

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

Groundwater Report

Project Number: SAS3869

Prepared for: Sasol Mining (Pty) Ltd

January 2018

Digby Wells and Associates (South Africa) (Pty) Ltd Co. Reg. No. 2010/008577/07. Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191. Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 069 6801, info@digbywells.com, www.digbywells.com

Directors: GE Trusler (C.E.O), GB Beringer, LF Koeslag, J Leaver (Chairman)*, NA Mehlomakulu*, MJ Morifi*, DJ Otto, RA Williams* *Non-Executive

This document has been prepared by Digby Wells Environmental.

Report Type:	Groundwater Report
Project Name:	Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas
Project Code:	SAS3869

Name	Responsibility	Signature	Date		
Ayabonga Mpelwane	Report Writer	Ar.	24 January 2018		
Robel Gebrekristos	Reviewer	edas	24 January 2018		

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

EXECUTIVE SUMMARY

Digby Wells Environmental (hereafter Digby Wells) has been appointed by Sasol Mining (Pty) Ltd (hereafter Sasol) to undertake a Section 102 process in accordance with the Mineral and Petroleum Resources Development Act (MPRDA), in support of the required environmental authorisations required for four ventilation shafts, amendment of the Trichardtsfontein EMPR and the consolidation of the Twistdraai Colliery: Thubelisha Shaft EMPR, Vaalkop EMPR and the Trichardtsfontein EMPR. This groundwater report forms part of the environmental regulatory process to assess the potential impacts and mitigation plans pertaining to the groundwater environment during the construction (where this is found to be relevant), operation and closure phase of these mines.

High extraction mining using conventional bord-and-pillar mining followed by pillar extraction is currently being conducted at TCTS. Sasol proposes the same approach to be conducted at Trichardtsfontein and Vaalkop. Bord-and pillar extraction is associated with a risk of subsidence, however high extraction is susceptible to an even higher risk of subsidence. Subsidence poses a high risk to the groundwater environment due to fracturing of the overlying stratigraphy and increased geological permeability, increased groundwater recharge and increased contamination plume due to the disturbed area being larger.

Digby Wells conducted a hydrocensus (April 2017), and found that a total of 82 boreholes were located within the area of interest, with 19 being selected for local groundwater quality sampling and analysis. Groundwater was characterised as predominantly calcium-magnesium-bicarbonate type, consistent with previous investigations conducted at the project area. This indicates the occurrence of freshly recharged aquifers. The groundwater flow direction at the Olifants River Catchment, where the majority of the project area is located, is south-east to north-west. Minor portion of the project area are located in the Upper Vaal River Catchment and groundwater flows towards the south-west.

Digby Wells conducted slug tests at Trichardtsfontein (December 2013) to investigate the hydraulic conductivity of the shallow aquifers. The investigations concluded that hydraulic conductivity is approximately 0.05 m/d. On June 2017 slug tests were conducted by Digby Wells at Vaalkop the harmonic mean hydraulic conductivity of the aquifer was estimated at 0.06 m/d. The harmonic mean hydraulic conductivity of the aquifers at Thubelisha is estimated at 0.013 m/d (JMA, 2008).

The impact assessment, of the cone of depression and potential groundwater contamination plume as a result from the proposed mining activities, was conducted based on a numerical model which yielded the following findings:

The cone of depression predominantly impacts the deep fractured aquifer. The weathered aquifer is impacted to lesser extent in isolated areas from dewatering due to the low vertical and horizontal hydraulic conductivity of the local aquifers.

- During dewatering the mine void receives groundwater inflows. The model predicts inflows ranging from 1 to 98 L/s over the duration of 39 years of mining throughout the entire project area.
- Post operation when dewatering is discontinued the hydraulic head recovers and groundwater flow reverts to its natural groundwater flow direction, however the contamination plume is confined within the project area at 100 years post closure because of the low hydraulic conductivity of the deep fractured aquifer.
- Post operation when dewatering is discontinued the hydraulic head is expected to recover. No decant is expected at the shafts however subsidence, sinkholes and unsealed deep boreholes give rise to potential decant locations throughout the project area.
- Impacts from the cone of depression and contamination plume are predominantly contained in the project area and immediate surrounding, this is attributed to the deeper fractured aquifer (where most of coal seam is located) having characteristics of very low hydraulic conductivity.

The recommended mitigation plans during the construction phase include:

- Site clearing should be restricted to areas absolute necessity and the activity should be conducted over a short duration;
- Site clearance and construction activities should take place above the water table (if possible), as then no impact on the groundwater will be expected;
- If trenches are going to be excavated below the water level, dewatering of the aquifer to lower the water table locally should be considered to ensure that the construction takes place above the groundwater level.

The recommended mitigation plans during the operation phase include:

- Dewatering should be conducted by abstracting groundwater ingress into mine voids during operation;
- Nitrate-based explosives can contaminate water thus no underground water should be discharged unless it meets standards to minimise ground and surface water contamination;
- If subsidence occurs during operation, it should be rehabilitated as soon as possible to minimise water and oxygen inflow from the atmosphere, as these components enable AMD reactions;
- Mine safety factors should be such that subsidence is limited or planned for and managed;
- Contaminated mine water should be stored in pollution control dams.

The following mitigation and management measures are recommended with regards to subsidence:

- In order to prevent subsidence during the bord-and-pillar mining phase, it is required that a safety factor that provides sufficient pillar stability is applied;
- The mine should be monitored on an annual basis for subsidence and areas of subsidence should be rehabilitated by backfilling with waste rock and topsoil thereafter revegetated;
- If possible, concurrent backfilling of the mine voids with fly ash should be conducted to minimise the risk of subsidence and neutralise any acid that might be generated; and
- Groundwater level and quality monitoring should be conducted on quarterly basis during operation, with special attention given to the subsidence areas. The monitoring frequency can be reduced post-closure depending on the trend of the monitoring results.

During the closure/post-closure phase management solutions should be sought in agreement with the farmers or communities with impacted groundwater.

Recommended mitigation activities proposed for the construction, operational and closure phase include:

- Groundwater monitoring should be conducted to assess the time series water level, water quality impacts and to observe trends to aid decision making;
- Annual monitoring for subsidence and sinkhole formation is highly recommended, followed by rehabilitation if required and decant monitoring at unsealed deep boreholes (greater than 30 mbgl in depth);
- The mine working should be designed to be stable in the long term or where high extraction is planned in areas that these can be well managed in a sustainable fashion;
- During operation, the numerical model should be updated every two years in the first four years and thereafter every five years based on groundwater monitoring results and updated every 5 years to calibrate with monitoring results post closure.

TABLE OF CONTENTS

1	In	trodu	iction	1
	1.1	Pro	ject Background	1
	1.2	Sco	pe of Work	2
2	In	vesti	gation Methodology	3
	2.1	Des	sktop Study	3
	2.2	Hyc	Irocensus	3
	2.3	Slu	g Testing	5
3	Si	ite De	escription	5
	3.1	Site	e layout and Operation	5
	3.2	Clin	nate	. 10
	3.3	Тор	ography and Drainage	. 10
	3.4	Geo	ology	. 10
	3.4	4.1	Regional Geology	. 10
	3.4	4.2	Local Geology	. 11
	3.5	Bor	eholes	. 13
4	B	aselir	ne Hydrogeological Environment	.15
	4.1	Aqu	lifer Description	. 15
	4.2	Αqι	uifer Classification	. 15
	4.3	Rec	charge	. 16
	4.4	Αqι	uifer Hydraulic Parameters	. 16
	4.5	Gro	undwater Levels and Flow Directions	. 18
	4.6	Gro	undwater Quality	. 20
	4.6	6.1	Groundwater Quality at Vaalkop	. 20
	4.6	6.2	Groundwater Quality at Trichardtsfontein	. 22
	4.6	6.3	Groundwater Quality at Thubelisha	. 22
	4.7	Pot	ential Contaminant Sources	. 23
5	Ν	umer	ical Model	.26
	5.1	Ass	sumptions and Limitations	. 26

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

5.	2	Мос	del Setup	26
5.	3	Мос	del Calibration	28
6	Im	pact	Assessment and Management Planning	28
6.	1	Intro	oduction	28
6.	2	Proj	ject Activities Assessed	35
6.	3	Imp	act Assessment	35
	6.3.	1	Construction Phase	35
	6.3.	2	Operational Phase	38
	6.3.	3	Decommissioning and Post-Closure Phases	52
7	Сι	Imula	ative Impacts	61
8	Ur	plan	ned Events and Low Risks	63
9	Er	viror	nmental Management Plan	63
9.	1	Proj	ject Activities with Potentially Significant Impacts	64
9.	2	Sun	nmary of Mitigation and Management	64
9.	3	Mor	nitoring Plan	70
	9.3.	1	Water Level	74
	9.3.	2	Water Sampling and Preservation	74
	9.3.	3	Sampling Frequency	74
	9.3.	4	Parameters to be Monitored	74
	9.3.	5	Data Storage	74
10	Сс	onsul	tation Undertaken	75
11	Сс	onclu	sions and Recommendations	75
11	1.1	Bas	eline Findings	75
11	.2	Imp	act Assessment Findings	76
11	.3	Rec	commendations	76
12	Re	efere	nces	78

LIST OF FIGURES

Figure 3-1: Local Setting	6
Figure 3-2: Life of Mine	7
Figure 3-3: High extraction schedule	8
Figure 3-4: Infrastructure	9
Figure 3-5: Regional Geology	12
Figure 3-6: Local Geology	13
Figure 3-7: Borehole Locations	14
Figure 4-1: Slug Tested Boreholes	17
Figure 4-2: Undisturbed Groundwater Levels	19
Figure 4-3: Piper Diagram	20
Figure 4-4: Geochemical sample locations	25
Figure 5-1: Modelled Area	27
Figure 5-2: Model Calibration Results	28
Figure 6-1: Estimated groundwater inflow rates	39
Figure 6-2: High risk areas of subsidence	41
Figure 6-3: Contamination plume in the weathered aquifer at the end of operation	49
Figure 6-4: Contamination plume in the deep fractured aquifer at the end of operation	50
Figure 6-5: Cone of depression in the deep fractured aquifer at the end of operation	51
Figure 6-6: Contamination plume in the weathered aquifer 100 years post-closure	58
Figure 6-7: Contamination plume in the deep fractured aquifer 100 years post-closure	59
Figure 6-8: Potential decant locations	60
Figure 7-1: Cumulative Impacts	62
Figure 9-1: Proposed Groundwater Monitoring Boreholes	73

LIST OF TABLES

Table 4-1: Baseline water quality classified based on the SANS 241: 2015	21
Table 6-1: Impact assessment parameter ratings	30
Table 6-2: Probability/consequence matrix	33

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

Table 6-3: Significance rating description
Table 6-4: Description of activities to be assessed
Table 6-5: Interactions and impacts during the construction phase 36
Table 6-6: Potential Impacts during the Construction Phase 36
Table 6-7: Interactions and impacts during the operation phase 38
Table 6-8: Overview of estimated groundwater inflow rates 38
Table 6-9: Site specific estimated groundwater inflow rates 39
Table 6-10: Potential impacts of subsidence 44
Table 6-11: Potential dewatering impacts during the operational phase
Table 6-12: Potential impacts of contamination during the operational phase
Table 6-13: Interactions and Impacts during the Decommissioning and Post-Closure Phase
Table 6-14: Potential impacts of subsidence 53
Table 6-15: Potential impacts of groundwater contamination during the post-closure phase55
Table 6-16: Potential impacts of decant
Table 8-1: Unplanned events, low risks and their management measures 63
Table 9-1: Potentially significant impacts
Table 9-2: Impacts
Table 9-3: Objectives and Outcomes of the EMP
Table 9-4: Mitigation
Table 9-5: Prescribed Environmental Management Standards, Practice, Guideline, Policy or Law 69
Table 9-6: Recommended monitoring boreholes

LIST OF APPENDICES

Appendix A: Hydrocensus Results Appendix B: Laboratory Results

1 Introduction

Digby Wells Environmental (hereafter Digby Wells) has been appointed by Sasol Mining (Pty) Ltd (hereafter Sasol) to undertake a Section 102 process in accordance with the Minerals and Petroleum Resources Development Act (MPRDA), in support of the required environmental authorisations for the proposed Thubelisha Project.

The proposed project entails:

- The excavation of four ventilation shafts;
- Amendment of the Trichardtsfontein EMPR; and
- The consolidation of the Twistdraai Colliery: Thubelisha Shaft (hereafter TCTS) EMPR, Vaalkop EMPR and the Trichardtsfontein EMPR.

This groundwater report forms part of the environmental regulatory process to assess the potential impacts and mitigation plans pertaining to the groundwater environment during the construction (where this is found to be relevant), operation and closure phase of the mines.

1.1 **Project Background**

Sasol Mining (Pty) Ltd (Sasol Mining) holds mining rights for the Twistdraai Colliery: Thubelisha Shaft (TCTS) and the Vaalkop mining area, which were both incorporated into the regional Sasol Mining Right (Ref: MP30/5/1/2/2/138MR). It must be noted that no EMPr was compile for the Vaalkop mining right area even though a mining right was approved. Further to this, the mining right for the Trichardtsfontein Mine (Ref: MP30/5/1/2/2/10056MR) was ceded from Glencore Operations South Africa (Pty) Ltd in accordance with Section 11 of the Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002) (MPRDA) to Sasol Mining. Sasol Mining is proposing that the Trichardtsfontein mining right area be incorporated into the regional Sasol Mining Right (Ref: MP30/5/1/2/2/138MR). Therefore all mining right areas will operate under a single mining right (Sasol Mining Right).

It is therefore required that the Environmental Management Programme Reports (EMPrs) for the above mentioned mining right areas be compiled (Vaalkop), consolidated and updated to reflect changes in the mining plans and methodologies and consider additional infrastructure requirements.

The mining method which is currently being undertaken at TCTS includes bord and pillar mining method as well as high extraction mining in some areas. This mining method has also been proposed for Vaalkop. However, the mining method proposed for the extraction of coal at Trichardtsfontein only included the conventional bord-and-pillar method, with the use of continuous miners feeding shuttle cars.

Twistdraai Thubelisha is now proposing that in addition to the bord-and-pillar mining method, high extraction mining will be undertaken at the Trichardtsfontein Mine. Since this activity was excluded from the previous approved EMPr (2014), an amendment of the Trichardtsfontein EMPr is required to identify and assess the impacts associated with high

extraction mining, particularly relating to surface subsidence. Sasol Mining therefore undertook the required specialist studies to determine the impact that may be experienced from high extraction mining methods.

Bord-and pillar extraction is associated with a risk of subsidence, however high extraction is susceptible to an even higher risk of subsidence. Areas of high extraction potentially encounter the following impacts as a result of disturbance caused by subsidence:

- Fracturing of the overlying stratigraphy and;
- Increased geological permeability.

The groundwater environment is then subjected to the following:

- Increased groundwater recharge;
- Potential increase of decant rates; and
- Expansion of the contamination plume into the weathered aquifer in areas where it would have not been expected if there was no subsidence.

Additionally it is proposed that Twistdraai Thubelisha will construct two ventilation shafts at TCTS (known as East ventilation shaft) and two ventilation shafts on Trichardtsfontein (known as South ventilation shaft). A Listed activity under listing notice 1 is considered to be triggered in accordance with the new Environmental Impact Assessment (EIA) Regulations, 2014 (As amended) promulgated in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA) for the construction and operation of the ventilation shafts.

Digby Wells is therefore proposing a submission in terms of the provisions of Section 102 of the MPRDA and Regulation 31 of the EIA regulations, 2014 (as amended) promulgated in accordance with the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA) to obtain the required authorisation for both the amendment and consolidation process of the EMPrs (referred to in general as the Environmental Authorisation (EA) Amendment process). A basic assessment process will also be undertaken to obtain environmental authorisation for the construction and operation of the ventilation shafts. This will be undertaken as a consolidated process in accordance with the one environmental system.

1.2 Scope of Work

The overall scope of work for the Thubelisha Project is to consolidate groundwater studies of the TCTS EMPR, Vaalkop EMPR and the Trichardtsfontein EMPR, presenting the following outcomes:

- A description of the project area baseline conditions;
- Delineation of the radius of influence on groundwater levels as a result of mine dewatering;

- Calculate the volume of groundwater that may seep into mine workings during mining;
- Predict the long-term impact of the mining activities on groundwater quality;
- Identify the impact of mine dewatering on private groundwater users as well as rivers and streams (receptors);
- Predict the timing and location of decant from the underground workings post closure;
- Use the model outputs to rate potential groundwater impacts due to mining based on significance scoring before and after mitigation methods are implemented; and
- Recommend management measures to minimise impacts of the mine on the groundwater environment.

2 Investigation Methodology

2.1 Desktop Study

During this task, all available data for the project area was collected and reviewed. This included all geological and hydrogeological reports. Information cited in this report is based on the following groundwater reports:

- Digby Wells, 2014, Trichartsdfontien EIA/EMP DMR Directive Groundwater Study;
- JMA Consulting, 2008, Compilation of Geology and Groundwater Inputs for the Twistdraaai Colliery: Thubelisha Shaft; and
- Institute of Groundwater Studies, 2014, Acid-Base Accounting Report for Twistdraai Thubelisha Shaft;
- Institute of Groundwater Studies, 2016, Sasol Secunda Synfuels (SSO) Hub and Mining Pollution Plume Model.

2.2 Hydrocensus

A hydrocensus was conducted in April 2017, by Digby Wells. During the hydrocensus important data pertaining to the current groundwater conditions and use were collected. These include:

- Borehole locality;
- Owner and property details;
- Borehole depth;
- Rest water level;
- Borehole usage;
- Borehole status;

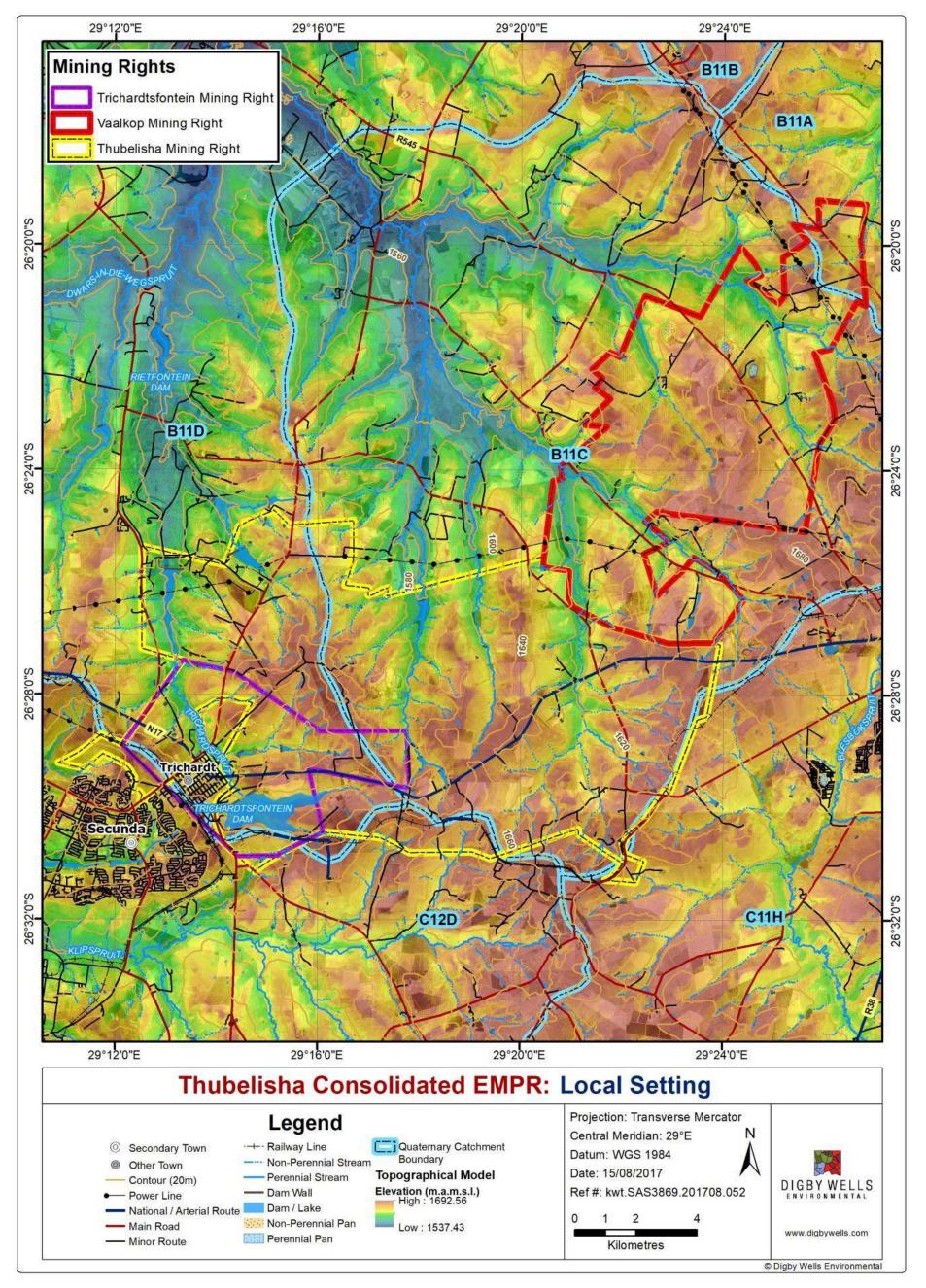
- Measurement of field parameters, including:
 - Electrical conductivity (EC);
 - Total Dissolved Solids (TDS); and
 - pH and temperature.

A total of 82 boreholes were identified (Appendix A), 19 of those boreholes considered to be representative of the area were selected for groundwater quality analysis and delivered to Aquatico Laboratories in Pretoria for analysis (results found in Appendix B).

2.3 Slug Testing

Digby Wells conducted slug tests in June 2017 on 5 boreholes at Vaalkop, to obtain hydraulic conductivity values for the local shallow aquifer. Slug test data analysis was conducted using the Flow Characteristic (FC) programme. The aquifer parameters calculated will assist in the characterisation of the aquifers and used as input parameters to the numerical model that will be part of the study.

3 Site Description


The project area is located in Mpumalanga Province, contained east of Secunda, west of Bethal and 17 km from Kriel along the south and south-east (Figure 3-1).

3.1 Site layout and Operation

The expected life of mine (LOM) for the mines (operations collectively) is 39 years, as shown in Figure 3-2, the proposed high extraction areas and schedule is shown in Figure 3-3. The infrastructure for the mines is presented in Figure 3-4.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

Figure 3-1: Local Setting

Groundwater Report Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

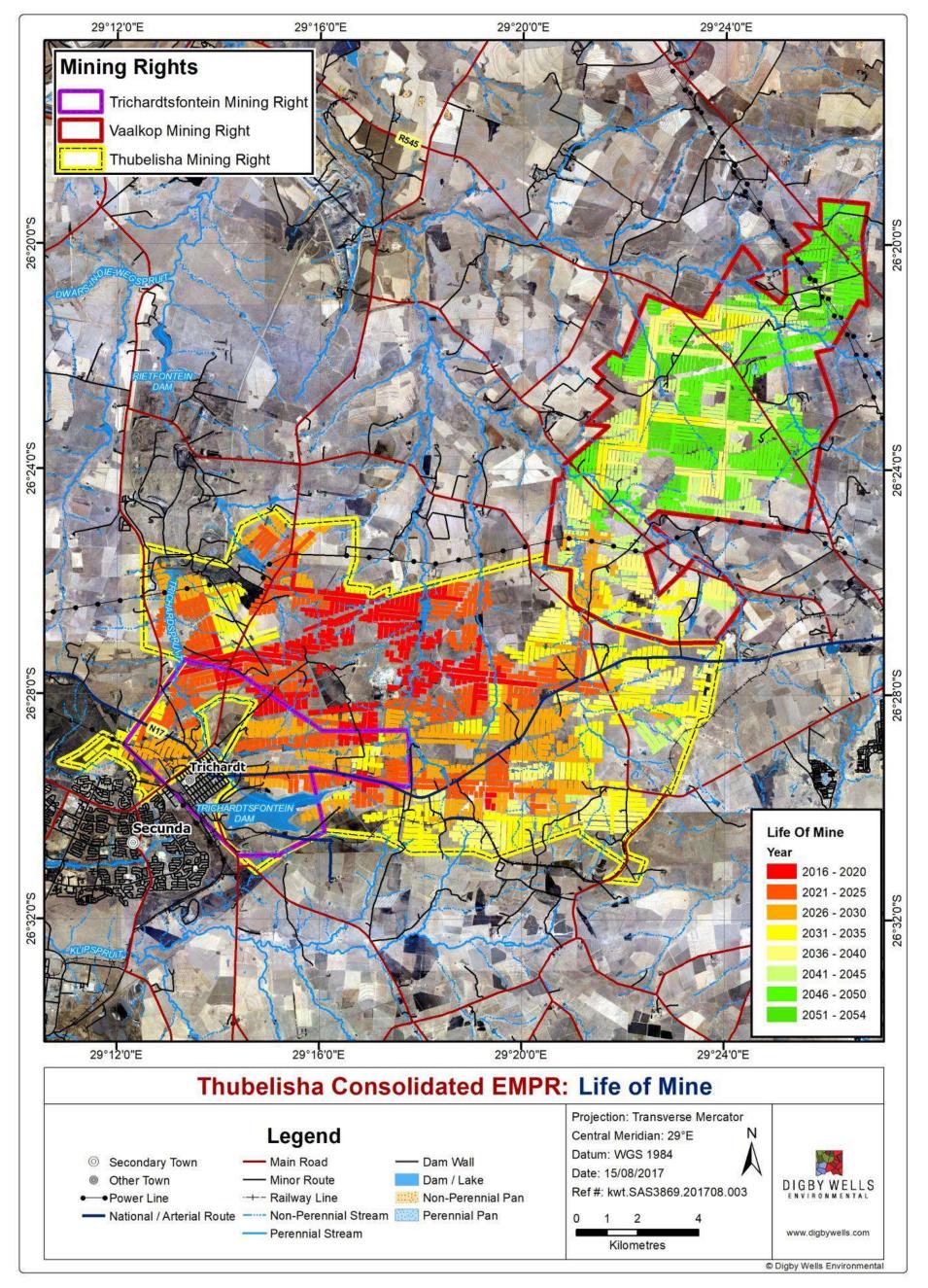


Figure 3-2: Life of Mine

Groundwater Report Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

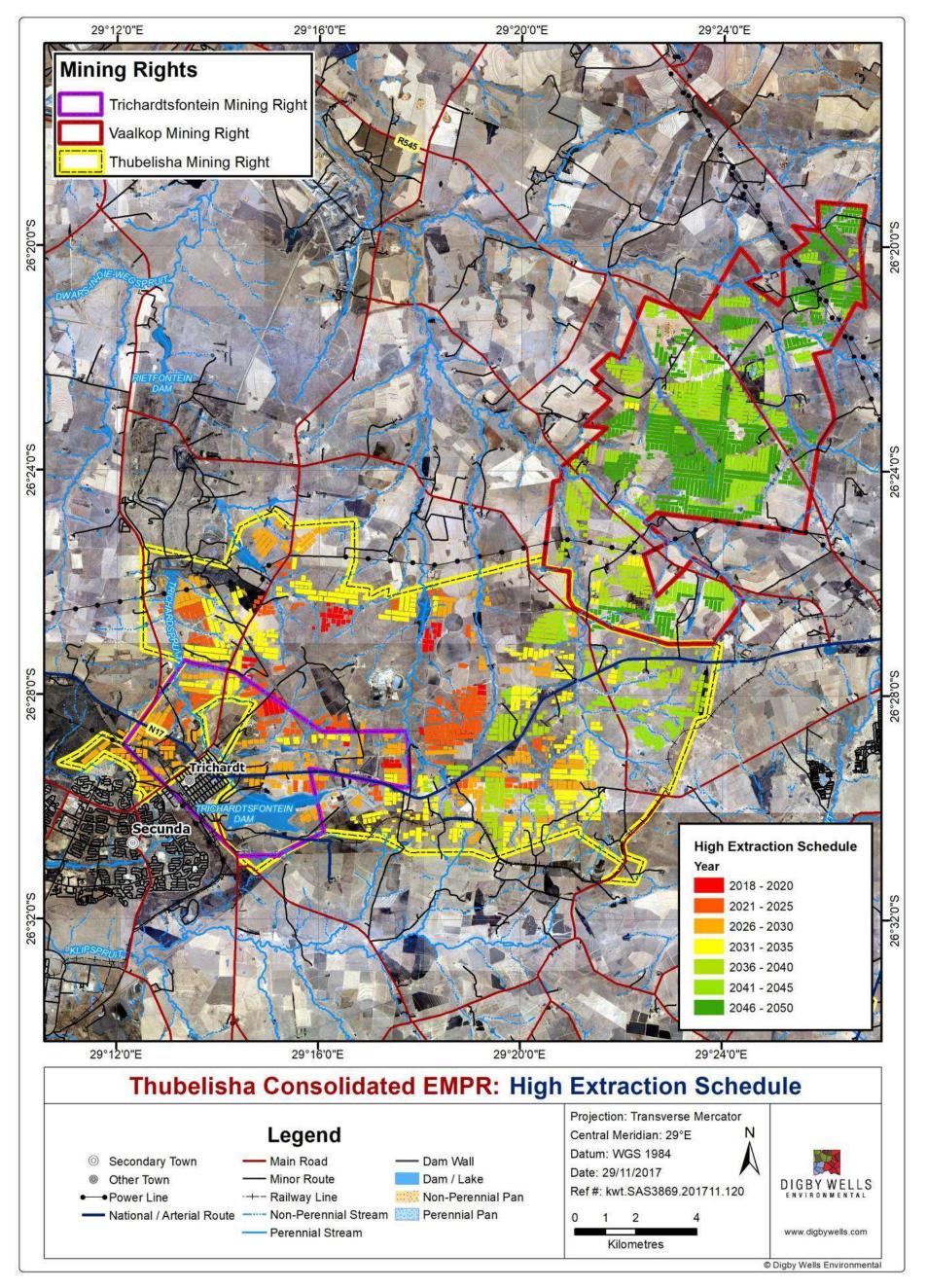


Figure 3-3: High extraction schedule

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

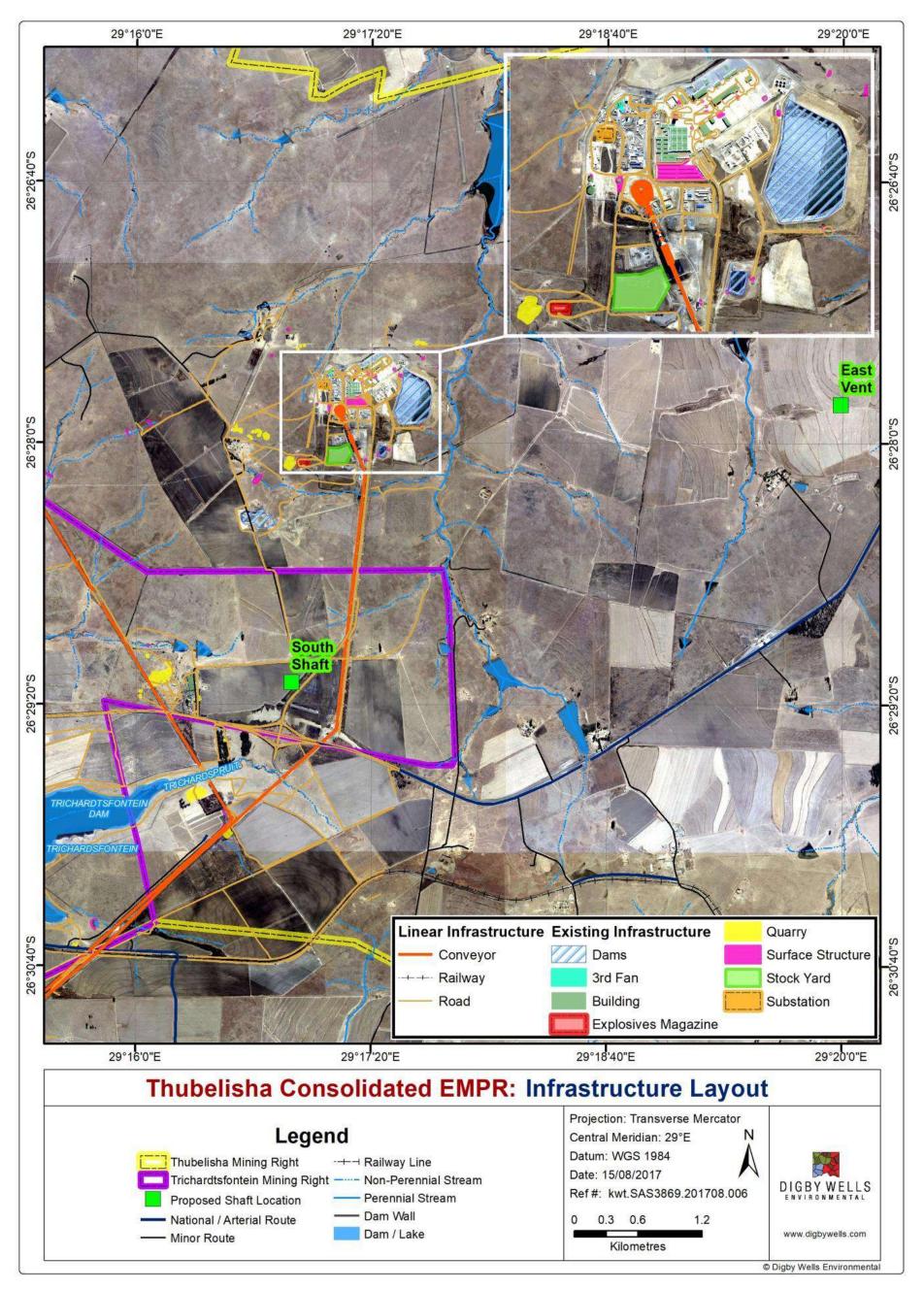


Figure 3-4: Infrastructure

3.2 Climate

Considering the extensive project area, climatic conditions are described according to the conditions found at Trichardtsfontein. The project area is situated in a summer rainfall region with an average annual rainfall ranging between 600 and 800 mm. Summer months are characterised by thunderstorms and majority of annual rainfall occurring between October and March, with maximum rainfall occurring in December. Winter months (June to August) are considerably dryer with minimal rainfall.

3.3 Topography and Drainage

The topography of these catchments consists of undulating hills and valleys, the elevation within the project area varies between 1685 mamsl to 1570 mamsl. Topographical highs occur along the north-east, south-east continuing along the south-west and topographical lows occur within the north-west. The nature of the topographic setting gives indication that the groundwater flow direction will predominantly be towards the north-west, with some localised flow in different directions due to surface water divides occurring in some parts of the project area.

The project area occurs largely within the Olifants River Catchment (in quaternary catchments B11A, B11C, B11D) with minor portions within the Upper Vaal River Catchment (in quaternary catchments C11H and C12D).

The main rivers draining the catchments are as follows:

- Olifants River Catchment: Elands, Wilge, Steelpoort and the Olifants River; and
- Upper Vaal River Catchment: Wilge, Liebenbergsvlei and Vaal River.

3.4 Geology

The geology at the project area is described according to an overview of the regional geology and more specific local geology found on site.

3.4.1 Regional Geology

The proposed project area's coal reserve falls within the north-eastern part of the Highveld Coalfield. The coalfield is underlain by pre-Karoo rocks, mainly Bushveld Complex and Pretoria Group volcanics. Glaciation events resulted in the deposition of tillite (Dwyka Formation) on the basement rocks over most of the area (Figure 3-5).

Within the Karoo Sedimentary Sequence, the Ecca Group superimposes the Dwyka Formation. The Dwyka Formation consists predominantly of tillite. The Ecca Group is the coal bearing geological formation; it consists predominantly of sandstone, siltstone, shale and coal.

The Ecca Group contains five bituminous coal seams, numbered 1-5 from bottom to top. Coal seam No. 4 and to a lesser degree No. 2 and No. 5 seams are the most economical coal seams in the Highveld Coalfield.

Overall, the coal seams follow the paleo-topography of the pre-Karoo rocks. This is especially applicable to the lower coal seams (No. 1 and No. 2), whereas the upper seams are less influenced by the pre-Karoo topography.

3.4.2 Local Geology

The local geology is defined according the geological investigation conducted at Trichardtsfontein by Digby Wells (2014). A typical stratigraphic column through the project area is shown in Figure 3-6. The stratigraphy is comprised of the No. 2, No. 3, No. 4L, No. 4H, No. 5L and the No. 5H coal seams, with sandstone and siltstone as inter-burden. Only No. 4 coal seam is economically viable to mine in the Trichardtsfontein area. The No. 5, No. 3 and No. 2 coal seams are currently considered uneconomical since they are too thin and erratic in distribution.

A presence of clay in the soil horizon is attributed to in-situ weathering of shallow dolerite sills over the area. The weathering depth is highly variable because of the presence of widespread dolerite sub-outcrops.

Shale is the predominant sedimentary rock in the project area which comprises of approximately 60% clay minerals, with smaller amounts of iron oxides, carbonates and in the case where coal formation is associated with the shale, sulphide minerals can also be present. The general mineral make-up of shale and expected mineralogy in the local geological formations is; chlorite, muscovite, kaolinite, k-feldspar, calcite, dolomite, pyrite and hematite.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

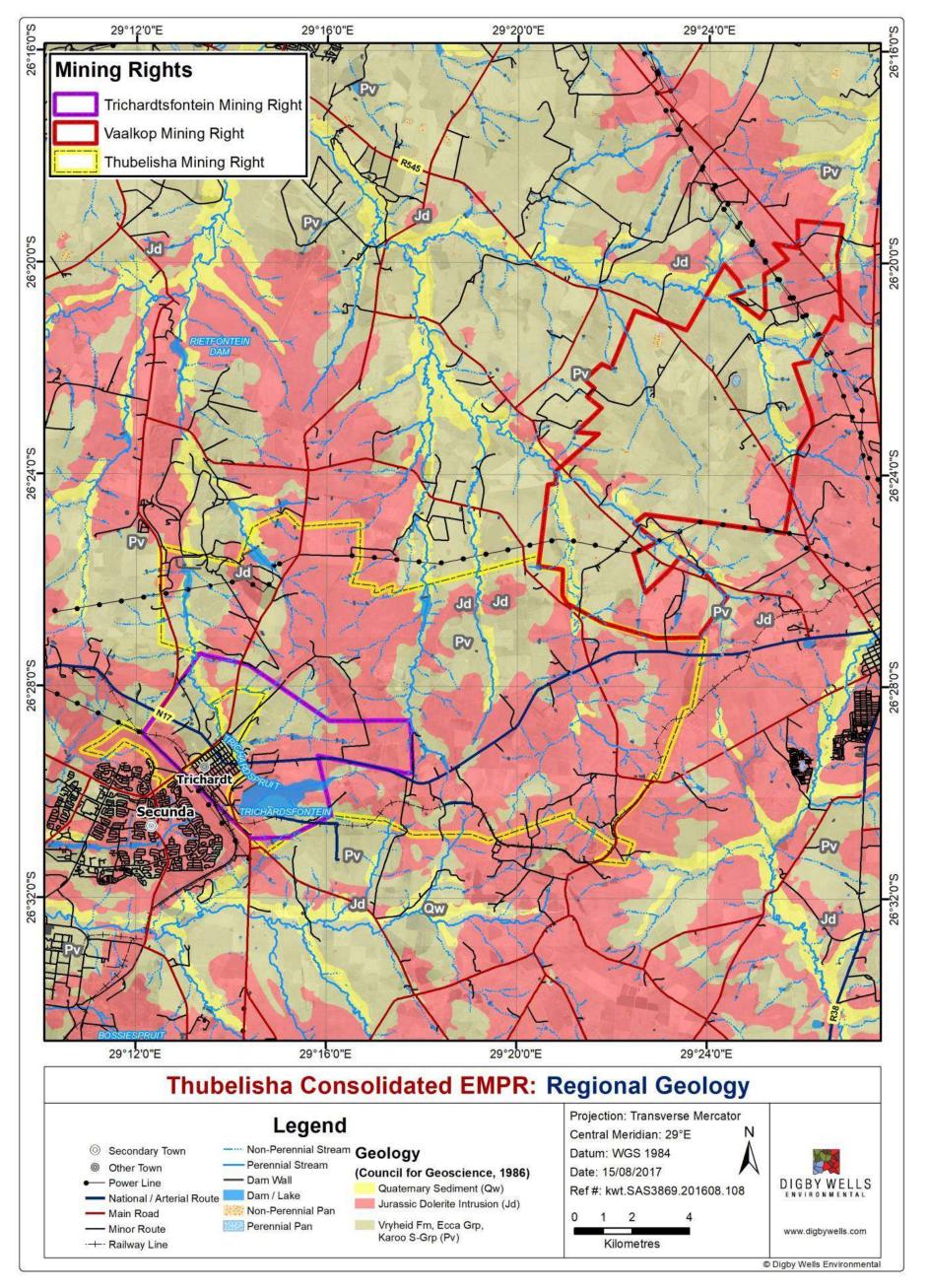
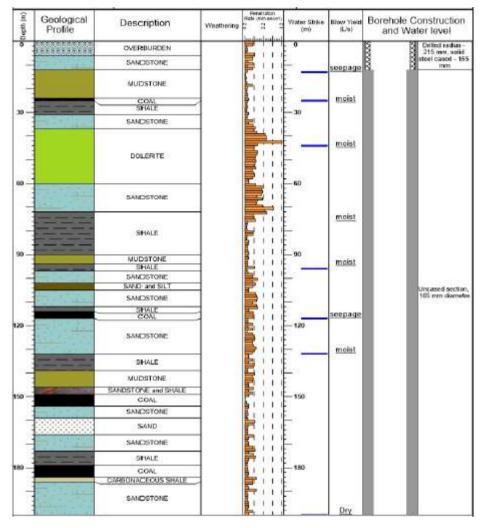



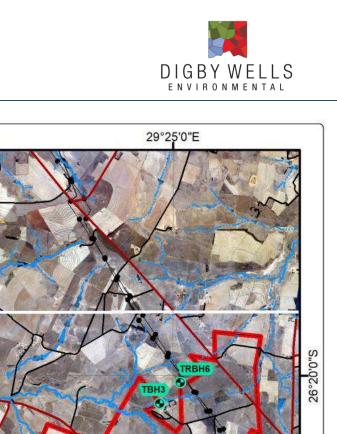
Figure 3-5: Regional Geology

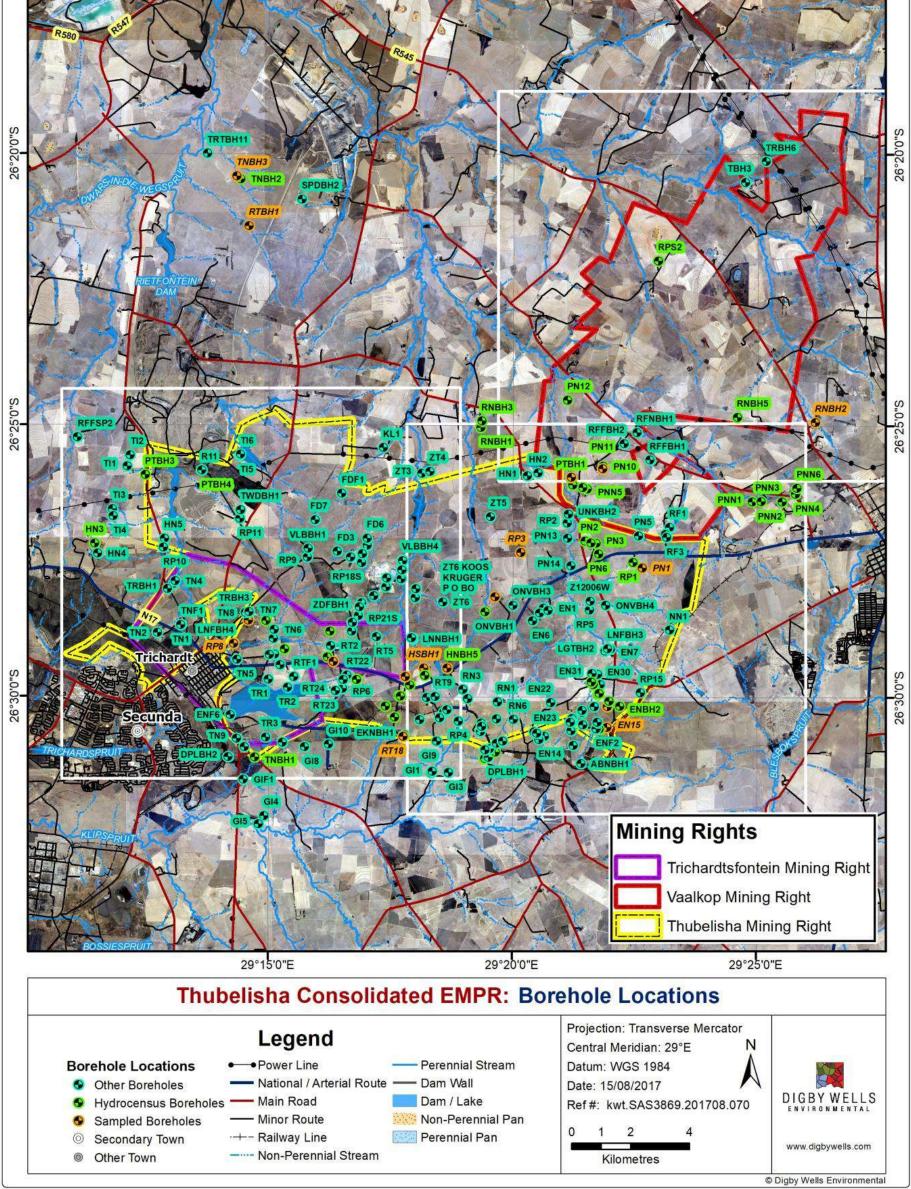
Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Figure 3-6: Local Geology

3.5 Boreholes


During groundwater sampling, samples were taken using double valve, decontaminated bailers, in the case of accessible boreholes and from pumps or taps in the case of boreholes which were in use; in which case a grab sample was taken.


In addition to the boreholes identified during the recently conducted hydrocensus, previously identified boreholes (176 in total) were included as part of the study and are shown in Figure 3-7.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

29°15'0"E

SAS3869

29°20'0"E

Figure 3-7: Borehole Locations

4 Baseline Hydrogeological Environment

4.1 Aquifer Description

JMA (2008) on a site specific level characterised the following four aquifer systems within the Ecca sedimentary succession:

- Shallow perched aquifer (clayey layer in soft overburden);
- Shallow weathered aquifer (weathered sandstone, siltstone and dolerite);
- Shallow fractured aquifer (mostly shallow fractured dolerite sill); and
- Deep fractured aquifer.

The average depth of the shallow perched aquifer is essentially limited to the soil (soft overburden) horizon.

The presence of a shallow dolerite sill over the area results in a discontinuous shallow weathered aquifer. Dolerite dykes and sills generally tend to form local weathered aquifer boundaries or act as groundwater flow pathways, depending on their degree of weathering.

The top of the shallow weathered aquifer is determined by the average depth to the water level. The bottom of the shallow weathered aquifer is determined by the weathering depth that is highly variable because of the presence of widespread dolerite sub-outcrops.

JMA (2008) conducted drilling and found that the weathered zone is not very deep where dolerite sub-outcrops are present and that the average depth of the shallow fractured aquifer is 22 m, but reaches depths of over 30 m. The dimensions of the shallow fractured aquifer are governed by the presence of the shallow dolerite sill over the area. A majority of the groundwater strikes in the study area are often associated with the shallow fractured dolerite.

The deeper fractured Karoo aquifer is less fractured than the shallow fractured aquifer as such water strikes in the deep fractured aquifer are limited. This translates into the deep fractured aquifer having low hydraulic conductivity.

4.2 Aquifer Classification

The aquifers of South Africa are defined according to their water supply potential, water quality and local importance for strategic purposes within an aquifer classification scheme and map. The aquifer classification map (Parsons, 1993) identifies the Karoo aquifers in the project area as predominantly minor systems with moderately-yielding aquifers of variable water quality and moderate vulnerability to some pollutants, but only when continuously discharged or leached.

4.3 Recharge

Hodgson and Krantz (1998) state that recharge within the Olifants River Catchment Water Management Area to the weathered Ecca aquifer is estimated at 1 to 3% of the annual precipitation.

The mean annual precipitation (MAP) throughout the project area ranges between 600 - 800 mm/a (Section 3.2) which results in an estimated recharge range of 6 to 24 mm/a.

4.4 Aquifer Hydraulic Parameters

Slug test data interpretation conducted on boreholes (HNBH4, HSBH3, PPN1, RNBH1 and RNBH4, shown in Figure 4-1) is summarized below;

- HBH4 reflected hydraulic conductivity of 0.019 m/d;
- HSBH3 reflected hydraulic conductivity of 1.16 m/d;
- PPN1 reflected hydraulic conductivity of 0.1 m/d;
- RNBH1 is almost dry with no significant conductivity; and
- RNBH4 reflected hydraulic conductivity of 0.16 m/d.

The harmonic mean hydraulic conductivity of the aquifer at Vaalkop is estimated at 0.06 m/d.

The hydraulic conductivity values of the shallow aquifer at Trichardtsfontein were obtained from slug tests conducted in December 2013 by Digby Wells (2014) which concluded hydraulic conductivity of approximately 0.05 m/d.

The harmonic mean hydraulic conductivity of the aquifers at Thubelisha is estimated at 0.013 m/d (JMA, 2008)

Digby Wells (2014) states that the deep fractured aquifer hydraulic conductivity is approximately 0.004 m/d.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

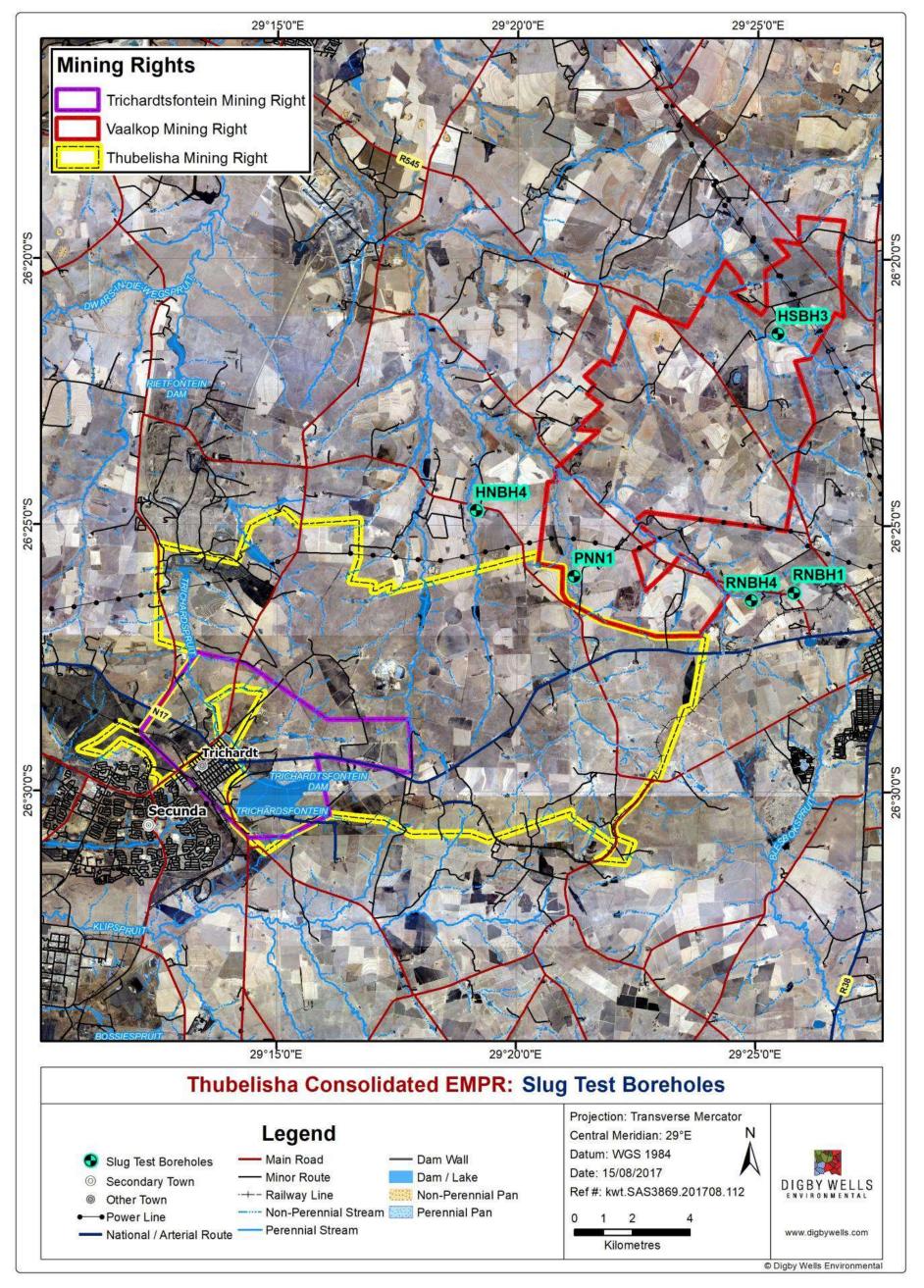


Figure 4-1: Slug Tested Boreholes

4.5 Groundwater Levels and Flow Directions

Groundwater levels acquired from the hydrocensus vary between 0 and 32 meters below ground level (mbgl), with an average of 5 mbgl. The localised groundwater level depth of 32 mbgl is a result of abstraction for domestic use. With the exclusion of deeper groundwater levels, undisturbed groundwater levels across the site show a strong correlation with topography. The groundwater flow direction at the Olifants River Catchment, where the majority of the project area is located, is from south-east to north-west (as predicted in Section 3.3), shown in Figure 4-2. In the Upper Vaal River Catchment where minor parts of the project area are located the groundwater flow direction is towards the south-west.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

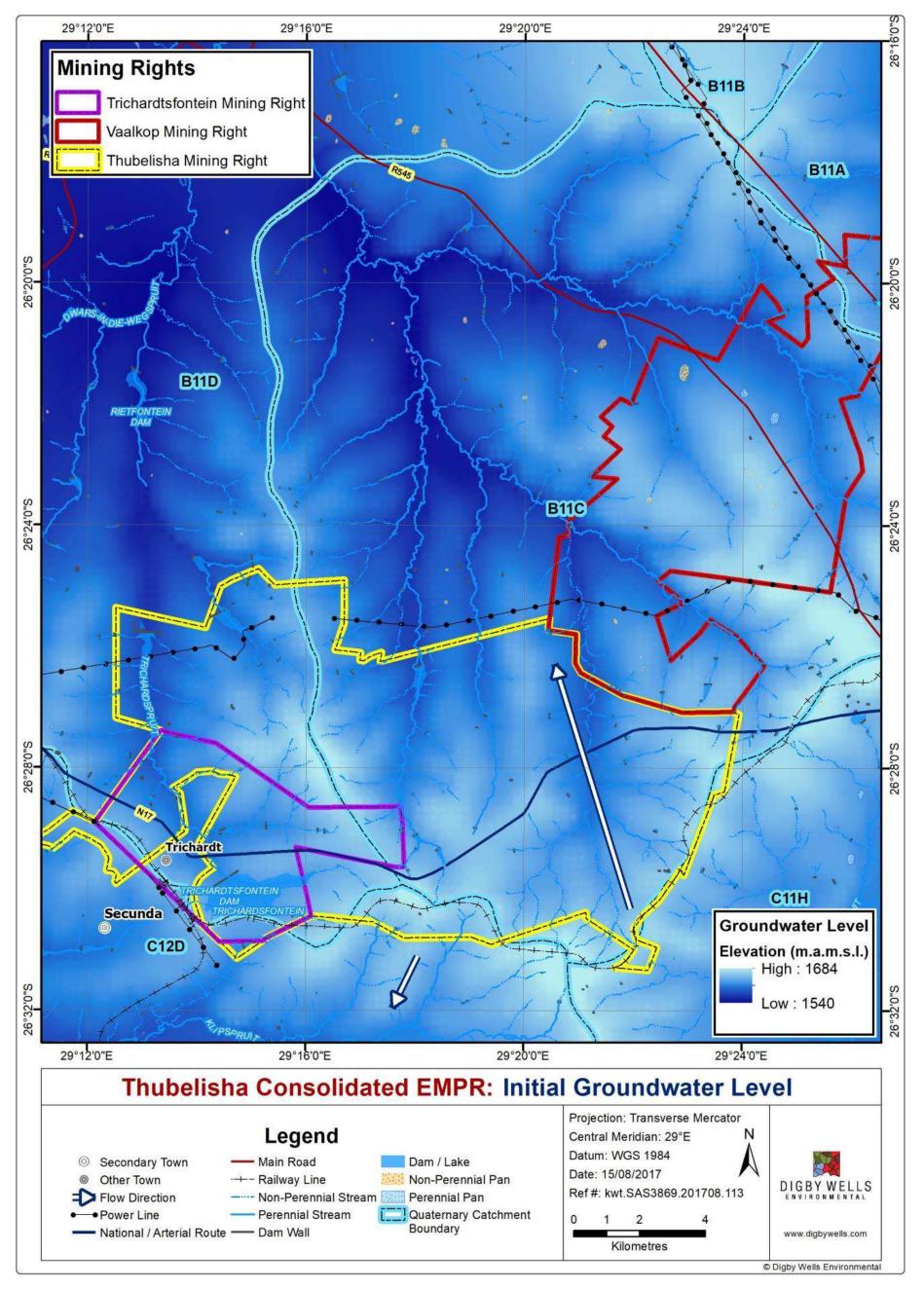


Figure 4-2: Undisturbed Groundwater Levels

4.6 **Groundwater Quality**

4.6.1 Groundwater Quality at Vaalkop

The groundwater quality results from the samples collected during the hydrocensus (Figure 3-7) have been compared to the South African National Standards (SANS) 241:2015 Standards for Drinking Water (Table 4-1).

SANS 241:2015 standards are divided into; aesthetic, operation, acute or chronic. Each of these categories has different effects on humans when consumed.

All boreholes are within the SANS standards for drinking water with the exception of PTBH2, ERN1 and RT3. Evaluations indicate the following:

- PTBH2 and RT3 have a nitrate concentration of 14 and 38.7 mg/L respectively, these concentrations exceed standards for aesthetic, acute and chronic effects (11 mg/L). The elevated concentrations of nitrate can be attributed to agricultural impacts; and
- ERN1 has a sulfate concentration of 388 mg/L. The concentration exceeds standards for aesthetic effects (250 mg/L) however it is below standards for acute chronic effects (500 mg/L). The elevated concentrations of sulfate can be attributed to mining related impacts.

Groundwater characterisation was conducted according to the Piper Diagram (Figure 4-3) and the groundwater quality is predominantly identified to be calcium-magnesiumbicarbonate type which is typically encountered in freshly recharged aquifers expected to contain water with relatively short residence time. RP8 and RT18 are characteristic of sodium-bicarbonate which is typical of mixing of high residence and freshly recharged water, with the sodium replacing the calcium and magnesium in solution.

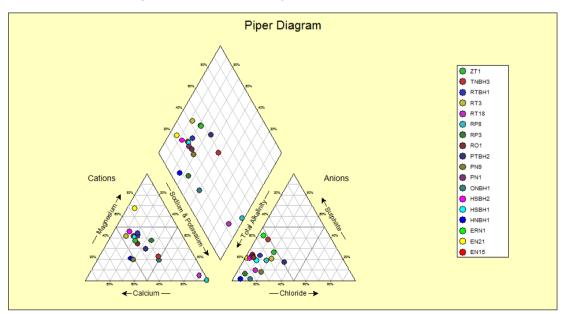


Figure 4-3: Piper Diagram

Groundwater Report Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

Sample ID		рН	EC (mS/m)	TDS (mg/l)	CI (mg/I)	SO₄ (mg/l)	NO ₃ (mg/l)	NH ₃ (mg/l)	F (mg/l)	Na (mg/l)
	Aesthetic	-	170	1200	-	250	-	1.5	-	200
SANS 241:2015	Operational	5 to 9.7	-	-	-	-	-	-	-	-
Limits	Chronic health	-	-	-	300	-	-	-	1.5	-
	Acute health	-	-	-	-	500	11	-	-	-
ONBH1	07/04/2017	8.74	67	402.00	39.30	6.38	0.61	0.02	0.52	97.70
TNBH3	07/04/2017	8.71	88	596.00	33.50	170.00	7.42	0.02	0.32	98.60
HSBH1	07/04/2017	8.57	78	508.00	31.60	75.80	1.64	0.02	0.34	40.70
HSBH2	07/04/2017	8.61	70	438.00	12.80	86.10	0.93	0.01	0.27	27.90
RNBH2	07/04/2017	8.76	101	738.00	162.00	56.00	5.91	0.02	0.29	90.90
PTBH2	07/04/2017	7.62	25	236.00	18.90	12.80	14.00	<0.005	<0.26	14.20
RTBH1	07/04/2017	8.56	79	582.00	38.60	111.00	1.35	0.02	<0.26	48.10
PN1	07/04/2017	8.82	67	482.00	16.00	89.70	5.31	0.03	0.31	43.80
PN9	07/04/2017	8.63	40	254.00	31.90	17.40	1.20	0.01	0.32	26.50
HNBH1	07/04/2017	8.58	47	326.00	13.50	3.98	1.48	0.01	<0.26	27.70
ERN1	07/04/2017	8.42	125	1024.00	32.90	388.00	0.24	0.01	0.40	96.50
EN21	07/04/2017	8.86	72	462.00	5.92	91.70	1.55	0.02	<0.26	13.60
EN15	07/04/2017	8.54	72	502.00	14.30	107.00	2.38	0.01	0.31	38.80
ZT1	07/04/2017	8.87	4	2.55	82.40	139.00	5.41	0.01	0.30	62.00
RP3	07/04/2017	8.66	60	2.32	19.60	21.70	0.28	0.02	0.27	55.60
RO1	07/04/2017	8.55	69	512.00	20.20	86.60	6.98	0.02	0.36	51.80
RT18	07/04/2017	9.03	59	398.00	33.10	29.80	0.84	0.05	1.13	135.00
RT3	07/04/2017	8.38	119	918.00	101.00	127.00	38.70	0.01	0.29	43.80
RP8	07/04/2017	9.07	100	610.00	71.00	97.20	0.35	0.02	0.38	265.00

Table 4-1: Baseline water quality classified based on the SANS 241: 2015

4.6.2 Groundwater Quality at Trichardtsfontein

Digby Wells (2014) collected eleven groundwater samples at Trichardtsfontein for groundwater evaluations, the results have been compared against South African National Standards (SANS241:2015).

Evaluations indicated the following:

- TRBH6 and TRTBH3 have a nitrate concentration of 21.5 and 11.3 mg/L respectively, these concentrations exceed standards acute effects (11 mg/L);
- TRBH1 and RP-8 have a sodium concentration of 205 and 279 mg/L respectively, exceeding standards for aesthetic effects (200 mg/L); and
- TRBH2, TRBH3, TRTBH11, RP-13, TRBH9, RPBH16D and TRTBH1 are within SANS 241:2015

Groundwater characterisation was conducted and majority of the boreholes were identified to be calcium-magnesium-bicarbonate type representative of freshly recharged aquifers.

4.6.3 Groundwater Quality at Thubelisha

Baseline groundwater quality status at Thubelisha was evaluated by JMA Consulting (2008) by comparing eighty boreholes against South African National Standards (SANS241:2005). The findings are summarized below (findings are discussed according to constituents found to be in excess any of the standards):

- No boreholes showed non-compliance with the water quality standards with regards to TDS concentration limits (Class III > 2400 mg/L), three boreholes coincide with Class II TDS limits (1000-2400 mg/L) and seventy-seven were within Class I limits (<1000 mg/L);
- Three boreholes showed non-compliance with the water quality standards regarding nitrate concentration limits (Class III > 20 mg/L), nine boreholes coincide with Class II TDS limits (10 - 20 mg/L) and sixty-eight were within Class I limits (<20 mg/L);
- Three boreholes showed non-compliance with the water quality standards regarding fluorine concentration limits (Class III > 1.5 mg/L), five boreholes coincide with Class II TDS limits (1 - 1.5 mg/L) and seventy-two were within Class I limits (<1 mg/L);
- No boreholes showed non-compliance with the water quality standards regarding calcium concentration limits (Class III > 300 mg/L), three boreholes coincide with Class II TDS limits (150 300 mg/L) and seventy-seven were within Class I limits (<150 mg/L);
- Five boreholes showed non-compliance with the water quality standards regarding magnesium concentration limits (Class III > 100 mg/L), nine boreholes coincide with Class II TDS limits (70 - 100 mg/L) and sixty-six were within Class I limits (<70 mg/L);

- No boreholes showed non-compliance with the water quality standards regarding sodium concentration limits (Class III > 400 mg/L), four boreholes coincide with Class II TDS limits (200 - 400 mg/L) and seventy-six were within Class I limits (<200 mg/L);
- No boreholes showed non-compliance with the water quality standards regarding chlorine concentration limits (Class III > 600 mg/L), two boreholes coincide with Class II TDS limits (200 600 mg/L) and seventy-eight were within Class I limits (<200 mg/L);
- Four boreholes showed non-compliance with the water quality standards regarding iron concentration limits (Class III > 2 mg/L), seven boreholes coincide with Class II TDS limits (0.2 - 2 mg/L) and sixty-nine were within Class I limits (<0.2 mg/L); and
- No boreholes showed non-compliance with the water quality standards regarding manganese concentration limits (Class III > 1 mg/L), seven boreholes coincide with Class II TDS limits (0.1 - 1 mg/L) and seventy-three were within Class I limits (<0.1 mg/L).

Groundwater was characterised as predominantly calcium-magnesium-bicarbonate type, indicating the presence of freshly recharged aquifers, with localized agricultural influences present at some locations.

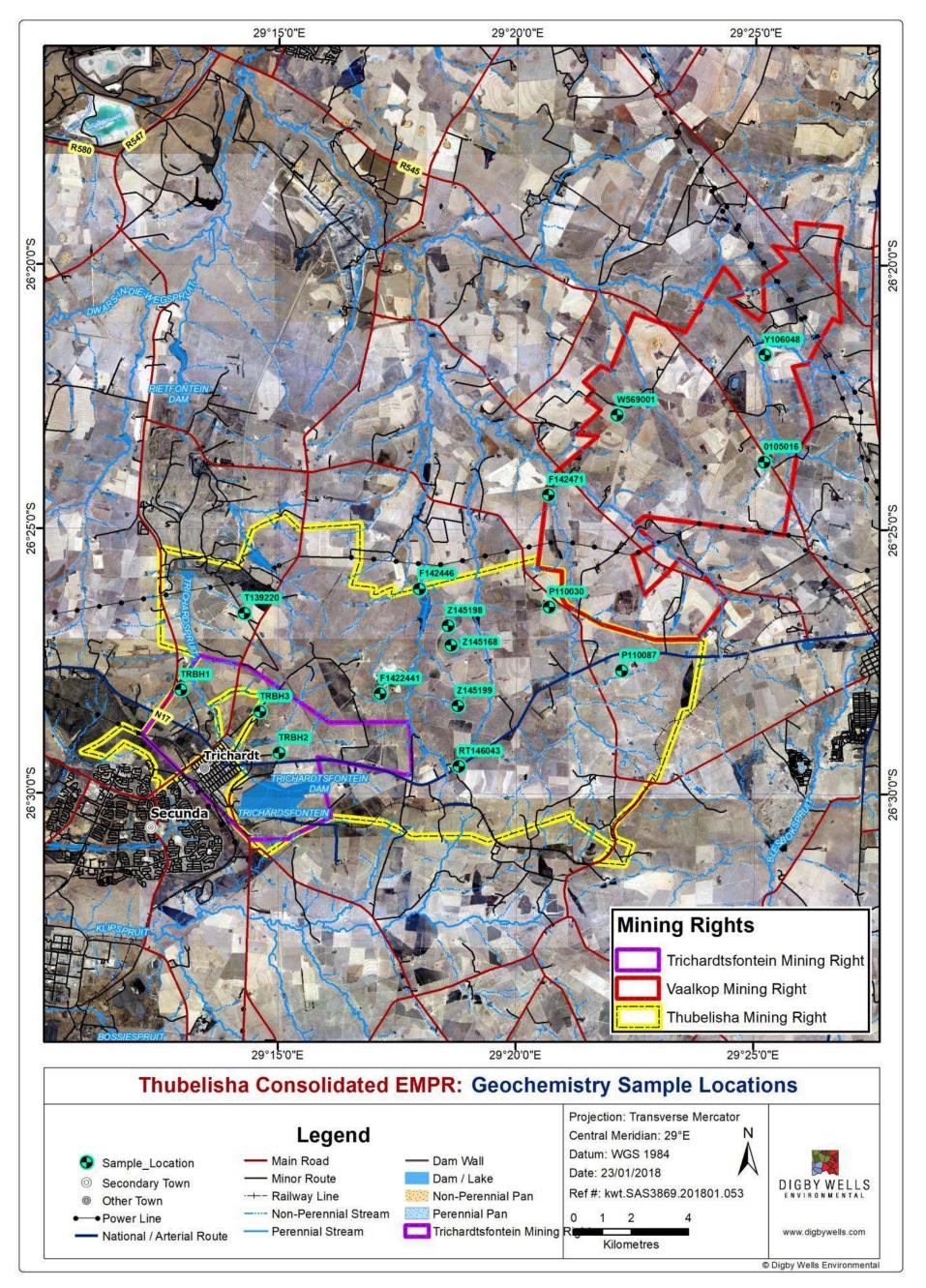
4.7 Potential Contaminant Sources

Potential sources of contamination at TCTS were assessed for acid generation potential. A total of thirteen borehole cores were collected and sampled throughout the project area, with four located within the Vaalkop area, as shown in Figure 4-4. Assessments were conducted by the Institute of Groundwater Studies (2014), reference can be made to the report for more detail.

Based on geochemical assessments it is observed that the greatest potential for acid generation is apparent at the coal seams. Analysis on waste rock (overburden and interburden) also shows acid generating potential.

The potential contamination sources at Trichardtsfontein were identified as the coal material and waste rock. Seven samples (from three borehole core, as shown in Figure 4-4) were geochemically evaluated with the aim of defining the contamination expected to emanate from the local geology as a result of exposure to oxygen and air during mining activities. A more detailed discussion of the studies is found in Digby Wells (2014). The findings from the geochemical results show the following:

- Waste rock AMD (acid mine drainage) potential:
 - All the waste rock paste pH values were above 8, an indication of alkalinity with high buffering capacity;
 - All waste rock samples have total sulphur content that are well below the 0.3% guideline, therefore acid generation during oxidation is not expected;


- The Nett Neutralising Potential (NNP) of the waste rock samples are below 20 therefore potentially acid generating; and
- The waste rock is deemed potentially acid generating however with a high buffering capacity from the mineralogy results.
- Coal AMD potential:
 - The paste pH values of the coal material were alkaline;
 - The coal material for samples TRBH3-152 and TRBH3-114 had a S content above the 0.3% guideline, with 0.72 and 0.33% respectively, indicating a potential for acid generation;
 - Samples indicate low acid potential and the neutralising potential ratio is equal or below 1:3 indicating a potential for acid generation;
 - The NNP for two of the coal samples are below 0 indicating that if acid is generated the buffering capacity of the material can potentially not be enough to counter any acid generation; and
 - The coal material in whole is thus deemed as a rock type II and potentially acid generating.

From the static assessment, it can be concluded that the material that will be disturbed through mining can potentially cause AMD formation.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

Figure 4-4: Geochemical sample locations

5 Numerical Model

The numerical model for the mine was constructed using Processing MODFLOW Pro, a preand post-processing package for MODFLOW and MT3DMS. MODFLOW is a modular three dimensional groundwater flow model and MT3DMS is a modular three dimensional solute transport model published by the United States Geological Survey. MODFLOW and MT3DMS use 3D finite differences discretization and flow codes to solve the governing equations. MODFLOW and MT3DMS are a widely used simulation codes, which are well documented.

5.1 Assumptions and Limitations

The following assumptions were made to develop this model:

- A numerical groundwater model is a representation of the real system; it is therefore an approximation of the groundwater system which in real life is complex and impossible to replicate accurately. This implies that there are always errors associated with groundwater models due to uncertainty in the data and the capability of numerical methods to accurately describe natural physical processes;
- High extraction is expected to increase permeability of the overlying stratigraphy. This has been assumed to occur throughout the areas of high extraction and incorporated into the model. However, the impacts of high extraction are likely to vary on site due to various factors such as the ductility of the overlying stratigraphy, its thickness, its stability and the mineral constituents;
- The spatial distribution and amount of recharge is uncertain. Due the extent of the area, recharge is simplified into the expected average recharge across the model;
- The dolerite intrusions and faults were not included into the numerical model as separate hydrogeological units as a result of limited understanding of their thickness, extent and hydraulic properties; and
- The hydraulic connection between the different aquifer systems and coal seams, expressed by vertical hydraulic conductivity is unknown and its value is estimated based on literature.

5.2 Model Setup

The model domain (Figure 5-1) is irregularly shaped with dimensions of 35.7 km by 32.9 km. The domain consists of 940 rows and 1019 columns that make up cells of 35 m by 35 m. Two layers have been modelled, simplifying the groundwater system into two aquifers. Properties assigned to the aquifers are based on the field investigations (at the shallow weathered aquifer) and literature review (this applies to the deeper aquifer).

The model boundaries were selected with the consideration of sub-catchments located far enough not to influence model results and the local rivers and tributaries were assigned as drains. The modelled area is shown in Figure 5-1.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

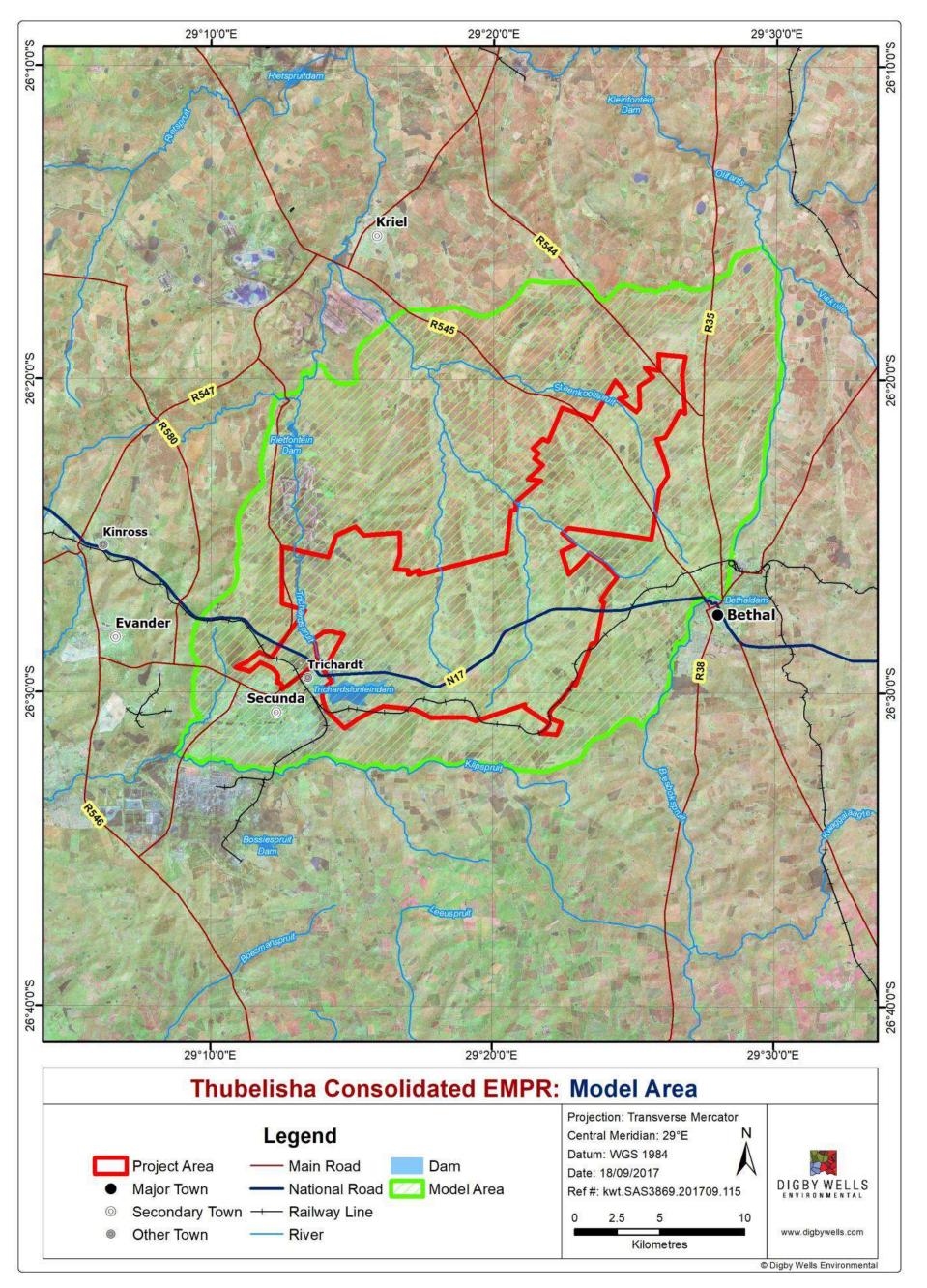


Figure 5-1: Modelled Area

5.3 Model Calibration

The model was calibrated by manually adjusting recharge, aquifer properties and drains (rivers); adjustments were kept within a range that speaks field investigations and available literature. Calibration was done to establish a good correlation between the groundwater levels calculated by the model and those observed on site.

The calibrated model yielded a 95% correlation between the observed groundwater levels and calculated groundwater levels (Figure 5-2).

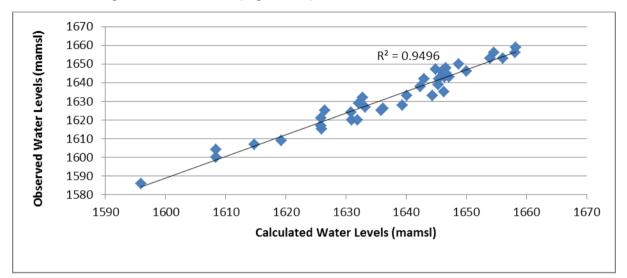


Figure 5-2: Model Calibration Results

6 Impact Assessment and Management Planning

6.1 Introduction

Details of the impact assessment methodology used to determine the significance of physical, bio-physical and socio-economic impacts are provided below.

The significance rating process follows the established impact/risk assessment formula:

Significance = Consequence x Probability x Nature

Where

Consequence = Intensity + Extent + Duration

And

Probability = Likelihood of an impact occurring

And

Nature = Positive (+1) or negative (-1) impact

Note: In the formula for calculating consequence, the type of impact is multiplied by +1 for positive impacts and -1 for negative impacts.

The matrix calculates the rating out of 147, whereby intensity, extent, duration and probability are each rated out of seven as indicated in Table 6-1. The weight assigned to the various parameters is then multiplied by +1 for positive and -1 for negative impacts.

Impacts are rated prior to mitigation and again after consideration of the mitigation has been applied; post-mitigation is referred to as the residual impact. The significance of an impact is determined and categorised into one of seven categories (The descriptions of the significance ratings are presented in Table 6-3).

It is important to note that the pre-mitigation rating takes into consideration the activity as proposed, (i.e., there may already be some mitigation included in the engineering design). If the specialist determines the potential impact is still too high, additional mitigation measures are proposed.

Groundwater Report Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

Table 6-1: Impact assessment parameter ratings

	Intensity/Rep	olaceability						
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability			
7	Irreplaceable loss or damage to biological or physical resources or highly sensitive environments. Irreplaceable damage to highly sensitive cultural/social resources.	Noticeable, on-going natural and / or social benefits which have improved the overall conditions of the baseline.	International The effect will occur across international borders.	Permanent: The impact is irreversible, even with management, and will remain after the life of the project.	Definite: There are sound scientific reasons to expect that the impact will definitely occur. >80% probability.			
6	Irreplaceable loss or damage to biological or physical resources or moderate to highly sensitive environments. Irreplaceable damage to cultural/social resources of moderate to highly sensitivity.	Great improvement to the overall conditions of a large percentage of the baseline.	National Will affect the entire country.	Beyond project life: The impact will remain for some time after the life of the project and is potentially irreversible even with management.	Almost certain / Highly probable: It is most likely that the impact will occur. <80% probability.			

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

	Intensity/Rep	olaceability						
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability			
5	Serious loss and/or damage to physical or biological resources or highly sensitive environments, limiting ecosystem function. Very serious widespread social impacts. Irreparable damage to highly valued items.	On-going and widespread benefits to local communities and natural features of the landscape.	Province/ Region Will affect the entire province or region.	Project Life (>15 years): The impact will cease after the operational life span of the project and can be reversed with sufficient management.	Likely: The impact may occur. <65% probability.			
4	Serious loss and/or damage to physical or biological resources or moderately sensitive environments, limiting ecosystem function. On-going serious social issues. Significant damage to structures / items of cultural significance.	Average to intense natural and / or social benefits to some elements of the baseline.	Municipal Area Will affect the whole municipal area.	5 5	Probable: Has occurred here or elsewhere and could therefore occur. <50% probability.			

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

	Intensity/Rep	olaceability						
Rating	Negative Impacts (Nature = -1)Positive Impacts (Nature = +1)		Extent	Duration/Reversibility	Probability			
3	Moderate loss and/or damage to biological or physical resources of low to moderately sensitive environments and, limiting ecosystem function. On-going social issues. Damage to items of cultural significance.	Average, on-going positive benefits, not widespread but felt by some elements of the baseline.	Local Local extending only as far as the development site area.	Medium term: 1-5 years and impact can be reversed with minimal management.	Unlikely: Has not happened yet but could happen once in the lifetime of the project, therefore there is a possibility that the impact will occur. <25% probability.			
2	Minor loss and/or effects to biological or physical resources or low sensitive environments, not affecting ecosystem functioning. Minor medium-term social impacts on local population. Mostly repairable. Cultural functions and processes not affected.	Low positive impacts experience by a small percentage of the baseline.	Limited Limited to the site and its immediate surroundings.	Short term: Less than 1 year and is reversible.	Rare / improbable: Conceivable, but only in extreme circumstances. The possibility of the impact materialising is very low as a result of design, historic experience or implementation of adequate mitigation measures. <10% probability.			

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

	Intensity/Replaceability						
Rating	Negative Impacts (Nature = -1)Positive Impacts (Nature = +1)		Extent	Duration/Reversibility	Probability		
1	Minimal to no loss and/or effect to biological or physical resources, not affecting ecosystem functioning. Minimal social impacts, low-level repairable damage to commonplace structures.	social benefits felt by	Very limited/Isolated Limited to specific isolated parts of the site.	Immediate: Less than 1 month and is completely reversible without management.	Highly unlikely / None: Expected never to happen. <1% probability.		

Table 6-2: Probability/consequence matrix

Signi	ficand	ce																																		
-147	-140	-133	-126	-119	-112	-105	-98	-91	-84	-77	-70	-63	-56	-49	-42	-35	-28	-21	21	28	35	42 4	95	566	637	707	784	4 91	98	105	112	119	126	133	140	147
-126	-120	-114	-108	-102	-96	-90	-84	-78	-72	-66	-60	-54	-48	-42	-36	-30	-24	-18	18	24	30	36 4	24	18 E	546	60	6 72	2 78	84	90	96	102	108	114	120	126
-105	-100	-95	-90	-85	-80	-75	-70	-65	-60	-55	-50	-45	-40	-35	-30	-25	-20	-15	15	20	25	30 3	85 <mark>4</mark>	10 4	15 5	50 5	5 60	0 65	70	75	80	85	90	95	100	105
-84	-80	-76	-72	-68	-64	-60	-56	-52	-48	-44	-40	-36	-32	-28	-24	-20	-16	-12	12	16	20	24 2	28 3	32 3	36 4	10 4	4 48	3 52	56	60	64	68	72	76	80	84
-63	-60	-57	-54	-51	-48	-45	-42	-39	-36	-33	-30	-27	-24	-21	-18	-15	-12	-9	9	12	15	18 2	21 2	24 2	27 3	30 3	3 <mark>3</mark> 6	6 39	42	45	48	51	54	57	60	63
-42	-40	-38	-36	-34	-32	-30	-28	-26	-24	-22	-20	-18	-16	-14	-12	-10	-8	-6	6	8	10	12 1	4 1	16	82	20 2	2 24	4 26	28	30	32	34	36	38	40	42
-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	3	4	5	67	' 8	3 9) 1	0 1	1 12	2 13	14	15	16	17	18	19	20	21
-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	3	4	5	6 7	' 8	3 9) 1	0 1	1 12	2 13	14	15	16	17	18	19	20	21
~																																				

Consequence

Score	Description	Rating
109 to 147	A very beneficial impact that may be sufficient by itself to justify implementation of the project. The impact may result in permanent positive change	Major (positive) (+)
73 to 108	A beneficial impact which may help to justify the implementation of the project. These impacts would be considered by society as constituting a major and usually a long-term positive change to the (natural and / or social) environment	Moderate (positive) (+)
36 to 72	A positive impact. These impacts will usually result in positive medium to long-term effect on the natural and / or social environment	Minor (positive) (+)
3 to 35	A small positive impact. The impact will result in medium to short term effects on the natural and / or social environment	Negligible (positive) (+)
-3 to -35	An acceptable negative impact for which mitigation is desirable. The impact by itself is insufficient even in combination with other low impacts to prevent the development being approved. These impacts will result in negative medium to short term effects on the natural and / or social environment	Negligible (negative) (-)
-36 to -72	A minor negative impact requires mitigation. The impact is insufficient by itself to prevent the implementation of the project but which in conjunction with other impacts may prevent its implementation. These impacts will usually result in negative medium to long-term effect on the natural and / or social environment	Minor (negative) (-)
-73 to -108	A moderate negative impact may prevent the implementation of the project. These impacts would be considered as constituting a major and usually a long-term change to the (natural and / or social) environment and result in severe changes.	Moderate (negative) (-)
-109 to -147	A major negative impact may be sufficient by itself to prevent implementation of the project. The impact may result in permanent change. Very often these impacts are immitigable and usually result in very severe effects. The impacts are likely to be irreversible and/or irreplaceable.	Major (negative) (-)

Table 6-3: Significance rating description

6.2 **Project Activities Assessed**

The list of project activity that is relevant to the groundwater impact assessment is presented in Table 6-4.

Project Phase	Project Activity	Project Structures					
Construction	Excavation	Two Shafts per mining right area					
Construction	Water Abstraction and Use	Water Tanks and Pipes					
Operations	Mining Operations	Heavy Machinery and Equipment					
Operations	Mine Dewatering	Underground Pumps and Pipes					
Mine Decommissioning and Closure	Waste Generation	Mine void					

Table 6-4: Description of activities to be assessed

6.3 Impact Assessment

The proposed underground mine has the potential to have a negative impact on the groundwater environment; through the depletion of the local groundwater quantity and quality.

Mine dewatering is crucial to keep the mine workings dry for safe working conditions, dewatering will be conducted by abstracting groundwater ingress into mine voids during operation. The groundwater quality at most of the coal mines in the country is characterised by sulfate concentrations in the order of 2500 mg/L. Similar impacts could also occur at the project area and management plans should be put in place with this assumption.

The contamination plume presented in the figures is representative of 1% to 100% of the contamination at the source and the cone of depression presented is from a drawdown depth from 5 m and above.

Potential impacts are assessed in this section considering the construction, operational and closure phases. The list of project activities can be found in Table 6-4. Only project activities that are likely to result in a groundwater impact are assessed below.

6.3.1 Construction Phase

6.3.1.1 <u>Project Activities Assessed</u>

Site clearance (during the construction phase) conducted to accommodate the ventilation shafts presented in Section 3.1 could result in impacts to the groundwater. The activity brining about potential interaction with the groundwater environment and potential impact is presented in Table 6-5.

Table 6-5: Interactions and impacts during the construction phase

Interaction	Impact
Site clearing	Lowering of the water table, if the site clearing will take place below the water table

6.3.1.1.1 Impact Description

The water table at the project area ranges between 0 and 32 mbgl. Any site clearing or construction activities that would involve excavation below the water table depth may have a potential impact on the groundwater quantity and quality.

6.3.1.1.2 Management Actions and Targets

The following actions and targets are required:

- Site clearing to be restricted to areas that are absolute necessity and the activity should be conducted over a short duration;
- Site clearance and construction activities should take place above the water table (if possible), no impact on the groundwater level will then be expected;
- If trenches are going to be excavated below the water level, dewatering of the aquifer to lower the water table locally should be considered to ensure that the construction takes place above the groundwater level. Since the groundwater is not expected to be polluted at this stage, the utilisation of the water for activities such as dust suppression or irrigation (if applicable) will not cause negative environmental impacts; and
- Install long term monitoring boreholes. The positions of the monitoring boreholes are provided in Section 9.3.

6.3.1.1.3 Construction Phase Impact Ratings

The significance rating of the potential impacts before and after mitigation is provided in Table 6-6.

Table 6-6: Potential Impacts during the Construction Phase

Activity & Interaction: Site clearing for the development of surface infrastructure through the removal of the top soil and weathered rocks

Dimension	Rating	Motivation	Significance				
Impact Description: Lowering of the water table							
Prior to mitigation/ management							
Duration	Short term (2)	Construction activities are expected to be short-lived (limited to the duration of the construction phase)	Negligible (-18)				

	Activity & Interaction: Site clearing for the development of surface infrastructure through the removal of the top soil and weathered rocks							
Dimension	Rating	Motivation	Significance					
Extent	Limited (2)	Site clearing will only occur within project area						
Intensity x type of impact	Minor (-2)	Any dewatering will have minor environmental significance						
Probability	Unlikely (3)	Dewatering during the construction phase (if any) is unlikely to cause environmental impact considering limited rock permeability, the duration and excavation depth.						
Nature	Negative							
Mitigation/ Man	agement actions							
the groun utilisation negative	ndwater level. Since		ted at this stage, the					
Post- mitigation	1							
Duration	Short term (2)	Any lowering of the water table during the construction phase is expected to be shallow and recover relatively quickly						
Extent	Limited (2)	Only the area in the site clearing area will be affected	1					
Intensity x type of impact	Minimal (-1)	nimal (-1) Considering that any interaction with the water table will be avoided as much as possible and the activity will be limited to a short duration, the intensity will be minimal						
Probability	Unlikely (3)	It is unlikely for groundwater impact to occur during the construction phase,						

especially with the implementation of the above proposed management plans

Unlikely (3)

Negative

Probability

Nature

6.3.2 Operational Phase

6.3.2.1 Project Activity Assessed

During the operational phase, mine dewatering could result in negative groundwater impacts and is assessed below. Interaction with the groundwater environment and potential impact are presented in Table 6-7.

Interaction	Impact
Groundwater dewatering	Potential water level lowering
AMD generation at mine void	Potential groundwater contamination
Subsidence	Water level rising and groundwater contamination

6.3.2.1.1 Impact Description

When mining below the water table, it is important to keep the mine workings dry for safe working conditions. Dewatering is recommended to start as excavations are initiated. This can potentially impact the groundwater environment negatively by lowering the water level and creating a cone of depression, affecting the local aquifers. As the cone of depression is created through dewatering, water flows into the mine voids.

Mining was simulated by applying drains, progressing according to the life of mine, located at the depth of the coal seam floor. The groundwater captured by the drains is reflective of the expected inflows. Inflow rates are not only a function of the aquifer properties but also the mine plans because the mined area, depth and excavation rate affect the inflow rates. Table 6-8, Figure 6-1 are presentations of expected inflows into the underground mine as the mine progresses.

Year	Year of Operation	Inflows (m ³ /d)	Inflows (L/s)	Mine area (m ²)	Cumulative area (m ²)
0	0	0	0	0	0
2016	1	90	1	895900	895900
2017	2	352	4	2598200	3494100
2018	3	694	8	3521600	7015700
2019	4	1020	12	3511600	10527300
2020	5	1380	16	3763300	14290600
2025	10	3280	38	20236300	34526900
2030	15	4990	58	21015200	55542100
2035	20	6550	76	19000500	74542600
2040	25	7600	88	15604900	90147500
2045	30	7850	91	14498700	104646200
2050	35	8410	97	15324500	119970700
2054	39	8460	98	6430100	126400800

Table 6-8: Overview of estimated groundwater inflow rates

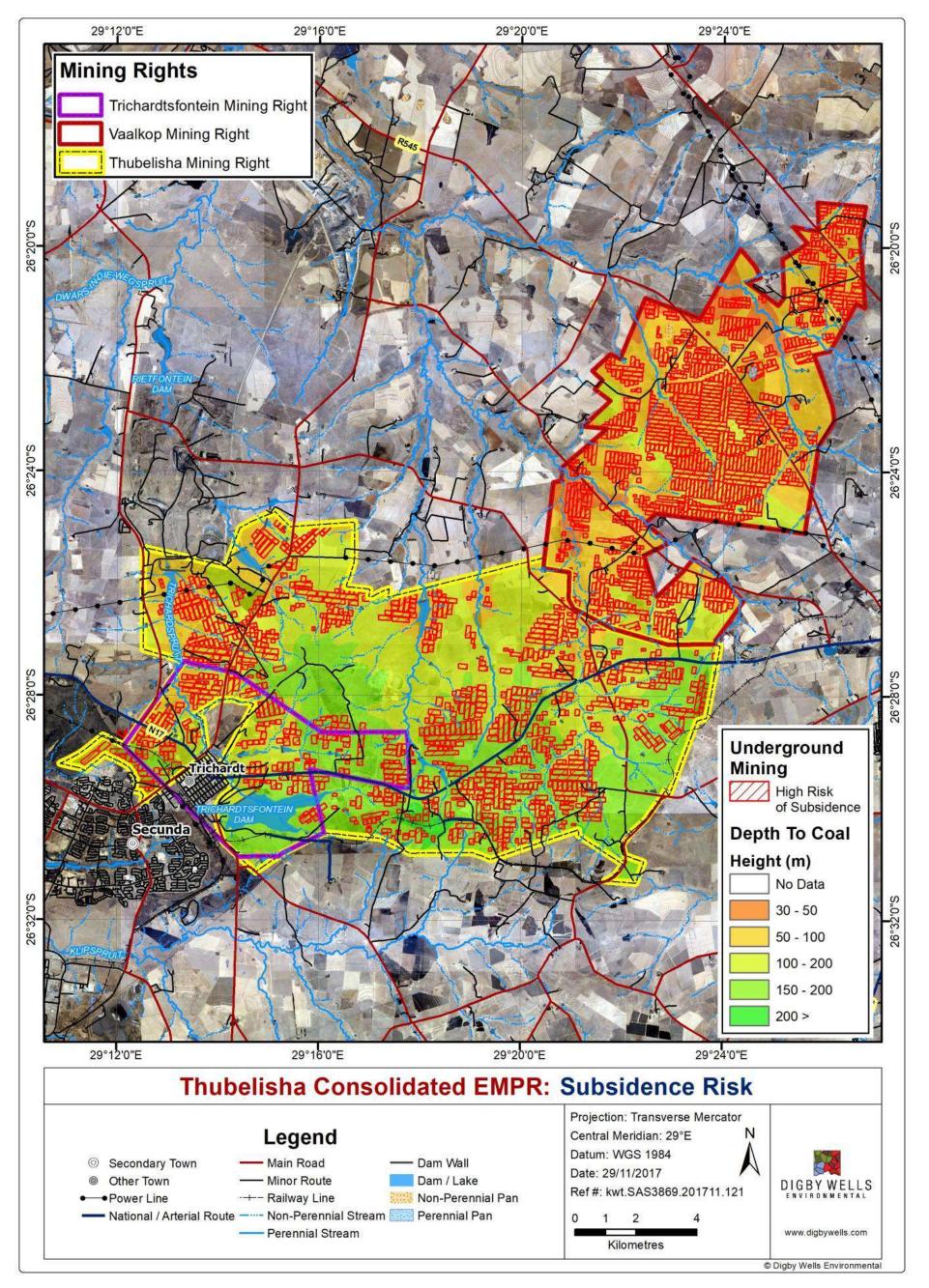
SAS3869

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

Figure 6-1: Estimated groundwater inflow rates

Year	Year of Operation	Trichardtsfontein	Thubelisha	Vaalkop
0	0	0	0	0
2016	1	0	90	0
2017	2	0	352	0
2018	3	34	660	0
2019	4	112	909	0
2020	5	191	1189	0
2025	10	648	2635	0
2030	15	1101	3769	120
2035	20	1192	4942	413
2040	25	1171	5617	810
2045	30	1138	5460	1255
2050	35	1109	5285	2012
2054	39	1088	5155	2214

Table 6-9: Site specific estimated groundwater inflow rates


Areas where high extraction will be conducted are expected to experience subsidence during operation and or post-operation. The risk of subsidence is dependent on the characteristics of the local geology. The presence of dolerite sill or thick sandstone prevents fracturing of the overburden rock mass through to surface. The depth at which high

extraction takes place is also a factor as the risk of subsidence increases with decreasing depth to coal seam from the ground surface. Figure 6-2 shows the high risk areas with regards to subsidence. The depth at which high extraction will be conducted is presented as well in the figure. The probability of subsidence can only be accurately quantified by conducting detailed geotechnical investigations which is outside the scope of this groundwater study.

Groundwater Report Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

Figure 6-2: High risk areas of subsidence

Subsidence may result in fracturing of the overlying stratigraphy and increased geological permeability, resulting impacts to the groundwater and surface water environment. Additionally, damage to roads, power lines, buildings, and could even claimed the lives as e result of subsidence.

The groundwater environment may be subjected to the following impacts in areas of subsidence:

- Increased groundwater recharge, estimated to reach 9% of the MAP at the shallow weathered aquifer and 5% at deeper fractured aquifers (Vermeulen and Usher, 2006);
- Groundwater quality at the shallow weathered aquifer may be affected in the following ways:
 - Recharge will increase at areas of increased permeability and areas where fractures have developed as a result of subsidence; and
 - After hydraulic head recovery, recharge of contaminated water may occur through artificially created groundwater flow pathways (fractures).
- Increased chances of the occurrence of decant and increased decant rates; and
- Expansion of the contamination plume into the weathered aquifer in areas where it would have not been expected if there was no subsidence. This may occur because as the overlying stratigraphy becomes more permeable, migration of water through these rocks as well as the exposure to air can result in the generation of acid water if these rocks contain pyrite.

Groundwater quality deterioration is then expected to mainly occur at areas of subsidence. Figure 6-3 shows the expected contamination plume at the weathered aquifer, mainly associated with the impacts of subsidence and to a lesser degree diffusion, which is a result of concentration gradient. The contamination at the weathered aquifer is predominantly less than 20% of the source concentration and in isolated areas reaches a maximum of 35%.

During operation, any contaminants that will originate from the mine workings will be pumped out as part of the mine dewatering process. The contamination plume migrates primarily by advection therefore dewatering enables the management of the potential contamination plume (during the period that dewatering will be taking place at that location), preventing upward migration into the shallow weathered aquifer. With the progression of mining over the 53 years of operation, dewatering will cease in mined out areas and recovery will commence. This is when the contamination plume (to a relatively limited degree) starts being introduced into some parts of the weathered aquifer, mainly at areas of increased permeably as a result of subsidence (Figure 6-3). The abstracted water during the operational phase may be contaminated and therefore should be stored in pollution control dams and recycled for coal processing.

Majority of groundwater users utilize the shallow weathered aquifer and some are located within the area of high extraction, therefore monitoring is recommended and affected private borehole owners should be compensated if contamination is proven from monitoring. Deep boreholes intersecting the coal seam aquifer are likely to be impacted by the lowering of the water and generation of a contamination plume over time. The expected contamination plume at the deep fractured aquifer is shown in Figure 6-4.

As shown in geological map of Figure 3-5, dolerite sill covers a considerable portion of the mine area. The probability of subsidence is expected to be low in areas where the high extraction is to take place underneath these sills or thick sandstone layers.

Model results show that the cone of depression is mainly at the deep fractured aquifer; its extent is shown in Figure 6-5. The cone of dewatering impacts to the weathered aquifer are expected to be less significant compared to the fractured aquifer, occurring at isolated areas due to the low vertical hydraulic conductivity of the local aquifers. The drawdown in the weathered aquifer is expected to be less than 5 m and thus only drawdown in the coal seam aquifer has been illustrated.

6.3.2.1.2 Management Actions and Targets

The following actions and targets are required:

- Dewatering should be conducted by abstracting groundwater ingress into mine voids during operation;
- Contaminated mine water should be stored in pollution control dams.
- If subsidence occurs during operation, it should be rehabilitated as soon as possible to minimise water and oxygen inflow from the atmosphere, as these components enable AMD reactions;
- Nitrate-based explosives can contaminate water thus no underground water should be discharged unless it meets standards to minimise ground and surface water contamination;
- In order to prevent subsidence during the bord-and-pillar mining phase, it is required that a safety factor that provides sufficient pillar stability is applied;
- The mine should be monitored on an annual basis for subsidence and areas of subsidence should be rehabilitated by backfilling with waste rock and topsoil thereafter revegetated;
- If possible, concurrent backfilling of the mine voids with fly ash should be conducted to minimise the risk of subsidence and neutralise any acid that might be generated;
- Groundwater level and quality monitoring should be conducted on quarterly basis during operation, with special attention given to the subsidence areas. The monitoring frequency can be reduced post-closure depending on the trend of the monitoring results;

- Affected receptors (if proven through monitoring) should be compensated;
- Groundwater monitoring should be conducted to assess the time series water level and water quality trends; and
- Numerical model should be updated every two years in the first four years and thereafter every five years based on groundwater monitoring results.

Fly ash is recommended as backfilling material in areas of high subsidence risk or where the host rock is regarded to have non-acid generating potential. This recommendation is based on the nature of fly ash having a high base potential in alkaline solution environments, therefore may improve the chemistry of underground mine water in suitable environments. However, fly ash contains significant concentrations of heavy metals and is highly likely to release those metals in acidic environments (Hodgson and Krantz, 1995).

6.3.2.1.3 Operational Phase Impact Ratings

The significance rating of the potential impacts of subsidence before and after mitigation plans is provided in Table 6-10.

Activity & Interaction: Subsidence as a result of high extraction				
Dimension	Rating	Motivation	Significance	
Impact Descript	ion: Groundwater	quality deterioration		
Prior to mitigati	on/ management			
Duration	Permanent (7)	If subsidence occurs damage will be permanent.		
Extent	Local (3)	Impacts of subsidence will only occur within the mining rights area		
Intensity x type of impact	Serious loss (-5)	There may be serious impacts associated with the subsidence with regards groundwater quality at the shallow aquifer (where private boreholes are mostly found) and an impact to the shallow aquifer may impact surface water bodies that receive baseflow.	Moderate (-75)	
Probability	Likely (5)	Subsidence is likely to occur during high extraction however geotechnical evaluations are required to confirm the probability.		
Nature	Negative			
Mitigation/ Man	Mitigation/ Management actions			

Table 6-10: Potential impacts of subsidence

Activity & Intera	ction: Subsidence	e as a result of high extraction	
Dimension	Rating	Motivation	Significance
safety fa The mine should b If possib minimise Groundw operation	ctor that provides su e should be monitor e rehabilitated by ba le, concurrent backf e the risk of subsider vater level and quali n, with special atten	ce during the bord-and-pillar mining phase, it ufficient pillar stability is applied. ed on an annual basis for subsidence and ar ackfilling with waste rock and topsoil thereafte illing of the mine voids with fly ash should be nce and neutralise any acid that might be ger ty monitoring should be conducted on a quar tion given to the subsidence areas. The mon bending on the trend of the monitoring results	eas of subsidence er revegetated. conducted to nerated. terly basis during itoring frequency can
Post- mitigation	1		
Duration	Project life (5)	If areas of subsidence are monitored and rehabilitated the impacts will occur over a short period.	
Extent	Local (3)	Impacts of subsidence will only occur within the mining rights area	
Intensity x type of impact	Moderate (-3)	With the application of the mitigation measures, potential impact intensity reduces significantly	Minor (-44)
Probability	Likely (4)	If rehabilitated as soon as impact is picked up on through monitoring impact will be short lived and reversible	
Nature	Negative		

The significance rating of the potential impacts of dewatering before and after mitigation plans is provided in Table 6-11.

Table 6-11: Potential dewatering impacts during the operational phase

Activity & Interaction: Mine dewatering and creation of cone of dewatering					
Dimension	Rating	Motivation	Significance		
Impact Descript	tion: Lowering of t	he water table			
Prior to mitigati	ion/ management				
Duration	Beyond Project Life (6)	The water level will remain below its natural level during the entire operation.	Minor		

Activity & Intera	ction: Mine dewat	ering and creation of cone of dewatering	
Dimension	Rating	Motivation	Significance
Extent	Limited (2)	The radius of influence will mainly be at the deep fractured aquifer within the site and limited to isolated parts of the weathered aquifer.	(-72)
Intensity x type of impact	Serious (-4)	Mine dewatering will result in lowering of the water table within the site at the deep fractured aquifer and isolated parts of the shallow weathered aquifer (potentially impacting private boreholes and surface water bodies).	
Probability	Almost certain (6)	It is likely that there will be a cone of drawdown formed due to the mine dewatering (potentially affecting the shallow weathered and deep fractured) with an impact to the groundwater system and its dependence.	
Nature	Negative		
Mitigation/ Mana	agement actions		
operation Contamin processin Groundw quality in Numerica every five	n; nated mine water sh ng; vater monitoring sho npacts and trends; a al model should be e years based on gr	ucted by abstracting groundwater ingress into nould be stored in pollution control dams and puld be conducted to assess the time series v and updated every two years in the first four year roundwater monitoring results.	reused for mine vater level, water
Post- mitigation			
Duration	Beyond project life (6)	The water level will remain below its natural level for some time after the life of a project.	
Extent	Limited (2)	With the above stated mitigation methods, the extent is expected to be limited.	Negligible (-27)
Intensity x type of impact	Minimal (-1)	With compensation to the potentially impacted receptors (private boreholes and rivers) the environmental significance is rated as minimal.	

Activity & Interaction: Mine dewatering and creation of cone of dewatering					
Dimension	Rating	Motivation	Significance		
Probability	Unlikely (3)	With the application of the proposed mitigation plans, it is unlikely that the lowering of the water table will have an adverse negative impact.			
Nature	Negative				

The significance rating of the potential impacts of groundwater contamination before and after mitigation plans is provided in Table 6-12.

Table 6-12: Potential impacts of contamination during the operational phase

Activity & Intera	Activity & Interaction: Groundwater contamination as a result of underground mining				
Dimension	Rating	Motivation	Significance		
Impact Descript	ion: Groundwater	contamination			
Prior to mitigati	ion/ management				
Duration	Beyond project life (6)	Groundwater contamination due to mine disturbance will occur during the operational phase and is expected to persist even after closure.			
Extent	Local (3)	The contaminated groundwater may migrate into the shallow aquifer and feed into the rivers via baseflow; this is brought by the increased permeability of overlying stratigraphy due to high extraction. However during operation, the plume is not expected to extend beyond the project area.	Minor (-56)		
Intensity x type of impact	Serious (-5)	The weathered aquifer is expected to receive the contamination plume. This brings risk to the private borehole owners and local rivers that receive baseflow. However the shallow aquifer, which hosts most potential receptors, receives a relatively limited concentration of the source contaminant. Additionally mine dewatering plays a role of restricting the contamination plume available in the groundwater environment.			

Activity & Intera	action: Groundwate	er contamination as a result of undergrou	nd mining
Dimension	Rating	Motivation	Significance
Probability	Probable (4)	The impact is likely to occur, although the plume is unlikely to not migrate beyond the mine area during the operational phase.	
Nature	Negative		
Mitigation/ Man	agement actions		
 Nitrate-b discharg Groundv quality in Numeric 	ased explosives can ed unless it meets s vater monitoring sho npacts and trends; a al model should be	inflow from the atmosphere. In contaminate water thus no underground was standards to minimise ground and surface was buld be conducted to assess the time series w and updated every two years in the first four year roundwater monitoring results.	ater contamination. vater level, water
Post- mitigation	1		
Duration	Beyond project life (6)	Groundwater contamination due to mine disturbance will occur during the operational phase and is expected to persist even after closure.	
Extent	Limited (2)	With the implementation of the above stated mitigation measures, the impact extent can be limited to the mine workings only.	Negligible
Intensity x type of impact	Minimal (1)	The dewatering of the underground mine will contain the pollution plume during the operational phase, with minor effects on the groundwater environment.	(-27)
Probability	Unlikely (3)	The impact is unlikely to be severe with the implementation of the above stated mitigation measures.	
Nature	Negative		

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

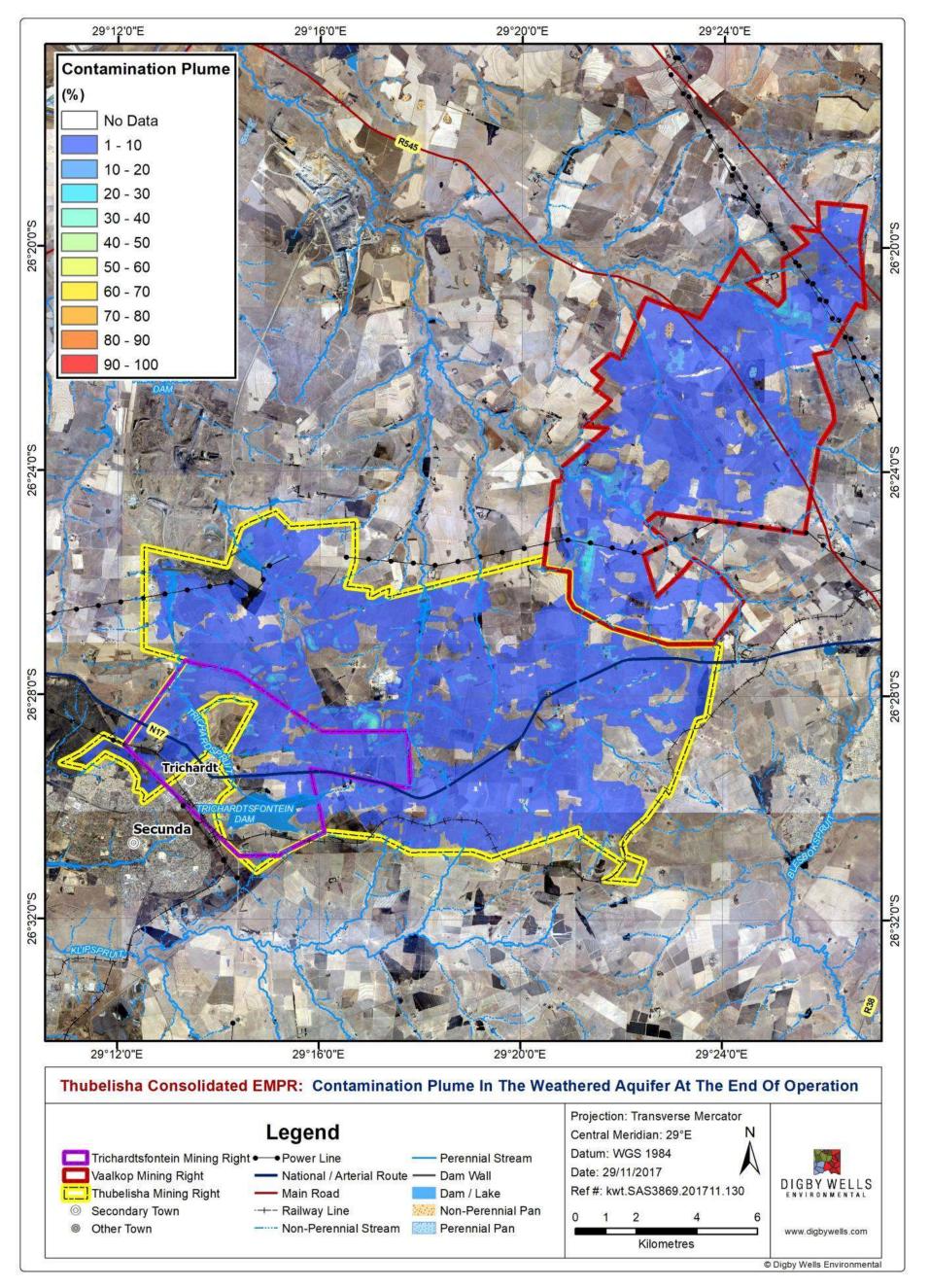


Figure 6-3: Contamination plume in the weathered aquifer at the end of operation

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

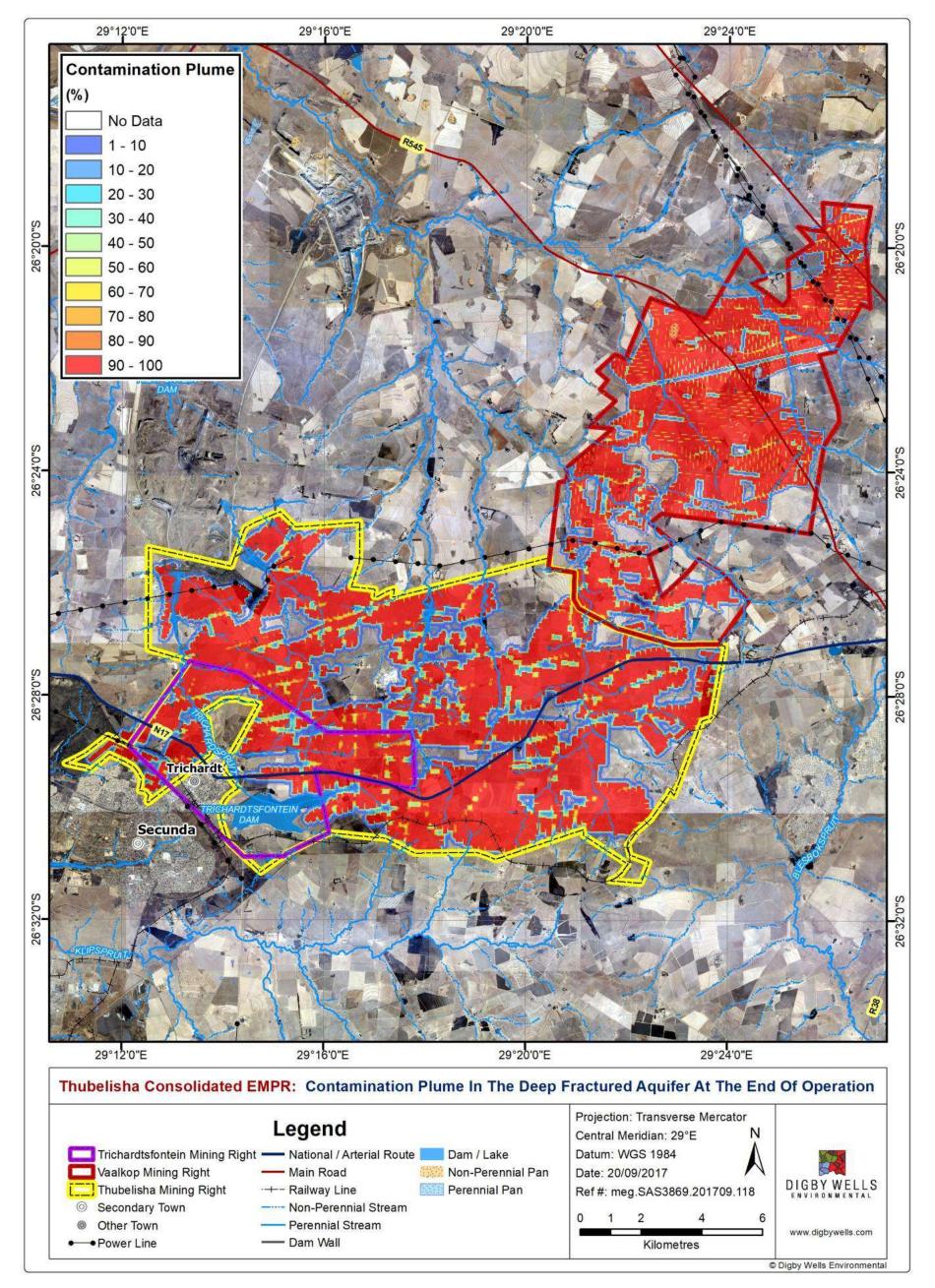


Figure 6-4: Contamination plume in the deep fractured aquifer at the end of operation

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

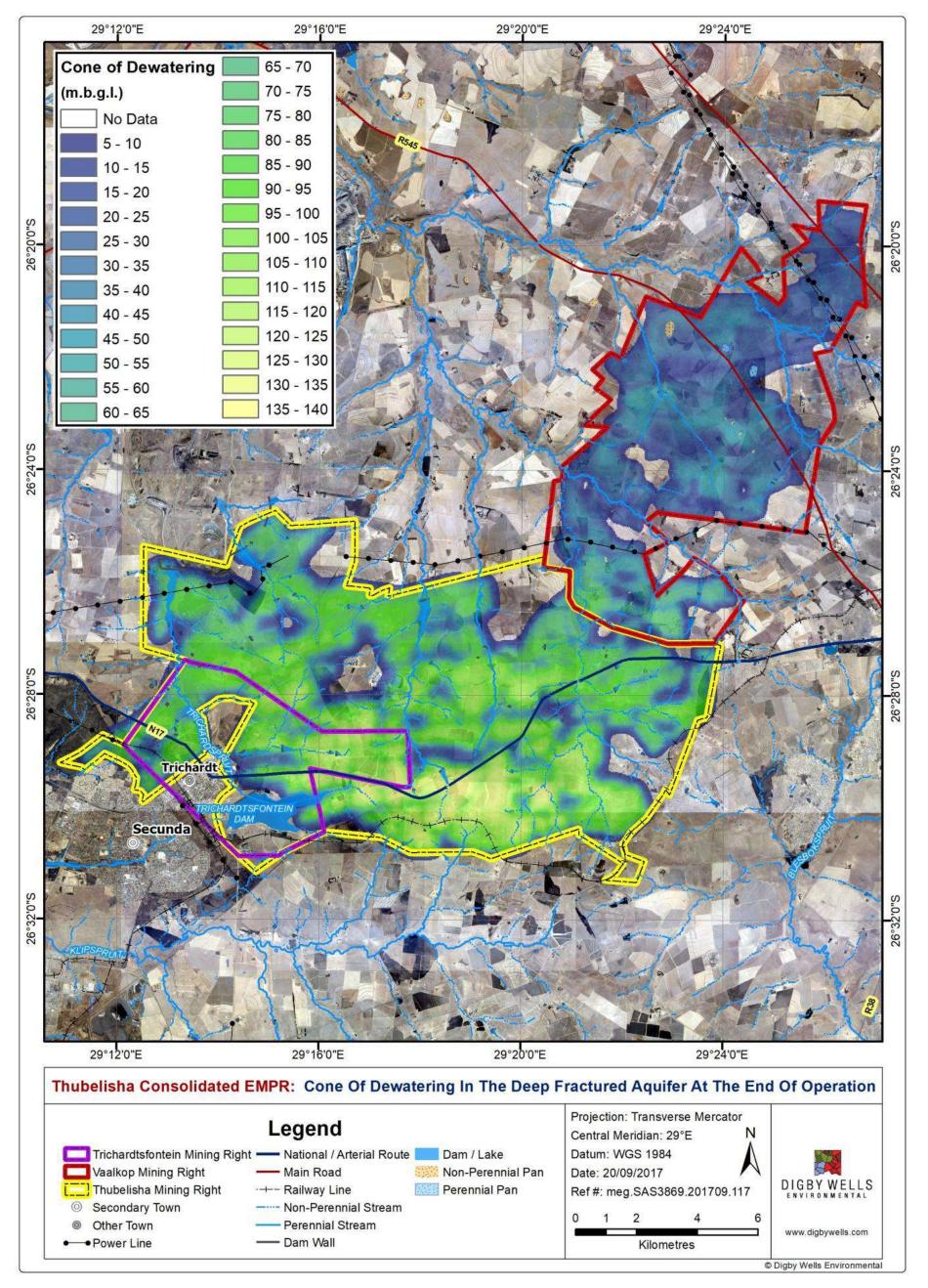


Figure 6-5: Cone of depression in the deep fractured aquifer at the end of operation

6.3.3 Decommissioning and Post-Closure Phases

6.3.3.1 Project Activity Assessed

During the decommissioning and post closure phases groundwater contamination is likely to occur. Table 6-13 provides the activity interaction and the resultant impact after mine closure.

Table 6-13: Interactions and Impacts during the Decommissioning and Post-Closure Phase

Interaction	Impact
Mine contamination	Groundwater contamination
Mine decanting	Surface water contamination

6.3.3.1.1 Impact Description

Once the mining and dewatering ceases, groundwater will start to recover towards reaching its pre-mining levels, due to the extensive area (126 km) full hydraulic head recovery varies in different parts of the impacted area. Contaminants may arise due to dissolution of heavy metals and the oxidation of sulphides, resulting in AMD or an excess of particular parameters when compared against various DWS water quality standards and project area's water use licence (WUL) water quality standards.

Following full recovery, the potential contaminants will start to migrate away from the mine site. The expected contamination plume 100 years post closure in the weathered aquifer is shown in Figure 6-6, a maximum of 40% of the source concentration from the mine voids will reach the weathered aquifer. Due to the low hydraulic conductivity in the deeper aquifers the contamination plume is expected to be retained within the project area at the deep fractured aquifer, Figure 6-7.

Model simulations show that decant is unlikely to occur even 100 years after closure at the shafts. Subsidence, sinkhole formation and unsealed deep boreholes have not been considered in the decant simulation. Should subsidence and sinkholes occur/form at elevations lower than the hydraulic head and or artificially extended geological structures that act as groundwater flow pathways, decanting is likely to occur at those areas. The potential decant areas are illustrated in Figure 6-8. It is impossible to inform at this moment if and when such structures will be formed. Additionally, exploration boreholes or abstraction boreholes (extending to the depth of the deep fractured aquifer where mining will be taking place) could also be decant zones, taking into consideration the extent of the mine and distribution of the boreholes, identifying the point of expected decant is not possible. Annual monitoring should be conducted for subsidence and sinkhole formation, followed by rehabilitation, as well as decant monitoring at unsealed deep boreholes (greater than 30 mbgl in depth). Investigations regarding subsidence and sinkhole formation probability, extent and location are limited. However are likely to occur as a result of high extraction

mining, location and extent will depend on the depth of mining and character of the geological formations; the risk decreases with increasing depth of mining and the impacts on more ductile geological formations are less significant compared to brittle geological formations. In the event that decant is detected, it impacts are assessed below.

6.3.3.1.2 Management Actions and Targets

The following actions and targets are required:

- Affected receptors (if proven through monitoring) should be compensated;
- Decant should be collected and stored at a PCD as a short term solution;
- Long term management solutions for decant should be investigated;
- Monitoring groundwater levels and decant (rate and quality); and
- Numerical model should be updated every 5 years to calibrate with monitoring results.

6.3.3.1.3 Post-Closure Phase Impact Ratings

The significance rating of the potential impacts of subsidence before and after mitigation plans is provided in Table 6-14.

Activity & Intera	Activity & Interaction: Subsidence as a result of high extraction				
Dimension	Rating	Motivation	Significance		
Impact Descript	tion: Lowering of t	he water table			
Prior to mitigati	ion/ management				
Duration	Permanent (7)	If subsidence occurs damage will be permanent.			
Extent	Local (3)	Impacts of subsidence will only occur within the mining rights area			
Intensity x type of impact	Serious loss (-6)	There may be serious impacts associated with the subsidence with regards groundwater quality at the shallow aquifer (where private boreholes are mostly found) and an impact to the shallow aquifer may impact surface water bodies that receive baseflow. Over time higher concentrations of the contamination source accumulate at the weathered aquifer (5% more than that what was observed at the end of operation and more extensive distribution of the higher	Moderate (-80)		

Table 6-14: Potential impacts of subsidence

Dimension	Rating	Motivation	Significance
		concentrations is observed. However the weathered aquifer is only expected to receive a maximum of 40% of the concentration of the source contamination.	
Probability	Likely (5)	Subsidence is likely to occur during high extraction however geotechnical evaluations are required to confirm the probability.	
Nature	Negative	-	
Mitigation/ Man	agement actions		
		backfilling with waste rock and topsoil thereaft	or revegetated.
minimis Ground operatio	e the risk of subside water level and qua n, with special atte	Afilling of the mine voids with fly ash should be ence and neutralise any acid that might be get lity monitoring should be conducted on a quar ntion given to the subsidence areas. The mon epending on the trend of the monitoring results	nerated. terly basis during itoring frequency can
minimis Ground operatio	e the risk of subside water level and qua n, with special atte ced post-closure de	ence and neutralise any acid that might be gen lity monitoring should be conducted on a quan ntion given to the subsidence areas. The mon	nerated. terly basis during itoring frequency can
minimise Ground operatio be reduc	e the risk of subside water level and qua n, with special atte ced post-closure de	ence and neutralise any acid that might be gen lity monitoring should be conducted on a quan ntion given to the subsidence areas. The mon	nerated. terly basis during itoring frequency can
minimise Groundwoperation be reduce Post- mitigation	e the risk of subside water level and qua n, with special atte ced post-closure de n	ence and neutralise any acid that might be gen lity monitoring should be conducted on a quar- ntion given to the subsidence areas. The mon epending on the trend of the monitoring results If areas of subsidence are monitored and rehabilitated the impacts will occur over a	nerated. terly basis during itoring frequency can
minimise Groundwoperation be reduce Post- mitigation Duration	e the risk of subside water level and qua n, with special atte ced post-closure de n Project life (5)	ence and neutralise any acid that might be gen lity monitoring should be conducted on a quar- ntion given to the subsidence areas. The mon- epending on the trend of the monitoring results If areas of subsidence are monitored and rehabilitated the impacts will occur over a short period. Impacts of subsidence will only occur	nerated. terly basis during itoring frequency can
minimise Groundwoperation be reduce Post- mitigation Duration Extent Intensity x	e the risk of subside water level and qua n, with special atte ced post-closure de n Project life (5) Local (3)	 ence and neutralise any acid that might be genulity monitoring should be conducted on a quarter ntion given to the subsidence areas. The monepending on the trend of the monitoring results If areas of subsidence are monitored and rehabilitated the impacts will occur over a short period. Impacts of subsidence will only occur within the mining rights area With the application of the mitigation measures, potential impact intensity 	nerated. rterly basis during itoring frequency can s. Minor

The significance rating of the potential impacts of groundwater contamination during the decommissioning and post-closure is provided in Table 6-15.

Table 6-15: Potential impacts of groundwater contamination during the post-closure phase

Activity & Interaction: Groundwater contamination as a result of underground mining			
Dimension	Rating Motivation		Significance
Impact Description: Groundwater contamination			
Prior to mitigati	ion/ management		
Duration	Beyond project life (6)	Groundwater contamination occurs due to dissolution of heavy metals forming potential acid mine drainage even after the mine closure.	
Extent	Local (3)	The contamination plume predominantly stays within the project area. However the contaminated groundwater is likely to feed deep boreholes intersecting the coal seam aquifer and those at the shallow aquifer; posing a threat to the local potential receptors.	
Intensity x type of impact	Serious (-6)	At areas where the contamination plume extends into the shallow aquifer, receptors such as rivers and private boreholes may be impacted and receive groundwater of poor quality. Additionally, the contamination plume extends into the shallow aquifer zone at higher concentrations over time.	Minor (-60)
Probability	Likely (4)	The impact is likely to occur since the groundwater will recover and the contamination plume is expected to migrate with the groundwater	
Nature	Negative		
Mitigation/ Man	agement actions		
 Affected receptors (if proven through monitoring) should be compensated. Update numerical model every 5 years post closure to calibrate with monitoring results. 			
Post management			
Duration	Beyond project life (6)	Groundwater contamination due to mine disturbance will continue even after mine closure	Negligible
Extent	Limited (2)	With the implementation of the above stated mitigation methods, the impact extent can be minimised to the site only	(-30)

Activity & Interaction: Groundwater contamination as a result of underground mining			
Dimension	Rating	Motivation	Significance
Intensity x type of impact	Minor (-2)	If identified receptors are compensated the impacts of the contamination plume is regarded as minor, additionally the contamination plume is not expected to migrate beyond the project area	
Probability	Unlikely (3)	The impact is unlikely to occur if the above stated mitigation plans are implemented	
Nature	Negative		

The significance rating of the potential impacts of decant during the decommissioning and post-closure is provided in Table 6-16.

Activity & Interaction: Mine decanting and contamination of surface water bodies				
Dimension	Rating	Motivation	Significance	
Impact Descript	Impact Description: Decanting of the closed mine			
Prior to mitigati	on/ management			
Duration	Permanent (7)	Once the mine starts to decant, it is not expected to stop naturally		
Extent	Municipal area (4)	Decant is likely to flow to the rivers within the project area, affecting the surface water quality and downstream water users unless it is prevented from doing so.		
Intensity x type of impact	Serous (5)	The decant is expected to have a significant impact and require effective management measures to prevent severe impacts	Moderate (-96)	
Probability	Likely (6)	Based on analytical modelling, it is highly probable that there will be a decant after mine closure		
Nature	Negative			
Mitigation/ Management actions				
 Decant should be collected and stored at a PCD as a short term solution. Long term management solutions for decant should be investigated. Monitoring groundwater levels and decant (rate and quality). 				
Post- mitigation				
Duration	Permanent (7)	Once the mine starts to decant, it is not expected to stop naturally	Negligible (-30)	

Table 6-16: Potential impacts of decant

Activity & Interaction: Mine decanting and contamination of surface water bodies			
Dimension	Rating	Motivation	Significance
Extent	Limited (2)	With the decant stored in a PCD, the extent of impact will be limited	
Intensity x type of impact	Minimal (1)	Once the decanted water captured, the environmental significance is rated as minimal to no loss.	
Probability	Unlikely (3)	If the decant is captured, its impact is unlikely	
Nature	Negative		

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

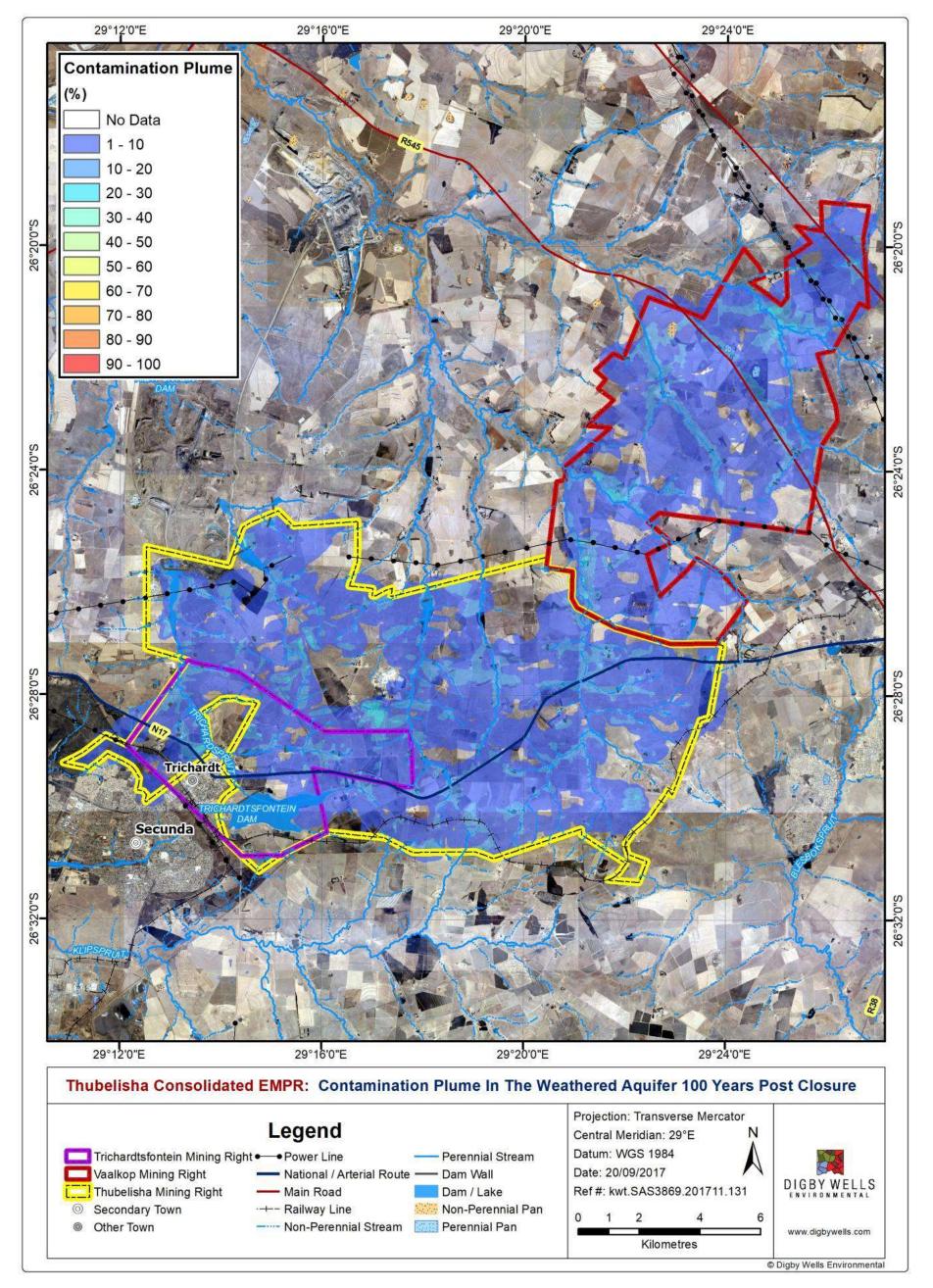


Figure 6-6: Contamination plume in the weathered aquifer 100 years post-closure

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

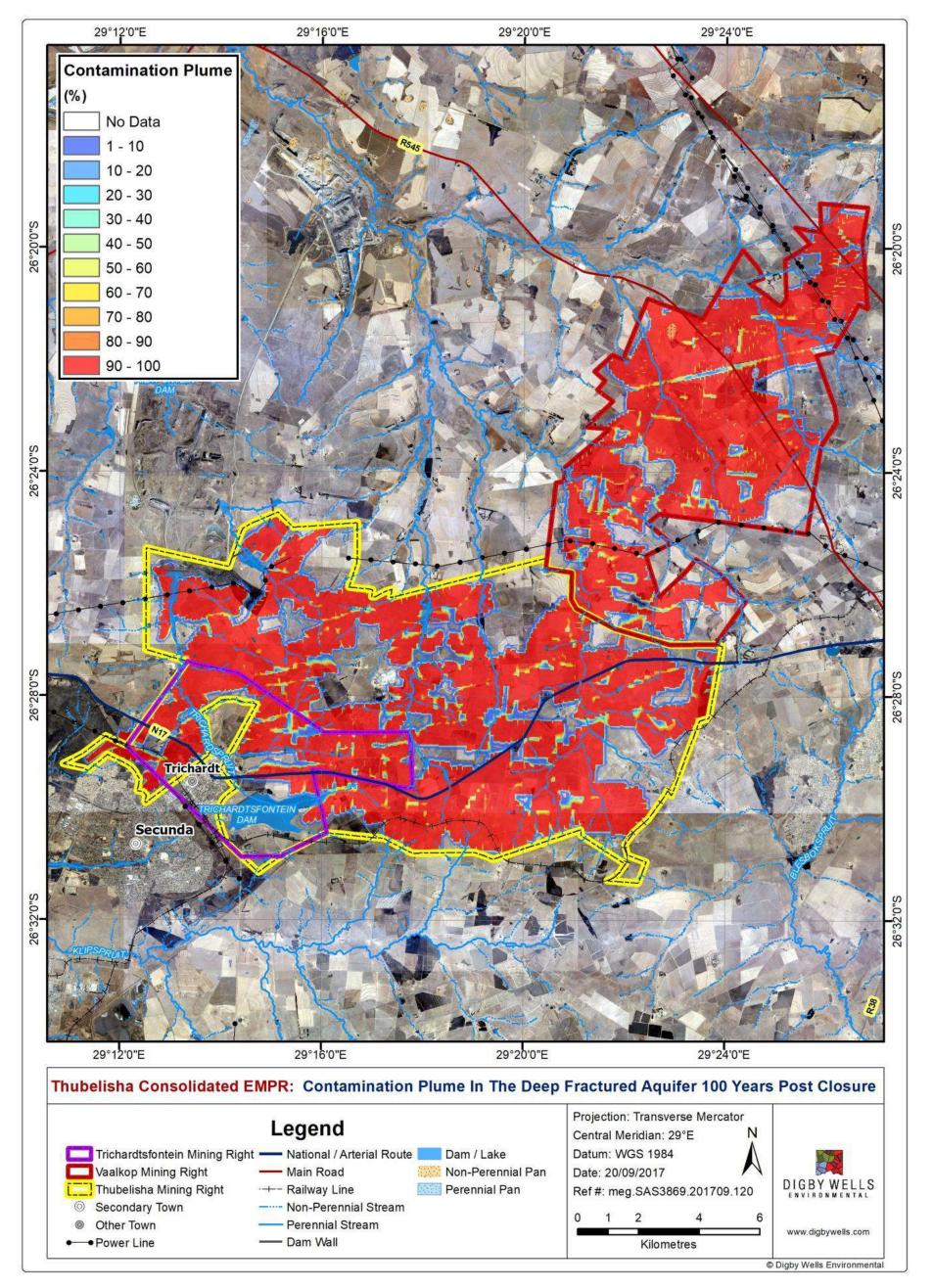


Figure 6-7: Contamination plume in the deep fractured aquifer 100 years post-closure

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

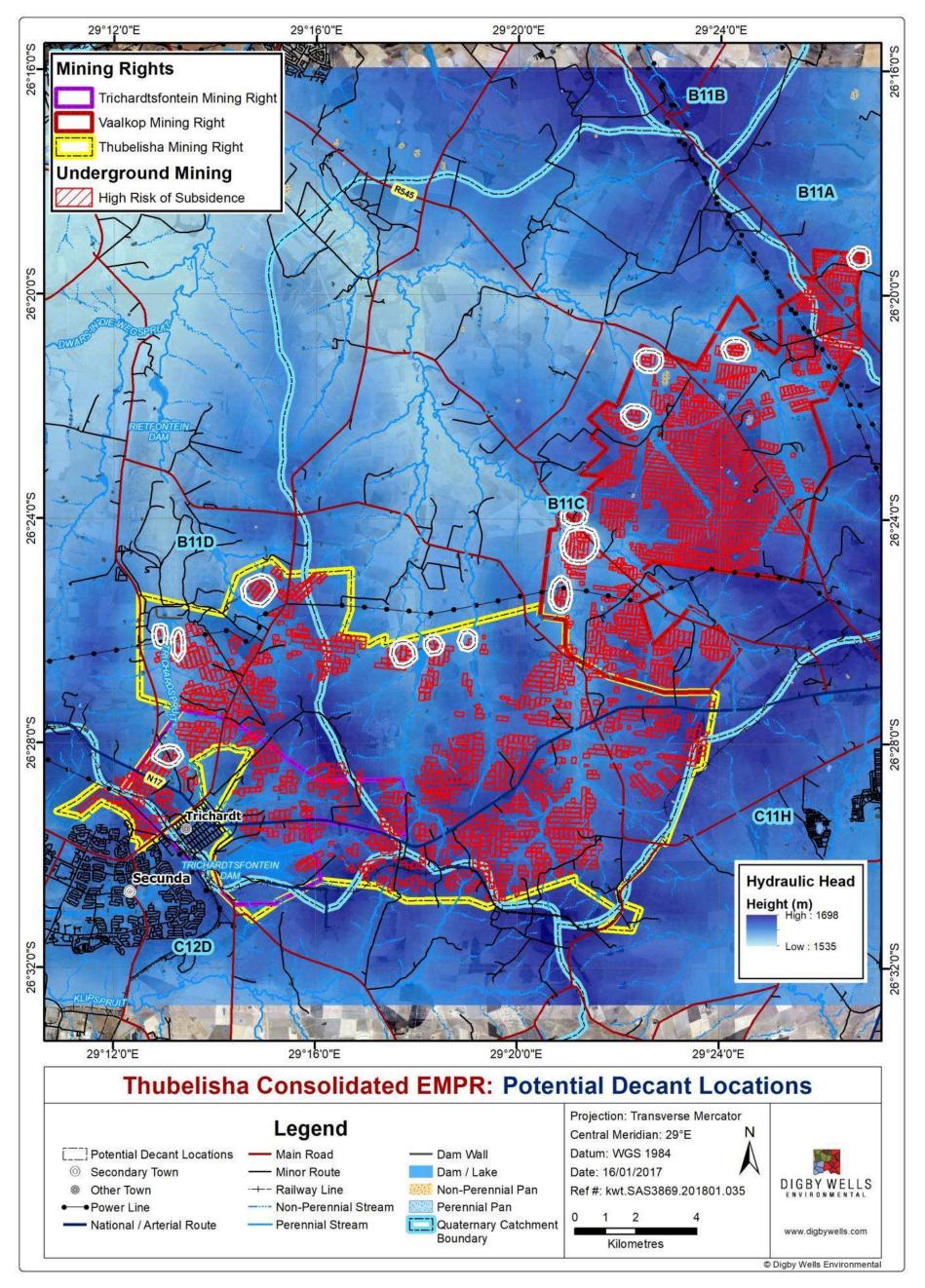
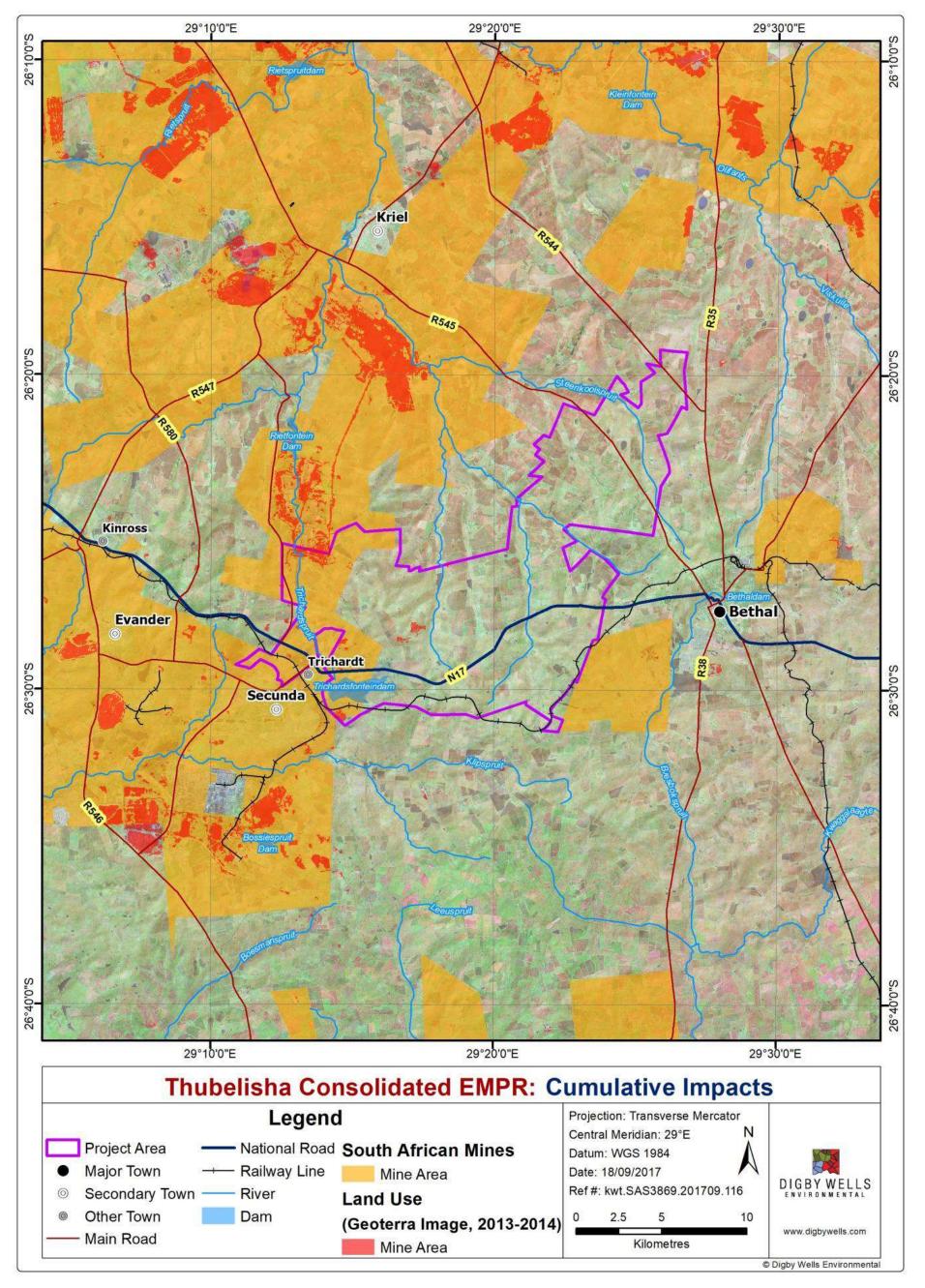


Figure 6-8: Potential decant locations

7 Cumulative Impacts

Observing the project area and its surroundings (10 km radius from the project area) it is evident that the area is dominated by mining related operations. Concentration of these facilities is observed especially downstream of the project area, as shown in Figure 7-1. All these operations are expected to have contributed or are currently contributing to the local groundwater quality deterioration. Impacts of dewatering activities and the contamination plume may extend beyond the project site considering cumulative impacts.


However, depending on the mine size, depth, life of mine and mining method, the cone of dewatering from the existing or future mines could possibility reach the project site. Considering the distance between the mines and the limited rock permeability, however, this is an unlikely scenario.

No decant is expected at the shafts however subsidence, sinkholes and unsealed deep boreholes were not taken into consideration when simulating the scenario of decant prediction.

The potential occurrence of the cone of dewatering in isolated parts of the shallow weathered aquifer may bring about cumulative impacts that could deteriorate water quantity at the local rivers that are part of the Olifants River Catchment. The potential groundwater contamination plume in the deep fractured aquifer from all the mines in the catchment is likely to have a negative impact on the groundwater quality, potentially impacting deep private boreholes.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas SAS3869

Figure 7-1: Cumulative Impacts

8 Unplanned Events and Low Risks

The unplanned events that may happen at the project site and the proposed mitigation plans are listed in Table 8-1.

Unplanned event	Potential impact	Mitigation / Management / Monitoring
Hydrocarbon spills from bulk storage tanks, vehicles and heavy machinery or hazardous materials or waste storage facilities at fuel bay.		 Hydrocarbons and hazardous materials must be stored in bounded areas and refuelling should take place in contained areas;
		 Ensure that oil and silt traps are well maintained;
		 Vehicles and heavy machinery should be serviced and checked in a demarcated area on a regularly basis to prevent leakages and spills;
	 Hydrocarbon contamination of the groundwater 	 Hydrocarbon spill kits must be available on site at all locations where hydrocarbon spills could take place;
		 Monitoring boreholes, particularly those located within the construction area, have to be monitored for both water level and quality to detect any changes; and
		 If a considerable amount of fluid is accidentally spilled, the contaminated soil should be scraped off and disposed of at an acceptable dumping facility. The excavation should be backfilled with soil of good quality.
Spills / leaks from the dewatering pipeline.	 Contamination of groundwater 	 Regular inspections of the pipeline should be conducted for any leaks. Seeping pipeline should be sealed.

 Table 8-1: Unplanned events, low risks and their management measures

9 Environmental Management Plan

The objective of an Environmental Management Plan (EMP) is to present mitigation measures that manage reasonably avoidable adverse impacts associated with the development and to enhance potential positives.

9.1 **Project Activities with Potentially Significant Impacts**

Potentially significant impacts that require mitigation or management are listed in Table 9-1.

Activity	Aspects	Potential Significant Impacts
Site clearing	Water table	 Lowering of the water table if excavation during the site clearing process is going to take place below the water table.
	Dewatering	 Depletion of the groundwater; Reduction of the flow rate of the streams; and Lowering of water tables in private boreholes.
	Groundwater contamination	 Dissolution of heavy metals (AMD generation and deterioration of groundwater quality.
Underground mine development		 Post operation the hydraulic head will recover and recharge will increase at areas of subsidence due to the increased permeability, introducing contaminated groundwater into the weathered aquifer;
	Subsidence	 Reduction of the flow rate of the streams as water will pond or infiltrate at the area of subsidence, reducing or potentially eliminating flow downstream; and
		 Dissolution of heavy metals (AMD generation and deterioration of groundwater quality as larger area will be disturbed.
Decant	Surface water	 Deterioration of surface water quality.

Table 9-1: Potentially significant impacts

9.2 Summary of Mitigation and Management

Table 9-2 to Table 9-4 provide a summary of the proposed project activities, environmental aspects and impacts on the receiving environment. Information on the frequency of mitigation, relevant legal requirements, recommended management plans, timing of implementation, and roles / responsibilities of persons implementing the EMP.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Activities	Phase	Size and scale of disturbance	Mitigation Measures	Compliance with standards	т
Site clearing	Construction	Approximately 5 km ²	 Site clearance and construction activities should take place above the water table, at the unsaturated zone, (if possible), no impact on the groundwater will then be expected; Site clearance should be kept to a minimum area and short duration; If trenches are going to be excavated below the water level, dewatering to lower the water table locally should be considered to ensure that the construction takes place above the groundwater level. Since the groundwater is not expected to be polluted at this stage, the utilisation of the water for activities such as dust suppression or irrigation (if applicable). 	N/A	
Underground mine development - Dewatering	Operation and post closure	Approximately 126 km ²	 Affected private borehole users should be compensated, (impact is proven through monitoring records). Decant should be collected and stored at a PCD as a short term solution; Long term management solutions for decant should be investigated. Groundwater monitoring should be conducted to assess the time series water level, water quality impacts and trends. Updating of the numerical model as aquifer properties become available. 	 SANS. River quality objectives. South African water quality guidelines for drinking, irrigation and livestock watering. 	
Underground mine development - Groundwater contamination.	Operation and post closure	Approximately 126 km ²	 If subsidence is formed during operation, it should be rehabilitated as soon as possible to minimise water and oxygen inflow from the atmosphere. Nitrate-based explosives can contaminate water thus no underground water should be discharged unless it meets standards to minimise ground and surface water contamination. Affected private borehole users (if proven through monitoring records) should be compensated. Monitoring of groundwater quality and water levels. Updating of the numerical model as aquifer properties become available. 	 SANS. River quality objectives. South African water quality guidelines for drinking, irrigation and livestock watering. 	

Table 9-2: Impacts

Time period for implementation

- Groundwater monitoring must commence from the construction phase
- Where proven to be required, mitigation measures to reduce impact to the groundwater from the construction phase
- Groundwater monitoring must commence from the start of the construction phase.
- Mine should supply private borehole owners with clean water when groundwater depletion is detected.
- During operation, conceptual and numerical models should be refined every two years in the first four years and thereafter every five years based on groundwater monitoring results. Post closure, numerical model should be updated every 5 years to calibrate with monitoring results.
- Groundwater monitoring must commence from the start of the construction phase.
- Mine should supply private borehole owners with clean water when contamination is detected.
- During operation, conceptual and numerical models should be refined every two years in the first four years and thereafter every five years based on groundwater monitoring results. Post closure, numerical model should be updated every 5 years to calibrate with monitoring results.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Activities	Phase	Size and scale of disturbance	Mitigation Measures	Compliance with standards	Ti
Underground mine development- Subsidence	Operation and post closure		 In order to prevent subsidence during the bord-and-pillar mining phase, it is required that a safety factor of 2 is applied. The mine should be monitored on an annual basis for subsidence and areas of subsidence should be rehabilitated by backfilling with waste rock and topsoil thereafter revegetated. If possible, concurrent backfilling of the mine voids with fly ash should be conducted to minimise the risk of subsidence and neutralise any acid that might be generated. Groundwater level and quality monitoring should be conducted on a quarterly basis during operation, with special attention given to the subsidence areas. The monitoring frequency can be reduced post-closure depending on the trend of the monitoring results. 		
Decant	Post closure		 Decant should be collected and stored at a PCD as a short term solution. Long term management solutions for decant should be investigated. Affected receptors (if proven through monitoring) should be compensated. Monitoring groundwater levels and decant (rate and quality). 	SANS.River quality objectives.	

Table 9-3: Objectives and Outcomes of the EMP

Activities	Potential impacts	Aspects affected	Phase	Mitigation	Standard to be achieved/objective
Underground mine development - Dewatering	Groundwater and surface water depletion	Groundwater quantity	Operation	 Mine should supply equal/better amount of water to affected private borehole owners. Contaminated mine water should be collect and stored at a PCD as a short term solution. Long term management solutions for decant should be investigated. Monitoring of water levels. Updating of the numerical model as aquifer properties become available. 	 SANS. River quality objectives. South African water quality guidelines for drinking, irrigation and livestock watering
Underground mine development - Groundwater contamination	Groundwater contamination	Groundwater quality	Operation and post- closure	 If subsidence is formed during operation, it should be rehabilitated as soon as possible to minimise water and oxygen inflow from the atmosphere. Nitrate-based explosives can contaminate water thus no underground water should be discharged unless it meets standards to minimise ground and surface water contamination. Mine should supply equal/better amount of water to affected parties. Monitoring of groundwater quality. Updating of the numerical model as aquifer properties become available. 	 SANS. River quality objectives. South African water quality guidelines for drinking, irrigation and livestock watering.

Time period for implementation

- Safety factors should be taken into consideration as mining commences;
- Groundwater level and quality monitoring at the shallow weathered aquifer (at high risk areas) should be conducted quarterly; and
- Annual subsidence monitoring (aerial surveys/ land surveys) throughout the project area.
- Mitigation measures should be implemented as soon as decant is detected.
- Numerical model should be updated every 5 years to calibrate with monitoring results.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Activities	Potential impacts	Aspects affected	Phase	Mitigation	Standard to be achieved/objective
Underground mine development- Subsidence	Groundwater and surface water depletion. Groundwater contamination.	Groundwater quality and groundwater quantity	Operation and post closure	 In order to prevent subsidence during the bord-and-pillar mining phase, it is required that a safety factor of 2 is applied. The mine should be monitored on an annual basis for subsidence and areas of subsidence should be rehabilitated by backfilling with waste rock and topsoil thereafter revegetated. If possible, concurrent backfilling of the mine voids with fly ash should be conducted to minimise the risk of subsidence and neutralise any acid that might be generated. Groundwater level and quality monitoring should be conducted on a quarterly basis during operation, with special attention given to the subsidence areas. The monitoring frequency can be reduced post-closure depending on the trend of the monitoring results. 	
Decant	Surface water contamination	Surface water quality	Post closure	 Affected receptors (if proven through monitoring) should be compensated. Decant should be collected and stored at a PCD as a short term solution. Long term management solutions for decant should be investigated. Monitoring groundwater levels and decant (rate and quality). 	SANS.River quality objectives.

Table 9-4: Mitigation

Activities	Potential impacts	Aspects affected	Mitigation type	Time period for implementation	Compliance with standards	
Underground mine development - Dewatering	Groundwater and surface water depletion	Groundwater quantity	 Potentially contaminated water should be collect and stored at a PCD as a short term solution. Long term management solutions for decant should be investigated. Affected private borehole users should be compensated, (impact is proven through monitoring records). Groundwater monitoring should be conducted to assess the time series water level, water quality impacts and trends. Updating of the numerical model as aquifer properties become available. 	 Mine should supply clean water when water depletion is detected in the private boreholes. Groundwater monitoring must commence from the start of the construction phase. During operation, conceptual and numerical models should be refined every two years in the first four years and thereafter every five years based on groundwater monitoring results. Post closure, numerical model should be updated every 5 years to calibrate with monitoring results. 	 SANS. River quality objectives. South African water quality guidelines for drinking, irrigation and livestock watering. 	

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Activities	Potential impacts	Aspects affected	Mitigation type	Time period for implementation	Compliance with standards
Underground mine development - Groundwater contamination	Groundwater contamination	Groundwater quality	 If subsidence is formed during operation, it should be rehabilitated as soon as possible to minimise water and oxygen inflow from the atmosphere. Nitrate-based explosives can contaminate water thus no underground water should be discharged unless it meets standards to minimise ground and surface water contamination. Affected private borehole users (if proven through monitoring records) should be compensated. Monitoring of groundwater quality and water levels. Updating of the numerical model as aquifer properties become available. 	 Mine should supply clean water when contamination is detected in the private boreholes. Groundwater monitoring must commence from the start of the construction phase. During operation, conceptual and numerical models should be refined every two years in the first four years and thereafter every five years based on groundwater monitoring results. Post closure, numerical model should be updated every 5 years to calibrate with monitoring results. 	 SANS. River quality objectives. South African water quality guidelines for drinking, irrigation and livestock watering.
Underground mine development- Subsidence	Groundwater and surface water depletion. Groundwater contamination.	Groundwater quality and groundwater quantity	 In order to prevent subsidence during the bord-and-pillar mining phase, it is required that a safety factor of 2 is applied. The mine should be monitored on an annual basis for subsidence and areas of subsidence should be rehabilitated by backfilling with waste rock and topsoil thereafter revegetated. If possible, concurrent backfilling of the mine voids with fly ash should be conducted to minimise the risk of subsidence and neutralise any acid that might be generated. Groundwater level and quality monitoring should be conducted on a quarterly basis during operation, with special attention given to the subsidence areas. The monitoring frequency can be reduced post-closure depending on the trend of the monitoring results. 	 Safety factors should be taken into consideration as mining commences; Groundwater level and quality monitoring at the shallow weathered aquifer (at high risk areas) should be conducted quarterly; and Annual subsidence monitoring (aerial surveys/ land surveys) throughout the project area. 	
Decant	Surface water contamination	Surface water quality	 Decent should be collected and treated to river qual.y objectives before joining the streams, Affected receptors (if proven through monitoring) should be compensated. Alternatively, the potentially contaminated water can be stored at a PCD. Monitoring groundwater levels and decant (rate and quality). 	 Mitigation measures should be implemented as soon as decant is detected. Numerical model should be updated every 5 years to calibrate with monitoring results. 	 SANS. River quality objectives.

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Table 9-5: Prescribed Environmental Management Standards, Practice, Guideline, Policy or Law

Specialist field	Applicable standard, practice, guideline, policy or law
Groundwater	 National Water Act, 1998 (Act No. 36 of 1998). Department of Water and Sanitation (DWS) (formerly DWAF). Government Gazette, No. 704 (GN 704). 1999. Regulations on the Use of Water for Mining and Related Activities Aimed at the Protection of Water Resources (Vol. 408, No. 20119). 4 June 1999. Mational Environmental Management: Water Services Act 108 of 1997. Water Services Act 108 of 1997. Hazardous Substances Act (Act 15 of 1973). Hazardous Substances Act (Act 15 of 1973). Facilities Regulations (GNR 924 of 2004). Hazardous Chemical Substances Regulations (GN 1179 of 1995). Hazardous Chemical Substances Regulations (GN 1179 of 1995).

9.3 Monitoring Plan

Groundwater monitoring should be undertaken to establish the following:

- The impact of mine dewatering on the local aquifers, through monitoring of groundwater levels; and
- Groundwater quality trends, through sampling.

Deep and shallow aquifer monitoring is recommended:

- Shallow aquifer monitoring boreholes should be drilled to a maximum depth of 30 mbgl; and
- Deep aquifer monitoring boreholes should be drilled to depths ranging between 80 and 200 mbgl.

The monitoring boreholes are recommended to be equipped with piezometers to enable monitoring of both aquifers at the same borehole. The recommended groundwater monitoring locations are presented in Table 9-6. A total of 65 monitoring locations are proposed, 47 existing boreholes and 18 proposed boreholes to be drilled.

Site ID	X m (Cape29)	Y m (Cape29)	Comment	Aquifer			
Trichardtsfontein							
TRBH2	24994	-2930543	Existing	Shallow			
TRBH2D	24994	-2930543	New	Deep			
TRBH1	21521	-2928293	Existing	Shallow			
TN2	21182.59	-2929786.09	Existing	Shallow			
TN2D	21182.59	-2929786.09	New	Deep			
DPLBH2	23579.61	-2934022.73	Existing	Shallow			
RP6	27472.00	-2931694.01	Existing	Shallow			
HNBH1	29608.30	-2931295.01	Existing	Shallow			
RP21	28009.00	-2929216.01	Existing	Shallow			
TNBH1	24481.76	-2934026.31	Existing	Shallow			
TRIBH1	25502	-2928284	New	Shallow			
TRIBH2	18262	-2930027	New	Shallow			
TRIBH3	22712	-2932296	New	Shallow			
	Thubeli	sha					

Table 9-6: Recommended monitoring boreholes

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

Site ID	X m (Cape29)	Y m (Cape29)	Comment	Aquifer
RP10	21392.00	-2926888	Existing	Deep
RP11	23984.00	-2925910	Existing	Deep
RP12	29945.00	-2928604	Existing	Deep
RP13	25358	-2930889	Existing	Deep
RP14	25507	-2930356	Existing	Deep
RP16D	27789	-2929743	Existing	Deep
RP16S	27783	-2929743	Existing	Shallow
RP17D	28955	-2928244	Existing	Deep
RP17S	28953	-2928244	Existing	Shallow
RP18D	28123	-2927411	Existing	Deep
RP18S	28134	-2927408	Existing	Shallow
RP19D	29469	-2927946	Existing	Deep
RP19S	29469	-2927964	Existing	Shallow
RP2	35124.00	-2926067	Existing	Deep
RP20D	29486.00	-2927636	Existing	Deep
RP20S	29489.00	-2927646	Existing	Shallow
RP21D	28018.00	-2929223	Existing	Deep
RP21S	28009.00	-2929216	Existing	Shallow
RP3	33533.00	-2927076	Existing	Shallow
RP4	31419.00	-2932807	Existing	Shallow
RP5	35869.00	-2929029	Existing	Deep
RP7	24882	-2929384	Existing	Deep
RP8	23771	-2930168	Existing	Deep
RP9	26277.00	-2927227	Existing	Deep
RPS2	38216.94	-2917156	Existing	Shallow
RT18	29539.62	-2933330	Existing	Shallow
ZT3	30177.62	-2924382	Existing	Shallow
THUBH1	25894	-2922395	New	Shallow
THUBH2	23643.54	-2922219	New	Shallow
ТНИВНЗ	28732.11	-2921753	New	Shallow

Site ID	X m (Cape29)	Y m (Cape29)	Comment	Aquifer
THUBH4	37811.72	-2934724	New	Shallow
	Vaalk	ор	L	
HN2	34123.63	-2924366	Existing	Shallow
PN5	37547.64	-2926506	Existing	Shallow
PN9	36327.64	-2924224	Existing	Shallow
PTBH2	35263.71	-2924516	Existing	Shallow
RF1	38600.64	-2926221	Existing	Shallow
RFNBH1	37495.77	-2922997	Existing	Shallow
RNBH2	43552.15	-2922652	Existing	Shallow
RNBH2D	43552.15	-2922652	New	Shallow
RNBH5	40906.93	-2922474	Existing	Shallow
RPS2	38216.94	-2917156	Existing	Shallow
ТВНЗ	41188.27	-2914485	Existing	Shallow
VALBH1	35251	-2917403	New	Shallow
VALBH2	33929	-2920905	New	Shallow
VALBH3	39017	-2915189	New	Shallow
VALBH4	44898	-2912117	New	Shallow
VALBH5	43840	-2911886	New	Shallow
VALBH6	43873	-2919154	New	Shallow
VALBH7	43047	-2915189	New	Shallow
VALBH8	41164	-2918460	New	Shallow
VALBH9D	38257	-2920145	New	Deep
VALBH9S	38257	-2920145	New	Shallow

Environmental Regulatory Process in terms of the Thubelisha, Trichardtsfontein and Vaalkop Mining Right areas

SAS3869

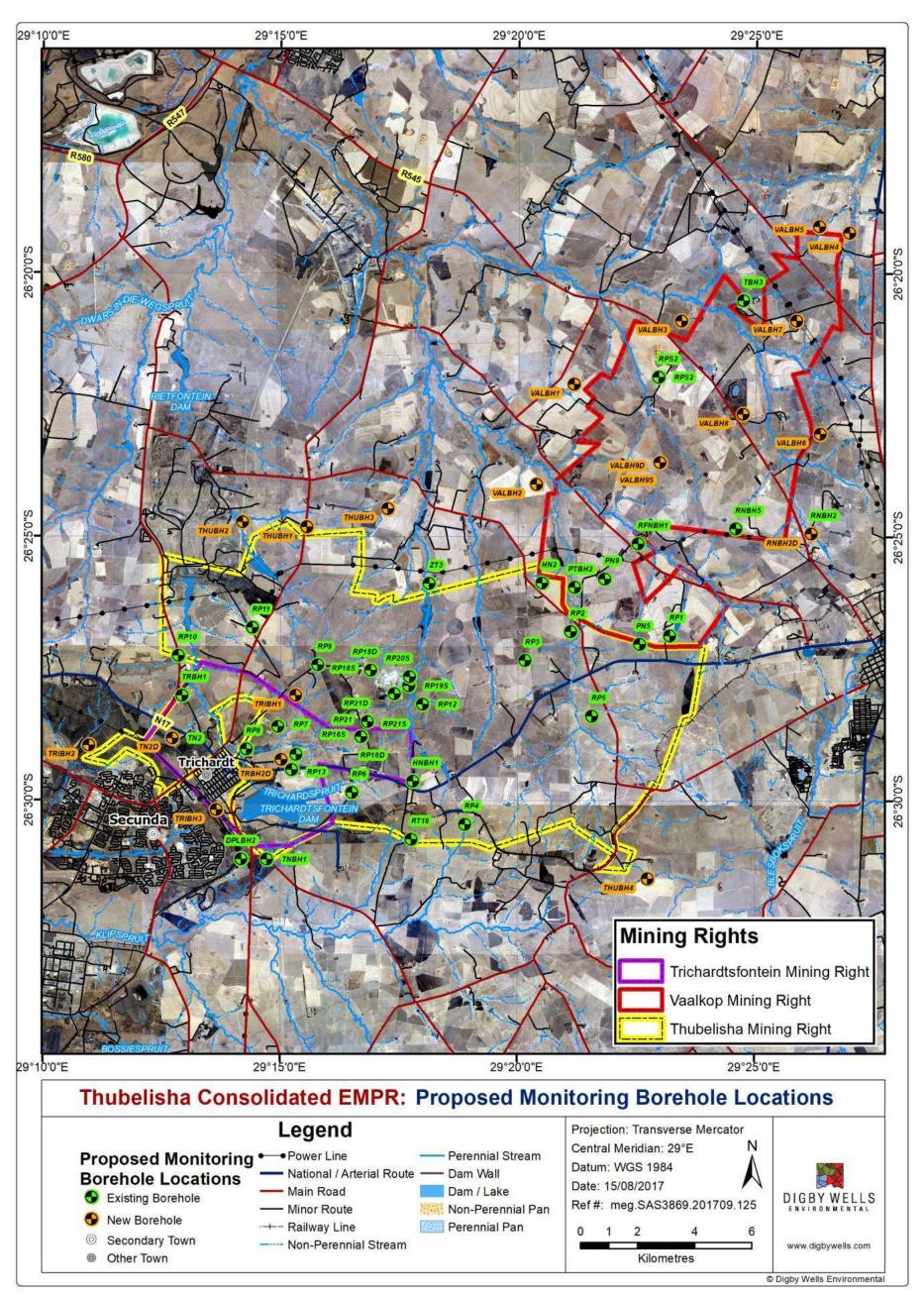


Figure 9-1: Proposed Groundwater Monitoring Boreholes

9.3.1 Water Level

Groundwater levels must be recorded on a quarterly basis to detect any changes or trends in groundwater elevation and flow direction.

9.3.2 Water Sampling and Preservation

When sampling the following procedures are proposed:

- One litre plastic bottles with a cap are required for the sampling exercises;
- Glass bottles are required if organic constituents are to be tested;
- Collected samples must be stored in cooler box or fridge while on site; and
- Sample bottles should be marked clearly with the borehole name, date of sampling, sampling depth and the sampler's name and submitted to a laboratory that analyses in accordance with the methods prescribed by the South African Bureau of Standards in terms of the Standards Act, Act 30 of 1982.

9.3.3 Sampling Frequency

Groundwater is a slow-moving medium and drastic changes in the groundwater composition are not normally encountered within days. Considering the proximity of private boreholes and streams to the proposed mine, monitoring should be conducted quarterly to reflect influences of wet and dry seasons. The sampling frequency could be adjusted following the trend analysis.

Samples should be collected by using Water Research Commission (WRC), 2007, Groundwater Sampling: A Comprehensive Guide for Sampling Methods and submitted to a laboratory that analyses in accordance with the methods prescribed by the South African Bureau of Standards in terms of the Standards Act, Act 30 of 1982.

It is suggested that quarterly samples be collected, extending up to two years post closure and based on the result trends it can be adjusted until a sustainable situation is reached and after it has been signed off by the authorities.

9.3.4 Parameters to be Monitored

- TDS, EC, pH, Alkalinity;
- Major ions i.e. Ca, Mg, Na, K, SO₄, NO₃, F, Cl; and
- Minor and trace metals, including As, Al, Co, Cr, Zn, Cd, Cu, Fe, Ni, V, Mn.

9.3.5 Data Storage

During any project, good hydrogeological decisions require good information developed from raw data. The production of good, relevant and timely information is the key to achieve qualified long-term and short-term plans. For the minimisation of groundwater contamination, it is necessary to utilize all relevant groundwater data.

The generation and collection of this data is very expensive as it requires intensive hydrogeological investigations and therefore the data has to be managed in a centralised database if funds are to be used in the most efficient way. Digby Wells has compiled a WISH-based database during the course of this investigation and it is highly recommended that the applicant utilise this database and continuously update and manage it as new data becomes available.

10 Consultation Undertaken

Farmers and relevant land owners were visited by Digby Wells (2017) during the hydrocensus programme to locate and access all known boreholes and surface water sites in the area.

11 Conclusions and Recommendations

11.1 Baseline Findings

From the hydrocensus conducted by Digby Wells (April 2017), a total of 82 boreholes were located within the area of interest, with 19 of those boreholes selected for local groundwater quality analysis. Groundwater was characterised as predominantly calcium-magnesiumbicarbonate type, consistent with previous investigations conducted at the project area, this indicates the occurrence of freshly recharged aquifers. From the groundwater characterisation it can be concluded that no mine-related impacts exist on the shallow aquifer at the project area currently.

Digby Wells conducted slug tests at Trichardtsfontein (December 2013) to investigate the hydraulic conductivity of the shallow aquifers, the investigations concluded hydraulic conductivity of approximately 0.05 m/d. In June 2017 slug tests were conducted by Digby Wells at Vaalkop and the harmonic mean hydraulic conductivity of the aquifer was estimated at 0.06 m/d.

The harmonic mean hydraulic conductivity of the aquifers at Thubelisha is estimated at 0.013 m/d (JMA, 2008)

Groundwater levels vary between 0 and 32 mbgl, with an average of 5 mbgl. The localised groundwater level depth of 32 mbgl is a result of abstraction for domestic use. The groundwater flow direction at the Olifants River Catchment, where the majority of the project area is located, is in a south to north-west. In the Upper Vaal River Catchment, where minor parts of the project area are located, the groundwater flow direction is towards the southwest.

Geochemistry assessments concluded that waste rock is deemed not to be acid generating with a sufficient buffering capacity from the mineralogy results but coal material is deemed as potentially acid generating.

11.2 Impact Assessment Findings

Dewatering and groundwater contamination impacts on the receiving environment are predicted to be the following with the use of the numerical model:

The cone of depression predominantly impacts the deep fractured aquifer. The weathered aquifer is impacted to lesser extent at isolated areas from dewatering due to the low vertical and horizontal hydraulic conductivity of the local aquifers.

During dewatering the mine void receives groundwater inflows. The model predicts inflows between 1 and 98 L/s over the duration of 39 years of mining throughout the entire project area.

Post operation when dewatering is discontinued the hydraulic head is expected to undergo recovery. No decant is expected at the shafts however subsidence, sinkholes and unsealed deep boreholes are potential decant locations and monitoring is required.

Post operation the hydraulic head recovers and groundwater flow reverts to its natural groundwater flow direction, however the contamination plume is retained within the project area even 100 years post closure because of the hydraulic conductivity at the deep fractured aquifer.

Impacts from the cone of depression and contamination plume will predominantly be contained at the project area and immediate surrounding. The restricted extent of the impacts is attributed to the deeper fractured aquifer (where coal seam is located) being characteristic of low hydraulic conductivity of approximately 0.004 m/d (Digby Wells, 2014). The cone of depression will mainly be restricted to the deep aquifer. Impacts of the contamination plume is expected to affect the deep aquifer and shallow aquifer water quality. Potential receptors such as private boreholes and surface water bodies may be impacted by the groundwater quality deterioration caused by mining activities.

11.3 Recommendations

Limitations to the numerical model (which was the basis of impact assessment) were discussed in Section 5.1. Further hydrogeological assessments are recommended to gain site specific rock permeability values through borehole drilling and aquifer testing the deep fractured aquifer and the local fractures. This will improve the conceptual model and numerical model accuracy.

The recommended mitigation plans during the construction phase include:

- Site clearing should be restricted to areas absolute necessity and the activity should be conducted over a short duration;
- Site clearance and construction activities should take place above the water table, at the unsaturated zone, (if possible), no impact on the groundwater will then be expected; and

If trenches are going to be excavated below the water level, dewatering of the aquifer to lower the water table locally should be considered to ensure that the construction takes place above the groundwater level. Since the groundwater is not expected to be polluted at this stage, the utilisation of the water for activities such as dust suppression or irrigation (if applicable) will not cause negative environmental impacts.

The recommended mitigation plans during the operation phase include:

- Dewatering should be conducted by abstracting groundwater ingress into mine voids during operation;
- Nitrate-based explosives can contaminate water thus no underground water should be discharged unless it meets standards to minimise ground and surface water contamination;
- If subsidence occurs during operation, it should be rehabilitated as soon as possible to minimise water and oxygen inflow from the atmosphere, as these components enable AMD reactions; and
- Contaminated mine water should be stored in pollution control dams and investigations into long term management solutions should be conducted.

The following mitigation and management measures are recommended with regards to subsidence:

- In order to prevent subsidence during the bord-and-pillar mining phase, it is required that a safety factor that provides sufficient pillar stability is applied;
- The mine should be monitored on an annual basis for subsidence and areas of subsidence should be rehabilitated by backfilling with waste rock and topsoil thereafter revegetated;
- If possible, concurrent backfilling of the mine voids with fly ash should be conducted to minimise the risk of subsidence and neutralise any acid that might be generated; and
- Groundwater level and quality monitoring should be conducted on quarterly basis during operation, with special attention given to the subsidence areas. The monitoring frequency can be reduced post-closure depending on the trend of the monitoring results.

During the closure/post-closure phase management solutions should be sought for upon agreement with the farmers or communities with impacted groundwater.

Recommended mitigation activities proposed for the constructional, operational and closure phase include:

- Groundwater monitoring should be conducted to assess the time series water level, water quality impacts and to observe trends as to aid decision making;
- Annual monitoring for subsidence and sinkhole formation is highly recommended, followed by rehabilitation if required and decant monitoring at unsealed deep boreholes (greater than 30 mbgl in depth);
- During operation the numerical model should be updated every two years in the first four years and thereafter every five years based on groundwater monitoring results and updated every 5 years to calibrate with monitoring results post closure.

12 References

Digby Wells (2014). Trichartsdfontien EIA/EMP DMR Directive – Groundwater Study;

- Hodgson F.D.I. and Krantz R.M. (1995). Investigation into Groundwater Quality Deterioration in the Olifants River Catchment above the Loskop Dam with Specialised Investigation in the Witbank Dam Sub-Catchment. WRC Report No. 291/1/95, ISBN 1 86845 182 8;
- Institute of Groundwater Studies (2014). Acid-Base Accounting Report for Twistdraai Thubelisha Shaft;
- Institute of Groundwater Studies (2016). Sasol Secunda Synfuels (SSO) Hub and Mining Pollution Plume Model;
- JMA Consulting (2008). Compilation of Geology and Groundwater Inputs for the Twistdraaai Colliery: Thubelisha Shaft.
- Vermeulen P.D. and Usher B.H. (2006). An Investigation into Recharge in South African Underground Collieries.

Appendix A: Hydrocensus Results

Name	Latitude	Longitude	Altitude	Water Level (mbgl)	Use	EC mS/m	ph	TDS	т∘с
ENBH2	-26.4854	29.36668	1628.01	9.7	Domestic Use	2.17	8.8	3.11	19.1
HNBH1	-26.4173	29.32236	1610.78	Equipped	Domestic Use	2.69	8.21	1.81	19.9
HNBH2	-26.4154	29.32267	1575.7	Equipped	Domestic Use	2.71	8.3	1.93	19.3
RT18	-26.5119	29.29636	1654.93	32.24	Domestic Use	2.9	10.58	1.98	21.4
ENBH1	-26.4736	29.34536	1631.47	9.51	Domestic Use	3.1	8.9	2.7	16.4
OGBH1	-26.3903	29.43456	1630.76	3.51	Domestic Use	3.23	8.24	2.12	27.9
PTBH2	-26.3661	29.38263	1636.28	Equipped	Not Used	3.26	7.9	2.02	22.8
RO1	-26.4913	29.3109	1647.15	2.43	Domestic Use	3.27	8.74	2.41	22.1
PN8	-26.4362	29.35867	1617.48	Equipped	Domestic Use	3.32	8.78	2.2	21.3
EN15	-26.5093	29.36555	1659.62	3.48	Domestic Use	3.32	8.35	2.11	23.1
EN21	-26.5027	29.36548	1649.54	Equipped	Domestic Use	3.4	8.4	2.33	22
PN9	-26.43	29.36396	1631.58	3.84	Domestic Use	3.43	8.46	2.38	24.3
RP8	-26.4839	29.23814	1609.6	0.78	Monitoring	3.46	10.44	2.3	23
RNBH2	-26.4357	29.43006	1677.74	4.87	Domestic Use	3.5	8.2	2.4	24
RT3	-26.4894	29.27215	1653.84	6.79	Domestic Use	3.51	8.24	2.49	25
RP7	-26.4767	29.2493	1639.49	5.69	Monitoring	3.58	8.66	2.67	22
RP3	-26.4557	29.33596	1644.01	11.35	Monitoring	3.61	9.16	2.32	19.7
SCHBH1	-26.4719	29.33336	1651.21	Equipped	Domestic Use	3.61	9.23	2.55	19.5
ZT1	-26.4694	29.32728	1635.81	7.41	Domestic Use	3.66	8.87	2.55	19.3
ERN1	-26.4859	29.36478	1636.4	0.68	Not Used	3.76	7.8	2.61	22.6
TNBH3	-26.414	29.40975	1676.33	5.03	Domestic Use	3.8	7.4	2.6	21.2
RTBH1	-26.4823	29.29926	1613.24	3.83	Domestic Use	3.8	8.2	2.6	
ONBH1	-26.4156	29.43627	1596.54	10.49	Domestic Use	1026	8.89	733	19.1
PN1	-26.4604	29.37751	1656.26	4.96	Domestic Use	1289	8.9	87	24.1
ONBH2	-26.4052	29.445	1661.39	-	Not Used				
TNBH1	-26.412	29.41436	1668.74	4.71	Domestic Use				

Name	Latitude	Longitude	Altitude	Water Level (mbgl)	Use	EC mS/m	ph	TDS	т∘с
OGBH2	-26.3927	29.43741	1625.24	1.24	Domestic Use				
HSBH1	-26.3419	29.41231	1618.68	5.78	Domestic Use				
HSBH2	-26.3355	29.41923	1641.1	Equipped	Unkown				
HSBH3	-26.3565	29.42374	1604.73	4.38	Not Used				
RNBH1	-26.4376	29.42962	1674.75	16.56	Not Used				
RNBH3	-26.4399	29.41796	1652.75	Equipped	Domestic Use				
RNBH4	-26.4401	29.41492	1639.88	5.54	Not Used				
RNBH5	-26.44	29.42505	1659.92	Equipped	Domestic Use				
PTBH1	-26.376	29.38077	1624.35	5.18	Domestic Use				
PTBH3	-26.3651	29.38966	1644.02	Equipped	Not Used				
PTBH4	-26.3688	29.39643	1649.62	Equipped	Not Used				
RP1	-26.4587	29.37431	1656.6	9.66	Monitoring				
PN6	-26.4562	29.36254	1636.32	16.7	Livestock				
PN10	-26.4291	29.36397	1631.58	Equipped	Livestock				
PN7	-26.4327	29.35301	1590.3	1.94	Livestock				
PNN1	-26.4326	29.35324	1594.87	4.97	Not Used				
PNN2	-26.435	29.35366	1592.87	1.54	Not Used				
PN11	-26.4223	29.37121	1616.84	Equipped	Livestock				
PNN3	-26.4189	29.37557	1599.73	Equipped	Livestock				
PNN4	-26.4272	29.37996	1612.02	8.48	Livestock				
PNN5	-26.404	29.36392	1608.63	-	Not Used				
PNN6	-26.3929	29.36379	1643.17	Equipped	Livestock				
PNN7	-26.4022	29.35889	1590.97	Equipped	Not Used				
PN12	-26.4088	29.35192	1592.91	Equipped	Not Used				
PN2	-26.4521	29.35784	1560.89	Equipped	Domestic Use				
PN4	-26.4528	29.35997	1579.31	Equipped	Not Used				

Name	Latitude	Longitude	Altitude	Water Level	Use	EC mS/m	ph	TDS	T⁰C
Name	Latitude	Longitude	Annuac	(mbgl)			pii		
PN3	-26.4515	29.35987	1589.17	Equipped	Not Used				
HN3	-26.4105	29.31689	1582.75	4.53	Not Used				
HNBH4	-26.412	29.31912	1598.67	6.89	Not Used				
HNBH5	-26.4113	29.31406	1594.77	6	Domestic Use				
ENR2	-26.4852	29.36564	1630.92	4.83	Domestic Use				
BH1	-26.4955	29.36015	1639.69	4.46	Not Used				
BH2	-26.4963	29.36082	1639.43	1.51	Domestic Use				
ENF3	-26.4989	29.36288	1640.9	1.47	Not Used				
EIBH1	-26.5029	29.36991	1656.63	1.82	Livestock				
ELBH2	-26.5005	29.36156	1636.52	Equipped	Domestic Use				
EN16	-26.5099	29.363	1653.14	Equipped	Not Used				
ENL6	-26.5095	29.3646	1657.72	1.86	Not Used				
FGBH1	-26.519	29.32382	1660.52	1.25	Domestic Use				
FGBH2	-26.5191	29.32372	1658.76	0.27	Not Used				
FGBH3	-26.5187	29.32515	1666.38	6.66	Domestic Use				
FGBH4	-26.5171	29.32752	1665.42	Equipped	Not Used				
FGBH5	-26.5108	29.32245	1660.03	4.89	Domestic Use				
ZT2	-26.474	29.32391	1632.76	Equipped	Not Used				
RT16	-26.4936	29.3034	1654.1	3.79	Domestic Use				
TRN1	-26.4912	29.30298	1651.04	7.29	Domestic Use				
RT11	-26.503	29.29002	1667.58	2	Domestic Use				
RT17	-26.5064	29.29304	1660.04	1.47	Not Used				
RT10	-26.4999	29.29457	1671	Equipped	Not Used				
RPS1	-26.4939	29.2967	1644.27	spring	Domestic Use				
RPS2	-26.4965	29.29826	1652.17	spring	Domestic Use				
RT1	-26.488	29.27019	1654.08	7.29	Not Used				

Name	Latitude	Longitude	Altitude	Water Level (mbgl)	Use	EC mS/m	ph	TDS	T ºC
RT4	-26.48	29.27101	1653.06	6.89	Not Used				
RP14	-26.4855	29.25555	1633.48	8.76	Monitoring				
JABH1	-26.4871	29.25207	1636.22	11.64	Not Used				
JABH2	-26.4822	29.25171	1620.07	1.8	Domestic Use				

SAS3869

Appendix B: Laboratory Results

Page 1 of 6

Test Report

rest hepoirt									
Client:Digby Wells & AssociaAddress:48 Grosvenor Road, TReport no:39399Project:Digby Wells & Associa	urnberry Office F	Park, Bry	anston, 219	91		Date a	ccepted: ompleted:	24 April 2 07 April 2 21 April 2 0	2017
Lab no:			47980	47981	47982	47983	47984	47985	47986
Date sampled:			03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017
Sample type:			Water	Water	Water	Water	Water	Water	Water
Locality description:			HSBH2	HSBH1	TNBH3	ONBH1	RP3	ZT1	EN15
Analyses	Unit	Method	0.64	0.57	0.74	0.74	0.66	0.40	0.54
A pH @ 25°C	pН	ALM 20	8.61	8.57	8.71	8.74	8.66	8.43	8.54
A Electrical conductivity (EC) @ 25°C	mS/m	ALM 20	70.3	77.8	88.1	67.0	59.5	99.0	72.0
A Total Dissolved solids @ 180°C	mg/l	ALM 24	438	504	596	402	338	660	502
A Total alkalinity	mg CaCO3/I	ALM 01	324	299	237	329	316	292	326
A Chloride (Cl)	mg/l	ALM 02	12.8	31.6	33.5	39.3	19.6	82.4	14.3
A Sulphate (SO₄)	mg/l	ALM 03	86.1	75.8	170	6.38	21.7	139	107
A Nitrate (NO₃) as N	mg/l	ALM 06	0.930	1.64	7.42	0.611	0.279	5.41	2.38
A Ammonium (NH₄) as N	mg/l	ALM 05	0.083	0.126	0.107	0.083	0.186	0.087	0.086
N Ammonia (NH₃) as N	mg/l	ALM 26	0.014	0.019	0.021	0.017	0.033	0.009	0.011
A Orthophosphate (PO₄) as P	mg/l	ALM 04	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
A Fluoride (F)	mg/l	ALM 08	0.273	0.339	0.322	0.519	0.269	0.301	0.310
A Calcium (Ca)	mg/l	ALM 30	78.5	73.6	60.1	51.4	43.2	102	82.5
A Magnesium (Mg)	mg/l	ALM 30	53.2	45.6	28.4	19.7	35.8	57.4	51.5
A Sodium (Na)	mg/l	ALM 30	27.9	40.7	98.6	97.7	55.6	62.0	38.8
A Potassium (K)	mg/l	ALM 30	2.23	2.76	28.0	2.11	13.4	4.92	8.33
A Aluminium (Al)	mg/l	ALM 31	< 0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002
A Iron (Fe)	mg/l	ALM 31	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004
A Manganese (Mn) A Chromium (Cr)	mg/l mg/l	ALM 31 ALM 31	<0.001 <0.003	<0.001 <0.003	<0.001 <0.003	<0.001 <0.003	<0.001 <0.003	<0.001 <0.003	<0.001 <0.003
. ,	-								
A Copper (Cu) A Nickel (Ni)	mg/l	ALM 31 ALM 31	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002
A Zinc (Zn)	mg/l								
A Cobalt (Co)	mg/l	ALM 31	<0.002 <0.003	< 0.002	< 0.002	<0.002 <0.003	< 0.002	< 0.002	<0.002 <0.003
A Cadmium (Cd)	mg/l	ALM 31 ALM 31	<0.003	<0.003 <0.002	<0.003 <0.002	<0.003	<0.003 <0.002	<0.003 <0.002	<0.003
A Lead (Pb)	mg/l	ALIVI 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Lead (Pb)	mg/l	ALIVI 31 ALM 34	<0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	<0.004
	mg/l								
A Selenium (Se) A Silicon (Si)	mg/l	ALM 34 ALM 33	<0.002 18.9	<0.002 22.4	<0.002 26.4	<0.002 16.4	<0.002 2.66	<0.002 10.1	<0.002 22.2
	mg/l								
N Silver (Ag)	mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

A = Accredited N = Non accredited O = Outsourced S = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine The results relates only to the test item tested.

Results reported against the limit of detection.

Results marked 'Not SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation.

Page 2 of 6

Test Report

Client:Digby Wells & AssociAddress:48 Grosvenor Road,Report no:39399Project:Digby Wells & Associ	Turnberry Office	Park, Bry	anston, 219	91		Date a	ccepted: ompleted:	: 24 April 2 07 April 2 21 April 2 0	2017
Lab no:			47980	47981	47982	47983	47984	47985	47986
Date sampled:			03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017
Sample type:			Water	Water	Water	Water	Water	Water	Water
Locality description:			HSBH2	HSBH1	TNBH3	ONBH1	RP3	ZT1	EN15
Analyses	Unit	Method							
A Boron (B)	mg/l	ALM 33	<0.013	<0.013	<0.013	0.111	<0.013	<0.013	<0.013
A Barium (Ba)	mg/l	ALM 33	<0.002	<0.002	<0.002	0.189	<0.002	<0.002	<0.002
A Beryllium (Be)	mg/l	ALM 33	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
N Bismuth (Bi)	mg/l	ALM 32	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004
N Lithium (Li)	mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
A Molybdenum (Mo)	mg/l	ALM 33	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004
A Strontium (Sr)	mg/l	ALM 33	0.373	0.360	0.275	0.523	0.222	1.18	0.307
A Vanadium (V)	mg/l	ALM 33	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Antimony (Sb)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Tin (Sn)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Titanium (Ti)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
A Anions	meq	ALM 26	8.72	8.58	9.77	7.89	7.35	11.46	9.33
A Cations	meq	ALM 26	9.58	9.27	10.35	8.50	7.87	12.64	10.27
A Difference	%	ALM 26	4.70	3.90	2.91	3.72	3.40	4.87	4.76
N Acidity	mg CaCO3/l	ALM 60	<0.001	18.4	15.7	<0.001	<0.001	15.6	<0.001

A = Accredited N = Non accredited O = Outsourced S = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine The results relates only to the test item tested.

Results reported against the limit of detection.

Results marked 'Not SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation.

Page 3 of 6

Test Report

Address: 48 Grosvenor Road, T Report no: 39399	Digby Wells & Associates 18 Grosvenor Road, Turnberry Office Park, Brya 19399 Digby Wells & Associates			91		Date a	ccepted: ompleted:	07 April 2	24 April 2017 07 April 2017 21 April 2017 0	
Lab no:			47987	47988	47989	47990	47991	47992	47993	
Date sampled:			03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	
Sample type:			Water	Water	Water	Water	Water	Water	Water	
Locality description:			EN21	ENR1	RT3	RT18	RO1	RTBH1	PTBH2	
Analyses	Unit	Method	0.00	0.40	0.00	0.00	0.55	0.50	7.60	
A pH @ 25°C	pH	ALM 20	8.86	8.42	8.38	9.03	8.55	8.56	7.62	
A Electrical conductivity (EC) @ 25°C	mS/m	ALM 20	72.3	125	119	58.6	69.4	79.2	24.7	
A Total Dissolved solids @ 180°C	mg/l	ALM 24	462	1024	918	398	512	582	236	
A Total alkalinity	mg CaCO3/l	ALM 01	350	512	373	246	298	323	38.3 18.9	
A Chloride (Cl) A Sulphate (SO₄)	mg/l	ALM 02 ALM 03	5.92	32.9 388	101 127	33.1 29.8	20.2 86.6	38.6 111	12.8	
A Nitrate (NO ₃) as N	mg/l mg/l	ALM 05	91.7 1.55	0.241	38.7	0.835	6.98	1.35	12.8	
A Ammonium (NH ₄) as N	mg/l	ALM 05	0.075	0.065	0.055	0.129	0.38	0.107	0.123	
N Ammonia (NH ₃) as N	mg/l	ALM 05	0.019	0.005	0.006	0.045	0.017	0.016	< 0.005	
A Orthophosphate (PO₄) as P	mg/l	ALM 04	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.101	
A Fluoride (F)	mg/l	ALM 04	<0.263	0.396	0.293	1.13	0.362	<0.263	<0.263	
A Calcium (Ca)	mg/l	ALM 30	52.1	149	143	6.78	76.8	72.9	18.8	
A Magnesium (Mg)	mg/l	ALM 30	83.4	107	78.5	3.79	39.8	55.7	9.33	
A Sodium (Na)	mg/l	ALM 30	13.6	96.5	43.8	135	51.8	48.1	14.2	
A Potassium (K)	mg/l	ALM 30	3.61	7.51	2.93	6.13	6.60	2.31	11.0	
A Aluminium (Al)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
A Iron (Fe)	mg/l	ALM 31	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	
A Manganese (Mn)	mg/l	ALM 31	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	
A Chromium (Cr)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
A Copper (Cu)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
A Nickel (Ni)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
A Zinc (Zn)	mg/l	ALM 31	<0.002	<0.002	0.455	<0.002	<0.002	<0.002	1.19	
A Cobalt (Co)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
A Cadmium (Cd)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
A Lead (Pb)	mg/l	ALM 31	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	
A Arsenic (As)	mg/l	ALM 34	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	
A Selenium (Se)	mg/l	ALM 34	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
A Silicon (Si)	mg/l	ALM 33	21.1	15.2	32.0	19.5	20.8	17.5	25.0	
N Silver (Ag)	mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	

A = Accredited N = Non accredited O = Outsourced S = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine The results relates only to the test item tested.

Results reported against the limit of detection.

Results marked 'Not SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation.

Page 4 of 6

Test Report

Client:Digby Wells & AssociaAddress:48 Grosvenor Road, TReport no:39399Project:Digby Wells & Associa	urnberry Office	Park, Bry	anston, 219	91		Date ad	ccepted: ompleted:	24 April 2 07 April 2 21 April 2 0	2017
Lab no:			47987	47988	47989	47990	47991	47992	47993
Date sampled:			03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017
Sample type:			Water	Water	Water	Water	Water	Water	Water
Locality description:			EN21	ENR1	RT3	RT18	RO1	RTBH1	PTBH2
Analyses	Unit	Method							
A Boron (B)	mg/l	ALM 33	<0.013	<0.013	<0.013	0.653	<0.013	<0.013	<0.013
A Barium (Ba)	mg/l	ALM 33	<0.002	<0.002	0.297	<0.002	<0.002	<0.002	0.048
A Beryllium (Be)	mg/l	ALM 33	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
N Bismuth (Bi)	mg/l	ALM 32	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
N Lithium (Li)	mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
A Molybdenum (Mo)	mg/l	ALM 33	<0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	<0.004
A Strontium (Sr)	mg/l	ALM 33	<0.001	0.346	0.590	<0.001	0.277	0.500	0.045
A Vanadium (V)	mg/l	ALM 33	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Antimony (Sb)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Tin (Sn)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
N Titanium (Ti)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
A Anions	meq	ALM 26	9.21	19.29	15.74	6.58	8.86	9.98	2.59
A Cations	meq	ALM 26	10.15	20.65	15.61	6.68	9.54	10.38	2.65
A Difference	%	ALM 26	4.87	3.40	-0.40	0.71	3.70	1.94	1.18
N Acidity	mg CaCO3/I	ALM 60	<0.001	19.2	17.7	<0.001	<0.001	7.20	10.2

A = Accredited N = Non accredited O = Outsourced S = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine The results relates only to the test item tested.

Results reported against the limit of detection.

Results marked 'Not SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation.

Page 5 of 6

Test Report

Client:Digby Wells & AssociatesDate of certificate:Address:48 Grosvenor Road, Turnberry Office Park, Bryanston, 2191Date accepted:Report no:39399Date completed:Project:Digby Wells & AssociatesRevision:										
ab no:			47994	47995	47996	47997	47998			
e sampled:	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017					
ple type:			Water	Water	Water	Water	Water			
ocality description:			RNBH2	PN9	PN1	HNBH1	RP8			
Analyses oH @ 25°C	Unit pH	Method ALM 20	8.76	8.63	8.82	8.58	9.07			
ctrical conductivity (EC) @ 25°C	mS/m	ALM 20	101	40.1	66.9	47.3	100			
tal Dissolved solids @ 180°C	mg/l	ALM 24	738	254	482	326	610			
al alkalinity	mg CaCO3/I	ALM 01	283	164	300	274	334			
loride (Cl)	mg/l	ALM 02	162	31.9	16.0	13.5	71.0			
phate (SO₄)	mg/l	ALM 03	56.0	17.4	89.7	3.98	97.2			
rate (NO₃) as N	mg/l	ALM 06	5.91	1.20	5.31	1.48	0.354			
monium (NH₄) as N	mg/l	ALM 05	0.091	0.077	0.112	0.081	0.049			
monia (NH₃) as N	mg/l	ALM 26	0.020	0.014	0.028	0.013	0.018			
hophosphate (PO₄) as P	mg/l	ALM 04	<0.005	<0.005	<0.005	<0.005	<0.005			
oride (F)	mg/l	ALM 08	0.290	0.323	0.305	<0.263	0.377			
ium (Ca)	mg/l	ALM 30	95.2	48.8	69.4	68.4	2.61			
gnesium (Mg)	mg/l	ALM 30	39.7	11.4	49.1	16.4	0.619			
lium (Na)	mg/l	ALM 30	90.9	26.5	43.8	27.7	265			
assium (K)	mg/l	ALM 30	31.1	9.68	7.86	21.1	5.50			
ıminium (Al)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002			
n (Fe)	mg/l	ALM 31	<0.004	<0.004	<0.004	<0.004	<0.004			
nganese (Mn)	mg/l	ALM 31	<0.001	<0.001	<0.001	<0.001	<0.001			
omium (Cr)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003			
per (Cu)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002			
kel (Ni)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002			
: (Zn)	mg/l	ALM 31	0.370	0.357	0.023	<0.002	<0.002			
balt (Co)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003			
dmium (Cd)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002			
ad (Pb)	mg/l	ALM 31	<0.004	<0.004	<0.004	<0.004	<0.004			
enic (As)	mg/l	ALM 34	<0.006	<0.006	<0.006	<0.006	<0.006			
lenium (Se)	mg/l	ALM 34	<0.002	<0.002	<0.002	<0.002	<0.002			
con (Si)	mg/l	ALM 33	18.7	17.5	21.5	18.3	1.47			
ver (Ag)	mg/l	ALM 32	< 0.001	< 0.001	< 0.001	< 0.001	<0.001			

A = Accredited N = Non accredited O = Outsourced S = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine The results relates only to the test item tested.

Results reported against the limit of detection.

Results marked 'Not SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation.

Page 6 of 6

Test Report

Client:Digby Wells & AssociatesDate of certificate:Address:48 Grosvenor Road, Turnberry Office Park, Bryanston, 2191Date accepted:Report no:39399Date completed:Project:Digby Wells & AssociatesRevision:									
Lab no:			47994	47995	47996	47997	47998		
Date sampled:			03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017	03-Apr-2017		
Sample type:			Water	Water	Water	Water	Water		
Locality description:			RNBH2	PN9	PN1	HNBH1	RP8		
Analyses	Unit	Method							
A Boron (B)	mg/l	ALM 33	<0.013	<0.013	<0.013	<0.013	0.206		
A Barium (Ba)	mg/l	ALM 33	0.130	0.108	<0.002	0.056	<0.002		
A Beryllium (Be)	mg/l	ALM 33	<0.005	<0.005	<0.005	<0.005	<0.005		
I Bismuth (Bi)	mg/l	ALM 32	<0.004	<0.004	<0.004	<0.004	<0.004		
N Lithium (Li)	mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	<0.001		
A Molybdenum (Mo)	mg/l	ALM 33	<0.004	<0.004	<0.004	<0.004	<0.004		
A Strontium (Sr)	mg/l	ALM 33	0.498	0.416	0.115	0.321	<0.001		
A Vanadium (V)	mg/l	ALM 33	<0.001	<0.001	<0.001	<0.001	<0.001		
N Antimony (Sb)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001		
N Tin (Sn)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001		
N Titanium (Ti)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001		
A Anions	meq	ALM 26	11.82	4.65	8.72	6.07	10.76		
A Cations	meq	ALM 26	12.78	4.79	9.62	6.52	11.87		
A Difference	%	ALM 26	3.90	1.47	4.90	3.54	4.93		
N Acidity	mg CaCO3/l	ALM 60	15.4	11.3	<0.001	10.4	<0.001		

A = Accredited N = Non accredited O = Outsourced S = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine The results relates only to the test item tested.

Results reported against the limit of detection.

Results marked 'Not SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory. Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation.