

EMP Consolidation and Vaalkop Specialist Studies

Fauna and Flora Specialist Report

Project Number: SAS3869

Prepared for: Sasol Mining (Pty) Ltd

August 2017

Digby Wells and Associates (South Africa) (Pty) Ltd Co. Reg. No. 2010/008577/07. Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191. Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 069 6801, info@digbywells.com, www.digbywells.com

Directors: GE Trusler (C.E.O), GB Beringer, LF Koeslag, J Leaver (Chairman)*, NA Mehlomakulu*, MJ Morifi*, DJ Otto, RA Williams*

*Non-Executive

This document has been prepared by Digby Wells Environmental.

Report Type:	Fauna and Flora Specialist Report	
Project Name:	EMP Consolidation and Vaalkop Specialist Studies	
Project Code:	SAS3869	

Name	Responsibility	Signature	Date	
Rudi Greffrath (Pr.Sci.Nat.)	Report Writer	2 grellmo-	2017-08-11	
Renée van Aardt	Reviewer	RAZOI	2017-08-15	

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

DECLARATION OF INDEPENDENCE

Digby Wells and Associates (South Africa) (Pty) Ltd

Contact person: Rudi Greffrath

Digby Wells House	Tel: 011 789 9495
Turnberry Office Park	Fax: 011 789 9498
48 Grosvenor Road	E-mail: rudi.greffrath@digbywells.com
Bryanston	

2191

I, Rudi Greffrath as duly authorised representative of Digby Wells and Associates (South Africa) (Pty) Ltd., hereby confirm my independence (as well as that of Digby Wells and Associates (South Africa) (Pty) Ltd.) and declare that neither I nor Digby Wells and Associates (South Africa) (Pty) Ltd.) and declare that neither I nor Digby Wells and Associates (South Africa) (Pty) Ltd. have any interest, be it business, financial, personal or other, in any proposed activity, application or appeal in respect of Sasol Mining (Pty) Ltd, other than fair remuneration for work performed, specifically in connection with the proposed development of an underground coal mine and associated infrastructure, on the farm Vaalkop, Mpumalanga Province.

2 grellra-

Full Name:	Rudolph Johannes Greffrath	
Title/ Position:	Biodiversity Manager	
Qualification(s):	B-tech	
Experience (Years):	11	
Registration(s):	Pr. Sci. Nat. Conservation Science	

EXECUTIVE SUMMARY

Digby Wells Environmental (hereinafter Digby Wells) have been appointed by Sasol Mining (Pty) Ltd (hereinafter Sasol) to provide specialist studies to comply with the national legislative process for the consolidation of their Twistdraai Colliery: Thubelisha Shaft (TCTS), Trichardsfontein and Vaalkop Mining Right areas ("the Project"). The proposed consolidation of the Mining Right areas will be completed in terms of Section 102 of the Minerals and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002) (MPRDA) and Regulation 31 of the EIA regulations, 2014 (as amended) promulgated in accordance with the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA).

The mining method proposed for the extraction of coal at Trichardsfontein included the conventional bord-and-pillar method, with the use of continuous miners feeding shuttle cars. Sasol is now proposing that in addition to the bord-and-pillar mining method, high extraction mining also be undertaken at the Trichardtsfontein Mine. Since this activity was excluded from the previous EMPR (2014), an amendment of the Trichardsfontein EMPR is required to identify and assess the impacts associated with high extraction mining, particularly relating to surface subsidence.

This report details the findings of the flora and fauna impact assessment for Vaalkop underground mining are, as fulfilment of the environmental authorisation for the proposed development and operation of an underground coal mine between the town of Trichardt and Bethal, Mpumalanga Province. The Vaalkop project area proposed to be mined (underground) has a footprint of 7846 ha, the Trichardsfontein project area is 3 005 ha in size, but only an area of approximately 1 500 ha will be undermined, these areas are located within the Gert Sibande District Municipality and the Govan Mbeki Local Municipality.

The site falls primarily within the regional vegetation type: Eastern Highveld Grasslands and partially in the Soweto Highveld Grasslands; both of which are listed as threatened ecosystems by the National Environmental Biodiversity Act (NEMBA), 2004.

The majority of the study area was dominated by cultivation (4029 ha) and the dominant natural habitat type was broadly classified as *Eragrostis* dominated Grassland, covering an area of 3206.2 ha. In addition, ephemeral pan habitat (27 ha), Rocky Grassland (7 ha) and Riparian habitat (516 ha) were delineated. A total of 137 plant species were recorded on site of the 201 recorded for the region.

Of the eleven plant species of special concern (SSC) recorded for the regional list and previous reports (six), four were recorded on site, including: *Aloe ecklonis* (provincially protected), *Crinum bulbispermum* (Red Data Declining and provincially protected), *Eucomis autumnalis* (Red Data Declining and provincially protected), *Haemanthus humilis* (provincially protected). *Aloe ecklonis* and the were found in the *Eragrostis* Grassland habitat; *Crinum bulbispermum* and *Eucomis autumnalis* were found in the riparian habitat and *Haemanthus humilis* was found in the rocky grassland. No SCC were recorded in the infrastructure areas, and none are expected.

A total of 18 mammal species have been recorded on site, two of which are SSC, including Near Threatened: African Clawless Otter (*Aonyx capensis*), and provincially protected Serval (*Felis serval*). A total of 83 bird species were recorded. Three frog species were recorded on site, namely: *Amietia angolensis* (Common River Frog), *Cacosternum boettgeri* (Common Caco) and *Strongylopus fasciatus* (Striped Stream Frog).

The primary impact of the proposed development is a loss of flora and fauna habitat in the form of sensitive landscapes due to subsidence that is caused by high extraction mining. Due to the large extent and the high sensitivity habitat, the impacts identified will be moderate negative after mitigation measures are implemented. Alien plant invasion is expected due to surface disturbance due to the construction of infrastructure (Vent shafts) and this should be managed by implementing an alien plant management plan including quarterly monitoring that should take place for the life of mine.

TABLE OF CONTENTS

1	I	ntrod	ntroduction1			
	1.1	Project Background				
	1.2	Tei	rms of Reference	2		
	1.3	Pro	pject Description	2		
2	ľ	Vetho	dology	. 5		
	2.1	Lite	erature Review and Desktop Study	5		
	2.2	Fie	Id Investigation	5		
	2.	2.1	Flora	7		
	2.	2.2	Species of Special Concern	8		
	2.3	Fai	una	9		
	2.	3.1	Mammals	9		
	2.	3.2	Avifauna	9		
	2.	3.3	Herpetofauna (Reptiles and Amphibians)	10		
	2.	3.4	Macro-Invertebrates	10		
	2.	3.5	Red Data Faunal Assessment	10		
	2.4	Stu	Idy Limitations	11		
3	F	Regio	nal Vegetation	11		
4	F	Result	S	14		
	4.1	Flo	ra	14		
	4.	1.1	Riparian Habitat	20		
	4.	1.2	Rocky Grassland	21		
	4.	1.3	Eragrostis - dominated Grassland	22		
	4.	1.4	Ephemeral Pans	24		
	4.	1.5	Plant Species of Special Concern	25		
		4.1.	5.1 Thubelishia and Trichardsfontein	26		
	4.	1.6	Alien Plant Species	26		
	4.2	Fai	una	28		
	4.	2.1	Mammals	28		
	4.	2.2	Avifauna	30		

		4.2	2.2.1	Rocky Outcrops	31
		4.2	2.2.2	Wetland Areas	31
		4.2	2.2.3	Transformed/Cultivation	32
		4.2	2.2.4	Alien Vegetation	32
	4.	2.3	He	rpetofauna	34
	4.	2.4	Ма	cro-Invertebrates	36
5	ę	Sens	itivity	Analysis and No-go Areas	38
	5.1	M	puma	langa Biodiversity Sector Plan (MBSP) (MTPA; 2016)	38
	5.2	Pr	otecte	ed Areas	40
	5.3	Im	nporta	nt Bird Areas (Birdlife SA, 2013)	42
	5.4	Na	ationa	Ily Threatened Ecosystems	44
	5.5	Na	ationa	Ily Protected Areas Expansion Strategy	46
	5.6	Si	te-spe	ecific Sensitivity	48
	5.7	Ri	sk of	subsidence	50
6	I	Impa	ct Ass	sessment	52
	6.1	M	itigatio	on Hierarchy	52
	6.2	M	ethod	ology	53
	6.3	Pr	oject	Activities	60
	6.4	Im	pact.	Assessment	65
	6.	4.1	Co	nstruction Phase	65
		6.4	l.1.1	Project Activities Assessed	65
		6.4	l.1.2	Impact Description	65
		6.4	1.1.3	Management Objectives	65
		6.4	1.1.4	Management Actions and Targets	65
		6.4	1.1.5	Impact Ratings	66
	6.	4.2	Ор	erations Phase	67
		6.4	1.2.1	Project Activities Assessed	67
		6.4	1.2.2	Impact Description	67
		6.4	1.2.3	Management Objectives	67
		6.4	1.2.4	Management Actions and Targets	67
		6.4	1.2.5	Impact Ratings	68

	6.4.3	Clo	sure and Rehabilitation Phase	70
	6.4	.3.1	Project Activities Assessed	70
	6.4	.3.2	Impact Description	70
	6.4	.3.3	Management Objectives	70
	6.4	.3.4	Management Actions and Targets	70
	6.4	.3.5	Impact Ratings	71
7	Cumu	lative	Impacts	72
8	Unpla	nned	Events and Low Risks	72
9	Enviro	onme	ntal Management Plan	73
10	Projec	ct Act	ivities with Potentially Significant Impacts	73
10).1 Su	mma	ry of Mitigation and Management	73
10).2 Mc	nitor	ing Plan	74
11	Consu	ultatic	on Undertaken	75
12	Discu	ssion	and Conclusions	75
13	References			

LIST OF FIGURES

Figure 4-7: Examples of the Landscape and Common Features of the <i>Eragrostis</i> -dominated Grassland (A: intact grassland; B: grassland dominated by <i>Helichrysum aureonitens</i> ; C: <i>Aloe ecklonis</i> ; D: typical <i>Eragrostis</i> -dominated grassland)
Figure 4-8: Eragrostis Grassland24
Figure 4-9: Examples of Ephemeral Pan Habitat on Site25
Figure 4-10: Examples of Small Mammals Recorded on Site (A: <i>Aonyx capensis</i> (Cape Clawless Otter) – taken by Hardaker; B: <i>Suricata suricatta</i> (Meerkat); C: <i>Rhabdomys pumilio (</i> Striped Mouse); D: <i>Crocidura cyanea</i> (Reddish-Grey Musk Shrew)
Figure 4-11: Examples of Amphibians recorded on site (left: <i>Hylarana signata</i> (Striped Stream Frog) and right: taken by Hardaker)
Figure 4-12: Examples of Invertebrates Recorded on Site (<i>Ctenus spp</i> (Wolf Spider); B: <i>Apanteles acrae</i> ; C: In identification. D: <i>Spilostethus pandurus</i> (Seed bugs) E: <i>Rhodometra sacraria</i> (Vestel) F: <i>Chrysoritis dicksoni</i>
Figure 5-1: Mpumalanga Sector Plan
Figure 5-2: Protected Areas41
Figure 5-3: Important Bird Areas43
Figure 5-4: Nationally Threatened Ecosystems45
Figure 5-5: National Protected Areas Expansion Strategy47
Figure 5-6: Sensitive Areas49
Figure 5-7: Sensitive vegetation types and the risk of subsidence
Figure 6-1: The Mitigation Hierarchy as defined by the IFC52
Figure 6-2: Sensitive landscapes and underground Mine Plan61
Figure 6-3: East Vent Shaft Location and Vegetation types Sensitivity
Figure 6-4: South Vent shaft Location and Vegetation types Sensitivity

LIST OF TABLES

Table 2-1: Braun-Blanquet Analysis Cover Abundance	7
Table 2-2: Red Data Categories (taken from SANBI 2016)	8
Table 3-1: Common and Characteristic Plant Species of the Eastern Highveld Grassland1	3
Table 3-2: Common and Characteristic Plant Species of the Soweto Highveld Grassland 1	3
Table 4-1: Vegetation Habitats (and other land use) and Approximate Areas for Vaalkop1	6

Table 4-2: Vegetation Habitats (and other land use) and Approximate Areas forTrichardsfontein
Table 4-3: Vegetation Habitats (and other land use) and Approximate Areas for Thubelisha
Table 4-4: Plant Species of Special Concern 25
Table 4-5: Alien Plant Species Recorded on Site 27
Table 4-6: Mammal Species Recorded
Table 4-7: Red Data Species Recorded in by SABAP2 that could potentially occur onVaalkop, Trichardsfontein and Thubelisia Mining areas33
Table 4-8: Amphibian Species Recorded in the Vaalkop Project Area 35
Table 4-9: Reptile Species Recorded on Vaalkop 35
Table 5-1: Criteria for the Listing of National Threatened Ecosystems 44
Table 6-1: The Different Levels of the Mitigation Hierarchy Defined 52
Table 6-2: Impact Assessment Parameter Ratings 54
Table 6-3: Probability/Consequence Matrix58
Table 6-4: Significance Rating Description
Table 6-5: Interactions and Impacts65
Table 6-6: Potential Impacts of the Construction Phase – Loss of Habitat/Vegetation Types
Table 6-7: Potential Risks of the Operational Phase – Subsidence
Table 6-8: Closure and Rehabilitation Phase Interactions with sensitive landscapes
Table 6-9: Potential Impacts of the Decommissioning Phase – Establishment of Alien Plant Species 71
Table 8-1: Unplanned Events, Low Risks and their Management Measures 72
Table 10-1: Potentially Significant Project Impacts 73
Table 10-2: Mitigation and Management Plan 74
Table 10-3: Monitoring Plan74

LIST OF APPENDICES

Appendix A: Staff CVs

- Appendix B: Expected Plant List
- Appendix C: Site Plant List
- Appendix D: Expected Mammals List
- Appendix E: Expected Bird List
- Appendix F: Expected Herpetafauna List

1 Introduction

Sasol Mining (Pty) Ltd (hereafter Sasol) appointed Digby Wells Environmental (hereafter Digby Wells) as the independent environmental consultant to undertake a Section 102 process in accordance with the Mineral and Petroleum Resources Development Act 28 of 2002 (MPRDA) and Regulation 31 of the EIA regulations, 2014 (as amended) promulgated in accordance with the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA).

In support of the required environmental authorisations for the four ventilation shafts, amendment of the Trichardsfontein Environmental Management Programme Report (EMPR) and consolidation of the Twistdraai Colliery: Thubelisha Shaft (TCTS) EMPR, Vaalkop EMPR and the Trichardsfontein EMPR (referred to as the Thubelisha Project) are completed.

1.1 **Project Background**

Sasol Mining (Pty) Ltd (Sasol Mining) holds mining rights for the Twistdraai Colliery: Thubelisha Shaft (TCTS) and the Vaalkop mining area, which were both incorporated into the regional Sasol Mining Right (Ref: MP30/5/1/2/2/138MR). It must be noted that no EMPr was compile for the Vaalkop mining right area even though a mining right was approved. Further to this, the mining right for the Trichardtsfontein Mine (Ref: MP30/5/1/2/2/10056MR) was ceded from Glencore Operations South Africa (Pty) Ltd in accordance with Section 11 of the Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002) (MPRDA) to Sasol Mining. Sasol Mining is proposing that the Trichardtsfontein mining right area be incorporated into the regional Sasol Mining Right (Ref: MP30/5/1/2/2/138MR). Therefore all mining right areas will operate under a single mining right (Sasol Mining Right).

It is therefore required that the Environmental Management Programme Reports (EMPrs) for the above mentioned mining right areas be compiled (Vaalkop), consolidated and updated to reflect changes in the mining plans and methodologies and consider additional infrastructure requirements.

The project which includes the Trichardtsfontein Mine, Vaalkop and TCTS is located between the town of Trichardt and Bethal in the province of Mpumalanga. The town of Evander is 17 km to the West and Secunda is 10 km South West of the Trichardtsfontein and TCTS mining area. Vaalkop is located 5 km southeast of Bethal and 17 km southwest of Trichardt. The consolidation project area and coal reserve are located within the Bethal Magisterial District, the Gert Sibande District Municipality (GSDM) and the Govan Mbeki Local Municipality (GMLM).

The mining method which is currently being undertaken at TCTS includes bord and pillar mining method as well as high extraction mining in some areas. This mining method has also been proposed for Vaalkop. However, the mining method proposed for the extraction of coal at Trichardtsfontein only included the conventional bord-and-pillar method, with the use of continuous miners feeding shuttle cars.

Twistdraai Thubelisha is now proposing that in addition to the bord-and-pillar mining method, high extraction mining will be undertaken at the Trichardtsfontein Mine. Since this activity was excluded from the previous approved EMPr (2014), an amendment of the Trichardtsfontein EMPr is required to identify and assess the impacts associated with high extraction mining, particularly relating to surface subsidence. Sasol Mining therefore undertook the required specialist studies to determine the impact that may be experienced from high extraction mining methods.

Additionally it is proposed that Twistdraai Thubelisha will construct two ventilation shafts at TCTS (known as East ventilation shaft) and two ventilation shafts on Trichardtsfontein (known as South ventilation shaft). A Listed activity under listing notice 1 is considered to be triggered in accordance with the new Environmental Impact Assessment (EIA) Regulations, 2014 (As amended) promulgated in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA) for the construction and operation of the ventilation shafts.

A flora and vegetation assessment was completed by EcoInfo (Pty) Ltd in 2007 on behalf of Oryx Environmental for the Twistdraai Colliery: Thubelisha Shaft (TCTS). No fauna and flora assessment has been completed for Vaalkop, therefore Sasol Mining (Pty) Ltd (hereinafter Sasol) appointed Digby Wells Environmental (hereinafter Digby Wells) to complete a fauna and flora assessment for the Vaalkop Mining Right Area.

1.2 Terms of Reference

A environmental amendment process is currently being undertaken for Sasol and therefore the proposed project will be incorporated into this process.

The Scope of Work will include the following environmental regulatory processes:

- Compilation of the Vaalkop EMPR and its subsequent consolidation with the Thubelisha and Trichardsfontein Mining Right Areas to reflect the following:
 - Compilation of the Vaalkop EMPR. It is understood that no activities will be triggered in terms of the Environmental Impact Assessment Regulations, 20141 EIA Regulations (2014); and
 - Consolidation of the Vaalkop EMPR into the Thubelisha and Trichardsfontein EMPRs currently being undertaken.

To meet the scope of work, the following actions are required:

1.3 Project Description

The Thubelisha Project which includes the Trichardsfontein Mine, Vaalkop and TCTS is located between the town of Trichardt and Bethal in the province of Mpumalanga. The town of Evander is 17km to the West and Secunda is 10km South West of the Trichardsfontein and

¹ Published in GN R982 of 4 December 2014

TCTS mining area. Vaalkop is located 5 km southeast of Bethal and 17 km southwest of Trichardt. The Thubelisha Project area and coal reserve are located within the Highveld East Magisterial District, the Gert Sibande District Municipality and the Govan Mbeki Local Municipality.

The consolidation project area owned by Sasol Mining Twistdraai Thubelisha Colliery comprises three mining right areas namely TCTS, Trichardtsfontein and Vaalkop. Twistdraai Thubelisha Colliery is currently mining TCTS and proposes to start mining Trichardtsfontein within the next few months. Vaalkop mining area although a priority to Twistdraai Thubelisha Colliery will only start mining in 2029. To ensure the mines operate in a more efficient and effective manner Twistdraai Thubelisha Colliery intends to compile (Vaalkop) and consolidate all amended EMPrs into one merged EMPr.

The Trichardtsfontein project area is 3 170 ha in size, but only an area of approximately 1 382 ha will be undermined. The coal seam depth at Trichardtsfontein is estimated to be at an approximate depth of 140 – 160 m below surface. The infrastructure (including access shafts) will be on the adjacent mining property of Sasol Mining at the TCTS. However, two ventilation shafts (up and downcast) have been proposed to be construction on TCTS and two ventilation shafts (up and downcast) have been proposed to be construction on Trichardtsfontein which will assist in providing sufficient ventilation to the underground mining area.

The Vaalkop project area is approximately 8 600 ha in extent. The initial mining activities in this area will be conducted as green field operations as no existing infrastructure for coal mining exists in the area. It is foreseen that the Thubelisha conveyor could possibly be utilised. All mining activities will be conducted by means of underground mining operations, such as the bord-and-pillar and high extraction mining method. No infrastructure will be constructed on the Vaalkop project area as all required infrastructure will be located at the TCTS site. It is estimated that the coal seam depth at Vaalkop is approximately 80 - 120 m below surface.

The TCTS project area is 7 200 ha in size. The coal seam depth at TCTS is estimated to be at a depth of 140 - 170 m below the surface and the seam is approximately 2 - 5 m thick.

In all mining right areas will only mine the No 4 seam as it is the only seam of coal that is economically viable.

Due to the variation in depth of mining and coal seam an assumption has been made that mining will be undertaken between 30 m and 215 m. Therefore all impact assessments and specialist studies have assessed the impacts of mining utilising bord and pillar with high extraction at this depth.

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Figure 1-1: Locality Map

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

2 Methodology

2.1 Literature Review and Desktop Study

A desktop study was undertaken, aiming to identify:

- Potential species in the site area according to the SANBI PRECIS List's;
- South African Bird Atlas Project (SABAP2);
- Potential Red Data species and their current status;
- Expected vegetation type and community structure, (Mucina and Rutherford 2006); and
- Current biodiversity and ecosystem status.

2.2 Field Investigation

The site visit and detailed infield flora and fauna assessments took place from the 5th to 7th of June; 2017.

Figure 2-1: Fauna Flora sampling locations and SSC

2.2.1 Flora

As the sampling of the entire study area is not possible, representative samples of the vegetation were assessed on the Vaalkop project area and the ventilation shaft locations. Aerial imagery was utilized to identify and stratify homogenous vegetation units. Sampling points were then randomly selected within representative areas of this homogenous vegetation units and then groundtruth by means of detailed infield assessment. The number of sample sites visited was determined by the time available for the study as well as the accessibility of each of the sample sites. This methodology allows for more efficient sampling than overall random sampling.

At each sample site, a plot size of 100 m² was sampled. In each plot; the species were identified in the field. The Braun-Blanquet method was used for the listing of species and their associated cover. The Braun-Blanquet method incorporates seven cover-abundance categories as listed in Table 2-1. A general species list was also compiled from random traversing through the site.

Cover Abundance	Category
One or few individuals.	r
Occasional and less than 5% of total plot area.	+
Abundant and with very low cover, or less abundant but higher cover; in any case less than 5% cover of total plot area.	1
Very abundant and less than 5%, or 5-25% cover, of a total plot area:	
 2m – Very abundant 	
 2a – 5-12.5 % cover, irrespective of number of individuals 	2
 2b – 12.5-25% cover, irrespective of number of individuals 	
25-50% cover of total plot area, irrespective of number of individuals.	3
50-75% cover of total plot area, irrespective of number of individuals	4
75-100% cover of total plot area, irrespective of number of individuals	5

Table 2-1: Braun-Blanquet Analysis Cover Abundance

Vegetation was classified and the broad plant communities identified during the classification was then mapped to show their distribution. Species lists were compiled for each broad habitat type.

2.2.2 Species of Special Concern

From the overall species list, a list of SSC was compiled. A comprehensive SSC species list was compiled taking the following Red Data lists into consideration:

- International Union for the Conservation of Nature (IUCN) Red Data list (2017);
- The South African National Biodiversity Institute (SANBI) Red Data list version 2017.1;
- The South African Red Data lists for mammals (2004), birds (2016), butterflies;
- The National Environmental Biodiversity Act (NEMBA), 2004 (Act 10 of 2004); and
- The Convention on International Trade in Endangered Species of Flora and Fauna (CITES) list (2016).

An initial list of SSC expected to be found within the study area comprises PSSC (Possible Species of Special Concern). If any of these (and any additional species on the above lists) are recorded on site, they are ascribed the status Confirmed Species of Special Concern (CSSC).

The South African Red Data list uses the same criteria as that defined by the IUCN. According to the IUCN all species are classified in nine groups, set through criteria such as rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation (IUCN, 2016). The categories are described in Table 2-2 below.

CATEGORY			DESCRIPTION	
Extinct		(EX)	No known individuals remaining.	
Extinct	in the Wild	(EW)	Known only to survive in captivity.	
Critically Endangered (CR)		(CR)	Extremely high risk of extinction in the wild.	
Endangered		(EN)	High risk of extinction in the wild	
Vulnerable		(VU)	High risk of endangerment in the wild.	
Near Threatened		(NT)	Likely to become endangered in the near future.	
Least Concern		(LC)	Lowest risk. Does not qualify for a more at risk category. Widespread and abundant taxa are included in this category.	
Data Deficient		(DD)	Not enough data to make an assessment of its risk of extinction.	
Not Evaluated		(NE)	Has not yet been evaluated against the criteria.	
	Extinct		Threatened species are species that are facing a high risk of	
	Threatened		extinction. Any species classified in the IUCN categories CR, EN or	
	Other categories of conservation concern		VU is a threatened species. Species of conservation concern are species that have a high conservation importance in terms of preserving South Africa's high floristic diversity and include not only	
	Other categories		threatened species, but also those classified in the categories, NT , LC and DD	

Table 2-2: Red Data Categories (taken from SANBI 2016)

The online IUCN data base was referenced in order to identify Red Data species and their various threat status categorisations.

2.3 Fauna

A single season survey, late summer (June 2017), was conducted for this project. A detailed desktop study was also conducted for mammals, birds, reptiles and amphibians, this information is contained in this report. All fauna species encountered on site were identified and recorded. The following methods were used during the survey.

2.3.1 Mammals

Small mammals were sampled through opportunistic sightings, as well as the use is Sherman traps and motion sensitive camera traps. The 20 Sherman and 3 camera traps were baited with small mammal bait and left for the duration of the field work time, 2 nights and two days. If no small mammals were captured after a day, the traps were moved to a different location and re-baited. If small mammals were captured, the traps were rebaited and re-set in the same position. Large mammals were recorded using scats, tracks and nesting or breeding sites such as burrows and dens. Scats and tracks found, during active searches, were photographed with a scale and identified. For identification purposes the following field guides were used, Mammals of Southern Africa (Smithers, 1983), The Mammals of the Southern African Sub-region (Skinner & Chimimba, 2005), Red Data Book of the Mammals of South Africa (Friedman & Daly 2004).

2.3.2 Avifauna

The principal ornithological field survey technique used was transect surveys and random point surveys. Transect surveys were planned based on representative sites of different avifauna habitat, such as pans, dams, wetlands, open grassland and road reserves by simply following available roads and paths that transect over these habitat types. Transect procedures involve slow attentive walks along transects during which any bird seen or heard is identified and recorded; this was completed during diurnal surveys only. Species observed during the vegetation surveys and other field trips were also recorded.

The following was recorded:

- All birds encountered or noted during the survey;
- All birds observed by people residing in the study area; and
- A list of rare and endangered species encountered.

Visual identification of birds was used to confirm bird calls where possible. Bird species were confirmed using Sinclair *et. al.* (2002) and Robert's birds (2015).

2.3.3 Herpetofauna (Reptiles and Amphibians)

Herpetofauna include reptile and amphibian species. Direct/opportunistic observations were conducted along trails or paths within the project area. Any herpetofauna species seen or heard along such paths or trails within the project area were identified and recorded. Another method used was refuge examinations using visual scanning of terrains to record smaller herpetofaunal species which often conceal themselves under rocks and in fallen logs, rotten tree stumps, under rocks, in leaf litter, rodent burrows, ponds, old termite mounds, etc. Amphibians and reptiles observed by people residing in the study area were also recorded. Branch (2001), Du Preez and Caruthers (2009) and Carruthers (2009) was used to confirm identification where necessary.

2.3.4 Macro-Invertebrates

During the survey, butterflies were photographed and identified where and when they were seen. Furthermore, transects were walked within identified vegetation/habitat types in order to identify any invertebrate activity or individuals.

2.3.5 Red Data Faunal Assessment

The following parameters were used to assess the Probability of Occurrence of each Red Data species:

- Habitat requirements (HR) Most Red Data animals have very specific habitat requirements and the presence of these habitat characteristics in the study area was evaluated.
- Habitat status (HS) The status or ecological condition of available habitat in the area is assessed. Often a high level of habitat degradation prevalent in a specific habitat will negate the potential presence of Red Data species (this is especially evident in wetland habitats).
- Habitat linkage (HL) (corridors) Movement between areas for breeding and feeding forms an essential part of the existence of many species. Connectivity of the study area to surrounding habitat and the adequacy of these linkages are evaluated for the ecological functioning of Red Data species habitat within the study area.

Probability of occurrence is presented in four categories, namely:

- Low (unlikely to occur);
- Medium (could possibly occur);
- High (most likely could occur); or
- Recorded (does occur on site).

The IUCN Red Data categories are used for the status identification of mammals, birds, reptiles and amphibians globally.

2.4 Study Limitations

The following limitations were encountered during this study:

- Whilst every effort is made to cover as much of the site as possible, representative sampling is done and it is possible that some plant and animal species that are present on site were not recorded during the field investigations, due to seasonality;
- Only a single season survey was completed.

3 Regional Vegetation

The project area falls within the Eastern Highveld Grassland and Soweto Highveld Grassland as described by Mucina and Rutherford (2006) in the Grassland Biome (Table 3-1). The Grassland Biome covers roughly a third of the country. It occurs across six provinces and is the second largest of South Africa's nine biomes, covering an area of 339 237.68 km² (SANBI, 2012).

The term 'grassland' creates the impression that the biome consists only of grass species. In fact, it is a complex ecosystem, including rivers and wetlands, where only one in six plant species are grasses. These vegetation types occur within Mpumalanga Province at an altitude of 1520 to 1780 meters above sea level.

Thirty percent of the biome has been irreversibly transformed and only 1,9% is formally conserved. As a result, the National Biodiversity Strategy and Action Plan has identified the grasslands biome as one of the spatial priorities for conservation action (SANBI, 2012). The important biodiversity contained within the grasslands, which underpins life, is being eroded to such an extent that human wellbeing is threatened. Common and characteristic plant species of the Eastern Highveld and Soweto Highveld Grasslands are listed in Table 3-1 and displayed in Figure 3-1.

Figure 3-1: Regional Vegetation According to Mucina and Rutherford, 2012

Table 3-1: Common and Characteristic Plant Species of the Eastern Highveld Grassland

Plant form	Species		
Graminoids (grasses and sedges)	Heteropogon contortus, Aristida aequigluims, A. congesta , A. junciformis subsp. Galpini, Brachiaria serrata, Cynodon dactylon, Digitaria monodactyla, D. tricholaenoides, Elionurus muticus, Eragrostis chloromelas, E. curvula, E. plana, E. racemosa, E. sclerantha, Heteropogon contortus, Loudetia simplex, Microchloa caffra, Monocymbium cereiiforme, Setaria sphacelata, Sporobolus africanus, S. pectinatus, Themeda triandra, Trachypogon spicatus, Tristachya leucothrix, T. rhmanni, Alloteropsis semialata subsp. eckloniana, Andrpogon appendiculatus, A. schirensi, Bewsia biflora, Ctenuim concinnum, Diheteropogon amplectens, Eragrostis capensis, E. dummiflua, E. patentissima, Harpochloa falx, Panicum natalense, Rendlia altera, Schizachyruim sanguineum, Setaria nigrirostris, Urelytrum agropyroides		
Herbs	Berkheya setifera, Haplocarpha scaposa, Euryops gifillani, Justicia anagalloides, Acalyha angusta, Cahmaecrista mimosoides, Dicoma anomala, E. transvalensis subsp. setilobus, Helichrysum aureonitens, H. caespititium, H. callicomum, H. oreophilum, H. caespititium, H. oerophilum, H. rugulosum, Ipomoea crassipes, Pentanisia prunelloides subsp. latifolia, Selago densiflora, Senecio coronatus, Hilliardiella oligocephala, Wahlenbergia undulata		
Geophytic herbs	Gladiolus crassifolius, Haemanthus humilis subsp. hirsutus, Hypoxis rigidulua var. pilosissima, Ledebouria ovatifolia		
Succulent herb	Aloe ecklonis		
Low shrubs	Anthospermum rigidum subsp. pumilum, Seriphium plumosa		

Table 3-2: Common and Characteristic Plant Species of the Soweto Highveld Grassland

Plant Forms	Species		
Graminoids (grasses)	Andropogon appendiculatus, Brachiaria serrata, Cymbopogon pospischillii, Cynodon dactylon, Elionurus muticus, Eragrostis capensis, E. chloromelas, E.curvula, E. plana, E. planiculmis, E. racemosa, Heteropogon contortus,Hyparrhenia hirta, Setaria nigrirostris, S. sphacelata, Themeda triandra, Tristachya leucothrix, Andropogon schirensis, Aristida adscensionis, A. bipartita, A. congesta, A. junciformis subsp. galpinii, Cymbopogon caesius, Digitaria diagonalis, Diheteropogon amplectens, Eragrostis micrantha, E. superba, Harpochloa falx, Microchloa caffra, Paspalum dilatatum		

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Plant Forms	Species		
Herbs	Hermannia depressa, Acalypha angustata, Berkheya setifera, Dicoma anomala, Euryops gilfillanii, Geigeria aspera var. aspera, Graderia subintergra, Haplocarpha scaposa, Helichrysum miconiifolium, H. nudifolium var. nudifolium, H. rugulosum, Hibuscus pusillus, Justicia anagalloides, Lippia scaberrima, Rhynchosia effusa, Schistostephium crataegifolium, Selago densiflora, Senecio coronatus, Hilliardiella oligocephala, Wahlenbergia undulata		
Geophytic herbs	Haemanthus humilis subsp. hirsutus, Haemanthus montanus		
Herbaceuos climber	Rhynchosia totta		
Low shrubs	Anthospermum hispidulum, A. rigidum subsp. pumilum, Berkheya annectens, Felicia muricata, Ziziphus zeyheriana		

4 Results

4.1 Flora

The majority of the Vaalkop study area (4029.8 ha and 51%), and indeed the Thubelisha and Trichardsfontein areas had undergone transformation due to cultivation for maize and the presence of pastures with alien vegetation also present. Livestock were also observed throughout most of the Vaalkop site and evidence of overgrazing was recorded in grassland areas; showing a dominance of increaser species and some erosion. Despite these impacts, areas that were left intact showed a high diversity of grasses and forbs, particularly members of the Asteraceae family and the *Helichrysum* genus.

Figure 4-1: Delineated vegetation types on Vaalkop

A total of 134 plant species were recorded on site (Appendix C), of 201 listed (recorded by SANBI in the relevant grids in the past) in the regional list (Appendix B), however more may occur that was not recorded and identified by SANBI and therefore not on the PRECIS List. The latest POSA website was under BETA testing when information was retrieved. The natural areas associated with the Vaalkop project area are discussed in more detail in the sections to follow. The primary land uses and vegetation habitats identified on site are listed in Table 4-1 for Vaalkop.

Vaalkop			
Vegetation type	Area Hectares	% of total	
Grassland	3206.5	40.9	
Agriculture	4029.0	51.4	
Wetlands	516.8	6.6	
Rocky Ridges	6.5	0.1	
Alien Vegetation	59.1	0.8	
Pan	27.8	0.4	
Total	7845.7	100.0	

Table 4-1: Vegetation Habitats (and other land use) and Approximate Areas for Vaalkop

The natural areas associated with the Thubelishia and Trichardsfontein areas are discussed in more detail in the sections to follow. The primary land uses and vegetation habitats identified on site are listed in Table 4-2 and Table 4-3. The maps that indicte the vegetatin types distribution are found below, Figure 4-2 and Figure 4-3.

Figure 4-2: Delineated vegetation types on Trichardsfontein

From the map above (Figure 4-2), we can see that the Grassland vegetation type is the most prominent vegetation type, Agriculture is second closely followed by Wetlands, which is a sensitive landscape.

Table 4-2: Vegetation Habitats (and other land use) and Approximate Areas forTrichardsfontein

Trichardtsfontein				
Class Name	Area Hectares	% of total		
Grassland	1260.9	52.56%		
Agriculture	687.3	28.65%		
Wetlands	450.6	18.78%		
Total	2398.8	100%		

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Figure 4-3: Delineated Vegetation types on Thubelisha

The delineated vegetation types encountered on Thubelisha are displayed in Figure 4-3 and Table 4-3 indocates the exact hectares and percentage that these vegetation types cover. Once more the grassland vegetation type is the most prominent.

Table 4-3: Vegetation Habitats (and other land use) and Approximate Areas forThubelisha

Thubelisha			
Class Name	Area Hectares	% of total	
Grassland	9039.5	62.47%	
Agriculture	4306.6	29.76%	
Wetlands	1097.0	7.58%	
Alien Vegetation	25.9	0.18%	
Total	14469.1	100%	

4.1.1 Riparian Habitat

The riparian habitat is associated with the Steenkoolspruit (Vaalkop) and channelled valley bottom wetlands that run through the site. The wetland delineation is represented in the Wetland Assessment Report (Digby Wells, 2017). The Vaalkop Project area is characterised by multiple wetland systems, totalling 2940 ha. There are two major floodplain systems, which drain into one another to the west of the project site. There is also a large channelled valley bottom system which drains into the northern floodplain system. The remainder of the area is characterised by extensive hillslope seeps that drain into the floodplains and valley bottom wetlands. Where standing water was present; Typha capensis (Common Bulrush), Imperata cylindrica (Cottonwool Grass) and Arundinella nepalensis (River Grass) had colonised. Terrestrial species typical of the Eragrostis-dominated Grassland were found on the banks of the Steenkoolspruit. A single Red Data listed plant species was recorded in this habitat, namely: Eucomis autumnalis (Pineapple Flower), listed as Declining. In addition, Crinum bulbispermum (River Lily), which is dominant in this vegetation unit, is provincially protected (according to Mpumalanga Nature Conservation Act, 1998 (Act No. 10 of 1998): Schedule 11). Alien plant species that had colonised this vegetation unit included: Acacia mearnsii (Black Wattle), Salix babylonica (Babylon Willow) and Cirsium vulgare (Scotch Thistle).

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Figure 4-4: Examples of Riparian Habitat

Figure 4-5: Examples of Plant Species Characteristic of the Riparian Channel (A: *Typha capensis* (Common Bulrush) and B: *Arundinella nepalensis* (River Grass))

4.1.2 Rocky Grassland

The rocky grassland was comprised of relatively short grass (<1.8cm) and a high diversity of epilithic (growing on rock surface) forb species. Rocky outcrops represented a type of ecological niche, characterised by shallow soils over sandstone outcrops. Rocky outcrops occurred primarily along riparian zones and were typified by shrubs such as: *Diospyros lycioides* (Bluebush); *Gnidia kraussiana* and *Searsia dentata* (Nana Berry); and characteristic species such as: *Leonotis leonurus* (Lion's Ear), *Psammotropha myriantha* and *Haemanthus humilis* (Rabbit's Ear). Examples of common plant species identified in the *Gnidia – Diospyros* Rocky Grassland are represented in Figure 4-6.

Alien plant invasion was limited in this habitat, which represented the most intact vegetation of all units delineated for the study area. Alien plants included: *Tagetes minuta* (Khakibos) and *Bidens pilosa* (Blackjacks). A single SSC plant was recorded on site, namely: *Haemanthus humilis* (Rabbit's Ear), a provincially protected plant species.

Figure 4-6: Examples of Plant Species found in Rocky Outrops (A: *Psammotropha myriantha*; B: *Searsia dentata*; C: *Haemanthus humulis*; D: *Crassula* sp.; E: *Dicoma anomala*; F: *Diospyros lycioides* in flower)

4.1.3 Eragrostis - dominated Grassland

This Eragrostis-dominated Grassland covered the majority of the natural areas associated with the Vaalkop study site and can further be subdivided into wetland and terrestrial habitats with Avalon being the dominant soil type. The Avalon soil form consists of orthic topsoil, on a yellow-brown apedal B, over a soft plinthic B horizon. Avalon soils are freely draining and chemically active. Manganese and iron oxides accumulate under conditions of a fluctuating water table forming localised mottles or soft iron concretions of the soft plinthic B horizon. Mottling in the samples found within the study site was yellow-brown in colour and occupied at least 10% of the horizon (Fey et al., 2010). Avalon soils are highly suitable for crop production, particularly for growing maize. Fey et al. (2010) explains that this is due to the freely draining nature of the soil and soft plinthic B horizon which traps water and makes it available for root uptake. The substrate of the wetland areas was composed of moist clays and rocky outcrops which formed the top of hillslope seeps. Eragrostis qummiflua (Gum Grass), not favoured by cattle, was dominant and additional Eragrostis species were prevalent, including: Eragrostis curvula (Lovegrass), Eragrostis racemosa (Narrow Heart Love Grass) and Eragrostis chloromelas (Curly Leaf). Additional grass species included Aristida congesta subsp. congesta (Spreading Three-awn), Hyparrhenia hirta (Common Thatching Grass), Themeda triandra (Red Grass), Agrostis lachnantha (Bent Grass) and Imperata cylindrica (Cottonwool Grass) along hillslope seeps.

Common and characteristic forbs and succulents included: *Aloe ecklonis* (Grass Aloe), *Chironia palustris* (Transvaal Chironia), *Haplocarpha scaposa* (False Gerbera), *Helichrysum oligocephala*, *Wahlenbergia* spp., and *Verbena brasiliensis* (Brazilian Vervain). Examples of the landscape and characteristic features are represented in Figure 4-7. Alien plant invasion was moderate in certain areas adjacent to cultivated fields and along roadsides, including species such as: *Datura stramonium* (Downy Thorn Apple), *Solanum sysimbriifolium* (Sticky Nightshade) and *Verbena brasiliensis* (Brazilian Vervain). A single plant SSC was recorded on site, namely: *Aloe ecklonis* (Grass Aloe); provincially protected (Mpumalanga Nature Conservation Act no. 10 of 1998 – Schedule 12).

Figure 4-7: Examples of the Landscape and Common Features of the *Eragrostis*dominated Grassland (A: intact grassland; B: grassland dominated by *Helichrysum aureonitens*; C: *Aloe ecklonis*; D: typical *Eragrostis*-dominated grassland).

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Figure 4-8: Eragrostis Grassland

4.1.4 Ephemeral Pans

Pans represented unique environments on site and were typically not colonised by plant species, except for the seepage areas around them. Pans are depressions without outflow that occur mainly in the drier western parts of the country (including the Northern Cape, Free State and North-west Provinces), but are also found in the wetter eastern parts (Gauteng and Mpumalanga Provinces) and in the Kruger Park National Park. Common and characteristic plant species found to colonise pan edges included: *Cyperus semitrifidus*; *Juncus effusus* (Common Rush), *Persicaria lapatholia* and *Agrostis lachnantha* (Bent Grass). No Red Data or any protected plant species were recorded in this habitat.

Figure 4-9: Examples of Ephemeral Pan Habitat on Site

4.1.5 Plant Species of Special Concern

The study site lies within four QDS grids, namely: 2629BA, 2629BB, 2629BC and 2629BD. According to the PRECIS, eight Red Data species are expected to occur for the QDS's for the sites.

A detailed list of plant species recorded by the SANB PRECIS List for the above mentioned grids is included in Appendix B. These species are expected to be present within undisturbed areas with suitable habitat within the proposed development footprint area. The eight Red Data species identified in the PRECIS List are also listed by the Mpumalanga Nature Conservation Act, 1998 (Act No 10 of 1998) as Schedule 11 (Protected) species, as well as the South African Red Data List and the CITES list.

Table 4-4 lists the plant SSC that were recorded in the regional lists, as well as those recorded on site. Four plant SSC were recorded, all of which are provincially protected; including two declining species.

Aspidoglossum xanthosphaerum is unlikely to occur since this species has only been recorded in four locations in montane grassland. *Khadia carolinensis* is likely to occur and has been recorded by Digby Wells in the greater study region before, but was not encountered in plant sampling plots. The *Satyrium* species was recorded just outside of the study boundary and suitable habitat is found on site.

Species	SA Red List	Provincial List	CITES	Recorded on site
Aloe ecklonis	LC	х	Ш	х
Aspidoglossum xanthosphaerum	VU	-		
Crinum bulbispermum	Declining	х		х
Gladiolus crassifolius	LC	х	-	

Table 4-4: Plant Species of Special Concern

Species	SA Red List	Provincial List	CITES	Recorded on site
Gladiolus robertsoniae	NT	Х	-	
Eucomis autumnalis	Declining	х		х
Haemanthus humilis subsp. hirsutus	-	х	-	х
Hypoxis hemerocallidea	Declining	-		
Pachycarpus suaveolens	VU	-		
Nerine gracilis	VU	-		
Zantedeschia pentlandii	VU	-		

4.1.5.1 <u>Thubelishia and Trichardsfontein</u>

According to the South African National Biodiversity Institute (SANBI)'s interim Red Data flora list of January 2007, 435 species are listed for Mpumalanga Province. The number of species considered threatened within this list is 72, of which 49 are Vulnerable (VU), 17 are Endangered (EN) and 8 are Critical Endangered (CR). The eight species considered critical endangered within Mpumalanga province. Of which only one species, *Holothrix culveri*, could potentially occur within the study area, in association with Community three, the other species are associated with bushland and/ or woodland. Sixteen species are considered endangered in Mpumalanga. Based on the study area's biophysical attributes, suitable habitat for six of these endangered species occurs within the study area. These species are:

- Disa clavicornis
- Disa zuluensis
- Erica rivularis
- Gerbera aurantiaca
- Gladiolus cataractarum
- Pachycarpus suaveolens

They are associated with either rocky areas or wetlands. It should be noted that one species from the following genera of which all species are protected in terms of the Mpumalanga Conservation Ordinance were recorded in community three and four: *Gladiolus* species.

4.1.6 Alien Plant Species

Further to this, alien plant species have also been classified according to National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004) (NEMBA), as published in August 2014 (GN R599 in *GG* 37886 of 1 August 2014) into the following categories:

• Category 1a: Species requiring compulsory control;

- Category 1b: Invasive species controlled by an invasive species management programme;
- Category 2: Invasive species controlled by area, and;
- Category 3: Invasive species controlled by activity.

A total of 17 alien plant species (AIP) were recorded on site (Table 4-5); seven of these have been assigned alien plant categories according to CARA and NEMBA. These species have established due to disturbance of the soil, largely due to cultivation in the area, as well as trampling by livestock. Small alien bushclumps have been delineated in the vegetation delineation of the project area.

Family	Family Species	
Amaranthaceae	Guilleminea densa	No category
Amarantinaceae	Gomphrena celesioides	No category
	Bidens pilosa	No category
	Cirsium vulgare	1; 1b
	Conyza albida	No category
Asteraceae	Cosmos bippinatus	No category
	Tagetes minuta	No category
	Taraxacum offininale	No category
	Xanthium strumarium	1; 1b
Cactaceae	Opuntia ficus-indica	1; 1b
Fabaceae	Acacia mearnsii	2; 2
Myrtaceae	Eucalyptus camuldulensis	2; 1b
Salicaceae	Salix babylonica	No category
	Datura ferox	1; 1b
Solanaceae	Solanum sp.	/
	Solanum sysimbriifolium	1; 1b
Verbenaceae	Verbena brasiliensis	No category

Table 4-5: Alien Plant Species Recorded on Site

4.2 Fauna

4.2.1 Mammals

Actual sightings, spoor, calls, dung and nesting sites, as well as active sampling by means of motion detection cameras and Sherman traps, were used to establish the presence of mammals on the proposed Vaalkop project site. The evidence of dung and spoor suggests that animals were present in the area although relatively few were recorded during the surveys. Table 4-6 lists mammals that were recorded in the Vaalkop Mine project area during this survey; this includes personal communication with farmers. The mammals recorded were found within a variety of the vegetation communities present a full list can be seen in Table 4-6.

Two of these species are regarded as species of special concern; African Clawless Otter (*Aonyx capensis*) being Red Data species protected under IUCN. Serval (*Felis serval*) is protected according to the Mpumalanga Nature Conservation Act, 1998 (Act No. 10 of 1998). Examples of small mammal fauna identified on site are represented in Figure 4-10. Appendix D lists the expected mammal species for the site, based on the results of a desktop assessment.

Scientific Name	English Name	IUCN (2016.3)	NEMBA TOPS List (2007)	Mpumalanga Protected (1998)
Aonyx capensis	African clawless Otter	Near Threatened	Not Listed	Protected
Atilax paludinosus	Water Mongoose	Not Listed	Not Listed	Not Listed
Galerella sanguinea	Slender Mongoose	Not Listed	Not Listed	Not Listed
Hystrix africaeaustralis	Porcupine	Least Concern	Not Listed	Not Listed
Leptailurus serval	Serval	Least Concern	Near Threaten ed	Protected
Lepus saxatilis	Scrub Hare	Least Concern	Not Listed	Not Listed
Canis mesomelas	Black-backed Jackal	Not Listed	Not Listed	Not Listed
Caracal caracal	Caracal**	Least Concern	Not Listed	Not Listed

Table 4-6: Mammal Species Recorded

Scientific Name	English Name	IUCN (2016.3)	NEMBA TOPS List (2007)	Mpumalanga Protected (1998)
Cryptomys hottentotus	Common Mole Rat	Least Concern	Not Listed	Not Listed
Crocidura cyanea	Reddish-grey Musk Shrew	Least Concern	Not Listed	Not Listed
Cynictis penicillata	Yellow Mongoose	Least Concern	Not Listed	Not Listed
Damaliscus pygargus phillipsi	Blesbok**	Least Concern	Not Listed	Not Listed
Ichneumia albicauda	White-tailed Mongoose	Least Concern	Not Listed	Not Listed
Mastomys coucha	Multimammate Mouse	Least Concern	Not Listed	Not Listed
Procavia capensis	Rock Hyrax	Least Concern	Not Listed	Not Listed
Rhabdomys pumilio	Striped Mouse	Least Concern	Not Listed	Not Listed
Sylvicapra grimmia	Common Duiker	Least Concern	Not Listed	Not Listed
Tatera leucogaster	Bushveld Gerbil	Least Concern	Not Listed	Not Listed

** - Recorded via personal communication with local residents.

Figure 4-10: Examples of Small Mammals Recorded on Site (A: *Aonyx capensis* (Cape Clawless Otter) – taken by Hardaker; B: *Suricata suricatta* (Meerkat); C: *Rhabdomys pumilio* (Striped Mouse); D: *Crocidura cyanea* (Reddish-Grey Musk Shrew)

4.2.2 Avifauna

A total of 67 species were identified during the survey (expected species in Appendix E). It is generally accepted that vegetation structure, rather than the actual plant species, influences bird species distribution and abundance (in Harrison *et al.;* 1997). Therefore, the vegetation description below does not focus on lists of plant species, but rather on factors which are relevant to bird distribution.

The natural habitat of the project areas consist predominantly of the Eastern Highveld Grassland vegetation type, which occurs on slightly to moderately undulating plains, including some low hills and pan depressions. The vegetation is short, dense grassland dominated by the usual highveld grass composition (*Aristida, Digitaria, Ergrostis, Themeda, Tristachya* etc.) with small, scattered rocky outcrops with wiry, sour grasses and some woody species. Rainfall is strongly summer seasonal (average 726 mm), with very dry winters (Mucina & Rutherford 2006).

4.2.2.1 Rocky Outcrops

Certain areas within the study area contain rocky outcrops. These areas are often found near rivers and streams. In places these rocky outcrops form sizable cliffs which could be utilised by Southern Bald Ibis, Martin's and Swallows. Rocky outcrops are a sensitive landscape as determined by the Mpumalanga Tourism and Parks Agency (MTPA), as per the minimum requirements set forth by MTPA. Reasons for the protection of these outcrops are that they provide habitat for plant and animal species that is not impacted on by agriculture due to the unsuitable rocky nature of these outcrops for ploughing.

4.2.2.2 Wetland Areas

Multiple wetland systems occur throughout all study sites. These areas are dominated by marshy vegetation that grows in seasonally to permanent wet soil. In addition to wetlands, pans are an important feature of the general site, Greater Flamingo (*Phoenicopterus roseus*) (Least Concern) was observed in the pans. Reed pans are mostly permanent, usually retaining water throughout the year. They have a diverse flora, characterized by *Phragmites*, which forms a dense extensive reedbed covering most of the pan basin. *Imperata cylindrica* (Cottonwool Grass) was identified on site, this is the preferred habitat type of the Grass Owl, and these birds were recorded during this survey. Sedge pans are semi-permanent, usually drying up during the winter and/or dry spells, when they are almost devoid of vegetation. Saline pans are characterized by their glaring white basins when dry and have extremely saline substrata and water. The basins of these pans usually lack vegetation. There is considerable overlap in the common plants between the three pan-types. The pans, and their functioning, remain intact, despite existing in a matrix that consists almost exclusively of maize (80%), interspersed with small fragmented patches of natural grassland (20%) (Barnes 1998).

The wetlands within the property are an important habitat for common water birds such as: Blue Korhaan (NT) (*Eupodotis. caerulescens*), Sacred Ibis (*Threskiornis aethiopicus*), Redknobbed Coot (*Fulica cristata*), Grey Heron (*Ardea cinerea*), Purple Heron (*Ardea purpurea*), Egyptian Goose (*Alopochen aegyptiacus*), Cape Shoveler (*Anas smithii*), Spurwinged Goose (*Plectropterus gambensis*), Yellowbilled Duck (*Anas undulata*), Cattle Egret (*Bubulcus ibis*) and Three banded Plover (*Charadrius tricollaris*) and the adjacent grasslands provide potential habitat (*Imperata* cylindrica) for the Vulnerable African Grass Owl (*Tyto capensis* (according to the national Red Data list).

During the site visits a number of typical Mpumalanga Grassland species were observed. These areas also included the road infrastructure, farm boundary and isolated patches throughout the property and included species such as Black Shouldered Kite (*Elanus axillaris*), Neddicky (*Cisticola fulvicapilla*), Redeyed Dove (*Streptopelia semitorquata*), Laughing Dove (*Spilopelia senegalensis*), Helmeted Guineafowl (*Numida meleagris*), Cape Turtle Dove (*Streptopelia capicola*), Common Fiscal (*Lanius collaris*), Cape Sparrow (*Passer melanurus*), Swainsons Spurfowl (*Pternistis swainsonii*) and large numbers of exotic Feral Pigeons (*Columba livia domestica*).

Blue Korhaan was recorded durng this survey, and is found on high grassveld, usually above 1,500 m (del Hoyo *et al.* 1996), where it inhabits open, fairly short grassland and a mixture of grassland and karoo dwarf-shrubland within 1km of water, with termite mounds and few or no trees (del Hoyo *et al.* 1996, Taylor *et al.* 2015). It also inhabits old and fallow cropland, pastures and winter cultivation (del Hoyo *et al.* 1996). It feeds on insects, scorpions, small lizards and vegetable matter. It apparently benefits from small-scale agriculture, as it regularly forages in crop fields and planted pastures.

4.2.2.3 <u>Transformed/Cultivation</u>

The habitat in the study area has been transformed through dryland cultivation, mostly maize. Areas of current cultivation are situated on the areas with the least gradient, but also on the hill slopes where the gradient is not too aggressive. The altitude of the proposed Vaalkop Underground Mine development and species type of the grassland suggests that the area could be home to some endemic and endangered lark and pipit species such as: Botha's Lark (Spizocorys fringillaris). This species, however were not observed during any of the surveys. The agricultural fields of the property harbour a number of typical highveld endemics. These included several widow, weaver and bishop species (within the wetter areas). A number of African Quailfinch's (Ortygospiza fuscocrissa) were observed within the fields - these species generally feed on the seeds of the wetter grass species and are renowned wetland indicators. African Pipit (Anthus cinnamomeus) and Cape Longclaw (Macronyx capensis) were observed throughout the property, although there is enough nesting habitat in the surrounding area for the more endangered lark species it is noted that the existing mining activities, increased traffic loads and earth movement have negatively impacted on the breeding of all lark and pipit species on the property, however once rehabilitation is concluded this is usually not a permanent impact.

The grassland area is also ideal habitat for Quail and Button-quail species although these species are highly nomadic and were not identified during the site investigation. The data from the Co-ordinated Road Count project (CAR) of the Avian Demography Unit shows that the wetlands in the Mpumalanga Highveld are extensively used by Spurwinged Goose *(Plectropterus gambensis),* Black-headed Heron *(Ardea melanocephala)* and Grey Crowned Crane *(Balearica regulorum)*.

4.2.2.4 <u>Alien Vegetation</u>

Relatively small but prominent collection of alien invasive and exotic tree species is present at all three project sites. These tree species were either planted as windbreaks by local farmers, as is the case with *Pine* and *Eucalyptus spp.*, or they were transported to the area via waterways such as *Populus spp*. The alien vegetation habitat type is also present on the hill slopes of rolling hills and flat areas between these hills.

Table 4-7: Red Data Species Recorded in by SABAP2 that could potentially occur on Vaalkop, Trichardsfontein and Thubelisia Mining areas

Common Name Species Name		Status	Habitat requirements
White-bellied Korhaan <i>Eupodotis senegalensis</i>		SA Red Data: VU IUCN: NT NEMBA, TOPS: MTPA: Protected	Often in the interface between grassland and savanna. Avoids severely grazed and recently burnt sites. Could potentially be present in patches of tall grass.
Blue Korhaan (recorded)	Eupodotis caerulescens	SA Red Data: LC IUCN: NT NEMBA, TOPS: MTPA: Protected	Between grassland and savanna.
Secretarybird	Sagittarius serpentarius	SA Red Data: VU IUCN: VU NEMBA, TOPS: MTPA: Protected	Prefer open grassland, densities lower in maize growing areas. Occasional presence confirmed by locals.
Blue Crane	Anthropoides paradiseus	SA Red Data: VU IUCN: VU NEMBA, TOPS: Protected MTPA: Protected	Short grassland, pastures, stubble lands and wetlands. Unlikely to occur in the study area due to largely unsuitable fragmented habitat, extensive disturbance, and habitat transformation.
Black Stork	Ciconia nigra	SA Red Data: VU IUCN: LC NEMBA, TOPS: Protected MTPA B: Protected	Occurs as a nomad at lakes, rivers, wetlands. Unlikely to be seen on site unless flying overhead.
African Grass Owl (recorded)	Tyto capensis	SA Red Data: VU IUCN: LC NEMBA, TOPS: Protected MTPA: Protected	Roosts on the ground near marshes and grassland. It is likely that this species is found on the project area.

Common Name	Common Species Name Status		Habitat requirements
African Marsh Harrier	Circus ranivorus	SA Red Data: EN IUCN: LC NEMBA, TOPS: Protected MTPA: Protected	Large permanent wetlands with dense reed beds. Sometimes forages over smaller wetlands and grassland. Wetland habitat present on the study site too small and fragmented to support this species.
Yellow-billed Stork	Mycteria ibis	SA Red Data: EN IUCN: LC NEMBA, TOPS: Protected MTPA: Protected	Dams, large mashes, swamps, estuaries, margins of lakes and seasonal wetlands. Unlikely to occur in the study area due to limited suitable habitat.
Botha's Lark	Certhilauda semitorquata	SA Red Data: EN IUCN: EN NEMBA, TOPS: Protected MTPA: Protected	An uncommon and restricted species was only observed via SABAP1. In the region it would prefer shorter grazed grasslands. Unlikely to occur in the study area due to lack of suitable habitat and preferred range.
Lesser Kestrel	Falco naumanni	SA Red Data: LC IUCN: LC NEMBA, TOPS: Protected MTPA: Protected	Grassland and agricultural lands. Likely to be present in summer on the project site (Palearctic migrant).

4.2.3 Herpetofauna

According to Du Preez and Carruthers (2009), frogs occur throughout every habitat within Southern Africa. A number of factors influence their distribution, and they are generally restricted to the habitat type they prefer, especially in their choice of breeding site. The choices available of these habitats coincide with different biomes, these biomes in turn, are distinguished by means of biotic and abiotic features prevalent within them. Therefore a collection of amphibians associated with the Grassland Biome will all choose to breed under the prevailing biotic and abiotic features present. Further niche differentiation is encountered by means of geographic location within the biome, this differentiation includes, banks of pans, open water, inundated grasses, reed beds, trees, rivers and open ground, all of which are present within the area of interest.

Three amphibians were encountered during this field survey by means of active searching. The expected amphibian species for the area are included as (Annexure/Appendix. All species identified on site are listed in Table 4-8. The species listed as encountered below were all encountered within the wetlands habitat types. Examples of frogs recorded on site are represented in Figure 4-11.

Scientific Name	English Name	IUCN (2014.3)	NEMBA TOPS List (2007)	Mpumalanga Protected (1998)
Afrana angolensis	Common River Frog	-	-	-
Cacosternum boettgeri	Common Caco	-	-	-
Strongylopus fasciatus	Striped Stream Frog	-	-	-

Table 4-8: Amphibian Species Recorded in the Vaalkop Project Area

Two species of reptile, a Rinkhals (*Hemachatus haemachatus*) and Brown House Snake (*Lamprophis fuliginosus*) were identified during the field survey through opportunistic observations (Table 4-9). No IUCN protected species were encountered; however 10 species were recorded that are protected according to Mpumalanga protected species list (1998).

Table 4-9: Reptile Species Recorded on Vaalkop

Scientific Name	English Name	IUCN (2014.3)	NEMBA TOPS List (2007)	Mpumalanga Protected (1998)
Bitis arietans**	Puff Adder	Not Listed	Not Listed	Protected
Cordylus vittifer	Common Girdled Lizard	Not Listed	Not Listed	Protected
Hemachatus haemachatus**	Rinkhals	Not Listed	Not Listed	Protected
Lamprophis fuliginosus**	Brown House Snake	Not Listed	Not Listed	Protected
Pachydactylus affinus	Transvaal gecko	Not Listed	Not Listed	Protected
Psammophylax rhombeatus	Spotted or Rhombic Skaapsteker	Not Listed	Not Listed	Protected

- Recorded this assessment by DWE

** - Recorded via personal communication with local people

Figure 4-11: Examples of Amphibians recorded on site (left: *Hylarana signata* (Striped Stream Frog) and right: taken by Hardaker)

The Montane Dwarf Burrowing Skink *Scelotes mirus*, a South African endemic, has also been recorded in the IBA that this project falls within. The IBA (refer to Avifauna section) may hold other endemic reptiles, such as the rare Many-Spotted Snake *Amplorhinus multimaculatus*, berg adder *Bitis atropos*, Thin-tailed Legless Skink *Acontias gracilicauda*, Breyer's Long-tailed Seps *Tetradactylus breyeri*, Black-spotted Dwarf Gecko *Lygodactylus nigropunctatus* and Spotted Dwarf Gecko *L. ocellatus*, as well as Rough-haired Golden Mole *Chrysospalax villosus*.

4.2.4 Macro-Invertebrates

During the survey, butterflies were recorded through opportunistic observations and photographed where possible. Furthermore transects were walked along the roads, rehabilitated areas, exotic plantations and grassland area to identify any scorpion or spider nests. Butterflies are a good indication of the habitats available in a specific area (Woodhall 2005). Although many species are eurytropes (able to use a wide range of habitats) and are widespread and common, South Africa has many stenotrope (specific habitat requirements with populations concentrated in a small area) species which may be very specialised (Woodhall 2005). Butterflies are useful indicators as they are relatively easy to locate and catch, and to identify. It is for this reason that Lepidoptera were used as the primary focus for the invertebrate survey. Five butterfly species were observed within the Vaalkop Underground Mining area, these included the, Spotted Jonker (Byblia ilythia), African Monarch (Danaus chrysippus), Brown-veined White (Belenois aurota), Broad Bordered Grass Yellow (Eurema brigitta) and the Citrus Swallowtail (Papilio demodocus). All the species were located within grassland or the riparian areas adjacent to the farm. No butterfly species observed were considered to be Species of Special Concern. However according to SANBI, it is possible that the Near Threatened Marsh Sylph (Metisella meninx) can be located on the site. It is endemic to the wet vleis of highland grassland in northern KwaZulu-Natal, Mpumalanga, Gauteng, the northern part of the Orange Free State and the extreme east of the North West Province, they preferred Leersia hexandra dominatd grassland. It has become extinct in many areas close to Johannesburg due to building developments.

Wasp robber flies (*Philodicus sp*) were located in the grasslands. The name "robber flies" reflects their notoriously aggressive predatory habits; they feed mainly or exclusively on

other insects where they generally catch their prey in flight (Weaving, 2004). Adults are generally medium to large in size, with an average body length of 1 to 1.5 cm but with a range of 3 cm to more than 5 cm in length. The shape is generally elongated, due to the conformation of the long tapering abdomen; however there are also compact species with broad abdomens (Picker and Griffiths, 2004).

Dung beetles (*Scarabeus sp*) were located throughout the property and wherever cattle faeces were evident. These beetles eat dung excreted by herbivores and omnivores, and prefer that produced by the former. Many of them also feed on mushrooms and decaying leaves and fruits. All the species belong to the superfamily *Scarabaeoidea*, most of them to the subfamilies Scarabaeinae and Aphodiinae of the family Scarabaeidae (scarab beetles).

The diversity and density of the invertebrates was relatively high for the proposed Vaalkop mining development footprint area and surroundings, and this in general could assist in providing an indication of the health of the regional ecology. Although existing mining activities has modified the immediate area, there is sufficient habitat within the surrounding unaffected areas to sustain moderate populations of the typical highveld grassland species of fauna. It would however be recommended that the management of any encroachment of alien invasive plant species is strictly enforced in order to retain the preferred faunal species types that currently dominate the grassland biome of Mpumalanga Province. Examples of invertebrate species recorded on site are represented in Figure 4-12.

Figure 4-12: Examples of Invertebrates Recorded on Site (*Ctenus spp* (Wolf Spider); B: *Apanteles acrae*; C: In identification. D: *Spilostethus pandurus* (Seed bugs) E: *Rhodometra sacraria* (Vestel) F: *Chrysoritis dicksoni*

5 Sensitivity Analysis and No-go Areas

There are several ecological assessments for South Africa as a whole, as well as on provincial levels that allow for detailed conservation planning as well as meeting biodiversity targets for the country's variety of ecosystems. These guides are essential to consult for development projects and will form an important part of the sensitivity analysis.

Areas earmarked for conservation in the future, or that are essential to meet biodiversity and conservation targets should not be developed, and have a high sensitivity as they are necessary for overall ecological functioning. Further to this, details of the field investigation are used to determine the site-specific sensitivity.

5.1 Mpumalanga Biodiversity Sector Plan (MBSP) (MTPA; 2016)

The main purpose of a biodiversity sector plan is to ensure that the most recent and best quality spatial biodiversity information can be accessed and used to inform land-use and development planning, environmental assessments and authorisations, and natural resource management. A biodiversity sector plan achieves this by providing a map (or maps) of terrestrial and freshwater areas that are important for conserving biodiversity pattern and ecological processes – these areas are called Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs). The maps are provided together with contextual information on biodiversity, and land-use guidelines (Figure 5-1) that can be incorporated into the policies and decisions of a wide range of sectors.

The sector plan is a living document that is constantly reviewed and updated and documents the distribution of conservation important areas for biodiversity. According to the Mpumalanga Sector Plan, the Vaalkop Coal Mine project site contains CBA Irreplaceable areas (wetlands), CBA optimal areas (mostly undisturbed tributaries of the Steenkoolspruit), other natural areas (areas not under agriculture), moderately modified old land (grazing areas across the project site), and heavily modified areas (occurring across the project area). All these demarcations were taken into account during the field work studies as the Sector Plan's delineations were refined.

Figure 5-1: Mpumalanga Sector Plan

5.2 Protected Areas

Formerly protected areas, either provincially or nationally, that occur within proximity to the project site could have consequences as far as impact on these areas are concerned. For the project area however, there are no protected areas in close proximity. The closest protected area is approximately 30 km to the east. The protected areas within proximity to the project site are represented in Figure 5-2.

Figure 5-2: Protected Areas

5.3 Important Bird Areas (Birdlife SA, 2013)

An Important Bird Area (IBA) is an area recognised as being a globally important habitat for the conservation of bird populations. Currently there are about 10,000 IBAs worldwide. At present, South Africa has 124 IBAs, covering over 14 million hectares of habitat for threatened, endemic and congregatory birds. Yet only one million hectares of the total land surface covered by our IBAs are legally protected. BirdLife South Africa continues an IBA programme of stewardship which will ultimately achieve formal protection (BirdlifeSA, 2013).

The study area is 4km east of the Amersfoort Bethal-Carolina IBA (refer to Figure 5-3). According to Barnes (1998), this IBA holds a large proportion (>10%) of the global population of the endangered Botha's Lark (*Spizocorys fringillaris*), although confirmation is required as to whether this is still the case. This Lark generally avoids rocky areas, tall grass in bottomlands, vleis, croplands and planted pastures, but its preferred habitat consist of short, dense, natural grassland found on plateaus and upper hill slopes and are occuring within the IBA, and on site.

Data regarding the IBAs current species composition is limited, but the grassland areas occasionally hold Denham's Bustard (*Neotis denhami*), White-bellied Korhaan (*Eupodotis senegalensis*), Blue Korhaan (*Eupodotis. caerulescens*), African Grass Owl (*Tyto capensis*), Buff-streaked Chat (*Campicoloides bifasciata*), Southern Bald Ibis (*Geronticus calvus*), Black-winged Pratincole (*Glareola nordmanni*) and Secretarybird (*Sagittarius serpentarius*). Blue Crane (*Anthropoides paradiseus*) and Whattled Crane (*Bugeranus carunculatus*) species can possible be found within the project area according to SABAB2. During field work the Blue Korhaan (*E. caerulescens*), Southern Bald Ibis (*Geronticus calvus*), and Secretarybird (*Sagittarius serpentarius*) were identified.

Figure 5-3: Important Bird Areas

5.4 Nationally Threatened Ecosystems

The list of nationally threatened ecosystems has been gazetted (NEM:BA, Act 10 of 2004: National list of ecosystems that are threatened and in need of protection) and results in several implications in terms of development within these areas. Four basic principles were established for the identification of threatened ecosystems.

Areas were delineated based on as fine a scale as possible and are defined by one of several assessments:

- The South African Vegetation Map (Mucina and Rutherford 2006);
- National forest types recognised by the Department of Water Affairs and Forestry (DWAF), now Department of Water and Sanitation (DWS);
- Priority areas identified in a provincial systematic biodiversity plan; and
- High irreplaceability forest patches or clusters identified by DWAF (DWS).

The criteria for identifying threatened terrestrial ecosystems include six criteria overall, two of which are dormant due to lack of data (criteria B and E). The criteria are presented in Table 5-1 below and Figure 5-4 shows that the Eastern Highveld Grassland and Soweto Highveld Grassland are listed as threatened ecosystems. Cumulative loss of these areas should be avoided.

Criterion	Details				
A1	Irreversible loss of natural habitat				
A2	Ecosystem degradation and loss of integrity				
В	Rate of loss of natural habitat				
С	Limited extent and imminent threat				
D1	Threatened plant species associations				
D2	Threatened animal species associations				
E	Fragmentation				
F	Priority areas for meeting explicit biodiversity targets as defined in a systematic biodiversity plan				

Table 5-1: Criteria for the Listing of National Threatened Ecosystems

Figure 5-4: Nationally Threatened Ecosystems

5.5 Nationally Protected Areas Expansion Strategy

The National Protected Areas Expansion Strategy (NPAES) shows areas designated for future incorporation into existing protected areas (both national and informal protected areas). These areas are large, mostly intact areas required to meet biodiversity targets, and suitable for protection. They may not necessarily be proclaimed as protected areas in the future and are a broad-scale planning tool allowing for better development and conservation planning. There are no areas earmarked for conservation within 50 km of the proposed development (Figure 5-5). The closest area is approximately 60 km away, the Mpumalanga Mesic Grassland area.

Figure 5-5: National Protected Areas Expansion Strategy

5.6 Site-specific Sensitivity

The ecological sensitivity map for the site is represented in Figure 5-6, overlaid with the mine plan. The riparian and pan vegetation units were allocated a very high sensitivity since wetlands are regarded as important habitats that should be conserved due to the presence of plant SSC and habitat diversity. Further to this, a portion of Grassland on Vaalkop was assigned high ecological sensitivity due to the presence of plant SSC and high species diversity. High sensitivity was assigned to the Rocky Grassland and moderate sensitivity was assigned to the remaining natural areas. Areas that were cultivated, disturbed or built up were allocated a low ecological sensitivity.

Figure 5-6: Sensitive Areas

5.7 Risk of subsidence

As indicated in Figure 5-7, the risk of subsidence is rated in areas having a definite to high probability, the areas where these occurences are going to happen is marked on the map, where these definite and high risk occur in association with areas where highly sensitive vegetation types occur, it is markled under the first tab (purple).

Figure 5-7: Sensitive vegetation types and the risk of subsidence

6 Impact Assessment

Before the impacts associated with the project are assessed, and mitigation measures recommended, it is important to note the following:

6.1 Mitigation Hierarchy

The mitigation hierarchy is international best practice for managing risks and impacts. This mitigation hierarchy is represented in Figure 6-1.

Figure 6-1: The Mitigation Hierarchy as defined by the IFC

The hierarchy follows a strict progression of best practice for dealing with impacts; these are explained in Table 6-1 below.

Table 6-1: The Different Levels of the Mitigation Hierarchy Defined

Avoidance	If impacts on the natural environment can be avoided, this is the best possible way of reducing impacts. Avoidance can involve changes in the location of infrastructure, even though, in mining developments, the pit itself cannot be moved.
Minimization	If impacts cannot be avoided, it is important that these are minimized. This is where mitigation measures usually described in an EIA fall. Minimization may include reducing the footprint of the development as far as possible, restricting access to loggers using drilling roads, or utilising already existing infrastructure.
Restore	If there are still residual impacts, restoration or rehabilitation may be employed to increase the biodiversity value of the site after development activities.

	If residual impacts remain after all efforts to avoid, minimize and restore have been						
	taken into consideration, offsets may be needed. These include the setting aside o						
	areas within the mining lease area as corridors and conservation areas, as well as						
Offset	the setting aside of other areas for conservation. Offsets are difficult to determine						
	and manage, and a separate study is often needed in order to identify the best						
	options and those which compensate identical (or as close as possible) biodiversity						
	to that which was impacted by the development.						

6.2 Methodology

Details of the impact assessment methodology used to determine the significance of physical, bio-physical and socio-economic impacts are provided below.

The significance rating process follows the established impact/risk assessment formula:

Significance = Consequence x Probability x Nature

Where

Consequence = Intensity + Extent + Duration

And

Probability = Likelihood of an impact occurring

And

Nature = Positive (+1) or negative (-1) impact

Note: In the formula for calculating consequence, the type of impact is multiplied by +1 for positive impacts and - 1 for negative impacts.

The matrix calculates the rating out of 147, whereby Intensity, Extent, Duration and Probability are each rated out of seven as indicated in Table 6-4. The weight assigned to the various parameters is then multiplied by +1 for positive and -1 for negative impacts.

Impacts are rated prior to mitigation and again after consideration of the mitigation measure proposed in this report. The significance of an impact is then determined and categorised into one of eight categories, as indicated in Table 6-3, which is extracted from Table 6-2. The description of the significance ratings is discussed in Table 6-4.

It is important to note that the pre-mitigation rating takes into consideration the activity as proposed, i.e. there may already be certain types of mitigation measures included in the design (for example due to legal requirements). If the potential impact is still considered too high, additional mitigation measures are proposed.

Table 6-2: Impact Assessment Parameter Ratings

Rating	Intensity/Replaceability				
	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability
7	Irreplaceable loss or damage to biological or physical resources or highly sensitive environments. Irreplaceable damage to highly sensitive cultural/social resources.	Noticeable, on-going natural and / or social benefits which have improved the overall conditions of the baseline.	<u>International</u> The effect will occur across international borders.	Permanent: The impact is irreversible, even with management, and will remain after the life of the project.	Definite: There are sound scientific reasons to expect that the impact will definitely occur. >80% probability.
6	Irreplaceable loss or damage to biological or physical resources or moderate to highly sensitive environments. Irreplaceable damage to cultural/social resources of moderate to highly sensitivity.	Great improvement to the overall conditions of a large percentage of the baseline.	<u>National</u> Will affect the entire country.	Beyond project life: The impact will remain for some time after the life of the project and is potentially irreversible even with management.	Almost certain / Highly probable: It is most likely that the impact will occur. <80% probability.

	Intensity/Re	placeability							
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability				
5	Serious loss and/or damage to physical or biological resources or highly sensitive environments, limiting ecosystem function. Very serious widespread social impacts. Irreparable damage to highly valued items.	On-going and widespread benefits to local communities and natural features of the landscape.	Province/ Region Will affect the entire province or region.	Project Life (>15 years): The impact will cease after the operational life span of the project and can be reversed with sufficient management.	Likely: The impact may occur. <65% probability.				
4	Serious loss and/or damage to physical or biological resources or moderately sensitive environments, limiting ecosystem function. On-going serious social issues. Significant damage to structures / items of cultural significance.	Average to intense natural and / or social benefits to some elements of the baseline.	<u>Municipal Area</u> Will affect the whole municipal area.	Long term: 6-15 years and impact can be reversed with management.	Probable: Has occurred here or elsewhere and could therefore occur. <50% probability.				

	Intensity/Re	placeability							
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability				
3	Moderate loss and/or damage to biological or physical resources of low to moderately sensitive environments and, limiting ecosystem function. On-going social issues. Damage to items of cultural significance.	Average, on-going positive benefits, not widespread but felt by some elements of the baseline.	<u>Local</u> Local extending only as far as the development site area.	Medium term: 1-5 years and impact can be reversed with minimal management.	Unlikely: Has not happened yet but could happen once in the lifetime of the project, therefore there is a possibility that the impact will occur. <25% probability.				
2	Minor loss and/or effects to biological or physical resources or low sensitive environments, not affecting ecosystem functioning. Minor medium-term social impacts on local population. Mostly repairable. Cultural functions and processes not affected.	Low positive impacts experience by a small percentage of the baseline.	<u>Limited</u> Limited to the site and its immediate surroundings.	Short term: Less than 1 year and is reversible.	Rare / improbable: Conceivable, but only in extreme circumstances. The possibility of the impact materialising is very low as a result of design, historic experience or implementation of adequate mitigation measures. <10% probability.				

	Intensity/Re	placeability								
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability					
1	Minimal to no loss and/or effect to biological or physical resources, not affecting ecosystem functioning. Minimal social impacts, low-level repairable damage to commonplace structures.	Some low-level natural and / or social benefits felt by a very small percentage of the baseline.	<u>Very limited/Isolated</u> Limited to specific isolated parts of the site.	Immediate: Less than 1 month and is completely reversible without management.	Highly unlikely / None: Expected never to happen. <1% probability.					

	Significance																																					
-	7 -	147	-140	-133	-126	-119	-112	-105	-98	-91	-84	-77	-70	-63	-56	-49	-42	-35	-28	-21	21	28	35	42	49 56	6 63	70	77	84	91	98	105	112	119	126	133	140	147
(6 -1	126	-120	-114	-108	-1 02	-96	-90	-84	-78	-72	-66	-60	-54	-48	-42	-36	-30	-24	-18	18	24	30	36	42 48	3 54	60	66	72	78	84	90	96	102	108	114	120	126
ţ	5 -1	105	-100	-95	-90	-85	-80	-75	-70	-65	-60	-55	-50	-45	-40	-35	-30	-25	-20	-15	15	20	25	30	35 40) 45	50	55	60	65	70	75	80	85	90	95	100	105
4	4 - 8	84	-80	-76	-72	-68	-64	-60	-56	-52	-48	-44	-40	-36	-32	-28	-24	-20	-16	-12	12	16	20	24	28 32	2 36	40	44	48	52	56	60	64	68	72	76	80	84
; £	3 <mark>-</mark> 6	63	-60	-57	-54	-51	-48	-45	-42	-39	-36	-33	-30	-27	-24	-21	-18	-15	-12	-9	9	12	15	18	21 24	1 27	30	33	36	39	42	45	48	51	54	57	60	63
abili	2 -4	42	-40	-38	-36	-34	-32	-30	-28	-26	-24	-22	-20	-18	-16	-14	-12	-10	-8	-6	6	8	10	12	14 16	5 18	20	22	24	26	28	30	32	34	36	38	40	42
Prot	1 -2	21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	3	4	5	6	78	9	10	11	12	13	14	15	16	17	18	19	20	21
	-2	21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	3	4	5	6	78	9	10	11	12	13	14	15	16	17	18	19	20	21

Table 6-3: Probability/Consequence Matrix

Consequence

Table 6-4: Significance Rating Description

Score	Description	Rating
109 to 147	A very beneficial impact that may be sufficient by itself to justify implementation of the project. The impact may result in permanent positive change	Major (positive) (+)
73 to 108	A beneficial impact which may help to justify the implementation of the project. These impacts would be considered by society as constituting a major and usually a long-term positive change to the (natural and / or social) environment	Moderate (positive) (+)
36 to 72	A positive impact. These impacts will usually result in positive medium to long-term effect on the natural and / or social environment	Minor (positive) (+)
3 to 35	A small positive impact. The impact will result in medium to short term effects on the natural and / or social environment	Negligible (positive) (+)
-3 to -35	An acceptable negative impact for which mitigation is desirable. The impact by itself is insufficient even in combination with other low impacts to prevent the development being approved. These impacts will result in negative medium to short term effects on the natural and / or social environment	Negligible (negative) (-)
-36 to -72	A minor negative impact requires mitigation. The impact is insufficient by itself to prevent the implementation of the project but which in conjunction with other impacts may prevent its implementation. These impacts will usually result in negative medium to long-term effect on the natural and / or social environment	Minor (negative) (-)
-73 to -108	A moderate negative impact may prevent the implementation of the project. These impacts would be considered as constituting a major and usually a long-term change to the (natural and / or social) environment and result in severe changes.	Moderate (negative) (-)
-109 to -147	A major negative impact may be sufficient by itself to prevent implementation of the project. The impact may result in permanent change. Very often these impacts are immitigable and usually result in very severe effects. The impacts are likely to be irreversible and/or irreplaceable.	Major (negative) (-)

6.3 **Project Activities**

The proposed mining method is the conventional 'bord-and-pillar' method and this will take place up to a depth of 200m for coal seam 4 (depth of the resource 160 m to 180 m). A high extraction method of mining using bord-and-pillar mining with pillar extraction is currently being used at the TCTS and is proposed to be utilised at the Trichardsfontein and Vaalkop Mines.

In mechanised bord-and-pillar mining, extraction is achieved by developing a series of roadways (bords) in the coal seam connected by splits (cut-throughs) to form pillars. In high extraction mining, all the pillars are extracted to allow the roof to collapse in a controlled manner (stooping).

Access to the reserves will be achieved via a vertical man and materials shaft and an incline coal shaft located at TCTS. Therefore, no surface infrastructure is proposed to be constructed at the Trichardsfontein or Vaalkop except for the two ventilation shafts (ventilation downcast shaft and ventilation upcast shaft) will be constructed at Trichardsfontein and TCTS. The total estimated size of the ventilation upcast shaft with small substation and services (stonedust shaft will be 0.25 ha.

The major risk associated with underground mining, however, is the risk of subsidence of unconsolidated sediments. Figure 6-2 represents the Life of Mine (LoM) plan for the proposed underground coal mine as well as the sensitivity delineation completed for Vaalkop.

The impacts discussed below are the additional impacts to those discussed in the previous reports for the TCTS and Trichardsfontein areas, as a result of the decision to convert to high extraction mining and to construct two new vent shafts. The high extraction impacts are also applicable to the Vaalkop project area, however no infrastructure is expected there currently so construction phase impacts are therefore not applicable.

Figure 6-2: Sensitive landscapes and underground Mine Plan

The ventilation shafts that will be constructed are 1.5 in size and displayed in Figure 6-3 and Figure 6-4, respectively, during field work it was confirmed that both vent shafts are leated in the least sensitive agricultural vegetation type.

Figure 6-3: East Vent Shaft Location and Vegetation types Sensitivity

Figure 6-4: South Vent shaft Location and Vegetation types Sensitivity

6.4 Impact Assessment

6.4.1 Construction Phase

Construction will only take place on the areas earmarked for the ventilation shafts, both these shafts are located within existing agricultural areas that has no natural vegetation remaining.

The proposed mining operation will require the removal of coal at a depth of 200 m. Access to the mining areas will be from the adjacent underground workings and no surface entry is required. The only surface infrastructure required are two vent shafts. The construction of the vent shafts is outside of the 100m wetland buffer and therefore will only have an indirect impact on the wetlands. The vent shafts are located within the 500 m WUL buffer and therefore a WUL will need to be applied for.

6.4.1.1 Project Activities Assessed

During the construction phase (construction of surface infrastructure), cultivated areas (3 ha), will be cleared. The impact of loss of cultivated fields is neutral. It is not anticipated that any plant SSC will be lost. Alien plant infestation is a threat and must be controlled through appropriate management plans.

Table 6-5: Interactions and Impacts

Interaction	Impact
Site clearing	Loss of agricultural areas, alien plant infestation

6.4.1.2 Impact Description

The site clearing activity will not have an impact on the habitats that have been rated as having a high or very high sensitivity rating. The extent of the impact is limited to a small area and will not have considerable negative impacts on overarching biodiversity of the project area.

6.4.1.3 <u>Management Objectives</u>

The objective of management measures is to ensure that the impact on habitat is restricted only to the footprint area and that alien plant invasion does not take place as a result of vegetation clearing for the infrastructure placement.

6.4.1.4 Management Actions and Targets

In addition, the following mitigation and management measures have been prescribed:

- The footprint area should be kept as small as possible;
- Existing access roads should be used to reach the site for clearing and vehicles should not be allowed to traverse natural areas or leave the demarcated road;

 An alien invader management plan should be implemented, whereby the disturbed site is monitored quarterly for at least two years to ensure that alien invasion does not take place.

6.4.1.5 Impact Ratings

The impacts of the construction phase are rated in the table below.

Table 6-6: Potential Impacts of the Construction Phase – Loss of Habitat/Vegetation Types

Dimension	mension Rating Motivation		Significance	
Site Clearing				
Impact Descript	ion: Site clearing re	esulting in alien plant invasion		
Prior to Mitigati	on/Management			
Duration	Medium-term (3)	Alien plant invasion will take place for a period of 2 – 5 years.		
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with the construction phase.		
Intensity x type of impactSerious (4)ProbabilityHighly probable (6)		Alien plant invasion is a serious problem with significant ecological consequences; hence its reference in the NEMBA and CARA legislation.	Minor (negative) 54	
		Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.	-	
Nature	negative	The impact will be negative		
Mitigation/Mana	gement Actions			
 An alien 	plant species mana	gement plan should be compiled and impler	mented.	
Post-Mitigation				
Duration	Medium-term (3)	As seedlings emerge, they will be removed bi-annually as part of an alien management plan.	Negligible (negative)	
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with the construction phase.	30	

Dimension	Rating	Motivation	Significance
Intensity x type of impact	Minimal (1)	Alien plant invasion is serious for terrestrial biodiversity; however, if these species are controlled timeously, the impact will be reduced.	
Probability	Likely (5)	Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.	
Nature	Negative	The impact will be negative	

6.4.2 Operations Phase

6.4.2.1 Project Activities Assessed

During the operational phase of the development, underground mining will take place. No planned loss of habitat or flora and fauna species is expected. The only impact considered at this stage is subsidence that may occur and impact sensitive landcapes.

6.4.2.2 Impact Description

The underground mining will occur from a depth of 30m. Sensitive habitat such as wetlands will be affected due to subsidence in areas where subsidence is rated as definite, this will have an impact on both plants and animals that depend on these sensitive ecosystems. For example grass owls present in the area utilized wetlands which may be lost or negatively impacted upon by subsidence.

High extraction mining and shallower mining activities will have greater negative impacts as the surface is at great risker from destabilisation, resulting in possible subsidence if appropriate mitigation measures are not carried out.

6.4.2.3 <u>Management Objectives</u>

To prevent/minimise the loss of, or further damage to, natural ecosystems and their buffer areas, specifically wetlands. This is important as the naturally occurring habitat and ecosystems play a major role in supporting a range of ecological processes in the region, even more so due to the fact that mining is prevalent in the area.

6.4.2.4 Management Actions and Targets

- A comprehensive geotechnical investigation should be undertaken for the following:
 - Provide appropriate design parameters for pillar and overburden stability, in line with the actual geotechnical rockmass properties,

- Indicate any areas (undermining of the natural ecosystems) that may fall outside of these design parameters, and
- Following the geotechnical investigation, where required a provision must be made for the rehabilitation of these areas in the event of a possible risk of subsidence / intersection collapse.
- The edge of the wetlands and a 100 m buffer must be demarcated near where the vent shafts are to be located to reduce the risk of being impacted on from undesirable activities;
- Sensitive landscape monitoring must be carried out to ensure no unnecessary impact to these areas is realised; and if so that a remedy is put in place as soon as possible; and
- In addition, general mitigation and management actions provided in the specialist studies completed by Digby Wells as part of this project should be used to guide the effective management of the ecological resources affected by the proposed project.

6.4.2.5 Impact Ratings

The impacts of the operational phase are rated in the table below.

Dimension	Rating	ating Motivation		
Activity and Inte	eraction 1: High Ex	traction Underground Mining		
Impact Description: No direct loss of fauna, flora or sensitive ecosystems will occur, except if subsidence occurs. However, undermining of sensitive areas/landscapes leading to changes that will negatively affect the functioning of the ecosystem; particularly related to groundwater impacts. Depth of mine varies from 30 to 215 m.				
Prior to Mitigati	on/Management			
Duration	Permanent (7)	Undermining of sensitive landscapes where depth of coal is 30 to 50m below surface will lead to subsidence, which in turn will have an irreversible impact to the functioning of sensitive ecosystems. The mining will also be a permanent change to the riparian areas in the form of dewatering. Lowering of the water table could result in depletion of aquifers. Failure of the pillars or total extraction could lead to subsidence.	-112 Major Negative	
Extent	Local (3)	The remaining natural areas (grassland, wetlands are regarded as sensitive according to field work results and the Mpumalanga sector plan.		

Dimension	Rating	on Rating Motivation	
Irreplaceable loss of highly sensitive environments (6)		These rivers and riparian areas are important for the ecological services they provide to society; particularly due to the high level of cumulative loss of riparian functioning in the area. Many sensitive and protected fauna and flora species depend on the natural ecosystems present. Undermining of these areas may lead to the loss of some of these areas and this is seen as an irreplaceable loss of these highly sensitive systems. Subsidence will have a very negative impact if it occurs.	
Probability	Definite (7)	Where the depth of coal is 30 – 50 meters subsidence will occur.	
Nature	Negative (-)		
Mitigation/Mana	agement Actions		
 Underground dykes and sills must be carefully managed as this can lead to dewatering of rivers and riparian areas if undesired aquifers are punctured. Mining should not occur above 100m below rivers and riparian areas. Monitoring should take place for excessive inflow into the underground workings. 			
Duration	Permanent (7)	Although mitigation measures may lessen the impact somewhat, the mining will be a permanent change to the hydrology setting and groundwater functioning (decant etc).	
Extent	Local (3)The impacts may be managed to be contained within the development area and not to have negative impacts of a municipal scale105		-105
Intensity	Serious damage to sensitive environments (5)	Even with mitigation, the residual impact will still have serious damaging effects on the natural functioning of the sensitive wetland ecosystems.	Moderate Negative
Probability Definite (7)		Where the depth of coal is 30 – 50 meters subsidence will occur.	
Nature	Negative (-)		

6.4.3 Closure and Rehabilitation Phase

6.4.3.1 Project Activities Assessed

Table 6-8: Closure and Rehabilitation Phase Interactions with sensitive landscapes

Interaction		Impact	
1	Underground mine closure and rehabilitation	Post-mining decant of groundwater will have negative impacts on the wetlands as this water is likely to be of a poor water quality.	

6.4.3.2 Impact Description

During this phase all mining has stopped and infrastructure will be removed, in this case the ventilation shafts will be removed and the disturbed areas rehabilitated.

The post-mining landscape will have groundwater impacts due to decant being realised at some point as the mine voids fill up naturally with water once dewatering stops. Given the altered underground conditions, the water quality may be compromised. This will need to be confirmed once the Groundwater Impact Assessment has been compiled as this represents one of the largest negative impacts to the riparian areas and water resources, all of which are depended on by sensitive fauna and flora species.

6.4.3.3 <u>Management Objectives</u>

The objectives of management actions are to prevent/minimise the loss of or further damage to natural ecosystems that sensitive fauna and flora are dependent on. This is important as the naturally occurring habitat and ecosystems play a major role in supporting a range of ecological processes and biodiversity in the region.

6.4.3.4 Management Actions and Targets

- An alien invasive plant management plan should be implemented.
- Riparian habitat and river biomonitoring must be carried out during rehabilitation to ensure these areas are not impacted upon; and if they are remedial action must be implemented. Transects should be set up through representative sites and monitored regularly;
- Should there be decant, the water will need to be treated with active or passive treatment and a Rehabilitation Plan will need to be compiled to rectify any damages.

In addition, general mitigation and management actions provided in the specialist studies compiled by Digby Wells as part of this project should be used to guide the effective management of the ecological wetland resources affected by the proposed project.

6.4.3.5 Impact Ratings

The impact ratings for the decommissioning phase are listed in the table below. Recommendations for the rehabilitation phase are included in the Rehabilitation Plan Report (Digby Wells, 2017).

Table 6-9: Potential Impacts of the Decommissioning Phase – Establishment of Alien Plant Species

Dimension	Rating	Motivation	Significance
Dismantling and	l removal of infras	tructure	
Impact Descript	ion: Alien plant inva	asion may take place	
Prior to Mitigati	on/Management		
Duration	Medium-term (3)	Alien plant invasion may occur for a short period of time.	
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with the decommissioning phase.	
Intensity x type of impact	Serious (4)	Alien plant invasion is a serious problem with significant ecological consequences; hence its reference in the NEMBA and CARA legislation.	Minor (negative) 36
Probability Probable (4)		Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.	
Nature	negative	The impact will be negative	
Mitigation/Mana	gement Actions		
 An alien 	plant species mana	gement plan should be implemented for two	years.
Post-Mitigation			
DurationMedium-term (3)As seedlings emerge, they will be removed quarterly as part of an alien management plan.			
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with decommissioned infrastructure.	Negligible (negative) 24
Intensity x type of impact	Minimal (1)	The impact is significantly reduced if controls are implemented.	

Dimension	Rating	Motivation	Significance
Probability	Probable (4)	Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.	
Nature	Negative	The impact will be negative	

7 Cumulative Impacts

The cumulative impacts that are considered from a perspective of terrestrial biodiversity include the following:

- Loss of habitat on a national scale the threatened ecosystems programme outlines the most significant habitats that are important for conserving on a national scale. Minimal loss of the Eastern Highveld Grassland (correlating to the *Eragrostis*dominated grassland in this report) is expected and the impact of this is regarded as minor.
- Loss of diversity on a regional scale the *Eragrostis* Grassland is a broad habitat that encompasses many smaller plant communities.

8 Unplanned Events and Low Risks

A summary of ecologically significant risks are listed in the table below.

Unplanned event	Potential impact	Mitigation/ Management/ Monitoring	
		Vehicles must only be serviced within designated service bays.	
Hydrocarbon spillage in/near wetlands	Contamination of waterbodies utilised by terrestrial fauna.	Procedures should be put in place to clean-up spillages in the event that they should occur. Spill kits need to be obtained and should be available on site to clean up any leaks or spills. Spillages of magnitude should also be reported to the authorities within 24 hours and an internal incident reporting system implemented. Construction will take place in the dry-season.	
Poaching of animal species on site due to increase activity on site. Small mammals and reptiles may be at risk due to increased human activity on site.		Ensure continuous environmental awareness training takes place. These needs to be monitored and reported on and the appropriate actions should take place dependant on the results.	

Table 8-1: Unplanned Events, Low Risks and their Management Measures

9 Environmental Management Plan

The Environmental Management Plan (EMP) has been described according to the project activities in order to provide an understanding of what objectives and recommended management measures are required to minimise the environmental impacts arising from these activities.

10 Project Activities with Potentially Significant Impacts

In summary, the impacts of the development on flora and fauna are primarily related to vegetation loss due to possible subsidence, as listed in Table 10-1.

Table 10-1: Potentially Significant Project Impacts

Activities	Potentially Significant Project Impacts	
Subsidence	Loss of Natural Grassland	
	Loss of Riparian Areas	

10.1 Summary of Mitigation and Management

Table 10-2 provides a description of the mitigation and management options for the environmental impacts anticipated during the construction, operations and closure and rehabilitations phases on the fauna and flora.

Activities	Potential Impact	Aspects Affected	Phase	Mitigation Type/Measures	Compliance with standards/Standard to be achieved	Time period for Implementation
Clearing of vegetation	Habitat fragmentation and increased establishment of alien plant species.	Flora – alien plant invasion	Construction phase	Alien management plan	National Environmental Management Act (NEMA),1998 (Act 107 of 1998) National Environmental Biodiversity Act (NEMBA),2004 (Act10 of 2004) Conservation of Agriculture Resources Act, 1983 (Act No. 43 of 1983)	Alien management plan to be implemented after construction for 2 years and after decommissioning for two years.
High extraction mining	Subsidence close to sensitive lanscpaes, such as riparian areas.	Sensitive landscaeps and species dependant on these	Operational Phase	 The highest safety factor possible must be used. Underground dykes and sills must be carefully managed as this can lead to dewatering of wetlands if undesired aquifers are punctured. Mining should not occur above 100m below wetlands. Monitoring should take place for excessive inflow into the underground workings 	National Environmental Management Act (NEMA),1998 (Act 107 of 1998) National Environmental Biodiversity Act (NEMBA),2004 (Act10 of 2004) Conservation of Agriculture Resources Act, 1983 (Act No. 43 of 1983)	As soon as mining starts

Table 10-2: Mitigation and Management Plan

10.2 Monitoring Plan

The only two aspects requiring monitoring, based on the flora and fauna assessment, is the establishment of alien invasive plant species and River/Riparian areas Biomonitoring, as described below. This should be completed by a qualified botanical specialist.

Table 10-3: Monitoring Plan

Activities	Impacts requiring monitoring programmes	Functional requirements for monitoring	Roles and responsibilities (For the execution of the monitoring programmes)	Monitoring a implementir
Soil disturbance	Establishment of alien plant species	Alien plant monitoring	Qualified botanist	Quarterly mo
High extraction miinng	Subsidence	Riparian and River biomonitoring specifically aimed at river vegetetation and fauna species dependant on it	Qualified Aquatic scientist	Quarterly mo

and reporting frequency and time periods for ng impact management actions

onitoring for two years

onitoring for life of mine

11 Consultation Undertaken

No comments directly related to flora and fauna have been received.

12 Discussion and Conclusions

The study area is located within the threatened ecosystems: Eastern Highveld Grassland and Soweto Highveld Grassland. Further to this, the site falls within areas that have been demarcated as irreplaceable according to the Mpumalanga Sector Plan. The results of the field investigations confirm that the irreplaceable areas are intact natural systems and should be conserved.

The surface infrastructure does not coincide within any of the irreplaceable areas according to the Mpumalanga Sector Plan. The overall impact of the proposed development on flora and fauna is expected to be moderate. The following recommendations have been made for this study:

- The site should be screened prior to construction, preferably between the months of November to March, for any plant SSC;
- The Engineers Rock Report will be required to show where the risk of subsidence is high, if at all, as this will result in loss of sensitive landscapes;
- If any plant SSC are recorded, these should be translocated with the involvement of a qualified botanist. The donor habitat should resemble the receiving habitat and the species/populations should be monitored monthly after translocation for up to one year;
- If any important fauna species (SSC) are identified (as listed in the expected species lists) that have not been included in the site-specific species lists, this should be reported to the Environmental Control Officer on site and the provincial authority (MPTA) for their reference. Further to this, measures should be undertaken to ensure that negative impacts to the species in question are not imposed due to the development; and
- The mine has an opportunity to reduce their overall liability in terms of spread of alien invasive plant species. It is recommended that all alien invasive plant species are controlled throughout the site as far as possible.

The specialist opinion is that the proposed project should proceed, should all recommendations for mitigation and management be adhered to.

13 References

- Digby Wells, 2016. Wetland Assessment Report: Proposed Development of an Underground Coal Mine and Associated Infrastructure near Hendrina, Mpumalanga Province.
- Digby Wells, 2016a. Rehabilitation, Decommissioning and Mine Closure Plan: Proposed Development of an Underground Coal Mine and Associated Infrastructure near Hendrina, Mpumalanga Province.
- Birdlife International, 2013. Important Birding Areas, Available Online at www.birdlife.org/action/science/sites/
- Branch, B. 2001. Snakes and Other Reptiles of Southern Africa. Struik Publishers, South Africa.
- Bromilow, C (2010). Problem Plants and Alien Weeds of South Africa. Briza Publications. Pretoria, South Africa.
- Carruthers, V. 2009. Frog and Frogging in Southern Africa. Struik Publishers (Pty) Ltd, Cape Town.
- Convention on wetlands of international importance especially as Waterfowl Habitat, Ramsar (Iran), 2 February 1971. UN Treaty Series No. 14583 As amended by the Paris Protocol, 3 December 1982 and Regina Amendments, 28 May 1987
- Coombes, P .2004. Anglo American: Best Practice Environmental Guideline Series, Guideline for preparing Biodiversity Action Plans (BAP).
- Department of Environmental Affairs and Tourism, 2005. South African Country Study, Situational Assessment undertaken to inform South Africa's National Biodiversity Strategy and Action Plan (NBSAP).
- Duellman, W.E and Trueb, L 1986. Biology of Amphibians. JHU Press. 1986.
- Ferrar, A. F. and Lotter, M. C. Mpumalanga Biodiversity: Conservation Plan handbook. Mpumalanga Tourism an Park Agency, Scientific services. Mpumalanga Provincial Government, Nelspruit. 2007.
- Gerlanc, N. M. and Kaufman, G. A. Habitat of Origin and Changes in Water Chemistry Influence Development of Western Chorus Frogs. Journal of Herpetology 39 (2): 254-265 2005.
- Hannekens, S.M. 1996b. TURBO (VEG) Software pakage for input, processing and presentation of phytosociological data. Users guide. University of Lancaster, Lancaster.
- Hockey PAR, Dean WRJ and Ryan PG 2005. Roberts Birds of southern Africa, VIIth ed. The Trustees of the John Voelcker Bird Book Fund, Cape Town
- Kingdon, J. 2007. The Kingdon field guide to African Mammals. A&C Black publishers, London.
- Low, A.B. & Rebelo, A.G. (eds) 1996. Vegetation of South Africa, Lesotho and Swaziland.

- Lotter M,(Mpumalanga Tourism and Parks Authority), Email correspondence; Mon 2013/03/18 4:34 PM
- Monadjem, A. Taylor, P.J. Cotterill, F.P.D. Schoeman, M. C. 2010: Bats of Southern and Central Africa. Ultra Litho. Johannesburg
- Mucina, L.and Rutherford, M.C. (eds) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Passmore N.I., & Carruthers, V.C. 1995. South African Frogs: A complete Guide. Southern Book Publishers, Witwatersrand University Press, South Africa.
- Picker, M., C. Griffiths and Weaving .A. 2002. Field Guide to Insects. Random House Struik (Pty) Ltd
- Pooley, E.S. 1998. A Field Guide to Wildflowers Kwazulu-Natal and the eastern region. Natal Flora Publishers Trust: Durban, South Africa
- Roberts 2009. Roberts' Multimedia Birds of Southern Africa. Southern African Birding, Westville.
- Smithers, R.H.N. 1986. South African Red Data Book Terrestrial Mammals. South African National Scientific Programme Report no 125.
- Sinclair, I., Hockey, P & Warwick, T. 1993. Sasol Voëlgids van Suider-Afrika. Struik Uitgewers, Kaapstad.
- SoER: http://soer.deat.gov.za/dm_documents/TOR_Specialist_Studies_1qWDC.pdf
- South African National Botanical Institute (2013). Grasslands Available Online at http://www.grasslands.org.za/
- Waddle, J.H. 2006. Use of amphibians as ecosystem indicator species. Dissertation, University of Florida.

Appendix A: Staff CVs

Appendix B: Expected Plant List

Family	Genus	Sp1	Rank1	Sp2	Ecology
Polygalaceae	Polygala	transvaalensis	subsp.	transvaalensis	Indigenous
Agavaceae	Chlorophytum	cooperi			Indigenous
Rubiaceae	Anthospermum	rigidum	subsp.	rigidum	Indigenous
Orobanchaceae	Striga	bilabiata	subsp.	bilabiata	Indigenous
Poaceae	Cynodon	dactylon			Indigenous
Orchidaceae	Habenaria	epipactidea			Indigenous
Poaceae	Eragrostis	racemosa			Indigenous
Scrophulariaceae	Gomphostigma	virgatum			Indigenous
Linderniaceae	Lindernia	nana			Indigenous
Alliaceae	Tulbaghia	acutiloba			Indigenous; Endemic
Brassicaceae	Erucastrum	austroafricanum			Indigenous
Hypoxidaceae	Empodium	elongatum			Indigenous
Plantaginaceae	Linaria	vulgaris			notIndigenous; Naturalised; Invasive
Apocynaceae	Cordylogyne	globosa			Indigenous
Asteraceae	Helichrysum	aureonitens			Indigenous
Asteraceae	Gerbera	ambigua			Indigenous
Orchidaceae	Eulophia	ovalis	var.	ovalis	Indigenous
Cyperaceae	Cyperus	schlechteri			Indigenous

SAS3869

Family	Genus	Sp1	Rank1	Sp2	Ecology
Poaceae	Harpochloa	falx			Indigenous
Campanulaceae	Wahlenbergia	undulata			Indigenous
Fabaceae	Indigofera	dimidiata			Indigenous
Poaceae	Panicum	schinzii			Indigenous
Brassicaceae	Lepidium	transvaalense			Indigenous
Asteraceae	Geigeria	aspera	var.	aspera	Indigenous
Rubiaceae	Pentanisia	prunelloides	subsp.	prunelloides	Indigenous
Dipsacaceae	Scabiosa	columbaria			Indigenous
Asteraceae	Gazania	krebsiana	subsp.	serrulata	Indigenous
Poaceae	Andropogon	appendiculatus			Indigenous
Poaceae	Aristida	junciformis	subsp.	junciformis	Indigenous
Thymelaeaceae	Lasiosiphon	kraussianus			Indigenous
Poaceae	Eragrostis	planiculmis			Indigenous
Euphorbiaceae	Acalypha	caperonioides	var.	caperonioides	Indigenous
Fabaceae	Indigofera	hedyantha			Indigenous
Rhamnaceae	Ziziphus	zeyheriana			Indigenous
Solanaceae	Datura	stramonium			notIndigenous; Naturalised; Invasive
Commelinaceae	Cyanotis	speciosa			Indigenous

Family	Genus	Sp1	Rank1	Sp2	Ecology
Poaceae	Aristida	canescens	subsp.	canescens	Indigenous
Polygonaceae	Rumex	lanceolatus			Indigenous
Acanthaceae	Dyschoriste	burchellii			Indigenous
Asphodelaceae	Trachyandra	saltii	var.	saltii	Indigenous
Poaceae	Catalepis	gracilis			Indigenous
Convolvulaceae	Convolvulus	sagittatus			Indigenous
Asteraceae	Denekia	capensis			Indigenous
Orchidaceae	Orthochilus	foliosus			Indigenous
Rosaceae	Sanguisorba	minor	subsp.	muricata	notIndigenous; Naturalised
Asphodelaceae	Kniphofia	typhoides			Indigenous; Endemic
Juncaceae	Juncus	oxycarpus			Indigenous
Asteraceae	Ursinia	nana	subsp.	nana	Indigenous
Asteraceae	Nidorella	resedifolia	subsp.	resedifolia	Indigenous
Poaceae	Setaria	nigrirostris			Indigenous
Scrophulariaceae	Limosella	maior			Indigenous
Poaceae	Tragus	racemosus			Indigenous
Asphodelaceae	Aloe	ecklonis			Indigenous
Poaceae	Digitaria	eriantha			Indigenous

Family	Genus	Sp1	Rank1	Sp2	Ecology
Lamiaceae	Salvia	runcinata			Indigenous
Asteraceae	Senecio	othonniflorus			Indigenous
Hyacinthaceae	Dipcadi	marlothii			Indigenous
Amaryllidaceae	Nerine	gracilis			Indigenous; Endemic
Fabaceae	Rhynchosia	adenodes			Indigenous
Asteraceae	Conyza	podocephala			Indigenous
Fabaceae	Vigna	luteola	var.	luteola	Indigenous
Asteraceae	Senecio	subcoriaceus			Indigenous
Amaryllidaceae	Cyrtanthus	tuckii	var.	tuckii	Indigenous; Endemic
Ranunculaceae	Ranunculus	multifidus			Indigenous
Iridaceae	Moraea	pallida			Indigenous
Fabaceae	Argyrolobium	harveyanum			Indigenous
Zygophyllaceae	Tribulus	terrestris			Indigenous
Asteraceae	Senecio	laevigatus	var.	laevigatus	Indigenous; Endemic
Fabaceae	Zornia	capensis	subsp.	capensis	Indigenous
Hyacinthaceae	Drimia	elata			Indigenous
Rubiaceae	Kohautia	caespitosa	subsp.	brachyloba	Indigenous
Asteraceae	Pseudognaphalium	luteo-album			notIndigenous; Naturalised

Family	Genus	Sp1	Rank1	Sp2	Ecology
Malvaceae	Hermannia	cordata			Indigenous; Endemic
Caryophyllaceae	Herniaria	erckertii	subsp.	erckertii	Indigenous
Rubiaceae	Kohautia	amatymbica			Indigenous
Phrymaceae	Mimulus	gracilis			Indigenous
Polygalaceae	Polygala	albida	subsp.	albida	Indigenous
Asteraceae	Hilliardiella	aristata			Indigenous
Iridaceae	Gladiolus	elliotii			Indigenous
Poaceae	Eragrostis	tef			notIndigenous; Naturalised
Asteraceae	Nidorella	anomala			Indigenous; Endemic
Oxalidaceae	Oxalis	obliquifolia			Indigenous
Brassicaceae	Rorippa	fluviatilis	var.	fluviatilis	Indigenous
Fabaceae	Eriosema	salignum			Indigenous
Fabaceae	Melolobium	calycinum			Indigenous
Asteraceae	Berkheya	zeyheri	subsp.	zeyheri	Indigenous
Convolvulaceae	Falkia	oblonga			Indigenous
Apocynaceae	Asclepias	gibba	var.	gibba	Indigenous
Hyacinthaceae	Eucomis	autumnalis	subsp.	clavata	Indigenous
Caryophyllaceae	Silene	burchellii	subsp.	pilosellifolia	Indigenous

Family	Genus	Sp1	Rank1	Sp2	Ecology
Scrophulariaceae	Diclis	rotundifolia			Indigenous
Polygalaceae	Polygala	gracilenta			Indigenous
Amaryllidaceae	Crinum	graminicola			Indigenous
Asteraceae	Haplocarpha	scaposa			Indigenous
Fabaceae	Indigofera	hilaris	var.	hilaris	Indigenous
Convolvulaceae	Ipomoea	crassipes	var.	crassipes	Indigenous
Hyacinthaceae	Dipcadi	viride			Indigenous
Aponogetonaceae	Aponogeton	junceus			Indigenous
Asteraceae	Dimorphotheca	caulescens			Indigenous
Asteraceae	Schkuhria	pinnata			notIndigenous; Naturalised
Fabaceae	Erythrina	zeyheri			Indigenous
Poaceae	Elionurus	muticus			Indigenous
Cyperaceae	Scirpoides	burkei			Indigenous
Cyperaceae	Cyperus	longus	var.	longus	Indigenous
Poaceae	Koeleria	capensis			Indigenous
Hyacinthaceae	Albuca	baurii			Indigenous
Solanaceae	Solanum	campylacanthum	subsp.	panduriforme	Indigenous

EMP Consolidation and Vaalkop Specialist Studies

SAS3869

Family	Genus	Sp1	Rank1	Sp2	Ecology
Convolvulaceae	Convolvulus	arvensis			notIndigenous; Naturalised; Invasive
Apocynaceae	Asclepias	aurea			Indigenous
Fabaceae	Vigna	oblongifolia	var.	oblongifolia	Indigenous
Apocynaceae	Brachystelma	foetidum			Indigenous
Scrophulariaceae	Jamesbrittenia	sp.			
Cyperaceae	Pycreus	chrysanthus			Indigenous
Rubiaceae	Pentanisia	angustifolia			Indigenous
Poaceae	Eragrostis	capensis			Indigenous
Poaceae	Eragrostis	obtusa			Indigenous
Euphorbiaceae	Acalypha	angustata			Indigenous
Amaranthaceae	Gomphrena	celosioides			notIndigenous; Naturalised
Asteraceae	Conyza	bonariensis			notIndigenous; Naturalised
Orobanchaceae	Cycnium	tubulosum	subsp.	tubulosum	Indigenous
Santalaceae	Thesium	scirpioides			Indigenous
Asteraceae	Osteospermum	scariosum	var.	scariosum	Indigenous
Asteraceae	Senecio	affinis			Indigenous
Caryophyllaceae	Cerastium	capense			Indigenous

Family	Genus	Sp1	Rank1	Sp2	Ecology
Polygalaceae	Polygala	africana			Indigenous
Hypoxidaceae	Hypoxis	argentea	var.	argentea	Indigenous
Gentianaceae	Chironia	purpurascens	subsp.	humilis	Indigenous
Malvaceae	Hermannia	sp.			
Lobeliaceae	Monopsis	decipiens			Indigenous
Cyperaceae	Cyperus	obtusiflorus	var.	flavissimus	Indigenous
Iridaceae	Hesperantha	longicollis			Indigenous
Malvaceae	Hibiscus	aethiopicus	var.	ovatus	Indigenous
Polygalaceae	Polygala	transvaalensis			Indigenous
Asteraceae	Helichrysum	rugulosum			Indigenous
Scrophulariaceae	Hebenstretia	rehmannii			Indigenous; Endemic
Commelinaceae	Commelina	africana	var.	krebsiana	Indigenous
Apocynaceae	Asclepias	multicaulis			Indigenous
Poaceae	Heteropogon	contortus			Indigenous
Convolvulaceae	Ipomoea	ommanneyi			Indigenous
Euphorbiaceae	Euphorbia	inaequilatera	var.	inaequilatera	Indigenous
Asteraceae	Helichrysum	nudifolium	var.	nudifolium	Indigenous
Scrophulariaceae	Nemesia	fruticans			Indigenous
Asteraceae	Senecio	erubescens	var.	erubescens	Indigenous; Endemic

EMP Consolidation and Vaalkop Specialist Studies

SAS3869

Family	Genus	Sp1	Rank1	Sp2	Ecology
Apiaceae	Afrosciadium	magalismontanum			Indigenous
Asteraceae	Schistostephium	crataegifolium			Indigenous
Asteraceae	Felicia	muricata	subsp.	muricata	Indigenous
Thymelaeaceae	Gnidia	gymnostachya			Indigenous
Malvaceae	Hibiscus	microcarpus			Indigenous
Fabaceae	Trifolium	africanum	var.	africanum	Indigenous
Scrophulariaceae	Selago	densiflora			Indigenous
Hypoxidaceae	Hypoxis	rigidula	var.	rigidula	Indigenous
Polygonaceae	Rumex	acetosella	subsp.	angiocarpus	notIndigenous; Naturalised
Caryophyllaceae	Silene	undulata			Indigenous
Asteraceae	Senecio	sp.			
Boraginaceae	Cynoglossum	hispidum			Indigenous
Asteraceae	Tolpis	capensis			Indigenous
Cucurbitaceae	Cucumis	myriocarpus	subsp.	myriocarpus	Indigenous
Hyacinthaceae	Schizocarphus	nervosus			Indigenous
Commelinaceae	Commelina	benghalensis			Indigenous
Apocynaceae	Aspidoglossum	lamellatum			Indigenous
Valerianaceae	Valeriana	capensis	var.	capensis	Indigenous

Family	Genus	Sp1	Rank1	Sp2	Ecology
Asteraceae	Gazania	sp.			
Hypoxidaceae	Hypoxis	multiceps			Indigenous
Orobanchaceae	Sopubia	cana	var.	cana	Indigenous
Asteraceae	Senecio	bupleuroides			Indigenous
Poaceae	Fingerhuthia	sesleriiformis			Indigenous
Agavaceae	Chlorophytum	fasciculatum			Indigenous
Fabaceae	Melolobium	alpinum			Indigenous
Fabaceae	Listia	heterophylla			Indigenous
Iridaceae	Gladiolus	sericeovillosus	subsp.	sericeovillosus	Indigenous; Endemic
Geraniaceae	Monsonia	brevirostrata			Indigenous; Endemic
Lobeliaceae	Lobelia	sonderiana			Indigenous
Fabaceae	Lessertia	frutescens	subsp.	microphylla	Indigenous
Cyperaceae	Cyperus	esculentus	var.	esculentus	Indigenous
Geraniaceae	Pelargonium	luridum			Indigenous
Geraniaceae	Geranium	multisectum			Indigenous; Endemic
Asteraceae	Gnaphalium	filagopsis			Indigenous
Hyacinthaceae	Ledebouria	ovatifolia			Indigenous; Endemic
Fabaceae	Eriosema	simulans			Indigenous
Asteraceae	Helichrysum	nudifolium	var.	pilosellum	Indigenous

Family	Genus	Sp1	Rank1	Sp2	Ecology
Iridaceae	Gladiolus	longicollis	subsp.	platypetalus	Indigenous
Fabaceae	Dolichos	falciformis			Indigenous
Asphodelaceae	Bulbine	capitata			Indigenous
Solanaceae	Solanum	lichtensteinii			Indigenous
Anacardiaceae	Searsia	dentata			Indigenous
Rubiaceae	Galium	capense	subsp.	capense	Indigenous
Amaryllidaceae	Crinum	bulbispermum			Indigenous
Asteraceae	Hilliardiella	oligocephala			Indigenous
Asteraceae	Berkheya	setifera			Indigenous
Onagraceae	Oenothera	tetraptera			notIndigenous; Naturalised
Fabaceae	Pearsonia	sessilifolia	subsp.	sessilifolia	Indigenous
Pontederiaceae	Pontederia	cordata	var.	ovalis	notIndigenous; Naturalised

Appendix C: Site Plant List

Family	Species	Threat Status	Grassland	Riparian	Rocky	Disturbed	Pans
Acanthaceae	Blepharis acuminata	LC			х		
Acanthaceae	Crabbea acaulis	LC	х		х		
Alliaceae	Tulbagia violacea	LC	х				
Amaranthaceae	Guilleminea densa	Alien	х	х		х	
Amaranthaceae	Amaranthus hybridus	LC					
Amaranthaceae	Gomphrena celesioides	Alien				х	
Amaryllidaceae	Haemanthus humilis	LC			х		
Apiaceae	Centella asiatica	No status		x	x		
Apocynaceae	Raphionacme sp.		х				
Asclepiadaceae	Gomphocarpus fruticosus	LC	х				
Asparagaceae	Asparagus sp.					х	
Asphodelaceae	Aloe ecklonis	LC			х		
Asphodelaceae	Crinum bulbispermum	Declinin g		х			
Asphodelaceae	Trachyandra cooperi	LC	х		х		
Asteraceae	Berkheya erysithales	LC	х	х		х	
Asteraceae	Berkheya setifera	LC		х		х	
Asteraceae	Bidens pilosa	Alien				х	
Asteraceae	Cirsium vulgare	Alien	х	х		х	
Asteraceae	Conyza albida	Alien				х	
Asteraceae	Cosmos bippinatu	Alien				х	
Asteraceae	Dicoma anomala	LC	х		х		
Asteraceae	Geigeria burkei	LC	х	х			
Asteraceae	Gerbera galpinii	LC	х				
Asteraceae	Haplocarpha scaposa	LC	х		х		
Asteraceae	Helichrysum aureonitens	LC	х		х		
Asteraceae	Helichrysum inornatum	LC	х		х		
Asteraceae	Hilliardella oligocephala	LC	х				

Family	Species	Threat Status	Grassland	Riparian	Rocky	Disturbed	Pans
Asteraceae	Hypochaeris radicata	LC	х				
Asteraceae	Senecio inaequidens	LC	x				
Asteraceae	Senecio inornatus	LC	x				
Asteraceae	Senecio sp.		x				
Asteraceae	Seriphium plumosum	LC	х			х	
Asteraceae	Tagetes minuta	Alien				х	
Asteraceae	Taraxacum offininale	Alien				х	
Asteraceae	Vernonia centaureoides	LC	x		х		
Asteraceae	Xanthium strumarium	Alien					
Cactaceae	Opuntia ficus-indica	Alien					
Campanulaceae	Wahlenbergia sp.		х		х		
Capparaceae	Cleome maculata	LC			х		
Caryophyllaceae	Silene burchellii	LC	х				
Chrysobalanaceae	Parinari capensis	LC			х		
Commelinaceae	Commelina africana	LC	х	х			
Commelinaceae	Commelina bengalensis	LC					
Commelinaceae	Commelina subulata	LC			х		
Convolvulaceae	Ipomoea crassipes	LC	х		х		
Convolvulaceae	Ipomoea sp.						
Crassulaceae	Crassula alba	LC			х		
Crassulaceae	Crassula pellucida	LC			х		
Cyperaceae	Cyperus congestus	LC		х			
Cyperaceae	Cyperus esculentus	LC		х			
Cyperaceae	Cyperus semitrifidus	LC		х			х
Cyperaceae	Schoenoplectus brachyceras	LC		х			
Cyperaceae	Schoenoplectus corymbosus	LC		х			
Cyperaceae	Schoenoplectus decipiens	LC		х			
Ebenaceae	Diospyros lycioides	LC			х		
Ebenaceae	Searsia dentata	LC			х		

Family	Species	Threat Status	Grassland	Riparian	Rocky	Disturbed	Pans
Euphorbiaceae	Acalypha angustata	LC	х		х		
Euphorbiaceae	Euphorbia clavarioides	LC			х		
Fabaceae	Acacia mearnsii	Alien					
Fabaceae	Erythrina zeyheria	LC	х				
Fabaceae	Polygala hottentotta	LC			х		
Fabaceae	Tephrosia sp.		х				
Fabaceae	Trifolium africanum	LC	х		х	х	
Fabaceae	Vigna vexillata	LC				х	
Gentianaceae	Chironia palustris	LC	х				
Gentianaceae	Sebaea grandis	LC	х				
Geraniaceae	Dianthus mooiensis	LC	х		х		
Geraniaceae	Monsonia grandifolia	LC	х				
Geraniaceae	Pelargonium luridum	LC	х	х			
Hyacinthaceae	Eucomus autumnalis	Declinin g		x			
Hyacinthaceae	Ledebouria sp.			х			
Juncaceae	Juncus effusus	LC		х		х	
Juncaceae	Juncus exsertus	LC		х			
Lamiaceae	Acrotome hispida	LC	х				
Lamiaceae	Leonotis leonurus	LC			х		
Lobeliaceae	Monopsis decipiens	LC		х			
Malvaceae	Hermannia depressa	LC	х				
Malvaceae	Hermannia transvaalensis	LC	х				
Malvaceae	Hibiscus pusilis		х			х	
Malvaceae	Hibiscus trionum		х				
Mesembreanthemace ae	Delosperma cooperi	LC			x		
Mesembreanthemace ae	Khadia sp.				x		
Molluginaceae	Psammotropha myriantha	LC			х		

Family	Species	Threat Status	Grassland	Riparian	Rocky	Disturbed	Pans
Molluginaceae	Psammotropha sp.				х		
Myrtaceae	Eucalyptus camuldulensis	Alien					
Onagraceae	Oenothera rosea	LC				х	
Orobanchaceae	Alectra capensis	LC		х			
Orobanchaceae	Cynium tubulosum	LC					
Oxalaceae	Oxalis sp.		х	х		х	
Oxalidaceae	Oxalis corniculata	LC	х				
Plantaginaceae	Plantago minor	LC	х		x		
Poaceae	Agrostis lachnantha	LC	х	x			х
Poaceae	Andropogon appendiculatus	LC	х			х	
Poaceae	Andropogon eucomus	LC	х				х
Poaceae	Andropogon huillensis	LC	х				
Poaceae	Aristida congesta subsp. barbicollis	LC	x		x	х	x
Poaceae	Arundinella nepalensis	LC		х			
Poaceae	Bromus catharticus	LC	х				
Poaceae	Ctenium concinnum	LC			х		
Poaceae	Cynodon dactylon	LC	х	х	х	х	
Poaceae	Eragrostis capensis	LC	х			х	
Poaceae	Eragrostis curvula	LC	х	x		х	
Poaceae	Eragrostis gummiflua	LC	х	x	х		х
Poaceae	Eragrostis racemosa	LC	х		х		
Poaceae	Fingerhuthia africana	LC	х				
Poaceae	Hyparrhenia hirta	LC	х	x	х	х	
Poaceae	Hyparrhenia tamba	LC	х				
Poaceae	Imperata cylindrica	LC	х	х			
Poaceae	Leersia hexandra	LC		х			
Poaceae	Melinis nerviglumis	LC			х		
Poaceae	Melinis repens	LC			х		

Family	Species	Threat Status	Grassland	Riparian	Rocky	Disturbed	Pans
Poaceae	Panicum coloratum	LC	x				
Poaceae	Paspalum dilatatum	LC					
Poaceae	Paspalum notatum	Alien		x		х	
Poaceae	Setaria sphacelata	LC		x			
Poaceae	Sporobolus africanus	LC	х			х	
Poaceae	Sporobolus pyramidalis	LC	х		х	х	
Poaceae	Themeda triandra	LC	х		х		
Poaceae	Trichoneura grandiglumis	Alien			х		
Poaceae	Tristachya leucothrix	LC			х		
Polygonaceae	Persicaria lapathifolia	LC					х
Polygonaceae	Persicaria senegalensis	LC					х
Rubiaceae	Pentanisia prunelloides	LC	х		х		
Salicaceae	Salix babylonica	Alien		х			
Scrophulariaceae	Chaenostoma leve	No status	x				
Scrophulariaceae	Selago densiflora	LC			х		
Sellaginellaceae	Selaginella dregei	LC			х		
Sinopteridaceae	Pellaea calemelanos	LC			х		
Solanaceae	Datura ferox	Alien					
Solanaceae	Solanum sp.	Alien					
Solanaceae	Solanum sysimbriifolium	Alien	х				
Thymeleaceae	Gnidia kraussiana	LC			х		
Typhaceae	Typha capensis	LC		х			
Verbenaceae	Verbena brasiliensis	Alien	х	х	х	х	х

Appendix D: Expected Mammals List
Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Family	Species	Common Name	P.o.O.
Bathyergidae	Cryptomys hottentotus	African Mole Rat	Medium
Bovidae	Damaliscus pygargus	Blesbok	Recorded
Bovidae	Raphicerus campestris	Steenbok	Recorded
Bovidae	Sylvicapra grimmia	Common Duiker	Recorded
Chrysochloridae	Amblysomus septentrionalis	Highveld Golden Mole	High
Erinaceidae	Atelerix frontalis	Southern African hedgehog	Medium
Felidae	Leptailurus serval	Serval	Recorded
Herpestidae	Atilax paludinosus	Water Mongoose	Medium
Herpestidae	Cynictis penicillata	Yellow Mongoose	High
Herpestidae	Suricata suricatta	Meerkat	Recorded
Hyaenidae	Proteles cristata	Aardwolf	Low
Mustelidae	Aonyx capensis	Cape Clawless Otter	Low
Mustelidae	Poecilogale albinucha	African Striped Weasel	High
Nesomyidae	Mystromys albicaudatus	White-tailed Mouse	Medium
Orycteropodidae	Orycteropus afer	Aardvark	Low
Procaviidae	Procavia capensis	Rock Hyrax	Recorded
Soricidae	Crocidura cyanea	Reddish-Gray Musk Shrew	Low
Soricidae	Crocidura mariquensis	Swamp musk Shrew	Low
Soricidae	Crocidura silacea	Lesser Gray-brown Musk Shrew	Low
Soricidae	Myosorex varius	Forest Shrew	Low
Soricidae	Suncus infinitesimus	Least Dwarf Shrew	Low
Soricidae	Suncus varilla	Lesser Dwarf Shrew	Low

Expected Bats

Species	Common Name
Chaerephon ansorgei	Ansorge's free-tailed bat
Chaerephon pumilus	Little free-tailed bat
Cloeotis percivali	Short-eared trident bat
Eidolon helvum	Straw-coloured fruit bat
Epomophorus crypturus	Angolan epauletted fruit bat
Epomophorus wahlbergi	Wahlberg's epauletted fruit bat
Hipposideros caffer	Sundevall's roundleaf bat
Hypsugo anchietae	Anchieta's pipistrelle
Miniopterus fraterculus	Lesser long-fingered bat
Miniopterus inflatus	Greater long-fingered bat
Miniopterus natalensis	Greater long-fingered bat
Mops condylurus	Angola free-tailed bat
Myotis bocagii	Rufous mouse-eared bat
Myotis tricolor	Temminck's hairy bat
Myotis welwitschii	-
Neoramicia nana	-
Neoromicia capensis	Cape serotine bat
Neoromicia zuluensis	Aloe serotine bat
Nycteris thebaica	Egyptian slit-faced bat
Nycticienops schlieffeni	Schlieffen's bat
Pipistrellus hesperidus	African pipistrelle
Rhinolophus blasii	Blasius's horseshoe bat
Rhinolophus clivosus	Geoffroy's horseshoe bat
Rhinolophus darlingi	Darling's horseshoe bat
Rhinolophus simulator	Bushveld horseshoe bat
Rhinolophus swinnyi	Swinny's horseshoe bat
Rousettus aegyptiacus	Egyptian rousette
Scotoecus dinganii	African yellow bat
Scotophilus viridis	Greenish yellow bat
Tadarida aegyptiaca	Egyptian free-tailed bat

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Appendix E: Expected Bird List

QDGC	Common_name	Taxon_name
2629AD	Ostrich, Common	Struthio camelus
2629AD	Quail, Common	Coturnix coturnix
2629AD	Spurfowl, Swainson's	Pternistis swainsonii
2629AD	Francolin, Red-winged	Scleroptila levaillantii
2629AD	Francolin, Orange River	Scleroptila levaillantoides
2629AD	Guineafowl, Helmeted	Numida meleagris
2629AD	Duck, White-faced	Dendrocygna viduata
2629AD	Goose, Egyptian	Alopochen aegyptiacus
2629AD	Teal, Cape	Anas capensis
2629AD	Teal, Red-billed	Anas erythrorhyncha
2629AD	Duck, Mallard	Anas platyrhynchos
2629AD	Shoveler, Cape	Anas smithii
2629AD	Duck, African Black	Anas sparsa
2629AD	Duck, Yellow-billed	Anas undulata
2629AD	Pochard, Southern	Netta erythrophthalma
2629AD	Duck, Maccoa	Oxyura maccoa
2629AD	Goose, Spur-winged	Plectropterus gambensis
2629AD	Duck, Comb	Sarkidiornis melanotos
2629AD	Shelduck, South African	Tadorna cana
2629AD	Honeyguide, Lesser	Indicator minor
2629AD	Woodpecker, Cardinal	Dendropicos fuscescens
2629AD	Wryneck, Red-throated	Jynx ruficollis
2629AD	Barbet, Black-collared	Lybius torquatus
2629AD	Barbet, Crested	Trachyphonus vaillantii
2629AD	Barbet, Acacia Pied	Tricholaema leucomelas
2629AD	Hoopoe, African	Upupa africana
2629AD	Wood-hoopoe, Green	Phoeniculus purpureus
2629AD	Kingfisher, Malachite	Alcedo cristata
2629AD	Kingfisher, Pied	Ceryle rudis
2629AD	Kingfisher, Giant	Megaceryle maximus
2629AD	Mousebird, Speckled	Colius striatus

QDGC	Common_name	Taxon_name
2629AD	Mousebird, Red-faced	Urocolius indicus
2629AD	Cuckoo, Diderick	Chrysococcyx caprius
2629AD	Cuckoo, Red-chested	Cuculus solitarius
2629AD	Swift, Little	Apus affinis
2629AD	Swift, African Black	Apus barbatus
2629AD	Swift, White-rumped	Apus caffer
2629AD	Swift, Horus	Apus horus
2629AD	Palm-swift, African	Cypsiurus parvus
2629AD	Owl, Marsh	Asio capensis
2629AD	Eagle-owl, Spotted	Bubo africanus
2629AD	Pigeon, Speckled	Columba guinea
2629AD	Dove, Rock	Columba livia
2629AD	Turtle-dove, Cape	Streptopelia capicola
2629AD	Dove, Red-eyed	Streptopelia semitorquata
2629AD	Dove, Laughing	Streptopelia senegalensis
2629AD	Korhaan, Blue	Eupodotis caerulescens
2629AD	Crake, African	Crecopsis egregia
2629AD	Coot, Red-knobbed	Fulica cristata
2629AD	Moorhen, Lesser	Gallinula angulata
2629AD	Moorhen, Common	Gallinula chloropus
2629AD	Swamphen, African Purple	Porphyrio madagascariensis
2629AD	Sandpiper, Common	Actitis hypoleucos
2629AD	Stint, Little	Calidris minuta
2629AD	Snipe, African	Gallinago nigripennis
2629AD	Ruff, Ruff	Philomachus pugnax
2629AD	Sandpiper, Wood	Tringa glareola
2629AD	Greenshank, Common	Tringa nebularia
2629AD	Thick-knee, Spotted	Burhinus capensis
2629AD	Plover, Kittlitz's	Charadrius pecuarius
2629AD	Plover, Three-banded	Charadrius tricollaris
2629AD	Stilt, Black-winged	Himantopus himantopus

QDGC	Common_name	Taxon_name
2629AD	Avocet, Pied	Recurvirostra avosetta
2629AD	Lapwing, Blacksmith	Vanellus armatus
2629AD	Lapwing, Crowned	Vanellus coronatus
2629AD	Lapwing, African Wattled	Vanellus senegallus
2629AD	Pratincole, Black-winged	Glareola nordmanni
2629AD	Tern, Whiskered	Chlidonias hybrida
2629AD	Gull, Grey-headed	Larus cirrocephalus
2629AD	Sparrowhawk, Black	Accipiter melanoleucus
2629AD	Buzzard, Jackal	Buteo rufofuscus
2629AD	Buzzard, Steppe	Buteo vulpinus
2629AD	Harrier, Montagu's	Circus pygargus
2629AD	Kite, Black-shouldered	Elanus caeruleus
2629AD	Harrier-Hawk, African	Polyboroides typus
2629AD	Secretarybird, Secretarybird	Sagittarius serpentarius
2629AD	Falcon, Amur	Falco amurensis
2629AD	Falcon, Lanner	Falco biarmicus
2629AD	Kestrel, Lesser	Falco naumanni
2629AD	Kestrel, Greater	Falco rupicoloides
2629AD	Grebe, Great Crested	Podiceps cristatus
2629AD	Grebe, Black-necked	Podiceps nigricollis
2629AD	Grebe, Little	Tachybaptus ruficollis
2629AD	Darter, African	Anhinga rufa
2629AD	Cormorant, Reed	Phalacrocorax africanus
2629AD	Cormorant, White-breasted	Phalacrocorax carbo
2629AD	Heron, Grey	Ardea cinerea
2629AD	Heron, Goliath	Ardea goliath
2629AD	Heron, Black-headed	Ardea melanocephala
2629AD	Heron, Purple	Ardea purpurea
2629AD	Heron, Squacco	Ardeola ralloides
2629AD	Egret, Cattle	Bubulcus ibis
2629AD	Egret, Great	Egretta alba

QDGC	Common_name	Taxon_name
2629AD	Egret, Yellow-billed	Egretta intermedia
2629AD	Egret, Little	Egretta garzetta
2629AD	Night-Heron, Black-crowned	Nycticorax nycticorax
2629AD	Hamerkop, Hamerkop	Scopus umbretta
2629AD	Flamingo, Lesser	Phoenicopterus minor
2629AD	Flamingo, Greater	Phoenicopterus ruber
2629AD	Ibis, Hadeda	Bostrychia hagedash
2629AD	Ibis, Southern Bald	Geronticus calvus
2629AD	Spoonbill, African	Platalea alba
2629AD	Ibis, Glossy	Plegadis falcinellus
2629AD	Ibis, African Sacred	Threskiornis aethiopicus
2629AD	Stork, White	Ciconia ciconia
2629AD	Fiscal, Common (Southern)	Lanius collaris
2629AD	Shrike, Red-backed	Lanius collurio
2629AD	Shrike, Lesser Grey	Lanius minor
2629AD	Crow, Pied	Corvus albus
2629AD	Paradise-flycatcher, African	Terpsiphone viridis
2629AD	Robin-chat, Cape	Cossypha caffra
2629AD	Flycatcher, Spotted	Muscicapa striata
2629AD	Chat, Anteating	Myrmecocichla formicivora
2629AD	Wheatear, Mountain	Oenanthe monticola
2629AD	Wheatear, Capped	Oenanthe pileata
2629AD	Stonechat, African	Saxicola torquatus
2629AD	Flycatcher, Fiscal	Sigelus silens
2629AD	Thrush, Olive	Turdus olivaceus
2629AD	Thrush, Karoo	Turdus smithi
2629AD	Myna, Common	Acridotheres tristis
2629AD	Starling, Wattled	Creatophora cinerea
2629AD	Starling, Cape Glossy	Lamprotornis nitens
2629AD	Starling, Pied	Spreo bicolor
2629AD	House-martin, Common	Delichon urbicum

QDGC	Common_name	Taxon_name
2629AD	Swallow, White-throated	Hirundo albigularis
2629AD	Swallow, Greater Striped	Hirundo cucullata
2629AD	Martin, Rock	Hirundo fuligula
2629AD	Swallow, Barn	Hirundo rustica
2629AD	Cliff-swallow, South African	Hirundo spilodera
2629AD	Martin, Banded	Riparia cincta
2629AD	Martin, Brown-throated	Riparia paludicola
2629AD	Bulbul, Dark-capped	Pycnonotus tricolor
2629AD	Cisticola, Wing-snapping	Cisticola ayresii
2629AD	Cisticola, Pale-crowned	Cisticola cinnamomeus
2629AD	Cisticola, Zitting	Cisticola juncidis
2629AD	Cisticola, Wailing	Cisticola lais
2629AD	Cisticola, Cloud	Cisticola textrix
2629AD	Cisticola, Levaillant's	Cisticola tinniens
2629AD	Prinia, Black-chested	Prinia flavicans
2629AD	White-eye, Cape	Zosterops virens
2629AD	Reed-warbler, Great	Acrocephalus arundinaceus
2629AD	Reed-warbler, African	Acrocephalus baeticatus
2629AD	Swamp-warbler, Lesser	Acrocephalus gracilirostris
2629AD	Warbler, Dark-capped Yellow	Chloropeta natalensis
2629AD	Warbler, Willow	Phylloscopus trochilus
2629AD	Lark, Red-capped	Calandrella cinerea
2629AD	Lark, Spike-heeled	Chersomanes albofasciata
2629AD	Lark, Eastern Clapper	Mirafra fasciolata
2629AD	Sunbird, Malachite	Nectarinia famosa
2629AD	Finch, Red-headed	Amadina erythrocephala
2629AD	Waxbill, Orange-breasted	Amandava subflava
2629AD	Finch, Cuckoo	Anomalospiza imberbis
2629AD	Pipit, African	Anthus cinnamomeus
2629AD	Waxbill, Common	Estrilda astrild
2629AD	Bishop, Yellow-crowned	Euplectes afer

QDGC	Common_name	Taxon_name
2629AD	Widowbird, White-winged	Euplectes albonotatus
2629AD	Widowbird, Red-collared	Euplectes ardens
2629AD	Widowbird, Fan-tailed	Euplectes axillaris
2629AD	Bishop, Southern Red	Euplectes orix
2629AD	Widowbird, Long-tailed	Euplectes progne
2629AD	Longclaw, Cape	Macronyx capensis
2629AD	Wagtail, Cape	Motacilla capensis
2629AD	Quailfinch, African	Ortygospiza atricollis
2629AD	Sparrow, Southern Grey-headed	Passer diffusus
2629AD	Sparrow, House	Passer domesticus
2629AD	Sparrow, Cape	Passer melanurus
2629AD	Weaver, Cape	Ploceus capensis
2629AD	Southern Masked-weaver, Southern	Ploceus velatus
2629AD	Quelea, Red-billed	Quelea quelea
2629AD	Mannikin, Bronze	Spermestes cucullatus
2629AD	Whydah, Pin-tailed	Vidua macroura
2629AD	Canary, Black-throated	Crithagra atrogularis
2629AD	Canary, Cape	Serinus canicollis
2629AD	Canary, Yellow	Crithagra flaviventris
QDGC	Common_name	Taxon_name
2629AC	Duck, White-backed	Thalassornis leuconotus
2629AC	Teal, Hottentot	Anas hottentota
2629AC	Swift, Common	Apus apus
2629AC	Dove, Namaqua	Oena capensis
2629AC	Crane, Blue	Anthropoides paradiseus
2629AC	Crake, Black	Amaurornis flavirostris
2629AC	Flufftail, Red-chested	Sarothrura rufa
2629AC	Sandpiper, Curlew	Calidris ferruginea
2629AC	Sandpiper, Marsh	Tringa stagnatilis
2629AC	Tern, White-winged	Chlidonias leucopterus
2629AC	Tern, Caspian	Sterna caspia

QDGC	Common_name	Taxon_name
2629AC	Harrier, Pallid	Circus macrourus
2629AC	Marsh-harrier, African	Circus ranivorus
2629AC	Fish-eagle, African	Haliaeetus vocifer
2629AC	Eagle, Long-crested	Lophaetus occipitalis
2629AC	Kite, Yellow-billed	Milvus aegyptius
2629AC	Falcon, Red-footed	Falco vespertinus
2629AC	Heron, Black	Egretta ardesiaca
2629AC	Bittern, Little	Ixobrychus minutus
2629AC	Crow, Cape	Corvus capensis
2629AC	Flycatcher, Fairy	Stenostira scita
2629AC	Bokmakierie, Bokmakierie	Telophorus zeylonus
2629AC	Neddicky, Neddicky	Cisticola fulvicapilla
2629AC	Prinia, Tawny-flanked	Prinia subflava
2629AC	Rush-warbler, Little	Bradypterus baboecala
2629AC	Sparrowlark, Chestnut-backed	Eremopterix leucotis
2629AC	Pipit, Plain-backed	Anthus leucophrys
2629AC	Sparrow-weaver, White-browed	Plocepasser mahali
2629AC	Weaver, Village	Ploceus cucullatus
2629AC	Seedeater, Streaky-headed	Crithagra gularis
2629AC	Canary, Yellow-fronted	Crithagra mozambicus
2629CB	Francolin, Grey-winged	Scleroptila africanus
2629CB	Parakeet, Rose-ringed	Psittacula krameri
2629CB	Kestrel, Rock	Falco rupicolus
2629CB	Openbill, African	Anastomus lamelligerus
2629CB	Oriole, Black-headed	Oriolus larvatus
2629CB	Thrush, Groundscraper	Psophocichla litsipsirupa
2629CB	Warbler, Sedge	Acrocephalus schoenobaenus
2629CB	Lark, Rufous-naped	Mirafra africana
2629CB	Lark, Pink-billed	Spizocorys conirostris
2629CB	Pipit, Yellow-breasted	Anthus chloris
2629CB	Bunting, Cinnamon-breasted	Emberiza tahapisi

QDGC	Common_name	Taxon_name
2629CA	Duck, Fulvous	Dendrocygna bicolor
2629CA	Buttonquail, Kurrichane	Turnix sylvaticus
2629CA	Turnstone, Ruddy	Arenaria interpres
2629CA	Painted-snipe, Greater	Rostratula benghalensis
2629CA	Plover, Common Ringed	Charadrius hiaticula
2629CA	Plover, White-fronted	Charadrius marginatus
2629CA	Plover, Chestnut-banded	Charadrius pallidus
2629CA	Cisticola, Desert	Cisticola aridulus
2629CA	Warbler, Marsh	Acrocephalus palustris
2629CA	Wagtail, Yellow	Motacilla flava

Fauna and Flora Specialist Report EMP Consolidation and Vaalkop Specialist Studies SAS3869

Appendix F: Expected Herpetafauna List

Family	Species	Common Name
Agamidae	Agama aculeata	Ground agama
Aparallactus	Aparallactus capensis	Black Headed centipede-eater
Colubridae	Psammophylax tritaeniatus	Three-lined grass snake
Colubridea	Psammophylax rhombeatus	Spotted skaapsteker
Colubridea	Lycodonomorphus rufulus	Common water snake
Colubridea	Lamprophis capensis	Brown house snake
Colubridea	Lamprophis inornatus	Olive house snake
Colubridea	Lamprophis guttatus	Spotted rock snake
Colubridea	Lamprophis aurora	Aurora house snake (LC)
Colubridea	Lycophidion capensis	Common wolf snake
Colubridea	Duberria lutrix	Common slug eater
Colubridea	Pseudaspis cana	Mole snake
Colubridea	Amplorhinus mutimaculatus	Many spotted snake
Colubridea	Dasypeltis inornata	Southern brown egg-eater
Colubridea	Crotaphopeltis hotamboeia	Herald snake
Colubridea	Lamprophis fuscus	Yellow bellied house snake
Cordylidae	Cordylus giganteus	Giant girdled lizard
Cordylidae	Pseudocordylus melanotus	Drakensberg crag lizard
Elapidea	Elapsoidea sundevalli	Sundevall's garter snake
Elapidea	Hemachatus haemachatus	Rinkhals
Elapidea	Homoroselaps dorsalis	Striped Harlequin Snake
Gekkonidae	Lygodactylus ocellatus	Spotted dwarf gecko
Gerrhosauridae	Tetradactylus breyeri	Breyer's long-tailed seps
Homoroselaps	Homoroselaps lacteus	Spotted harlequin snake
Lamprophiidae	Psammophylax rhombeatus rhombeatus	Spotted Grass Snake
Leptotyphlopidae	Leptotyphlops scutifrons	Peters thread snake
Pelomedusidae	Pelomedusa subrufa	Marsh terrapin
Pythonidae	Python natalensis	Southern African python (V)
Scincidae	Acontias gracilicauda	Slendertail lance skink
Scincidae	Trachylepis punctatissima	Speckled Rock Skink
Scincidea	Acontias breviceps	Short headed legless skink
Scincidea	Trachylepsis capensis	Cape skink
Scincidea	Trachylepsis varia	Variable skink

Family	Species	Common Name
Scincidea	Trachylepsis striata	Striped skink
Typhlopidae	Typhlops bibronii	Bibron's blind snake
Varanidea	Veranus niloticus	Water monitor
Viperidea	Causus rhombeatus	Rhombic night adder
Viperidea	Bitis arietans	Puff adder

Amphibians

Family	Species	Common Name
Bufonidae	Bufo gutturalis	Guttural toad
	Amietophrynus regularis	African common toad
	Amietophrynus maculatus	Flat-backed toad
Hyperoliidae	Hyperolius marmoratus	Painted reed frog
	Kassina senegalensis	Bubbling Kasina
	Semnodactylus wealii	Rattling frog
Pipidae	Xenopusa laevis	Common platanna
Pyxicephalidae	Amietia angolensis	Common river frog
	Amietia fuscigula	Cape river frog
	Cacosternum boettgeri	Common Caco
	Strongylopus fasciatus	Striped stream frog
	Strongylopus grayii	Clicking stream frog
	Strongylopus wageri	Plain stream frog (NT)
	Tomopterna cryptotis	Tremelo's sand frog
	Tomopterna natalensis	Tandy's sand frog
Ranidae	Hyperolius sp.	-
	Ptychadena porosissima	Striped grass frog
	Amietia angolensis	Common river frog
	Rana fasciatus	-
	Rana sp.	-