 50 - 50 - 50 - 50 - 50 - 5		CASGRA	NDE "A" LINE	
Sieve analysis ve percentage (mm)	20.0	88	SAM	u "		\$ 40				
ang mm	14.0	88	970			1		CH		
evel e p e	5.00	84	₩ 30	L		ASA 30 -		Cri /	•	
ati. s	2.000	53					(OH and MH	
E E	0.425	21	₫ 20			20	01. 14			
3	0.250	18	10			10 -	CL - ML	ML and OL		
	0.150	13								_
	0.075	9	0 1	10 20 3	0 40 50	60 70	10 20 30	40 50 60	70 80 90 1	100
	50 μm	7		10 20 3	0 40 50	60 70				
	5 μm	5		CLAY PERO	CENTAGE			LIQUID LIMIT (LL)		
	2 μm	3.4								
_ ε	2.000 - 0.425	61			DEDI	ODMANCE AS WEA	DING COUR	o e		
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	5	550 -		PERF	ORMANCE AS WEA	KING COUKS	SE		_
in M	0.250 - 0.150	10	500 -							
S ~ %	0.150 - 0.075	6				or.				
	< 0.075	18	450			Slippery				
Effective size		0.088	400 ⋅							
Uniformity C		30.3	S 350 ·							7
Curvature Co		3.2	- 00 300 ·			Good - dusty				
Oversize Inde		7.5 0	SHRINKAGE PRODUCT 300 - 250 -	Erodible					Ravels	
Shrinkage Pr		31.3	X	Materials					Raveis	
Grading Coef		2.17	₹ 200 ·			Good				
Grading mod			o 150 ·							
Ď. "	Liquid Limit	-	100 -							\dashv
mits	Plasticity Index	NP	50 -			Ravels and Co	rrugates			
Atter-berg Limits	Linear Shrinkage	-	0 -							╝
	PI < 0.075	4		5	10 15	20 25	30	35 40	45	50
Unified Soil C		SM				GRADING COEFFICI	ENT			
U.S. Highway	Classification	A-1-b (0)								

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
3.4	4.2	45.7	46.7

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP14A **LAYER:** 0.4-1.2m **SAMPLE No.:** S/8462

SAMPLE DESCRIPTION: Light Red Orange

Sandy Gravel

	F	OUNDATION IN	DICATOR	- (SANS 3001-	GR1, SANS 30	01-GR10) &	& (ASTM Meth	nod D422)			
We	eighted PI	-	Spec	ifc Gravity	2.64						
	100.0	100					5	A OTIOITY OF	IA DT		
	75.0	100		POTENTIAL EX	PANSIVENES		P	LASTICITY CH	ARI		
	63.0	100	70 —				70				\neg
вu	50.0	100	1 1	L M H			60 -				
assi	37.5	100	60	o e i w d a	Very High					/	4
Sieve analysis Cumulative percentage passing (mm)	28.0	100	IJ 50 —	w d g l	ı ngıı		PLASTICITY INDEX		CASGRANDE	"A" LINE	
alysi ntag	20.0	100	SAA	u ···			≤ } 40 ·				
ang arcel	14.0	99	30 HOURS				5 1		сн		
e pe	5.00	95	¥ 30				AS 30 -		011		
atix	2.000	53	9				20 -	CL /	OH and	MH	
<u> </u>	0.425	27	₫ 20								
ਠੋ	0.250	23	10				10 - CL -	ML an	d OL		
	0.150	19					0.				
	0.075	16	. o L	10 20 3	0 40 50	60 70		20 30 40 5	50 60 70	80 90	100
	50 μm	9	U	10 20 3	0 40 50	60 70					
	5 μm	7		CLAY PERC	CENTAGE			LIQUID LI	MIT (LL)		
	2 μm	3.9									
_ =	2.000 - 0.425	49			DEDE	OBLEANCE	AC WEADING	COUNCE			
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	8	550 1		PERF	ORMANCE A	AS WEARING	COURSE			
nal M	0.250 - 0.150	7	500 -								
% S	0.150 - 0.075	7									
	< 0.075	30	450 -				Slippery				
Effective size		0.054	400 -								
Uniformity C		46.0	3 350 -								\neg
Curvature C		2.6	- 08 300 -			C	Good - dusty				
Oversize Ind		0.0	SHRINKAGE PRODUCT 500 - 300 - 300 - 300 - 300 CT	Erodible							
Shrinkage Pr		0	- KA 250 -	Materials	-				Rave	IS	
Grading Coef		44.6	₹ 200 -				Good				
Grading mod		2.04	් ₁₅₀ -								
Ð	Liquid Limit	-	100 -								
-be nits	Plasticity Index	NP	50 -			p	avels and Corrugates				
Atter-berg Limits	Linear Shrinkage	-					aveis and corrugates			_	
	PI < 0.075	4	0.4) 5	10 15	20	25 30	35	40	45	50
Unified Soil (Classification	SM]			GRADING	COEFFICIENT				
U.S. Highway	Classification	A-1-b (0)									

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
3.9	7.0	42.0	47.1

- Materials TestingGeotechnical & Road InvestigationsMobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment

Unified Soil Classification

DATE RECEIVED: 04-May-21 POSITION: TP15A **LAYER:** 0.38-1.5m **SAMPLE No.:** S/8463

GRADING COEFFICIENT

SAMPLE DESCRIPTION: Light Brown

	H	OUNDATION IN	DICATOR	? - (SANS 3001-	GR1, SANS 3	001-GR10) &	(ASTM Method L	9422)	
We	eighted PI	-	Spec	ifc Gravity	2.62				
	100.0	100			·		DI AOT	IOITY OUADT	
	75.0	100		POTENTIAL EX	PANSIVENES		PLASTICITY CHART		
	63.0	100	70 —				70		
bu	50.0	100		L M H			60 -		
assi	37.5	94	60	o e i w d a	Very High				
Sieve analysis Cumulative percentage passing (mm)	28.0	91	OF WHOLE SAMPLE	w d g l	111911	STORY	50 -	CASGRANDE "A" LINE	
alys ntag)	20.0	89	SAN	u			40 -		
ang ercel mm	14.0	88	J 40 +				5 40	CH	
ieve e pe (5.00	85	₹ 30	L			30 -	9.17	
Sativ	2.000	69					20 -	CL OH and MH	
mul	0.425	29	₫ 20						
õ	0.250	19	10				10 - CL - ML	ML and OL	
	0.150	13	"						
	0.075	11	J 0 L	0 10 20 3	0 40 50	60 70	0 10 20 3	0 40 50 60 70 80 90 100	
	50 μm	9	U	10 20 3	0 40 50	60 70			
	5 μm	6		CLAY PERO	CENTAGE			LIQUID LIMIT (LL)	
	2 μm	4.2							
<u>.</u> E	2.000 - 0.425	59			nr.n.	CODICINGE A	a we i brig core	NGE.	
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	14	550 1		PERI	ORMANCE A	S WEARING COUR	ase	
ii M Inaly 2.2.	0.250 - 0.150	8	500 -						
Sc A %	0.150 - 0.075	3							
	< 0.075	16	450 -				Slippery		
Effective size		0.059	400 -						
Uniformity C		28.0	SHRINKAGE PRODUCT - 000 - 000 - 010 - 010 - 010 - 010						
Curvature C		2.4	- 100 - 300 -			Go	od - dusty		
Oversize Ind		6.1	9 250 -	Erodible					
Shrinkage Pr		0	- X 49 -	Materials				Ravels	
Grading Coefficient		18.9	₹ 200 -				Good		
Grading mod		1.91	් 150 -						
rg G	Liquid Limit	-	100 -						
Atter-berg Limits	Plasticity Index	NP	50 -			Ray	vels and Corrugates		
∆tte≀ Lir	Linear Shrinkage	-							
_	PI < 0.075	8	0 -	5	10 15	20	25 30	35 40 45 50	

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
4.2	5.8	58.9	31.0

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP16A **LAYER:** 0.45-1.6m SAMPLE No.: S/8464

SAMPLE DESCRIPTION: Light Red Orange

	FOUNDATION INDICATOR - (SANS 3001-GR1, SANS 3001-GR10) & (ASTM Method D422)							
We	eighted PI	-	1	ifc Gravity	2.59			
	100.0	100						
	75.0	100		POTENTIAL EX	PANSIVENES	PLASTICITY CHART		
	63.0	100	70 -			70		
Б	50.0	100	,,,	L M H				
assii	37.5	100	60 +	-o e i -	Very	60 1		
Sieve analysis Cumulative percentage passing (mm)	28.0	99	SAMPLE 05	w d g	High	CASGRANDE "A" LINE LINE 40 CH CH		
alysi ntag	20.0	98	SAM	u "		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
ang mm	14.0	97	40 +			5 ⁴⁰ c _H		
eve e pe)	5.00	94	30 HW 40	L		∑ 30 · Cn / Cn		
ativ.	2.000	56	90			ਹੈ 20 . CL OH and MH		
Ē	0.425	24	₫ 20			CL-ML		
3	0.250	22	10			10 - CL · ML and OL		
	0.150	16						
	0.075	12	0 1	10 20 3	0 40 50	0 10 20 30 40 50 60 70 80 90 100		
	50 μm	7	ı	10 20 3	0 40 50			
	5 μm	6		CLAY PERO	CENTAGE	LIQUID LIMIT (LL)		
	2 μm	3.8						
_ ε	2.000 - 0.425	57			DEDI	RFORMANCE AS WEARING COURSE		
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	4	550 -		PEKI	TORMANCE AS WEARING COURSE		
in M	0.250 - 0.150	10	500 -					
S &	0.150 - 0.075	7				O.		
	< 0.075	22	450 -			Slippery		
Effective size		0.065	400 -					
Uniformity C		35.8	350 -					
Curvature Co		3.5	- 0 300 -			Good - dusty		
Oversize Ind		0.0	SHRINKAGE PRODUCT 200 - 200 - 200 - 300 - 4150	Erodible		Rayels		
Shrinkage Pr		40.1	¥ 200 -	Materials		Ravels		
Grading Coef Grading mod		2.08	H 200 -			Good		
	Liquid Limit	2.06	^{رة} 150 -					
g. g.			100 -					
imits	Plasticity Index	NP	50 -			Ravels and Corrugates		
Atter-berg Limits	Linear Shrinkage	-	0 -	<u> </u>				
V 10 10 31	PI < 0.075	6		5	10 15			
Unified Soil C		SM	-			GRADING COEFFICIENT		
U.S. Highway	Classification	A-1-b (0)						

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
3.8	4.7	47.6	44.0

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 CLIENT: Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP17A **LAYER:** 0.4-1.83m **SAMPLE No.:** S/8465

SAMPLE DESCRIPTION: Light Red Brown

	F	OUNDATION IN	DICATOR	R - (SANS 3001-	GR1, SANS 30	001-GR10) & (AS	TM Method D	422)	
We	eighted PI	-		rifc Gravity	2.60				
	100.0	100				•	DI AOTII	NT / O / A DT	
	75.0	100		POTENTIAL EX	PANSIVENES		PLASTIC	CITY CHART	
	63.0	100	70 -			70			
ъ	50.0	100	1 "	L M H					
assi	37.5	98	60	-o e i -	Very High	60	1		
Sieve analysis Cumulative percentage passing (mm)	28.0	96	OF WHOLE SAMPLE 00 05	w d g	nign	PLASTICITY INDEX	-	CASGRAN	DE "A" LINE
Sieve analysis ve percentage (mm)	20.0	93	SAM	u ''		≥ 40			
ang Jun Licer	14.0	91	3 40 t			5 40	1	CH /	/
eve e pe	5.00	77	N 30 1			ASY 30	-	Cn/	
ativ.	2.000	58] ,	CL OF	and MH
<u> </u>	0.425	25	₫ 20			20	0		
3	0.250	19	10			10	CL - ML	ML and OL	
	0.150	14	. "						
	0.075	11	0 L	10 20 3	0 40 50	60 70	0 10 20 30	40 50 60	70 80 90 100
	50 μm	9	l "	10 20 3	0 40 50	60 70			
	5 μm	7		CLAY PERO	CENTAGE			LIQUID LIMIT (LL)	
	2 μm	5.3							
- ε	2.000 - 0.425	57			DEDI	CODMANGE ACTO	EADING COUR	an.	
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	10	550		PERF	FORMANCE AS W	EARING COUR	SE	
in M	0.250 - 0.150	9	500						
ος *,	0.150 - 0.075	5				ar.			
	< 0.075	19	450			Slippery	'		
Effective size		0.059	400 ⋅						
Uniformity C		38.1	S 350						
Curvature Co		3.3	- 10 300 ·			Good - du	sty		
Oversize Inde		2.0	SHRINKAGE PRODUCT	Erodible				_	Ravels
Shrinkage Pr		29.0	¥	Materials				1 "	taveis
Grading Coef		29.0	₹ 200 1			Good			
Grading mod			ν 150 ·						
g, a	Liquid Limit	-	100						
mits be	Plasticity Index	NP	50 - Ravels and Corrugates						
Atter-berg Limits	Linear Shrinkage		0 -						
	PI < 0.075	3		5	10 15	20 25	30	35 40	45 50
Unified Soil C		SM	4			GRADING COEFF	FICIENT		
U.S. Highway	Classification	A-1-b (0)							

CLAY (%) (0.001-0.002)	SILT (%) (0.002-0.060)	SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)
5.3	4.6	48.4	41.6

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400 0

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP18A **LAYER:** 0.3-1.1m SAMPLE No.: S/8466

SAMPLE DESCRIPTION: Light Red Orange

	F	FOUNDATION IN	DICATOR	R - (SANS 3001-	GR1, SANS 30	001-GR10) & (ASTM Method	D422)
We	eighted PI	-	Spec	ifc Gravity	2.65		
	100.0	100				51.40	FIGURE A GUARANT
	75.0	100		POTENTIAL EX	PANSIVENES	PLAST	TICITY CHART
	63.0	100	70 —			70	
БC	50.0	100	1 "	L M H			
assi	37.5	100	60	-o e i	Very	60 -	
s e	28.0	100	J 4 50	w d g	High	<u></u> 50 -	CASGRANDE "A" LINE
alysi ntag	20.0	100	SAM	u ''		₹ 40 .	
Sieve analysis ve percentage (mm)	14.0	100	OF WHOLE SAMPLE	—	-+-+-	PLASTICITY INDEX	СН
eve e pe	5.00	96	₹ 30			V 30 ⋅	
Sieve analysis Cumulative percentage passing (mm)	2.000	69	9 00			집 20 .	CL OH and MH
E E	0.425	31	₫ 20				
ਹੋ	0.250	27	10			10 - CL-ML	ML and OL
	0.150	22] "				
	0.075	17	0 1	10 20 30	0 40 50		30 40 50 60 70 80 90 100
	50 μm	10	0	10 20 30	J 40 50	60 70	
	5 μm	7		CLAY PERC	ENTAGE		LIQUID LIMIT (LL)
	2 μm	5.3					
_ E	2.000 - 0.425	54	_		DEDI		DGE.
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	6	550 -		PERF	ORMANCE AS WEARING COU	KSE
ii M	0.250 - 0.150	7	500 -				
% S	0.150 - 0.075	7					
	< 0.075	25	450 -			Slippery	
Effective size		0.048	400 -				
Uniformity C		33.5	350 -				
Curvature Co		1.7	- 02 300 -			Good - dusty	
Oversize Ind		0.0	д Ш 5 250 -	Erodible			
Shrinkage Pr		0	\$ 250 -	Materials			Ravels
Grading Coef		29.9	SHRINKAGE PRODUCT			Good	
Grading mod		1.83	් ₁₅₀ -				
Ð	Liquid Limit	-	100 -				
r-be mits	Plasticity Index	NP	50 -			Ravels and Corrugates	
Atter-berg Limits	Linear Shrinkage	-	0 -			naves and corrugates	
`	PI < 0.075	NP		0 5	10 15	20 25 30	35 40 45 50
Unified Soil C	Classification	SM				GRADING COEFFICIENT	
U.S. Highway	Classification	A-1-b (0)					
100				PARTICLE	E SIZE DISTI	RIBUTION	

CLAY (%) (0.001-0.002) SILT (%) (0.002-0.060)		SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)		
5.3	7.0	56.7	31.0		

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 0 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP19A **LAYER:** 0.35-1.5m **SAMPLE No.:** S/8467

SAMPLE DESCRIPTION: Light Brown Gravelly Sand

	F	OUNDATION IN	DICATOR	? - (SANS 3001-	GR1, SANS 30	001-GR10) & (ASTM Method D422)	
We	eighted PI	-	Spec	ifc Gravity	2.62		
	100.0	100				PLASTICITY CHART	
	75.0	100		POTENTIAL EX	PANSIVENES	PLASTICITY CHART	
	63.0	100	70 —			70	
Вu	50.0	100		L M H		60 -	
Sieve analysis Cumulative percentage passing (mm)	37.5	100	60	o e i w d a	Very High		
യ്	28.0	100	OF WHOLE SAMPLE	w d g l	nigii	X	"LINE
alysi ntag	20.0	100	SAM	u "		\$ 40	/
ang Licel	14.0	100	40 +			[1	
eve b be	5.00	87	₩ 30			30 · S S 30 · S S S S S S S S S S S S S S S S S S	
ative	2.000	57	96			ਰੋ 20 CL OH and	мн
a l	0.425	27	₫ 20				
3	0.250	21	10			10 - CL - ML ML and OL	
	0.150	15] " [
	0.075	11] 0 ⊢		- 10 50	0 10 20 30 40 50 60 70	80 90 100
	50 μm	10	0	10 20 3	0 40 50	60 70	
	5 μm	8		CLAY PERO	CENTAGE	LIQUID LIMIT (LL)	
	2 μm	5.6					
. =	2.000 - 0.425	53					
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	11	550 -		PERF	FORMANCE AS WEARING COURSE	
naly 2.0	0.250 - 0.150	9					
% × %	0.150 - 0.075	8	500 -				
	< 0.075	19	450 -			Slippery	
Effective size		0.045	400				
Uniformity C		51.3	S 350 -				
Curvature C	oefficient	3.4	Q 300 -			Good - dusty	
Oversize Ind		0.0	<u>ا</u>	Erodible			
Shrinkage Pr		0	250 - KAG	Materials	-	Ravels	
Grading Coef		37.7	200			Good	
Grading mod	lulus	2.05	5 150 -			3004	
50	Liquid Limit	-	100 -				
-ber	Plasticity Index	NP	50 -			P. 1. 10	
Atter-berg Limits	Linear Shrinkage	-				Ravels and Corrugates	
4	PI < 0.075	6	0 -	5	10 15	20 25 30 35 40	45 50
Unified Soil (Classification	SM]			GRADING COEFFICIENT	
U.S. Highway	Classification	A-1-b (0)					

CLAY (%) (0.001-0.002) SILT (%) (0.002-0.060)		SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)		
5.6	5.0	46.2	43.1		

- Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
- Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

OUR REF: 92/NKA001-02/0001/21 **CLIENT:** Nkanivo Development Consultants PROJECT: Dumphries Township Establishment DATE RECEIVED: 04-May-21 POSITION: TP20A **LAYER:** 0.48-1.98m SAMPLE No.: S/8478

SAMPLE DESCRIPTION: Light Red Orange

	F	OUNDATION IN	DICATOR	- (SANS 3001-	GR1, SANS 30	001-GR10)	& (ASTM Meth	od D422)			
We	eighted PI	-		ifc Gravity	2.62						
	100.0	100							MOT		
	75.0	100		POTENTIAL EX	PANSIVENES		PI	LASTICITY CH	IARI		
	63.0	100	70 —				70				\neg
Вu	50.0	100		L M H			60 -				
Sieve analysis Cumulative percentage passing (mm)	37.5	98	60	o e i w d a	Very High						4
8 6 9	28.0	97	0F WHOLE SAMPLE	1 "	nigii		PLASTICITY INDEX 30 - 00 - 00 - 00 - 00 - 00 - 00 - 00		CASGRANDE	"A" LINE	
alysi ntag	20.0	95	SAM	u "			≦ ≿ 40 ·				
ang arcel	14.0	93	J 40 +−−				5		CH /		
e pe	5.00	81	¥ 30	L			AS 30 -		311		
ativ	2.000	59					20 -	CL /	OH an	d MH	
Ju In	0.425	26	₫ 20				10 CL-1	/			
ਠੋ	0.250	24	10				10 -	ML an	d OL		
	0.150	18] "				0.				
	0.075	15	0 	10 20 3	0 40 50	60 70	0 10 2	20 30 40	50 60 70	80 90	100
	50 μm	9	U	10 20 3	0 40 50	60 70					
	5 μm	7		CLAY PERO	CENTAGE			LIQUID LI	MIT (LL)		
	2 μm	5.4									
_ ε	2.000 - 0.425	56			DEDE	OBMANCE	AC WEADING	COURGE			
Soil Mortar Analysis % < 2.00mm	0.425 - 0.250	4	550 T		PEKF	OKMANCE	AS WEARING	LOURSE			
mil M	0.250 - 0.150	9	500 -								
S 4 %	0.150 - 0.075	6									
	< 0.075	25	450 -				Slippery				
Effective size		0.053	400 -								
Uniformity C		40.8	350								\neg
Curvature C		3.5	300 -				Good - dusty				
Oversize Ind		1.8	SHRINKAGE PRODUCT - 020	Erodible					Rave	1-	
Shrinkage Pr		0	- KA	Materials	ľ				Rave	IS	
Grading Coef		30.7	- SE 200 -				Good				
Grading mod		2.01	ි 150 -								
Ď.	Liquid Limit	-	100								
mits	Plasticity Index	NP	50 -				Ravels and Corrugates				
Atter-berg Limits	Linear Shrinkage	-									
	PI < 0.075	6		5	10 15	20	25 30	35	40	45	50
Unified Soil (SM	1			GRADIN	IG COEFFICIENT				
U.S. Highway	Classification	A-1-b (0)									

CLAY (%) (0.001-0.002) SILT (%) (0.002-0.060)		SAND (%) (0.060-2.00)	GRAVEL (%) (2.00-60.0)		
5.4	5.7	47.7	41.2		

Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
 Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

92/NKA001-02/0001/21 RG 16732 / COD Date -2021/05/24

Nkanivo Development Consultants P.O Box 11948 Silver Lakes Pretoria

Attention: Mr. L Mavhetha

Dear Sir

Test Report : **DUMPHRIES TOWNSHIP ESTABLISHMENT - CBR TEST RESULTS (TRACK NO 13081-13082)**

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (PTY)Ltd. In Primrose, Germiston. The unambiguous description of the sample/s as received are as follows:

		S	AMPLE INFORMATION & PROPERTIES		
SAME	PLE No.	2021/\$8450	2021/S8453	2021/S8455	2021/\$8460
	ED FOR SAMPLING	Clients Bags	Clients Bags	Clients Bags	Clients Bags
SIZE / WEIGHT OF SAMPLE		±70kg's	±70kg's	±70kg's	±70kg's
MOISTURE CONDITION OF		-	u	9	u
	ON ARRIVAL	Slightly Moist	Slightly Moist	Slightly Moist	Slightly Moist
	m. / CHAINAGE	N/A	N/A	N/A	N/A
	. OR NAME	TP2A	TP5A	TP7A	TP12A
	/ SAMPLED FROM	0.48-2.2m	0.9-2.2m	0.45-3.0m	0.6-1.8m
	SAMPLED ECEIVED	2021/05/04 2021/05/04	2021/05/04 2021/05/04	2021/05/04 2021/05/04	2021/05/04 2021/05/04
	MARKING	None	None	None	None
	RIPTION	Light Brown	Light Brown	Light Red Brown	Light Red Brown
	OF .	Sandy Gravel	Sandy Gravel	Gravelly Sand	Gravelly Sand
	MPLE	Salluy Glavei	Sandy Graver	Gravelly Sariu	Gravelly Sariu
	R & TYPE)				
(COLOO!	NαIIFE)	GRADING ANALY	 SIS - % PASSING SIEVES (SANS : METHOI	C GR1:2010)	
	75.0	100	100	100	100
SIEVE	63.0	100	97	100	100
J V	50.0	100	94	100	100
	37.5	100	88	97	100
ANA -	28.0	100	79	97	99
7.0.471	20.0	100	66	96	96
	14.0	99	62	95	93
LYSIS	5.00	94	56	92	90
(mm)	2.00	51	36	71	57
(SANS GR1:2010)	0.425	23	13	31	25
(0)	0.075	14	8	13	13
	0.070	· ·	SANS 3001 - PR5		
Soil I	Mortar	51	35	71	57
	se Sand	55	66	56	56
	Sand	18	14	28	19
	Fine Sand	6	6	13	9
Medium	Fine Sand	4	3	8	5
Fine Fi	ine Sand	8	6	7	5
	& Clay	27	20	15	25
Coarse Sand Ratio		0.5	0.6	0.5	0.5
		ATTERBERG	LIMITS ANALYSIS (SANS: METHOD GR10	; GR11)	
ATTERBERG	LL%		20.0		
LIMITS	P.I.	NP	3.0	NP	NP
(SANS GR10; GR11)	LS%		1.5		
(<u>GM</u>	2.13	2.43	1.87	2.06
CLASSIFI -	H.R.B.*	A-1-b(0)	A-1-a(0)	A-1-b(0)	A-1-b(0)
CATION	COLTO*	G6	G7	G7	G7
OATION	T.R.H. 14*	G7	G7	G7	G7
		ORNIA BEARING RATIO (SANS : METHOD (, ,	, , ,	
MOD AASHTO	OMC%	5.5	4.8	5.2	4.3
(SANS GR30)	MDD(KG/M³)	2024	2081	2037	1995
	COMP MC %	5.5	4.6	5.1	4.6
0.0.0	% SWELL	0.10	0.09	0.07	0.08
C.B.R.	100%	55	56	55	36
(SANS GR40)	98%	41	37	42	29
	97%	35	29	35	25
U.C.S.	95%	26	21	24	21
(SANS GR53)	93%	20	15	18	15
MPA	90%	13	11	15	10
	Y (kPa) (GR54)	N/A	N/A	N/A	N/A
	: DRY (kPa)	N/A	N/A	N/A	N/A
STABILISED	IN LAB				
WITH	ON SITE	Neat	Neat	Neat	Neat
	TYPE	CBR / FOUND IND	CBR / FOUND IND	CBR / FOUND IND	CBR / FOUND IND
	LED BY	Client	Client	Client	Client
	ERED BY	Client	Client	Client	Client
	G METHOD	TMH5 - MB1	TMH5 - MB1	TMH5 - MB1	TMH5 - MB1
ENVIRONMEN [*]	TAL CONDITION	Llat	Uet	Hot	Llat
WHEN S	SAMPLED	Hot	Hot	Hot	Hot
WHEN SAMPLED					
	S & NOTES	None	None	None	None

Page 1of1

Kind Regards

Mr. N Herbst / Mr R Potgieter TECHNICAL SIGNATORY / MANAGER

Remarks :
*Opinions & Interpretations are not included in our schedule of Accreditation SANAS Accredited Laboratory No. T 0296 The samples were subjected to analysis according to SANS 3001

The results reported relate only to the sample tested Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context Compiled By : Linda van Niekerk

RLG.s.029.01

Materials Testing
 Geotechnical & Road Investigations
 Mobile Lab Services
 Specialised Concrete & Forensic Investigations

+27 11 828 0279 info@roadlab.co.za www.roadlab.co.za 207 Rietfontein Rd, Germiston, JHB, 1400

92/NKA001-02/0001/21 RG 16732 / COD Date -2021/05/24

Nkanivo Development Consultants P.O Box 11948 Silver Lakes Pretoria

Attention: Mr. L Mavhetha

Dear Sir

Test Report: DUMPHRIES TOWNSHIP ESTABLISHMENT - CBR TEST RESULTS (TRACK NO 13081-13082)

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (PTY)Ltd. In Primrose, Germiston. The unambiguous description of the sample/s as received are as follows:

		S	AMPLE INFORMATION & PROPERTIES		
SAMF	PLE No.	2021/\$8467			
	D FOR SAMPLING	Clients Bags			
SIZE / WEIGHT OF SAMPLE		±70kg's			
MOISTURE CONDITION OF					
	N ARRIVAL	Slightly Moist			
	m. / CHAINAGE	N/A			
	. OR NAME	TP19A			
	/ SAMPLED FROM	0.35-1.5m			
	SAMPLED	2021/05/04			
	ECEIVED	2021/05/04			
	MARKING	None			
	RIPTION	Light Brown			
	DF	Gravelly Sand			
	MPLE				
(COLOUI	R & TYPE)				
			SIS - % PASSING SIEVES (SANS : METHOL	O GR1:2010)	
	75.0	100			
SIEVE	63.0	100			
	50.0	100			
	37.5	100			
ANA -	28.0	100			
	20.0	100			
	14.0	100			
LYSIS	5.00	87			
(mm)	2.00	57			
(SANS GR1:2010)	0.425	27			
	0.075	11			
			SANS 3001 - PR5		
	Mortar	57			
	e Sand	53			
	Sand	28			
	Fine Sand	11			
	Fine Sand	11			
	ne Sand	7			
Silt 8	& Clay	19			
Coarse Sand Ratio		0.5			
		ATTERBERG	LIMITS ANALYSIS (SANS : METHOD GR10	; GR11)	
ATTERBERG	LL%				
LIMITS	P.I.	NP			
(SANS GR10; GR11)	LS%				
	ME	2.05			
CLASSIFI -	H.R.B.*	A-1-b(0)			
CATION	COLTO*	G6			
5,11014	T.R.H. 14*	G7			
			GR40) / UNCONFINED COMPRESSIVE STR	ENGTH (SANS : METHOD GR53) (ITS GR5	4)
MOD AASHTO	OMC%	4.8			
(SANS GR30)	MDD(KG/M ³)	2103			
	COMP MC %	4.7			
	% SWELL	0.08			
C.B.R.	100%	73			
(SANS GR40)	98%	50			
	97%	41			
U.C.S.	95%	28			
(SANS GR53)	93%	19			
MPA	90%	11			
MOD ITS : DRY (kPa) (GR54)		N/A			
	: DRY (kPa)	N/A			
STABILISED	IN LAB				
WITH	ON SITE	Neat			
TEST	TYPE	CBR / FOUND IND			
	LED BY	Client			
	RED BY	Client			
	G METHOD	TMH5 - MB1			
	TAL CONDITION				
	SAMPLED	Hot			
REMARKS	S & NOTES	None			
			<u> </u>		

Page 1of1

Kind Regards

Mr. N Herbst / Mr R Potgieter TECHNICAL SIGNATORY / MANAGER

Remarks :
*Opinions & Interpretations are not included in our schedule of Accreditation SANAS Accredited Laboratory No. T 0296 The samples were subjected to analysis according to SANS 3001

The results reported relate only to the sample tested Further use of the above information is not the responsibility or liability of Roadlab Documents may only be reproduced or published in their full context Compiled By : Linda van Niekerk

RLG.s.029.01

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Address P O BOX 11948

Client Reference : SILVER LAKES Order No. Samuel

NKANIVO DEVELOPMENT CONSULTANTS (COO

54

Client

Attention Date Received 17/11/2020

Facsimile Date Tested 17/11/2020 - 03/12/2020

E-mail Date Reported info@nkanivo.co.za 04/12/2020

Project : Dumphiries (Newington 255KU)

2020-B-1505 Project No. : **Report Status** Final

> **Page** 1 of 14

Herewith please find the test report(s) pertaining to the above project. All tests were conducted in accordance with prescribed test method(s). Information herein consists of the following:

Test(s) conducted / Item(s) measured	Qty.	Test Method(s)	Authorized By**	Page(s)
Moisture Density Relationship	3.000	SANS 3001 GR30	S Pullen	10-12
pH of Soil *	2.000	TMH1 A20	J Marques	2-3
Conductivity of saturated soil paste *	2.000	TMH1 A21T	J Marques	2-3
Atterberg Limits <0.425mm	12.000	SANS 3001 GR10	S Pullen	4-9, 13-14
Sieve Analysis 0.075mm	12.000	SANS 3001 GR1	S Pullen/B Mvubu	4-9, 13-14
California Bearing Ratio (CBR)	3.000	SANS 3001 GR40	S Pullen	13-14

Any test results contained in this report and marked with * in the table above are "not SANAS accredited" and are not included in the schedule of accreditation for this laboratory.

Any information contained in this test report pertain only to the areas and/or samples tested. Documents may only be reproduced or published in their full context.

While every care is taken to ensure that all tests are carried out in accordance with recognised standards, neither Civilab (Proprietary) Limited nor its employess shall be liable in any way whatsoever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequences thereof.

All interpretations, Interpolations, Opinions and/or Classifications contained in this report falls outside our scope of accreditation.

The following parameters, where applicable, were excluded from the classification procedure: Chemical modifications, Additional fines, Fractured Faces, Soluble Salts, pH, Conductivity, Coarse Sand Ratio, Durability (COLTO: G4-G9).

The following parameters, where applicable, were assumed: Rock types were assumed to be of an Arenaceous nature with Siliceous cementing material.

Unless otherwise requested or stated, all samples will be discarded after a period of 3 months.

This report is completely confidential between the parties (Civilab and Civilab's client) and shall not be disclosed to anybody else, unless agreed upon in writing or made publicly available by the client or required to make available by law.

Devia	tions	ın	l est	Met	hods:

Technical Signatory:	
Signature:	

**All results are authorized electronically by approved managers and/or technical signatories.

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za•Website: www.civilab.co.za Civil Engineering Testing Laboratories

Client : NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Project : Dumphiries (Newington 255KU) Date Reported: 04/12/2020 Project No : 2020-B-1505 Page No. : 2 of 14

AGGREGATE TEST REPORT

Laboratory Number		3
Field Number		TP2
Client Reference		
Depth (m)		0.47-1.20
Position		
Coordinates	Χ	
Coordinates	Υ	
Description		
Additional Information		
Calcrete/Crushed		
Stabilizing Agent		

		mm		Finess M	1odulus			
		mm		Clay Co	Clay Content s		%	1
		mm		Organic Ir	npurities		Ref.	
		mm		Flakinger	Total			
		mm		Flakiness			%	
		mm		Index				
		mm		Average	Manual			
	50	mm		Least	Machine		mm	
	ing	mm		Dimension	Computation			
	ass	mm		Aggregate	Dry			
	% Passing	mm		Crushing	Wet		%	
	0	mm		Value	Eth. Glycol			
		mm		10% Fines	Dry			
		mm		Aggregate	Wet		kN	
		mm		Crushing	Eth. Glycol			
		mm		Test (FACT)	Wet/Dry Ratio		%	
	mm		D !! D .;	Loose				
		mm		Bulk Density	Compacted		kg/m ³	
		mm		Water				
Sand Equiv	valent, Se			Absorption			%	
p⊢			6.7	-				
Relative Den	sity of Soils			Bulk Particle			kg/m ³	
Durability I	Mill Index			Density	Aggregate			
Moisture	Content	%						
Compactibi	lity Factor			Apparent				
Conduc		S.m ⁻¹	0.017	Particle			kg/m ³	
Total Water	Salts			Density	Adjusted			
Soluble	Sulphates	%		1	Relative	-		
	Salts				1000 Revs			
Soluble	Sulphates	%		LA Abrasion	500 Revs	-	%	
	Fine			Riedel &	Weber			
Soundness	Coarse	%		Akali Silica	Reaction		%	
	Fractions	No.		Drying Sh	nrinkage		%	
Methylene Blue Absorption Soluble Deleterious Impurities				Wetting E			%	
		%		Fractured			%	
Chloride		%		Coarse Sa	and Ratio		%	
Low Density Material Presence of Sugar		%		Shape:			%	
				Shell C	ontent		%	
Mill Abrasion				Durability	Ballast			
Treton Value				Eth. Glycol	Concrete			
1101011	value							
Vialit Adhesion	5°C	%		Durability on	Crushed			

 ${\it 36 Fourth Street, Booysens Reserve, Johannesburg 2091}$

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za•Website: www.civilab.co.za Civil Engineering Testing Laboratories

Client : NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Project : Dumphiries (Newington 255KU) Date Reported: 04/12/2020 Project No : 2020-B-1505 Page No. : 3 of 14

AGGREGATE TEST REPORT

Laboratory Number		11
Field Number		TP17
Client Reference		
Depth (m)		035-1.50
Position		
Coordinates	Χ	
Coordinates	Υ	
Description		
Additional Information		
Calcrete/Crushed		
Stabilizing Agent		

		mm		Finess N	lodulus			
		mm		Clay C	Clay Content		%	3
		mm		Organic Ir	npurities		Ref.	
		mm		F	Total			
		mm		Flakiness			%	
		mm		Index				
		mm		Average	Manual			
		mm		Least	Machine		mm	
	% Passing	mm		Dimension	Computation			
	ass	mm		Aggregate	Dry			
	ď.	mm		Crushing	Wet		%	
	^	mm		Value	Eth. Glycol			
		mm		10% Fines	Dry			
		mm		Aggregate	Wet		kN	
		mm		Crushing	Eth. Glycol			
		mm		Test (FACT)	Wet/Dry Ratio		%	
		mm			Loose			
		mm		Bulk Density	Compacted		kg/m ³	
		mm		Water			0.4	
Sand Equiv	valent, Se			Absorption			%	
p -			6					
Relative Den	sity of Soils			Bulk Particle			kg/m ³	
Durability	Mill Index			Density	Aggregate			
Moisture	Content	%						
Compactibi	ility Factor			Apparent			3	
Condu	ctivity	S.m ⁻¹	0.007	Particle			kg/m ³	
Total Water	Salts			Density	Adjusted			
Soluble	Sulphates	%			Relative			
0.1.1	Salts	0/			1000 Revs		0,1	
Soluble	Sulphates	%		LA Abrasion	500 Revs		%	
	Fine	2,		Riedel &	Weber			
Soundness	Coarse	%		Akali Silica	Reaction		%	
	Fractions	No.		Drying Sh	nrinkage		%	
Methylene Blu	e Absorption				Wetting Expansion		%	
Soluble Deleter	·	%		Fractured Faces			%	
Chloride		%		Coarse Sand Ratio			%	
Low Densit		%		Shape: Voids			%	
Presence	•			Shell C			%	
Mill Ab	_			Durability	Ballast			
Treton	Value			Eth. Glycol	Concrete			
Vialit Adhesion	5°C	%		Durability on	Crushed			
@	25°C	%		_ Stone	Seal			

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

F-mail: ihb@civilab co za. Website: www civilab co za

Website: www.civilab.co.za Civil Engineering Testing Laboratories
NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Client Dumphiries (Newington 255KU) Date Reported: **Project** 04/12/2020 2020-B-1505 Page No. Project No of 14

FOUNDATION INDICATOR

Laboratory N	umber	1 🔸	2
Field Numbe	r	TP1	TP1
Client Refere	nce		
Depth (m)		0.40-1.60	1.60-2.30
Position			
Coordinates	X Y		
Description			
Aditional Info	rmation		
Calcrete / Cru Stabilizing Ag			
Moisture Conte			

Moisture Content & Relative Density

Moisture Content (%)

Grading Modulus

Relative Density (S.G.)			
Sieve Analysis	(Wet Prep)	SANS 3	001 GR1
	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	100
Passing	37.5 mm	100	100
388	28 mm	100	100
ڪّ	20 mm	100	100
ge	14 mm	100	100
Percentage	5 mm	98	94
Se	2 mm	88	59
Je.	1 mm	65	32
ш.	0.425 mm	41	17
	0.250 mm	32	12
	0.150 mm	25	9

Hydrometer Ana	alysis	SANS 3	001 GR3	
<u>e</u>	0.060 mm	10	3	
tag ng	0.040 mm	8	2	
ssi	0.020 mm	6	2	
Passing	0.006 mm	5	1	
مّ	0.002 mm	4	1	
Gravel	%	12	41	
Sand	%	78	56	
Silt	%	6	2	
Clay	%	4	1	

0.075 mm

18

1.53

Laboratory Number		1 🔷	2				
Atterberg Limits -425μ		SANS 3001 (GR10				
Liquid Limit	%						
Plasticity Index	%	SP	SP				
Linear Shrinkage	%	1.0	0.5				
Overall PI	%						
Classifications							

A-1-b(0)

SM

A-1-b(0) SW-SM

Unified (ASTM D2487) Weston Swell @ 1 kPa Note: An assumed S.G. may be used in Hydrometer Analysis calculations 100 80 Percentage Passing 60 40 20 0 0.001 0.01 0.1 10 100 Medium Medium Coarse Medium Fine Coarse Fine Fine Coarse Clay Silt Sand Gravel

HRB (AASHTO)

7

2.17

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

F-mail: ihb@civilab co za. Website: www civilab co za

Website: www.civilab.co.za Civil Engineering Testing Laboratories
NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Client Dumphiries (Newington 255KU) Date Reported: **Project** 04/12/2020 2020-B-1505 Page No. Project No of 14

FOUNDATION INDICATOR

Laboratory N	umber	3 •	4
Field Numbe		TP2	TP3
Client Refere	nce		
Depth (m)		0.47-1.20	0.30-0.70
Position			
Coordinates	X Y		
Description			
Aditional Info	rmation		
Calcrete / Cr	ushed		
Stabilizing Ag	gent		
Majatura Canta	nt & Polativo D	onoitu	SANS 2001 GD2

Moisture Content & Relative De	ensity	SANS 3001 GR30
Moisture Content (%)		
Relative Density (S.G.)		

Hydrometer An	alysis	SANS 3001 GR3		
Э	0.060 mm	6	2	
taç	0.040 mm	5	2	
ssi	0.020 mm	4	2	
ercentage Passing	0.006 mm	3	1	
ď	0.002 mm	1	1	
Gravel	%	37	40	
Sand	%	57	58	
Silt	%	5	1	
Clay	%	1	1	

Laboratory Number		4				
Atterberg Limits -425µ		SANS 3001 GR10				
Liquid Limit	%	23				
Plasticity Index	% 7 NP					
Linear Shrinkage	% 3.0					
Overall PI	% 2					
Classifications						

A-2-4(0)

SW-SC

A-1-b(0) SW-SM

Note	: An a	ssumed	S.G. may be	e used in Hydr	ometer Analy	sis calculatio	ns Wes	ton Swell	@ 1 kPa				
	100									# T			
	80												
Passing	60												
	40												→ 3
Percentage	20												 -4
erc	0	ļ										Ш	
٩	0.0	001		0.01		0.1		1		10		100	
		Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		
		Clay	·	Silt	•		Sand	·		Gravel	·		
											,		

HRB (AASHTO)

Unified (ASTM D2487)

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

F-mail: ihb@civilab co za. Website: www civilab co za

Website: www.civilab.co.za Civil Engineering Testing Laboratories
NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Client Dumphiries (Newington 255KU) Date Reported: 04/12/2020 **Project** 2020-B-1505 Page No. Project No of 14

FOUNDATION INDICATOR

_		_				
Laboratory N	umber	5 🔷	6 -			
Field Number	r	TP5	TP7			
Client Refere	nce					
Depth (m)		0.40-1.00	0.45-1.20			
Position						
Coordinates	X Y					
Description						
Aditional Info	rmation					
Calcrete / Cru	ushed					
Stabilizing Ag	gent					
Majatura Cantant & Balativa Danaitu						

Moisture Content & Relative Density

Moisture Content (%) Relative Density (S.G.)

relative Density (0.0.)			
Sieve Analysis (Wet Prep)		SANS 3001 GR1	
	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	100
jij	37.5 mm	100	100
388	28 mm	100	100
ڪّ	20 mm	100	100
ge	14 mm	98	88
nta	5 mm	87	70
Percentage Passing	2 mm	50	45
) er	1 mm	29	29
	0.425 mm	17	19
	0.250 mm	14	15
	0.150 mm	11	12
	0.075 mm	9	9
Grading Modulus		2.24	2.27

Hydrometer Analysis		SANS 3001 GR3	
ercentage Passing	0.060 mm	4	4
	0.040 mm	3	3
	0.020 mm	2	3
erc Pa	0.006 mm	2	2
<u> </u>	0.002 mm	1	2
Gravel	%	50	55
Sand	%	46	41
Silt	%	3	2
Clay	%	1	2

Laboratory Number		5	6	
Atterberg Limits -425μ		SANS 3001 GR10		
Liquid Limit	%	27	26	
Plasticity Index %		10	14	
Linear Shrinkage %		4.5	5.0	
Overall PI %		2	3	
Classifications				

A-2-4(0)

SP-SC

A-2-6(0) SP-SC

Weston Swell @ 1 kPa Note: An assumed S.G. may be used in Hydrometer Analysis calculations 100 80 Percentage Passing 60 40 20 0 0.001 0.01 0.1 10 100 Medium Medium Coarse Medium Fine Coarse Fine Fine Coarse Clay Silt Sand Gravel

HRB (AASHTO)

Unified (ASTM D2487)

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

F-mail: ihb@civilab co za•Website: www civilab co za

Website: www.civilab.co.za Civil Engineering Testing Laboratories
NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Client Dumphiries (Newington 255KU) Date Reported: 04/12/2020 **Project** 2020-B-1505 Page No. Project No of 14

FOUNDATION INDICATOR

_			
Laboratory Number		7 🔷	8
Field Number		TP10	TP12
Client Reference			
Depth (m)		0.35-1.00	0.60-1.50
Position			
Coordinates	X Y		
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Agent			
Moisture Content & Relative De		ensity	SANS 3001 GR30

Moisture Content & Relative Density		SANS 3001 GR30
Moisture Content (%)		
Relative Density (S.G.)		

Sieve Analysis (Wet Prep)		SANS 3001 GR1	
	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
70	50 mm	100	100
juig	37.5 mm	100	100
ass	28 mm	100	100
<u>a</u>	20 mm	100	100
ge	14 mm	99	100
nta	5 mm	88	100
Percentage Passing	2 mm	67	93
Je.	1 mm	49	68
ш.	0.425 mm	32	39
	0.250 mm	23	27
	0.150 mm	16	19
	0.075 mm	11	13
Grading Modulus		1.90	1.55

Hydrometer Analysis		SANS 3001 GR3	
Passing	0.060 mm	6	7
	0.040 mm	5	5
ssi	0.020 mm	4	4
Perc Pa	0.006 mm	3	3
	0.002 mm	1	1
Gravel	%	33	7
Sand	%	61	86
Silt	%	5	6
Clay	%	1	1

Laboratory Number		/	8	
Atterberg Limits -425μ		SANS 3001 GR10		
Liquid Limit	%			
Plasticity Index	%	NP	NP	
Linear Shrinkage %				
Overall PI	%			
Classifications				

A-1-b(0)

SW-SM

A-1-b(0)

SM

Weston Swell @ 1 kPa Note: An assumed S.G. may be used in Hydrometer Analysis calculations 100 80 Percentage Passing 60 40 20 0 0.001 0.01 0.1 100 Medium Medium Coarse Medium Fine Coarse Fine Fine Coarse Clay Silt Sand Gravel

HRB (AASHTO)

Unified (ASTM D2487)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

F-mail: ihb@civilab co za. Website: www civilab co za

Website: www.civilab.co.za Civil Engineering Testing Laboratories
NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Client Dumphiries (Newington 255KU) Date Reported: 04/12/2020 **Project** 2020-B-1505 Page No. Project No of 14

FOUNDATION INDICATOR

Laboratory Number		9 🔷	10
Field Number	•	TP14	TP16
Client Refere	nce		
Depth (m)		0.42-1.25	0.54-1.20
Position			
Coordinates	X Y		
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Agent			ĺ
Maistura Canta	nt 9 Deletive D		-

Moisture Content & Relative Density

Moisture Content (%) Relative Density (S.G.)

relative Density (0.0.)			
Sieve Analysis (Wet Prep)		SANS 3001 GR1	
	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	100
Passing	37.5 mm	100	100
ass	28 mm	100	100
<u>a</u>	20 mm	100	100
Percentage	14 mm	96	99
	5 mm	81	92
	2 mm	57	78
	1 mm	40	61
	0.425 mm	26	44
	0.250 mm	21	34
	0.150 mm	17	27
	0.075 mm	13	20
Grading Mod	ulus	2.04	1.58

Hydrometer Analysis		SANS 3	001 GR3
<u>e</u>	0.060 mm	6	10
taç ng	0.040 mm	5	8
ssi	0.020 mm	4	7
Percentage Passing	0.006 mm	3	5
	0.002 mm	1	5
Gravel	%	43	22
Sand	%	51	68
Silt	%	5	5
Clay	%	1	5

Laboratory Number		9	10	
Atterberg Limits -425μ	•	SANS 3001 (GR10	
Liquid Limit	%			
Plasticity Index	%	SP	NP	
Linear Shrinkage	%	1.0		
Overall PI	%			
Classifications				

A-1-b(0)

SM

A-1-b(0) SM

Weston Swell @ 1 kPa Note: An assumed S.G. may be used in Hydrometer Analysis calculations 100 80 Percentage Passing 60 40 9 20 10 0 0.001 0.01 0.1 10 100 Medium Medium Coarse Medium Fine Coarse Fine Fine Coarse Clay Silt Sand Gravel

HRB (AASHTO)

Unified (ASTM D2487)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

F-mail: ihb@civilab co za•Website: www civilab co za

Website: www.civilab.co.za Civil Engineering Testing Laboratories
NKANIVO DEVELOPMENT CONSULTANTS (COO Date Received: 17/11/2020 Client Dumphiries (Newington 255KU) Date Reported: 04/12/2020 **Project** 2020-B-1505 Project No Page No. of 14

FOUNDATION INDICATOR

_			
Laboratory Number		11 🔷	12
Field Numbe	r	TP17	TP19
Client Refere	ence		
Depth (m)		035-1.50	0.40-1.00
Position			
Coordinates	X Y		
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Agent			
Moisture Conte	nt & Relative De	ensity	SANS 3001 GR30

Moisture Content & Relative De	ensity	SANS 3001 GR30
Moisture Content (%)		
Relative Density (S.G.)		

Sieve Analysis (Wet Prep)		SANS 3	001 GR1
	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	100
jii	37.5 mm	100	100
ass	28 mm	100	100
<u>a</u>	20 mm	100	100
Percentage Passing	14 mm	100	99
	5 mm	99	93
	2 mm	88	71
Je.	1 mm	61	54
	0.425 mm	36	39
	0.250 mm	26	33
	0.150 mm	18	26
	0.075 mm	12	17
Grading Modulus		1.64	1.73

Hydrometer Analysis		SANS 3	001 GR3
Э	0.060 mm	5	11
taç	0.040 mm	4	9
ssi	0.020 mm	4	8
Passing	0.006 mm	3	6
<u> </u>	0.002 mm	3	4
Gravel	%	12	29
Sand	%	83	60
Silt	%	2	7
Clay	%	3	4
Note: An assume	d S G may he us	ed in Hydrometer A	nalveie calculations

Laboratory Number		11 🔸	12
Atterberg Limits -425μ		SANS 3001 C	SR10
Liquid Limit	%		
Plasticity Index	%	NP	NP
Linear Shrinkage	%		
Overall PI	%		
	Class	ifications	

A-1-b(0)

A-1-b(0)

SW-SM SM Unified (ASTM D2487) Weston Swell @ 1 kPa Note: An assumed S.G. may be used in Hydrometer Analysis calculations 100 80 Percentage Passing 60 40 11 20 12 0 0.001 0.01 0.1 100 Medium Medium Medium Fine Coarse Fine Coarse Fine Coarse Clay Silt Sand Gravel

HRB (AASHTO)

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Project

Project No:

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories
Date Received: 17/11/2020 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

NKANIVO DEVELOPMENT CONSULTANTS (COO Client

Dumphiries (Newington 255KU) Date Reported: 04/12/2020 2020-B-1505 Page No. 10 of 14

MOISTURE DENSITY RELATIONSHIP

Laboratory Number		3
Field Number		TP2
Client Reference		112
Depth (m)		0.47-1.20
Position		
Coordinates	Х	
Coordinates	Y	
Description		
Additional Information	on	
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content -**SANS 3001 GR30**

Compactive Effort: Modified AASHTO

Dry Density	kg/m³	2039	2057	2077	2060	2038	
Moisture Content	%	4.5	5.5	6.5	7.5	8.5	

Max. Dry Density	kg/m³	2077
Optimum Moisture	%	6.6

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Project:

Project No:

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories
Date Received: 17/11/2020 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

NKANIVO DEVELOPMENT CONSULTANTS (COO Client

Dumphiries (Newington 255KU) Date Reported: 04/12/2020 2020-B-1505 11 of 14 Page No.

MOISTURE DENSITY RELATIONSHIP

Laboratory Number	7
Field Number	TP10
Client Reference	
Depth (m)	0.35-1.00
Position	
Coordinates X Y	
Description	
Additional Information	
Calcrete / Crushed	
Stabilizing Agent	

Maximum Dry Density & Optimum Moisture Content -**SANS 3001 GR30**

Compactive Effort:	Modified AASHTO
--------------------	-----------------

Dry Density	kg/m³	2072	2092	2114	2095	2074
Moisture Content	%	4.2	5.2	6.2	7.2	8.2

Max. Dry Density	kg/m³	2114
Optimum Moisture	%	6.2

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Project:

Project No:

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories
Date Received: 17/11/2020 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

NKANIVO DEVELOPMENT CONSULTANTS (COO Client

Dumphiries (Newington 255KU) Date Reported: 04/12/2020 2020-B-1505 Page No. 12 of 14

MOISTURE DENSITY RELATIONSHIP

Laboratory Number		11
Field Number		TP17
Client Reference		
Depth (m)		035-1.50
Position		
Coordinates	Χ	
Coordinates	Υ	
Description		
Additional Information		
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content -**SANS 3001 GR30**

Compactive Effort: Modified AASHTO

Dry Density	kg/m³	2003	2023	2040	2021	2002	
Moisture Content	%	4.2	5.2	6.2	7.2	8.2	

Max. Dry Density	kg/m³	2040
Optimum Moisture	%	6.2

PO Box 82223, Southdale 2135

Project

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories
Date Received : 17/11/2020 E-mail: jhb@civilab.co.za+Website: www.civilab.co.za
Client: NKANIVO DEVELOPMENT CONSULTANTS (COO

Client

Dumphiries (Newington 255KU) Date Reported 04/12/2020 2020-B-1505 Page No. 13 of 14 Project No. :

CALIFORNIA BEARING RATIO (CBR) & ROAD INDICATOR REPORT

Laboratory No.		3 🔷	7
Field Number		TP2	TP10
Client Reference	е		
Depth (m)		0.47-1.20	0.35-1.00
Position			
Coordinates X Y			
Description			
Additional inforn	nation		
Calcrete/Crushe	ed		
Stabilizing Ager	nt		

Sieve A	nalysis (Wet pr	eparation)	SANS 3001 GR1
	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
D	50 mm	100	100
Passing	37.5 mm	100	100
as	28 mm	100	100
e L	20 mm	100	100
tag	14 mm	100	99
ĕn	5 mm	93	88
Percentage	2 mm	63	67
<u> </u>	1 mm	40	49
	0.425 mm	24	32
	0.250 mm	19	23
	0.150 mm	14	16
	0.075 mm	11	11
Grading M	lodulus	2.0	1.9

Soil Mortar Analysis			
Coarse Sand	52		
Coarse Fine Sand	8	13	
Medium Fine Sand	7	10	
Fine Fine Sand	6	8	
Silt and Clay	17	16	

Atterberg Limits	SANS 30	001 GR10
Liquid Limit (%)	23	
Plasticity Index (%)	7	NP
Linear Shrinkage (%)	3.0	

·	<u> </u>					
Laboratory N	lo.	3	7			
Maximum Dry De	SANS 3001 GR30					
MDD	kg/m ³	2077	2114			
OMC	%	6.6	6.2			
Calif	SANS 3001 GR40					

California Bearing Natio SANS 3001 GN40					7N 4 U		
	Compaction Data						
Moisture	%		6.7		6.2		
Dry Density	kg/m ³	2089	1996	1892	2140	2018	1912
Compaction	n %	100.0	95.5	90.6	100.0	94.3	89.3
	Penetration Data						
	2.50 mm	84	33	23	140	58	40
CBR at	5.00 mm	105	38	30	164	71	49
	7.50 mm	110	39	33	158	74	53
Swell	%	0	0.1	0.2	0	0.1	0.1
Final Moisture (%)		8.8	11.7	15.2	7.6	12.7	14.2

				Interpolated CBR Data	
	@	100%	0	68	122
	@	98%	노	54	99
l~	@	97%	ASHTC	48	89
CBR	@	95%	⋖	38	72
1	@	93%	Mod.	31	59
	@	90%	2	22	43
	@	SANS3001	Midpoint	53	91

•	Classifications	
HRB (AASHTO)	A-2-4(0)	A-1-b(0)
COLTO	G6	G5
TRH14	G6	G5

E-mail: jhb@civilab.co.za-Website: www.civilab.co.za
Client : NKANIVO DEVELOPMENT CONSULTANTS (COO

PO Box 82223, Southdale 2135

Client

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

Date Received 17/11/2020 Date Reported 04/12/2020

Project Dumphiries (Newington 255KU) 2020-B-1505 Page No. 14 of 14 Project No.

CALIFORNIA BEARING RATIO (CBR) & ROAD INDICATOR REPORT

Laboratory No.	11 🔷	
Field Number	TP17	
Client Reference		
Depth (m)	035-1.50	
Position		
Coordinates X Y		
Description		
Additional information		
Calcrete/Crushed		
Stabilizing Agent		
0 0	41. \	

Stabilizin	g Agent		
Sieve A	nalysis (Wet pr	eparation)	SANS 3001 GR1
	100 mm	100	
	75 mm	100	
	63 mm	100	
D	50 mm	100	
sin	37.5 mm	100	
as	28 mm	100	
e H	20 mm	100	
tag	14 mm	100	
G	5 mm	99	
Percentage Passing	2 mm	88	
п.	1 mm	61	
	0.425 mm	36	
	0.250 mm	26	
	0.150 mm	18	
	0.075 mm	12	
Grading M	lodulus	1.6	

Soil Mortar Analysis					
Coarse Sand	59				
Coarse Fine Sand	11				
Medium Fine Sand	9				
Fine Fine Sand	7				
Silt and Clay	14				

Atterberg Limits	SANS 30	01 GR10
Liquid Limit (%)		
Plasticity Index (%)	NP	
Linear Shrinkage (%)		

Compaction Data							
Moisture	%	6.3					
Dry Density	kg/m ³	2058	1970	1864			
Compaction	า %	100.0	95.7	90.6			
Penetration Data							
	2.50 mm	1	1	1			
CBR at	5.00 mm	1	1	1			
	7.50 mm	3	2	1			
Swell	%	0	0.1	0.1			
Final Moisture (%)		10.2	12.7	16.5			
1000 —							

				interpolated CBR Data		
	@	100%	0	1		
	@	98%	ASHT	1		
~	@	97%	AS	1		
CBR	@	95%	⋖	1		
0	@	93%	Mod.	1		
	@	90%	2	1		
	@	SANS3001	Midpoint	1		
	Classifications					

	Ciassifications	
HRB (AASHTO)	A-1-b(0)	
COLTO		
TRH14		

15. APPENDIX C: SOIL PROFILES

HOLE No: TP 01A Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR: INCLINATION: ELEVATION: 434m

MACHINE: Tractor Loader Backhoe (TLB).

DIAM: 0.7 m

DRILLED BY:

DATE:

DRILLED BY:

PROFILED BY: Mavhetha Lavhelesani

DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani

DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT

ELEVATION: 434m X-COORD: 31°18'30.00"E Y-COORD: 24°47'03.30"S

HOLE No: TP 01A

HOLE No: TP 02A Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT X-COORD: 31°18'26.53"E Y-COORD: 24°47'00.77"S

HOLE No: TP 02A

DRILLED BY:

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 03A Sheet 1 of 1

JOB NUMBER: 000

DATE:

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 03A

Y-COORD: 24°46'58.52"S

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 04A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 04A

HOLE No: TP 05A Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

DRILLED BY:

INCLINATION:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m

DATE: DATE: 13/11/2020

PROFILED BY: Mavhetha Lavhelesani TYPE SET BY: Mavhetha Lavhelesani

DATE: 30/05/2021 21:59 TEXT: ..00\Examples\Examples.TXT

SETUP FILE: STANDARD.SET

ELEVATION: 436m

X-COORD: 31°18'37.52"E Y-COORD: 24°46'57.87"S

HOLE No: TP 05A

HOLE No: TP 06A Sheet 1 of 1

JOB NUMBER: 000

DIAM : 0.7 m DATE:

Y-COORD: 24°46'56.41"S

HOLE No: TP 06A

SETUP FILE: STANDARD.SET

PROFILED BY: Mavhetha Lavhelesani TYPE SET BY: Mavhetha Lavhelesani

DATE: 13/11/2020 DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 07A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 07A

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 08A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 08A

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 09A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 09A

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 10A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 10A

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 11A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 11A

HOLE No: TP 12A Sheet 1 of 1

JOB NUMBER: 000

X-COORD: 31°18'31.21"E *DIAM* : 0.7 m Y-COORD: 24°46'53.88"S

DRILLED BY: DATE: PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT HOLE No: TP 12A

HOLE No: TP 13A Sheet 1 of 1

JOB NUMBER: 000

DATE: X-COORD: 31 16

X-COORD: 31°18'38.59"E Y-COORD: 24°46'47.68"S

HOLE No: TP 13A

TYPE SET BY : Mavhetha Lavhelesani SETUP FILE : STANDARD.SET

PROFILED BY: Mavhetha Lavhelesani

DRILLED BY:

DATE: 13/11/2020 DATE: 30/05/2021 21:59

TEXT : ..00\Examples\Examples.TXT

HOLE No: TP 14A Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT X-COORD: 31°18'33.59"E Y-COORD: 24°46'45.89"S

HOLE No: TP 14A

HOLE No: TP 15A Sheet 1 of 1

JOB NUMBER: 000

X-COORD: 31°18'34.29"E

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT HOLE No: TP 15A

Y-COORD: 24°46'50.50"S

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 16A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 16A

HOLE No: TP 17A Sheet 1 of 1

JOB NUMBER: 000

Y-COORD: 24°46'52.24"S

HOLE No: TP 17A

MACHINE: Tractor Loader Backhoe (TLB). DRILLED BY:

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani SETUP FILE: STANDARD.SET

DATE: DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 18A Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT

dotPLOT 7022

Y-COORD: 24°46'53.91"S

HOLE No: TP 18A

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 19A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 19A

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 20A Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 20A

HOLE No: TP 01 Sheet 1 of 1

JOB NUMBER: 000

X-COORD: 31°18'40.4"E *DIAM* : 0.7 m

Y-COORD: 24°47'11.2"S DRILLED BY: DATE: PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 HOLE No: TP 01

TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59 SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 02 Sheet 1 of 1

JOB NUMBER: 000

x-coord : 31°18'34.91"E y-coord : 24°47'9.19"S

HOLE No: TP 02

PROFILED BY: Mavhetha Lavhelesani

DRILLED BY:

DATE: 13/11/2020

HOLE No: TP 03 Sheet 1 of 1

JOB NUMBER: 000

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT X-COORD: 31°18'33.61"E Y-COORD: 24°47'5.73"S

HOLE No: TP 04 Sheet 1 of 1

JOB NUMBER: 000

- 1) Roots inclusion from a depth of 0 0.4m
- 2) Stable side walls
- 3) No water seepage encountered
- 4) Refusal encountered at 0.8 m
- 5) No disturbed sample taken
- 6) No Unditurbed sample taken

CONTRACTOR: INCLINATION: ELEVATION: 431m

MACHINE: Tractor Loader Backhoe (TLB). DIAM: 0.7 m

DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET

TEXT: ...00\Examples\Examples.TXT

x-coord: 31°18'36.88"E y-coord: 24°47'3.96"S

HOLE No: TP 05 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB).

DRILLED BY: PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani SETUP FILE: STANDARD.SET

DIAM : 0.7 m DATE:

DATE: 13/11/2020

DATE: 30/05/2021 21:59 TEXT: ..00\Examples\Examples.TXT X-COORD: 31°18'41.65"E Y-COORD: 24°47'6.13"S

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 06 Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 07 Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY : Mavhetha Lavhelesani SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 08 Sheet 1 of 1

JOB NUMBER: 000

Scale 1:10		0.00	Dry to Slightly moist, greyish, intact, <u>Dense</u> , Sandy Silt. TOPSOIL.
_			
-	0 0	0.30	0.14
	0		Slightly moist, light brown, intact, <u>Dense</u> , Coarse grained, gravelly sand RESIDUAL SOIL.
_	0 0		
_	0		
	0 0		
-	0		
-	0 0		
	o I		
_	0 0		
-		0.90	
	[+ \ \ + \ \ + \ \ + \ \ + \ \ \ + \ \ \ \ \ + \		Slightly weathered yellowish granite. BEDROCK.
_	+ + > + +		
	 ++××++		
-	[+_◇_+ [+_◇_+]		
_	[+ ⁺ ◇ ⁺ +] + ⁺ ◇ ⁺ +		
	 -+\\ + 		
-	+***+		
	[+,◇,+] [+,◇,+]		
-	[+ ^T ◇ ^T +] + [†] ◇ ⁺ +		
_	 		
	[+ <u>+</u> \\ + <u>+</u>		
-	[+;\\]+ +;\\]+		
	[+*\\;+\]	1.70	
	- '+'+ '- 		NOTES Poets inclusion from a depth of 0 0 45m
		1)	·
		2)	
		3)	No water seepage encountered
		4)	Refusal encountered at 1.7 m
		5)	Disturbed sample taken
		6)	No Unditurbed sample taken
TRACTOR :	Tractor Load	ler Rackh	INCLINATION: ELEVATION: 440m oe (TLB). DIAM: 0.7 m

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 09 Sheet 1 of 1

JOB NUMBER: 000

ELEVATION: 437m CONTRACTOR: INCLINATION:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE: PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59 SETUP FILE: STANDARD.SET

TEXT: ..00\Examples\Examples.TXT

X-COORD: 31°18'39.73"E

HOLE No: TP 09

Y-COORD: 24°47'0.89"S

HOLE No: TP 10 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m

DRILLED BY: DATE: PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT X-COORD: 31°18'41.88"E Y-COORD: 24°46'58.75"S

HOLE No: TP 11 Sheet 1 of 1

JOB NUMBER: 000

cale		0.00	
:10		0.00	Slightly moist, light brown, intact, Medium dense, Sandy Silt. TOPSOIL.
	1		
	1.1.1.		
-			
_			
		0.40	
_	0 0	0.40	Slightly majet light brown intact Dance Coarse grained grayally cond
			Slightly moist, light brown,intact, <u>Dense</u> , Coarse grained, gravelly sand. RESIDUAL SOIL.
-	0		RESIDUAL SOIL.
	\circ		
	0		
j	0 0		
	146-146-146		
-	0		
	0 0		
_	0		
	0 0		
-	0		
	0 0		
_	0		
	0 0		
	0		
-			
	0 0		
_	0		
	0 0		
	0		
	0 0	4.40	
-	+, ◊,+	1.40	
	\		Slightly weathered yellowish granite. BEDROCK.
-	ŀ Ĭ +╳+Ĭ┪		
	`+ * \`*+1		
	[+[◊[+]		
-	+ ₊ + ₊ + ₊		
	<u></u> }:+X+::{		
-	+*&++		
	[+ <u>†</u> ¢‡+]	2.10	
	[+ᠯᢩᡐᠯ+]		NOTES
	╎ ┇╅	1)	Stable side walls
	┟ ┸╬┵╁┥		
-	\ <u>`</u> +\\'+	2)	No water seepage encountered
	[+ <u>*</u> &*+1	2)	The mater edopage encountered
	[+ <u>*</u> o <u>*</u> +]	3)	Refusal encountered at 2.1 m
	+ ₊ >,+	3)	Norwal Ghooding Fou at 2.1 III
	<u></u>	41	No disturbed sample taken
1	· · · · · · · · ·	4)	No disturbed sample taken
		E\	No Unditurbed comple taken
		5)	No Unditurbed sample taken
OR :	_		INCLINATION: ELEVATION: 442m

CONTRACTOR

MACHINE: Tractor Loader Backhoe (TLB). DIAM: 0.7 m

DRILLED BY:
PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY : Mavhetha Lavhelesani SETUP FILE : STANDARD.SET DATE:

DATE: 13/11/2020 DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

X-COORD: 31°18'46.85"E Y-COORD: 24°46'55.7"S

HOLE No: TP 12 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR: INCLINATION:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT X-COORD: 31°18'51.02"E Y-COORD: 24°46'51.98"S

HOLE No: TP 13 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB).

DRILLED BY:
PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani SETUP FILE: STANDARD.SET DIAM : 0.7 m DATE :

DATE: 13/11/2020

DATE: 30/05/2021 21:59
TEXT: ..00\Examples\Examples.TXT

. 20/05/2021 24:50

X-COORD: 31°18'56.7"E Y-COORD: 24°46'45.52"S

HOLE No: TP 14 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB).

DIAM : 0.7 m DATE:

DRILLED BY:

DATE: 13/11/2020

PROFILED BY: Mavhetha Lavhelesani TYPE SET BY: Mavhetha Lavhelesani

DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 14

Y-COORD: 24°46'45"S

DRILLED BY:

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY : Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 15 Sheet 1 of 1

JOB NUMBER: 000

Scale	· · ·	0.00	Olimbah an alah dank kanasa 1111 AM P	O
1:10			Slightly moist, dark brown, intact, Medium Dense,	Sandy Silt. I OPSOIL.
		0.54		
	0.0		Slightly moist, light brown,intact, <u>Dense</u> , scat	trered rock fragmentsof
•	0 0		quartz, Coarse grained, gravelly sand. RESIDUA	
	0			
	0 0			
	0			
•	0 0			
	0 0			
_	0			
	0 0			
	0			
	00			
		1.20		
	++>++		Slightly weathered yellowish granite. BEDROCK.	
	[+; 0; +] +; 0; +			
	[+ <u>+</u> *>+1			
	+			
	[+ + *;+1			
	} + + 			
	[+‡◊‡+]			
	} + +			
	[++\++]			
	} * +			
	[+‡◊‡+]	1.80	NOTES	
	[+ <u>.</u> ♥ <u>.</u> +]	4)	NOTES	
		1)	Stable side walls	
		2)	No water seepage encountered	
		3)	Refusal encountered at 1.8 m	
		4)	No disturbed sample taken	
		5)	No Unditurbed sample taken	
CONTRACTOR :	Tractor Loader	Back	INCLINATION: noe (TLB). DIAM: 0.7 m	ELEVATION: 444m X-COORD: 31°19'0.43"E

DATE:

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

Y-COORD: 24°46'50.05"S

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 16 Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

dotPLOT 7022

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 17 Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

dotPLOT 7022

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 18 Sheet 1 of 1

JOB NUMBER: 000

Scale 1:10	0.00	Slightly moist, dark brown, intact, Medium Dense, Sandy Silt. TOPSOI
41.41.1		
]]		
1.1.1		
-		
1		
1		
1:-:::		
12,22,22	0.60	
		Slightly moist, light brown, intact, Dense, scattrered rock fragmen
		quartz, Coarse grained, gravelly sand. RESIDUAL SOIL.
0 0		
1888		
0 0		
- 0		
0 0		
00	1.30	
<u>}</u> ;+%+;}		Slightly weathered yellowish granite. BEDROCK.
t+ <u>*</u> ***+1		olightly weathered yellowish granite. DEDITOOK.
[+‡◊‡+]		
[++×++]		
<u></u> }_*;+;<+ <u>*</u> ;+		
 		
[+‡◊‡+]		
[++\\+]		
<u> </u>		
<u></u>		
[+‡◊‡+]	1.80	
[+[0]+]		NOTES
	1)	Stable side walls
	2)	No water seepage encountered
	3)	Refusal encountered at 1.8 m
	4)	No disturbed sample taken
	•	
	5)	No Unditurbed sample taken
CTOR:	5)	No Unditurbed sample taken INCLINATION: ELEVATION: 446m

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 19 Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 20 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

DRILLED BY:

MACHINE: Tractor Loader Backhoe (TLB).

DATE:

DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani SETUP FILE: STANDARD.SET

PROFILED BY: Mavhetha Lavhelesani

DATE: 30/05/2021 21:59 TEXT: ..00\Examples\Examples.TXT X-COORD: 31°19'4.42"E Y-COORD: 24°46'41.47"S

HOLE No: TP 21 Sheet 1 of 1

JOB NUMBER: 000

le	0.00	Slightly moist, light brown, intact, Medium Dense, Sandy Silt. TOPSOIL.
	0.37	
		Slightly moist, light brown,intact, Dense, scattrered rock fragmentso
0 0		quartz, Coarse grained, gravelly sand. RESIDUAL SOIL.
0 0		
0 0		
0 0		
0 0		
Ĭ,	1.10	
+ 0 +		Slightly weathered yellowish granite. BEDROCK.
++>++		Chighly Would of Granter granter DEDITO 11
} * +>++		
[+*\>,+*]		
\ ` + <u>`</u> \\		
[+*\>+*]		
_+ <u>\</u> _+		
[+*\>+*]		
++\\		
++>++		
++**+	1.80	
} ⁺ + [♦] + ⁺		NOTES
[+ ⁺ ◇ ⁺ +] [+ ⁺ ◇ ⁺ +]	1)	Roots inclusion from a depth of 0 - 0.3m
	2)	Stable side walls
	3)	No water seepage encountered
	4)	Refusal encountered at 1.8 m
	5)	No disturbed sample taken
	6)	No Unditurbed sample taken
R:		INCLINATION: ELEVATION: 0m

CONTRAC

MACHINE: Tractor Loader Backhoe (TLB). *DIAM :* 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT X-COORD: 31°19'7.70"E Y-COORD: 24°46'39.73"S

HOLE No: TP 22 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB). *DIAM* : 0.7 m DRILLED BY: DATE:

PROFILED BY: Mavhetha Lavhelesani DATE: 13/11/2020 TYPE SET BY: Mavhetha Lavhelesani DATE: 30/05/2021 21:59

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT

X-COORD: 31°18'8.86"E Y-COORD: 24°46'44.12"S

HOLE No: TP 23 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB).

DIAM : 0.7 m DATE:

DRILLED BY: PROFILED BY: Mavhetha Lavhelesani

DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

DATE: 30/05/2021 21:59 TEXT: ..00\Examples\Examples.TXT

Y-COORD: 24°46'47.86"S HOLE No: TP 23

HOLE No: TP 24 Sheet 1 of 1

JOB NUMBER: 000

9) Machine: (TLB).

8) Contractor:

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Tractor Loader Backhoe

TEXT: ..00\Examples\Examples.TXT

DATE: 30/05/2021 21:59

dotPLOT 7022

HOLE No: TP 25 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

MACHINE: Tractor Loader Backhoe (TLB).

DIAM : 0.7 m

DRILLED BY:

DATE:

PROFILED BY: Mavhetha Lavhelesani

DATE: 13/11/2020

TYPE SET BY: Mavhetha Lavhelesani SETUP FILE: STANDARD.SET

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

Y-COORD: 24°46'59.85"S HOLE No: TP 25

X-COORD: 31°18'53.88"E

PROFILED BY: Mavhetha Lavhelesani

TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

Nkanivo Development Consultant Phase 1 Near surface geotechnical investigation

HOLE No: TP 26 Sheet 1 of 1

JOB NUMBER: 000

DATE: 13/11/2020

DATE: 30/05/2021 21:59

TEXT: ..00\Examples\Examples.TXT

HOLE No: TP 27 Sheet 1 of 1

JOB NUMBER: 000

CONTRACTOR:

DRILLED BY:

DIAM : 0.7 m

DATE:

DATE: 13/11/2020

DATE: 30/05/2021 21:59

X-COORD: 31°18'41.80"E Y-COORD: 24°47'2.92"S

HOLE No: TP 27

PROFILED BY: Mavhetha Lavhelesani TYPE SET BY: Mavhetha Lavhelesani

SETUP FILE: STANDARD.SET

TEXT: ..00\Examples\Examples.TXT

LEGEND Sheet 1 of 1

JOB NUMBER: 000

0 0	GRAVELLY	{SA03}
	SAND	{SA04}
	SANDY	{SA05}
+* <u>\</u> +;	GRANITE	{SA17}{SA44}
Name 🕳	DISTURBED SAMPLE	{SA38}
5.5	WATER SEEPAGE/water strike	{CH50}

DATE:

TYPE SET BY : Mavhetha Lavhelesani DATE : 30/05/2021 21:59

PROFILED BY:

SETUP FILE: STANDARD.SET TEXT: ..00\Examples\Examples.TXT

LEGEND SUMMARY OF SYMBOLS

16. APPENDIX D: SITE LAYOUT PLAN

DEMARCATION LAYOUT PLAN

LOCALITY MAP

ZONING	LAND USES	NO. OF ERF	AREA (HA)	AREA (%)	NOTATION
RESIDENTIAL 1	DWELLING UNIT	543	56.84	64.29	
BUSINESS 1	RETAIL	8	1.22	1.38	
INSTITUTIONAL	CRECHE	3	0.59	0.68	
INSTITUTIONAL	CHURCH	3	0.60	0.68	
GOVERNMENT/MUNICIPAL	MULTI-PURPOSE CENTRE	1	0.55	0.62	
PUBLIC OPEN SPACE	PUBLIC OPEN SPACE	4	10.24	11.58	
ROADS PURPOSES		'	18.37	20.78	
TOTAL DEVELOPAB	562	88.41	100%		

NOTE

3. Average Residential Stand Size 1000 sqm
4. Street Width :13m, 16m, 20m
5. Ecological Sensitive Areas
6. Buffer Sensitive Area

2. All areas and distances are approximate and subject to

SURVEY NOTES:

CLIENT: BUSHBUCKRIDGE LOCAL MUNICIPALITY

CONSULTANTS	NAME	SIGNATURE		
TOWN PLANNER (NKANIVO DEVELOPMENT CONSULTANTS)	SAMUEL CHAUKE			
FLOOD LINE ENGINEER (-)				
LAND SURVEYOR (WINDUS M & ASSOCIATES SURVEYS)				
CONSULTING ENGINEER (-)				
DESIGNED: SAMUEL CHAUKE Tech.Pln (-) CHECKED: SAMUEL CHAUKE DRAWING No: 2020DU-001 DATE: 04/12/2020	THESE DRAWINGS: (A) ENJOY COPYRIGHT PROTECTION AND THE COPYRIGHT VESTS IN NKANIVO DEVELOPMENT CONSULTANTS UNLESS OTHERWISE AGREED IN WRITING (B) MAY NOT BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WHATSOEVER TO ANY PERSON WITHOUT THE WRITTEN PERMISSION OF THE COPYRIGHT HOLDER			

SCALE 1: 2000(A0) SCALE 1: 4000(A2)

COMPILED BY:

CELL: 083 277 7347 TELL: 012 807 7445 eMail: info@nkanivo.co.za Nkanivo House Unit 79, Block 5, Lombardy Business Park 66 Graham Road Pretoria 0084