

Avifaunal Basic Assessment for the proposed Roos Solar Energy Facilities and Grid Infrastructure, Mpumalanga Province

July 2023

For

SiVEST

Natalie Pullen / Phumela Madubela

NatalieP@sivest.com / PhumelaM@sivest.com

Enviro-Insight CC

Sam Laurence (*Pr. Sci. Nat.*) AE van Wyk (*Cand. Sci. Nat.*) Lindsay Mandy info@enviro-insight.co.za

Professional Team

The technical team responsible for the pre-construction monitoring surveys and impact assessment reporting:

Author	Qualification	SACNASP	Role in project
Sam Laurence	MSc Zoology Cand.	Pr. Sci. Nat. – 400450/13	Lead avifauna specialist, Field observer,
			Report compilation
AE Van Wyk	BSc Hons Zoology	Cand. Sci. Nat. – 125266	Field technician
Lindsay Mandy	Masters of Arts		Field Technician
Lucas Namanye	Dip Ed.	-	Field technician

Specialist Declaration

I, Sam Laurence *Pr. Sci. Nat.*, declare that the work presented in this report is our own and has not been influenced in any way by the developer or the EAP. At no point has the developer asked us as specialists to manipulate the results in order to make it more favourable for the proposed development. We consider ourselves bound to the rules and ethics of the South African Council for Natural Scientific Professions (SACNASP) and the EIA Regulations (2014, as amended). I have the necessary qualifications and expertise (*Pr. Sci. Nat. Zoological Science*) in developing this specialist report.

Sam Laurence Pr. Sci. Nat.

TABLE OF CONTENTS

LIS	t of f	FIGURES	5
LIS	T OF 1	TABLES	6
GL	OSSAF	RY AND ACRONYMS	7
1	INTF	RODUCTION AND PROJECT BACKGROUND	10
	1.1	SCOPE OF WORK	12
	1.2	STUDY AREA	12
1	1.3	STUDY LIMITATIONS & CONSIDERATIONS	13
2	LEG	SISLATIVE FRAMEWORK	14
2	2.1	NATIONAL ENVIRONMENTAL SCREENING TOOL AND ENVIRONMENTAL THEME PROTOCOLS	14
	2.1.′	1 Screening Report	14
2	2.2	RENEWABLE ENERGY DEVELOPMENT ZONE	16
2	2.3	BIRDS AND SOLAR ENERGY BEST-PRACTICE GUIDELINES (2017)	17
3	MET	THODS	18
3	3.1	GIS	18
3	3.2	DESKTOP AND LITERATURE SURVEY	18
3	3.3	PRECONSTRUCTION BIRD MONITORING SURVEY DESIGN	19
	3.3.´	1 Walked Transects	20
	Drive	en Transect	21
	3.3.2	2 Wetlands	21
	3.3.3	3 Specialist Nest Survey	21
	3.3.4	4 Incidental Observations of Priority Species	22
3	3.4	SPECIES OF CONSERVATION CONCERN	22
	3.4.′	1 Flagship species for the region	23
3	3.5	SENSITIVE HABITAT DELINEATION & SEI	23
	3.5.´	1 Determination of Significance of Impacts	23
	3.5.2	2 Impact Rating System	23

	3.5.3	8 Rating System Used to Classify Impacts	24
	3.6	SITE ECOLOGICAL IMPORTANCE (SEI)	25
4	RES	ULTS	27
	4.1	REGIONAL VEGETATION	27
	4.2	PROTECTED AREAS AND IMPORTANT BIRD AREAS	31
	4.3	THE PROTECTED AREAS AND IMPORTANT BIRD AREAS	31
	4.4	CRITICAL BIODIVERSITY AREAS (CBA)	33
	4.5	DESCRIPTION OF MAJOR BIRD HABITATS	35
	4.5.1	Aquatic Features	38
	4.5.1	Natural Grassland	39
	4.5.2	2 Alien Vegetation: Wattles and Eucalyptus Groves	40
	4.5.3	Agricultural Activities: Cropland and Disturbed Grassland	41
	4.5.4	Powerline and Railway Infrastructure	43
	4.5.5	6 Rocky Hillsides	44
	4.6	OBSERVED AND EXPECTED AVIFAUNA	45
	4.6.1	Total species composition and abundance	45
	4.6.2	2 Priority species	45
	4.6.3	8 Nest Survey	53
	4.7	PRECONSTRUCTION MONITORING MAIN RESULTS	53
	4.7.1	Walked and Driven Transect Counts	53
	4.7.2	Pocal Sites	54
	4.7.3	B Combined Species Summary	54
	4.8	AVIFAUNA SENSITIVITY	59
	4.8.1	General	59
	4.8.2	2 Raptor (especially Martial Eagle) Nest Sites	60
	4.8.3	B Secretarybirds	61
	4.9	SITE ECOLOGICAL IMPORTANCE (SEI)	62

	4.9.	1	SEI Discussion	.65
	4.9.2	2	High SEI	.65
	4.9.3	3	Low and Medium SEI	.66
5	IMP	AC	T ASSESSMENT	.67
	5.1	BA	ACKGROUND TO INTERACTIONS BETWEEN SOLAR ENERGY FACILITIES, POWER LINES AND BIRDS	.67
	5.2	G	ENERAL MITIGATION OF IMPACTS	.80
	5.3	Sl	JMMARY OF PROPOSED MITIGATION MEASURES	.81
	5.4	SF	PECIFIC MITIGATIONS FOR WETLAND AND WATERBODY CROSSINGS	.83
	5.5	G	ENERAL MITIGATION MEASURES	.85
	5.6	Cl	UMULATIVE IMPACT ASSESSMENT DISCUSSION	.85
	5.7	SF	PECIES SPECIFIC RISK ANALYSIS AND RECOMMENDED MITIGATIONS	.88
	5.7.	1	Southern Grey Crowned Crane	.88
	5.7.2	2	Large and Medium Raptors	.88
6	MOI	NIT	ORING REQUIREMENTS	.90
7	SEN	ISIT	TIVITY ANALYSIS	.97
8	PRC	OFE	SSIONAL OPINION	.98
	8.1.	1	Project Footprint Summary	.98
	8.1.	2	Cumulative Impact Summary	.99
9	REF	ER	ENCES	100
10	APF	PEN	DIX1	102
	10.1	AF	PPENDIX 1: EXPECTED AVIFAUNA SPECIES LIST1	102
	10.2	AF	PPENDIX 2: NON-PRIORITY SPECIES CONTACT DATA PER SEASON	110
	10.3	AF	PPENDIX 4: SACNASP QUALIFICATION	112

LIST OF FIGURES

Figure 1-1: Location of the proposed Roos Cluster solar panel array
Figure 2-1: Environmental Screening Tool avifaunal sensitivity theme map the proposed Roos SEF Clusters

Figure 2-2: Environmental Screening Tool animal sensitivity theme map the proposed Roos SEF Clusters
Figure 3-1: The proposed Roos Cluster SEFs in relation to the SABAP2 pentads
Figure 3-2: Avifauna survey sites and specialist coverage (GPS tracks as well as field of view) for the proposed Roos SEF Cluster
Figure 4-1: The proposed Roos Energy Facility Cluster (SEF boundary) in relation to major vegetation types (SANBI, 2018) and aquatic habitats
Figure 4-2: The proposed Roos SEF Clusters in relation to the terrain elevation and aquatic habitats
Figure 4-3: The proposed Roos SEF in relation to the adjacent Protected Areas and Important Bird Areas (IBAs)
Figure 4-4: The proposed Roos SEF Cluster in relation to the Mpumalanga Critical Biodiversity Areas (2014)
Figure 4-5: Avifaunal Habitats for Roos SEF Cluster
Figure 4-6: Avifaunal Habitats for the Roos SEF with Infrastructure Overlay
Figure 4-7: SCC Martial Eagles and Secretarybirds observed within the proposed Roos SEF PAOI
Figure 4-8: Other priority species observed within the proposed Roos SEF PAOI
Figure 4-9: Locations of all avifaunal observations within the Roos Clusters
Figure 4-10: Avifauna Sensitivity Buffers with preferred solar infrastructure placement for the proposed Roos SEF60
Figure 4-11: Guidelines for interpreting SEI in the context of the proposed development activities, reproduced from SANBI (2020)
Figure 4-12: The Roos SEF Combined Project Area Site Ecological Importance (SEI)63
Figure 5-1: Diagrammatic representation of road alignment with fencing infrastructure
Figure 5-2: The map of regional SEFs in relation to the Roos clusters
Figure 7.3: Avifauna Sensitivity Buffers with preferred solar infrastructure placement for the proposed Roos SEF

LIST OF TABLES

Table 1-1: Technical details for the proposed solar cluster to be known as Roos	10
Table 3-1: Avifauna monitoring sampling period for the proposed Roos SEF Clusters	20
Table 3-2: Walk transect lengths and total length.	20
Table 3-3: Drive transects lengths and total length	21
Table 3-4: Rating of impacts criteria	24

Table 4-1: Avifaunal Habitats and Area within the proposed Roos SEF.	35
Table 4-2: Priority avifauna species list for the Project Area of Influence (PAOI)	46
Table 4-3: Summary of avifauna species of conservation concern of known distribution (SABAP2, 2021), previously re or adjacent to the Project Area	
Table 4-4: Per season priority species recorded during Walked Transects (WT)	54
Table 4-5: Per season priority species recorded during Drive Transects (DT) and Walked Transects (WT)	56
Table 4-6: Species of Conservation Concern (SCC) recorded during the survey period.	59
Table 4-7: Evaluation of Site Ecological Importance (SEI) of avifauna habitats in the project area. BI = Biodiversity In	
Table 5-1: Impacts Associated with the SEF	69
Table 5-2: Cumulative Impact Assessment	77
Table 5-3: Cumulative Impact Calculations for the Roos SEF Clusters	85
Table 5-4: EMP Table Summary for Roos SEF Clusters	92

GLOSSARY AND ACRONYMS

Envirð) INSIGHT

ВА	Basic Assessment
BARESG	Bird and Renewable Energy Specialist Group
CITES	Convention on International Trade in Endangered Species
Cumulative impact	Impacts on a species, ecosystem or resource as a result of the sum of actions in the past, present and foreseeable future, from multiple WEFs or a WEF in combination with other developments.
CWAC	Coordinated Waterbird Counts, a programme of bird censuses at a number of South African wetlands. See http://cwac.adu.org.za for more information.
DT	Drive Transect
ESKOM	Electricity Supply Commission (ESCOM), established in 1923.
Environmental Impact	The process of identifying environmental impacts due to activities and assessing and reporting these

Assessment (EIA)	impacts
GIS	Geographic Information Systems
GN	General Notice
IBA	Important Bird and Biodiversity Area. Part of a global network of sites that are critical for the long- term viability of bird populations. Now known as Important Bird and Biodiversity Areas.
IBA	Important Bird Area
IUCN	International Union for Conservation of Nature
NFEPA	National Freshwater Ecosystem Priority Areas
РА	Project Area (denotes infrastructure footprint)
ΡΑΟΙ	Project Area of Influence
Preconstruction Phase	The period prior to the construction of a solar energy facility
REF	Renewable Energy Facility (Wind and/or Solar)
Solar Energy related Priority species	Threatened or rare birds (in particular those unique to the region and especially those which are possibly susceptible to solar energy impacts), which occur in the given development area at relatively high densities or have high levels of activity in the area. These species should be the primary (but not the sole) focus of all subsequent monitoring and assessment.
SABAP	The Southern African Bird Atlas Project. A project in which data on bird distribution and relative abundance are collected by volunteers. There have been two SABAP projects; i.e. SABAP1 (completed in 1991) and SABAP2 (started in 2007 and on-going). See <u>http://sabap2.adu.org.za</u> for more information.
SACNASP	South African Council for Natural Scientific Professions
SANBI	South African National Biodiversity Institute
SCC	Species of Conservation Concern
SEA	Strategic Environmental Assessment
SEF	Solar energy facility. A power plant that uses solar radiation to generate electricity, also colloquially known as a solar farm

STC	Strategic Transmission Corridors
TOPS	Threatened or Protected Species Regulations
REDZ	Renewable Energy Development Zones
WT	Walking Transects

1 INTRODUCTION AND PROJECT BACKGROUND

The study area for the proposed Roos Solar PV development located on located on various land parcels in the western part of Mpumalanga, in the Emakhazeni Local Municipality. The total extent of the study area is approximately 324 ha while the development footprint is 271 ha.

The intention is to develop (through one BA process) a 50 MW solar PV facility and associated infrastructure on the property, depending on site sensitivities. The PV and grid infrastructure will be authorized through a single application for Environmental Authorisation (EA). The distinct components are as follows:

- Roos Solar PV Energy Facility
- Roos Electrical Grid Infrastructure

The associated infrastructure would include a BESS, site camp, substation and OHL, and O&M building. Refer to the table below for the key project information. The PV will consist of the following:

	T
PV panels	 Mounting: Fixed-tilt PV, single-axis tracking PV or double-axis tracking PV.
	 Module type: mono- or bi-facial
	■ up to approx. 3.5m PV panels
Access roads	 Main site access: Up to 8m, during construction and operation
	Internal roads: Approx. 4 - 5m, during construction and operation
	 Existing roads will be utilised as far as reasonably possible and upgraded where necessary. Upgraded width: Up to 8m.
On-site	 Substation will generally be stepping up from 22kV or 33kV to 88kV or 132kV.
Substation	 Maximum height of on-site substations: up to 10 m
	• The proposed project will include one on-site substation hub incorporating the facility substation, switchyard, collector infrastructure, battery energy storage system (BESS) and associated O&M buildings.).
	 Onsite substation size: Up to 4ha (for on-site substation hub)
Construction camp	 No construction camps would be developed, and labour would be sourced from nearby areas, as per relevant procurement requirements.
Temporary	 Temporary Laydown Area: up to approximately 7 ha.
construction laydown / staging	Locations: TBC

Table 1-1: Technical details for the proposed solar cluster to be known as Roos.

area					
Operation and Maintenance	 All Auxiliary buildings to be developed include, but are not limited to: O&M building, site office, staff lockers, bathrooms, warehouses, etc. 				
(O&M) buildings	 Footprint up to 0.5 ha (i.e., 5000 m²) 				
	Height (m): Up to 10 m				
On-site IPP Electrical	 "Cables will be laid underground wherever technically feasible, with overhead 33kV lines grouping PV areas to crossing valleys and ridges to get to the on-site substation." 				
infrastructure	 The proposed project will include one on-site substation hub incorporating the facility substation, switchyard, collector infrastructure, battery energy storage system (BESS) and associated O&M buildings.). 				
	 Internal underground lines of up to 33 kV (22kV or 33kV). 				
	 Substation will generally be stepping up from 22kV or 33kV to 88kV or 132kV. 				
	 Depth (m): Up to 1.5 m 				
Fencing	 Height: Up to 3m 				
	 The entire perimeter of the proposed facility will be secured. 				
	Length: TBC				
	Type: Could be Palisade or mesh or fully electrified.				
Boreholes and storage tanks (if applicable)	 If required, a 10,000I storage tank may be located on site for water storage. 				
Battery Energy	 Capacity in MWh: Up to 500MW/ 500MWh 				
Storage Systems	 Size in hectare - A BESS would be developed within the substation/electrical infrastructure hub footprint, if required. 				
	 Height: Up to 8 m 				
	 Technology type (i.e.: Li-Ion solid state/Redox flow) 				
	Electrochemical Batteries including:				
	a. Lead Acid and Advanced Lead Acid				
	b. Lithium ion, NiCd, NiMH-based Batteries				
	c. High Temperature (NaS, Na-NiCl2, Mg/PB-Sb)				

	d. Flow Batteries (VRFB, Zn-Fe, Zn-Br) The BESS would therefore comprise the selected batteries together with chargers, inverters and related equipment.	
Estimated number of employment opportunities generated by each PV project	 Construction phase: 100 (skills split would be in line with applicable procurement requirements but would be roughly 60% low-skilled, 25% semi-skilled and 15% skilled) Operational phase: 10 (skills split would be in line with applicable procurement requirements but would be roughly 70% low skilled, 25% semi-skilled and 5% skilled Decommissioning phase: unknown 	
Construction: Methodology	 The facility would be constructed in the following sequence: 1) Final design and micro-siting of the infrastructure based on topographical conditions and environmental sensitivities, and following obtaining required environmental permits. 2) Vegetation clearance and construction of access roads (where required) 3) Construction of foundations 4) Assembly and erection of infrastructure on site 5) Stringing of inverters 6) Rehabilitation of disturbed areas 7) Continued maintenance 	
Construction: Duration and start date	Up to 12-18 months, start date is dependent upon award of a bid. Construction activities could take place concurrently.	

1.1 SCOPE OF WORK

The main objective is to fully understand and successfully mitigate the possible negative impacts of solar energy production (and associated infrastructure) on the avifauna within the Roos Cluster Project Area of Influence/s (PAOI). This report will provide baseline information to assess avifauna habitat use in a pre-construction (impact) scenario and evaluate the potential impact of the Project SEFs on avifauna (such as collision mortality, displacement due to disturbance, barrier effects and habitat loss).

1.2 STUDY AREA

As the data collection was conducted concurrently for both the proposed Roos SEF and WEF, the study area is described for both of the Renewable Energy Facilities (REFs). The project will be located on various land parcels located in the western part

of Mpumalanga, in the Emakhazeni Local Municipality.

The land parcels for the solar PV facility are listed below:

- Portion 8 of the Farm Wintershoek No 390
- Portion 14 of the Farm Generaalsdraai No 423

The site is located within the Emalahleni Renewable Energy Development Zone (REDZ) but outside the Power Corridor. The PV cluster will be located in the west of the area with an overall 270Ha of the PV development area which should be authorised. The associated infrastructure would include a BESS, site camp, substation and OHL, and O&M Building and a 132kV OHL route.

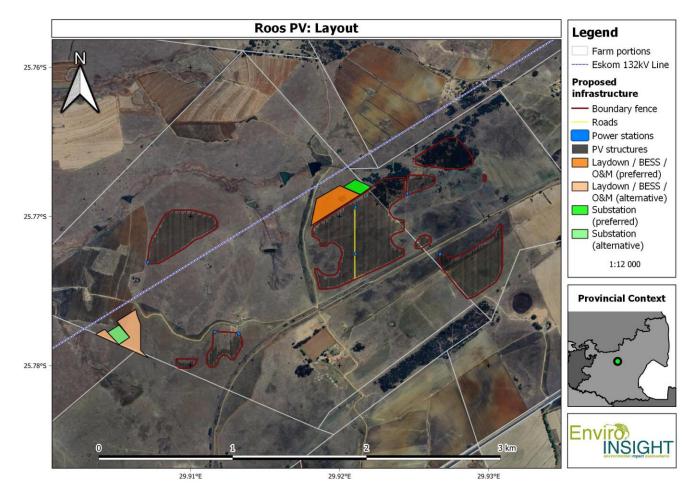


Figure 1-1: Location of the proposed Roos Cluster solar panel array

1.3 STUDY LIMITATIONS & CONSIDERATIONS

- It is assumed that all third-party information acquired is correct (e.g., GIS data, existing facility fatality data and the prescribed scope of work).
- There is still limited information available on the environmental effects of Solar Energy Facilities (SEFs) in South Africa.

- While sampling effort was conducted as recommended in the guidelines, to achieve statistically powerful results it would need to be increased beyond practical possibilities. The data was therefore interpreted using a precautionary approach.
- Walk Transects (WTs), Drive Transects (DTs) and Vantage Point (VP) surveys (carried out for the concurrent WEF but utilising a cross pollination of data) are only conducted during daylight. Therefore, any bird movement occurring at night was recorded under *ad hoc* conditions. Some waterbirds and night migrants are known to make regular flights and migration movements at night.

2 LEGISLATIVE FRAMEWORK

2.1 NATIONAL ENVIRONMENTAL SCREENING TOOL AND ENVIRONMENTAL THEME PROTOCOLS

2.1.1 Screening Report

The Minister of Environment, Forestry and Fisheries, gave notice that the submission of a report generated from the national web-based environmental screening tool¹, as contemplated in Regulation 16(1)(b)(v) of the Environmental Impact Assessment Regulations, 2014, published under Government Notice No. R982 in Government Gazette No. 38282 of 4 December 2014, as amended, will be compulsory from 4 October 2019 when submitting an application for environmental authorisation in terms of regulation 19 and regulation 21 of the Environmental Impact Assessment Regulations, 2014.

In addition, a set of protocols that an applicant needs to adhere to in the Environmental Authorisation (EA) process were developed and on 20 March 2020 the Minister of Forestry, Fisheries and the Environment gazetted the Protocols for national implementation purposes. The gazette '*Procedures to be followed for the Assessment and Minimum Criteria for Reporting of Identified Environmental Themes in terms of Section 24(5)(a) and (h) of the National Environmental Management Act (1998) when Applying for Environmental Authorisation', has protocols that have been developed for environmental themes which include agriculture, avifauna, biodiversity (Terrestrial and Aquatic Biodiversity), noise, defence and civil aviation.*

The protocols set requirements for the assessment and reporting of environmental impacts of activities requiring EA. The higher the sensitivity rating of the features on the proposed site as identified by the screening tool report, the more rigorous the assessment and reporting requirements. bird species sensitive to solar energy developments.

Based on the environmental screening tool reports generated for the report, (Figure 2-1, Figure 2-2), the Animal Combined Sensitivity Theme is indicated as a combination of Medium and **High** sensitivity in areas that are said to contain the following Sensitivity Feature(s).

- High Aves-Geronticus calvus (Southern Bald Ibis)
- High Aves-*Balearica regulorum* (Southern Grey Crowned Crane)
- High Aves- Sagittarius serpentarius (Secretary Bird)
- Medium Aves-Eupodotis senegalensis (White-bellied Bustard)
- Medium Aves-Sagittarius serpentarius (Secretary Bird)

¹ https://screening.environment.gov.za/screeningtool/#/pages/welcome

• Medium Aves- *Balearica regulorum* (Southern Grey Crowned Crane)

Due to the error in outputs (related specifically to SEF developments) and the coarse spatial scale of the tool as well as the presence of other Species of Conservation Concern (SCC), the overall theme was treated as High Sensitivity. The Screening Report clearly ignored the consistent and seemingly high (regional) density of Martial Eagles and wetland associates such as African Marsh Harrier, Southern Grey Crowned Crane, Blue Crane, Greater and Lesser Flamingo and various stork species (Yellow-billed, White and Black Storks).

MAP OF RELATIVE AVIAN THEME SENSITIVITY

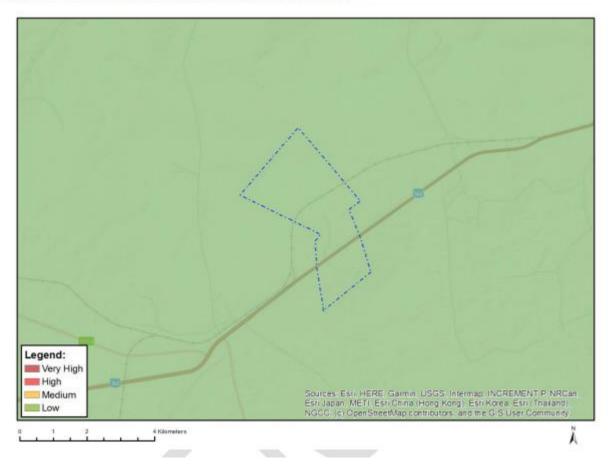


Figure 2-1: Environmental Screening Tool avifaunal sensitivity theme map the proposed Roos SEF Clusters.

MAP OF RELATIVE ANIMAL SPECIES THEME SENSITIVITY

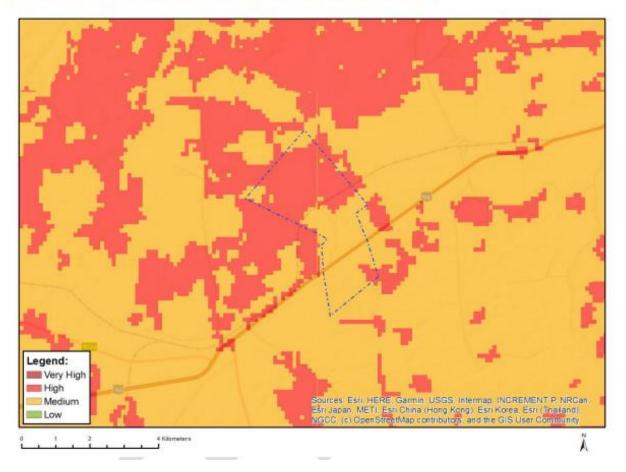


Figure 2-2: Environmental Screening Tool animal sensitivity theme map the proposed Roos SEF Clusters.

2.2 RENEWABLE ENERGY DEVELOPMENT ZONE

On 17 February 2016, Cabinet approved the Renewable Energy Development Zones (REDZs) for large scale solar and associated Strategic Transmission Corridors (STC) which support areas where long term electricity grid will be developed. The procedure to be followed in applying for EA for a large-scale project in a REDZ or in a Power Corridor was formally gazetted on 16 February 2018 in GN113 and GN114. On 17 July 2020, Minister Barbara Dallas Creecy, published Government Gazette 43528, Notice 786 for consultation with the intention to identify three additional Renewable Energy Development Zones to the eight Renewable Energy Development Zones published under Government Notice No. 114 in Government Gazette No. 41445 of 16 February 2018. REDZs are also aligned with the powerline corridors that were identified in the Electricity Grid Infrastructure SEA completed in 2016 and gazetted as powerline corridors in February 2018. In this way, the combination of the REDZs and power corridors provides strategic guidance to ESKOM on where to prioritise investment in grid infrastructure. The project is located within Renewable Energy Development Zones (REDZ) and accordingly, a Basic Assessment (BA) process was followed.

2.3 BIRDS AND SOLAR ENERGY BEST-PRACTICE GUIDELINES (2017)

The "Best-Practice Guidelines for assessing and monitoring the impact of solar energy facilities on birds in southern Africa" (Jenkins *et al.*, 2017) are followed in order to fulfil the outlined requirements (steps in red represent the correct steps due to the location of the project within a REDZ).

As per Appendix 2 - *Minimum requirements for avifaunal impact assessment*, an avifaunal impact assessment for a SEF should follow a two-tier process:

- Scoping report- process to identify issues that are likely to be important in the impact assessment process and to define the scope of work required in the assessment (e.g. timing, spatial extent and data collection methodologies). Largely based on desktop analysis of available data, but preferably also informed by a brief site visit.
- Preliminary assessment This is part of the planning for the EIA application, giving an overview on the biological context, likely impacts and potential red flags to the development, identifying alternatives and determining the appropriate assessment regime.
- 3. **In-depth Study** Could including structured and repeated data collection on which to base the impact assessment report and provide a baseline against which post-construction monitoring can be compared.
- 4. **Impact assessment** Informed by the data collected during the preliminary assessment.

3 METHODS

3.1 GIS

Existing data layers were incorporated into a GIS to establish how the proposed SEF layout and associated activities interact with important terrestrial entities. Emphasis was placed on the following spatial datasets:

- Vegetation Map of South Africa, Lesotho and Swaziland (SANBI, 2018);
- NFEPA wetlands and rivers (CSIR 2011);
- Technical Report for the Mpumalanga Biodiversity Sector Plan (MBSP 2015);
- Important Bird Areas (IBAs) (Marnewick et al., 2015); and
- GIS layers provided by the client.

All mapping was performed using open-source GIS software (QGIS²).

3.2 DESKTOP AND LITERATURE SURVEY

Prior to the initiation of field surveys, a desktop survey was conducted to consider the best information available, in order to provide a better evaluation of all conditions present within the study area. An initial literature review was undertaken to assess which bird species could potentially occur in the vicinity of the proposed SEF using data from the second South African Bird Atlas Project (SABAP 2³; [SABAP2, 2021]). SABAP 2 records were developed based on records per pentad (i.e., 5' X 5'). A list of species potentially occurring was developed from SABAP 2 data for the pentads within which the study area falls (2540_2945, 2540_2950, 2540_2955, 2540_3000, 2545_2945, 2545_2950, 2545_2955, 2545_3000, 2550_2945, 2550_2950, 2550_2950, 2550_2950, 2550_2950, 2550_2950, 2550_2950, 2550_2950, 2550_2950, 2550_2950, 2550_3000, (Figure 3-1). The expected species list (Appendix 1) is therefore based on an area larger than the actual study area and was therefore subsequently refined. This approach was adopted to ensure that all species potentially occurring within the study area, whether resident, nomadic, or migratory, are identified. Species were considered sensitive because of their abundance, flight characteristics, ecological role, population trend and conservation status. A preliminary list of focal species impacts for this study area was compiled based on existing Avifaunal Environmental Impact Assessment and post-construction fatality monitoring reports for similar projects in the region the area and supplemented with sensitive species identified in the previous steps.

The following main literature sources have been consulted for the avifauna study:

- Information relating to avifauna species of conservation concern (SCC) was obtained from Taylor *et al.* (2015) and the IUCN Red List of threatened species (IUCN, 2022);
- del Hoyo *et al.* (1992) and Hockey *et al.* (2005) were consulted for general information on the life history attributes of relevant bird species;

³ http://sabap2.birdmap.africa/

² http://ggis.osgeo.org/en/site/

- Distributional data (apart from those obtained during the surveys) was sourced from the Southern Africa Bird Atlas Project (SABAP 2, 2021), del Hoyo *et al.* (1992) and Sinclair & Ryan (2010); and
- Nomenclature and taxonomy followed the IOC World Bird Names unless otherwise specified (see www.worldbirdnames.org; Gill & Donsker, 2019).

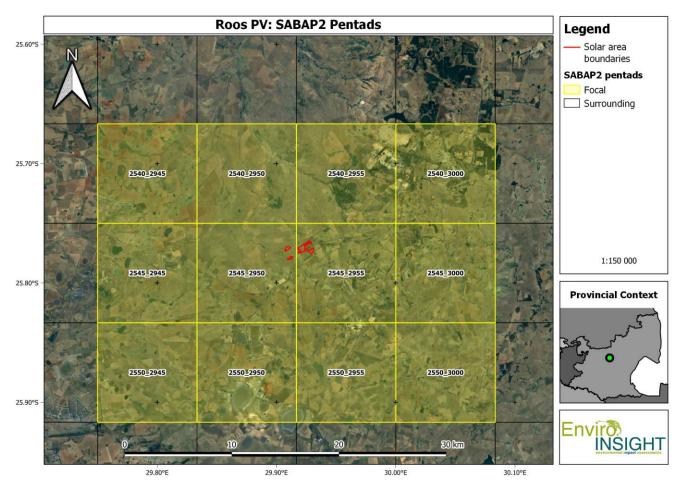


Figure 3-1: The proposed Roos Cluster SEFs in relation to the SABAP2 pentads.

3.3 PRECONSTRUCTION BIRD MONITORING SURVEY DESIGN

They proposed study area is classified as a Regime 2 based on the size of the study area (>150 ha), some high (animal) avifaunal sensitivity and type of technology that will be used for the proposed project. The avifaunal sensitivity was determined based on the number of priority species occurring, or potentially present, within or around the study area, the regional or globally threat status of these species, avifaunal habitat found in the area, population of priority species, bird movement corridor and proximity to Important Bird and Critical Biodiversity Areas. The field surveys were arranged so that the study area and control sites were surveyed for a total of 6 months (covering two seasons and supplementary surveys) and were completed in June 2023. This complies with the requirements of the Best Practice Guidelines available at the time (Jenkins *et al.* 2015). The preconstruction monitoring programme has included a total of two visits to the PA, with a further survey within an immediately

adjoining survey area for another application, resulting in three (3) surveys undertaken within the PAOI, covering the study area through a six-month period that included the summer, autumn and winter seasons of the (non-calendar) year. For the purposes of this report, the data used was from the surveys conducted as per the minimum requirements per season/ dates are summarised in Table 3-1 below.

Date	Season	Methodology applied
6-9 March 2023	Summer- Autumn	DT, WT, WB, NE
9-12 June 2023	Autumn-Winter VDT, WT, WB, NE	
March 2023	Summer -	Supplementary data collection from a concurrent survey

Table 3-1: Avifauna monitoring sampling period for the proposed Roos SEF Clusters.

* WT – Walked transects; DT – Drive transects; NE – Nest searches, inspection and monitoring; WB – Water body inspections.

3.3.1 Walked Transects

This method is utilised to monitor all birds, especially less obvious smaller bird species within the major habitat types within a study area. Transects were positioned at varying distances away from the proposed panel arrays (see Figure 3-2) to maximise the comparative value of the data which will be compared with the surveys from the post-construction phase results.

Four linear transects ranging from 500 m to 1.2 km in length (3.3 km total), were walked in order to characterize the passerine and small bird communities (Table 3-2). These transects are representative of the biotopes present within the study area. To avoid pseudo-replication, transects were located at a minimum distance of 400 m apart from one another (Sutherland, 2006). Each transect was conducted by one expert bird observer at a time (more than one observer for all transects were used), who recorded all bird contacts (both seen and heard) by walking slowly along the predetermined transect. Observations were made on both the left and right side of the predetermined transect. Birds were only recorded (seen or heard) within a fixed maximum width of between 150 to 100 m on either side if the transect line. The same transects were repeated in every season. Surveys started after sunrise and were performed throughout the day to account for temporal variation in bird activity.

As a general rule, transects were not walked in adverse conditions, such as heavy rain, strong winds or thick mist. During the surveys, no adverse conditions were recorded that precluded successful analysis. The combined (across season) Index of Kilometric Abundance (IKA = birds/km) was calculated for each priority species observed.

Name	length (m)
WT1	1173
WT2	734
WT3	523
WT4	796
Total	3226

Table 3-2: Walk transect lengths and total length.

Driven Transect

Large terrestrial birds (e.g., cranes, storks, Secretarybirds. korhaans, bustards) and most raptors cannot be adequately surveyed using walked transects. Populations of such birds should be estimated on each visit to the PA by means of road counts (vehicle-based sampling; best applied for relatively large proposed SEFs, especially those with good networks of roads and tracks).

Road counts of large terrestrial birds and raptors require that one or a number of driven transects be executed (depending on site size, terrain and infrastructure), comprising one or a number of set routes, limited by the existing roadways but as far as possible directed to include a representative cross section of habitats within the PAOI.

These transects were driven at a constant and slow speed (\pm 15 km/h), and all sightings of large terrestrial birds and raptors were recorded in terms of the same data-capture protocols used for walked transects (above), and in general compliance with the road-count protocols described for large terrestrial species (Young *et al.*, 2003) and raptors (Malan, 2009). Seven drive transects were identified in the PA and one drive transect in the control area with a combined total length of 6.6 km (Figure 3-2; Table 3-3). One observer travelling slowly in a vehicle recorded all species on both sides of the drive transect. The observer stopped at regular intervals (every 100 m) to scan the surrounding environment with binoculars. The combined (across season) Index of Kilometric Abundance (IKA = birds/km) was calculated for each priority species observed.

Name	length (m)
DT1	2628
DT2	3955
Total	6583

Table 3-3: Drive transects lengths and total length.

3.3.2 Wetlands

Prior to the initiation of the preconstruction monitoring campaign, the main water bodies (including wetlands) present within the PA were identified on a Geographical Information System (GIS) by using 1:50 000 topographic maps and aerial photos. Several significant water bodies were identified on and surrounding the PA. These identified and mapped water bodies were surveyed to determine their level of utilisation by water birds and water associated Priority Species.

3.3.3 Specialist Nest Survey

Any habitats within the PAOI of the proposed SEF, or equivalent habitats around the PA, deemed likely to support nest sites of key raptor and other species of conservation concern (SCC), including power lines, stands of large trees, marshes and drainage lines, were surveyed. All potential breeding sites, once identified fully, were mapped, and checked during each survey to confirm occupancy, and all evidence of breeding and the outcomes of such activity, where possible, recorded.

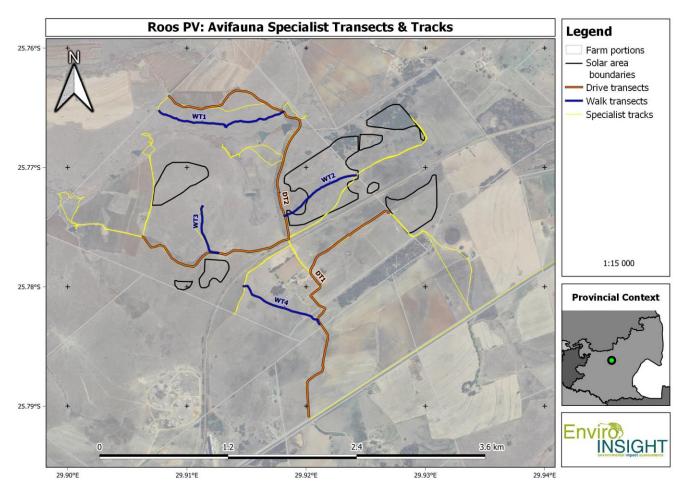


Figure 3-2: Avifauna survey sites and specialist coverage (GPS tracks as well as field of view) for the proposed Roos SEF Cluster.

3.3.4 Incidental Observations of Priority Species

All other sightings of priority species (and particularly those suggestive of breeding or important feeding or roosting sites or flight paths) in the PA and control site as well as within the PAOI were recorded, along with additional relevant information such as habitat type, abundance, habits and weather data. These observations were used as complementary data to characterise the bird community and its utilisation of the PA, as recommended by the Best Practice Guidelines (Jenkins *et al.*, 2015).

3.4 SPECIES OF CONSERVATION CONCERN

IGHT

The Red List of threatened species generated by the IUCN (http://www.iucnredlist.org/) provided the global conservation status of avifauna. However, Taylor *et al.* (2015) produced a regional conservation status assessment following the IUCN criteria which was used for this report. The first three categories i.e., Critically Endangered, Endangered and Vulnerable, are collectively called 'threatened' species or Species of Conservation Concern (SCC).

The conservation status categories defined by the IUCN, which are considered here to represent SCC, are defined as follows:

- Critically Endangered (CR) Critically Endangered refers to species facing immediate threat of extinction in the wild.
- Endangered (EN) Endangered species are those facing a very high risk of extinction in the wild within the foreseeable future.
- Vulnerable (VU) Vulnerable species are those facing a high risk of extinction in the wild in the medium-term.
- Near Threatened (NT) any indigenous species which does not qualify for Critically Endangered, Endangered or Vulnerable now, but is close to qualifying for or is likely to qualify for a threatened category in the near future.

The National Environmental Management: Biodiversity Act (Act 10 of 2004) (NEMBA) provides for listing threatened or protected ecosystems, in one of four categories: critically endangered (CR), endangered (EN), vulnerable (VU) or protected. NEMBA also deals with endangered, threatened and otherwise controlled species, under the Threatened or Protected Species Regulations (ToPS). A ToPS permit is required for any activities involving the removal or destruction of any ToPS-listed species.

Protected species: any species which is of such high conservation value or national importance that it requires national protection. Species listed in this category include, among others, species listed in terms of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).

3.4.1 Flagship species for the region

Flagship species are defined as species that may be highly conspicuous, readily identifiable, of high conservation value (SCC), of high tourism value or are endemic to the region. The Mpumalanga Province hosts significant populations of grassland, wetland and synanthropic-adapted large terrestrial birds which have been recorded (and are expected) within the PAOI such as Black Stork, White Stork, African Marsh Harrier, Denham's Bustard, White Bellied Bustard, Blue Crane, Southern Grey Crowned Crane, and Blue Korhaan. Additional "flagship" bird species include Martial Eagle, Tawny Eagle, Lanner Falcon, Bald Ibis, Verreaux's Eagle, Secretary Bird, with increasingly frequent incursions within the PAOI from species such as Cape Vulture (regional and adjacent sightings).

3.5 SENSITIVE HABITAT DELINEATION & SEI

3.5.1 Determination of Significance of Impacts

Significance is determined through a synthesis of impact characteristics which include context and intensity of an impact. Context refers to the geographical scale (i.e., site, local, national or global), whereas intensity is defined by the severity of the impact e.g., the magnitude of deviation from background conditions, the size of the area affected, the duration of the impact and the overall probability of occurrence. Significance is calculated as shown in Table 3-4.

Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. The total number of points scored for each impact indicates the level of significance of the impact.

3.5.2 Impact Rating System

The impact assessment must take account of the nature, scale and duration of effects on the environment and whether such

effects are positive (beneficial) or negative (detrimental). Each issue / impact is also assessed according to the various project stages, as follows:

- Planning;
- Construction;
- Operation; and
- Decommissioning.

Where necessary, the proposal for mitigation or optimisation of an impact should be detailed. A brief discussion of the impact and the rationale behind the assessment of its significance has also been included.

3.5.3 Rating System Used to Classify Impacts

The rating system is applied to the potential impact on the receiving environment and includes an objective evaluation of the possible mitigation of the impact. Impacts have been consolidated into one (1) rating. In assessing the significance of each issue the criteria (including an allocated point system) as indicated in Table 3-4 is used.

		ENVIRONMENTAL PARAMETER	
A brief des	cription of the environmental aspect	likely to be affected by the proposed activity (e.g. Vegetation cover).	
		ISSUE / IMPACT / ENVIRONMENTAL EFFECT / NATURE	
Include a b	rief description of the impact of envir	ronmental parameter being assessed in the context of the project.	
This criteric	on includes a brief written statement	of the environmental aspect being impacted upon by a particular action or activity (e.g. oil spill in surface water).	
		EXTENT (E)	
This is defi	ned as the area over which the impa	act will be expressed. Typically, the severity and significance of an impact have different scales and as such bracketing	
ranges are	often required. This is often useful d	luring the detailed assessment of a project in terms of further defining the determined.	
1	Site	The impact will only affect the site	
2	Local/district	Will affect the local area or district	
3	Province/region	Will affect the entire province or region	
4	International and National	Will affect the entire country	
		PROBABILITY (P)	
This descri	bes the chance of occurrence of an i	impact	
1	Unlikely	The chance of the impact occurring is extremely low (Less than a 25% chance of occurrence).	
2	Possible	The impact may occur (Between a 25% to 50% chance of	
		occurrence).	
3	Probable	The impact will likely occur (Between a 50% to 75% chance of occurrence).	
4 Definite Impact will certainly occur (Greater than a 75% chance of			
		occurrence).	
		REVERSIBILITY (R)	
This descri	bes the degree to which an impact o	n an environmental parameter can be successfully reversed upon completion of the proposed activity.	
1	Completely reversible	The impact is reversible with implementation of minor mitigation	
		measures	
2	Partly reversible	The impact is partly reversible but more intense mitigation	
	-	measures are required.	
3	Barely reversible	The impact is unlikely to be reversed even with intense mitigation	
	-	measures.	
4	Irreversible	The impact is irreversible and no mitigation measures exist.	
		IRREPLACEABLE LOSS OF RESOURCES (L)	
4 This descri			

Table 3-4: Rating of impacts criteria.

This describes the degree to which resources will be irreplaceably lost as a result of a proposed activity.

1	No loss of resource.	The impact will not result in the loss of any resources.	
2	Marginal loss of resource	The impact will result in marginal loss of resources.	
3	Significant loss of resources	The impact will result in significant loss of resources.	
4	Complete loss of resources	The impact is result in a complete loss of all resources.	
		DURATION (D)	

This describes the duration of the impacts on the environmental parameter. Duration indicates the lifetime of the impact as a result of the proposed activity.

The summation of the different criteria will produce a non-weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

Points	Impact Significance Rating	Description
5 to 23	Negative Low impact	The anticipated impact will have negligible negative effects and will require little to no mitigation.
5 to 23	Positive Low impact	The anticipated impact will have minor positive effects.
24 to 42	Negative Medium impact	The anticipated impact will have moderate negative effects and will require moderate mitigation measures.
24 to 42	Positive Medium impact	The anticipated impact will have moderate positive effects.
43 to 61	Negative High impact	The anticipated impact will have significant effects and will require significant mitigation measures to achieve
43 to 61	Positive High impact	an acceptable level of impact. The anticipated impact will have significant positive effects.
62 to 80	Negative Very high impact	The anticipated impact will have highly significant effects and are unlikely to be able to be mitigated
02 (0 00	Negative very high impact	adequately. These impacts could be considered "fatal flaws".
62 to 80	Positive Very high impact	The anticipated impact will have highly significant positive effects.

3.6 SITE ECOLOGICAL IMPORTANCE (SEI)

The Terrestrial Plant Species Protocol requires specialists to identify:

- the nature and the extent of the potential impact of the proposed development on SCC occurring on the proposed development site;
- the potential impact of the proposed development on the habitat of the SCC; and
- any alternative development footprints within the preferred development site which would be of 'low' sensitivity as identified by the screening tool and verified through the site sensitivity verification.

While most of the features that will be included in the conservation importance (CI) will be provided by the screening tool, it is important to note that CI is evaluated at a **much finer spatial scale** and based on fieldwork data collection and comprehensive desktop analyses performed by the specialist during the Environmental Authorisation (EA) process.

SEI is a function of the biodiversity importance (BI) of the receptor (e.g., SCC, the vegetation/fauna community or habitat type present on the site) and its resilience to impacts (receptor resilience [RR]) as follows: SEI = BI + RR

BI in turn is a function of CI and the functional integrity (FI) of the receptor as follows: BI = CI + FI

As BI is a function of CI and the FI of a receptor, BI can be derived from a simple matrix of CI and FI as follows:

Biodiversity		Conservation importance				
imp	ortance	Very high High Medium		Low	Very low	
rity	Very high	Very high	Very high	High	Medium	Low
integı	High	Very high	High	Medium	Medium	Low
	Medium	High	Medium	Medium	Low	Very low
Ictional	Low	Medium	Medium	Low	Low	Very low
Fun	Very low	Medium	Low	Very low	Very low	Very low

From the successful evaluation of both BI and RR as described above, it is possible to evaluate SEI from the final matrix as follows:

Site		Biodiversity importance				
ecological importance		Very high	High	Medium	Low	Very low
ප Very low		Very high	Very high	High	Medium	Low
silience	Low	Very high	Very high	High	Medium	Very low
or res	Medium	Very high	High	Medium	Low	Very low
Receptor	High	High	Medium	Low	Very low	Very low
Re	Very high	Medium	Low	Very low	Very low	Very low

The SEI in relation to proposed development activities can be interpreted as follows:

- Very High: Avoidance mitigation no destructive development activities should be considered. Offset mitigation not
 acceptable/not possible (i.e. last remaining populations of species, last remaining good condition patches of
 ecosystems/ unique species assemblages). Destructive impacts for species/ecosystems where persistence target
 remains.
- **High:** Avoidance mitigation wherever possible. Minimisation mitigation changes to project infrastructure design to limit the amount of habitat impacted; limited development activities of low impact acceptable. Offset mitigation may be required for high impact activities.
- **Medium:** Minimisation and restoration mitigation development activities of medium impact acceptable followed by appropriate restoration activities.
- Low: Minimisation and restoration mitigation development activities of medium to high impact acceptable followed by appropriate restoration activities.
- Very Low: Minimisation mitigation development activities of medium to high impact acceptable and restoration activities may not be required.

For a full breakdown of the SEI methodology please refer to SANBI V3.1 (2020).

4 RESULTS

4.1 REGIONAL VEGETATION

The study area is located in the Steenkampsberg Montane Grassland Gm30 and Endangered Eastern Highveld Grassland Gm12 (Mucina & Rutherford, 2006 – as amended) (**Error! Reference source not found.**).

Steenkampsberg Montane Grassland (Gm30)

<u>Distribution:</u> Occurring along the Steenkampsberg escarpment that extends from the headwaters of the Waterval River in mountains north-west of Lydenburg, extending southwards through Dullstroom towards Belfast, then eastwards through Machadodorp to Bambi and Elandshoogte.

<u>Vegetation & Landscape features:</u> The landscape is mountainous, with plateau grasslands, mountain slopes and shallow valleys. Grasslands are short with high forb diversity. The highest point in Mpumalanga (2330 m) occurs just north of the Steenkampsberg Pass.

<u>Climate</u>: Climate is a seasonally arid temperate region with hot summers and cool and dry winters. Frost is common during the winter months. Mist is infrequent during summer. Compared to the Long Tom Pass Montane Grasslands, the Steenkampsberg experiences lower winter temperatures due to its overall higher altitude, as well its more inland position, more distant from the buffering effects of the warmer climate of the eastern subtropical Lowveld. It also receives significantly less mist during summer than does the Long Tom Pass Montane Grasslands.

<u>Geology & soils</u>: The geology broadly forms part of the Pretoria Group, with the Dullstroom, Steenkampsberg, Lakenvlei, Vermont, Magaliesberg, Silverton, Strubenkop, Daspoort, Hekpoort, and Timeball Hill Formations running from the west through to the east. The Pretoria Group is commonly intersected by the intrusive Transvaal Diabase in the form of dykes and sills. The resulting rocks are predominantly comprised of quartzite, shale, dolerite, diabase and basalt.

Soils are shallow to deep, well-drained; either dystrophic and/or mesotrophic, depending on geology. Soil derived from quartzite results in sandy, white dystrophic soils with high humus content.

<u>Conservation</u>: Much of this unit is still natural (74.7%), although some parts have been afforested (14%) or cultivated (4%) with crops such as maise and, to a lesser extent, peach orchards. As much as 6% of this is comprised of old abandoned cultivated lands. Mining is a threat (0.25%) as this unit overlies considerable mineral wealth. This unit is poorly protected as only 12.4% of its national target of 27% is formally protected.

<u>Remarks:</u> A floristic analysis of the vegetation along the Mpumalanga escarpment supports the recognition of a new centre of plant endemism (Lydenburg Centre) with the proposal of two subcentres of plant endemism, namely the Long Tom Pass Subcentre and the Steenkampsberg subcentre. The Steenkampsberg subcentre has at least 15 endemic taxa.

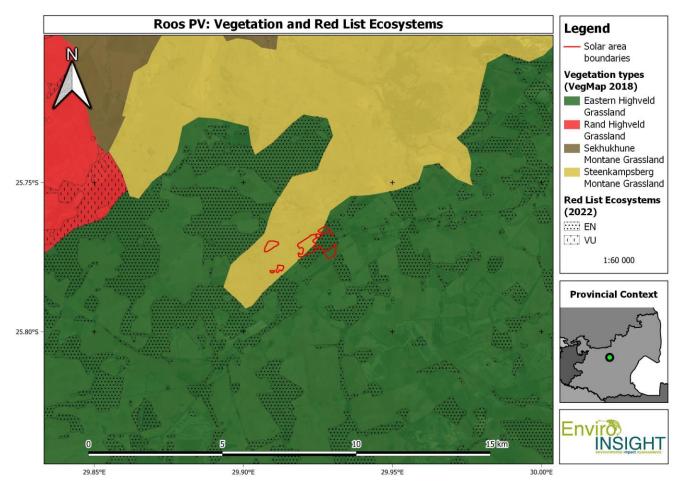


Figure 4-1: The proposed Roos Energy Facility Cluster (SEF boundary) in relation to major vegetation types (SANBI, 2018) and aquatic habitats.

Eastern Highveld Grassland (Gm12)

National land cover data show that Eastern Highveld Grassland has experienced extensive spatial declines of approximately 70% since 1750. It accordingly has a threat status of Endangered and A3 listing criterion based on the 2021 Revised National List of Ecosystems that are Threatened or in need of Protection.

<u>Distribution</u>: The Eastern Highveld Grassland is recorded on the plains between Belfast in the east and the eastern side of Johannesburg in the west, extending southwards to Bethal, Ermelo and west of Piet Retief within the Mpumalanga and Gauteng Provinces of South Africa (Mucina & Rutherford; 2006). The altitude varies between 1 520 and 1 780m, but also as low as 1 300m.

<u>Vegetation & Landscape features</u>: The Eastern Highveld Grassland is found on slightly to moderately undulating plains, including some low hills and pan depressions and consist of short, dense grassland, dominated by the usual Highveld grass composition (*Aristida, Digitaria, Eragrostis, Themeda, Tristachya*, etc.) with small, scattered rocky outcrops with wiry, sour grasses and some woody species (Mucina & Rutherford; 2006). Woody species include *Senegalia caffra, Celtis africana, Diospyros lycioides subsp. lycioides, Parinari capensis, Protea caffra and Searsia magalismontana.*

<u>Geology & Soils</u>: The area is characterised by red to yellow sandy soils of Ba and Bb land types found on shales and sandstones of Madzaringwe formation (Karoo Super group), which are prominent throughout the *Eastern Highveld Grassland* (Mucina & Rutherford, 2006).

The soils of this Eastern Highveld Grassland consist of yellow sandy soils of the Ba (30%) and Bb (65%) land types found on shale and sandstone of the Karroo Supergroup.

<u>Climate</u>: Eastern Highveld Grassland is characterised by strongly seasonal summer rainfall, with very dry winters. The Mean Annual Precipitation (MAP) is between 650-900 mm (overall average: 726 mm), MAP is relatively uniform across most of this unit, but increases significantly in the extreme southeast. The coefficient of variation in MAP is 25% across most of the unit, but drops to 21% in the east and southeast. Incidences of frost form (13-42 days) have been recorded, but increase at higher elevations (Mucina & Rutherford, 2006).

The Mean Annual Soil Moisture Stress (MASMS) value for the region is 73%. These values, when compared to the MAT and MAPE averages of 14.7°C and 1,926mm, respectively, show the region to be a relatively water-stressed area. Conservation of surface (and ground) water resources is therefore imperative to biodiversity conservation within the region.

<u>Conservation</u>: The Eastern Highveld grassland is classified as an endangered vegetation type (Rouget et al., 2004; Mucina & Rutherford, 2012, Ferrar & Lötter, 2007) due to mining activities within the provinces, with a conservation target of 24% (NSBA, 2018). Approximately 44% of the Gm12 has been transformed, primarily by cultivation, plantations, mining, urbanization and building of dams (Mucina & Rutherford; 2006). Erosion is very low, and no serious alien infestation is reported, although species such as *Acacia mearnsii* can become dominant in disturbed places.

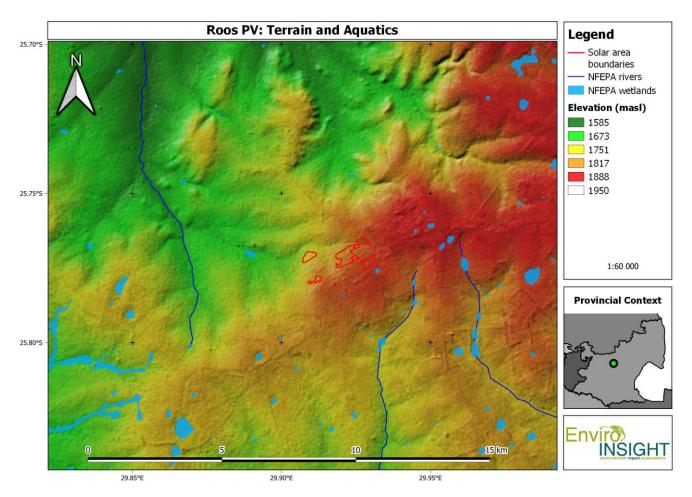


Figure 4-2: The proposed Roos SEF in relation to the terrain elevation and aquatic habitats.

4.2 PROTECTED AREAS AND IMPORTANT BIRD AREAS

4.3 THE PROTECTED AREAS AND IMPORTANT BIRD AREAS

The proposed Roos SEF is not located in an Important Bird Area (IBA) or protected area but borders the expansive Steenkampsberg IBA. There are many protected areas located within 30 km of the Roos project areas, including the Cecilia Private Nature Reserve, Nooitgedacht Dam Nature Reserve, Greater Lakenvlei Protected Environment, Middelpunt Nature Reserve, Langkloof Private Nature Reserve, Ermelo Private Nature Reserve, and Nederwelt Private Nature Reserve.

- The Steenkampsberg IBA encompasses 87 private farms within the Dullstroom and Belfast region. The Middelpunt Nature Reserve, Langkloof Private Nature Reserve, Greater Lakenvlei Protected Environment, and Cecilia Private Nature Reserve all fall within the IBA. The IBA is located on the central South African plateau which primarily consists of high-altitude grassland and rocky outcrops (1,700 2,100 m). There are two important wetland systems which include Lakensvleispruit and Verloren Valei. The critically important Middelpunt portion of Lakensvleispruit is dominated by *Phragmites* reed on permanently saturated ground. Verloren Valei consists largely of scattered wetlands characterised by short sedges, forbs and grasses. Outside of the wetlands, the IBA consists of sandy highveld grassland and mountain grassland. These habitats hold a variety of endemic forbs and ferns. The wetlands in the IBA are one of the world's few breeding grounds for the Critically Endangered White-winged Flufftail, while several breeding pairs of the Critically Endangered Wattled Crane are also present in the grasslands. As a result, this IBA is considered as critically important and severely threatened (BirdLife International, 2023).
- The Steenkampsberg IBA, as well as the surrounding protected areas (Nooitgedacht Dam Nature Reserve, Ermelo Private Nature Reserve, and Nederwelt Private Nature Reserve encompassing similar habitats), have recorded (or are likely to have) numerous SCCs. These notably include Striped Flufftail (VU), White-winged Flufftail (CR), Wattled Crane (CR), Blue Crane (NT), Southern Bald Ibis (VU), Ground Woodpecker (LC), Lesser Kestrel (VU), Rudd's Lark (EN), Buff-streaked Chat (LC), Gurney's Sugarbird (LC), Yellow-breasted Pipit (VU).

IBA conservation status assessments carried out in 2013 identified multiple ongoing threats to the Steenkampsberg IBA and surrounds. These threats included:

- Agricultural expansion: from timber crops, livestock ranching and aquaculture resulting in the afforestation of natural grasslands and wetlands, and human encroachment.
- Energy production and mining: oil and gas drilling, mining, quarrying, and power production, resulting in air, water, light and noise pollution, destruction of habitat, and human encroachment.
- Human intrusions and disturbance: both recreational and work-related activities such as fishing, solid waste removal, sewerage, development of dams and deliberate fire creations or suppressions, and above-mentioned activities, resulting in the depletion of natural habitats, SCC food sources, and breeding opportunities.
- Residential and commercial development: housing, tourism, roads and railways, resulting in the destruction of natural habitat and displacement of SCCs.

The location of the IBAs in relation to the PA is shown in Figure 4-3.

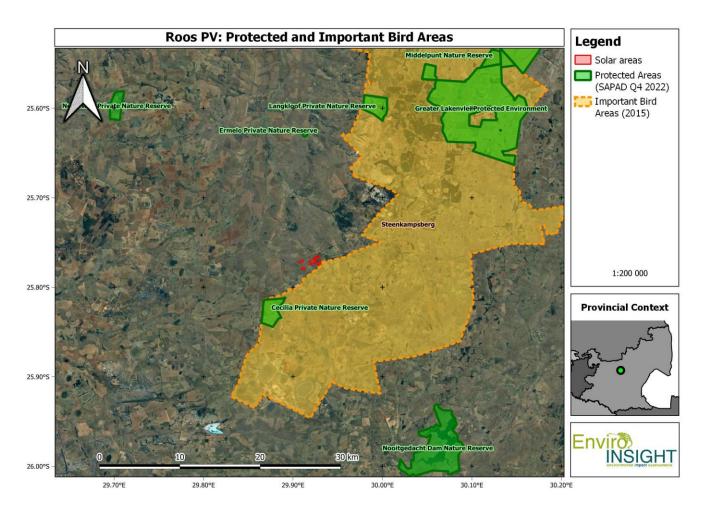


Figure 4-3: The proposed Roos SEF in relation to the adjacent Protected Areas and Important Bird Areas (IBAs).

4.4 CRITICAL BIODIVERSITY AREAS (CBA)

The following CBA information has been extracted and mapped Verbatim from the Enviro-Insight Terrestrial Biodiversity survey conducted as part of the application process.

CBA's and ESA's are terrestrial and aquatic features in the landscape that are critical for retaining biodiversity and supporting continued ecosystem functioning and services. The primary purpose of CBA's is to inform land-use planning in order to promote sustainable development and protection of important natural habitat and landscapes. Biodiversity priority areas are described as follows:

- CBA's are areas of the landscape that need to be maintained in a natural or near-natural state in order to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. In other words, if these areas are not maintained in a natural or near-natural state then biodiversity conservation targets cannot be met. Maintaining an area in a natural state can include a variety of biodiversity-compatible land uses and resource uses. For CBA's the impact on biodiversity of a change in land-use that results in a change from the desired ecological state is most significant locally at the point of impact through the direct loss of a biodiversity feature (e.g. loss of a populations or habitat). All FEPA prioritized wetlands and rivers have a minimum category of CBA1, while all FEPA prioritised wetland clusters have a minimum category of CBA2.
- ESA's are areas that are not essential for meeting biodiversity representation targets/thresholds but which
 nevertheless play an important role in supporting the ecological functioning of critical biodiversity areas and/or in
 delivering ecosystem services that support socio-economic development, such as water provision, flood mitigation or
 carbon sequestration. The degree of restriction on land use and resource use in these areas may be lower than that
 recommended for critical biodiversity areas. For ESA's a change from the desired ecological state is most significant
 elsewhere in the landscape through the indirect loss of biodiversity due to a breakdown, interruption or loss of an
 ecological process pathway (e.g., removing a corridor result in a population going extinct elsewhere). All natural nonFEPA wetlands and larger rivers have a minimum category of ESA.

A map of the study area in relation to the 2014 Mpumalanga CBA's is presented in Figure 4-4 indicating that the study area is located primarily in CBA Optimal, Other Natural Areas, Heavily Modified, and a small section in CBA Irreplaceable and Moderately Modified. Areas of high biodiversity value including CBA Irreplaceable and Optimal should be avoided as far as possible concerning transformation of land cover.

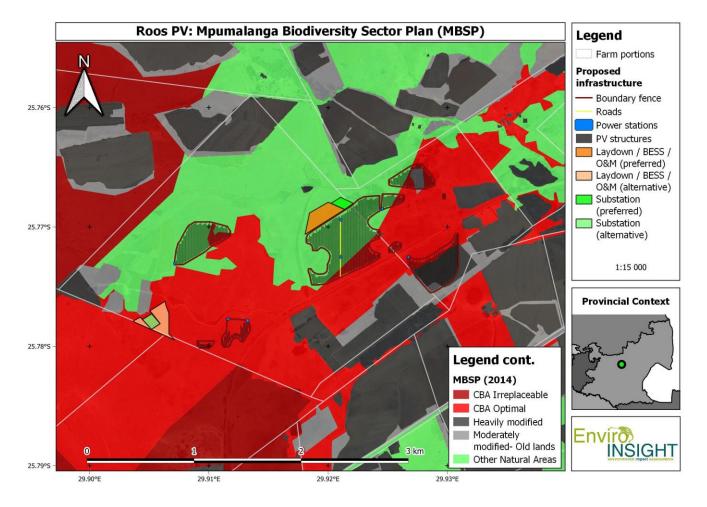


Figure 4-4: The proposed Roos SEF in relation to the Mpumalanga Critical Biodiversity Areas (2014).

4.5 DESCRIPTION OF MAJOR BIRD HABITATS

The primary avifaunal habitats are described in tabular formats below with accompanying representative photographs. It must be noted that the habitats have been delineated (Figure 4-5 and Figure 4-6) in accordance with the ecology of the prevailing avifaunal assemblages which may merge botanically divergent habitats and subsequently converted to sensitivity mapping. *In situ* habitat delineation can be viewed in the accompanying terrestrial ecology report while the designated avifaunal habitat sizes are shown as Table 4-1. The sensitivity of these habitat types was evaluated according to "avifaunal value" which relates to species diversity, endemism and the presence of topographical features or primary habitat units with the intrinsic ability to sustain certain avifaunal assemblages (with specific reference to SCC), their food supply and breeding habits, with specific relation to solar energy infrastructure and activities. It is apparent throughout the PA that most of the habitats are capable of supporting a wide range of general avifaunal species and Red-Listed / SCC although some habitats are more generic in nature and therefore the presence/ absence of SCC is less easily predicted. Due to the high diversity and density of the below-mentioned SCC recorded during the survey, (including regionally and globally listed Endangered and Vulnerable birds), the PAOI as a whole is an area of avifaunal importance, and the impact assessment that follows prioritises avoidance mitigation and the monitoring of avifaunal SCC.

Habitat	Sensitivity	SEI	Area (ha)	Proportion	Percentage
Wetland	High	Very High	12.81	0.06	5.80
Disturbed habitat	Medium	Low	56.04	0.25	25.38
Natural grassland Cropland	High Medium	Very High Low	128.57 13.76	0.58 0.06	58.22 6.23
Alien trees Dam	Low High	Very Low Medium	9.56 0.08	0.04 0.00	4.33 0.04

Table 4-1: Avifaunal Habitats and Area within the	proposed Roos SEF.

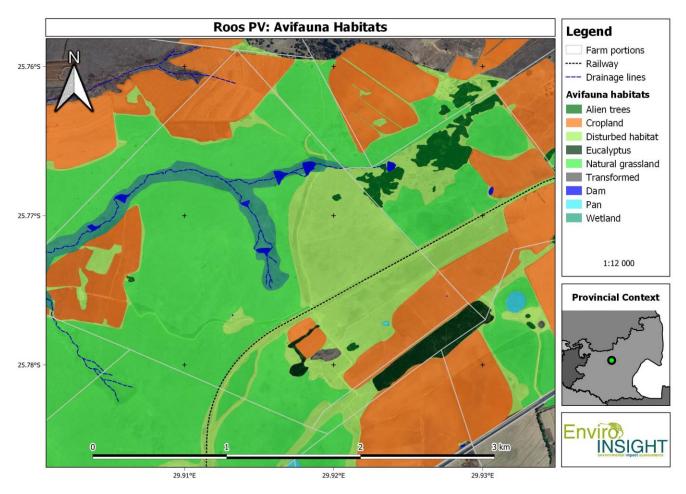


Figure 4-5: Avifaunal Habitats for Roos SEF

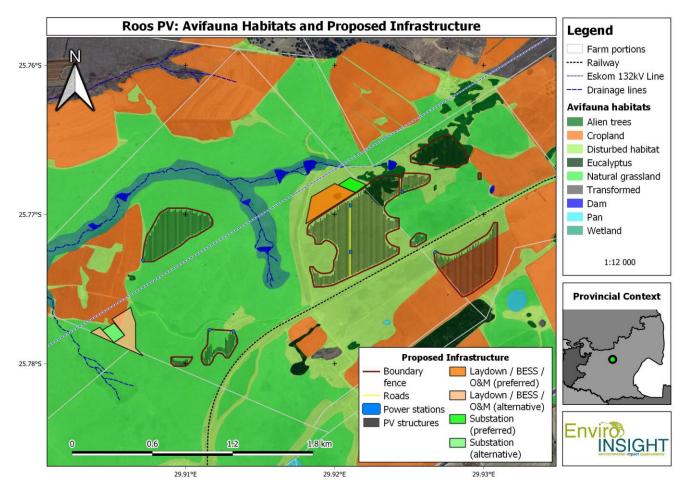


Figure 4-6: Avifaunal Habitats for the Roos SEF with Infrastructure Overlay.

4.5.1 Aquatic Features

Envirð) INSIGHT

Description

Classification: Ephemeral and endorheic drainage lines and impoundments

Hydrology: With avoidance, limited major hydrological impacts are expected from the development.

Geomorphology: Channels varying in width and depth from large multichannelled vegetated gullies to shallow narrow channels with seasonally inundated pans with large surface areas and permanent waterbodies.

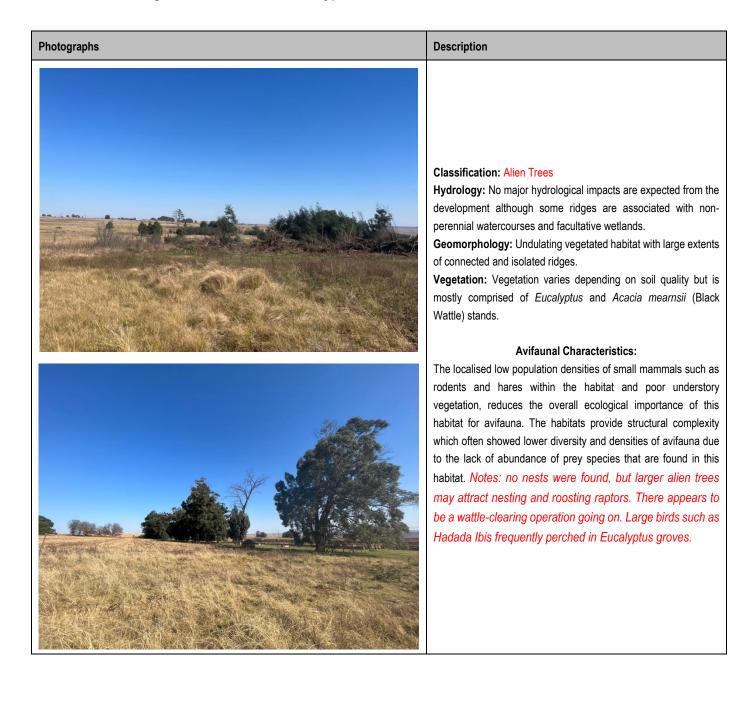
Vegetation: Vegetation varies depending on current levels of disturbance (especially livestock impacts and biosphere effects around pans), channel width and depth, where larger deep-rooted grasslands and larger channels with lower reed layers characterising smaller drainage line systems.

Avifaunal Characteristics:

Avifaunal assemblages differed depending on the classification of the impoundments and drainage line systems as well as the season. Most of the drainage line systems are seasonally ephemeral or permanent while the impoundments are mostly permanently inundated. Thus, most of the bird associations are linked to the prevailing vegetation and soil types within the delineated drainage line habitats or standing water. In summary, drainage lines with vegetative layers showed a much higher diversity of avifauna. SCC such as Cranes and Marsh Harriers can occur in varying but potentially great densities depending on the prevailing ecological conditions.

The seasonal drainage lines and accompanying riparian shrubs act as linear dispersal corridors for terrestrial bird species. Much greater species diversity (as well as a unique composition) was observed in this habitat and therefore, these systems are classified to be of high avifaunal importance. The drainage lines, especially in association with ridges act as important flight corridors for cranes, passerines and raptors between foraging and roosting sites.

Notes: drainage may permanently be wet. They attract passerines such as widowbirds, bishops, waxbills and weavers, especially where these drainage lines run adjacent to crops. Ephemeral grasses run the risk of attracting breeding cranes and African Grass Owl (also Marsh Owl). The impoundments attracted typical large water-associated species, such as Egyptian Goose, Yellow-billed duck, Reed Cormorant, and Grey Heron.


Photographs	Description
	The pan east of site had a Yellow-billed Egret foraging during the second
	season.

4.5.1 Natural Grassland

Photographs	Description
	Classification: Natural grassland Hydrology: No major hydrological impacts are expected from the development Geomorphology: Undulating primary grassland habitat with large extents of flat terrain merging into wetlands. Vegetation: Vegetation varies depending on soil quality but is mostly comprised of grassland interspersed with shrub and forb patches Avifaunal Characteristics: These habitats exhibit high population density of reptiles, small mammals and ground birds, hares and korhaans which provide a sound prey base for larger at-risk priority bird species. Within the PAOI as well as the regional linkage to the drainage line habitats. Natural grassland habitats provide structural complexity allowing for a higher species diversity and often showed higher densities of avifauna due to the aforementioned abundance of specific prey species that are found within.
	The natural grassland habitats show an increased structural complexity and vegetation which provides for a more specific species diversity albeit often at high densities of individuals. <i>Notes: grassland appears to be subject to burning. All SCCs and raptors observed utilised grassland during seasonal observations. Other ground-dwelling species such as Cranes, Francolins, and White-bellied Bustards are likely to occur here. When burnt, areas attract greater pipit and lark numbers.</i>

4.5.2 Alien Vegetation: Wattles and Eucalyptus Groves

4.5.3 Agricultural Activities: Cropland and Disturbed Grassland

Photographs	Description
	 Classification: Maize crops and overgrazed grassland Hydrology: No major hydrological impacts are expected from the development although some ridges are associated with non-perennial watercourses and facultative wetlands. Geomorphology: Undulating habitat with large extents of connected and isolated crop stands. Vegetation: Vegetation varies depending on soil quality but is mostly comprised of crops (mostly maize) interspersed with grassy patches
	Avifaunal Characteristics: The localised high population densities of small mammals such as rodents, within the habitat type as well as the local linkage to the grassland habitats, elevates the overall ecological importance of this habitat for avifauna. The crop provide structural complexity which often showed lower diversity but high densities of avifauna due to the abundance of forage and prey species that are found in this habitat. Notes: croplands were frequented by large birds such as Helmeted Guineafowl, Red-winged Francolin, Swainson's Spurfowl, and Crowned Lapwing. Smaller birds included widowbirds, whydahs, weavers and waxbills (unique species being Orange-breasted Waxbill). Where ploughed, areas attracted larks and foraging spurfowls. Overgrazed areas as a result of cattle grazing attracted Ant-eating Chats, Capped Wheatears, African Pipit, Red-capped Lark, African Stonechat, Cape Longclaw, and many Black-winged Kites. The photograph of the hay bales has been added to show that grass may be harvested.

4.5.4 Powerline and Railway Infrastructure

Photographs	Description
	Classification: Powerline and Railway Infrastructure Hydrology: No major hydrological impacts are expected from the development Geomorphology: The large powerline pylons have been placed on undulating vegetated habitat with large extents of flat terrain. Vegetation: Vegetation varies depending on soil quality but is mostly comprised of grassland and alien shrub.
	Avifaunal Characteristics: The Powerlines have proven to be important habitat for large raptors, especially Martial Eagle and Snake Eagles, which nest frequently on the powerline pylon infrastructure and utilise the pylons to launch hunts from.
	Powerline Notes: the powerline running through the site had no evidence of nests, but the pylons and lines were utilised by perching Black-winged Kites. Powerlines permanently run the risk of collisions with larger birds, such as Cape Vulture, various eagles, cranes, bustards and Secretarybird. No carcasses were found during walks underneath sections of the powerlines.
	Railway Notes: the railway running through the site appears to attract raptors, as the rocky banks have been occupied by Rock Hyrax colonies, and likely attract reptiles. The railways was frequented by Martial Eagle during the winter visit (not common in the area) and Verreaux's Eagle (certainly not common) specifically targeting hyrax. Snake Eagles were also observed foraging along the railway, presumably for basking reptiles.

4.5.5 Rocky Hillsides

Photographs	Description
	Classification: Rocky Hillsides Hydrology: No major hydrological impacts are expected from the development Geomorphology: The large powerline pylons have been placed on undulating vegetated habitat with large extents of flat terrain. Vegetation: Vegetation varies depending on soil quality but is mostly comprised of sandy grassland and rocky shrub.
	Avifaunal Characteristics: The Rocky Hillsides have proven to be important habitat for large raptors, especially Martial Eagle and White-backed Vultures, which hunt frequently within the habitat.
	Notes: This refers to the northern hillside on the property containing natural grassland, acacias and scattered rocks. Not sure if this would be a classification. Certainly not worth being called a koppie or ridge. The area attracted many passerines flying between the area and the adjacent drainage line. Francolins were observed, as well as hunting raptors (African Harrier-Hawk, Black-winged Kite, Brown Snake Eagle, etc.). Due to its close proximity to the drainage line, the acacias and similar thorny shrubs on the hill may attract nesting Secretarybirds. No nests were found during the two site visits.

4.6 OBSERVED AND EXPECTED AVIFAUNA

4.6.1 Total species composition and abundance

The PA supports a medium to high diversity and abundance of avifauna, which is to be expected in an area with a high habitat diversity such as the Mpumalanga Highveld Grassland region. A total of 81 species were observed during the surveys, as shown in Appendix 1. This medium to high diversity is predominantly due to a number of factors including:

- High seasonal aridity which shows a high temporal variability (turnover) in species diversity between seasons;
- Diverse habitat types (with some highly sensitive habitat such as drainage lines and temporary pans within the PAOI);
- Powerline infrastructure bisecting the PA (raptor nesting habitat).

4.6.2 Priority species

A total of 15 priority species are expected to occur on and surrounding the PA, of which five (5) were recorded during the surveys (including four SCC). It is clear from

Table 4-2: Priority avifauna species list for the Project Area of Influence (PAOI)

that numerous priority avifauna species occur within the PAOI and can be expected to interact with the proposed development. It is vital to consider the context within which these species were observed in the current study, as congregatory behaviour, nesting behaviour and foraging behaviour may differ from that at the PAOI habitats as opposed to the PA. In addition, Van Rooyen (2020) suggests that displacement effects of a WEF/ SEF can be more significant than direct fatality for certain species, especially for habitat specific species such as water associates (Marsh Harrier) and powerline nesting species such as Martial Eagle. Consequently, all applicable data of Priority Species observed across monitoring seasons allowed for careful evaluation of potential impacts and application of suitable mitigation measures to reduce these impacts where possible. According to the literature, 14 IUCN threatened, and near-threatened species are known to occur in the region with four species highly likely and four species confirmed during the completed surveys (Table 4-3), representing a low success rate given the study period. All relevant SCC are described in brief (Table 4-3). A number of selected relevant species that are possibly susceptible to the proposed development were discussed below in greater detail, which include specific (Guideline-based) recommendations for monitoring and mitigation. Photographic evidence of SCC and Priority Species observed during the current study is provided in Figure 4-7 and Figure 4-8.

			Conservation Status		
	Scientific Name	Common Name	Regional	IUCN	
Predicted	Aquila rapax	Tawny Eagle	EN	VU	
Recorded	Polemaetus bellicosus	Martial Eagle	EN	EN	
Known	Balearica regulorum	Grey Crowned Crane	EN	EN	
Known	Eupodotis senegalensis	White-bellied Bustard	VU	LC	
Known	Falco biarmicus	Lanner Falcon	VU	LC	
Recorded	Geronticus calvus	Bald Ibis	VU	VU	
Predicted	Neotis denhami	Denham's Bustard	VU	NT	
Recorded	Sagittarius serpentarius	Secretarybird	VU	EN	
Recorded	Circus ranivorus	African Marsh Harrier	EN	LC	
Recorded	Circonia circonia	White Stork	LC	LC	
Predicted	Ciconia nigra	Black Stork	VU	LC	
Predicted	Phoenicopterus roseus	Greater Flamingo	LC	LC	
Predicted	Phoeniconaias minor	Lesser Flamingo	NT	LC	
Predicted	Mycteria ibis	Yellow-billed Stork	EN	LC	
Predicted	Gyps coprotheres	Cape Vulture	EN	EN	

Table 4-2: Priority avifauna species list for the Project Area of Influence (PAOI)

Figure 4-7: SCC Martial Eagles and Secretarybirds observed within the proposed Roos SEF PAOI.

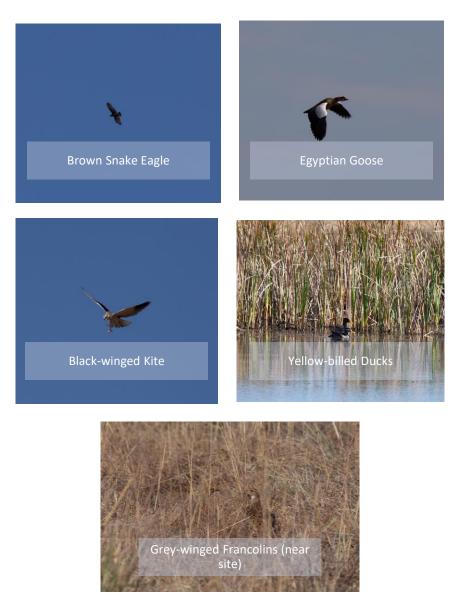


Figure 4-8: Other priority species observed within the proposed Roos SEF PAOI.

Table 4-3: Summary of avifauna species of conservation concern of known distribution (SABAP2, 2021), previously recorded in or adjacent to the Project Area.

Species	Global Conservation Status[1]	National Conservation Status[2]	Preferred Habitat	Potential likelihood of occurrence on study area and potential risk from the proposed De Rust SEF
Geronticus calvus (Southern Bald Ibis)	Vulnerable	Vulnerable	Grassland habitats, cliffs, livestock agricultural areas (due to foraging in dung)	Confirmed : Low densities throughout the region and not locally common in the PA The species is a breeding resident within or adjacent to the PA. A localised low flying large species, it is susceptible to SEF development activities due to its low foraging flights.
Aquila verreauxii (Verreaux's' Eagle)	Vulnerable	Vulnerable	Mountainous areas or areas with prominent outcrops with a high prey density (e.g. hyrax).	Confirmed, sighted flying above PA: Frequent foraging resident throughout the PAOI but far less frequent within the PAs due to the large distances to the preferred mountainous habitats and a general lack of localised abundant prey. However, localised areas exhibiting high abundance of hyraxes and rock rabbits, such as the railway lines, should be considered as potential foraging habitat for this species. The species is susceptible to poisoning events and SEF facilities, with a low risk from the proposed activities.

Polemaetus bellicosus (Martial Eagle)	Endangered	Endangered	Grasslands, open bushveld, desert savannah and karoo with adequate roosting and foraging potential.	Confirmed: A breeding resident adjacent to the PA and regular foraging visitor dependent on adequate food supply and roosts. No breeding pair nesting within the proposed SEF PA was recorded, but frequent sightings in terms of foraging activity on the PA, with breeding taking place within the PAOI. At the end of the survey period, one of the resident eagles was killed and a new pair of young eagles have moved into the greater PAOI and may colonise areas in association with the adjacent powerline infrastructure. Typically, the species is at a Moderate to High risk from SEF developments.
Falco biarmicus(Lanner Falcon)	-	Vulnerable	Varied, but prefers to breed in mountainous areas.	Moderate: A fairly common foraging and breeding resident recorded in the current study and expected periodically to breed in the PA. Not highly vulnerable to the proposed SEF activities.
Neotis denhami(Denham's Bustard)	Near Threatened	Near Threatened	Primary upland grassland, desert savannah and karoo with foraging and roosting particularly on rocky/ hilly terrain.	Moderate: Low densities throughout the PAOI and unconfirmed on the PA. The species is unlikely to be a breeding resident within or adjacent to the PA. A large bodied species, it is highly susceptible to indirect SEF development activities as shown by collision fatalities with the existing powerlines in the region.

Sagittarius serpentarius (Secretarybird)	Endangered	Vulnerable	Prefers open grassland or lightly wooded habitat although forages extensively in open karroid savannah.	Confirmed: Irregular low-density resident which is most likely at lower risk from the proposed development activities given its ground foraging habitats. Very limited nesting opportunities in the PA further reduces potential risk to this species from the proposed SEF.
Eupodotis senegalensis (White- bellied Korhaan)	Near threatened	Near threatened	Large patches of taller grassland	Highly Likely: Common resident occurring near areas with tall grasslands. drainage lines (including ephemeral) and open areas. Individually susceptible to SEF development activities but as a species is considered at low risk.
Eupodotis caerulescens (Blue Korhaan)	Near threatened	Near threatened	Large patches of taller grassland	Highly Likely: Common resident in the PAOI without being confirmed in the PA occurring near areas with drainage lines (including ephemeral) and open areas. Individually susceptible to SEF development activities but as a species is considered at low risk.
Ciconia nigra (Black Stork)	Least Concern	Vulnerable	Widespread species prefers open grassland or lightly wooded habitat although forages extensively in open grasslands and savannah.	Highly likely intermittent foraging resident: Common resident occurring near areas with drainage lines (including ephemeral) and open areas. Individually susceptible to SEF development activities but as a species is considered at low risk.

Mycteria ibis (Yellow-billed Stork)	Least Concern	Endangered	Savanna river associated species	Unlikely: Highly uncommon species for the PAOI resident occurring near areas with drainage lines (including ephemeral) and open areas. Individually susceptible to SEF development activities but as a species is considered at low risk.
Phoenicopterus roseus (Greater Flamingo)	Least Concern	Near threatened	Grassland habitats, large saline pans and shallow impoundments.	Unlikely: Common resident in the PAOI (not occurring in the PA) occurring near areas with drainage lines (including ephemeral) and open areas. Individually susceptible to SEF development activities but as a species is considered at low risk.
Phoeniconaias minor Lesser Flamingo	Near threatened	Near threatened	Grassland habitats, large saline pans and shallow impoundments.	Unlikely: Common resident in the PAOI (not occurring in the PA) occurring near areas with drainage lines (including ephemeral) and open areas. Individually susceptible to SEF development activities but as a species is considered at low risk.
Gyps coprotheres (Cape Vulture)	Endangered	Endangered	Cliff nesting widespread foraging species	Unlikely : Low densities throughout the region and locally uncommon in the PA The species is a non breeding resident within or adjacent to the PA. It may forage within the PAOI but with no breeding habitat (large cliffs) within 30 km, the species is not considered to be at risk from the SEF development.

1[1] IUCN 2022 1[2] Taylor et al. 2015

53

4.6.3 Nest Survey

Nest sites were searched for during the surveys on all suitable sites which included windmills, trees, pylons, bridges and masts, representing the most potential roost and nesting sites for raptors. Alien species tree stands, water bodies and drainage lines showed potential for roost and nesting sites for multiple species. During the survey and above average rainfall conditions was representative of optimal breeding habitat for water associated species. Power line pylons were examined for raptor nesting sites to be discussed for Martial Eagles below.

4.7 PRECONSTRUCTION MONITORING MAIN RESULTS

4.7.1 Walked and Driven Transect Counts

During the walked transects, the total number of individual birds (per species) were recorded regardless of their priority status. Notable Priority Species recorded during walked transects included Southern Bald Ibis, Black-chested Snake Eagle, Various Heron and Lapwing Species and Verreaux's Eagle. The main focus of drive transects were the recording of large birds and raptors. White Storks, various egret species, Grey, Black-headed and Purple Herons as well as Egyptian Goose.

For the walked transects, a total of 463 individual bird contacts were recorded of which 71 individuals were priority and 392 were nonpriority individuals. For driven transects, a total of 429 individual bird contacts were recorded of which 176 were priority and 253 were nonpriority. In total, 1653 (1203 nonpriority and 450 priority) contacts were made, including incidental contacts outside of the prescribed methodology.

The summary data for priority species observations made from these transects are provided in **Error! Reference source not found.**. Detailed data for priority species observations made from these transects are provided in Table 4-5.

The combined priority and non-priority (1653 contacts over 9.1 km) calculated Index of Kilometric Abundance (IKA = birds/km) IKA is 181.6 birds/km which is relatively high and reflects the high abundance of synanthropic species occupying the forage rich habitats of the PAOI which can be affected through seasonal ecological changes caused by events such as drought or high rainfall events. It must again be stressed that although the IKA is considered high, when applied to Priority Species (49.4 IKA) or SCC (0.88 IKA), **the risk is considered to be low, especially in the context of a SEF.**

4.7.2 Focal Sites

The drainage line and primary grassland systems scattered throughout much of the PA contained a relatively high density (and higher diversity) of passerines and water associates. All pylon infrastructure warranted special attention regarding foraging and breeding of priority species. Due to the fact that focal sites yielded data related to SCC, they are discussed specifically under Species Specific Risk Analysis and Recommendations.

		Season			
English IOC Name	Scientific Name	Summer	Winter	Grand Total	
African Snipe	Gallinago nigripennis		1	1	
Common Moorhen	Gallinula chloropus	2		2	
Common Reed Warbler	Acrocephalus scirpaceus	8		8	
Common Sandpiper	Actitis hypoleucos	2		2	
Common Waxbill	Estrilda astrild	4	23	27	
Egyptian Goose	Alopochen aegyptiaca	9	6	15	
Grey Heron	Ardea cinerea	cinerea 5		5	
Intermediate Egret	Ardea intermedia		1	1	
Levaillant's Cisticola	Cisticola tinniens		14	14	
Little Egret	Egretta garzetta	1		1	
Purple Heron	Ardea purpurea	1		1	
Red-collared Widowbird	Euplectes ardens	4		4	
Reed Cormorant	Microcarbo africanus	4	1	5	
Southern Red Bishop	Euplectes orix	81	126	207	
White-backed Duck	Thalassornis leuconotus	4		4	
Yellow-billed Duck	Anas undulata		5	5	
Yellow-crowned Bishop	Euplectes afer	1	1	2	
Zitting Cisticola	Cisticola juncidis	14	1	15	
Grand Total	18	140	179	319	

Table 4-4: Per season priority species recorded during Walked Transects (WT)

4.7.3 Combined Species Summary

Using the prescribed methodology, priority species were recorded on 450 occasions divided into 39 species. The overwhelming majority of the species were not classified as SCC and were considered to be common associates within the habitats delineated in the PA. These species are highly fecund and endure (without population declines) normal anthropogenic impacts such as crop agriculture, livestock agriculture, human settlements, roads, railway lines and powerlines. The establishment of SEF infrastructure is unlikely to affect the population dynamics of these species.

There are however some SCC that were observed, albeit in lower densities (Table 4-6). Southern Bald Ibis were recorded on three occasions, Martial Eagles and Secretarybirds were recorded on two occasions each respectively with Verreaux's Eagle being recorded on a single occasion. Although these SCC are high profile and sensitive to WEF developments, they are less susceptible to SEF developments. In addition, the frequency of occurrence suggested transient foraging behaviour rather than breeding residents. The one possible concern was the numerous observations were recorded in association with the existing pylon infrastructure, especially given the potential for colonisation and nest establishment by priority species (especially raptors). Given the absence of an active nest within the PA, most priority species are considered to be a low density (foraging flights only) and the species is of lesser concern than for other developments in close proximity to an active nest. The sensitivity implications are discussed in detail within the sections below.

Somewhat surprisingly from an ecological point of view, the winter survey yielded a higher density count than the summer survey. However, this may be explained by the prevailing level of disturbance within the PA which sees a higher concentration of anthropogenic passerines around water points and agricultural feed points. Once again, this seems to suggest a prevailing resilience among the avifaunal assemblages in the PA.

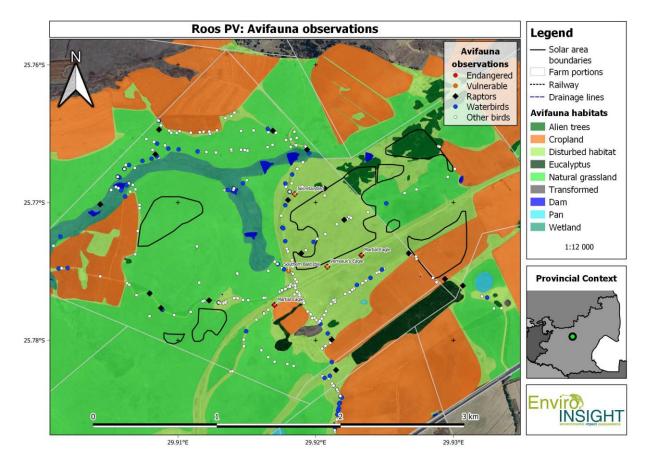


Figure 4-9: Locations of all avifaunal observations within the Roos

Table 4-5: Per season priority species recorded during Drive Transects (DT) and Walked Transects (WT).

			Drive Transects		١	Walk Transects			Incidenta		
									Incidental	Incidental	
Season	English IOC Name	Scientific Name	DT1	DT2	WT1	WT2	WT3	WT4	(SEF)	(Greater)	Total
	Black-chested Snake Eagle	Circaetus pectoralis		1		1					2
	Black-winged Kite	Elanus caeruleus			1				1	1	3
	Common Buzzard	Buteo buteo							1		1
	Common Moorhen	Gallinula chloropus							2		2
	Common Reed Warbler	Acrocephalus scirpaceus		4	2				2		8
	Common Sandpiper	Actitis hypoleucos							2		2
	Common Waxbill	Estrilda astrild							4		4
	Crowned Lapwing	Vanellus coronatus					4				4
Cummer or	Egyptian Goose	Alopochen aegyptiaca	5							4	9
Summer	Grey Heron	Ardea cinerea	2		1		1	1			5
	Jackal Buzzard	Buteo rufofuscus				1					1
	Little Egret	Egretta garzetta			1						1
	Long-crested Eagle	Lophaetus occipitalis							1		1
	Purple Heron	Ardea purpurea	1								1
	Red-collared Widowbird	Euplectes ardens			2				2		4
	Reed Cormorant	Microcarbo africanus			1				3		4
	Southern Bald Ibis	Geronticus calvus					3				3
	Southern Red Bishop	Euplectes orix	70		11						81

Mobile: Sam - 072 437 1742 Mobile: Luke - 083 784 1997 Email: info@enviro-insight.co.za Website: www.enviro-insight.co.za

	Spotted Thick-knee	Burhinus capensis					2				2
	White Stork	Ciconia ciconia	8								8
	White-backed Duck	Ciconia ciconia8Thalassornis leuconotusEuplectes aferCisticola juncidis223887Polyboroides typusGallinago nigripennisArdea melanocephala1Elanus caeruleus2Circaetus cinereus1Estrilda astrild1Vanellus coronatus2Alopochen aegyptiaca2Numida meleagris1Ardea intermedia1Cisticola tinniens1Corvus albus1Streptopelia1						2	2	4	
	Yellow-crowned Bishop	Euplectes afer			1						1
	Zitting Cisticola	Cisticola juncidis	2	2	2	1	2		5		14
	Summer Total	23	88	7	22	3	12	1	25	7	16
	African Harrier-Hawk	Polyboroides typus							2		2
	African Snipe	Gallinago nigripennis							1		1
	Black-headed Heron	Ardea melanocephala		1					1		2
	Black-winged Kite	Elanus caeruleus	2						11		13
	Brown Snake Eagle	Circaetus cinereus							1		1
	Common Waxbill	Estrilda astrild	1		8				14		23
	Crowned Lapwing	Vanellus coronatus							9		9
	Egyptian Goose	Alopochen aegyptiaca		2					4		6
Winter	Helmeted Guineafowl	Numida meleagris							6		6
	Intermediate Egret	Ardea intermedia							1		1
	Levaillant's Cisticola	Cisticola tinniens	1	2	1				10		14
	Martial Eagle	Polemaetus bellicosus	1						1		2
	Pied Crow	Corvus albus							2		2
		Streptopelia									
	Red-eyed Dove	semitorquata	18						23		41
	Red-winged Francolin	Scleroptila levaillantii		2	2				2		6
	Reed Cormorant	Microcarbo africanus							1		1

Grand Total	39	172	14	34	4	12	21	186	7	450
Winter Total	24	84	7	12	1		20	161		285
Zitting Cisticola	Cisticola juncidis							1		1
Yellow-crowned Bishop	Euplectes afer							1		1
Yellow-billed Duck	Anas undulata							5		5
Verreaux's Eagle	Aquila verreauxii				1					1
Swainson's Spurfowl	Pternistis swainsonii							3		3
Speckled Pigeon	Columba guinea	10					2	4		16
Southern Red Bishop	Euplectes orix	51		1			18	56		126
Secretarybird	Sagittarius serpentarius							2		2
	Southern Red Bishop Speckled Pigeon Swainson's Spurfowl Verreaux's Eagle Yellow-billed Duck Yellow-crowned Bishop Zitting Cisticola Winter Total	Southern Red BishopEuplectes orixSpeckled PigeonColumba guineaSwainson's SpurfowlPternistis swainsoniiVerreaux's EagleAquila verreauxiiYellow-billed DuckAnas undulataYellow-crowned BishopEuplectes aferZitting CisticolaCisticola juncidisWinter Total24	Southern Red BishopEuplectes orix51Speckled PigeonColumba guinea10Swainson's SpurfowlPternistis swainsonii10Verreaux's EagleAquila verreauxii10Yellow-billed DuckAnas undulata10Yellow-crowned BishopEuplectes afer10Zitting CisticolaCisticola juncidis10Winter Total2484	Southern Red BishopEuplectes orix51Speckled PigeonColumba guinea10Swainson's SpurfowlPternistis swainsonii10Verreaux's EagleAquila verreauxii10Yellow-billed DuckAnas undulata10Yellow-crowned BishopEuplectes afer10Zitting CisticolaCisticola juncidis10Winter Total24847	Southern Red BishopEuplectes orix511Speckled PigeonColumba guinea1010Swainson's SpurfowlPternistis swainsonii1010Verreaux's EagleAquila verreauxii110Yellow-billed DuckAnas undulata1010Yellow-crowned BishopEuplectes afer110Zitting CisticolaCisticola juncidis1010Winter Total2484712	Southern Red BishopEuplectes orix511Speckled PigeonColumba guinea101010Swainson's SpurfowlPternistis swainsonii101Verreaux's EagleAquila verreauxii11Yellow-billed DuckAnas undulata11Yellow-crowned BishopEuplectes afer11Zitting CisticolaCisticola juncidis11	Southern Red BishopEuplectes orix511Speckled PigeonColumba guinea10Swainson's SpurfowlPternistis swainsoniiVerreaux's EagleAquila verreauxii11Yellow-billed DuckAnas undulata1Yellow-crowned BishopEuplectes aferZitting CisticolaCisticola juncidis1Winter Total24847121	Southern Red BishopEuplectes orix51118Speckled PigeonColumba guinea102Swainson's SpurfowlPternistis swainsonii12Verreaux's EagleAquila verreauxii11Yellow-billed DuckAnas undulata11Yellow-crowned BishopEuplectes afer11Zitting CisticolaCisticola juncidis12Winter Total2484712120	Southern Red BishopEuplectes orix5111856Speckled PigeonColumba guinea1024Swainson's SpurfowlPternistis swainsonii33Verreaux's EagleAquila verreauxii15Yellow-billed DuckAnas undulata55Yellow-crowned BishopEuplectes afer11Zitting CisticolaCisticola juncidis11Winter Total2484712120161	Southern Red BishopEuplectes orix5111856Speckled PigeonColumba guinea1024Swainson's SpurfowlPternistis swainsonii33Verreaux's EagleAquila verreauxii15Yellow-billed DuckAnas undulata55Yellow-crowned BishopEuplectes afer1Zitting CisticolaCisticola juncidis1Winter Total2484712120161

		Season											
English IOC Name	Scientific Name	Summer	Winter	Grand Total									
Martial Eagle	Polemaetus bellicosus		2	2									
Secretarybird	Sagittarius serpentarius		2	2									
Southern Bald Ibis	Geronticus calvus	3		3									
Verreaux's Eagle	Aquila verreauxii		1	1									
	Grand Total	3	5	8									

Table 4-6: Species of Conservation Concern (SCC) recorded during the survey period.

4.8 AVIFAUNA SENSITIVITY

4.8.1 General

Delineated habitats and other important features for avifauna (e.g., powerline infrastructure) were evaluated in relation to the risk to priority species occurring in these habitats/features from the placement of SEF infrastructure (Figure 4-10). There is a presence of a number (mainly four) SCC and fifteen priority species in the PA (examples including Martial Eagle, Verreaux's Eagle, Secretarybird and Southern Bald Ibis), recorded and occurring relatively widespread through the proposed SEF area. In addition, there are several raptors utilising the PAOI, some of them priority species and/or of conservation concern, such as the Long-crested Eagle, Brown Snake Eagle, Black-chested Snake Eagle, Jackal Buzzard, African Harrier Hawk, Pale-chanting Goshawk and Black-winged Kite.

The placement of infrastructure on primary grasslands/ grassland ridges and near impoundments/ drainage lines, which are vital to maintaining populations of habitat obligate sensitive species would result usually in a high probability of displacement for such SCC. However, these species are fairly ubiquitous in the region with the exception of primary grassland species which is an extremely threatened biome within South Africa. Consequently, avoidance mitigation is required for such habitats when siting panels. A 50 m buffer was applied around these habitat features and must be considered NO-GO where no panels and associated infrastructure may be located. A 200 m buffer was also applied around seasonally inundated watercourses in the PAOI, as these features function as flyways and attract birds under certain conditions and could be the only locations were certain sensitive species such as ducks, herons, storks and water birds are likely to occur. The sensitivity analysis is representative of unmitigated infrastructure placement and buffered high sensitivity areas must be, where possible, avoided by the developer where no panels and associated infrastructure should be located (Figure 4-10).

Several of the proposed panel positions and associated infrastructure coincide with areas currently demarcated as High (not No Go) and Medium sensitive features and consequently were subjected to the mitigation hierarchy. The layout was carefully reevaluated in order to firstly avoid and secondly minimise negative interaction between SEF infrastructure and priority species. Finally, the presence of the Distribution line is a highly significant attractant for SCC and other priority species, with particular concern for the Martial Eagles which may establish nests within the powerline infrastructure. The presence of this species warrants detailed discussion below.

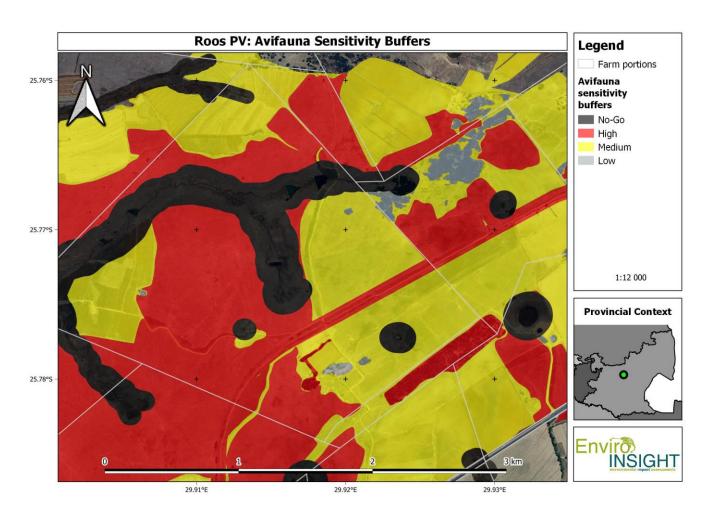


Figure 4-10: Avifauna Sensitivity Buffers with preferred solar infrastructure placement for the proposed Roos SEF.

4.8.2 Raptor (especially Martial Eagle) Nest Sites

Utilising the interpretations stipulated above and in the <u>absence</u> of any mitigation measures, a preliminary buffer of 1 km is recommended as an exclusion area around any known Martial Eagle, Secretarybird or Verreaux's Eagle nests. There is currently no species-specific guideline for the Martial Eagle, and buffer areas around nest sites remains a scientifically contentious topic of discussion in the industry without rigorous scientific studies providing necessary guidance (for example, Murgatroyd *et al.*, 2021). The only published recommended buffer to implement around eagle nests in South Africa is for the Verreaux's Eagle (Ralston-Paton, 2017), which dictates that a precautionary buffer of 3 km is recommended for wind farms and may be reduced or increased based on the results of rigorous avifaunal surveys, but nest buffers should never be less than 1.5 km.

A recent paper from Murgatroyd *et al.* (2021) indicated that by using predictive models to account for habitat use instead of simple buffers around a nest, a greater area of land can be made available for renewable energy development without increased fatality risk to raptors. Even though this is designed to be used more for WEFs, accordingly, this tool can be used to provide robust guidance on solar panel infrastructure placement in a way which minimises the conflict between raptor species and the

development of SEFs in South Africa as well as provide the basis for rigorous monitoring programs to be applied. It must be noted that the study species for this research was Verreaux's Eagle which was tracked at only four locations (not including the current habitat or region), and accordingly the interpretation of the results needs to be considered as species- and site-specific, even though the same principle can be extrapolated to other raptor species in various regions. The study recommended that nest buffers should never be <3.7 km radius, but also indicated that additional site-specific specialist input or mitigation methods might allow a limited amount of development for high-risk developments. Fortunately, no nests were confirmed to be present after the completion of the 6-month pre-construction monitoring (Figure 4-10). Any establishment of nests that arise during or post construction will be subject to mitigation measures referring to the above guidelines described as well as the mitigation measures characterised in the Impact Analysis below.

As a general rule, all nesting raptors should be protected within the study area. Seen frequently, Brown Snake Eagles, African Harrier Hawks, Black-winged kites, Jackal Buzzard and Long-crested Eagle are most likely classified as a breeding resident within the PA and a regular coloniser of powerline infrastructure and alien species (especially *Eucalyptus* stands). Local populations of large to medium raptors are under constant pressure from development due to modifications and alterations of their preferred foraging habitat and dispersal networks. It must be stated that although large raptors rely on more ecologically "generic" habitats and are not bound by the ridge systems that define the presence and foraging of Verreaux's Eagle and Cape Vultures, the presence of the distribution line as an attractant severely alters the current ecology due to its function as a nesting substrate, vantage point for hunting and infrastructure for roosting. Overall, the impacts of the development will be less severe than for SEFs, especially because nests were not located within the project area of influence.

Nest Specific Mitigations

Not relevant for the PA.

4.8.3 Secretarybirds

Secretarybirds are less predictable in their ecology and habits due to the fact that they are a low-density species although very widespread and with very generalist habitat requirements. The arrival of multiple individuals within the project footprint may represent the establishment of long-term residents although currently, no nesting behaviour or habitats have been observed. The primary impacts of a SEF relate to loss of foraging habitat and potential collision with new powerline infrastructure which requires detailed discussion.

Although the overall findings data reveal several risks in regard to the current study. Increased regional stress to obtain food as well as prevailing climate change will almost certainly modify the species' behaviour within the national population. Like with larger species such as Verreaux's Eagles, breeding adults become less successful in their reproductive success leading to increased post-hatchling mortalities (Anon 2012) and population stress. This is especially relevant in regard to the loss of habitat for the cumulative effects due to much reduced available prey as well as the increased disturbance levels. In regards to WEFs, proposed future development can likely threaten the long-term viability of Secretarybird populations due to the risk of collisions. However, the effect on populations by SEFs is less certain and are likely of lower significance.

Nest Specific Mitigations

Not relevant for the PA.

4.9 SITE ECOLOGICAL IMPORTANCE (SEI)

As described in the species protocol guidelines (SANBI 2020), Site Ecological Importance (SEI) is a "standardised metric for identifying site-based ecological importance for species, in relation to a proposed project with a specific footprint and suite of anticipated activities". SEI allows for rapid spatial inspection and evaluation of impacts of a proposed development within the context of on-site habitats and SCC, and also facilitates integration of inputs from different specialist studies. SEI depends on the careful spatial delineation of habitat types and an understanding of their utilisation by SCC. The evaluation of SEI is presented in Table 4-7 with the guidelines for interpreting SEI shown in Figure 4-11

The final expression of the SEI delineation for the PA is shown in Figure 4-12.

Three habitats with High SEI are present in the PA where avoidance mitigation is <u>recommended</u>. Minimisation and restoration mitigation will be required for the Medium SEI habitats. It must be stated that Figure 4-12 can be interpreted alongside the Figure 4-10 sensitivity map. Ultimately, the exact delineation of Low, Medium, High and No Go areas will require on-the-ground micrositing and mitigation. Ultimately, although some of the habitat and infrastructure is of High SEI, the PA is not fatally flawed.

Site ecological importance	Interpretation in relation to proposed development activities
Very high	Avoidance mitigation – no destructive development activities should be considered. Offset mitigation not accept- able/not possible (i.e. last remaining populations of species, last remaining good condition patches of ecosystems/ unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.
High	Avoidance mitigation wherever possible. Minimisation mitigation – changes to project infrastructure design to limit the amount of habitat impacted; limited development activities of low impact acceptable. Offset mitigation may be required for high impact activities.
Medium	Minimisation and restoration mitigation – development activities of medium impact acceptable followed by appropriate restoration activities.
Low	Minimisation and restoration mitigation – development activities of medium to high impact acceptable followed by appropriate restoration activities.
Very low	Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

Table 4-7: Evaluation of Site Ecological Importance (SEI) of avifauna habitats in the project area. BI = Biodiversity Importance.

Figure 4-11: Guidelines for interpreting SEI in the context of the proposed development activities, reproduced from SANBI (2020).

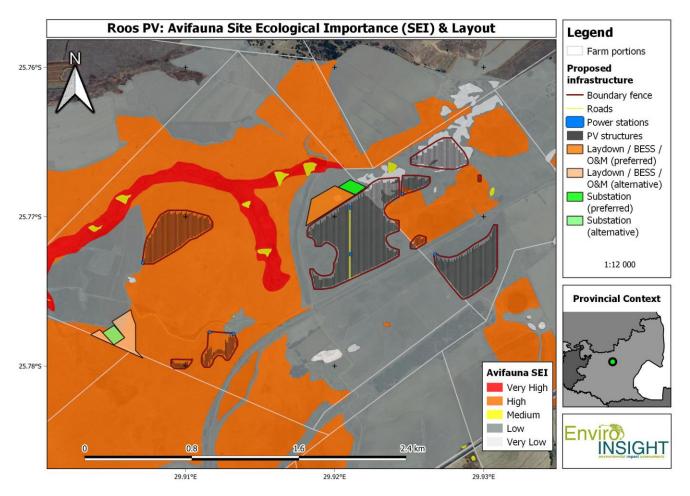


Figure 4-12: The Roos SEF Combined Project Area Site Ecological Importance (SEI).

Habitat	Conservation Importance (CI)	Functional Integrity (FI)	Receptor Resilience (RR)	Site Ecological Importance (SEI)	SEF Site Sensitivity
Alien Trees	Very Low – Very few confirmed or highly likely populations of SCC and where SCC of IUCN Vulnerable or Endangered are not relatively dependent on the habitat for foraging and breeding (e.g. breeding leks for Ludwig's bustard).	Low – Cumulatively lower area for any conservation status of SCC and as a foraging and breeding habitat (although some roosting may occur), the ecosystem type is insignificant with currently maximuml current negative ecological impacts (such as antibosis from <i>Eucalyptus</i> trees).	Very Low – Associated vegetation will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality. Alteration to the physical rock structure cannot recover.	VERY LOW (BI = Very Low)	LOW

Mobile:Sam - 072 437 1742Mobile:Luke - 083 784 1997Email:info@enviro-insight.co.zaWebsite:www.enviro-insight.co.za

Wetlands	High – Multiple confirmed or highly likely populations of SCC and where SCC of IUCN Near Threatened, Vulnerable or Endangered are relatively dependent on the habitat for migration. foraging and possibly breeding (e.g. Marsh Harrier).	High – Cumulatively medium (>100 ha) intact area for any conservation status of SCC. Currently only minimal negative ecological impacts.	High – Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality.	HIGH (Bl = High)	HIGH
Natural Grasslands	High – Confirmed or highly likely populations of SCC and where SCC of IUCN Near Threatened, Vulnerable or Endangered are relatively dependent on the habitat for migration. foraging and possibly breeding.	High – Connected and classified as natural although not unmodified with relatively moderate level of current negative ecological impacts.	High – Will recover relatively slowly (if at all), even with "resting" and some minor ecological rehabilitation (~ more than 10 years) to restore > 75% of the original species composition and functionality.	HIGH (Bl = High)	HIGH
Powerline Infrastructure (300 metre corridor either side)	High – Multiple confirmed or highly likely populations of SCC and where SCC of IUCN Near Threatened, Vulnerable or Endangered are relatively dependent on the habitat for breeding.	High – The linear transect traverses multiple habitat types and assuming a "corridor" or 100 metres either side of the powerlines, can be considered of high functional integrity as a breeding site for raptors. Although the pylon structure itself is considered to be artificial, the breeding habitat is highly functional and the line srves as foraging habitat for Verreaux's and Martial Eagle.	Medium – Does not apply to the actual powerline infrastructure. Assuming a neutral evaluation.	HIGH (Bl = High)	HIGH

Disturbed Grassland, Agricultural Fields,	Low – Few confirmed or highly likely populations of SCC and where SCC of IUCN Near Threatened, Vulnerable or Endangered are relatively dependent on the habitat for breeding.	Low – Fragmented or poorly connected and classified as disturbed to transformed with relatively moderate to high level of current negative ecological impacts.	Medium – Variable recovery time equals a raised average. Will recover relatively slowly (if at all), even with "resting" and some minor ecological rehabilitation (~ more than 10 years) to restore > 75% of the original species composition and functionality.	Low	Medium
				(BI = Low)	

4.9.1 SEI Discussion

Avifaunal importance relates to species diversity, endemism and the presence of topographical features or primary habitat units with the intrinsic ability to sustain avifaunal assemblages, their food supply as well as the density and diversity of SCC. Throughout the PA, much of the habitat is generic in their ability to support a high diversity of general avifaunal species, Red-Listed species and SCC. However, unique geographical or topographical features exist in significant proportions which would cause the areas targeted for development to be classified as a "No Go" development in regard to avifauna. Due to the high diversity of the above mentioned, Red-Listed species recorded during the survey, (including regionally and globally listed Endangered and Vulnerable birds), the region as a whole is considered to be an area of high avifaunal importance and activities should be managed in a holistic manner, prioritising mitigation and monitoring of avifauna SCC.

4.9.2 High SEI

Habitats with high avifauna sensitivities include the natural grasslands, drainage lines and water sources:

- The drainage lines and accompanying vegetation are linear dispersal corridors for terrestrial and wetland associated bird species. A significantly high species diversity (as well as a unique composition) was observed in this habitat and therefore, these systems are assigned high avifaunal importance. The drainage lines act as important flight corridors for water associate, passerines and raptors between foraging and roosting sites. Grey crowned cranes <u>may</u> utilise the habitat on the upslopes of drainage lines for foraging.
- The surface water habitats (artificial dams) are vital in the landscape, primarily due to the connection with both grasslands and drainage lines and their presence as water associated breeding habitat. Avifaunal species depend on an interconnected system of water features (artificial or otherwise) and, based on seasonality and prevailing climatic conditions, it is anticipated that these systems experience a frequent turnover of species over time (seasonally and long term). They often provide essential breeding habitat, foraging habitat and water resources for avifaunal species including large, bodied SCC such as herons, ducks and storks.

- The natural grasslands as foraging habitat for diurnal birds of prey. It also provides potential hunting habitat for all SCC eagles (especially Martial) which hunt prey common in these habitats.
- The powerline corridor due to the plethora of SCC persisting and depending on the habitat and buffer within the PAOI.

4.9.3 Low and Medium SEI

Areas with medium avifaunal sensitivities include the disturbed grasslands and agricultural fields as well as alien tree stands:

- Most of these habitats are currently disturbed and non-sensitive, replete with synanthropic species.
- The trees can provide roosting habitats for raptors.
- The habitats are resilient despite current disturbance and recovery is likely with adequate management and avoidance.

5 IMPACT ASSESSMENT

5.1 BACKGROUND TO INTERACTIONS BETWEEN SOLAR ENERGY FACILITIES, POWER LINES AND BIRDS

The effects of a solar farm on birds are highly variable and depend on a wide range of factors including the design and specification of the development, the topography of the surrounding land, the habitats affected, and the number and species of birds present.

Typical potential impacts include (but are not necessarily limited to):

- Habitat loss (including foraging and breeding) and fragmentation due to displacement (avoidance of disturbance).
 Habitat loss has the tendency to not only destroy existing habitat but also displace bird species from large areas of natural habitat. This specifically has a greater impact on bird species restricted to a specific habitat and its requirements.
- Collision and electrocution with above-ground power transmission lines (to be assessed in separate application). In some cases, collision can be associated with combustion (streamers) from polarised light pollution and waterbird species mistaking large PV panels areas as wetlands or other waterbodies, a case known as the "lake effect" (as per Jenkins *et al.* 2017). The mitigation of these impacts are addressed in this final EIA report with operational phase monitoring designed in the EMPr.
- Disturbance due to noise, such as machinery movements and maintenance operations during the construction and operational phase of the proposed PV solar farm.
- The attraction of some novel bird species due to the development of a solar farm with associated infrastructure, such as perches, nest and shade opportunities
- Chemical pollution: Chemicals being used to keep the PV panels clean from dust (suppressants), etc.

New mitigation measures range from simple (e.g., buffering of habitats) to complex (retrofitting of panels to avoid Lake Effect Impacts). However, by far, the best mitigation option remains the first step of the mitigation hierarchy which is "avoidance". Consequently, all attempts must be made to avoid potential impacts arising from the proposed development through the application of necessary buffers for sensitive areas, where placement of panel infrastructure may not occur. Additional remaining impacts must be minimised through the application of known and previously tested mitigation measures.

Potential mitigation measures:

- Impacts associated with the loss of bird foraging habitat due to construction activity cannot be mitigated in relation to the majority of the habitats but can be mitigated by avoiding avifauna-specific highly sensitive areas and their associated buffers;
- Impact can be mitigated by timing construction in order to avoid breeding periods of species;
- Set-back areas or buffer zones are allocated to sensitive or important habitat features to alleviate the effect of foraging and nesting/ roosting habitat in particular;
- Impacts due to bird mortalities during the operational phase are practically unavoidable for any large facility, but with the appropriate mitigation measures these impacts can be minimised. It is likely that most of the avifaunal populations

will be largely displaced from the majority of the project infrastructure, although significant risks are associated with the likelihood of project vehicles flushing birds into fencing infrastructure as well as collisions of large bodied species with powerlines;

- All powerline infrastructure must be fitted with approved bird diverters in order to provide visibility for large-bodied birds while all fences must be set back from every service road in order to allow for vulnerable species such as cranes and korhaans to obtain adequate height after being flushed by vehicle traffic;
- Migratory pathways of birds cannot be changed and the resulting impacts are unavoidable. However, severity of the impacts can be reduced with appropriate mitigation measures;
- All habitat attractants should be eliminated so that avifaunal populations will not embed themselves within the infrastructure over time. This includes bird diverters, perch deterrents and the application of Non-polarising white tape can be used around and/or across panels to minimise reflection which can attract aquatic birds and insects (food) as panels mimic reflective surfaces of waterbodies;
- The application of strict chemical control protocols which are not detrimental to avifauna.

ÍNŚIGHT

Table 5-1: Impacts Associated with the SEF

Roos SEF Cluste																				
ENVIRONMEN TAL PARAMETER	ISSUE / IMPACT / ENVIRONMENTAL EFFECT/ NATURE		ENVIRONMENTAL BEFORE MITIGATION					SIGNIFICANCE			RECOMMENDED MITIGATION MEASURES			NMEN AITIGA				SIGNIFICANCE		
		E	Р	R	L	D	I / M	TOTAL	STATUS (+ OR -)	S		E	P	R	L	D	I / M	TOTAL	STATUS (+ OR -)	S
Construction Ph	ase	1	1	1	1	1				1					•		1			<u> </u>
Habitat destruction	Significant habitat loss (including foraging and breeding) and fragmentation due to displacement (avoidance of disturbance) because of infrastructure installation (panels, powerlines, roads,	3	4	3	4	2	3	48	-	High	Impacts associated with the loss of bird foraging habitat due to construction activity cannot be mitigated in relation to the majority of the habitats but can be mitigated by avoiding avifaunal specific highly sensitive areas and their associated buffers, such as the local drainage lines, impoundments, smaller watercourses, high value sandy dunes, pans and rocky koppies. The overall severity of the impact can be reduced to being insignificant if avoidance	2	2	2	2	4	2	24	-	Me

	fences and sub surface cables) and associated dust effects. Habitat loss has the tendency to not only destroy existing habitat but also displace bird species from large areas of natural habitat. This specifically has a greater impact on bird species restricted to a specific habitat and its requirements.										mitigation is applied related to the positioning of the panels and supporting infrastructure and minimisation mitigation is applied. Finally, and for all panel infrastructure, <u>commencement</u> of construction should be, if possible, limited to the months of December, January, February, March, April, May, September, October, November (latest) to minimise dust effects and subsequent destruction of the avifaunal habitats, especially during foraging and breeding season. For detailed wetland specific mitigation measures, refer to Section 5.3 below.								
Disturbance of bird roosts and breeding sites	The destruction or disturbance of bird roosts during the construction phase	3	4	3	4	2	3	48	-	High	As with other impacts, this impact can be mitigated by preferably timing construction to May, June, July and August in order to avoid breeding periods of species within the sensitive drainage lines, wetlands and the general region. If construction takes place outside of May, June, July and August, all noise generated by machinery and maintenance operations must be kept to a minimum.	2	3	2	2	2	2	22	Low

Disturbance due to noise such as, machinery movements and maintenance operations	Disturbance (including of nesting SCC) due to noise such as, machinery movements and maintenance operations during the construction phase the proposed PV solar farm causing loss of offspring for a generation.	3	3	1	2	3	3	36	-	Med	As with other impacts, this impact can be mitigated by preferably timing construction to May, June, July and August in order to avoid breeding periods of species within the sensitive drainage lines, wetlands and the general region. If construction takes place outside of May, June, July and August, all noise generated by machinery and maintenance operations must be kept to a minimum.	3	2	1	2	3	2	22	-	Low
Operational Pha	ase																			
Disturbance due to noise such as, machinery movements and maintenance operations	Disturbance (including of nesting SCC) due to noise such as, machinery movements and maintenance operations during the construction phase the proposed PV solar farm causing loss of offspring for a generation.	3	3	1	2	1	2	20	-	Low	No Mitigation Required	3	3	1	2	1	2	20	-	Low

Bird mortalities	Bird mortalities	3	4	3	4	2	3	48	-	High	Impacts due to bird mortalities during the	2	2	2	2	4	3	36	-	Med
	during the										operational phase are practically									
	operational phase										unavoidable for any large facility, but									
	due to vehicle										with the appropriate mitigation measures									
	collisions, collisions										these impacts can be minimised. It is									
	with infrastructure										likely that most of the avifaunal									
	and/or combustion.										populations will be largely displaced									
											from the majority of the project									
											infrastructure, although significant risks									
											are associated with the likelihood of									
											project vehicles flushing birds into									
											fencing infrastructure as well as									
											collisions of large bodied species with									
											powerlines. Although the current overall									
											bird activity qualifies the proposed solar									
											development boundary as a high-density									
											area, there are certain times of the year									
											(and day) when it appears that large									
											flocks of birds (such as bustards and									
											large birds of prey) are far more									
											prevalent. All powerline infrastructure									
											must be fitted with approved bird									
											diverters in order to provide visibility for									
											large-bodied birds. In all areas where									
											service road intersects with semi natural									
											or natural habitat, all fences that are									
											constructed (if any) must be set back at									
											least (strictly) 75 metres from the edge									
											of every service road in order to allow for									
Enviro		·	·		·	·	73						ı	1	1	I	1	1	1	
INSIG	iHT						-10			en	vironmental impact assessments									

Loss of Bird Foraging Habitat	Loss of Bird Foraging Habitat	3	3	3	3	3	3	45	-	High	no more than 2 metres (directly adjacent) from the edge of service roads. Through the essential elimination of habitat, this will limit any chance of vulnerable species foraging on verge side vegetation and causing subsequent fence collisions. Finally, reflective diverters should be attached to new fencing alongside regular maintenance roads every 50 metres. Impacts associated with the loss of bird foraging habitat due to operations can be mitigated by avoiding avifaunal specific sensitive areas and their	3	2	2	2	2	2	22	-	Low
											associated buffers, such as the local drainage lines, impoundments, smaller watercourses, sandy dunes, pans and									

Disruption of bird migratory pathways	Disruption of bird migratory pathways during the operational phase	2	2	2	2	4	3	36	-	Med	Migratory pathways of birds cannot be changed and the resulting impacts are unavoidable. However, severity of the impacts can be reduced with appropriate mitigation measures. Some significant discernible migratory flight pathways were able to be established which could be explained by large areas of generic habitats punctuated by some distinguishing geographic features in the landscape, such as large ridges, large impoundments, wetlands and drainage lines. The linear Drainage line habitats must be buffered by a minimum of 50 metres from the edge of the demarcated wetland.	3	2	2	2	2	2	22	-	Low
The attraction of some novel bird species due to the development of a solar farm with associated infrastructure such as lake effect, perches, nest	The attraction of some novel bird species due to the development of a solar farm with associated infrastructure such as lake effect perches, nest and shade opportunities may cause both damage to the	2	2	2	2	4	3	36	-	Med	Essentially, all habitat attractants should be eliminated so that avifaunal populations will not embedded themselves within the infrastructure over time. This includes bird diverters, perch deterrents and the application of non- polarising white tape can be used around and/or across panels to minimise reflection which can attract aquatic birds and insects (food) as panels mimic reflective surfaces of waterbodies. An ECO can advise on the mitigations	3	2	2	2	3	2	24	-	Med

75

Enviro INSIGHT

environmental impact assessments

and shade	infrastructure										during operations.									
opportunities	through acidic										0									
	defecation by																			
	certain species but																			
	also draw birds																			
	closer to																			
	infrastructure and																			
	cause significant																			
	direct mortality																			
	risks.																			
Chemical	Chemicals being	3	3	2	2	4	3	42	-	High	Application of strict chemical control	1	2	2	2	3	2	20	-	Low
pollution spills	used to keep the PV									Ŭ	procedures as per the EMPr. Zero spills									
	panels clean from										should be targeted and full clean up kits									
	dust (suppressants)										available in the event of any chemical									
	etc.										spill. Soil testing subject to EMPr.									
Decommissionir	ng Phase		•				•	•												
Disruption of	Disruption of bird	3	2	2	2	3	2	24	-	Med	Decommissioning of panels must not	3	2	2	2	2	2	22		Low
bird migratory	migratory pathways										commence during the peak wet season									
pathways	during the										months on November, December and									
	decommissioning										January.									
	phase																			
Habitat	Destruction of	3	3	2	2	4	3	42	-	High		3	2	2	2	3	2	24	-	Med
destruction	habitats and										A rehabilitation plan must be									
post	scarring										 A renabilitation plan must be commissioned before 									
decommissioni	, č										construction commences.									
ng											All topsoil harvesting must									

								take place in the dry season
								(late dry season).
								Returning the wetlands to their
								original grade must take place
								as minor differences in the
								final surface elevation can
								produce significant impacts on
								the type of vegetation that re-
								establishes itself (alien
								invasive species).
								When topsoil is salvaged and
								returned, it is anticipated
								without reseeding that dense
								vegetative communities of
								native species can regenerate
								within two growing seasons.
								As emergent wetlands will
								recover more quickly than
								others, artificial seeding is not
								advised as it creates
								competition for
								reestablishment of native
								facultative and obligate
								wetland vegetation.
	1	1	l l	İ.	1	1	1	

Table 5-2: Cumulative Impact Assessment

Cumulative: There are a number of existing renewable energy projects (currently only solar Energy Facilities (WEFs)) that already have quantified negative impacts on the avifauna community in the region. Therefore, any impacts anticipated from the proposed solar facility will add to these existing impacts and require assessment under a Cumulative Impacts assessment. Results obtained during this preconstruction survey and from the subsequent impact analysis should be considered in conjunction with the impacts created by the proposed development. The current developments within the region raise the possibility of significant cumulative impacts, especially concerning collision risk, habitat loss and fragmentation and loss of suitable habitat for threatened species.

Habitat loss	Regional Saturation of SEF facilities	3	4	3	3	4	4	68	-	Very High	Not able to be mitigated quantitatively. Mitigation measures are similar to SEF					N/A
	causing habitat loss										facility. Where possible, apply necessary					
	Ŭ										buffers for roost sites and other sensitive					
											bird habitat features, avoiding the					
											construction of panels and access roads					
											in these areas. Roads must utilise or					
											upgrade existing farm roads as far as					
											possible. All underground cables					
											bisecting sensitive habitats must be					
											placed below the subsurface flow of the					
											ephemeral wetlands with the linear					
											construction pits subjected to full					
											rehabilitation in order to maintain normal					
											subsurface slow. All roads and crossings					
											must be engineered not to impede					
											surface or subsurface flow in any way.					

Collison mortality (infrastructure)Increased mortalities due to collisions with SEF33334348High MeImpacts due to bird mortalities during the operational phase are practically unavoidable for any large facility, but2222243	1 1		
infrastructure, with the appropriate mitigation measures especially these impacts can be minimised. All powerlines and powerline infrastructure must be fitted fences with approved bird diverters in order to provide visibility for large-bodied birds. Positive Cumulative Mitigation will be the retrofitting of existing powerline infrastructure (in consultation with Eskom) which currently does not have diverter infrastructure in place.	36 -	36 -	36

Collison mortality (powerlines)	Increased collision related mortalities due to increased	3	3	3	3	4	3	48	High	Saturation of powerline infrastructure with approved bird diverters	3	2	2	2	3	4	48	High
Enviro INSIG	ант						79		envi	ronmental impact assessments								

powerli	nes									

5.1.1.1 Post Construction Rehabilitation

- A rehabilitation plan must be commissioned before construction commences, especially for sandy dunes, drainage lines and wetlands.
- All topsoil harvesting must take place in the dry season (late dry season).
- Returning the wetlands to their original grade must take place as minor differences in the final surface elevation can produce significant impacts on the type of vegetation that re-establishes itself (alien invasive species).
- When topsoil is salvaged and returned, it is anticipated without reseeding that dense vegetative communities of native species can regenerate within two growing seasons.
- As emergent wetlands will recover more quickly than others, artificial seeding is not advised as it creates competition for reestablishment of native facultative and obligate wetland vegetation.

5.2 GENERAL MITIGATION OF IMPACTS

Due to the global demand for renewable energy, a strong research emphasis has been placed on describing and defining mitigation measures to negate or minimise the negative impacts associated with such facilities. In particular, much research is focused on bird impacts prevention/minimisation at solar facilities (see TBC 2021). New mitigation measures range from simple (e.g. buffering of habitats) to complex (retrofitting of panels to avoid Lake Effect Impacts). However, by far the best mitigation option remains the first step of the mitigation hierarchy which is "avoidance". Consequently, all attempts will be made to avoid potential impacts arising from the proposed development through the application of necessary buffers for sensitive areas, where placement of panel infrastructure may not occur. Additional remaining impacts will be minimised through the application of known and previously tested mitigation measures.

Alternative additional mitigation measures may include change of the current land use to minimise attraction for priority species. Since development and construction go hand in hand with high ambient and stochastic noise levels (machinery) and habitat loss, it is possible for bird species and bird individuals to be displaced from the surrounding environment. It is essentially true for large species that require extensive home ranges, and those species that are inherently shy or unobtrusive by nature (e.g., raptors). Displacement will be the response of raptors to the disturbance activity, for example when a bird changes its behaviour or takes flight by aborting its activity prior to the disturbance or being unsuccessful in completing its current activity (Ruddock & Whitfield 2007). Reactions are likely to differ between species and between individuals of the same species (Rogers & Smith 1995; Rogers & Schwikert 2002). Reactions are also positively correlated to the magnitude and frequency of a particular disturbance event. For the proposed solar facilities as well as the cumulative impacts, it cannot be predicted to a 100% confidence to what degree these activities will affect the Priority Species, but it must be stated that many bird species will become accustomed, or have the ability to learn and adapt, to constant occurring disturbance events of low magnitude (e.g. vehicle noise) unless they are directly affected (e.g. their physical habitat is affected). Collision with powerlines is the most significant impact for the species in the region.

Set-back areas or buffer zones are allocated to sensitive or important habitat features to alleviate the potential effect of foraging and nesting/ roosting habitat in particular and these are built in to the sensitivity mapping. The choice of an appropriate set-back

distance is complex since different species and even different taxon groups demand different habitat types or home ranges to maintain a viable population in the long term. Given that the study area has <u>not</u> been confirmed as a foraging site and breeding site for Secretary Birds and Vultures but is a foraging site for other raptor species, the mitigation recommendations that are proposed in order to preserve the basic existing High sensitivity ecological function of the raptor habitats, minimising collisions and to maintain foraging corridors for large SCC raptor species in the form of a set-back area of natural vegetation are considered non-negotiable.

5.3 SUMMARY OF PROPOSED MITIGATION MEASURES

It is deemed possible, through the application of appropriate mitigation measures, to restrict the impact of on the local and regional avifaunal population to a low level of significance. The following mitigation summary is provided:

Habitat destruction: Where possible, apply necessary buffers for roost sites and other sensitive bird habitat features, avoiding the construction of panels and access roads in these areas. Roads must utilise or upgrade existing farm roads as far as possible. All underground cables bisecting sensitive habitats must be placed below the subsurface flow of the ephemeral wetlands with the linear construction pits subjected to full rehabilitation in order to maintain normal subsurface slow. All roads and crossings must be engineered not to impede surface or subsurface flow in any way.

Bird mortality: Avoid placement of panels near sensitive bird breeding and roosting habitats. The application of adaptive mitigation measures (e.g., retrofitting non-polarising white tape can be used around and/or across panels to minimise reflection), according to post-construction monitoring results (counted collisions of threatened species) must be informed by environmental correlates of avifaunal activity and/or collisions (EMPr). In addition, the addition of grazing sheep to the footprint may attract raptor SCC who may scavenge on dead lambs/ adult sheep or prey upon livestock. Strict carcass retrieval must be incorporated into the EMP where carcasses are removed and correctly disposed of within the same day of death. This will require constant monitoring of all sheep herds in the footprint.

Impacts due to bird mortalities during the operational phase are practically unavoidable for any large facility, but with the appropriate mitigation measures these impacts can be minimised. It is likely that most of the avifaunal populations will be largely displaced from the majority of the project infrastructure, although significant risks are associated with the likelihood of project vehicles flushing birds into fencing infrastructure as well as collisions of large bodied species with powerlines. Although the current overall bird activity qualifies the proposed solar development boundary as a high-density area, there are certain times of the year (and day) when it appears that large flocks of birds (such as cranes bustards and large birds of prey) are far more prevalent. All powerline infrastructure must be fitted with approved bird diverters in order to provide visibility for large-bodied birds. In all areas where service road intersects with semi natural or natural habitat, all fences must be set back at least (strictly) 75 metres from the edge of every service road in order to allow for vulnerable species such as cranes and korhaans to obtain adequate height after being flushed by vehicle traffic. Alternative 2 and where a 75-metre buffer is not possible, **new** fences must be set back no more than 5 metres (directly adjacent) from the edge of service roads. Through the essential elimination of habitat, this will limit any chance of vulnerable species foraging on verge side vegetation and causing subsequent fence collisions.

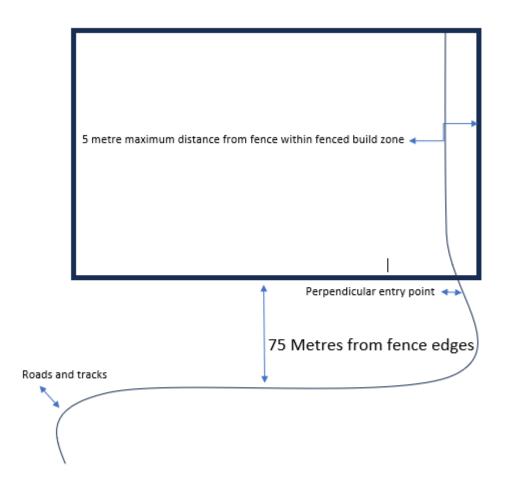


Figure 5-1: Diagrammatic representation of road alignment with fencing infrastructure

Bird collisions with panels and powerlines: Use of parabolic (curved) mirrors is preferred instead of flat heliostats to reduce the likelihood of skyward reflection to minimise potential bird collisions. However the use of flat panels does not represent a fatal flaw. All powerlines must be flapped with appropriate diverters and no elevated powerlines are to cross drainage line habitats.

Habitat Destruction: It is recommended that limited development takes place in High sensitivity areas. Minimise impacts to natural and artificial wetlands and water bodies by implementing the appropriate buffer areas where no development may take place. This includes a 50 m proposed no-go buffer proposed around small artificial water points as they serve as focal points for bird activity and 50 metres around drainage lines/ wetlands. All large impoundments require a buffer from any infrastructure activity. The buffering is displayed on the sensitivity mapping although significant infrastructure is far more than the required minimum buffering.

Impacts on foraging and breeding habitats: Impacts associated with the loss of bird foraging and breeding habitat due to construction activity cannot be mitigated in relation to the majority of the habitats but can be mitigated by avoiding avifaunal specific highly sensitive areas and their associated buffers, such as the local drainage lines, impoundments, smaller watercourses, pans and rocky koppies. The overall severity of the impact can be reduced to being insignificant if avoidance mitigation is applied related to the positioning of the panels and supporting infrastructure and minimisation mitigation is applied. **Disruption of breeding and foraging behaviour:** As with other impacts, this impact can be mitigated by preferably timing construction to May, June, July and August in order to avoid breeding periods of species within the sensitive drainage lines, wetlands and the general region. If construction takes place outside of May, June, July and August, all noise generated by machinery and maintenance operations must be kept to a minimum.

5.4 SPECIFIC MITIGATIONS FOR WETLAND AND WATERBODY CROSSINGS

The Site Development Plan (SDP) provided clearly shows potential interaction between infrastructure and designated High Sensitivity avifaunal features. Methods used for constructing linear infrastructure (such as buried powerlines, pipelines, raised powerlines, roads) across wetlands or drainage lines will vary, depending on the nature of wetland hydrology and soils. Thus, the following specific prescribed mitigations as well as guiding principles and "best practice" are described below.

- 1. An ECO should be appointed in order to consult with the engineers regarding the technical requirements of the following mitigations. Changes may be allowed as per the ECOs discretion.
- 2. Horizontal directional drilling is preferred for the crossing of wetlands,
- 3. If as is more typical, an open trench is dug, mitigations should be implemented to reduce impacts to wetland hydrology and soil structure.
- 4. All pipeline corridors (affected areas) should be implemented to a maximum 10 metres wide through wetlands during construction.
- 5. During construction, laydown areas must be located in uplands a minimum of 35 metres from the wetland edge.
- 6. Construction equipment used while working in wetlands is limited to only those pieces that are essential and nonessential equipment is allowed to travel through wetlands only once during deployment and once during extraction.
- 7. During vegetation clearing, sediment barriers such as silt fences must be installed and maintained adjacent to wetlands.
- 8. The method of pipeline construction used in wetlands depends on the stability of the soils. Overall, topsoil is first removed and stored separately from the subsoil. Where wetland soils are saturated, segregating topsoil is not possible. Large timber mats placed ahead of the construction equipment can provide a stable working platform and protect wetland soils by spreading the weight of the construction equipment over a broad area.
- 9. Generally, the preferred method for crossing an actively flowing waterbody with a pipeline is horizontal directional drilling as compared to open-cut trenching. With this method, a hole is dug below the stream crossing and pulling a prefabricated section of pipe through the hole. The goal is for zero interruption to flow.
- 10. Open-cut crossings involve cutting a trench across the waterbody while water flows through the trenching area. Where the water is shallow enough, it may be diverted by flumes and pumps. A flume pipe may be placed to divert the water around the trenching area. Pumps in combination with dams may also be used to divert the water during open-cut trenching.

- 11. Where possible, pipelines can be installed using the push-pull technique-- stringing and welding the pipeline outside of the wetland and excavating and backfilling the trench using a backhoe supported by equipment mats or timber riprap. The prefabricated pipeline is installed in the wetland by pushing or pulling it across the trench. After the pipeline is floated into place, the floats are removed and the pipeline sinks into place. The trench is backfilled to the proper grade to maintain wetland hydrology and grades are restored to the original elevation.
- 12. If topsoil is segregated from subsoil, then subsoil is backfilled first.

5.4.1.1 Best Practice for Wetland Crossings

1. Avoidance. Avoid the construction of a crossing or staging area by either choosing an alternative route or by using aerial or overhead equipment;

2. Minimization. Limit the number of crossings and the number of equipment trips to as few as possible. Limit the number of equipment staging areas and spoil storage areas.

3. Use of Previously disturbed Areas. Use existing access roads, or staging areas.

4. Selection of Crossing Location. Consider criteria when locating crossing sites to minimize disturbance, such as shortest crossing point, avoiding unstable or steep banks, avoiding highly erodible soils, avoid unstable portions of stream channels.

5. Scheduling. Schedule construction during the season least damaging to the stream or wetland system (i.e. dry season).

5.4.1.2 Powerline Crossing of Wetlands

Presented below are design objectives, considerations and examples of construction techniques of best practices. Variables of avifaunal sensitivity include such factors as wetland quality, topography, congregatory avian populations, prey populations, line configuration, adjacent wetlands, and historical bird use areas, all of which have been assessed as part of the pre-construction monitoring. The following mitigation measures are suggested;

- Avoid siting lines in areas where birds concentrate;
- In all raised powerline crossings, powerlines must install bird diverters to enhance visibility of lines;
- Where possible, construction should involve the burying of lines underground.
- In order to reduce avian mortalities related to bird collisions or nests, perch guards should be installed on all infrastructure (such as poles and platforms).

5.4.1.3 Wetland Road Design and Construction Practices

- All road construction should preferably take place in the dry season.
- A temporary road in a wetland needs to provide adequate crossroad drainage at all natural drainageways. Temporary drainage structures include culverts, bridges, and porous material.
- Prior to construction, areas of infrastructure placement must be graded flat so as not to cause vegetation root mat loss or restriction to sub surface flow. Topsoil storage must be enacted. Construction of roads must occur at natural ground level (not below) to minimize to restricting water flow.
- Limit or restrict the construction of fill roads. All fill roads must use a permeable fill material (such as gravel or crushed

rock) for at least the first layer of fill in order to maintain the natural flow regimes of subsurface water.

 It is preferable to eliminate fill roads and utilise raised bridges and culverts with adequate sizing and spacing of water crossing structures, proper choice of the type of crossing structure, and installation of drainage structures at a depth adequate to pass subsurface flow.

5.5 GENERAL MITIGATION MEASURES

- Formal post construction monitoring must be applied once the development have been activated, as per the most
 recent edition of the best practice guidelines (Jenkins et al. 2017). The exact scope and nature of the post-construction
 monitoring will be informed on an ongoing basis by the result of the monitoring through a process of an establishment
 of available new technology and adaptive management. The purpose of this would be to establish if and to what extent
 displacement of priority species has occurred through the altering of breeding and foraging behaviour postconstruction, and to search for and identify carcasses near panels and newly erected powerlines (mortality).
- Post-construction monitoring should be undertaken as per the EMPr and Section 6 of this report. The exact scope, nature and frequency of the post-construction monitoring will be informed on an ongoing basis by the results of the monitoring through a process of adaptive management.

5.6 CUMULATIVE IMPACT ASSESSMENT DISCUSSION

The cumulative effects of regional solar farm developments on birds are highly variable and depend on a wide range of factors including the density, designs and layouts of the infrastructure. This was evaluated within the framework of this final EIA report. The map of regional WEF and SEFs in relation to the Roos SEF is shown as Figure 5-2 with the surface area calculations shown as *Table 5-3*.

Туре	Area (m)	Area (ha)	Percentage of 30 km buffer
ROOS PV	673153.21	67.32	0.02
Wind	6496903.53	649.69	0.21
PV	9261194.39	926.12	0.31
PV+Roos PV	9934347.60	993.43	0.33
ALL+Roos PV	16431251.13	1643.13	0.54
30 km	3024739682.33	302473.97	100.0

Table 5-3: Cumulative Impact Calculations for the Roos SEF Clusters

There are a number of existing renewable energy projects (both solar and WEFs) that already have quantified negative impacts on the avifauna community in the region. Therefore, any impacts anticipated from the proposed solar facility will add to these existing impacts and require assessment under a Cumulative Impacts assessment. Results obtained during this preconstruction survey and from the subsequent impact analysis should be considered in conjunction with the impacts created by the proposed development. The current developments within the region raise the possibility of significant cumulative impacts, especially concerning collision risk, habitat loss and fragmentation and loss of suitable habitat for threatened species.

The following current impacts will be exacerbated through increased solar developments regionally;

- Habitat loss: The destruction of highly sensitive habitat (for example sandy dune habitats for Red Lark) will potentially
 increase. Many SCC exist within a narrow ecological and distributional belt and loss of its ecologically specific habitat
 may be highly significant.
- Road-kills: Many birds are commonly killed on roads and flushed into fences associated with the facility (e.g., Karoo Korhaan and Ludwig's Bustard).
- Regional saturation of solar facilities: This has implications for several priority species, both in terms of lake effect, collision mortality from additional powerline infrastructure (see below) for some species, especially Bustards and Raptors, and displacement due to transformation of habitats.
- Powerlines: Numerous existing and new power lines are significant threats to large terrestrial priority species in the region as powerlines may kill significant numbers of all large terrestrial bird species.

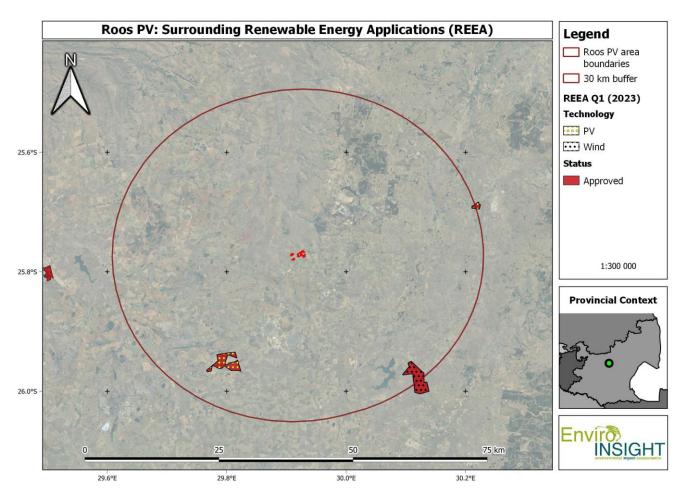


Figure 5-2: The map of regional SEFs in relation to the Roos

5.7 SPECIES SPECIFIC RISK ANALYSIS AND RECOMMENDED MITIGATIONS

Ultimately, it is suggested that the morphological and behavioural; characteristics of a given bird species traits of birds, especially those related to size, wing beat, manoeuvrability, flight pattern and hunting/ foraging behaviour, are known to influence the relative collision risk with structures such as power lines and solar panels. Larger bird species often need to use thermal and updrafts to gain altitude, particularly for long distance flights. Thermal updrafts (thermals) and orographic lift (slope updraft) will affect the relative risk per species. The relatively flat nature of the survey area dictates that the overall topography related risks are low, However, some higher risk species have been identified and described below.

5.7.1 Southern Grey Crowned Crane

Grey Crowned Cranes are globally and regionally listed as Endangered (BirdLife International 2012b and Taylor, *et. al.* 2015) which is cause for a significant evaluation of the species in relation to the proposed development. Extensive searches were carried out during the pre-construction monitoring process and the monitoring data suggest that no permanent population persist for prolonged periods within the PA. Multiple and frequent sightings were recorded in surrounding surveys (PAOI) by the specialist with no evidence on the PA. The species is highly migratory and localised development may not represent a fatal flaw.

Within the PAOI, this species is almost certainly resident and at risk to the creation of large, panels in combination with nonmarked powerlines may cause collision of birds which could significantly reduce local and regional populations. In addition, large-scale increases in fencing combined with a high volume of large maintenance trucks and other vehicles may cause drastic declines in crane numbers due to flushing displacements, collisions and entanglements. The presence of this species must form a significant focal point of the mitigation measures.

On a final note, concerning monitoring of the species (and possible mitigations), it is vital to highlight that fact that as an Endangered species, Southern Grey Crowned Cranes demands higher degrees of auditing and monitoring attention than other Red-Listed birds (a fact supported by multiple publications including Visser *et. al.* 2018 and Scott *et. al.* 2012). It is also vital to highlight that presence or absence over time for a nomadic species is difficult to predict and spatial/ temporal population reductions may or may not be development-induced. For example, a prolonged drought may cause local colonisation which will be immediately reversed with the onset of more unusual heavy rains. Although it is highly feasible that the development may be directly responsible for local population reductions this is deemed unlikely given the lack of records in the PA and the suboptimal habitat.

5.7.2 Large and Medium Raptors

This group includes Eagles (Brown Snake, Black-Chested Snake and Martial Eagles), falcons (including IUCN VU Lanner Falcon), Kestrels and Kites. As a rule, all nesting raptors should be protected within the PA as many species represent Priority Species and if not, their nests are often colonised by Priority Species. Many raptor species are under constant pressure from development due to modifications and alterations of their preferred foraging and breeding habitats. This includes direct fatality as well as to the disruption of a foraging, breeding or roosting bird caused by SEF activities. Collision-caused fatalities of birds at SEFs create a 'green versus green' conflict between wildlife conservation and renewable energy. This conflict can be mitigated

through several interventions, including informed application of diverter infrastructure (flappers, diverters) when birds are considered at increased risk of collision.

6 MONITORING REQUIREMENTS

The following outlines a general monitoring plan (EMP) structure.

	Title: SCC community monitoring
Stressor	Project Activities, Climatic Changes
Receptor(s)	Avifauna SCC diversity and densities in each habitat type
Variables	Presence/absence of bird species of conservation concern, including observed breeding behaviour, proportion of SCC species present per sample site, species richness and densities.
Sampling Method	 Vantage Point counts – 2 x Three hour counts (morning and evening) to be conducted at each monitoring plot Drive Transects (species lists) – all species seen to be recorded along set transects to be driven during dawn till pre 10 am; and Walked Transects (species lists) – all species heard and seen to be recorded along set transects to be driven during dawn till pre 10 am; and
Sampling Frequency	 be walked at dawn chorus Annual wet and dry season surveys; and Continuous observations by ECO.
Sampling Site(s)	As provided in EMPr.
Change and Action Thresholds	Loss/decrease in any SCC parameter, unnatural decline (cannot be explained by stochastic weather changes) in species densities and/or richness. Similarly, positive changes (e,g, unusual presence in high densities of nomadic species such as Ludwig's Bustard or establishment of SCC breeding population such as Secretary Bird) in species densities and/or richness that indicate disturbance. Rapid surveys of greater surrounding area should be conducted to attempt to determine cause of change detected.
Data Analysis	All variables acquired should be statistically and graphically compared to the available data and the original targeted baseline data. Photographs should be taken of as many SCC observed in the field.
Reporting requirements	Annual reporting presenting data analysis results and mapping indicating locations of change. Specific reporting on negative change detection not directly attributable to Project activities and their cause. All reporting to be accompanied by GIS shapefiles and any original photographs.

	TITLE: Collision monitoring
Stressor(s)	Avifauna-powerline and infrastructure collisions (incidents)
Receptor(s)	Avifauna community composition, density and distribution
Variables	Species, geographical location and date of every avifaunal mortality
Sampling Method	 For powerlines: Weekly surveys before dawn (prior to scavenger activity) by driving slowly along the servitudes and documenting each collision kill location and species (a georeferenced photograph as evidence is required).
Sampling Frequency	Weekly for powerlines
Sampling Site(s)	Along the entire powerline network on the PAOI.
Collision Action Thresholds	Collision frequency and intensity (#kills per species per unit time) will need to be assessed per species by specialist. However, any non-specific collision concentrations (> 10 kills per month clustering in a stretch of powerline) must initiate investigation and corrective measures (additional mitigation infrastructure).
Data Analysis	Geospatial analysis of density and dispersion of avifaunal mortalities highlighting the core areas of mortalities so that corrective measures can be implemented. Time-series and trend analysis to accompany evaluation to inform on temporal fluctuations (e.g. seasonality) and steer adaptive management. Cumulative species specific summary statistics to be calculated.
Reporting requirements	 Bi-annual reporting of faunal avifaunal mortalities associated with collision data highlighting locations where corrective measures are to be taken (if necessary).

Table 5-4: EMP Table Summary for Roos SEF

Impact/Aspect	Mitigation/Management Actions	Responsibility	Methodology	Mitigation/Management Objectives and Outcomes	Frequency
Design	1				1
Construction					
Disturbance of bird roosts	• As with other impacts, this impact can be mitigated by timing of any panel construction to <u>not</u> <u>commence in</u> November, December and January in order to avoid breeding periods of species within the sensitive drainage lines, wetlands and the general region.	Client Appointed ECO.	 Drive Transects (species lists) – all species seen to be recorded along set transects to be driven during dawn till pre 10 am; and Walked Transects (species lists) – all species heard and seen to be recorded along set transects to be walked at dawn chorus. All variables acquired should be statistically and graphically compared to the available data and the original targeted baseline data. Photographs 	 Loss/ decrease in any SCC parameter, unnatural decline (cannot be explained by stochastic weather changes) in species densities and/or richness. Similarly, positive changes (e,g, unusual presence in high densities of nomadic species such as Bustards or establishment of SCC breeding populations (not yet sighted), Large SCC Raptors and Secretary Bird) in species densities and/or richness that indicate disturbance. Rapid surveys of greater surrounding area should be conducted to attempt to 	Twice weekly during construction.

the me ca tha po dis of alt are like ve fer we bo po cu qu de a a are (a tha (su a n far are (a) tha bo po cu qu de a a are (a) tha tha tha tha tha tha tha tha tha tha	y large facility, but with e appropriate mitigation easures these impacts in be minimised. It is likely at most of the avifaunal pulations will be largely splaced from the majority the project infrastructure, hough significant risks e associated with the elihood of project hicles flushing birds into neing infrastructure as ell as collisions of large died species with overlines. Although the irrent overall bird activity tailfies the proposed solar evelopment boundary as high-density area, there e certain times of the year ind day) when it appears at large flocks of birds uch as cranes, bustards d large birds of prey) are r more prevalent. All overline infrastructure ust be fitted with oproved bird diverters in der to provide visibility for rge-bodied birds. In all eas where service road tersects with semi natural natural habitat, all fences ust be set back at least trictly) 75 metres from the lge of every service road order to allow for	registered Zoologist.	 birds killed during the operation process. Location and species must be recorded (a georeferenced photograph as evidence is also required). Monthly reporting presenting data analysis results and mapping indicating locations of change. Specific reporting on negative change detection not directly attributable to Project activities (Solar Facility Operation) and their cause. All reporting to be accompanied by GIS shapefiles and any original photographs. 	assessed per specie by specialist. Howeve any non-specifi collision concentration (> 10 kills per mont clustering in a stretch o powerline) must initiat investigation an corrective measure (including retrofitting o mitigation measures).	r, c s h of e d s
Envirð) INSIGHT		95	environmental im	npact assessments	

 Disruption of bird migratory pathways The attraction of some novel bird species due to the development of a solar farm with associated infrastructure such as lake effect, perches, nest and shade opportunities. Disturbance due to noise such as, machinery movements and maintenance 	 vulnerable species such as bustards, raptors and korhaans to obtain adequate height after being flushed by vehicle traffic. An Alternative mitigation measure and where a 75- metre buffer is not possible, new fences must be set back no more than 5 metres (directly adjacent) from the edge of service roads. Through the essential elimination of habitat, this will limit any chance of vulnerable species foraging on verge side vegetation and causing subsequent fence collisions. Migratory pathways of birds cannot be changed, and the resulting impacts are unavoidable. However, severity of the impacts can be reduced with appropriate mitigation measures. Some significant discernible migratory flight pathways were able to be established which could be explained by large areas of generic habitats punctuated by some distinguishing geographic features in the landscape, such as large ridges, large impoundments, wetlands 	• Company Appointed ECO, trained by a SACNASP registered Zoologist.	 For panel location sites: Monthly inspection using Drive and Walking Transects. CWAC counts Species inventories and passage rate data collection. Species inventories and passage rate data collection. Monthly SCC and species inventories during November, December, January and February
INSIGHT		96	environmental impact assessments

operations.	 and drainage lines. The linear drainage line habitats must be buffered in accordance with the EIA sensitivity mapping. Essentially, all habitat attractants should be eliminated so that avifaunal populations will not embedded themselves within the infrastructure over time. This includes bird diverters, perch deterrents and the application of Nonpolarising white tape can be used around and/or across panels to minimise reflection which can attract aquatic birds and insects (food) as panels mimic reflective surfaces of waterbodies. 			
Chemical pollution	The application of strict chemical control protocols as per the EMPr.	 Company appointed ECO. 	 For panel location sites: weekly inspection on foot Yearly soil analysis sent to accredited lab 	Weekly spill detection for panels

7 SENSITIVITY ANALYSIS

The study area mostly consists of grassland, agricultural and drainage line habitats in the proposed project footprint. The natural vegetation within the PA provides potential foraging habitat for bird species such as cranes, storks, korhaan, and possibly includes foraging habitat for species such as Martial Eagle and Secretarybird and other larger raptors. Accordingly, final sensitivities have been shown in **Error! Reference source not found.**. The figure indicates that the entire central-western area, as well as smaller pockets to the south and east, are "high sensitivity" areas, with some "no-go" areas. The drainage line running across the site has also been marked as a "no-go".

Nest Specific Mitigations

None

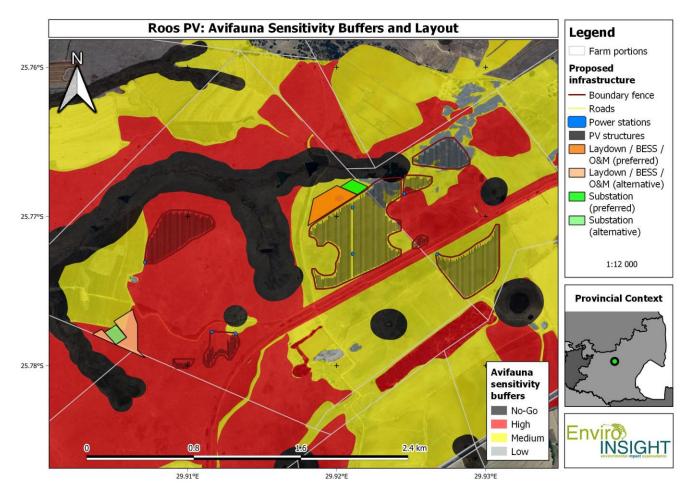


Figure 7.3: Avifauna Sensitivity Buffers with preferred solar infrastructure placement for the proposed Roos SEF.

8 PROFESSIONAL OPINION

The PA is located in a region dominated by natural grassland, drainage lines, disturbed grassland, cropland and stands of alien invasive trees. Several drainage lines and small farm dams can be found scattered across the PA with most being mostly permanent with some seasonal flow/ inundation. The powerline infrastructure that traverses the PAOI is a significant habitat for Martial Eagles and other raptors. Fifteen (15) priority species were predicted during the initial surveys, including Secretarybirds, Martial Eagles, Black-chested Snake Eagle, Southern Bald Ibis and White Storks Of these, the Secretarybirds and Martial Eagle were the most concerning large bird species. At the commencement of the survey, the PAOI was characterised by an extreme rainfall event (wet season) may have atypically transformed the PAOI where it is possible that increased densities (and perhaps diversity) of avifaunal assemblages may have been recorded due to an abundance of high forage value habitat. However, although the density and diversity of Priority Species was high, most of these species were common and widespread and largely synanthropic (water and natural grassland associates excluded) and the density and diversity of SCC was very low.

A final Professional Opinion is provided below.

8.1.1 Project Footprint Summary

- The addition of the proposed Roos SEF does indicate some (relatively few) potentially significant impacts (without mitigation) to the receiving environment via the risk to Priority Species (such as Secretary Bird, Martial Eagle, and Denham's Bustard and Southern Bald Ibis) and need to be considered with provision made within the EMPr for this development.
- Although previous impact assessments and monitoring programs for existing local SREFs indicated that not all impacts
 can be mitigated to acceptable levels, medium significance post-mitigation should be interpreted that more can be
 done to avoid critically important species-specific (especially Martial Eagle and Secretary Bird impacts as is the case
 for the impacts discussed within this statement). This is mainly because impact assessments regarding solar energy
 developments have been poorly understood since their inception and the impacts (especially cumulative impacts) of
 solar developments may have significant consequences if mitigation and monitoring is not implemented correctly.
- Overall, it is still the opinion of the consultants that the impacts associated with SEF projects are far preferable (from an environmental impact perspective) to extractive and/ or non-renewable alternatives or even Wind Energy Facilities (WEF). It must be related that this report must be considered in context with the greater EIA process which factors in economic desirability etc.
- In addition, while striving to maintain the highest standards of mitigation and monitoring as well as the commissioning of a highly detailed pre-construction micro siting assessment, developments such as the Roos SEF should be encouraged within designated areas.
- The roosting of Martial Eagles and the foraging of Secretarybirds is of some concern.
- Avoidance mitigation must be implemented in conjunction with the aforementioned micro siting as well as technological applications such as perch diverters, flappers and possibly taping over solar panels in the case of Lake Effect impacts. Thus, the author will look to support Environmental Authorisation (EA) based upon the following conditions:
 - All recommended No-Go buffering must be strictly adhered to;

- Micro siting of panel placement must occur prior to construction and should be supervised by a specialist zoologist in order to mitigate habitat loss and collision risks for species;
- o All recommended mitigation measures described above must be applied;
- The EMPr must be updated every three years in order to reevaluate the potential distributional population changes of species such as Martial Eagles and Southern Crowned Cranes Thus, technological mitigations such as monitoring, flapper and diverter technology may have to be re-positioned, recalibrated and updated.

8.1.2 Cumulative Impact Summary

Since the immediate area comprising approved or pending SEFs are expected to cumulatively result in a Moderate impact significance to avifauna after the application of the recommended mitigation measures, and since the combined area will likely contribute moderately to the total land area in the region transformed by renewable energy projects, it is recommended that the development may proceed on condition that:

- All mitigation measures stipulated above are adhered to and captured in an Environmental Management Plan (EMP);
- The EMP must include the necessity for post-construction avifauna monitoring as stipulated in Jenkins *et al.*, (2015);
- All updated mitigation recommendations issued post-construction (informed by monitoring) must be adhered to.

Ultimately, the specialist recommends that the project be given a positive authorisation based upon the avifaunal baseline and Environmental Impact Assessment.

9 REFERENCES

BirdLife International. 2020. *Polemaetus bellicosus*. *The IUCN Red List of Threatened Species* 2020: e.T22696116A172287822. <u>https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22696116A172287822.en</u>.

BirdLife International (2021^a) Important Bird Areas factsheet: Bitterputs Conservation Area. Downloaded from <u>http://www.birdlife.org</u>.

BirdLife International (2021^b) Species factsheet: Calendulauda burra. Downloaded from http://www.birdlife.org.

BirdLife International (2021°) Species factsheet: Polemaetus bellicosus. Downloaded from http://www.birdlife.org

Del Hoyo, J., Elliott, A. AND Sargatal, J. 1992. Handbook of the birds of the world. 1992 – 2011 editions, Lynx Editions, Barcelona.

Drewitt, A.L. and Langston, R.H., 2006. Assessing the impacts of wind farms on birds. Ibis, 148, pp.29-42.

Gartman, V., Bulling, L., Dahmen, M., Geißler, G., & Köppel, J. (2016a). Mitigation measures for wildlife in wind energy development, consolidating the state of knowledge—part 1: planning and siting, construction. *Journal of Environmental Assessment Policy and Management*, 18(03), 1650013.

Gill, F. & Donsker, D. (Eds). 2019. IOC World Bird List (v9.2). doi: 10.14344/IOC.ML.9.2.

Harebottle, D.M, and Harrison, J.A. 1999. Coordinated Waterbird Counts (CWAC): Guidelines for the completion of the Site Data Collection Form. <u>http://cwac.birdmap.africa/forms.php</u>

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V., & Brown, C.J. (eds). (1997) *The Atlas of Southern African Birds*. BirdLife South Africa, Johannesburg.

Hockey P., Dean, W., Ryan, P., Maree S. & Brickman, B. (2005). *Roberts - Birds of Southern Africa* 7th ed. Trustees of the John Voelcker Bird Book Fun/ Africa Geographic Books. 1296 p.

Holness, S. & Oosthuysen, E. 2016. Critical Biodiversity Areas of the Northern Cape: Technical Report. DENC, Springbok.

IUCN. (2022) The IUCN Red List of Threatened Species. http://www.iucnredlist.org.

Jenkins, A.R., van Rooyen, C.S., Smallie, J.J., Harrison, J.A., Diamond, M., Smit-Robinson, H.A. & Ralston, S. (2015) *Best-Practice Guidelines for Assessing and Monitoring the Impact of Wind-Energy Facilities on Birds in Southern Africa*.

Malan, G. (2009) *Raptor Survey and Monitoring – a Field Guide for African Birds of Prey*. Briza Publications, Pretoria, South Africa.

Marnewick, M., Retief, E., Theron, N., Wright, D., & Anderson, T. (2015). Important Bird and Biodiversity Areas of South Africa. BirdLife South Africa. Johannesburg.

Mucina, L. & Rutherford, M.C. (eds). (2006, as amended). *The Vegetation of South Africa, Lesotho and Swaziland*. South African National Biodiversity Institute, Pretoria.

Ralston-Paton, S. (2017). Verreauxs' Eagle and Wind Farms: Guidelines for impact assessment, monitoring, and mitigation.

BirdLife South Africa Occasional papers, Johannesburg.

Ralston-Paton, S., Smallie J., Pearson A., and Ramalho R. (2017). Wind energy's impacts on birds in South Africa: A preliminary review of the results of operational monitoring at the first wind farms of the Renewable Energy Independent Power Producer Procurement Programme in South Africa. BirdLife South Africa Occasional Report Series No. 2. BirdLife South Africa, Johannesburg, South Africa.

Retief, E.F., Diamond, M., Anderson, M.D., Smit, H.A., Jenkins, A., Brooks, M. & Simmons, R. (2012). Avian Wind Farm Sensitivity Map for South Africa.

SABAP2 (South African Bird Atlas Project) (2021). Visited April 2021. http://vmus.adu.org.za/

Sinclair, I. & Ryan, P. 2010. Birds of Africa south of the Sahara: a comprehensive illustrative field guide. 2nd Ed. Struik Publishers. Cape Town.

South African National Biodiversity Institute. (2018) Beta Vegetation Map of South Africa, Lesotho and Swaziland (File Geodatabase) [File geodatabase] 2018. Available from the Biodiversity GIS website (http://bgis.sanbi.org/SpatialDataset/Detail/670).

Sutherland, W.J. 2006 Ecological Census Techniques: A Handbook. Cambridge University Press, New Jork.

Szurlej-Kielanska A, Pilacka LA (2022) Sustainable development of green energy-automated bird protection at wind farms. Glob J Zool 7(1): 019-023. DOI: https://dx.doi.org/10.17352/gjz.000024

Taylor, M.R., Peacock, F. & Wanless, R.M. (eds). (2015). *The 2015 Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland*. BirdLife South Africa, Johannesburg, South Africa.

Van Rooyen, C.(2020). Avifaunal operational monitoring at the Khobab Wind Farm: Year 1& 2. Chris Van Rooyen Consulting.

Young, D.J., Harrison, J., Navarro, R.A., Anderson, M.A. & Colahan, B.D. (eds). (2003) Big Birds on Farms: Mazda CAR Report 1993-2001. Avian Demography Unit, Cape Town. Young, D.J., Harrison, J., Navarro, R.A., Anderson, M.A. & Colahan, B.D. (eds). (2003) Big Birds on Farms: Mazda CAR Report 1993-2001. Avian Demography Unit, Cape Town.

10 APPENDIX

10.1 APPENDIX 1: EXPECTED AVIFAUNA SPECIES LIST

Avifauna recorded and predicted to potentially occur within the PA according to SABAP2.

English IOC Name	Scientific Name	Observed in SABAP2 Data	Observed on Site
Bokmakierie	Telophorus zeylonus	YES	YES
Hamerkop	Scopus umbretta	YES	NO
Mallard	Anas platyrhynchos	YES	NO
Neddicky	Cisticola fulvicapilla	YES	NO
Quailfinch	Ortygospiza atricollis	YES	YES
Ruff	Calidris pugnax	YES	NO
Secretarybird	Sagittarius serpentarius	YES	YES
Bar-throated Apalis	Apalis thoracica	YES	NO
Pied Avocet	Recurvirostra avosetta	YES	NO
Arrow-marked Babbler	Turdoides jardineii	YES	NO
Black-collared Barbet	Lybius torquatus	YES	NO
Crested Barbet	Trachyphonus vaillantii	YES	NO
Chinspot Batis	Batis molitor	YES	NO
European Bee-eater	Merops apiaster	YES	NO
White-fronted Bee-eater	Merops bullockoides	YES	NO
Southern Red Bishop	Euplectes orix	YES	YES
Yellow Bishop	Euplectes capensis	YES	NO
Yellow-crowned Bishop	Euplectes afer	YES	YES
Southern Boubou	Laniarius ferrugineus	YES	NO
Dark-capped Bulbul	Pycnonotus tricolor	YES	YES
Cape Bunting	Emberiza capensis	YES	NO
Cinnamon-breasted Bunting	Emberiza tahapisi	YES	NO
Golden-breasted Bunting	Emberiza flaviventris	YES	NO
Grey-headed Bushshrike	Malaconotus blanchoti	YES	NO
White-bellied Bustard	Eupodotis senegalensis	YES	NO
Common Buttonquail	Turnix sylvaticus	YES	NO
Common Buzzard	Buteo buteo	YES	YES
Jackal Buzzard	Buteo rufofuscus	YES	YES
Black-throated Canary	Crithagra atrogularis	YES	YES
Cape Canary	Serinus canicollis	YES	YES
Yellow Canary	Crithagra flaviventris	YES	NO
Yellow-fronted Canary	Crithagra mozambica	YES	YES

Ant-eating Chat	Myrmecocichla formicivora	YES	YES
Buff-streaked Chat	Campicoloides bifasciatus	YES	NO
Familiar Chat	Oenanthe familiaris	YES	NO
	Thamnolaea	120	No
Mocking Cliff Chat	cinnamomeiventris	YES	NO
Cloud Cisticola	Cisticola textrix	YES	NO
Lazy Cisticola	Cisticola aberrans	YES	NO
Levaillant's Cisticola	Cisticola tinniens	YES	YES
Pale-crowned Cisticola	Cisticola cinnamomeus	YES	NO
Rattling Cisticola	Cisticola chiniana	YES	YES
Wailing Cisticola	Cisticola lais	YES	NO
Wing-snapping Cisticola	Cisticola ayresii	YES	YES
Zitting Cisticola	Cisticola juncidis	YES	YES
Red-knobbed Coot	Fulica cristata	YES	NO
Reed Cormorant	Microcarbo africanus	YES	YES
White-breasted Cormorant	Phalacrocorax lucidus	YES	NO
Burchell's Coucal	Centropus burchellii	YES	NO
Black Crake	Zapornia flavirostra	YES	NO
Blue Crane	Grus paradisea	YES	NO
Grey Crowned Crane	Balearica regulorum	YES	NO
Long-billed Crombec	Sylvietta rufescens	YES	NO
Cape Crow	Corvus capensis	YES	NO
Pied Crow	Corvus albus	YES	YES
Black Cuckoo	Cuculus clamosus	YES	NO
Diederik Cuckoo	Chrysococcyx caprius	YES	NO
Klaas's Cuckoo	Chrysococcyx klaas	YES	NO
Red-chested Cuckoo	Cuculus solitarius	YES	NO
African Darter	Anhinga rufa	YES	NO
Cape Turtle Dove	Streptopelia capicola	YES	YES
Emerald-spotted Wood Dove	Turtur chalcospilos	YES	NO
Laughing Dove	Spilopelia senegalensis	YES	YES
Namaqua Dove	Oena capensis	YES	YES
Red-eyed Dove	Streptopelia semitorquata	YES	YES
Rock Dove	Columba livia	YES	NO
Fork-tailed Drongo	Dicrurus adsimilis	YES	NO
African Black Duck	Anas sparsa	YES	NO
Fulvous Whistling Duck	Dendrocygna bicolor	YES	NO
Knob-billed Duck	Sarkidiornis melanotos	YES	NO
Maccoa Duck	Oxyura maccoa	YES	NO

White-backed Duck	Thalassornis leuconotus	YES	YES
White-faced Whistling Duck	Dendrocygna viduata	YES	NO
Yellow-billed Duck	Anas undulata	YES	YES
African Fish Eagle	Haliaeetus vocifer	YES	NO
Black-chested Snake Eagle	Circaetus pectoralis	YES	YES
Brown Snake Eagle	Circaetus cinereus	YES	YES
Long-crested Eagle	Lophaetus occipitalis	YES	YES
Martial Eagle	Polemaetus bellicosus	NO	NO
Verreaux's Eagle	Aquila verreauxii	NO	NO
Spotted Eagle-Owl	Bubo africanus	YES	NO
Great Egret	Ardea alba	YES	NO
Intermediate Egret	Ardea intermedia	YES	YES
Little Egret	Egretta garzetta	YES	YES
Western Cattle Egret	Bubulcus ibis	YES	NO
Amur Falcon	Falco amurensis	YES	NO
Lanner Falcon	Falco biarmicus	YES	NO
Peregrine Falcon	Falco peregrinus	YES	NO
Cuckoo Finch	Anomalospiza imberbis	YES	NO
Red-headed Finch	Amadina erythrocephala	YES	NO
Red-billed Firefinch	Lagonosticta senegala	YES	NO
Southern Fiscal	Lanius collaris	YES	YES
Greater Flamingo	Phoenicopterus roseus	YES	NO
Lesser Flamingo	Phoeniconaias minor	YES	NO
Red-chested Flufftail	Sarothrura rufa	YES	NO
African Paradise Flycatcher	Terpsiphone viridis	YES	NO
Fiscal Flycatcher	Melaenornis silens	YES	YES
Spotted Flycatcher	Muscicapa striata	YES	NO
Coqui Francolin	Peliperdix coqui	YES	NO
Grey-winged Francolin	Scleroptila afra	YES	NO
Red-winged Francolin	Scleroptila levaillantii	YES	YES
Domestic Goose	Anser anser	YES	NO
Egyptian Goose	Alopochen aegyptiaca	YES	YES
Spur-winged Goose	Plectropterus gambensis	YES	NO
African Goshawk	Accipiter tachiro	YES	NO
Cape Grassbird	Sphenoeacus afer	YES	NO
Black-necked Grebe	Podiceps nigricollis	YES	NO
Great Crested Grebe	Podiceps cristatus	YES	NO
Little Grebe	Tachybaptus ruficollis	YES	NO
Common Greenshank	Tringa nebularia	YES	NO

Helmeted Guineafowl	Numida meleagris	YES	YES
Grey-headed Gull	Chroicocephalus cirrocephalus	YES	NO
African Marsh Harrier	Circus ranivorus	YES	NO
Montagu's Harrier	Circus pygargus	YES	NO
African Harrier-Hawk	Polyboroides typus	YES	YES
Black Heron	Egretta ardesiaca	YES	NO
Black-crowned Night Heron	Nycticorax nycticorax	YES	NO
Black-headed Heron	Ardea melanocephala	YES	YES
Goliath Heron	Ardea goliath	YES	NO
Grey Heron	Ardea cinerea	YES	YES
Purple Heron	Ardea purpurea	YES	YES
Squacco Heron	Ardeola ralloides	YES	NO
Brown-backed Honeybird	Prodotiscus regulus	YES	NO
Greater Honeyguide	Indicator indicator	YES	NO
African Hoopoe	Upupa africana	YES	NO
African Sacred Ibis	Threskiornis aethiopicus	YES	NO
Glossy Ibis	Plegadis falcinellus	YES	NO
Hadada Ibis	Bostrychia hagedash	YES	NO
Southern Bald Ibis	Geronticus calvus	YES	YES
African Jacana	Actophilornis africanus	YES	NO
Greater Kestrel	Falco rupicoloides	YES	NO
Lesser Kestrel	Falco naumanni	YES	NO
Rock Kestrel	Falco rupicolus	YES	NO
African Pygmy Kingfisher	Ispidina picta	YES	NO
Brown-hooded Kingfisher	Halcyon albiventris	YES	YES
Giant Kingfisher	Megaceryle maxima	YES	NO
Malachite Kingfisher	Corythornis cristatus	YES	NO
Pied Kingfisher	Ceryle rudis	YES	NO
Black-winged Kite	Elanus caeruleus	YES	YES
Yellow-billed Kite	Milvus aegyptius	YES	NO
Blue Korhaan	Eupodotis caerulescens	YES	NO
Northern Black Korhaan	Afrotis afraoides	YES	NO
African Wattled Lapwing	Vanellus senegallus	YES	NO
Black-winged Lapwing	Vanellus melanopterus	YES	NO
Blacksmith Lapwing	Vanellus armatus	YES	NO
Crowned Lapwing	Vanellus coronatus	YES	YES
Eastern Clapper Lark	Mirafra fasciolata	YES	NO
Eastern Long-billed Lark	Certhilauda semitorquata	YES	NO
Red-capped Lark	Calandrella cinerea	YES	YES

Rufous-naped Lark	Mirafra africana	YES	YES
Sabota Lark	Calendulauda sabota	YES	NO
Spike-heeled Lark	Chersomanes albofasciata	YES	YES
Cape Longclaw	Macronyx capensis	YES	YES
Bronze Mannikin	Spermestes cucullata	YES	NO
Banded Martin	Riparia cincta	YES	NO
Brown-throated Martin	Riparia paludicola	YES	YES
Common House Martin	Delichon urbicum	YES	YES
Rock Martin	Ptyonoprogne fuligula	YES	YES
Common Moorhen	Gallinula chloropus	YES	YES
Red-faced Mousebird	Urocolius indicus	YES	NO
Speckled Mousebird	Colius striatus	YES	YES
Common Myna	Acridotheres tristis	YES	NO
Fiery-necked Nightjar	Caprimulgus pectoralis	YES	NO
Freckled Nightjar	Caprimulgus tristigma	YES	NO
Rufous-cheeked Nightjar	Caprimulgus rufigena	YES	NO
Black-headed Oriole	Oriolus larvatus	YES	NO
Common Ostrich	Struthio camelus	YES	NO
Marsh Owl	Asio capensis	YES	NO
Western Barn Owl	Tyto alba	YES	NO
Red Phalarope	Phalaropus fulicarius	YES	NO
African Olive Pigeon	Columba arquatrix	YES	NO
Speckled Pigeon	Columba guinea	YES	YES
African Pipit	Anthus cinnamomeus	YES	YES
Buffy Pipit	Anthus vaalensis	YES	NO
Nicholson's Pipit	Anthus nicholsoni	YES	NO
Plain-backed Pipit	Anthus leucophrys	YES	NO
Common Ringed Plover	Charadrius hiaticula	YES	NO
Kittlitz's Plover	Charadrius pecuarius	YES	NO
Three-banded Plover	Charadrius tricollaris	YES	NO
Southern Pochard	Netta erythrophthalma	YES	NO
Black-chested Prinia	Prinia flavicans	YES	YES
Drakensberg Prinia	Prinia hypoxantha	YES	NO
Tawny-flanked Prinia	Prinia subflava	YES	YES
Black-backed Puffback	Dryoscopus cubla	YES	NO
Common Quail	Coturnix coturnix	YES	NO
Red-billed Quelea	Quelea quelea	YES	YES
African Rail	Rallus caerulescens	YES	NO
Cape Robin-Chat	Cossypha caffra	YES	NO

European Roller	Coracias garrulus	YES	NO
Lilac-breasted Roller	Coracias caudatus	YES	NO
Common Sandpiper	Actitis hypoleucos	YES	YES
Curlew Sandpiper	Calidris ferruginea	YES	NO
Marsh Sandpiper	Tringa stagnatilis	YES	NO
Wood Sandpiper	Tringa glareola	YES	NO
Black (Southern Africa) Saw-wing	Psalidoprocne pristoptera holomelas	YES	NO
Streaky-headed Seedeater	Crithagra gularis	YES	NO
South African Shelduck	Tadorna cana	YES	NO
Cape Shoveler	Spatula smithii	YES	NO
Lesser Grey Shrike	Lanius minor	YES	NO
Red-backed Shrike	Lanius collurio	YES	NO
African Snipe	Gallinago nigripennis	YES	YES
Cape Sparrow	Passer melanurus	YES	YES
House Sparrow	Passer domesticus	YES	NO
Southern Grey-headed Sparrow	Passer diffusus	YES	YES
	Plocepasser mahali	YES	YES
White-browed Sparrow-Weaver	1	YES	NO
Black Sparrowhawk	Accipiter melanoleucus		
Rufous-breasted Sparrowhawk	Accipiter rufiventris	YES	NO
African Spoonbill	Platalea alba	YES	NO
Natal Spurfowl	Pternistis natalensis	YES	NO
Swainson's Spurfowl	Pternistis swainsonii	YES	YES
Cape Starling	Lamprotornis nitens	YES	NO
Pied Starling	Lamprotornis bicolor	YES	YES
Red-winged Starling	Onychognathus morio	YES	NO
Violet-backed Starling	Cinnyricinclus leucogaster	YES	NO
Wattled Starling	Creatophora cinerea	YES	NO
Black-winged Stilt	Himantopus himantopus	YES	NO
Little Stint	Calidris minuta	YES	NO
African Stonechat	Saxicola torquatus	YES	YES
Abdim's Stork	Ciconia abdimii	YES	NO
Black Stork	Ciconia nigra	YES	NO
White Stork	Ciconia ciconia	YES	YES
Yellow-billed Stork	Mycteria ibis	YES	NO
Amethyst Sunbird	Chalcomitra amethystina	YES	NO
Greater Double-collared Sunbird	Cinnyris afer	YES	NO
Malachite Sunbird	Nectarinia famosa	YES	NO
White-bellied Sunbird	Cinnyris talatala	YES	NO

Barn Swallow	Hirundo rustica	YES	YES
Greater Striped Swallow	Cecropis cucullata	YES	YES
Lesser Striped Swallow	Cecropis abyssinica	YES	YES
Pearl-breasted Swallow	Hirundo dimidiata	YES	NO
Red-breasted Swallow	Cecropis semirufa	YES	NO
South African Cliff Swallow	Petrochelidon spilodera	YES	NO
White-throated Swallow	Hirundo albigularis	YES	NO
African Swamphen	Porphyrio madagascariensis	YES	NO
African Black Swift	Apus barbatus	YES	NO
African Palm Swift	Cypsiurus parvus	YES	YES
Alpine Swift	Tachymarptis melba	YES	NO
Common Swift	Apus apus	YES	YES
Horus Swift	Apus horus	YES	NO
Little Swift	Apus affinis	YES	YES
White-rumped Swift	Apus caffer	YES	YES
Black-crowned Tchagra	Tchagra senegalus	YES	NO
Blue-billed Teal	Spatula hottentota	YES	NO
Cape Teal	Anas capensis	YES	NO
Red-billed Teal	Anas erythrorhyncha	YES	NO
Whiskered Tern	Chlidonias hybrida	YES	NO
White-winged Tern	Chlidonias leucopterus	YES	NO
Spotted Thick-knee	Burhinus capensis	YES	YES
Cape Rock Thrush	Monticola rupestris	YES	NO
Groundscraper Thrush	Turdus litsitsirupa	YES	NO
Karoo Thrush	Turdus smithi	YES	NO
Kurrichane Thrush	Turdus libonyana	YES	NO
Olive Thrush	Turdus olivaceus	YES	NO
Southern Black Tit	Melaniparus niger	YES	NO
Cape Vulture	Gyps coprotheres	YES	NO
African Pied Wagtail	Motacilla aguimp	YES	NO
Cape Wagtail	Motacilla capensis	YES	YES
African Reed (Old, Use Common Reed Warbler) Warbler	Aaraaanhalua haatiaatua	YES	NO
African Yellow Warbler	Acrocephalus baeticatus Iduna natalensis	YES	NO
Great Reed Warbler		YES	NO
	Acrocephalus arundinaceus	YES	NO
Lesser Swamp Warbler Little Rush Warbler	Acrocephalus gracilirostris	YES	NO
Willow Warbler	Bradypterus baboecala	YES	NO
Blue Waxbill	Phylloscopus trochilus	YES	NO
	Uraeginthus angolensis	IEO	NU

Common Waxbill	Estrilda astrild	YES	YES
Orange-breasted Waxbill	Amandava subflava	YES	YES
Swee Waxbill	Coccopygia melanotis	YES	NO
Cape Weaver	Ploceus capensis	YES	NO
Southern Masked Weaver	Ploceus velatus	YES	YES
Thick-billed Weaver	Amblyospiza albifrons	YES	NO
Village Weaver	Ploceus cucullatus	YES	NO
Capped Wheatear	Oenanthe pileata	YES	YES
Mountain Wheatear	Myrmecocichla monticola	YES	NO
Cape White-eye	Zosterops virens	YES	NO
Long-tailed Paradise Whydah	Vidua paradisaea	YES	NO
Pin-tailed Whydah	Vidua paradisaea Vidua macroura	YES	YES
Fan-tailed Widowbird		YES	NO
	Euplectes axillaris		
Long-tailed Widowbird	Euplectes progne	YES	YES
Red-collared Widowbird	Euplectes ardens	YES	YES
White-winged Widowbird	Euplectes albonotatus	YES	YES
Green Wood Hoopoe	Phoeniculus purpureus	YES	NO
Cardinal Woodpecker	Dendropicos fuscescens	YES	NO
Red-throated Wryneck	Jynx ruficollis	YES	YES

10.2 APPENDIX 2: NON-PRIORITY SPECIES CONTACT DATA PER SEASON

		Seas	on	
English IOC Name	Scientific Name	Summer	Winter	Grand Total
African Palm Swift	Cypsiurus parvus	2		2
African Pipit	Anthus cinnamomeus	21	2	23
African Stonechat	Saxicola torquatus	4	49	53
Ant-eating Chat	Myrmecocichla formicivora	17	34	51
Barn Swallow	Hirundo rustica	15		15
Black-chested Prinia	Prinia flavicans		4	4
Black-throated Canary	Crithagra atrogularis		5	5
Bokmakierie	Telophorus zeylonus	2	8	10
Bronze Mannikin	Lonchura cucullata	25		25
Brown-hooded Kingfisher	Halcyon albiventris	1		1
Brown-throated Martin	Riparia paludicola	30		30
Cape Canary	Serinus canicollis		16	16
Cape Longclaw	Macronyx capensis	21	68	89
Cape Sparrow	Passer melanurus		12	12
Cape Wagtail	Motacilla capensis		6	6
Capped Wheatear	Oenanthe pileata		3	3
Common House Martin	Delichon urbicum	15		15
Common Swift	Apus apus	172		172
Dark-capped Bulbul	Pycnonotus tricolor		7	7
Fiscal Flycatcher	Melaenornis silens		2	2
Greater Striped Swallow	Cecropis cucullata	33		33
Laughing Dove	Spilopelia senegalensis	19		19
Lesser Striped Swallow	Cecropis abyssinica	50		50
Little Swift	Apus affinis	25		25
Long-tailed Widowbird	Euplectes progne	51	25	76
Monotonous Lark	Mirafra passerina	3	20	3
Namaqua Dove	Oena capensis	Ū	1	1
Orange-breasted Waxbill	Amandava subflava		18	18
Pied Starling	Lamprotornis bicolor	10	1	11
Pin-tailed Whydah	Vidua macroura	1		1
Quailfinch	Ortygospiza atricollis		1	1
Rattling Cisticola	Cisticola chiniana	4		4
Red-billed Quelea	Quelea guelea	т	220	220
Red-capped Lark	Calandrella cinerea		8	8
Red-throated Wryneck	Jynx ruficollis		1	1
Ring-necked Dove	Streptopelia capicola	26	15	41
Rock Martin	Ptyonoprogne fuligula	20	2	2
Rufous-naped Lark	Mirafra africana	3	2	3
Southern Fiscal	Lanius collaris	2	34	36
Southern Grey-headed Sparrow	Passer diffusus	2	34 4	30 4
Southern Masked Weaver	Ploceus velatus		4 23	4 23
	Colius striatus		23 10	23 10
Speckled Mousebird				
Spike-heeled Lark	Chersomanes albofasciata		4	4

Grand Total	49	597	606	1203
Yellow-fronted Canary	Crithagra mozambica	24	4	28
Wing-snapping Cisticola	Cisticola ayresii		5	5
White-winged Widowbird	Euplectes albonotatus	2	8	10
White-rumped Swift	Apus caffer	15		15
White-browed Sparrow-Weaver	Plocepasser mahali		2	2
Tawny-flanked Prinia	Prinia subflava	4	4	8

10.3 APPENDIX 4: SACNASP QUALIFICATION

South African Council for Na		P
herewith ce	rtifies that	
Samuel Davi	d Laurence	
Registration Num		
is a register	ea scientist	
in terms of section 20(3) of the Natu (Act 27 of in the following fields(s) of pra Ecological Science (Profe Zoological Science (Profe	of 2003) actice (Schedule 1 c ssional Natural Scient	of the Act)
Effective 20 November 2013	Expires	31 March 2023
that.		~~~~
toround		utive Officer

