ESKOM HOLDINGS LIMITED

PANEL B CONSULTANTS JOINT VENTURE

KUSILE POWER STATION

SDD SETTLING TANKS

DETAILED DESIGN REPORT 5452/80/021 REV 0

Task Order Number: PBC JV – TO #31

MAY 2010

ESKOM HOLDINGS LIMITED

KUSILE POWER STATION

SDD SETTLING TANKS

DETAILED DESIGN REPORT 5452/80/021 REV 0

TABLE OF CONTENTS

Section	Desci	ription	Page
1	INTRO	ODUCTION	1
	1.1	Background	1
	1.2	Scope	1
	1.3	Client User Requirement Specification	2
	1.4	Drawings	2
2	SDD S	SETTLING TANKS DESIGN	4
	2.1	Overview	4
	2.2 2.2.1 2.2.2 2.2.3	Design Parameters Location and Size Capacity Operation	4 4 5
	2.3	Particle Size Settlement Calculations	5
	2.4	Concrete Works	6
	2.5	Geotechnical Conditions	7
	2.6	Inlet Details	7
	2.7	Oil/Water Separation	8
	2.8	Outlet Details	8
	2.9	Emergency Spillway	8
	2.10	Inlet and Outlet Pipes and Junction Boxes	8
	2.11	Perimeter Access Road	8
	2.12	Construction	9
3	REFE	RENCES	10

4 DOCUMENT CONTROL SHEET

APPENDICES:

Appendix A – Drawings Appendix B – Calculation Records

ESKOM HOLDINGS LIMITED

KUSILE POWER STATION

SDD SETTLING TANKS

DETAILED DESIGN REPORT 5452/80/021 REV 0

MAY 2010

1 INTRODUCTION

The Panel B Consultants Joint Venture (CJV) has been appointed by Eskom Enterprises to carry out the civil design of the water license structures for the Kusile Power Station.

This report details the design of the Station Dirty Dams Settling Tanks (SDD ST).

1.1 Background

Eskom is the principal supplier of electricity in South Africa. In order to meet the growing need for electricity, and in support of the growth and development strategy of the national government, Eskom has embarked on an expansion program to build new power stations. Part of this expansion program includes the construction of two large coal-fired power stations.

Located near Witbank and Kendal Power Station in the Mpumalanga province, Kusile Power Station will be a 4,800 MW coal-fired power plant. Kusile Power Station is currently under construction with a target commissioning date of June 2014 for the first of its six units.

1.2 Scope

Panel B CJV is responsible for the engineering design and construction drawings for the Pollution Control Dams (PCDs) at Kusile Power Station. This is the detailed design report for the SDD ST. It addresses all client requirements, as well as all relevant South African regulatory requirements. These include:

- The National Water Act, No. 36 of 1998.
- Section 117(c)(i) of the National Water Act, 1998, relating to dams with a safety risk.
- Government Notice No. 704, Regulations on use of water for mining and related activities aimed at the protection of water resources, in terms of the National Water Act (Act 36 of 1998)
- SANS 1200: Standardised Specifications for Civil Engineering Construction

1.3 Client User Requirement Specification

The design criteria for the CSY ST satisfy the requirements of the Eskom User Requirement Specification (URS) as detailed in *Section 5.2.2: Water Management*.

1.4 Drawings

All SDD ST detailed design drawings are listed below. Those that are relevant to the water use license application are marked with an asterisk and are provided in Appendix A.

- *K5452-80-033: Settling Tanks: Typical Details Sheet 1 of 2;
- *K5452-80-034: Settling Tanks: Typical Details Sheet 2 of 2;
- *K5452-80-035: SDD Settling Tanks: General Arrangement;
- *K5452-80-036: SDD Settling Tanks: Typical Sections and Details;
- *K5452-80-037: SDD Settling Tanks: Surface Bed Layout and Details;
- *K5452-80-038: SDD Settling Tanks: Energy Dissipator GA and Details;
- *K5452-80-039: SDD Settling Tanks: Outlet GA and Details;
- K5452-80-061: Settling Tanks Floor Reinforcement Details Sheet 1;
- K5452-80-062: Settling Tanks Floor Reinforcement Details Sheet 2;
- K5452-80-063: Settling Tanks Wall Reinforcement Details;
- K5452-80-064: Settling Tanks Inlet Reinforcement Details;
- K5452-80-065: Settling Tanks Outlet Reinforcement Details;
- K5452-80-066: SDD Settling Tanks: Dissipator Reinforcement Details;
- K5452-80-068: Settling Tanks Typical Reinforcement Details;
- *K5452-80-071: SDD Settling Tanks Inlet and Outlet Pipeworks: General Arrangement;
- *K5452-80-072: SDD Settling Tanks Inlet and Outlet Pipeworks: Sections and Details;
- *K5452-80-100: SDD Settling Tanks Inlet and Outlet Pipeworks: Sections;
- K5452-80-103: SDD Settling Tanks Junction Box Details: GA, Sections and Reinforcement JBK9A;
- K5452-80-104: SDD Settling Tanks Junction Box Details: Reinforcement Sections, Elevations, and Schedules JBK9A;
- K5452-80-105: SDD Settling Tanks Junction Box Details: GA, Sections and Reinforcement JBK9B;
- K5452-80-106: SDD Settling Tanks Junction Box Details: Reinforcement Sections, Elevations, and Schedules JBK9B;
- K5452-80-107: SDD Settling Tanks Junction Box Details: GA, Sections and Reinforcement JBK10;
- K5452-80-108: SDD Settling Tanks Junction Box Details: Reinforcement Sections, Elevations, and Schedules JBK10;
- K5452-80-109: SDD Settling Tanks Junction Box Details: GA, Sections and Reinforcement JBK11;
- K5452-80-111: SDD Settling Tanks Junction Box Details: Reinforcement Sections, Elevations, and Schedules JBK11;
- K5452-80-112: SDD Settling Tanks Junction Box Details: GA, Sections and Slab Reinforcement JBK12;

- K5452-80-113: SDD Settling Tanks Junction Box Details: Sections and Walls Reinforcement JBK12;
- K5452-80-114: SDD Settling Tanks Junction Box Details: GA, Sections and Slab Reinforcement JBK13;
- K5452-80-115: SDD Settling Tanks Junction Box Details: Sections and Walls Reinforcement JBK13;
- K5452-80-116: SDD Settling Tanks Junction Box Details: GA, Sections and Reinforcement JBK14;
- K5452-80-117: SDD Settling Tanks Junction Box Details: Reinforcement Sections, Elevations, and Schedules JBK14;
- K5452-80-118: SDD Settling Tanks Junction Box Details: Reinforcement Bending Schedules JBK12;
- K5452-80-119: SDD Settling Tanks Junction Box Details: Reinforcement Bending Schedules JBK13;

2 SDD SETTLING TANKS DESIGN

2.1 Overview

The Station Dirty Dams Settling Tanks (SDD ST) are located to the north-west of the main power block, and south-east of the Station Dirty Dams (SDD).

All potentially contaminated water on the Kusile Power Station is managed in a closed system.

The SDD ST consists of two equal capacity concrete basins that clarify contaminated water from the power station terrace before it travels by gravity pipeline to the Station Dirty Dams (SDD). The SDD ST will receive dirty water inflows from the main power station terrace, via the *Black and* Veatch pipeline that terminates at JB 509. At JB 509, *Knight* Piesold continues the pipeline design to the SDD ST and ultimately to the SDD.

The SDD ST general arrangement and typical sections are provided on Drawings K5452-80-035 and K5452-80-036.

2.2 Design Parameters

The SDD ST was designed to meet the following location and capacity requirements:

2.2.1 Location and Size

The SDD ST will receive gravity discharges of dirty water from the power station terrace. The overall site layout dictated an optimal location north-west of the power station terrace, and south-east of the SDD. This position is down-gradient of the power station terrace and in close proximity to the SDD.

The SDD ST terrace is at elevation 1462.5 masl. The two compartments of the settling tank are partially excavated into the natural ground and partially built in a fill terrace. The terrace elevation was carefully planned in conjunction with the inlet and outlet pipe hydraulic requirements. Refer to *Appendix B: Calculation Records* for inlet and outlet pipeworks calculations.

The layout of the SDD ST is shown on K5406-80-035. The structure was designed with the exact same geometrical parameters as the Coal Stockyard Settling Tanks (CSY ST) for consistency and reduced costs in terms of design and construction efforts. Refer to 5452/80/009 Rev1: Coal Stockyard Settling Tanks – Detailed Design Report for reference.

2.2.2 Capacity

Government Notice Regulation 704 specifies that a dirty water system may not spill into a clean water system more than once in 50 years, and that 800 mm freeboard be supplied above the maximum operating level.

The plant terrace hydrology calculations were performed by *Black and Veatch* and yielded a 1:50 year, peak instantaneous storm inflow of 10.8 m^3/s . The SDD ST

hydraulic design, including gate sizing, freeboard checks, and flow velocities was performed based on the *Black and Veatch* hydrology. The calculations are presented in *Appendix B: Calculation Records*.

The SDD ST is designed to pass all of the dirty water runoff from its inflow sources for the 1:50 year, peak instantaneous storm event. The SDD ST is designed with an emergency spillway to accommodate larger events, as indicated in schematic on *Figure 2-2*.

Figure 2-2: SDD ST Operating Levels

The SDD ST is designed with two equal capacity compartments which can each pass 6.55 m^3 /s. The water enters each compartment of the SDD ST via four sluice gates, 1.75 m square (K5452-80-036). Having two compartments allows for occasional maintenance and inspection access (preferably during the dry season) without interrupting the functionality of the structure under normal circumstances.

2.2.3 Operation

Normally the gates to both compartments of the SDD ST will be open, and each compartment will receive half of the total inflow. Except during maintenance, the SDD ST settling chambers will be full at all times due to the presence of the overflow wall at the outlet end of the tanks. A compartment can be emptied by first closing the gates at the entrance, and then installing a submersible pump that discharges to the outlet chamber.

The settling efficiency is at its highest with very low inflows, because the detention time of the impounded water is large. As flow increases towards the design inflow event, the detention time decreases and the particle size that can be settled increases. *Section 2.3* describes the particle size settling calculations.

2.3 Particle Size Settlement Calculations

The particle size settling calculations are based on standard industry theory for viscous fluids. The tank parameters used for calculating particle settling are presented in *Table 2-1*. Note that although the main settling chamber is 125 m long, the effective settling length has been reduced by 10 percent to account for turbulence at the inlet and outlet ends of the tank. This is considered to be a conservative

design approach. The effective width accounts for the average equivalent rectangular shape of the trapezoidal tank.

Figure 2-1 indicates the particle size settling characteristics for various inflow rates to one compartment of the SDD ST, as per the tank geometry presented in *Table 2-1*. These calculations are based on an assumed water temperature of 15°C, a particle specific gravity of 1.5 and a particle shape factor of 0.9. *Appendix B: Calculation Records* contains all the relevant particle settling calculations.

Settling Compartment Parameters					
Effective Width (m)	16.0				
Length (m)	125.0				
Effective Length (m)	112.5				
Depth (m)	2.0				
Length/Width Ratio	7.8				
Storage Volume (m ³)	3987.5				
Cross Sectional Area (m ²)	31.9				

Table 2-1 : Settling Compartment Parameters

Figure 2-3: Particle Size Settled vs. Inflow Rate

2.4 Concrete Works

The SDD ST are required to be fully concrete structures due to the maintenance equipment that will be used to clean the floors. The structures consist of 250 mm thick base and side wall slabs and maintenance access ramps, concrete cantilever end walls, overflow walls, and central dividing wall, and a concrete energy dissipator at the inlet end. The structural reinforcement design is included in *Appendix B: Calculation Records*.

The concrete reinforcing drawings for the SDD ST are K5452-80-

2.5 Geotechnical Conditions

The SDD ST will be excavated into a terrace built primarily above the natural ground level. However, in some areas, the floor of the tank will be below natural ground level.

The geotechnical information supplied by Partridge Maud and Associates, report reference number 1-6/07 entitled *Project Bravo - Report on Geotechnical Investigations Undertaken at the Power Station Site* indicates the overall geotechnical conditions of the plant site.

It is anticipated that poor geotechnical conditions could be encountered in the area of the SDD ST. This could include organic material underlain by saturated decomposed diabase.

Foundation preparations will depend on the geotechnical conditions encountered, and will likely include the complete removal of organics and decomposed diabase in the vicinity of the SDD ST, down to refusal on competent bedrock, or a minimum bearing capacity of 300 kPa. Selected backfill will then be placed in 200 mm lifts and compacted to 96% Mod. AASHTO.

The possibility of a high water table necessitates the installation of groundwater finger drains beneath the concrete to prevent possible uplift forces. The configuration of the groundwater finger drains is shown on K5452-80-035.

The drains will be formed by excavating a 500 mm deep, trapezoidal trench. A 160 mm diameter HDPE flexible slotted drainage pipe (Drainex or similar approved) will be installed, the trench filled with 19 mm washed stone and the pipe and stone wrapped in a non-woven needled punched geofabric (Bidim A4 or similar approved) with a minimum overlap of 300 mm. (Refer to K5452-80-023 for details). The drains will conform to the bottom slope of the SDD ST. Where the drains exit from beneath the footprint of the structure, the perforated pipe will change to an un-perforated 160 mm OD PVC-U class 12 outlet pipe. The outlet pipe will daylight to a groundwater finger drain outlet structure at a 1 percent grade. Refer to Drawing K5452-80-033 for the finger drain outlet structure details.

2.6 Inlet Details

Inflow to the SDD ST will be through one 1,950 mm ND Class 100D concrete pipe (Rocla or similar), as indicated on Drawing K5452-80-071. The inflow will impact an energy dissipator that prevents damage to the SDD ST. The energy dissipator has been sized to handle the 1:50 year, design instantaneous inflow of 10.8 m³/s. The energy dissipator is detailed on Drawing K5452-80-038.

2.7 Oil/Water Separation

At the end of the settling chambers of the SDD ST, water spills over a wall and into the oil/water separation chamber. A Drizit TPCS300 oil/water separator with floating weir skimmer and process pump (or equally approved equipment) will extract oils and other floating contaminants before the water exits the chamber through a submerged 4m x 1m opening.

2.8 Outlet Details

At the north end of the SDD ST, the water spills over a wall and into the outlet chamber. The outlet chamber has a 1950 ND Class 100D Rocla (or similar) outlet pipe that is the start of the long pipeline to the SDD. Drawing K5452-80-039 details the outlet configuration.

2.9 Emergency Spillway

A 5 m wide, 500 mm deep trapezoidal spillway is provided at the west side of the SDD ST to protect the SDD ST terrace in flood events that exceed the 1:50 year, instantaneous discharge event. The spillway is detailed on Drawing K5452-80-037.

2.10 Inlet and Outlet Pipes and Junction Boxes

Drawings K5452-50-071, K5452-80-072, and K5452-80-100 show the arrangement and details for the inlet and outlet pipes of the SDD ST and the SDD. Dirty water inlet pipes have been designed with a minimum of 2% gradient when possible to ensure they are self cleaning of sludge or grit that may be in the water. In some instances, pipe battery limits and required invert levels along the pipeline required a shallower gradient. Calculations for pipe capacities are included in *Appendix B: Calculation Records*.

Drawings K5452-80-103 through K5452-80-119 (except drawing K5452-80-110) detail the junction boxes along the inlet and outlet pipelines of the SDD and SDD ST. The structural reinforcement design calculations are included in Appendix B: Calculation Records.

2.11 Perimeter Access Road

The SDD ST perimeter access roads will be 5 m wide. The road layer works will comprise a base, sub-base and wearing course layers. The layer specifications are summarised in Table 2-1.

Layer name	Thickness (mm)	Туре
Base	150	G3
Upper Sub-Base	150	G4
Lower Sub-Base	150	G7
Upper Selected	150	G9
Lower Selected/Sub-Grade	150	G10

Table 2-2: Access Road Layer Specifications

2.12 Construction

All construction activities are to comply with the terms of SANS 1200, Standard Specifications for Civil Engineering Construction. Particular attention to the foundation preparation (removal of organics and weathered diabase, compaction of selected granular backfill) must be paid in order to ensure the stability of the structure.

3 REFERENCES

- 1. National Water Act, 1998.
- 2. Government Notice No.704, Regulations on use of water for mining and related activities aimed at the protection of water resources, in terms of the National Water Act (Act 36 of 1998)
- 3. Project Bravo Report on Geotechnical Investigations undertaken at the Power Station site, No. 1-6/07, Partridge Maude and Associates, March 2008.
- 4. SANS 1200: Standardised Specifications for Civil Engineering Construction
- 5. 5452/80/009 Rev1: Coal Stockyard Settling Tanks Detailed Design Report

4 **DOCUMENT CONTROL SHEET**

CLIENT : ESKOM HOLDINGS LIMITED

PROJECT : KUSILE POWER STATION

PROJECT No: 5452/80

TITLE : STATION DIRTY DAMS - DESIGN REPORT

	Prepared by	Reviewed by	Approved by
ORIGINAL	NAME SREES	NAME JRG WILLIAMSON	D GRANT-STUART
DATE 11 May 2010	SIGNATURE	SIGNATURE	SIGNATURE

	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE

	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE

This report, and information or advice, which it contains, is provided by PANEL B CJV solely for internal use and reliance by its Client in performance of PANEL B CJV duties and liabilities under its contract with the Client. Any advice, opinions, or recommendations within this report should be read and relied upon only in the contract of the report as a whole. The advice and opinions in this report are based upon the information made available to PANEL B CJV at the date of this report and on current SA standards, codes, technology and construction practices as at the date of this report. Following final delivery of this report to the Client, PANEL B CJV will have no further obligations or duty to advise the Client on any matters, including development affecting the information or advice provided in this report. This report has been prepared by PANEL B CJV in their professional capacity as Consulting Engineers. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion. This report is prepared in accordance with the terms and conditions of the PANEL B CJV contract with the Client. Regard should be had to those terms and conditions when considering and/or placing any reliance on this report. Should the Client wish to release this report to a Third Party for that party's reliance, PANEL B CJV may, at its discretion, agree to such release the terms and conditions when considering and/or placing any reliance on this report. provided that:

- (a) (b)
- PANEL B CJV written agreement is obtained prior to such release, and By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against PANEL B CJV and PANEL B CJV, accordingly, assume no duties, liabilities or obligations to that Third Party, and PANEL B CJV acception in the range of the Client of the Client's release of this report to the Third Party.
- (c)

APPENDIX A

DRAWINGS

K5452-80-033: Settling Tanks: Typical Details Sheet 1 of 2;

K5452-80-034: Settling Tanks: Typical Details Sheet 2 of 2;

K5452-80-035: SDD Settling Tanks: General Arrangement;

K5452-80-036: SDD Settling Tanks: Typical Sections and Details;

K5452-80-037: SDD Settling Tanks: Surface Bed Layout and Details;

K5452-80-038: SDD Settling Tanks: Energy Dissipator - GA and Details;

K5452-80-039: SDD Settling Tanks: Outlet – GA and Details;

K5452-80-071: SDD Settling Tanks Inlet and Outlet Pipeworks: General Arrangement;

K5452-80-072: SDD Settling Tanks Inlet and Outlet Pipeworks: Sections and Details;

K5452-80-100: SDD Settling Tanks Inlet and Outlet Pipeworks: Sections;

				02	28.3441	09.9441	24.0441	
				09	20 9991	97 9771	25 9771	
				09	2121441	00.1441	57 3441	
				07	80 7441	90 2 991	88 9771	
				02	2011111	10 2991	20 2771	_
BK13				12.13 20	27.7441 08.7441	02.7441 88.7441	22.7441 22.7441	
نی				01				
1460	1455	1445	1440 DATUM 1435	CHAINAGE	PIPE INVERT	CONCRETE INVERT	BEDDING INVERT	

Image: state				AND OUTLET PREDICING	AND OUTLET FREEKOKK	NON BOX DETAILS	SETTLING TUNK DORS AND DETAILS	SETTING TANK BAL AREANDAT	ION DRITY DAW	ION DRITY DAW	ENCE DRAWINGS	STATION	NKS	•EWORKS		REV C	-	SHEET REV	40 1
Image: constraint of the second sec				102402-90-072 NLC	NE NO-00-034	01452-80-070 JUN	100 000 -00-000 000	02462-90-006 200	KK8-89-022 514	K6462-63-021 22N	REE	WER	TLING TA		CHONS				
Image: constraint of the second sec											S &	50	Ë	2	2	U U	ç		N
Image: constraint of the second sec									Ę	Ę	AUTH BY	ш	8	Ā			ò.		4
Image: constraint of the second sec									5	8	B¥ (3L	S	5		2	ć.		2
Image: constraint of the second sec									ĸv	ĸv	REV BY	S		Ī			ء ف		6.0
Image: constraint of the second sec									T AND AFFROMM.		•• NOISIA	× .			. B CONSULTANTS				
									D FOR COMPANY	D FOR COMPLY	REFERENCE	MON NON			PAND	` • 	2	Q	9
									NUMBER OF COMPANY	ISSUED FOR COMMEN	NDEX REFERENCE	MOM	NBI O		DO DO PAND	8	N N	6	Ð
			 						TOP/OD/LD TOP OF COMPANY	W/09/00 ISSUED FOR COMPLY	DATE NOEX REFERENCE	MOM	N/09/09 N/		7/05/10 D0 PANE	*/09/09 26	4/09/09 KV		9

000							08	12 1991	CA 1941	72 1971
CLASS 1							02	96.I3 4 I	77.1341	6 3.1 3 ≯ 1
1950 ND							09	1462.21	20.2941	48.1341
							90	94. <u>2</u> 941	7462.27	60.2 3 ≯I
							40	17.2941	22.5241	1462.34
							30	96. <u>2</u> 941	77.2941	95.59 4 1
							50	15.2941	20.23 4 1	48. <u>2</u> 941
£	603						01	94.2941	72.2341	60.2 9 41
- <u>+</u> -	_ ä	j L					9.0	1463.70	1463.51	24.5341
8●	9						0	28.2341	99.29 1 1	24.2341
	1470 -	1465	1460	1450	1445	DATUM 1440	CHAINAGE	PIPE INVERT	CONCRETE INVERT	BEDDING INVERT

APPENDIX B

CALCULATION RECORDS

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	ESKOM		Page:	1	of	10			
Project Name:	Kusile P	ower Station	Job No: 303	8-00098/0	6				
Calculation Ti	tle: Hydra	aulic Calculations	: Station Dirty Dam	Settling 7	Fank				
Calculation No	./File No.:								
Calculation is:		Preliminary	⊠ Final						
Objective: Det	ailed hydra	ulic design of the	Station Dirty Dam S	Settling Ta	ank, includir	ng energy			
Dissipators, baf	Dissipators, baffle walls, spillways and sluice gates.								

	Unverified assumptions requiring subsequent verification									
No.	Assumption Verified by Date									
	None									

This section applies to computer generated calculations									
Program Name/Number:	N/A	Version:							
Program Name/Number:	_N/A	Version:							
Evidence of or reference	Evidence of or reference to computer program verification, if applicable:								
Bases or reference there	to supporting application of the compu	iter program to the physical problem:							

	Review and approval									
Rev	Prepared by	Date	Verified by	Date	Approved by	Date				
0	Nicholas Pilz	Mar 10								

PANEL B	Client:	ESKOM			Compute	d by:	Nicholas	Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDDST	Date:		March 20	010	
JOINT	Job no.:	303-00098/06	File no.:		Checked	by:			
VENTURE	Title:	Hydraulic Calculations : St	ation Dirty Dam Sett	tling Tank	Date:				
					Page:	2	of	10	

1. PURPOSE:

To calculate the size of various hydraulic structures involved in Station Dirty Dam settling tanks. The detailed calculations include energy dissipators, the overspill sections, submerged openings and the sizing of the isolating sluice gates.

2. REFERENCES:

		E4E2 00 022		
1.	SETTLING TANKS TYPICAL DETAILS SHEET T	5452-80-033	Rev	
2.	SETTLING TANKS TYPICAL DETAILS SHEET 2	5452-80-034	Rev	
3.	SDD SETTLING TANKS - GENERAL ARRANGEMENT	5452-80-035	Rev	
4.	SDD SETTLING TANKS - TYPICAL SECTIONS & DETAILS	5452-80-036	Rev	
5.	SDD SETTLING TANKS -SURFACE BED LAYOUT & DETAILS	5452-80-037	Rev	
6.	SDD SETTLING TANKS ENERGY DISSIPATOR GA & DETAILS	5452-80-038	Rev	
7.	SDD SETTLING TANKS OUTLET GA & DETAILS	5452-80-039	Rev	
8.	SETTLING TANKS - FLOOR REINFORCING DETAILS SHEET 1	5452-80-061	Rev	
9.	SETTLING TANKS - FLOOR REINFORCING DETAILS SHEET 2	5452-80-062	Rev	
10.	SETTLING TANKS - WALL REINFORCING DETAILS SHEET 1	5452-80-063	Rev	
11.	SETTLING TANKS - TYPICAL REINFORCING DETAILS SHEET 1	5452-80-068	Rev	
12.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS - GA	5452-70-071	Rev	
13.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS - SECTIONS & DETAILS	5452-70-072	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
14.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
<u> 14. </u>	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
<u> 14.</u>	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	
<u> 14.</u>	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452-80-100	Rev	

3. ASSUMPTIONS

Density of water = Acceleration due to gravity = 1000kg/m³ 9.81m/s²

Additional assumptions are listed in the detailed hydraulic calculations, where applicable.

4. HYDRAULIC CALCULATIONS

APPENDICES

Appendix A -Energy Dissipator Design CalculationsAppendix B -Sluice Gate Design

PANEL B	Client:	ESKOM			Computed	by:	Nicholas	Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDDST	Date:		March 2	010	
JOINT	Job no.:	303-00098/06	File no.:		Checked by	y:			
VENTURE	Title:	Hydraulic Calculations : S	Station Dirty Dam Se	ttling Tank	Date:	-			
					Page: 3	3	of	10	

4.1 Calculation title

STATION DIETY DAM SETTLING TI	ANK
DESEGN FLOW = 6.55 m3/5	FUNCTION PROPERLY UP TO
= 3.2.75 m 3/5	PEI TANK
· ANY FLOW GREATER WILL PASS	THROUGH TAUL
· SETTLING FLOW CAPABLE OF PASSIN	1:50 yr 24 & STORM
当 SETTLING TANE DATLET:	Tot or textines
1463.60 10-5 10-5	1
AT (A)	AT (B)
Q. CJ BH 1/2	$1.10^{2} - y_{2} + Q^{2}$ $2_{0}A^{2} - y_{2} + Q^{2}$
5.275 7 1. 704 × 12.930 × 11 74	J. (14/7)
: 11-0.28 m 2 0.30 m	1. 2.64 + 3.275 2 2.59 + 3.275 218789 (0614614)
	i. Ya= 1.05 × 1.00m

PANEL B	Client:	ESKOM			Comput	ed by:	Nicholas	; Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDDST	Date:		March 2	010	
JOINT	Job no.:	303-00098/06	File no.:		Checke	d by:			
VENTURE	Title:	Hydraulic Calculations : S	tation Dirty Dam Set	tling Tank	Date:				
					Page:	4	of	10	_

AT (B)

Assume Ya : 1.5 00 M

: y, + 0.243 ; 2.364 y, 2

. y, = 2.32 m

: TOTAL OF A OPENINGS PER TANK, EACH FITTED WITH SWALE GATE : CRETICAL SCENARED WHEN ALL GATES CLOSED AND 1:50 yr EVENT 1.50 yr FLOOD : 10.78 m³/s (FROM PLANT)

:. TOP OF TEERRIC = 1:5041 FLOOD EVENT + 300 mm FREEBOARD :. OVERSTILL SECTION AT (2) Q = CJ B H^{3/2} :. H. O.90m :. I:5041 FLOOD EEVEL = 1460.60 m + 300 mm FREEBOARD

PANEL B	Client:	ESKOM			Compute	ed by:	Nicholas	; Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDDST	Date:		March 20	010	-
JOINT	Job no.:	303-00098/06	File no.:		Checked	l by:			
VENTURE	Title:	Hydraulic Calculations : S	tation Dirty Dam Set	tling Tank	Date:				_
					Page:	5	of	10	_

APPENDIX A

Energy Dissipator Design Calculations

PANEL B	Client:	ESKOM			Compute	ed by:	Nicholas	Pilz
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY Hydraulics	Date:		Septemb	per 2009
JOINT	Job no.:	303-00098/06	File no.:		Checked	l by:		
VENTURE	Title:	Hydraulic Calculations : Co	al Stock Yard Settlin	ng Tank	Date:			
					Page:	6	of	10

Inlet flow from Plant Terrace

Q =	10.78m ³ /s
Area Culvert 1950Ø =	3.976m ²
v =	2.71m/s
$y_e = (A/2)^{1/2} =$	1.409m
Fr = u / √gL =	0.729
$H_0 = y_e + v^2/2g =$	1.783m

From Figure 8-C-2,

$H_0/W =$	0.4053
W =	4.88m

The energy dissipator has the following dimensions based on Figure 8-C-1 :

h ₁ =	3.70m	w ₂ =	1.00m
L =	6.50m	t ₃ =	0.30m
h ₂ =	1.80m	t ₂ =	0.30m
h ₃ =	0.80m	t ₁ =	0.25m
L ₁ =	2.75m	t ₄ =	0.30m
L ₂ =	3.75m	t ₅ =	0.15m
h ₄ =	2.00m	w ₁ =	0.40m

PANEL B	Client:	ESKOM			Compute	ed by:	Nicholas	Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY Hydraulics	Date:		Septemb	per 2009	
JOINT	Job no.:	303-00098/06	File no.:		Checked	d by:			
VENTURE	Title:	Hydraulic Calculations : Co	al Stock Yard Settlin	ig Tank	Date:				
					Page:	7	of	10	

PANEL B	Client:	ESKOM			Compute	ed by:	Nicholas	Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY Hydraulics	Date:		Septemb	per 2009	
JOINT	Job no.:	303-00098/06	File no.:		Checked	by:			
VENTURE	Title:	Hydraulic Calculations : Co	al Stock Yard Settlin	ig Tank	Date:				_
					Page:	8	of	10	_

APPENDIX B

Sluice Gate Design

PANEL B	Client:	ESKOM			Computed b	y:	Nicholas	s Pilz	
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY Hydraulics	Date:		Februar	y 2009	
JOINT	Job no.:	303-00098/06	File no.:		Checked by	:			
VENTURE	Title:	Hydraulic Calculations : Co	al Stock Yard Settlin	ng Tank	Date:				
					Page:	9	of	10	

Technical	[Item no ; 1.
G.A. Sketch No.		Q-5297 / 1.
Opening width x height (w x h)	mm [1500 x 1500
Invert to top of wall (X)	mm [4400
Max, Unbalanced head on gate (Hm)	_m [2,50
Max. Operating head (Ho)	_m [2,50
Direction of flow		Off-seating
T	F	
Type of Invert		Flush
Spindle type		Rising
Spindle type Spindle diameter	mm	Flush Rising 45
Spindle type Spindle diameter Operating gear	mm	Flush Rising 45 Manual
Spindle type Spindle diameter Operating gear Handwheel diameter	mm mm	Flush Rising 45 Manual 600
Spindle type Spindle diameter Operating gear Handwheel diameter Gearbox ratio (Twin Input)	mm mm	Flush Rising 45 Manual 600 3,5 & 7 : 1
Spindle type Spindle type Spindle diameter Operating gear Handwheel diameter Gearbox ratio (Twin Input) Force to raise gate	mm mm N	Flush Rising 45 Manual 600 3,5 & 7 : 1 92

Materials of construction

Gate and Frame	3CR12
Seals	E.P.D.M.
Podestal / Bracket	3CR12
Wall bracket	3CR12
Spindle	S/S (304)
Spindle guide	BRONZE
Cover tube	PERSPEX
Handwheel	ALUMINIUM
Fasteners and or Anchor bolts	S/S (304)

Wall-mounted Sluice Gate

.

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	ESKOM		Page:	1	of	5
Project Name:	Kusile P	ower Station	Job No: 303	3-00098/06	5	
Calculation Tit	tle: Partic	le Settling Calculation	ons : SDD Settlin	ng Tanks		
Calculation No	./File No.:					
Calculation is:		Preliminary	⊠ Final			
Objective: Par	ticle Settlin	g calculations for the	CSY Settling Ta	anks to qua	intify the size	ze of particle
that can be remo	oved in the	tank.				

	Unverified assumptions requiring subsequent verification						
No.	Assumption	Verified by	Date				
	None						

This section applies to computer generated calculations					
Program Name/Number:	N/A	Version:			
Program Name/Number:	N/A	Version:			
Evidence of or reference	to computer program verification, if ap	pplicable:			
Bases or reference there	to supporting application of the compu	iter program to the physical problem:			

	Review and approval						
Rev	Prepared by	Date	Verified by	Date	Approved by	Date	
0	Scott Rees	Mar 10	JRW	Mar 10			

PANEL B	Client:	ESKOM			Computed	d by:	Scott Re	es
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY ST	Date:		March 2	010
JOINT	Job no.:	303-00098/06	File no.:		Checked	by:	JRW	
VENTURE	Title:	Particle Settling : SDD Set	tling Tanks		Date:		March 2	010
					Page:	2	of	5

1. PURPOSE:

To calculate the size of particle that can be settled for the design inflow rate.

2. REFERENCES:

1.	SDD SETTLING TANKS GENERAL ARRANGEMENT	5452/80/035	Rev	
-				

3. ASSUMPTIONS

Density of water = Acceleration due to gravity = 1000kg/m³ 9.81m/s²

Additional assumptions are listed in the detailed hydraulic calculations, where applicable.

4. HYDRAULIC CALCULATIONS

APPENDICES

None

PANEL B	Client:	ESKOM			Computed	by:	Scott R	ees
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY ST	Date:	-	March 2	2010
JOINT	Job no.:	303-00098/06	File no.:		Checked b	y:	JRW	
VENTURE	Title:	Particle Settling : SDD Set	ttling Tanks		Date:	-	March 2	2010
					Page:	3	of	5

Calculations

Settling Compartment Parameters				
Effective Width (m)	16.0			
Length (m)	125.0			
Effective Length (m)	112.5			
Depth (m)	2.0			
Length/Width Ratio	7.8			
Storage Volume (m ³)	3987.5			
Cross Sectional Area (m ²)	31.9			

• Width is the average rectangular section representing the trapezoidal shape of the settling tank cross section

UNHINDERED PARTICLE SETTLING

Parameters	Variable	Units	Input
Specific Gravity of Solids	Ss	Dimensionless	1.5
Specific Gravity of Fluid	S _f	Dimensionless	1.0
Kinematic Viscosity of Fluid	V	m²/s	1.141E-06
Gravity	g	m/s ²	9.81
Particle Diameter	D	m	9.212E-05
Particle Shape Factor	S _f	Dimensionless	0.90

Terminal Velocity of Settling Particles , V_T

$$V_T = S_f * Y * [V * g * (S_s - S_f)]^{1/3}$$

where

 $Y = 0.0556 * X^2$, if X < 4 (Laminar Flow / Stokes' Law),</td>

 Y = 0.21 * X, if 4 < X < 70 (Transitional Flow / Allen's Law)</td>

 $Y = 1.739 * X^{0.5}$, if X > 70 (Turbulent Flow / Newton's Law)

and

 $X = [(S_s - S_f) * g / v^2]^{1/3} * D$

PANEL B	Client:	ESKOM			Computed by	<i>'</i> :	Scott Re	es	
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY ST	Date:	-	March 2	010	
JOINT	Job no.:	303-00098/06	File no.:		Checked by:	-	JRW		
VENTURE	Title:	Particle Settling : SDD Sett	tling Tanks		Date:	-	March 2	010	
					Page:	4	of	5	

Drag Coefficient, C_D

$\mathbf{c}_{\mathbf{i}} = \mathbf{c}_{\mathbf{i}} \mathbf{c}_{\mathbf{i}}$, in contrast to \mathbf{v}	C _D = 24	/	Re _n ,	if Laminar Flow
---	---------------------	---	-------------------	-----------------

 $C_{D} = 14 / Re_{p}^{0.5}$, if Transitional Flow

 $C_{D} = 0.44$, if Turbulent Flow

TERMINAL SETTLING VELOCITY OF PARTICLES

X =	1.433
Y =	0.114
Y =	0.000
Y =	0.000
Y =	0.114

11	-	
~	_	

m/s

		LAMINAR	
Re =	1.47E-01	SETTLING	

1.83E-03

C_D = 162.86

Impoundment Time (s):	1095.802
Impoundment Time	
(min):	18.26
Impoundment time (hrs):	0.30

Settling Velocity V _T (m/s):	1.83E-03
Time Required to Settle	
Selected Particles (s):	1095.70
Distance Required to Settle Selected Particles (m):	112.49
Required Settling Achieved?	YES

PANEL B	Client:	ESKOM			Computed by	/:	Scott Re	es
CONSULTANTS	Project:	Kusile Power Station	Component:	CSY ST	Date:		March 2	010
JOINT	Job no.:	303-00098/06	File no.:		Checked by:		JRW	
VENTURE	Title:	Particle Settling : SDD Set	tling Tanks		Date:		March 2	010
					Page:	5	of	5
					-			

Figure illustrating particle size settled versus inflow rate to the settling tank (note as inflow rate increases the particle size settled becomes larger, ie. The tank becomes less effective due to shorter retention time)

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	ESKOM		Page:		1	of	28
Project Name:	SDD SET	TLING TANKS	Job No:	K5452	-80-035		
Calculation Title: INLET & OUTLET WALLS							
Calculation No	Calculation No./File No.: K5452-80-035 R2 (REPORT 1 OF 3)						
Calculation is:		Preliminary	🕅 Fina	1			
Objective: Det	ermine conc	rete sizes and require	d reinforce	ment are	eas for UL	S & SL	S on retaining

walls

Unverified assumptions requiring subsequent verification					
No.	Assumption	Verified by	Date		
1	Fluid density – 10kN/m ³	KG	01/08/2009		
2	Soil pressure (see "Annexure A")	KG	01/08/2009		
3	Founding on non-yielding material	KG	01/08/2009		

See page _____ of this calculation for additional assumptions.

This section applies to computer generated calculations					
Program Name/Number:	Autodesk Robot Structural Analysis 2010	Version:	V23.0.1.3128		
Program Name/Number:	Autodesk Revit Structure 2010	Version:	V2010		
Evidence of or reference to computer program verification, if applicable:					
See "Annexure B"					

Bases or reference thereto supporting application of the computer program to the physical problem:

Finite element analysis (FEA) method can be implemented with acceptable standards to South Africa

	Review and approval						
Rev	Prepared by	Date	Verified by	Date	Approved by	Date	
1	C Vorster	01/08/09	AR Gorman PrEng	01/08	K Georgala PrEng	05/08	

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:		KG & ARG	
VENTURE	Title:	SDD SETTLING TANK	-		Date:		01/07/20	09
		Structural design calculations and reports			Page:	2	of	28

1. PURPOSE:

Determination of structure dimensions and required reinforcement under specified load.

2. REFERENCES:

1. Concrete layout drawing	K5452-80-035	Rev	R2
2.		Rev	

3. LOAD CASES AND COMBINATIONS

Load Cases:

- 1. Self Weight
- 2. Soil Pressure

Load Combinations: 10. Self+Soil-ULS 11. Self+Soil-SLS

4. APPLICATIONS:

INLET WALLS: STRUCTURAL MODEL VIEW:

Computed by.	CV	
Date:	01/08/2	009
Checked by:	KG & A	.RG
Date:	01/07/2	009
Page: 3	of	28
	Date: Checked by: Date: Page: 3	Date: 01/08/2 Checked by: KG & A Date: 01/07/2 Page: 3

Note:

A 25mm expansion joint (in walls only), present at gridlines 2 & 3. Concrete sizes & Reinforcement:

-Side walls on gridline A, between gridlines 1-3 & 3-4:

Reinforcement area diagram:

PANEL B	Client:	ESKOM			Computed by	<i>r</i> :	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	-	01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:	-	KG & AR	G
VENTURE	Title:	SDD SETTLING TANK			Date:	-	01/07/20	09
		Structural design calculatio	ns and reports		Page:	5	of	28
VENTURE	Title:	SDD SETTLING TANK Structural design calculatio	ns and reports		Date: Page:	5	01/07/20 of)9 28

-Inlet box walls between gridlines 2 & 3, excluding baffle wall:

Reinforcement area diagram:

Suggested reinforcement:

PANEL B	Client:	ESKOM			Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	_	01/08/20	009
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:	_	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	_	01/07/20	009
		Structural design calculation	ns and reports		Page:	7	of	28

OUTLET WALLS: STRUCTURAL MODEL VIEW:

PANEL B	Client:	ESKOM			Computed by	r:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	-	01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:		KG & AR	G
VENTURE	Title:	SDD SETTLING TANK			Date:	-	01/07/20	09
		Structural design calculatio	ns and reports		Page:	8	of	28

Concrete sizes & Reinforcement:

-Side wall on Eastern side, on gridline E, between gridlines 1 & 2:

EAST OUTLET WALL LOWER PORTION

M			Computed by	<i>'</i> :	CV	
Power Station	Component:	WALLS	Date:		01/08/200	19
80-040	File no.:	5452	Checked by:	_	KG & ARG	
SETTLING TANK	-		Date:	_	01/07/200	19
ural design calculation	ns and reports		Page:	9	of	28
	M Power Station 30-040 ETTLING TANK ural design calculatior	M Power Station Component: 0-040 File no.: ETTLING TANK ral design calculations and reports	M Power Station Component: WALLS 00-040 File no.: 5452 File no.: F	M Computed by Power Station Component: WALLS Date: 10-040 File no.: 5452 Checked by: ETTLING TANK Date: Date: Irral design calculations and reports Page:	M Computed by: Power Station Component: WALLS Date: 00-040 File no.: 5452 Checked by: ETTLING TANK Date: pate: Irral design calculations and reports Page: 9	M Computed by: CV Power Station Component: WALLS Date: 01/08/200 00-040 File no.: 5452 Checked by: KG & ARC ETTLING TANK Date: 01/07/200 01/07/200 Irral design calculations and reports Page: 9 of

EAST OUTLET WALL UPPER PORTION

-Side wall on Western side, on gridline E, between gridlines 4 & 5:

uleu by.	CV	
	01/08/20	09
ed by:	KG & AF	₹G
	01/07/20	09
10	of	28
	(ed by: 	Initial by: OV 01/08/20 01/08/20 ked by: KG & AF 01/07/20 01/07/20

WEST OUTLET WALL

-Outlet back wall, on gridline F, between gridlines 2 & 4:

OUTLET BACK WALL

Client:	ESKOM			Computed b	by:	CV	
Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
Job no.:	5452-80-040	File no.:	5452	Checked by	: .	KG & AR	G
Title:	SDD SETTLING TANK			Date:	-	01/07/20	09
-	Structural design calculation	ns and reports		Page:	11	of	28
	Client: Project: Job no.: Title:	Client: ESKOM Project: Kusile Power Station Job no.: 5452-80-040 Title: SDD SETTLING TANK Structural design calculation	Client: ESKOM Project: Kusile Power Station Component: Job no.: 5452-80-040 File no.: Title: SDD SETTLING TANK Structural design calculations and reports	Client: ESKOM Project: Kusile Power Station Component: WALLS Job no.: 5452-80-040 File no.: 5452 Title: SDD SETTLING TANK Structural design calculations and reports	Client: ESKOM Computed b Project: Kusile Power Station Component: WALLS Date: Job no.: 5452-80-040 File no.: 5452 Checked by Title: SDD SETTLING TANK Date: Date: Structural design calculations and reports Page:	Client: ESKOM Computed by: Project: Kusile Power Station Component: WALLS Date: Job no.: 5452-80-040 File no.: 5452 Checked by: Title: SDD SETTLING TANK Date: Date: Structural design calculations and reports Page: 11	Client: ESKOM Computed by: CV Project: Kusile Power Station Component: WALLS Date: 01/08/20 Job no.: 5452-80-040 File no.: 5452 Checked by: KG & AR Title: SDD SETTLING TANK Date: 01/07/20 Structural design calculations and reports Page: 11 of

-Strap beams between gridline E & F:

STRAP BEAMS

-Inlet wall on gridline E, between gridlines 2 & 4:

PANEL B	Client:	ESKOM			Computed by	<i>r</i> :	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	-	01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:	-	KG & AF	IG
VENTURE	Title:	SDD SETTLING TANK			Date:	-	01/07/20	09
		Structural design calculatio	ins and reports		Page:	12	of	28

-Side walls on gridlines 2 and 4, between gridlines E & F :

SIDE WALLS

PANEL B	Client:	ESKOM			Computed	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	/: _	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		01/07/20	09
		Structural design calculation	ons and reports		Page:	13	of	28

5. PROCEDURE/METHODOLOGY OF DESIGN:

- 5.1 The Robot Retaining wall module has been applied for this analysis
- 5.2 2 Load cases and 2 Load combinations have been analyzed, as indicated in "Annexure A"

6. ASSUMPTIONS:

6.1 Assumptions requiring verification will be listed on the cover sheet

7. DEFINITION OF UNITS AND CONSTANTS:

Refer to "Annexure A"

8. ANALYSIS/SOLUTION: (see body of calculation for analysis and solutions)

Note: Detailed calculations output data to be provided on request.

9. METHOD OF RESULTS GENERATION:

All loads and load combinations are defined as load cases within Robot Structural Analysis, combinations have the addition of factors applied as explained on pages 14-28 of this document, and are governed by ULS or SLS criteria.

The results displayed in this document, represents the worst cases of all possible cases, where each case has been analyzed individually as well as specified in combination cases.

10. APPENDICES TO CALCULATIONS:

10.1 Appendix A – Calculations

10.2 Appendix B – Autodesk Robot Structural Analysis 2010 verification report

PANEL B	Client:	ESKOM			Computed by	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:			RG
VENTURE	Title:	SDD SETTLING TANK			Date:		01/07/20	09
		Structural design calculations and reports			Page:	14	of	28
							_	

APPENDIX A

CALCULATIONS

KOM			Computed by	/:	CV	
sile Power Station	Component:	WALLS	Date:	_	01/08/200)9
52-80-040	File no.:	5452	Checked by:		KG & AR	G
D SETTLING TANK			Date:		01/07/200)9
uctural design calculation	s and reports		Page:	15	of	28
	KOM ile Power Station 2-80-040 D SETTLING TANK ictural design calculation	KOM Component: ile Power Station Component: 2-80-040 File no.: D SETTLING TANK	KOM Component: WALLS 2-80-040 File no.: 5452 D SETTLING TANK inctural design calculations and reports	KOM Computed by ile Power Station Component: WALLS Date: 2-80-040 File no.: 5452 Checked by: D SETTLING TANK Date: Date: uctural design calculations and reports Page:	KOM Computed by: ile Power Station Component: WALLS Date: 2-80-040 File no.: 5452 Checked by: D SETTLING TANK Date: Date: uctural design calculations and reports Page: 15	KOM Computed by: CV ile Power Station Component: WALLS Date: 01/08/200 2-80-040 File no.: 5452 Checked by: KG & ARt D SETTLING TANK Date: 01/07/200 inctural design calculations and reports Page: 15 of

8.1 SDD WALL DESIGN

STRUCTURE VIEW:

CALCULATION NOTE

Code preferences:

- **BS 8110 CONCRETE DESIGN**
- BS8004 / PN-83/B-03010 SOIL CODE
- SABS 1060 CODE COMBINATIONS
- PN-B-03264(2002) RETAINING WALL DESIGN

PANEL B	Client:	ESKOM			Computed	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	-	01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	y:	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	_	01/07/20	09
		Structural design calculatio	ns and reports		Page:	16	of	28

Retaining wall : SIDE WALL

g = 2.000

g = 2.000

g = 2.000

1. Calculation parameters:

MATERIAL:

CONCRETE: class B 30, fck = 30.00 (MN/m2), unit weight = 24.00 (kN/m3) STEEL: class A - III, fyk = 450.00 (MN/m2) • **OPTIONS:** Calculations according to: concrete code: **BS8110** • soil code: **BS8004** Cover: c1 = 50.0 (mm), c2 = 50.0 (mm) . Exposure: X0

- Retainig wall design according to:
- Capacity m = 0.810
- Sliding m = 0.720
- Overturning m = 0.720
- Retaining wall verification according to:
- Average settlement:
 - $S_{dop} = 100.00 \ (mm)$
- Settlement differences:
- $DS_{dop} = 50.00 \ (mm)$
- Reduction factors for:
- Soil cohesion . . 100.000 %
- -Soil frictions 0.000 %
- -Wall passive pressure
- Key passive pressure
- Wall/soil friction angle:
 - Passive pressure for cohesive soils -1/3×¢ • -• -Cohesive soil pressure 1/2×¢ • -Passive pressure for non-cohesive soils -1/3×¢
 - Pressure for non-cohesive soils . .

2. Geometry:

50.000 %

1/2×¢

100.000 %

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	-	01/08/20	009
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	r:	KG & A	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	_	01/07/2	009
		Structural design calculation	ons and reports		Page:	17	of	28

3. <u>Soil:</u>

- Soil parameter selection method: B
- **Backfill** Soil depth (behind the wall) Ho = 3000.00 (mm)
- Original layers:

Description:

:

No.	Soil name	Level [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1.	clayey fine sands	500.00	-	-	-	0.000

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [<i>MN/m2</i>]
1.	67.03	18.00	21.21	29.65	29.65

• Soils (behind the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /IL
1	well graded gravels	500.00	500.00	-	-	0.000

* With respect to the lower right footing point

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	0.00	42.00	21.99	199.50	199.50

• Soils (before the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /IL
1	well graded gravels	5700.00	5700.00	-	-	0.000

* With respect to the lower left footing point

PANEL B	Client:	ESKOM			Computed I	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	: KG & ARC		RG
VENTURE	Title:	SDD SETTLING TANK	-		Date:		01/07/20	09
		Structural design calculations and reports			Page:	18	of	28

Parameters:

Ī	No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [<i>MN/m2</i>]
	1	0.00	42.00	21.99	199.50	199.50

4. <u>Loads</u>

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	usile Power Station Component: WALLS Date: 01				01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:		KG & ARG	
VENTURE	Title:	SDD SETTLING TANK			Date:	e: 0		09
		Structural design calculations and reports			Page:	19	of	28

Load report

5. <u>Results (soils)</u>

PRESSURES

Soil pressure and passive pressure : according to wall displacements Factors for pressures and passive pressures for soils:

Average backfill slope angle ϵ = 0.00 (Deg) Wall inclination angle β = 0.00 (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (\beta - \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 + \sqrt{\frac{\sin(\phi + \delta_{2}) \cdot \sin(\phi - \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{p} = \frac{\cos^{2} \cdot (\beta + \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 - \sqrt{\frac{\sin(\phi - \delta_{2}) \cdot \sin(\phi + \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{o} = \frac{\sigma_{x}}{\sigma_{z}} = \frac{\nu}{1 - \nu}$$
$$K_{a} \le K_{o} \le K_{p}$$

Soils (behind the wall):

No.	Soil name	Level [mm]	Friction angle [Deg]	Ка	Ко	Кр
1.	well graded gravels	500.00	42.00	0.183	0.331	9.569

- Generalized limit displacements
 - passive pressure

pressure 0.013 Soils (before the wall):

•	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр	
1.	well graded gravels	0.00	42.00	0.528	0.691	1.894	
2.	well graded gravels	5700.00	42.00	0.198	0.331	5.045	

- Generalized limit displacements
 - passive pressure
 - pressure 0.012

0.132

0.117

PANEL B	Client:	ESKOM	KOM					CV		
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	· –	01/08/20	009		
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	r:	KG & ARG			
VENTURE	Title:	SDD SETTLING TANK			Date:	_	01/07/20	009		
		Structural design calculations and reports			Page:	20	of	28		

CAPACITY

- Soil type under footing: not layered
- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:

N=-372.82 (kN/m) My=286.76 (kN*m) Fx=213.00 (kN/m)

- Equivalent footing dimension: A = 2467.02 (mm)
- Coefficient of load capacity and influence of load inclination:

 $N_B = 0.745$ $N_C = 11.768$ $N_D = 4.419$ $i_B = 0.059$ $i_C = 0.266$ $i_D = 0.442$

- Soil limit pressure: Qf = 1049.17 (kN/m)
- Safety factor: Qf * m / Nr = 2.279 > 2.000

SETTLEMENT

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W
- Reduced design load:

N=-407.17 (kN/m) My=348.60 (kN*m) Fx=218.72 (kN/m)

- Unit load of total loads: q = 0.10 (MN/m2)
- Thickness of the actively settling soil: z = 3000.00 (mm)
- Stress on the level z:
 additional: szd = 0.01 (MN/m2)
- caused by soil weight: szg = 0.08 (MN/m2)
- Settlement: S = 3.29 (mm) < Sdop = 100.00 (mm)

OVERTURNING

•

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:
 - N=-372.82 (kN/m) My=286.76 (kN*m) Fx=213.00 (kN/m)
 - Overturning moment: Mo= 187.38 (kN*m)
- Moment preventing foundation overturning: M_{uf} = 1311.98 (kN*m)
- Safety factor: $M_{uf} * m / M_0 = 5.041 > 2.000$

SLIDING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:
 - N=-372.82 (kN/m) My=286.76 (kN*m) Fx=213.00 (kN/m)
- Equivalent footing dimension: A = 4250.00 (mm)
- Friction coefficient:
- of soil (on the settlement level):
- Soil cohesion reduction factor = 100.000 %
- Cohesion: C = 7.10 (kN/m2)
- Sliding force value: $Q_{tr} = 213.00 (kN/m)$
- Value of force preventing wall sliding:
- $Q_{tf} = N * \mu + C * A$
- - on the foundation level: $Q_{tf} = 42.91 (kN/m)$
- Safety factor: $Q_{tf} * m / Q_{tr} = 1.768 < 2.000$

 $\mu=0.034$

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	009
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	: _	KG & Al	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		01/07/20	009
		Structural design calculations and reports			Page:	21	of	28

OVERTURNING ANGLES

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W
- Reduced design load:
 - N=-407.17 (kN/m) My=348.60 (kN*m) Fx=218.72 (kN/m)
- Maximum unit stresses from total loads: qmax = 0.20 (MN/m2)
- Minimum unit stresses from total loads: qmin = 0.00 (MN/m2)
- Overturning angle: ro = -0.13 (Deg)
- Coordinates of wall rotation point: X = 237.28 (mm) Z = 0.00 (mm)
- Safety factor: 5.544 > 2.000

6. Results of RC design

Moments

El ement	Moments	Value [kN*m]	Position [mm]	Combination
Wall	maximum	0.00	5700.00	0.900*PM + 1.100*P'a + 0.900*Pa + 1.000*W
Wall	minimum	-268.67	500.00	0.900*PM + 1.100*P'a + 1.320*Pa + 1.000*W
Footing	maximum	24.14	3750.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W
Footing	minimum	-266.58	3250.00	0.900*PM + 1.100*P'a + 1.320*Pa + 1.000*W

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20)09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:	KG & AF	KG & ARG	
VENTURE Title:		SDD SETTLING TANK		Date:	-	01/07/2009		
		Structural design calculations and reports			Page:	22	of	28

Retaining wall : INLET BOX WALLS

g = 2.000

g = 2.000

g = 2.000

1. Calculation parameters:

MATERIAL:

CONCRETE: class B 30, fck = 30.00 (MN/m2), ٠ unit weight = 24.00 (kN/m3) class A - III, fyk = 450.00 (MN/m2) • STEEL: **OPTIONS: BS8110** Calculations according to: concrete code: • soil code: **BS8004**

- Cover: c1 = 50.0 (mm), c2 = 50.0 (mm) •
- Exposure: X0
- Retainig wall design according to: •
- m = 0.810 - Capacity
- Sliding m = 0.720
- Overturning m = 0.720
- Retaining wall verification according to: - Average settlement:
 - $S_{dop} = 100.00 \ (mm)$
- Settlement differences:
 - $DS_{dop} = 50.00 \ (mm)$
 - Reduction factors for:
 - Soil cohesion 100.000 % • -
 - Soil frictions ÷ ... 0.000 %
 - 50.000 % ÷ ... Wall passive pressure 100.000 %
 - Key passive pressure
 - Wall/soil friction angle: ${\bf e}_{i+1}$
 - Passive pressure for cohesive soils -1/3×¢ Cohesive soil pressure 1/2×¢
 - -Passive pressure for non-cohesive soils • •
 - Pressure for non-cohesive soils . .

.

2. Geometry:

-1/3×¢

1/2×¢

PANEL B	Client:	ESKOM			Computed	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20)09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked b	y:	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		01/07/2009	
		Structural design calculations and reports			Page:	23	of	28

3. <u>Soil:</u>

- Soil parameter selection method: B
- **Backfill** Soil depth (behind the wall) Ho = 3000.00 (mm)
- Original layers:

Description:

.

No.	Soil name	Level [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1.	clayey fine sands	500.00	-	-	-	0.000

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1.	67.03	18.00	21.21	29.65	29.65

• Soils (behind the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1	well graded gravels	500.00	500.00	-	-	0.000

* With respect to the lower right footing point

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	0.00	42.00	21.99	199.50	199.50

• Soils (before the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1	well graded gravels	5200.00	5200.00	-	-	0.000

* With respect to the lower left footing point

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	: _	KG & AF	IG
VENTURE Title:		SDD SETTLING TANK		Date:		01/07/2009		
		Structural design calculations and reports			Page:	24	of	28

Param	eters:				
No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	0.00	42.00	21.99	199.50	199.50

4. <u>Loads</u>

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	usile Power Station Component: WALLS Date:				01/08/2009	
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	KG & ARG		
VENTURE	ENTURE Title: SDD SETTLING TANK				Date:		01/07/2009	
		Structural design calculations and reports			Page:	25	of	28

Load report

5. <u>Results (soils)</u>

PRESSURES

Soil pressure and passive pressure : according to wall displacements Factors for pressures and passive pressures for soils:

Average backfill slope angle ϵ = 0.00 (Deg) Wall inclination angle β = 0.00 (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (\beta - \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 + \sqrt{\frac{\sin(\phi + \delta_{2}) \cdot \sin(\phi - \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{p} = \frac{\cos^{2} \cdot (\beta + \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 - \sqrt{\frac{\sin(\phi - \delta_{2}) \cdot \sin(\phi + \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{o} = \frac{\sigma_{x}}{\sigma_{z}} = \frac{\nu}{1 - \nu}$$
$$K_{a} \le K_{o} \le K_{p}$$

Soils (behind the wall):

No.	Soil name	Level [mm]	Friction angle [Deg]	Ка	Ко	Кр
1.	well graded gravels	500.00	42.00	0.183	0.331	9.569

- Generalized limit displacements
 - passive pressure

pressure 0.013 Soils (before the wall):

•	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1.	well graded gravels	0.00	42.00	0.528	0.691	1.894
2.	well graded gravels	5200.00	42.00	0.198	0.331	5.045

- Generalized limit displacements
 - passive pressure
 - pressure 0.012

0.132

0.117

PANEL B	Client:	ESKOM			Computed b	oy:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	· –	01/08/20	009
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by	/: <u> </u>	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	_	01/07/20	009
		Structural design calculations and reports			Page:	26	of	28

CAPACITY

- Soil type under footing: not layered
- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:

N=-288.30 (kN/m) My=171.33 (kN*m) Fx=208.95 (kN/m)

- Equivalent footing dimension: A = 1963.77 (mm)
- Coefficient of load capacity and influence of load inclination:

 $N_B = 0.745$ $N_C = 11.768$ $N_D = 4.419$ $i_B = 0.059$ $i_C = 0.266$ $i_D = 0.442$

- Soil limit pressure: Qf = 816.41 (kN/m)
- Safety factor: Qf * m / Nr = 2.294 > 2.000

SETTLEMENT

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W
- Reduced design load:

N=-311.92 (kN/m) My=205.45 (kN*m) Fx=214.09 (kN/m)

- Unit load of total loads: q = 0.10 (MN/m2)
- Thickness of the actively settling soil: z = 2625.00 (mm)
- Stress on the level z:
 additional: szd = 0.01 (MN/m2)
- caused by soil weight: szg = 0.08 (MN/m2)
- Settlement: S = 2.54 (mm) < Sdop = 100.00 (mm)

OVERTURNING

•

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:
 - N=-288.30 (kN/m) My=171.33 (kN*m) Fx=208.95 (kN/m)
 - Overturning moment: Mo= 152.37 (kN*m)
- Moment preventing foundation overturning: M_{uf} = 878.36 (kN*m)
- Safety factor: $M_{uf} * m / M_0 = 4.150 > 2.000$

SLIDING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:
 - N=-288.30 (kN/m) My=171.33 (kN*m) Fx=208.95 (kN/m)
- Equivalent footing dimension: A = 3500.00 (mm)
- Friction coefficient:

- of soil (on the settlement level):

- Soil cohesion reduction factor = 100.000 %
- Cohesion: C = 8.62 (kN/m2)
- Sliding force value: $Q_{tr} = 208.95 (kN/m)$
- Value of force preventing wall sliding:
- $Q_{tf} = N * \mu + C * A$
- - on the foundation level: $Q_{tf} = 42.13 (kN/m)$
- Safety factor: $Q_{tf} * m / Q_{tr} = 1.895 < 2.000$

 $\mu=0.042$

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:	-	01/08/20	009
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:	:]	KG & A	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	-	01/07/2	009
		Structural design calculations and reports			Page:	27	of	28

OVERTURNING ANGLES

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W
- Reduced design load:
 - N=-311.92 (kN/m) My=205.45 (kN*m) Fx=214.09 (kN/m)
- Maximum unit stresses from total loads: qmax = 0.20 (MN/m2)
- Minimum unit stresses from total loads: qmin = 0.00 (MN/m2)
- Overturning angle: ro = -0.14 (Deg)
- Coordinates of wall rotation point: X = 303.59 (mm) Z = 0.00 (mm)
- Safety factor: 6.368 > 2.000

6. Results of RC design

• Moments

El ement	Moments	Value [kN*m]	Position [mm]	Combination
Wall	maximum	0.00	5200.00	1.100*PM + 0.765*P'a + 1.320*Pa + 1.000*W
Wall	minimum	-197.86	500.00	0.900*PM + 1.100*P'a + 1.320*Pa + 1.000*W
Footing	Footing maximum 22.98		3000.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W
Footing	minimum	-159.20	2500.00	0.900*PM + 1.100*P'a + 1.320*Pa + 1.000*W

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	WALLS	Date:		01/08/20	09
JOINT	Job no.:	5452-80-040	File no.:	5452	Checked by:		KG & ARG	
VENTURE	Title:	SDD SETTLING TANK			Date:		01/07/20	09
		Structural design calculations and reports			Page:	28	of	28

APPENDIX B

AUTODESK ROBOT STRUCTURES 2010 VERIFICATION

CONCRETE

1. BS 9/1/96 - RC columns

VERIFICATION EXAMPLE 1 - Column subjected to axial load and biaxial bending

DESCRIPTION OF THE EXAMPLE:

Following example illustrates the procedure of dimensioning of biaxial bending of column, which is non-sway in one direction, whereas sway in the other. The results of the program are accompanied by the "manual" calculations.

1. SECTION DIMENSIONS

2. MATERIALS

Concrete	: C20	f _{cu} = 20.00 (MPa)
Longitudinal reinforcement	: T	f _y = 460.00 (MPa)
Transversal reinforcement	: R	f _y = 250.00 (MPa)

3. BUCKLING MODEL

As can be seen the sway column is assumed for Z direction, and the non-sway column for Y direction.
4. LOADS

No.	Case	Nature	Group	N (kN)	MyA (kN²m)	MyB (kN²m)	MyC (kN²m)	MzA (kħ²m)	MzB (kN²m)	MzC (kN²m)	Y
1	DL1	dead load	1	400.00	150.00	30.00	102.00	20.00	30.00	50.00	1.40
2	LL1	Live	1	150.00	120.00	30.00	84.00	10.00	20.00	40.00	1.60
*											

NOTE: Let us assume, the moments in Y direction are linearly distributed along the height of the column. Thus, we define only the ends' moments for Y direction. In Z direction however, we assume the mid-height moment is not a result of the linear distribution. For such a case, Robot let the user define the moments in the mid-section explicitly.

5. CALCULATED REINFORCEMENT:

Program generates the reinforcement 14 ϕ 20.

6. RESULTS OF THE SECTION CALCULATIONS:

The dimensioning combination is 1.4DL1+1.6LL1 The dimensioning section (where the most unfavorable set of forces is found) is for that combination the section in the mid-height of the column (marked as (C)).

Intersection			ļ		
Electric Ele	C Accidental				
Description	N (kN)	My (kll'm)	Mz (kN'm)		
1.40DL1+1.60LL1 (A)	800.00	423.33	71.04		
1.40DL1+1.60LL1 (C)	800.00	319.87	161.04		
1.40DL1+1.60LL1 (B)	800.00	111.33	101.04		
1.40DL1 (A)	560.00	224.93	46.93		
1.40DL1 (C)	560.00	560.00 172.67			
1.40DL1 (B)	560.00	56.93	60.93		
1.00DL1+1.60LL1 (A)	640.00	359.07	57.63		
1.00DL1+1.60LL1 (C)	640.00	270.53	135.63		
1.00DL1+1.60LL1 (B)	640.00	95.07	83.63		
1.1.1.1	Rd / Sd MRd / MS	1.00 d 1.00	< 1.05 < 1.05		
	NRd / NS	d 1.00	< 1.76		
••••	Close		Help		

Since the column is found as slender, in both direction the second-order effects are taken into account.

In parallel the other sections (at the ends of the column) are checked for all combinations of loads. All the results of total forces for each combination and each section of the column may be seen in the table "Intersection" at the Column-results layout.

7. CALCULATIONS OF TOTAL MOMENT:

7.1. LOADS

For the dimensioning combination, the loads are:

	Case	N (kN)	MyA (kN*m)	MyB (kN*m)	MyC (kN*m)	MzA (kN*m)	MzB (kN*m)	MzC (kN*m)
1	DL1	400	150	30	102	20	30	50*
2	LL1	150	120	30	84	10	20	40*
Dimensioning combination	1.4DL1+1.6LL1	800	402	90	277.2	44	74	134

,where A, B and C denote upper, lower and mid-height sections of the column respectively.

* - the values are written "by hand" by the user (see point 4 – Loads)

7.2. THE INFLUENCE OF SLENDERNESS

Two independent calculations of the total moment for both directions are carried out.

Slenderness analysis acc. to 3.8.1.3:

 $l_{ey} / h = 13.33 < 15$ (non-sway for Y direction) $l_{ez} / b = 13.0 > 10$ (sway for Z direction)

Since the ratio l_{ez}/b exceeds the limit, the column is found as **slender**.

Y DIRECTION

Calculation of minimum eccentricity e_{min} and minimum moment M_{min} - 3.8.2.4

 $e_{\min} = \min(0.05 \cdot h; 0.02m) = 0.02$ (m) $M_{\min} = N \cdot e_{\min} = 16.0$ (kNm)

Calculation of initial moment M_i – eq. 36

For the mid-height section, we have:

 a_{μ}

 $M_i = 0.4 \cdot M_1 + 0.6 \cdot M_2 = 277.2 \text{ (kNm)} > 0.4 \cdot M_2 = 160.8 \text{ (kNm)}$

Calculation of second-order eccentricity a_u – eq. 32

$$\beta_{a} = \frac{1}{2000} \left(\frac{l_{e}}{h} \right) = 0.088$$

$$K = \min \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}; 1 \right)$$

$$N_{uz} = \frac{2}{3} \frac{f_{cu}}{\gamma_{c}} A_{c} + \frac{f_{y}}{\gamma_{s}} A_{sc} = 4060.18 \text{ (kN)}$$

$$A_{c} = 0.24 \text{ (m}^{2})$$

$$A_{sc} = 43.98 \text{ (cm}^{2})$$

 $N_{bal} =$ 1222.64 (kN) – note that this value is calculated in detail for the state equilibrium in a section. Using the approximated code formula one would obtain $N_{bal} =$ 1173.33 (kN)

$$K = \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}\right) = - \text{ thus, } K = 1 \text{ was assumed}$$

Calculation of second-order moment Madd

 $M_{add} = N \cdot a_u = 42.67 \text{ (kNm)}$

NOTE: The second-order effects in Robot are taken into account dependent upon the section and upon the parameter sway/non sway in a following way:

- in non-sway structures, M_{add} is added for the mid-height section, while 0.5 M_{add} is added for the end sections. Such addition is carried out disregarding the distribution of the first-order moment.
- in sway structures, *M_{add}* is added to each of three sections of column. Such addition is carried out disregarding the distribution of the first-order moment.

The total moment My :

 $M_{v} = M_{i} + M_{add} = 319.87 \text{ (kNm)} > 16.00 \text{ (kNm)} = M_{min}$

Z DIRECTION

Calculation of minimum eccentricity e_{min} and minimum moment M_{min} - 3.8.2.4

$$e_{\min} = \min(0.05 \cdot b; 0.02m) = 0.02 \text{ (m)}$$

 $M_{\min} = N \cdot e_{\min} = 16.0 \text{ (kNm)}$

Calculation of initial moment M_i – eq. 36

For the mid-height section, we have the moment fixed directly by the user:

$$M_i = 134$$
 (kNm)

Calculation of second-order eccentricity a_u – eq. 32

$$a_{u} = \beta_{a}Kh = 0.034 \text{ (m)}$$

$$\beta_{a} = \frac{1}{2000} \left(\frac{l_{e}}{b}\right) = 0.0845$$

$$K = \min\left(\frac{N_{uz} - N}{N_{uz} - N_{bal}};1\right)$$

$$N_{uz} = \frac{2}{3}\frac{f_{cu}}{\gamma_{c}}A_{c} + \frac{f_{y}}{\gamma_{s}}A_{sc} = 4060.18 \text{ (kN)}$$

$$A_{c} = 0.24 \text{ (m}^{2})$$

$$A_{sc} = 43.98 \text{ (cm}^{2})$$

 $N_{\it bal}$ = 1222.64 (kN) – note that this value is calculated in detail for the state equilibrium in a section. Using the approximated code formula one would obtain $N_{\it bal}$ = 1173.33 (kN)

$$K = \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}\right) = - \text{ thus, } K = 1 \text{ was assumed}$$

Calculation of second-order moment Madd

 $M_{add} = N \cdot a_u = 27.04 \text{ (kNm)}$

NOTE: The second-order effects in Robot are taken into account dependent upon the section and upon the parameter sway/non sway in a following way:

• in non-sway structures, M_{add} is added for the mid-height section, while 0.5 M_{add} is added for the end sections. Such addition is carried out disregarding the distribution of the first-order moment.

in sway structures, *M_{add}* is added to each of three sections of column. Such addition is carried out disregarding the distribution of the first-order moment.

The total moment Mz :

 $M_z = M_i + M_{add}$ = 161.04 (kNm) > 16.00 (kNm) = M_{\min}

7.3. FINAL RESULT

*M*_v = 320 (kNm)

*M*_z = 161 (kNm)

8. CONCLUSIONS

The algorithm of calculations of the total moments (i.e. slenderness effects) in non-sway/sway column has been presented. The results obtained with the program (see point 6 - Results of the Section Calculations) are in agreement with the manual calculations (see point 7.3 - Final Result)

LITERATURE

[1] British Standard BS 8110: 1985. Structural use of concrete. British Standard Institution, 1985.

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	ESKOM		Page:		1	of	24
Project Name:	SDD SET	TLING TANK	Job No:	K5452-	-035		
Calculation Tit	le: INTER	RNAL WALLS					
Calculation No	/File No.:	K5452-035 R1d	(REPORT 2	OF 3)			
Calculation is:		Preliminary	🕅 Final	l			
Objective: Det	ermine conc	crete sizes and requ	ired reinforcer	nent are	as for Ul	LS & SL	S on retaining

walls

Unverified assumptions requiring subsequent verification								
No.	Assumption	Verified by	Date					
1	Fluid density – 10kN/m ³	KG	18/06/2009					
2	Soil pressure (see "Annexure A")	KG	18/06/2009					
3	Founding on non-yielding material	KG	18/06/2009					

See page _____ of this calculation for additional assumptions.

This section applies to computer generated calculations							
Program Name/Number:	Autodesk Robot Structural Analysis 2010	Version:	V23.0.1.3128				
Program Name/Number:	Autodesk Revit Structure 2010	Version:	V2010				
Evidence of or refere	ence to computer program verific	ation, if ap	plicable:				
See "Annexure B"							

Bases or reference thereto supporting application of the computer program to the physical problem:

Finite element analysis (FEA) method can be implemented with acceptable standards to South Africa

	Review and approval								
Rev	Prepared by	Date	Verified by	Date	Approved by	Date			
1	C Vorster	18/06/09	AR Gorman PrEng		K Georgala PrEng				

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	': ·	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/20	09
		Structural design calculations and reports			Page:	2	of	24

1. PURPOSE:

Determination of structure dimensions and required reinforcement under specified load.

2. REFERENCES:

1. Concrete layout drawing	K5452-035	Rev	P1
2.		Rev	

3. LOAD CASES AND COMBINATIONS

Load Cases:

- 1. Self Weight
- 2. Water Pressure
- 3. Soil Pressure

Load Combinations:

- 4. ULS
- 5. SLS

4. APPLICATIONS:

KEY PLAN:

PANEL B	Client:	ESKOM			Computed	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked b	y:	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/20	09
		Structural design calculations and reports			Page:	3	of	24

REINFORCING: RETAINING WALL ON GRIDLINE 3: *NOTE: REFER TO APPENDIX A FOR DESIGN CALCULATION (PAGE 10-24)

(cm2/m) REINFORCEMENT AREA DIAGRAM

PANEL B	Client:	ESKOM			Computed	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	y: _	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/20	009
		Structural design calculation	ons and reports		Page:	4	of	24

INTERPRETATION:

The diagram indicates required reinforcement in the retaining wall as follows:

wall from the left: Required reinf. area 144.4 Provided reinf. area Y16 every 250.00 mm =804mm ² – (Vertical)	cm2/m
wall from the left (h/3): Required reinf. area 82.1 Provided reinf. area Y12 every 300.00 mm =377mm ² – (Horizontal)	cm2/m
wall from the left (h/2): Required reinf. area 82.1 Provided reinf. area Y12 every 300.00 mm =377mm ² – (Horizontal)	cm2/m
wall from the right: Required reinf. area 0.00 (Use minimum reinforcement) Provided reinf. area Y16 every 250.00 mm =804mm ² – (Vertical)	cm2/m
footing (+): Required reinf. area 82.1 Provided reinf. area Y12 every 250.00 mm =452mm ² – (Main bars Top & Bot)	cm2/m
footing (-): Required reinf. area 82.1 Provided reinf. area Y12 every 250.00 mm =452mm ² - (Distribution bars Top 8	cm2/m & Bot)

PANEL B	Client:	ESKOM			Computed I	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	/: _	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	_	29/06/20	09
		Structural design calculation	ons and reports		Page:	5	of	24

RETAINING WALL ON GRIDLINES C & D: *NOTE: REFER TO APPENDIX A FOR DESIGN CALCULATION (PAGES 10-24)

REINFORCEMENT AREA DIAGRAM

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:	-	KG & AF	8G
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/20	09
		Structural design calculation	ons and reports		Page:	6	of	24

INTERPRETATION:

wall from	m the left: Required reinf. area 7.14 Provided reinf. area Y16 every 250.00 mm =804mm ² – (Vertical)	cm2/m
wall from	m the left (h/3): Required reinf. area 7.14 Provided reinf. area Y12 every 250.00 mm =452mm ² – (Horizontal)	cm2/m
wall from	m the left (h/2): Required reinf. area 7.14 Provided reinf. area Y12 every 250.00 mm =452mm ² – (Horizontal)	cm2/m
wall from	m the right Required reinf. area 0.00 (Use minimum required reinforcement) Provided reinf. area Y16 every 250.00 mm =804mm ² – (Vertical)	cm2/m
footing	(-): Required reinf. area 8.21 Provided reinf. area Y16 every 250.00 mm =804mm ² m - (Distribution bars Top	cm2/m & Bot)
footing	(+): Required reinf. area 8.21 Provided reinf. area Y16 every 250.00 mm =804mm ² – (Main bars Top & Bot)	cm2/m

PANEL B	Client:	ESKOM			Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/2	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:	-	KG & A	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/2	009
		Structural design calculation	ns and reports		Page:	7	of	24

TYPICAL REINFORCEMENT LAYOUT OF WALL ON GRIDLINE 3:

JOINT LAYOUT:

Provide expansion joints through base of wall on gridline 3 at 40m c/c, and expansion joints at 20m c/c in wall.

PANEL B	Client:	ESKOM			Computed by	<i>'</i> :	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/2	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:	-	KG & A	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/2	009
		Structural design calculation	ns and reports		Page:	8	of	24

5. PROCEDURE/METHODOLOGY OF DESIGN:

- 4.1 The Robot Retaining wall module has been applied for this analysis
- 4.2 3 Load cases and 2 Load combinations have been analyzed, as indicated in "Annexure A"

6. ASSUMPTIONS:

5.1 Assumptions requiring verification will be listed on the cover sheet

7. DEFINITION OF UNITS AND CONSTANTS:

Refer to "Annexure A"

7. ANALYSIS/SOLUTION: (see body of calculation for analysis and solutions)

Note: Detailed calculations output data to be provided on request.

8. METHOD OF RESULTS GENERATION:

All loads and load combinations are defined as load cases within Robot Structural Analysis, combinations have the addition of factors applied as explained on pages 8-24 of this document, and are governed by ULS or SLS criteria.

The results displayed in this document, represents the worst cases of all possible cases, where each case has been analyzed individually as well as specified in combination cases.

9. APPENDICES TO CALCULATIONS:

- 9.1 Appendix A Calculations
- 9.2 Appendix B Autodesk Robot Structural Analysis 2010 verification report

PANEL B	Client:	ESKOM			Computed by	:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:	-	KG & AR	G
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/20	09
		Structural design calculatio		Page:	9	of	24	
					. <u> </u>			

APPENDIX A

CALCULATIONS

PANEL B	Client:	ESKOM			Computed by	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:		KG & AR	G
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/20	09
		Structural design calculation	ons and reports		Page:	10	of	24

7.1.1 SDD SETTLING TANK WALL DESIGN

STRUCTURE VIEW

CALCULATION NOTE

Code preferences:

- BS 8110 and PN-B-03264(2002) Reinforced concrete design
- PN-83/B-03010 Soil Code

PANEL B CONSULTANTS JOINT VENTURE	Client: Project: Job no.: Title:	ESKOM Kusile Power Station 5452/35 SDD SETTLING TANK Structural design calculat	Component: File no.: tions and reports	Internal walls 5452	Computed Date: Checked b Date: Page:	by: y: 11	CV 18/06/2 KG & A 29/06/2 of	009 RG 009 24
1. Calculation	on para	meters for retain	ing wall on	gridline 3:				
MATERIAL: • Unit	CONCF weight = STEEL	RETE: class B 30, f 24.00 (kN/m3) : class	fck = 30.00 (MN s A - IIIN, fyk =	I/m2), 450.00 (MN/m2)	,			
OPTIONS: • Ca soil c • Co • Ex • Re • Cap • Slid • Ove • Re • Ave • Stit • Ove	lculations ode: ver: c1 = posure: λ tainig wa vacity ing m = erturning tainig wa rage sett $S_{dop} = 100$ clement d $DS_{dop} = 5$ I top disp $f_0 = 0.015$ $f_1 = 0.010$ $f_2 = 0.006$	s according to: con PN-83/B-03010 50.0 (mm), c2 = 50.0 (0) Il design according to: m = 0.810 1.000 m = 0.720 Il verification accordin lement: 0.00 (mm) ifferences: 0.00 (mm) lacements: 5	crete code: (mm) : ng to:	PN-B-03264	(2002)		g = g = g =	2.000 2.000 2.000

 $f_3 = 0.004$

Wall/soil friction angle: •

• -	Passive pressure for cohesive soils	-1/3×¢
• -	Cohesive soil pressure	1/2×φ

- Cohesive soil pressure • -
- Passive pressure for non-cohesive soils • --1/3×¢ 1/2×φ
- Pressure for non-cohesive soils • -
- .

•

2. Geometry:

PANEL B	Client:	ESKOM			Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by		KG & Al	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/20	009
		Structural design calculation	ons and reports		Page:	12	of	24

3. <u>Soil:</u>

- Soil parameter selection method: A
- **Backfill** Soil depth (behind the wall) Ho = 3000.00 (mm)
- Original layers:

Description:

•

No.	Soil name	Level [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1.	silty fine sands	500.00	-	-	-	0.000

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1.	67.03	18.00	21.99	29.65	29.65

• Soils (behind the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1	silty fine sands	500.00	500.00	-	-	0.000

* With respect to the lower right footing point

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	67.03	18.00	21.99	29.65	29.65

• Soils (before the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1	poorly graded sands	500.00	500.00	-	-	0.000

* With respect to the lower left footing point

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	:	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK	-		Date:		29/06/20	009
		Structural design calculation	ons and reports		Page:	13	of	24

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [<i>MN/m2</i>]
1	0.00	37.00	19.64	121.82	121.82

4. <u>Loads</u>

Load report

1 concentrated on wall a1 live z = 250.00 (mm)
 -1.00 (kN) M = 0.00 (kN*m)

5. Results (soils)

PRESSURES

•

:

V = 0.00 (kN) H =

PANEL B	Client:	ESKOM			Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:	-	KG & AR	G
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/20	09
	_	Structural design calculation	ns and reports		Page:	14	of	24

Factors for pressures and passive pressures for soils:

Average backfill slope angle $\varepsilon = 0.00$ (Deg) Wall inclination angle $\beta = 0.00$ (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (\beta - \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 + \sqrt{\frac{\sin(\phi + \delta_{2}) \cdot \sin(\phi - \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{p} = \frac{\cos^{2} \cdot (\beta + \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 - \sqrt{\frac{\sin(\phi - \delta_{2}) \cdot \sin(\phi + \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{o} = \frac{\sigma_{x}}{\sigma_{z}} = \frac{\nu}{1 - \nu}$$
$$K_{a} \le K_{o} \le K_{p}$$

Soils (behind the wall):

No.	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1.	silty fine sands	500.00	18.00	0.483	0.691	2.190

Generalized limit displacements •

passive pressure

pressure 0.013 Soils (before the wall):

•	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1.	poorly graded sands	0.00	37.00	0.528	0.691	1.894
2.	poorly graded sands	500.00	37.00	0.249	0.398	4.023
3.	poorly graded sands	4400.00	37.00	1.000	1.000	1.000

Generalized limit displacements .

- passive pressure
 - pressure 0.013

CAPACITY

•

- Soil type under footing: not layered •
- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*C + 1.000*W + 1.300*a1 •
- Reduced design load: •

N=-88.33 (kN/m) My=-6.91 (kN*m) Fx=178.20 (kN/m)

- Equivalent footing dimension: A = 2826.15 (mm)
- Coefficient of load capacity and influence of load inclination: •

N _B = 0.745	i _B = 0.059
N _C = 11.768	i _C = 0.266
N _D = 4.419	$i_{D} = 0.442$

- Soil limit pressure: Qf = 615.99 (kN/m)٠
- Safety factor: Qf * m / Nr = 5.649 > 2.000 •

0.134

0.131

2

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	:	KG & AF	RG
VENTURE	Title:	SDD SETTLING TANK			Date:	_	29/06/20	009
		Structural design calculation	ons and reports		Page:	15	of	24

SETTLEMENT

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*C + 1.000*W + 1.000*a1
- Reduced design load:
 - N=-88.33 (kN/m) My=-5.23 (kN*m) Fx=178.50 (kN/m)
- Unit load of total loads: q = 0.02 (MN/m2)
- Thickness of the actively settling soil: z = 1000.00 (mm)
- Stress on the level z:
- additional: szd = 0.01 (MN/m2)
- caused by soil weight: szg = 0.03 (MN/m2)
- Settlement: S = 0.22 (mm) < Sdop = 100.00 (mm)

OVERTURNING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*C + 1.000*W
- Reduced design load:
 - N=-88.33 (kN/m) My=-1.51 (kN*m) Fx=176.90 (kN/m)
- Overturning moment: Mo= 200.39 (kN*m)
- Moment preventing foundation overturning: M_{uf} = 511.16 (kN*m)
- Safety factor: $M_{uf} * m / M_0 = 1.837 < 2.000$

SLIDING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*C + 1.000*W
- Reduced design load:

N=-88.33 (kN/m) My=-1.51 (kN*m) Fx=176.90 (kN/m)

- Equivalent footing dimension: A = 5000.00 (mm)
- Friction coefficient:
- of soil (on the settlement level):
- Soil cohesion reduction factor = 100.000 %
- Cohesion: C = 60.33 (kN/m2)
- Sliding force value: $Q_{tr} = 176.90 (kN/m)$
- Value of force preventing wall sliding:
- $Q_{tf} = N * \mu + C * A$
- - on the foundation level: $Q_{tf} = 305.06 (kN/m)$
- Safety factor: $Q_{tf} * m / Q_{tr} = 1.725 < 2.000$

SLIDING

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*C + 1.000*W + 1.000*a1
- Thickness of soil cooperating with foundation: z = 2282.84 (mm)
- Wedge length: la = 707.11 (mm)
- Sliding:
 - $f_0 = -21.04 (mm)$ $f_1 = -5.59 (mm)$ $f_2 = -1.57 (mm)$ $f_3 = -13.88 (mm)$
- Safety factor:

3.493 > 1.000

 $\mu = 0.039$

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	:	KG & Al	RG
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/20	009
		Structural design calculation	ons and reports		Page:	16	of	24

OVERTURNING ANGLES

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*C + 1.000*W + 1.000*a1
- Reduced design load:

N=-88.33 (kN/m) My=-5.23 (kN*m) Fx=178.50 (kN/m)

- Maximum unit stresses from total loads: gmax = 0.04 (MN/m2)
- Minimum unit stresses from total loads: qmin = 0.00 (MN/m2)
- Overturning angle: ro = -0.02 (Deg)
- Coordinates of wall rotation point:
 - X = 709.12 (mm)
 - Z = 0.00 (mm)
- Safety factor: 36.280 > 2.000

6. Results of RC design

Moments

(kN*r	n
-------	---

El ement	Moments	Value [kN*m]	Position [mm]	Combination
Wall	maximum	0.00	4650.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.100*C + 1.000*W + 1.300*a1
Wall	minimum	-102.38	500.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.100*C + 1.000*W + 1.300*a1
Footing	maximum	78.43	2700.00	1.100*PM + 0.765*P'a + 0.900*Pa + 0.900*C + 1.000*W + 1.300*a1
Footing	minimum	-31.08	2300.00	0.900*PM + 0.765*P'a + 0.900*Pa + 0.900*C + 1.000*W + 1.300*a1

PANEL B CONSULTANTS JOINT VENTURE	Client: Project: Job no.: Title:	ESKOM Kusile Power S 5452/35 SDD SETTLING Structural desig	tation G TANK yn calculatic	Component: File no.: ons and reports	Internal walls 5452	Computed by: Date: Checked by: Date: Page: <u>17</u>	CV 18/06/2009 KG & ARG 29/06/2009 of 24
1. Calculation	on para	meters for	retaini	ng walls on	gridlines C	<u>& D:</u>	
MATERIAL: • • •	CONCF weight = STEEL:	RETE: class 24.00 (kN/m3	s B 30, fo 3) class	k = 30.00 (MN A - III, fyk = 4	I/m2), 50.00 (MN/m2)		
OPTIONS: • Ca • soil c	lculations	s according to PN-83/B	: conc -03010	rete code:	PN-B-0326	4(2002)	
 Co Ex Re Cap Slid Ove Re Ave Sett I Re 	ver: c1 = posure: X tainig wa acity ing m = 1 rturning tainig wa rage sett $S_{dop} = 100$ lement di $DS_{dop} = 50$ duction fa Soil f Soil f Wall Key passi all/soil fric Pass Cohe Pass	50.0 (mm), c2 (0) II design acco m = 0.81 0.720 m = 0.72 II verification a lement: 0.00 (mm) ifferences: 0.00 (mm) actors for: cohesion frictions passive pressure tion angle: sive pressure f esive soil pressive f	2 = 50.0 (rding to: 0 20 according 100.000 0.000 % sure for cohes sure for non-co	mm) to: % ive soils ohesive soils	50.000 % 100.000 % -1/3×φ 1/2×φ -1/3×φ		g = 2.000 g = 2.000 g = 2.000

1/2×¢

- -Pressure for non-cohesive soils
- •

PANEL B	Client:	ESKOM	ESKOM				CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	09
JOINT	Job no.:	5452/35 File no.:		5452	Checked by:		KG & ARG	
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/2009	
		Structural design calculation	ructural design calculations and reports			18	of	24
		5			<u> </u>			

2. Geometry:

•

3. <u>Soil:</u>

- •
- Soil parameter selection method: B Backfill Soil depth (behind the wall) Ho = 3000.00 (mm) •
- **Original layers:**

Description:

.

.

No.	Soil name	Level [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /IL
1.	clayey fine sands	500.00	-	-	-	0.000

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [<i>MN/m2</i>]
1.	67.03	18.00	21.21	29.65	29.65

PANEL B	Client:	ESKOM			Computed by	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	_	18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:	-	KG & AF	RG
VENTURE Title: SDD SETTLING TANK				Date:		29/06/2009		
		tructural design calculations and reports			Page:	19	of	24

• Soils (behind the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /IL
1	well graded gravels	500.00	500.00	-	-	0.000

* With respect to the lower right footing point

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	0.00	42.00	21.99	199.50	199.50

• Soils (before the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1	well graded gravels	500.00	500.00	-	-	0.000

* With respect to the lower left footing point

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	0.00	42.00	21.99	199.50	199.50

(mm)

PANEL B	Client:	ESKOM	ESKOM				CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	009
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:		KG & ARG	
VENTURE	Title:	SDD SETTLING TANK	-		Date:		29/06/2009	
		Structural design calculation	ructural design calculations and reports			20	of	24

4. Loads

• Load report

.

.

.

.

1 concentrated on wall

a1 live z = 0.00 (mm) H = 1.00 (kN) M = 0.00 (kN*m)

5. <u>Results (soils)</u>

PRESSURES

Soil pressure and passive pressure : according to wall displacements Factors for pressures and passive pressures for soils:

Average backfill slope angle ϵ = 0.00 (Deg) Wall inclination angle β = 0.00 (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (\beta - \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 + \sqrt{\frac{\sin(\phi + \delta_{2}) \cdot \sin(\phi - \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{p} = \frac{\cos^{2} \cdot (\beta + \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 - \sqrt{\frac{\sin(\phi - \delta_{2}) \cdot \sin(\phi + \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{o} = \frac{\sigma_{x}}{\sigma_{z}} = \frac{v}{1 - v}$$
$$K_{a} \le K_{o} \le K_{p}$$

Soils (behind the wall):

No.	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1	wall graded gravale	EUU UU	10 00	0 1 0 0	0 001	0 560

V = 0.00 (kN)

PANEL B	Client:	ESKOM			Computed by	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	009
JOINT	Job no.:	5452/35 File no.: 5452 Checked by:				-	KG & ARG	
VENTURE	Title:	SDD SETTLING TANK	DD SETTLING TANK			-	29/06/20	009
		Structural design calculatio	Page:	21	of	24		

Generalized limit displacements •

passive pressure

pressure 0.013 Soils (before the wall):

•	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1.	well graded gravels	0.00	42.00	0.528	0.691	1.894
2.	well graded gravels	500.00	42.00	0.198	0.331	5.045
3.	well graded gravels	3150.00	42.00	1.000	1.000	1.000

- Generalized limit displacements •
 - passive pressure
 - pressure 0.013

CAPACITY

- Soil type under footing: not layered •
- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W .
- Reduced design load:
 - N=-77.45 (kN/m) My=5.05 (kN*m) Fx=68.94 (kN/m)
- Equivalent footing dimension: A = 4240.24 (mm)•
- Coefficient of load capacity and influence of load inclination: •

N _B = 0.745	i _B = 0.059
N _C = 11.768	i _C = 0.266
N _D = 4.419	i _D = 0.442

- Soil limit pressure: Qf = 953.64 (kN/m)
- Safety factor: Qf * m / Nr = 9.974 > 2.000 •

SETTLEMENT

- Soil type under foundation: not layered •
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W + 1.000*a1 •
- Reduced design load: •
 - N=-77.06 (kN/m) My=9.03 (kN*m) Fx=69.00 (kN/m)
- Unit load of total loads: q = 0.02 (MN/m2) •
- Thickness of the actively settling soil: z = 1000.00 (mm) •
- Stress on the level z: • - additional: szd = -0.00 (MN/m2)
- caused by soil weight: szg = 0.04 (MN/m2)
- Settlement: S = 0.00 (mm) < Sdop = 100.00 (mm)

OVERTURNING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W •
- Reduced design load: •
 - N=-77.45 (kN/m) My=5.05 (kN*m) Fx=68.94 (kN/m)
- Overturning moment: Mo= 139.81 (kN*m) •
- Moment preventing foundation overturning: $M_{uf} = 362.85 (kN^*m)$
- Safety factor: $M_{uf} * m / M_0 = 1.869 < 2.000$ •

0.132

0.131

PANEL B	Client:	ESKOM			Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	09
JOINT	Job no.:	5452/35 File no.: 5452 Checked by:				KG & AF	8G	
VENTURE	Title:	SDD SETTLING TANK			Date:		29/06/20	09
		Structural design calculatio		Page:	22	of	24	

SLIDING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W
- Reduced design load:
 - N=-77.45 (kN/m) My=5.05 (kN*m) Fx=68.94 (kN/m)
- Equivalent footing dimension: A = 5000.00 (mm)
- Friction coefficient:
- of soil (on the settlement level):
- Soil cohesion reduction factor = 100.000 %
- Cohesion: C = 12.05 (kN/m2)
- Sliding force value: $Q_{tr} = 68.94 (kN/m)$
- Value of force preventing wall sliding:
- $Q_{tf} = N * \mu + C * A$
- - on the foundation level: $Q_{tf} = 64.76 (kN/m)$
- Safety factor: $Q_{tf} * m / Q_{tr} = 0.676 < 2.000$

OVERTURNING ANGLES

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W
- Reduced design load:
 - N=-77.07 (kN/m) My=6.33 (kN*m) Fx=69.96 (kN/m)
- Maximum unit stresses from total loads:
 - qmax = 0.02 (MN/m2)
- Minimum unit stresses from total loads: qmin = 0.01 (MN/m2)
- Overturning angle: ro = -0.01 (Deg)
- Coordinates of wall rotation point: X = -3104.26 (mm) Z = 0.00 (mm)
- Safety factor: 109.823 > 2.000

6. Results of RC design

Moments

 $\mu = 0.058$

(kN*m)

PANEL B	Client:	ESKOM			Computed b	by:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:		18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by	r:	KG & AF	۱G
VENTURE	Title:	SDD SETTLING TANK	SDD SETTLING TANK		Date:		29/06/20	09
		Structural design calculation	Page:	23	of	24		

Element	Moments	Value [kN*m]	Position [mm]	Combination
Wall	maximum	0.45	2635.18	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W + 1.300*a1
Wall	minimum	-30.43	500.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W
Footing	maximum	36.77	2700.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W
Footing	minimum	-5.09	2300.00	0.900*PM + 1.100*P'a + 1.320*Pa + 1.000*W

• Reinforcement

(cm2/m)

Position	Required reinf. area [cm2/m]	Bars		Spacing [mm]	Provided reinf. area [cm2/m]
wall from the left	7.14	12.0	every	150.00	7.54
wall from the left (h/3)	7.14	12.0	every	150.00	7.54
wall from the left (h/2)	7.14	12.0	every	150.00	7.54
wall from the right	7.14	12.0	every	150.00	7.54
left footing (+)	8.21	16.0	every	200.00	10.05
left footing (-)	8.21	16.0	every	200.00	10.05
right footing (-)	8.21	16.0	every	200.00	10.05
right footing (+)	0.00	16.0	every	200.00	10.05

PANEL B	Client:	ESKOM			Computed by	/ :	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	Internal walls	Date:	-	18/06/20	09
JOINT	Job no.:	5452/35	File no.:	5452	Checked by:		KG & ARG	
VENTURE	Title:	SDD SETTLING TANK			Date:	-	29/06/20	09
		Structural design calculatio	Page:	24	of	24		

APPENDIX B

AUTODESK ROBOT STRUCTURES 2010 VERIFICATION

CONCRETE

1. BS 9/1/96 - RC columns

VERIFICATION EXAMPLE 1 - Column subjected to axial load and biaxial bending

DESCRIPTION OF THE EXAMPLE:

Following example illustrates the procedure of dimensioning of biaxial bending of column, which is non-sway in one direction, whereas sway in the other. The results of the program are accompanied by the "manual" calculations.

1. SECTION DIMENSIONS

2. MATERIALS

Concrete	: C20	f _{cu} = 20.00 (MPa)
Longitudinal reinforcement	: T	f _y = 460.00 (MPa)
Transversal reinforcement	: R	f _y = 250.00 (MPa)

3. BUCKLING MODEL

As can be seen the sway column is assumed for Z direction, and the non-sway column for Y direction.

4. LOADS

No.	Case	Nature	Group	N (kN)	MyA (kN²m)	MyB (kN²m)	MyC (kN²m)	MzA (kħ²m)	MzB (kN²m)	MzC (kN²m)	Y
1	DL1	dead load	1	400.00	150.00	30.00	102.00	20.00	30.00	50.00	1.40
2	LL1	Live	1	150.00	120.00	30.00	84.00	10.00	20.00	40.00	1.60
*											

NOTE: Let us assume, the moments in Y direction are linearly distributed along the height of the column. Thus, we define only the ends' moments for Y direction. In Z direction however, we assume the mid-height moment is not a result of the linear distribution. For such a case, Robot let the user define the moments in the mid-section explicitly.

5. CALCULATED REINFORCEMENT:

Program generates the reinforcement 14 ϕ 20.

6. RESULTS OF THE SECTION CALCULATIONS:

The dimensioning combination is 1.4DL1+1.6LL1 The dimensioning section (where the most unfavorable set of forces is found) is for that combination the section in the mid-height of the column (marked as (C)).

Intersection			ļ
Electric Ele	C Accidental		
Description	N (kN)	My (kll'm)	Mz (kN'm)
1.40DL1+1.60LL1 (A)	800.00	423.33	71.04
1.40DL1+1.60LL1 (C)	800.00	319.87	161.04
1.40DL1+1.60LL1 (B)	800.00	111.33	101.04
1.40DL1 (A)	560.00	224.93	46.93
1.40DL1 (C)	560.00	172.67	88.93
1.40DL1 (B)	560.00	56.93	60.93
1.00DL1+1.60LL1 (A)	640.00	359.07	57.63
1.00DL1+1.60LL1 (C)	640.00	270.53	135.63
1.00DL1+1.60LL1 (B)	640.00	95.07	83.63
1.1.1.1	Rd / Sd MRd / MS	1.00 d 1.00	< 1.05 < 1.05
	NRd / NS	d 1.00	< 1.76
••••	Close		Help

Since the column is found as slender, in both direction the second-order effects are taken into account.

In parallel the other sections (at the ends of the column) are checked for all combinations of loads. All the results of total forces for each combination and each section of the column may be seen in the table "Intersection" at the Column-results layout.

7. CALCULATIONS OF TOTAL MOMENT:

7.1. LOADS

For the dimensioning combination, the loads are:

	Case	N (kN)	MyA (kN*m)	MyB (kN*m)	MyC (kN*m)	MzA (kN*m)	MzB (kN*m)	MzC (kN*m)
1	DL1	400	150	30	102	20	30	50*
2	LL1	150	120	30	84	10	20	40*
Dimensioning combination	1.4DL1+1.6LL1	800	402	90	277.2	44	74	134

,where A, B and C denote upper, lower and mid-height sections of the column respectively.

* - the values are written "by hand" by the user (see point 4 – Loads)

7.2. THE INFLUENCE OF SLENDERNESS

Two independent calculations of the total moment for both directions are carried out.

Slenderness analysis acc. to 3.8.1.3:

 $l_{ey} / h = 13.33 < 15$ (non-sway for Y direction) $l_{ez} / b = 13.0 > 10$ (sway for Z direction)

Since the ratio l_{ez}/b exceeds the limit, the column is found as **slender**.

Y DIRECTION

Calculation of minimum eccentricity e_{min} and minimum moment M_{min} - 3.8.2.4

 $e_{\min} = \min(0.05 \cdot h; 0.02m) = 0.02$ (m) $M_{\min} = N \cdot e_{\min} = 16.0$ (kNm)

Calculation of initial moment M_i – eq. 36

For the mid-height section, we have:

 a_{μ}

 $M_i = 0.4 \cdot M_1 + 0.6 \cdot M_2 = 277.2 \text{ (kNm)} > 0.4 \cdot M_2 = 160.8 \text{ (kNm)}$

Calculation of second-order eccentricity a_u – eq. 32

$$\beta_{a} = \frac{1}{2000} \left(\frac{l_{e}}{h} \right) = 0.088$$

$$K = \min \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}; 1 \right)$$

$$N_{uz} = \frac{2}{3} \frac{f_{cu}}{\gamma_{c}} A_{c} + \frac{f_{y}}{\gamma_{s}} A_{sc} = 4060.18 \text{ (kN)}$$

$$A_{c} = 0.24 \text{ (m}^{2})$$

$$A_{sc} = 43.98 \text{ (cm}^{2})$$

 $N_{bal} =$ 1222.64 (kN) – note that this value is calculated in detail for the state equilibrium in a section. Using the approximated code formula one would obtain $N_{bal} =$ 1173.33 (kN)

$$K = \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}\right) = - \text{ thus, } K = 1 \text{ was assumed}$$

Calculation of second-order moment Madd

 $M_{add} = N \cdot a_u = 42.67 \text{ (kNm)}$

NOTE: The second-order effects in Robot are taken into account dependent upon the section and upon the parameter sway/non sway in a following way:

- in non-sway structures, M_{add} is added for the mid-height section, while 0.5 M_{add} is added for the end sections. Such addition is carried out disregarding the distribution of the first-order moment.
- in sway structures, *M_{add}* is added to each of three sections of column. Such addition is carried out disregarding the distribution of the first-order moment.

The total moment My :

 $M_{v} = M_{i} + M_{add} = 319.87 \text{ (kNm)} > 16.00 \text{ (kNm)} = M_{min}$

Z DIRECTION

Calculation of minimum eccentricity e_{min} and minimum moment M_{min} - 3.8.2.4

$$e_{\min} = \min(0.05 \cdot b; 0.02m) = 0.02 \text{ (m)}$$

 $M_{\min} = N \cdot e_{\min} = 16.0 \text{ (kNm)}$

Calculation of initial moment M_i – eq. 36

For the mid-height section, we have the moment fixed directly by the user:

$$M_i = 134$$
 (kNm)

Calculation of second-order eccentricity a_u – eq. 32

$$a_{u} = \beta_{a}Kh = 0.034 \text{ (m)}$$

$$\beta_{a} = \frac{1}{2000} \left(\frac{l_{e}}{b}\right) = 0.0845$$

$$K = \min\left(\frac{N_{uz} - N}{N_{uz} - N_{bal}};1\right)$$

$$N_{uz} = \frac{2}{3}\frac{f_{cu}}{\gamma_{c}}A_{c} + \frac{f_{y}}{\gamma_{s}}A_{sc} = 4060.18 \text{ (kN)}$$

$$A_{c} = 0.24 \text{ (m}^{2})$$

$$A_{sc} = 43.98 \text{ (cm}^{2})$$

 $N_{\it bal}$ = 1222.64 (kN) – note that this value is calculated in detail for the state equilibrium in a section. Using the approximated code formula one would obtain $N_{\it bal}$ = 1173.33 (kN)

$$K = \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}\right) = - \text{ thus, } K = 1 \text{ was assumed}$$

Calculation of second-order moment Madd

 $M_{add} = N \cdot a_u = 27.04 \text{ (kNm)}$

NOTE: The second-order effects in Robot are taken into account dependent upon the section and upon the parameter sway/non sway in a following way:

• in non-sway structures, M_{add} is added for the mid-height section, while 0.5 M_{add} is added for the end sections. Such addition is carried out disregarding the distribution of the first-order moment.
in sway structures, *M_{add}* is added to each of three sections of column. Such addition is carried out disregarding the distribution of the first-order moment.

The total moment Mz :

 $M_z = M_i + M_{add}$ = 161.04 (kNm) > 16.00 (kNm) = M_{\min}

7.3. FINAL RESULT

 $M_{v} = 320 \text{ (kNm)}$

*M*_z = 161 (kNm)

8. CONCLUSIONS

The algorithm of calculations of the total moments (i.e. slenderness effects) in non-sway/sway column has been presented. The results obtained with the program (see point 6 - Results of the Section Calculations) are in agreement with the manual calculations (see point 7.3 - Final Result)

LITERATURE

[1] British Standard BS 8110: 1985. Structural use of concrete. British Standard Institution, 1985.

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	ESKOM		Page:	1	of	18
Project Name:	Kusile Po	wer Station	Job No:	K5452-038		
Calculation Tit	le: SDD I	nlet Baffle Wall				
Calculation No	./File No.:	K5452-038 R1b	(REPORT 3 O	F 3)		
Calculation is:		Preliminary	🕅 Final			
Objective: Det	ermine requ	ired reinforcement	t areas for ULS	& SLS		

Unverified assumptions requiring subsequent verification									
No. Assumption Verified by Date									
1	Fluid density – 10kN/m ³	KG	16/07/2009						
2	Soil pressure (see "Annexure A")	KG	16/07/2009						
3	Founding on non-yielding material	KG	16/07/2009						

See page _____ of this calculation for additional assumptions.

This section applies to computer generated calculations									
Program Name/Number:	Autodesk Robot Structural Analysis 2010	Version:	V23.0.1.3128						
Program Name/Number:	Autodesk Revit Structure 2010	Version:	V2010						
Evidence of or refer	ence to computer program verific	_ cation, if ap	plicable:						
See "Annexure B"		-	-						
Bases or reference to physical problem:	thereto supporting application of	the compu	ter program to the						

Review and approval Verified by Approved by Rev Prepared Date Date Date by C Vorster 17/07/09 AR Gorman PrEng 20/07/09 K Georgala PrEng 20/07/2009 1

PANEL B	Client:	ESKOM				Computed by	:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:		16/07/20	09
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:		KG & AF	RG
	Title:	SDD Inlet baffle wall design				Date:		16/07/20	09
		Structural design calculation	ns and reports			Page:	2	of	18

1. PURPOSE:

Determination of structure dimensions and required reinforcement under specified load.

2. REFERENCES:

1. Concrete layout drawing	K5406-038	Rev	P1
2.		Rev	

3. LOAD CASES AND COMBINATIONS

Load Cases:

- 1. Own Weight
- 2. Live load
- 3. Water load

4. APPLICATIONS:

STRUCTURE

PANEL B	Client:	ESKOM				Computed by	r:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/20	09
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:	-	KG & AF	۱G
	Title:	SDD Inlet baffle wall design				Date:	-	16/07/20	09
	-	Structural design calculations and reports			Page:	3	of	18	

Required reinforcement:

Position	Required reinf. area [cm2/m]	Bars		Spacing [mm]	Provided reinf. area [cm2/m]
wall from the left	7.14	10.0	every	100.00	7.85
wall from the left (h/3)	7.14 12.0 every 150.00		7.54		
wall from the left (h/2)	7.14	12.0	every	150.00	7.54
wall from the right	7.14	10.0	every	100.00	7.85
shelf 1 (+)	7.14	10.0	every	100.00	7.85
left footing (-)	8.21	12.0	every	130.00	8.70
right footing (+)	8.21	12.0	every	130.00	8.70
left footing (+)	0.00	12.0	every	130.00	8.70

Note:

Due to openings in the wall, reinforcement is suggested as displayed in figures 1 to 5 as indicated below, with the addition of ground beams for stability of wall.

PANEL B	Client:	ESKOM				Computed by	:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/200)9
JOINT	_			Dam			_		
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:		KG & AR	G
	Title:	SDD Inlet baffle wall design				Date:		16/07/200)9
		Structural design calculation	ns and reports			Page:	4	of	18

			Computed by	:	CV	
wer Station Component:	SDD	Settling	Date:	_	16/07/20)9
	Dam					
File no.:	5452		Checked by:		KG & AR	G
SDD Inlet baffle wall design					16/07/20)9
design calculations and reports			Page:	5	of	18
	wer Station Component: File no.: baffle wall design design calculations and reports	wer Station Component: SDD Dam File no.: 5452 baffle wall design design calculations and reports	wer Station Component: SDD Settling Dam File no.: 5452 baffle wall design design calculations and reports	Component: SDD Settling Date: Dam File no.: 5452 Checked by: baffle wall design Date: Date: design calculations and reports Page:	Wer Station Component: SDD Settling Date: File no.: 5452 Checked by: Date: baffle wall design Date: Date: Date: design calculations and reports Page: 5	Computed by: CV wer Station Component: SDD Settling Date: 16/07/200 Dam File no.: 5452 Checked by: KG & ARi baffle wall design Date: 16/07/200 design calculations and reports Page: 5 of

Figure 2 – Typical section of baffle wall:

SECTION A-A

Figure 3 – Positions of ground beams:

SKOM				Computed by:		CV	
sile Power Station	Component:	SDD	Settling	Date:	_	16/07/200)9
		Dam					
52/38	File no.:	5452		Checked by:		KG & AR	G
SDD Inlet baffle wall design				Date:		16/07/200)9
ructural design calculation	s and reports			Page:	6	of	18
	KOM sile Power Station 52/38 D Inlet baffle wall design uctural design calculation	KOM sile Power Station Component: 52/38 File no.: D Inlet baffle wall design	KOM sile Power Station Component: SDD 52/38 File no.: 5452 D Inlet baffle wall design uctural design calculations and reports	KOM SDD Settling sile Power Station Component: Dam 52/38 File no.: 5452 D Inlet baffle wall design uctural design calculations and reports	KOM Computed by: sile Power Station Component: SDD Settling Date: 52/38 File no.: 5452 Checked by: D Inlet baffle wall design Date: Date: uctural design calculations and reports Page:	KOM Computed by: sile Power Station Component: SDD Settling Dam Dam Date:	KOM Computed by: CV sile Power Station Component: SDD Settling Date: 16/07/200 52/38 File no.: 5452 Checked by: KG & AR D Inlet baffle wall design Date: 16/07/200 uctural design calculations and reports Page: 6 of

PANEL B	Client:	ESKOM				Computed by	:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	_	16/07/20	09
JOINT			_	Dam			_		
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:		KG & AF	RG
	Title:	SDD Inlet baffle wall design	Date:		16/07/20	09			
	-	Structural design calculation	ns and reports			Page:	7	of	18

Figure 4 – Typical sections of ground beams (sizes):

Figure 5 – Typical sections of ground beams (reinforcement layout):

SECTION SHOWING GROUND BEAMS

PANEL B	Client:	ESKOM				Computed by	:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	_	16/07/20	09
JOINT				Dam			_		
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:		KG & AR	G
	Title:	SDD Inlet baffle wall design				Date:		16/07/20	09
		Structural design calculation	ns and reports			Page:	8	of	18

SECTION C-C

PANEL B	Client:	ESKOM				Computed b	y:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:		16/07/20	009
JOINT				Dam	-				
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by	: -	KG & A	RG
	Title:	SDD Inlet baffle wall design	า			Date:		16/07/20	009
		Structural design calculatio	ns and reports			Page:	9	of	18

5. PROCEDURE/METHODOLOGY OF DESIGN:

- 5.1 The finite element design method has been applied for this analysis
- 5.2 3 Load cases and 2 Load combinations have been analyzed, as indicated in "Annexure A"

6. ASSUMPTIONS:

6.1 Assumptions requiring verification will be listed on the cover sheet

7. DEFINITION OF UNITS AND CONSTANTS:

Refer to "Annexure A"

8. ANALYSIS/SOLUTION: (see body of calculation for analysis and solutions)

Note: Detailed calculations output data to be provided on request.

9. METHOD OF RESULTS GENERATION:

All loads and load combinations are defined as load cases within Robot Structural Analysis, combinations have the addition of factors applied as explained on page 9-16 of this document, and are governed by ULS or SLS criteria.

The results displayed in this document, represents the worst cases of all possible cases, where each case has been analyzed individually as well as specified in combination cases.

10. APPENDICES TO CALCULATIONS:

10.1 Appendix A - Calculations

10.2 Appendix B – Autodesk Robot Structural Analysis 2010 verification report

PANEL B	Client:	ESKOM				Computed by	<i>ı</i> :	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/200)9
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:	-	KG & AR	G
	Title:	SDD Inlet baffle wall design	ı			Date:	-	16/07/200)9
		Structural design calculation	ns and reports			Page:	10	of	18

APPENDIX A

CALCULATIONS

PANEL B	Client:	ESKOM				Computed by	<u>':</u>	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	_	16/07/20	09
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:		KG & AR	G
	Title:	SDD Inlet baffle wall design	1			Date:		16/07/20	09
	_	Structural design calculation	ns and reports			Page:	11	of	18

STRUCTURE VIEW

1. Calculation parameters:

MATERIAL:

- CONCRETE: class B 30, fck = 30.00 (MN/m2),
- unit weight = 24.00 (kN/m3)
- STEEL: class A III, fyk = 450.00 (MN/m2)

OPTIONS:

- Calculations according to: concrete code: soil code: **PN-83/B-03010**
- PN-B-03264(2002)

1/2×¢

- Cover: c1 = 50.0 (mm), c2 = 50.0 (mm)
- Exposure: X0
- Retainig wall design according to:
- Capacity m = 0.810
- Sliding m = 0.720
- Overturning m = 0.720
- Retaining wall verification according to:
- Average settlement:
- S_{dop} = 100.00 (mm) - Settlement differences:
- $DS_{dop} = 50.00 \text{ (mm)}$
- Wall/soil friction angle:
 - - Passive pressure for cohesive soils $-1/3 \times \phi$
 - · Cohesive soil pressure
 - Passive pressure for non-cohesive soils $-1/3 \times \phi$
 - \cdot Pressure for non-cohesive soils $1/2{\times}\phi$
- .

PANEL B	Client:	ESKOM				Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/20	09
				Dam			-		
VENIURE	Job no.:	5452/38	File no.:	5452		Checked by:	_	KG & AF	IG
	Title:	SDD Inlet baffle wall design	1			Date:		16/07/20	09
		Structural design calculation	ns and reports			Page:	12	of	18

2. Geometry:

.

.

3. <u>Soil:</u>

- •
- Soil parameter selection method: B Backfill Soil depth (behind the wall) Ho = 6200.00 (mm) •
- **Original layers:**

Description:

•

.

No.	Soil name	Level [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /IL
1.	clayey fine sands	0.00	-	-	-	0.000

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1.	67.03	18.00	21.21	29.65	29.65

PANEL B	Client:	ESKOM				Computed by	:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/20	009
JOINT				Dam			_		
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:	_	KG & AF	RG
	Title:	SDD Inlet baffle wall design	ı			Date:	_	16/07/20	009
		Structural design calculatio	ns and reports			Page:	13	of	18

Soils (behind the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /I _L
1	well graded gravel - sand mixtures	500.00	500.00	-	-	0.000

* With respect to the lower right footing point

Parameters:

	No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [<i>MN/m2</i>]
ſ	1	0.00	38.00	21.99	199.50	199.50

• Soils (before the wall):

Description:

No.	Soil name	Level* [mm]	Thickness [mm]	Consolidation type	Moisture type	I _D /IL
1	well graded gravel - sand mixtures	500.00	500.00	-	-	0.000

* With respect to the lower left footing point

Parameters:

No.	Cohesion [kN/m2]	Friction angle [Deg]	Unit weight [kN/m3]	M [MN/m2]	Mo [MN/m2]
1	0.00	38.00	21.99	199.50	199.50

PANEL B	Client:	ESKOM				Computed I	oy:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:		16/07/20	009
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by	/:	KG & Al	RG
	Title:	SDD Inlet baffle wall design	n			Date:		16/07/20	009
		Structural design calculation	ons and reports			Page:	14	of	18

4. <u>Loads</u>

Load report

· 1 distributed

· a1 live x1 = 0.00 (m) -3.00 (kN/m2) x2 = 1.00 (m) P =

5. <u>Results (soils)</u>

PRESSURES

.

.

Soil pressure and passive pressure : static Factors for pressures and passive pressures for soils:

Average backfill slope angle ϵ = 0.00 (Deg) Wall inclination angle β = 0.00 (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (\beta - \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 + \sqrt{\frac{\sin(\phi + \delta_{2}) \cdot \sin(\phi - \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{p} = \frac{\cos^{2} \cdot (\beta + \phi)}{\cos^{2} \beta \cdot \cos(\beta + \delta_{2}) \cdot \left(1 - \sqrt{\frac{\sin(\phi - \delta_{2}) \cdot \sin(\phi + \varepsilon)}{\cos(\beta + \delta_{2}) \cdot \cos(\beta - \varepsilon)}}\right)^{2}}$$
$$K_{o} = \frac{\sigma_{x}}{\sigma_{z}} = \frac{\nu}{1 - \nu}$$
$$K_{a} \le K_{o} \le K_{p}$$

PANEL B	Client:	ESKOM				Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/2	009
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:	-	KG & A	RG
	Title:	SDD Inlet baffle wall design	ı			Date:	-	16/07/2	009
		Structural design calculatio	ns and reports			Page:	15	of	18

Soils (behind the wall):

No.	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1.	well graded gravel - sand mixtures	500.00	38.00	0.238	0.384	4.204
2.		3000.00		1.000	1.000	1.000

• Generalized limit displacements

passive pressure

pressure 0.013 Soils (before the wall):

•	Soil name	Level [mm]	Friction angle [Deg]	Ka	Ко	Кр
1.	well graded gravel - sand mixtures	500.00	38.00	0.217	0.384	7.007

• Generalized limit displacements

passive pressure

pressure 0.013

Simple cases

No.	Case	x (m)	y (m)	Px (kN/m)	Py (kN/m)	Description
1.	PM	0.75	1.66	0.00	-78.48	Self-weight of a retaining wall
2.	P'a	0.00	0.17	1.03	0.23	Soil pressure (before the wall)
3.	Pa	0.46	0.17	-0.67	0.00	Soil pressure (behind the wall)
4.	W	0.60	1.00	-44.15	7.36	Hydrostatic pressure
5.	a1	0.46	1.61	0.00	0.00	Live load

CAPACITY

- Soil type under footing: not layered
- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W + 1.200*a1
- Reduced design load:

N=-70.93 (kN/m) My=17.44 (kN*m) Fx=-44.07 (kN/m)

- Equivalent footing dimension: A = 286.76 (mm)
- Coefficient of load capacity and influence of load inclination:

N _B = 0.745	i _B = 0.059
N _C = 11.768	i _C = 0.266
N _D = 4.419	$i_{D} = 0.442$

- Soil limit pressure: Qf = 59.67 (kN/m)
- Safety factor: Qf * m / Nr = Qf * m / Nr = 0.682 < 1.000

SETTLEMENT

•

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W + 1.000*a1
- Reduced design load:
 - N=-70.89 (kN/m) My=17.52 (kN*m) Fx=-43.78 (kN/m)
 - Unit load of total loads: q = 0.16 (MN/m2)
- Thickness of the actively settling soil: z = 3000.00 (mm)
- Stress on the level z:
- additional: szd = 0.01 (MN/m2)
- caused by soil weight: szg = 0.06 (MN/m2)

0.132

0.132

PANEL B	Client:	ESKOM				Computed by	<i>'</i> :	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/20	09
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:	-	KG & AF	8G
	Title:	SDD Inlet baffle wall design	1			Date:		16/07/20	09
		Structural design calculation	ns and reports			Page:	16	of	18

• Settlement: S = 5.04 (mm) < Sdop = 100.00 (mm)

OVERTURNING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W + 1.200*a1
- Reduced design load:
 - N=-70.93 (kN/m) My=17.44 (kN*m) Fx=-44.07 (kN/m)
- Overturning moment: Mo= 66.35 (kN*m)
- Moment preventing foundation overturning: M_{uf} = 76.52 (kN*m)
- Safety factor: $M_{uf} * m / M_0 = 0.830 < 1.000$

SLIDING

- Design combination: 1.000*PM + 0.850*P'a + 1.200*Pa + 1.000*W + 1.200*a1
- Reduced design load:
 - N=-70.93 (kN/m) My=17.44 (kN*m) Fx=-44.07 (kN/m)
- Equivalent footing dimension: A = 1500.00 (mm)
- Friction coefficient:
- of soil (on the settlement level):
- Soil cohesion reduction factor = 100.000 %
- Cohesion: C = 60.33 (kN/m2)
- Sliding force value: $Q_{tr} = 44.07 (kN/m)$
- Value of force preventing wall sliding:
- $Q_{tf} = N * \mu + C * A$
- - on the foundation level: $Q_{tf} = 90.49 (kN/m)$
- Safety factor: $Q_{tf} * m / Q_{tr} = 1.479 > 1.000$

OVERTURNING ANGLES

- Soil type under foundation: not layered
- Design combination: 1.000*PM + 1.000*P'a + 1.000*Pa + 1.000*W + 1.000*a1
- Reduced design load:

N=-70.89 (kN/m) My=17.52 (kN*m) Fx=-43.78 (kN/m)

- Maximum unit stresses from total loads: qmax = 0.33 (MN/m2)
- Minimum unit stresses from total loads: qmin = 0.00 (MN/m2)
- Overturning angle: ro = 1.44 (Deg)
- Coordinates of wall rotation point:
 - X = 432.39 (mm)
 - Z = 0.00 (mm)
- Safety factor: 4.600 > 1.000

 $\mu = 0.000$

PANEL B	Client:	ESKOM				Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/200	09
JOINT				Dam			_		
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:		KG & AR	G
	Title:	SDD Inlet baffle wall design	ı			Date:		16/07/200)9
		Structural design calculatio	ns and reports			Page:	17	of	18

6. Results of RC design

• Moments

•

(kN*m)

.

.

El ement	Moments	Value [kN*m]	Position [mm]	Combination
Wall	maximum	22.95	500.00	0.900*PM + 0.765*P'a + 0.900*Pa + 1.000*W + 1.320*a1
Wall	minimum	-3.17	3000.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W + 1.320*a1
Footing	maximum	26.34	500.00	0.900*PM + 0.765*P'a + 1.320*Pa + 1.000*W + 1.320*a1
Footing	minimum	-2.20	900.00	1.100*PM + 1.100*P'a + 1.320*Pa + 1.000*W + 1.320*a1

PANEL B	Client:	ESKOM				Computed by	/:	CV	
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD	Settling	Date:	-	16/07/200)9
JOINT				Dam					
VENTURE	Job no.:	5452/38	File no.:	5452		Checked by:	-	KG & AR	G
	Title:	SDD Inlet baffle wall design	1			Date:	-	16/07/200)9
		Structural design calculation	ns and reports			Page:	18	of	18

APPENDIX B

AUTODESK ROBOT STRUCTURES 2010 VERIFICATION

CONCRETE

1. BS 9/1/96 - RC columns

VERIFICATION EXAMPLE 1 - Column subjected to axial load and biaxial bending

DESCRIPTION OF THE EXAMPLE:

Following example illustrates the procedure of dimensioning of biaxial bending of column, which is non-sway in one direction, whereas sway in the other. The results of the program are accompanied by the "manual" calculations.

1. SECTION DIMENSIONS

2. MATERIALS

Concrete	: C20	f _{cu} = 20.00 (MPa)
Longitudinal reinforcement	: T	f _y = 460.00 (MPa)
Transversal reinforcement	: R	f _y = 250.00 (MPa)

3. BUCKLING MODEL

As can be seen the sway column is assumed for Z direction, and the non-sway column for Y direction.

4. LOADS

No.	Case	Nature	Group	N (kN)	MyA (kN²m)	MyB (kN²m)	MyC (kN²m)	MzA (kħ²m)	MzB (kN²m)	MzC (kN²m)	Y
1	DL1	dead load	1	400.00	150.00	30.00	102.00	20.00	30.00	50.00	1.40
2	LL1	Live	1	150.00	120.00	30.00	84.00	10.00	20.00	40.00	1.60
*											

NOTE: Let us assume, the moments in Y direction are linearly distributed along the height of the column. Thus, we define only the ends' moments for Y direction. In Z direction however, we assume the mid-height moment is not a result of the linear distribution. For such a case, Robot let the user define the moments in the mid-section explicitly.

5. CALCULATED REINFORCEMENT:

Program generates the reinforcement 14 ϕ 20.

6. RESULTS OF THE SECTION CALCULATIONS:

The dimensioning combination is 1.4DL1+1.6LL1 The dimensioning section (where the most unfavorable set of forces is found) is for that combination the section in the mid-height of the column (marked as (C)).

Intersection			ļ
Electric Ele	C Accidental		
Description	N (kN)	My (kll'm)	Mz (kN'm)
1.40DL1+1.60LL1 (A)	800.00	423.33	71.04
1.40DL1+1.60LL1 (C)	800.00	319.87	161.04
1.40DL1+1.60LL1 (B)	800.00	111.33	101.04
1.40DL1 (A)	560.00	224.93	46.93
1.40DL1 (C)	560.00	172.67	88.93
1.40DL1 (B)	560.00	56.93	60.93
1.00DL1+1.60LL1 (A)	640.00	359.07	57.63
1.00DL1+1.60LL1 (C)	640.00	270.53	135.63
1.00DL1+1.60LL1 (B)	640.00	95.07	83.63
1.1.1.1	Rd / Sd MRd / MS	1.00 d 1.00	< 1.05 < 1.05
	NRd / NS	d 1.00	< 1.76
••••	Close		Help

Since the column is found as slender, in both direction the second-order effects are taken into account.

In parallel the other sections (at the ends of the column) are checked for all combinations of loads. All the results of total forces for each combination and each section of the column may be seen in the table "Intersection" at the Column-results layout.

7. CALCULATIONS OF TOTAL MOMENT:

7.1. LOADS

For the dimensioning combination, the loads are:

	Case	N (kN)	MyA (kN*m)	MyB (kN*m)	MyC (kN*m)	MzA (kN*m)	MzB (kN*m)	MzC (kN*m)
1	DL1	400	150	30	102	20	30	50*
2	LL1	150	120	30	84	10	20	40*
Dimensioning combination	1.4DL1+1.6LL1	800	402	90	277.2	44	74	134

,where A, B and C denote upper, lower and mid-height sections of the column respectively.

* - the values are written "by hand" by the user (see point 4 – Loads)

7.2. THE INFLUENCE OF SLENDERNESS

Two independent calculations of the total moment for both directions are carried out.

Slenderness analysis acc. to 3.8.1.3:

 $l_{ey} / h = 13.33 < 15$ (non-sway for Y direction) $l_{ez} / b = 13.0 > 10$ (sway for Z direction)

Since the ratio l_{ez}/b exceeds the limit, the column is found as **slender**.

Y DIRECTION

Calculation of minimum eccentricity e_{min} and minimum moment M_{min}- 3.8.2.4

 $e_{\min} = \min(0.05 \cdot h; 0.02m) = 0.02$ (m) $M_{\min} = N \cdot e_{\min} = 16.0$ (kNm)

Calculation of initial moment M_i – eq. 36

For the mid-height section, we have:

 a_{μ}

 $M_i = 0.4 \cdot M_1 + 0.6 \cdot M_2 = 277.2 \text{ (kNm)} > 0.4 \cdot M_2 = 160.8 \text{ (kNm)}$

Calculation of second-order eccentricity a_u – eq. 32

$$\beta_{a} = \frac{1}{2000} \left(\frac{l_{e}}{h} \right) = 0.088$$

$$K = \min \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}; 1 \right)$$

$$N_{uz} = \frac{2}{3} \frac{f_{cu}}{\gamma_{c}} A_{c} + \frac{f_{y}}{\gamma_{s}} A_{sc} = 4060.18 \text{ (kN)}$$

$$A_{c} = 0.24 \text{ (m}^{2})$$

$$A_{sc} = 43.98 \text{ (cm}^{2})$$

 $N_{bal} =$ 1222.64 (kN) – note that this value is calculated in detail for the state equilibrium in a section. Using the approximated code formula one would obtain $N_{bal} =$ 1173.33 (kN)

$$K = \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}\right) = - \text{ thus, } K = 1 \text{ was assumed}$$

Calculation of second-order moment Madd

 $M_{add} = N \cdot a_u = 42.67 \text{ (kNm)}$

NOTE: The second-order effects in Robot are taken into account dependent upon the section and upon the parameter sway/non sway in a following way:

- in non-sway structures, M_{add} is added for the mid-height section, while 0.5 M_{add} is added for the end sections. Such addition is carried out disregarding the distribution of the first-order moment.
- in sway structures, *M_{add}* is added to each of three sections of column. Such addition is carried out disregarding the distribution of the first-order moment.

The total moment My :

 $M_{v} = M_{i} + M_{add} = 319.87 \text{ (kNm)} > 16.00 \text{ (kNm)} = M_{min}$

Z DIRECTION

Calculation of minimum eccentricity e_{min} and minimum moment M_{min}- 3.8.2.4

$$e_{\min} = \min(0.05 \cdot b; 0.02m) = 0.02 \text{ (m)}$$

 $M_{\min} = N \cdot e_{\min} = 16.0 \text{ (kNm)}$

Calculation of initial moment M_i – eq. 36

For the mid-height section, we have the moment fixed directly by the user:

$$M_i = 134$$
 (kNm)

Calculation of second-order eccentricity a_u – eq. 32

$$a_{u} = \beta_{a}Kh = 0.034 \text{ (m)}$$

$$\beta_{a} = \frac{1}{2000} \left(\frac{l_{e}}{b}\right) = 0.0845$$

$$K = \min\left(\frac{N_{uz} - N}{N_{uz} - N_{bal}};1\right)$$

$$N_{uz} = \frac{2}{3}\frac{f_{cu}}{\gamma_{c}}A_{c} + \frac{f_{y}}{\gamma_{s}}A_{sc} = 4060.18 \text{ (kN)}$$

$$A_{c} = 0.24 \text{ (m}^{2})$$

$$A_{sc} = 43.98 \text{ (cm}^{2})$$

 $N_{\it bal}$ = 1222.64 (kN) – note that this value is calculated in detail for the state equilibrium in a section. Using the approximated code formula one would obtain $N_{\it bal}$ = 1173.33 (kN)

$$K = \left(\frac{N_{uz} - N}{N_{uz} - N_{bal}}\right) = - \text{ thus, } K = 1 \text{ was assumed}$$

Calculation of second-order moment Madd

 $M_{add} = N \cdot a_u = 27.04 \text{ (kNm)}$

NOTE: The second-order effects in Robot are taken into account dependent upon the section and upon the parameter sway/non sway in a following way:

• in non-sway structures, M_{add} is added for the mid-height section, while 0.5 M_{add} is added for the end sections. Such addition is carried out disregarding the distribution of the first-order moment.

in sway structures, *M_{add}* is added to each of three sections of column. Such addition is carried out disregarding the distribution of the first-order moment.

The total moment Mz :

 $M_z = M_i + M_{add}$ = 161.04 (kNm) > 16.00 (kNm) = M_{\min}

7.3. FINAL RESULT

 $M_{v} = 320 \text{ (kNm)}$

*M*_z = 161 (kNm)

8. CONCLUSIONS

The algorithm of calculations of the total moments (i.e. slenderness effects) in non-sway/sway column has been presented. The results obtained with the program (see point 6 - Results of the Section Calculations) are in agreement with the manual calculations (see point 7.3 - Final Result)

LITERATURE

[1] British Standard BS 8110: 1985. Structural use of concrete. British Standard Institution, 1985.

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	ESKOM		Page:	1	of	31
Project Name:	SDD SET	TLING TANKS	Job No:	K5452-80-071		
Calculation Tit	le: Junctio	on Boxes - Typical				
Calculation No	./File No.:	K5452-80-071 R1				
Calculation is:	□Prelimi	nary 🗆 Final				
Objective: Det	ermine requ	ired reinforcement are	eas for ULS	& SLS		

	Unverified assumptions requiring subsequent verification										
No.	Assumption	Verified by	Date								
1	Fluid density – 10kN/m ³	K. Georgala	05/04/2010								
2	Soil pressure (see "Annexure A")	K. Georgala	05/04/2010								
3	Founding on non-yielding material	K. Georgala	05/04/2010								

This section applies to computer generated calculations									
Program Name/Number:	Autodesk Robot Structural Analysis 2010	Version:	V23.0.1.3128						
Program Name/Number:	Autodesk Revit Structure 2010	Version:	V2010						
Evidence of or reference to computer program verification, if applicable: See "Annexure B"									
Bases or reference thereto supporting application of the computer program to the physical problem:									
Finite element analysis (Africa	FEA) method can be implemented	d with acceptal	ble standards to South						

	Review and approval										
Rev	Prepared by	Date	Verified by	Date	Approved by	Date					
1	S. Wilding	03/05/2010	T. Tjia	03/05/2010	K Georgala PrEng	04/05/2010					

PANEL B	Client:	ESKOM			Computed by	/:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	•	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:	ked by: KG		
VENTURE	Title:	SDD Settling Tanks Junctio	SDD Settling Tanks Junction Boxes				04/05/2010	
		Structural design calculations and reports			Page:	2	of	31
JOINT VENTURE	Job no.: K5452-80 File no.: 5 Title: SDD Settling Tanks Junction Boxes 5 Structural design calculations and reports 5			5452-80-071 R1	Checked by: Date: Page:	2	KG 04/05/2 of	2010 31

1. PURPOSE:

Determination of structure dimensions and required reinforcement under specified load

2. REFERENCES:

1. Concrete layout drawing	K5452-80-103 to 109 & 111 to 117
2. Reinforcement detail	K5452-80-103 to 109 & 111 to 117

3. LOAD CASES AND COMBINATIONS:

Load Cases:

- 1. Self Weight
- 2. Soil Pressure
- 3. Soil Water Pressure
- 4. Water Pressure

Load Combinations:

10. Own Weight + Soil Pressure + Soil Water Pressure (ULS) 20. Own Weight + Soil Pressure + Soil Water Pressure (SLS)

4. APPLICATIONS:

STRUCTURE VIEW (SQUARE & RECTANGULAR SHAPED JUNCTION BOXES)

PANEL B	Client:	ESKOM			Computed by	/:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction Boxes			Date:		04/05/2010	
		Structural design calculations and reports			Page:	3	of	31

STRUCTURE VIEW (PENTAGON SHAPED JUNCTION BOXES)

PANEL B	Client:	ESKOM			Computed by	-	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction Boxes			Date:	-	04/05/2	2010
		Structural design calculations and reports			Page:	4	of	31

REINFORCING (SQUARE AND RECTANGULAR SHAPED JUNCTION BOXES):

FRONT FRONT 350.000 64 807 0.000 390.000 390.000 1350.000 390.000 390.000 27.455 390 390.000 390. 1350.000 1350.000 90 000 390.00 5.000 390.000 390.000 .000 1311.33 1311.33 1200.000 390.000 1200.000 120 000 390.0 000 200.000 1200.00 .568 200.000 1200.000 00.000 1200.000 1200.000 -PZ kN -PZ kN 1200.000 1200.000 1451 1350.000 1451.420 1375.000 1250.000 1200 1100.000 1000.000 1270.01 1200 1125.000 900.000 1000.000 1200.000 800.000 875.000 750.000 700 000 0.000 0.000 1200 000 1200.000 600.000 50 000 0 000 1200.000 1200.000 625.000 1200 500.000 390.000 390.000 500.000 400.000 1311.654 4311.654 1200 22.810 000 375.000 300.000 250.000 200.000 390.000 390.000 390.000 100 000 125.000 18.58 1.000 1.000 [-]Amin Main, (mm2/m) [-]Ax Main, (mm2/m)

(Horizontal inside face required reinforcement & minimum reinforcement)

(Horizontal outside face required reinforcement & minimum reinforcement)

PANEL B	Client:	ESKOM	Computed by:		SW			
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	TURE Title: SDD Settling Tanks Junction Boxes				Date:	_	04/05/2	2010
		Structural design calculations and reports			Page:	5	of	31

(Vertical inside face required reinforcement & minimum reinforcement)

(Vertical outside face required reinforcement & minimum reinforcement)

INTERPRETATION:

A reinforcement area of 1340mm²/m will be sufficient to withstand the worst load combination scenario, Self Weight + Soil Pressure in the side walls.

Y16@150mm centre-to-centre = 1340mm²/m.

A reinforcement area of 754mm²/m will be sufficient to withstand the worst load combination scenario, Self Weight + Soil pressure in the top slab. The vertical reinforcement, Y15 @150mm, must act as starter bars of the top face slab reinforcement.

Y12@150mm centre-to-centre = 754mm²/m.

PANEL B	Client:	ESKOM			Computed by	/:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	Date:		04/05/2	2010		
		Structural design calculations and reports			Page:	6	of	31

REINFORCING (PENTAGON SHAPED JUNCTION BOXES):

(Horizontal inside face required reinforcement & minimum reinforcement)

(Horizontal outside face required reinforcement & minimum reinforcement)

PANEL B	Client:	ESKOM	Computed by:		SW			
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	5452-80 File no.: 5452-80-071 R1				KG	
VENTURE	Title:	SDD Settling Tanks Junction	DD Settling Tanks Junction Boxes				04/05/2	2010
		Structural design calculations and reports			Page:	7	of	31

(Vertical inside face required reinforcement & minimum reinforcement)

(Vertical outside face required reinforcement & minimum reinforcement)

INTERPRETATION:

A reinforcement area of 1340mm²/m will be sufficient to withstand the worst load combination scenario, Self Weight + Soil Pressure, in the side walls

Y16@150mm centre-to-centre = 1340mm²/m.

A reinforcement area of 2094mm²/m will be sufficient to withstand the worst load combination scenario, Self Weight + Soil Pressure as the vertical reinforcement on the outside face of the longer wall.

Y20@150mm centre-to-centre = 2094mm²/m.

PANEL B	Client: Project: Job no.:	ESKOM			Computed by:		SW		
CONSULTANTS		Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2010		
JOINT VENTURE		K5452-80	5452-80 File no.: 5452-8		Checked by: Date:		KG		
	Title:	SDD Settling Tanks Junction Boxes					04/05/2010		
		Structural design calculations and reports			Page:	8	of	31	

5. PROCEDURE/METHODOLOGY OF DESIGN:

- 5.1. The finite element design method has been applied for this analysis, as well as mathematical design procedures to SABS 0100, BS 8110 and ACI 318
- 5.2. Four load cases and two load combinations have been analyzed, as indicated in "Annexure A"

6. ASSUMPTIONS:

Assumptions requiring verification will be listed on the cover sheet

7. DEFINITION OF UNITS AND CONSTANTS:

Refer to "Annexure A"

8. ANALYSIS/SOLUTION: (see body of calculation for analysis and solutions) Note: Detailed calculations output data to be provided on request.

9. METHOD OF RESULTS GENERATION:

All loads and load combinations are defined as load cases within Robot Structural Analysis, combinations have the addition of factors applied as explained on page 11 to 21 of this document, and are governed by ULS or SLS criteria.

The results displayed in this document, represents the worst cases of all possible cases, where each case has been analyzed individually as well as specified in combination cases.

10. APPENDICES TO CALCULATIONS:

10.1 Appendix A – Calculations.

10.2 Appendix B – Prokon Structural Analysis verification report – Side walls

10.3 Appendix C – Prokon Structural Analysis verification report – Top slab

PANEL B	Client: Project: Job no.:	ESKOM			Computed by:		SW		
CONSULTANTS		Kusile Power Station	Component:	Junction Boxes	Date: Checked by:		03/05/2010		
JOINT VENTURE		K5452-80	File no.:	5452-80-071 R1			KG		
	Title:	SDD Settling Tanks Junction Boxes			Date:		04/05/2010		
		Structural design calculations and reports			Page:	9	of	31	

APPENDIX A

CALCULATIONS
PANEL B	Client:	ESKOM	Computed by	/:	SW			
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT VENTURE	Job no.: Title:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
		SDD Settling Tanks Junction Boxes			Date:	-	04/05/2	2010
		Structural design calculatio	Page:	10	of	31		

SDD Junction Box Design

SQUARE & RECTANGULAR SHAPED JUNCTION BOXES STRUCTURE VIEW

CALCULATION NOTE

Code preferences:

- BS 8004 Soil Code
- SABS 1060 Code Combinations
- BS 8110 Concrete Design

PANEL B	Client:	ESKOM	Computed by	y:	SW			
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	SDD Settling Tanks Junction Boxes				04/05/2	2010
		Structural design calculations and reports			Page:	11	of	31

Structure centre of gravity coordinates: X = 2.425 (m) Y = 2.425 (m) Z = 3.808 (m)

Structure central moments of inertia: $Lx = 1244524.873 (kg.m^2)$ $Ly = 1226735.499 (kg.m^2)$ $Lz = 660942.734 (kg.m^2)$ Mass = 120248.968 (kg)

LOADS & LOAD COMBINATIONS:

Table of load cases / analysis types

- Case 1 : OWN WEIGHT Analysis type: Static – Linear
- Case 2 : SOIL PRESSURE Analysis type: Static – Linear

PANEL B	Client:	ESKOM			Computed by	:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	_	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	SDD Settling Tanks Junction Boxes			-	04/05/2010	
		Structural design calculatio	Page:	12	of	31		

Case 3 : WATER PRESSURE Analysis type: Static - Linear

Case 4 : LIVE LOAD Analysis type: Static – Linear

PANEL B	Client:	ESKOM			Computed b	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80 File no.:		5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	SDD Settling Tanks Junction Boxes			Date:		2010
		Structural design calculations and reports			Page:	13	of	31

- Case 10 : SELF WEIGHT + SOIL PRESSURE (ULS) Analysis type: Linear combination
- Case 20 : SELF WEIGHT + SOIL PRESSURE (SLS) Analysis type: Linear combination

SOIL PRESSURE

Geometrical data

Soil level (Z)	= 7.1 (m)
Soil inclination (alpha)	= 0.0 (Deg)
Wall inclination (beta)	= 0.0 (Deg)

<u>Soil</u>

Underground water level = 7.10 (m)

Soil layers:

No.	Soil name	Level	Unit weight	Unit weight of solid
		(m)	(kg/m3)	(kg/m3)
1	Well graded gravel - sand mixtures	7.10	2242.58	2702.31

Limit and	d static pressure fac	ctors for so	oil layers taken into a	ccount du	iring calc	ulations:
No.	Soil name	Level	Friction angle	Ka	Ko	Кр
			(m)	(Deg)		

1	well graded gravel - sand mixtures	6.20	38.0	().238	0.384	4.204

Soil pressure and passive pressure:

Limit displacement factor: = 0.00

PANEL B	Client:	ESKOM			Computed b	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	•	03/05/	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	SDD Settling Tanks Junction Boxes				04/05/2	2010
		Structural design calculatio	Page:	14	of	31		

LOADS

Case	Load type	List	Load values
1:DL1	self-weight	1to6	' PZ Negative Factor=1.00
			' PX2=0.00(kN/m2) PX3=118.00(kN/m2) N1X=0.300(m)
			N1Y=4.550(m) N1Z=7.300(m) N2X=0.300(m)
			N2Y=0.300(m) N2Z=7.300(m) N3X=0.300(m)
2:Soil load	(FE) planar		N3Y=0.300(m) N3Z=0.0(m)
			' PY2=118.00(kN/m2) PY3=118.00(kN/m2)
			N1X=0.300(m) N1Y=0.300(m) N1Z=7.300(m)
			N2X=0.300(m) N2Y=0.300(m) N2Z=0.0(m)
2:Soil load	(FE) planar		N3X=4.550(m) N3Y=0.300(m) N3Z=0.0(m)
			' PX2=0.00(kN/m2) PX3=-118.00(kN/m2) N1X=0.300(m)
			N1Y=4.550(m) N1Z=7.300(m) N2X=0.300(m)
			N2Y=0.300(m) N2Z=7.300(m) N3X=0.300(m)
2:Soil load	(FE) planar		N3Y=0.300(m) N3Z=0.0(m)
			' PX2=0.00(kN/m2) PY3=-118.00(kN/m2) N1X=0.300(m)
			N1Y=4.550(m) N1Z=7.300(m) N2X=0.300(m)
			N2Y=0.300(m) N2Z=7.300(m) N3X=0.300(m)
2:Soil load	(FE) planar		N3Y=0.300(m) N3Z=0.0(m)
3:Live Load	(FE) uniform		' PZ=-1.50(kN/m2)
3:Live Load	(FE) uniform	6	' PZ=-1.50(kN/m2)
			' PX1=-128.00(kN/m2) PX2=-128.00(kN/m2)
			N1X=4.550(m) N1Y=0.300(m) N1Z=0.0(m)
			N2X=4.550(m) N2Y=4.550(m) N2Z=0.0(m)
2:Soil load	(FE) planar	5	N3X=4.550(m) N3Y=2.425(m) N3Z=7.865(m)
			' PY1=128.00(kN/m2) PY2=128.00(kN/m2)
			N1X=0.300(m) N1Y=0.300(m) N1Z=0.0(m)
			N2X=4.550(m) N2Y=0.300(m) N2Z=0.0(m)
2:Soil load	(FE) planar	4	N3X=2.425(m) N3Y=0.300(m) N3Z=7.865(m)
			' PX1=128.00(kN/m2) PX2=128.00(kN/m2)
			N1X=0.300(m) N1Y=4.550(m) N1Z=0.0(m)
			N2X=0.300(m) N2Y=0.300(m) N2Z=0.0(m)
2:Soil load	(FE) planar	3	N3X=0.300(m) N3Y=2.425(m) N3Z=7.865(m)
			' PY1=-128.00(kN/m2) PY2=-128.00(kN/m2)
			N1X=4.550(m) N1Y=4.550(m) N1Z=0.0(m)
			N2X=0.300(m) N2Y=4.550(m) N2Z=0.0(m)
2:Soil load	(FE) planar	2	N3X=2.425(m) N3Y=4.550(m) N3Z=7.865(m)
4:Water	(FE) hydrostatic		
Pressure	pressure	25	'GAMMA=10.00(kN/m3) H=7.050(m) NDIR=-Z
4:Water	(FE) hydrostatic		
Pressure	pressure	34	'GAMMA=-10.00(kN/m3) H=7.050(m) NDIR=-Z

COMBINATIONS

Combinations	Name	Analysis type	Combination nature	Case nature	Definition
		Linear			
10 (C)	COMB1	Combination	ULS	dead	1*1.20+(2+3)*1.60
		Linear			
20 (C)	COMB2	Combination	SLS	dead	1*1.10+(2+3)*1.00

PANEL B	Client:	ESKOM			Computed by	/:	SW		
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010	
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	'1 R1 Checked by:		KG		
VENTURE	Title:	SDD Settling Tanks Junction	SDD Settling Tanks Junction Boxes			Date:		04/05/2010	
		Structural design calculatio	Page:	15	of	31			
	-								

STRUCTURAL DIAGRAMS (SQAURE & RECTANGULAR SHAPED JUNCTION BOXES):

PANEL B	Client:	ESKOM			Computed by	/:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:	-	KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:	-	04/05/2	2010
		Structural design calculation	ns and reports		Page:	16	of	31
	-							

REINFORCEMENT PARAMETERS

GENERAL

Concrete as in the structure model Lightweight concrete:	NO
ADDITIONAL INFO	
Reinforcement check (cracking): Maximum cracking value: Exposure:	YES 0.3 mm mild
LONGITUDINAL REINFORCEMENT	
Steel characteristic strength: The same bar diameter in both directions: Diameters of reinforcing bars - Top/along b:	450.00 MPa YES 12 mm to 20 mm
- Bottom/along h: Cover	12 mm to 32 mm
- Clear cover: - To axis:	50 mm to 70 mm 58 mm
TRANSVERSAL REINFORCEMENT	
Steel characteristic strength: Stirrups	450.00 MPa
- Bar diameter: - Number of legs:	12 mm to 20 mm 2
- Number of reinforced. sections: Modularity of spacing:	3 20 mm

For final reinforcement refer to reinforcement detail drawings.

PANEL B	Client:	ESKOM			Computed by	/:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:	-	KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:	-	04/05/2	2010
	-	Structural design calculations and reports			Page:	17	of	31
	-				. <u> </u>			

PENTAGON SHAPED JUNCTION BOXES

STRUCTURE VIEW

CALCULATION NOTE

Code preferences:

- BS 8004 Soil Code
- SABS 1060 Code Combinations
- BS 8110 Concrete Design

PANEL B	Client:	ESKOM			Computed by	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:		04/05/2	2010
		Structural design calculations and reports			Page:	18	of	31
								-

Structure centre of gravity coordinates: X = 3.372 (m) Y = 3.981 (m) Z = 2.967 (m)

Structure central moments of inertia: $Lx = 1964416.926 (kg.m^2)$ $Ly = 1877775.884 (kg.m^2)$ $Lz = 1923736.791 (kg.m^2)$ Mass = 166093.661 (kg)

LOADS & LOAD COMBINATIONS:

Table of load cases / analysis types

- Case 1 : OWN WEIGHT Analysis type: Static – Linear
- Case 2 : SOIL PRESSURE Analysis type: Static – Linear

Case 3 : WATER PRESSURE Analysis type: Static - Linear

PANEL B	Client:	ESKOM			Computed by	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:		04/05/2	2010
		Structural design calculations and reports			Page:	19	of	31

Case 4 : LIVE LOAD

Analysis type: Static - Linear

- Case 10 : SELF WEIGHT + SOIL PRESSURE (ULS) Analysis type: Linear combination
- Case 20 : SELF WEIGHT + SOIL PRESSURE (SLS) Analysis type: Linear combination

SOIL PRESSURE

Geometrical data

Soil level (Z)	= 7.1 (m)
Soil inclination (alpha)	= 0.0 (Deg)
Wall inclination (beta)	= 0.0 (Deg)

<u>Soil</u>

Underground water level = 7.10 (m)

Soil layers:

No.	Soil name	Level	Unit weight	Unit weight of solid
		(m)	(kg/m3)	(kg/m3)
1	Well graded gravel - sand mixtures	7.10	2242.58	2702.31

PANEL B	Client:	ESKOM			Computed by	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:	-	04/05/2	2010
		Structural design calculations and reports			Page:	20	of	31

No.	Soil name	Level	Friction angle (m)	Ka (Deg)	Ко	Кр
1	well graded gravel - sand mixtures	6.20	38.0	0.238	0.384	4.204

Soil pressure and passive pressure:

Limit displacement factor: = 0.00

PANEL B	Client:	ESKOM			Computed b	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:		04/05/2	2010
		Structural design calculatio	Page:	21	of	31		

LOADS

Case	Load type	List	Load values
		2	
1:DL1	self-weight	4to9	' PZ Negative Factor=1.00
2:Soil load	(FE) planar		' PX2=0.00(kN/m2) PX3=-118.00(kN/m2) N1X=0.300(m) N1Y=4.550(m) N1Z=7.300(m) N2X=0.300(m) N2Y=0.300(m) N2Z=7.300(m) N3X=0.300(m) N3Y=0.300(m) N3Z=0.0(m)
3:Live Load	(FE) uniform		' PZ=-1.50(kN/m2)
3:Live Load	(FE) uniform	9	' PZ=-1.50(kN/m2)
2:Soil load	(FE) planar	5	' PX2=0.00(kN/m2) PZ2=101.00(kN/m2) PZ3=101.00(kN/m2) local N1X=0.425(m) N1Y=3.920(m) N1Z=6.275(m) N2X=0.425(m) N2Y=7.414(m) N2Z=0.0(m) N3X=0.425(m) N3Y=0.425(m) N3Z=0.0(m)
2:Soil load	(FE) planar	2	' PZ2=101.00(kN/m2) PZ3=101.00(kN/m2) local N1X=2.582(m) N1Y=0.425(m) N1Z=6.275(m) N2X=0.425(m) N2Y=0.425(m) N2Z=0.0(m) N3X=4.738(m) N3Y=0.425(m) N3Z=0.0(m)
2:Soil load	(FE) planar	7	' PX2=0.00(kN/m2) PZ2=-101.00(kN/m2) PZ3=- 101.00(kN/m2) local N1X=6.224(m) N1Y=6.159(m) N1Z=6.275(m) N2X=7.869(m) N2Y=4.903(m) N2Z=0.0(m) N3X=4.579(m) N3Y=7.414(m) N3Z=0.0(m)
2:Soil load	(FE) planar	4	' PX2=0.00(kN/m2) PZ2=-101.00(kN/m2) PZ3=- 101.00(kN/m2) local N1X=2.502(m) N1Y=7.414(m) N1Z=6.275(m) N2X=4.579(m) N2Y=7.414(m) N2Z=0.0(m) N3X=0.425(m) N3Y=7.414(m) N3Z=0.0(m)
2:Soil load	(FE) planar	6	' PZ2=-101.00(kN/m2) PZ3=-101.00(kN/m2) local N1X=6.303(m) N1Y=2.664(m) N1Z=6.275(m) N2X=4.738(m) N2Y=0.425(m) N2Z=0.0(m) N3X=7.869(m) N3Y=4.903(m) N3Z=0.0(m)
4:Water	(FE) hydrostatic		
Pressure	pressure	9	'GAMMA=10.00(kN/m3) H=6.000(m) NDIR=-Z
4:Water	(FE) hydrostatic		
Pressure	pressure	5	GAMMA=-10.00(kN/m3) H=6.000(m) NDIR=-Z
4.vvater Pressure		2	GAMMA = 10.00(kN/m3) H = 6.000(m) NDIR = 7
4·Water	(FF) hydrostatic	46	
Pressure	pressure	7	' GAMMA=10.00(kN/m3) H=6.000(m) NDIR=-Z
4:Water Pressure	(FE) uniform	8	' PZ=-60.00(kN/m2)

COMBINATIONS

			Combination	Case	
Combinations	Name	Analysis type	nature	nature	Definition
		Linear			
10 (C)	COMB1	Combination	ULS	dead	1*1.20+(2+3)*1.60
		Linear			
20 (C)	COMB2	Combination	SLS	dead	1*1.10+(2+3)*1.00

PANEL B	Client:	ESKOM			Computed by	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	-	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	Date:	Date:		04/05/2010		
		Structural design calculation	Page:	22	of	31		

STRUCTURAL DIAGRAMS (SQAURE & RECTANGULAR SHAPED JUNCTION BOXES):

PANEL B	Client:	ESKOM			Computed by	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	Date:		04/05/2	2010		
		Structural design calculation	Page:	23	of	31		

REINFORCEMENT PARAMETERS

GENERAL

Concrete as in the structure model Lightweight concrete:	NO
ADDITIONAL INFO	
Reinforcement check (cracking): Maximum cracking value: Exposure:	YES 0.3 mm mild
LONGITUDINAL REINFORCEMENT	
Steel characteristic strength: The same bar diameter in both directions: Diameters of reinforcing bars - Top/along b: - Bottom/along h: Cover - Clear cover: - To axis:	450.00 MPa YES 12 mm to 20 mm 12 mm to 32 mm 50 mm to 70 mm 58 mm
TRANSVERSAL REINFORCEMENT	
Steel characteristic strength: Stirrups	450.00 MPa
- Bar diameter: - Number of legs:	12 mm to 20 mm 2
- Number of reinforced. sections: Modularity of spacing:	3 20 mm

For final reinforcement refer to reinforcement detail drawings.

PANEL B	Client:	ESKOM			Computed b	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:	_	03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction	on Boxes		Date:	-	04/05/2	2010
		Structural design calculation	ns and reports		Page:	24	of	31

APPENDIX B

PROKON STRUCTURAL ANALYSIS

VERIFICTION REPORT – SIDE WALLS

	yn	l l	les	via	UCD Marine	~ 3030	1008806)								1
G	c	DNE	ULT	ING	Job Title	Kusile F	ower S	tation	Junction	Box						
(night Pl nternet:	Piesol http://	d Cor	sulting	Pty) Lt	d Client	Eskom										
Ξ-Mail : (enau	iries @	2.kniahtı 2.kniahtı	viesola. viesold.	Graics by	тт		0	Checked by	SW			Date	03	-05-202	10
		20								011					00 20	
000	xЗ	00	vvai	1 (Code of	Practice	: SABS	0100 - 2	2000)							
)10/05	5/10) 11:	:22:37	AM												C01
	τ	1														
put	lat	les	,													
Fcu (N	MPa)					30										
Fy (M	1Pa)					450										
Fyv (N	ИРа)					250										
% Rec	distri	butio	n			0										
Down	ward	/Opti	mized	edistr	•	D										
Cover	to c	entre	top ste	el(mm	ר)	70										
Cover	to c	entre	bot.ste	el(mm	n)	70										
Dead	Loa	d Fac	tor			1.2										
Live L	.oad	Facto	or			1.6										
Densit	ty of	conc	rete (k	√/m3)		24										
% Live	e loa	d pei	rmaner	t		25										
Ø (C	reep	coef	fficient)			2	\neg									
Ecs (F	- Free	shrin	kage s	rain)		300E-6	\neg									
, ·	-	-		,		-]									
																
Sec		Bw (mm)		m)	Bf-top	Hf-top	Bf-bot	Hf-bot	Y-offset	Web	Flang	ge				
INO.		(mm)	, (1	IIII)	(mm)	(mm)	(mm)	(mm)	(mm)	onset	onse	L				
1		1000	30	10												
Span		Se	ection	Se	ec No	Sec No	7									
No		Le	ength(m) Le	ft	Right										
1		6.	55	1		1	-									
0												0.1	1			
Sup No.		bae F	Colum	in Beid		1		Column	above			F.P				
			D(mm)	B(mm)	H(m)		D(mm)	B(mm)	H(m)	,	-			
1	F		<u> </u>					<u> </u>								
2	F]			
Case				L												
D 1		Span	ı V	/left	Wright	a	b	P	a	М	a					
D,L		Span	1 V (k	/left N/m)	Wright (kN/m)	a (m)	b (m)	P (kN)	a (m)	M (kNm)	a (m)					
D,L D		Span	1 V (k	/left N/m)	Wright (kN/m) 0	a (m)	b (m) 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D L		Span 1 1	1 V (k 16 3	/left N/m) 5.9	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D L		Span 1 1) V (k 16 3	/left N/m) i.9	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D L		Span 1 1	1 V (k 16 3	/left N/m)).9	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D L Span		Span 1 1 M lef (kNm	1 V (k 16 3 t M i) (k	/left N/m) 5.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D L Span		Span 1 1 M lef (kNm	1 V (k 3 t M 1) (k	/left N/m) 3.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D L Span		Span 1 1 (kNm	1 V (k 3 t M 1) (k	/left N/m) 5.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D L Span		Span 1 1 M lef (kNm	t M	/left N/m) 5.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D L Span		Span 1 1 M lef (kNm	t M	Vleft N/m) 3.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D L Span		Span 1 1 (kNm	t M	Vleft N/m) 5.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		Span 1 1 (kNm	1 V (k 16 3 t M 1) (k	/left N/m) 3.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		Span 1 1 (kNm	t M	/left N/m) 3.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D Span		Span 1 1 (kNm	t M	/left N/m) 5.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		Span 1 1 (kNm	1 V (k 3 t M 1) (k	/left N/m) 5.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		Span 1 1 (kNm	1 V (k 3 t M 1) (k	/left N/m) 5.9 right Nm)	Wright (kN/m) 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		Span 1 1 M lef (kNm	1 V (k 3 t M 1) (k	/left N/m) 5.9 right Nm)	Wright (kN/m) 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		Span 1 1 M lef (kNm	1 V (k 3 t M 1) (k	/left N/m) 5.9 right Nm)	Wright (kN/m) 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		M lef	1 V (k 3 t M 1) (k	/left N/m) 3.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L L Span		M lef	1 V (k 11 3 t M 1) (k	/left N/m) 3.9 right Nm)	Wright (kN/m) 0 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					
D,L D Span		Span 1 1 (kNm	1 V (k 11 3 t M 1) (k	/left N/m) 3.9 right Nm)	Wright (kN/m) 0	a (m)	b (m) 4 4	P (kN)	a (m)	M (kNm)	a (m)					

PANEL B	Client:	ESKOM			Computed by	y:	SW	
CONSULTANTS	Project:	Kusile Power Station	Component:	Junction Boxes	Date:		03/05/2	2010
JOINT	Job no.:	K5452-80	File no.:	5452-80-071 R1	Checked by:		KG	
VENTURE	Title:	SDD Settling Tanks Junction Boxes		Date:		04/05/2	2010	
		Structural design calculatio	Page:	28	of	31		
	-							

APPENDIX C

PROKON STRUCTURAL ANALYSIS VERIFICTION REPORT – TOP SLAB

Knig	rh	tl	Piés	sola	Job Numb	^{er} 3030	0009806	;							Sheet	1
0	c	ONI	SUL	TING	Job Title	Kusile F	Power St	tation -	Junction	Box					•	
Knight Pi	ieso	ld Coi	nsulting	ı (Pty) L thionolo	td Client	Eskom										
F-Mail : e	niip enai	.//www .iiries@	0.kniah	tpiesola tpiesola	Galcs by	TT		0	Checked by	S\//			Date	03-	.05-201	0
										000				00	00 201	
	XZ	50	Sia	D	(Code of	Practice	e : SABS	0100 -	2000)							
2010/05	5/1	0 11	:18:0	6 AM												C01
iputi	a	Jies	>													-
Equ (N	10-	<u>۱</u>				20										
Fu (N	/1F a 1D2))				450										
	11 a) 11 a	\ \				250										
) ihutia	~			250										
% Rec			imizod	rodict		0										
Cover	war	u/Opt			· ~	50										
Cover	10 0	entre	e lop si		n) 	50										
Deed				leei(mi	n)	50										
Dead	LOa					1.2										
Live Lo	oau	Faci		-NI/ 0)		1.0										
	iy 01		nete (F	viv/m3)		24										
% LIVE	+ 108	a pe	mane	nt		25										
(Ci הע (Ci	reel	0.006	ricient) otroia)		2										
ECS (F	ree	shrir	ikage s	strain)		300E-6										
Sec		Bw		D	Bf-top	Hf-top	Bf-bot	Hf-bot	Y-offset	Web	Flan	ge				
No.		(mm) (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	offset	offse	t				
1		1000) 2	250												
Span		S	ection	S	ec No	Sec No										
No		Le	ength(r	n) Le	eft	Right										
1		8.	72	1		1										
0		1 .					Quite									
Sup No.		ode ,F	Colu	mn ве	ow D()		F,P	Column	above		<u></u>	F,P				
	╞		D(mr	n)	B(mm)	H(m)		D(mm)	B(mm)	H(m)					
1								-								
2																
			<u> </u>			1	1.	1_	1	1	-					
Case		Spar	י ר	Wleft	Wright (kN/m)	a (m)	b (m)	P (kNI)	a (m)	M (kNm)	a (m)					
D,L	_		(KIN/111)	(KIN/III)		(11)		(11)		(11)					
U L		1		<u>,</u>												
L		1	3	5												
Span		M lef	ft N	/ right												
		(kNn	n) (kNm)												

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Client Name:	Name: ESKOM					1	of		6	
Project Name:	roject Name: Kusile Power Station					0098/06	6			
Calculation Title: Pipe Hydraulic Calculations : SDD Settling Tanks										
Calculation No	/File No.:									
Calculation is:		Preliminary	\times	Final						
Dbjective: Hydraulic design of the SDD and SDD Settling Tanks inlet and outlet pipes.										

	Unverified assumptions requiring subsequent verification									
No.	Assumption	Verified by	Date							
	None									

This section applies to computer generated calculations										
Program Name/Number:	N/A	Version:								
Program Name/Number:	N/A	Version:								
Evidence of or reference to computer program verification, if applicable:										
Bases or reference there	to supporting application of the compu	ter program to the physical problem:								

	Review and approval									
Rev	Prepared by	Date	Verified by	Date	Approved by	Date				
0	Scott Rees	Oct 09								

PANEL B	Client:	ESKOM			Computed b	by:	Scott Re	es
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD Hydraulics	Date:		October	2009
JOINT	Job no.:	303-00098/06	File no.:		Checked by	: -		
VENTURE	Title:	Hydraulic Calculations : SD	D Settling Tank Inle	et/Outlet Pipes	Date:	_		
					Page:	2	of	6

1. PURPOSE:

To calculate the size/capacity of the SDD and SDD ST inlet and outlet pipes.

2. REFERENCES:

1.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS GENERAL ARRANGEMENT	5452/80/071	Rev	
2.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS & DETAILS	5452/50/072	Rev	
3.	SDD SETTLING TANKS INLET & OUTLET PIPEWORKS SECTIONS	5452/80/100	Rev	

3. ASSUMPTIONS

Density of water = Acceleration due to gravity = 1000kg/m³ 9.81m/s²

Additional assumptions are listed in the detailed hydraulic calculations, where applicable.

4. HYDRAULIC CALCULATIONS

APPENDICES

None

PANEL B	Client:	ESKOM			Computed by	:	Scott Ree	es
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD Hydraulics	Date:		October 2	2009
JOINT	Job no.:	303-00098/06	File no.:		Checked by:			
VENTURE	Title:	Hydraulic Calculations : SE	DD Settling Tank Inle	et/Outlet Pipes	Date:			
					Page:	3	of	6

Calculations

PANEL B	Client:	ESKOM			Computed by	:	Scott Rees	5
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD Hydraulics	Date:		October 20	009
JOINT	Job no.:	303-00098/06	File no.: Checked b		Checked by:			
VENTURE	Title:	Hydraulic Calculations : SDD Settling Tank Inlet/Outlet Pipes		Date:				
					Page:	4	of	6

PANEL B	Client:	ESKOM			Computed by	:	Scott Ree	es
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD Hydraulics	Date:		October 2	2009
JOINT	Job no.:	303-00098/06	File no.:		Checked by:			
VENTURE	Title:	Hydraulic Calculations : SD	D Settling Tank Inle	t/Outlet Pipes	Date:			
					Page:	5	of	6
					-			

Knight Piésold	JOB KUSHE POWER STATION	SHEET No.
CONSULTING		JOB No. 303-00098
PHALABORWA OFFICE	REEDRGS	
Tambotie Street, P.O. Box 830, Phalabonwa 1390	DESIGNED Scatt Page	DATE OF 7049
Tel: (015) 781-0839/0832 Fax: (015) 781-3786 Email: kppha@mveb.co.za	CHECKED	DATE
Enall: hpphalometric corrections $\frac{JB504 - JBK12}{= 1950 ND Closs loop Conce = length = 440m = minor logges, k = 4.5 = headwater ~ 1463m, T Q = 12.24 m^{3}/s\frac{JBK12 \rightarrow JBK13}{= 12.24 m^{3}/s}\frac{JBK12 \rightarrow JBK13}{= 12.24 m^{3}/s}2 \times 1950 ND Class 100D= length = 245m= headwater = 1455mQ = 7.4 m^{3}/s2Q = 14.8 m^{3}/s= 50D$ is full, the water entire pipeline = try with JBK13 at $Q = 12.8 m^{3}/s$ $2Q = 12.8 m^{3}/s$ $2Q = 25.6 m^{3}/s$	THECKED The Pipe - 1-8m mode D Tailwater ~ 1455m Concrete Pipe , tailwater = 1454m ily however in the event will be backed up throw 1452m Two (more realisting this is sufficient to pass this is sufficient to pass the tail of the sufficient to pass the tail of	that the ugh the ic) 5 the 23.9 m ³ /s

PANEL B	Client:	ESKOM			Computed by	:	Scott Ree	es
CONSULTANTS	Project:	Kusile Power Station	Component:	SDD Hydraulics	Date:		October 2	2009
JOINT	Job no.:	303-00098/06	File no.:		Checked by:			
VENTURE	Title:	Hydraulic Calculations : SD	draulic Calculations : SDD Settling Tank Inlet/Outlet Pipes		Date:			
					Page:	6	of	6

Knight Piésold	JOB KUSILE POWER STATION	SHEET No.
- CONSULTING		JOB No. 753-00096
PHALABORWA OFFICE First Floor, Park Building	REF.DRGS	
iambote Street, P O 8ox 830, Phalaborwa 1390 Tel: (015) 781-0339/0882 Fax: (015) 781-3788	DESIGNED SCOTT REPS	DATE OCH 30/09
Email: kppha@mweb.co.za	CHECKED	DATE
SOD ST + JBK12		
· 1950 ND Class 100D Conce	chepipe	
\cdot length = 130m		
$\Sigma = 2(1.0) + 2(0.5)$	= 3	
" Top Water Level = 1459 Q=13.1m315	m, Tail Water Level = 14	55m
JB509 + SDDST		
·1950 ND Class 100D (concrete Pipe	
-length = 185m		
·IK=2(1.0)+2(0.5)	= 3.0	460.4m
Top Water Level = 1467	m, Tail Water Level - 1	(
$Q = 15.8 \text{ m}^3 \text{ls}$		
+> more conservatively,	try Headwater Level =	- 1466m
Q = 14.5 m 3/5		