DEVELOPMENT OF THREE PV SOLAR ENERGY FACILITIES (BARLERIA, DICOMA & SETARIA) AND ASSOCIATED INFRASTRUCTURE NEAR LICHTENBURG, NORTH WEST PROVINCE

Avifauna Scoping Report

October 2021

Compiled by:

Pachnoda Consulting CC Lukas Niemand Pr.Sci.Nat

PO Box 72847 Lynwood Ridge Pretoria 0040

Prepared for:

Savannah Environmental (Pty) Ltd

PO Box 148 Sunninghill Gauteng 2157 0040

EXECUTIVE SUMMARY

Pachnoda Consulting cc was requested by Savannah Environmental (Pty) Ltd on behalf of Dicoma PV (Pty) Ltd, Barleria PV (Pty) Ltd and Setaria PV (Pty) Ltd to compile an avifauna scoping report for three proposed solar facilities (herewith referred to as the Dicoma PV, Barleria PV and Setaria PV facilities) and associated infrastructure with a contracted capacity of up to 75MW located on a site approximately 5km north west of the town of Lichtenburg in the North West Province.

The objectives of this phase of the project were to obtain a basic overview of the variation and general status of the avifaunal habitat types and expected bird species likely to be affected by the proposed project.

Four avifaunal habitat types were identified, ranging from open mixed dolomite grassland with bush clump mosaics, mixed open woodland, artificial livestock watering points and transformed areas. A total of 200 bird species have been recorded within the study area, including 11 Red listed species (threatened and near threatened species).

The main potential impacts associated with the proposed PV solar facility are expected to be the following:

- The loss of habitat and subsequent displacement of bird species due to the ecological footprint required during construction.
- Direct interaction (collision trauma) by birds with the surface infrastructure (photovoltaic panels) caused by polarised light pollution and/or waterbirds colliding with the panels (as they are mistaken for waterbodies).
- Collision with associated infrastructure (mainly overhead powerlines and reticulation).

The endangered Cape Vulture (*Gyps coprotheres*), critically endangered White-backed Vulture (*Gyps africanus*) and Lappet-faced Vulture (*Torgos tracheliotos*) could occur as regular foraging visitors on the study sites (according to reporting rates obtained from the atlas project - SABAP2). These species are highly prone to powerline collisions, whereby the proposed distribution powerline could pose a collision risk to vultures. The risk of collision is considered high when vultures feed on a carcass in close proximity to a powerline. The risk may be mitigated by locating the proposed powerline parallel to the existing Eskom powerline servitudes.

In addition, a total of 43 collision-prone bird species have been recorded from the study area (*sensu* atlas data), of which 20 species were birds of prey. The study sites are not located near any prominent wetland system or impoundment, and therefore the risk of waterbird collisions with the proposed infrastructure is considered to be low.

TABLE OF CONTENTS

EXECUTI	VE SUMMARY
TABLE O	F CONTENTS
LIST OF F	FIGURES
LIST OF	TABLESIII
LIST OF A	APPENDICESIV
DECLAR	ATION OF INDEPENDENCE
1. INTR	ODUCTION 1
1.1 F	PROJECT DESCRIPTION1
1.2	TERMS OF REFERENCE
2. METI	HODS & APPROACH6
2.1 L	LITERATURE SURVEY AND DATABASE ACQUISITION
2.2 F	PRELIMINARY SENSITIVITY ANALYSIS
	LIMITATIONS8
	LIMINARY RESULTS AND DESCRIPTION OF THE AFFECTED
	IMENT
3.1 L	LOCALITY
	REGIONAL VEGETATION DESCRIPTION
	LAND COVER, LAND USE AND EXISTING INFRASTRUCTURE11
	Conservation Areas, Protected Areas and Important Bird Areas 12
	MPORTANT AVIFAUNAL HABITAT TYPES
	SPECIES RICHNESS AND PREDICTED SUMMARY STATISTICS17
	BIRD SPECIES OF CONSERVATION CONCERN
	PRELIMINARY AVIFAUNAL SENSITIVITY
3.9	OVERVIEW OF AVIAN IMPACTS AT SOLAR FACILITIES
3.9.1	3
3.9.2	
	POTENTIAL IMPACTS ASSOCIATED WITH THE DICOMA, BARLERIA AND SETARIA
	PV SOLAR ENERGY FACILITIES
	1 Loss of habitat and displacement of birds
	2 Interaction with overhead powerlines and reticulation
	COLLISION-PRONE BIRD SPECIES
3.11.	
	N OF STUDY FOR THE EIA PHASE33
	PROPOSED APPROACH AND METHODS
5. REFE	ERENCES
I IST OF	FIGURES
-	A satellite image illustrating the geographic position of the proposed PV ies and grid connections
	A satellite image illustrating the regional vegetation type corresponding to
•	tudy site. Vegetation type categories were defined by Mucina & Rutherford
	6)11
(2000	//

corresponding to the proposed study site12
Figure 4: A map illustrating the locality of conservation areas in close proximity to the
proposed study site
Figure 5: A preliminary habitat map illustrating the avifaunal habitat types on the
study site (the habitat types are subject to change pending the outcome of a
detailed austral summer survey)15
Figure 6: A collage of images illustrating examples of avifaunal habitat types on the study site observed during the austral winter season (August 2021): (a - d) open mixed dolomite grassland and bush clump mosaics, (e - f) mixed open woodland
and (g - h) artificial livestock watering points and (i) an <i>Eucalyptus</i> sp. grove 16
Figure 7: A map illustrating the preliminary avifaunal sensitivity of the area based on habitat types supporting bird taxa of conservation concern and important ecological function
Figure 8: Two bird-friendly tower designs to be used for the current project 26
Figure 9: The occurrence of Cape Vultures (<i>Gyps coprotheres</i>) within the study region fitted with satellite trackers
Figure 10: The number of mortalities (electrocutions and collisions) per bird species
due to transmission and distribution lines in the study area (1996-2018) 32
Figure 11: The number of mortalities per bird species caused by electrocutions
(distribution lines) and collisions (transmission lines) (1996-2018)
Figure 12: The number of bird mortalities caused by power lines per geographic
locality (1996-2018), including the Lichtenburg area
LIST OF TABLES
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biome-
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the study site
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the study site
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the study site
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the study site
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the study site
Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biomerestricted species (Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the study site

LIST OF APPENDICES

Appendix 1: A shortlist of bird species expected to be present on the study area.	Γhe
list provides an indication of the species occurrence according to SABAP1 a	and
SABAP2 reporting rates.	. 37

DECLARATION OF INDEPENDENCE

I, Lukas Niemand (Pachnoda Consulting CC) declare that:

- I act as the independent specialist in this application to Savannah Environmental (Pty) Ltd, Dicoma PV
 (Pty) Ltd, Barleria PV (Pty) Ltd and Setaria PV (Pty) Ltd;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have no vested financial, personal or any other interest in the application;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my
 possession that reasonably has or may have the potential of influencing any decision to be taken with
 respect to the application by the competent authority; and the objectivity of any report, plan or
 document to be prepared by myself for submission to the competent authority; and
- All the particulars furnished by me in this form are true and correct.

Lukas Niemand (Pr.Sci.Nat) 28 September 2021

Lukas Niemand is registered with The South African Council for Natural Scientific Professionals (400095/06) with more than 15 years of experience in ecological-related assessments and more than 15 years in the field of bird interactions with electrical and renewable energy infrastructure. He has conducted numerous ecological and avifaunal impact assessments including Eskom Transmission projects, hydro-electric schemes, solar farms and other activities in South Africa and other African countries.

1. INTRODUCTION

1.1 **Project Description**

Pachnoda Consulting cc was requested by Savannah Environmental (Pty) Ltd on behalf of Dicoma PV (Pty) Ltd, Barleria PV (Pty) Ltd and Setaria PV (Pty) Ltd to compile an avifauna scoping report for three proposed solar facilities (herewith referred to as the Dicoma PV, Barleria PV and Setaria PV facilities) and associated infrastructure with a contracted capacity of up to 75MW located on a site approximately 5km north west of the town of Lichtenburg in the North West Province. The development area is situated within the Ditsobotla Local Municipality within the Ngaka Modiri Molema District Municipality. The site is accessible via an existing gravel road which provides access to the development area off the R505, located east of the development area.

The infrastructure of each proposed facility will consists of the following components:

- PV modules and mounting structures
- Inverters and transformers
- Battery Energy Storage System (BESS)
- Site and internal access roads (up to 8m wide)
- Site offices and maintenance buildings, including workshop areas for maintenance and storage.
- Temporary and permanent laydown area
- Grid connection solution (with two alternative locations assessed) within a 100m wide corridor, including:
 - o 33kV cabling between the project components and the facility substation
 - A 132kV facility substation
 - A 132kV Eskom switching station
 - o A Loop-in-Loop out (LILO) overhead 132kV power line between the Eskom switching station and the existing Delareyville Munic-Watershed 1 88kV power line.1

1.1.1 Dicoma PV Facility

The development area for the Dicoma PV facility and associated infrastructure will be located on the following properties:

Portion 1 of the Farm Houthaalboomen 31

¹ The LILO corridor intersects with several existing parallel Eskom power lines (Watershed-Sephaku 1 132kV, Dudfield-Watershed 2 88kV, Dudfield-Watershed 1 88kV, and Watershed-Klerksdorp North 1 132kV). Therefore, should the connection to the Delareyville Munic-Watershed 1 88kV not be technically feasible, connection to the above mentioned power lines would still be within the assessed LILO corridor and considered feasible through the construction of a shorter LILO connection.

- Portion 9 of the Farm Houthaalboomen 31
- Portion 10 of the Farm Houthaalboomen 31
- Portion 0 of Farm Talene 25
- Portion 7 of Farm Elandsfontein 34

The development area of the Dicoma PV facility is approximately 180 ha, and will include two alternative grid connection solutions (within a 100m wide corridor).

1.1.2 Barleria PV Facility

The development area for the Barleria PV facility and associated infrastructure will be located on the following properties:

- Portion 1 of the Farm Houthaalboomen 31
- Portion 9 of the Farm Houthaalboomen 31
- Portion 10 of the Farm Houthaalboomen 31
- Portion 0 of Farm Talene 25
- Portion 7 of Farm Elandsfontein 34

The development area of the Barleria PV facility is approximately 176 ha, and will include two alternative grid connection solutions (within a 100m wide corridor).

1.1.3 Setaria PV Facility

The development area for the Setaria PV facility and associated infrastructure will be located on the following properties:

- Portion 1 of the Farm Houthaalboomen 31
- Portion 9 of the Farm Houthaalboomen 31
- Portion 10 of the Farm Houthaalboomen 31
- Portion 0 of Farm Talene 25
- Portion 7 of Farm Elandsfontein 34

The development area of the Setaria PV facility is approximately 186 ha, and will include two alternative grid connection solutions (within a 100m wide corridor).

1.1.4 Grid Connection Alternatives

Two gird connection alternatives are proposed:

Grid Connection Alternative 1: 33kV MV cabling will connect the PV solar arrays of each facility to a 132kV facility substation. The 132kV Eskom switching station is located directly adjacent to the development footprint of each facility substation. The substation and Eskom switching station of the Barleria PV facility are located 2.2km east the facility, while the substation and Eskom switching station of the Dicoma PV

facility are located within the south eastern corner of the PV development footprint. The substation and Eskom switching station of the Setaria PV facility are located within the south western corner of the PV development footprint. A 132kV Loop-in-Loop Out power line from the Eskom switching station will connect into the Delareyville Munic–Watershed 1 88kV¹. The grid connection infrastructure is located within an assessment corridor of 100m wide.

Grid Connection Alternative 2: 33kV MV cabling will connect the PV solar arrays of each facility to a 132kV facility substation. The 132kV Eskom switching station is located directly adjacent to the development footprint of each facility substation. The substation and Eskom switching station of the Barleria PV facility are located 2.3 km east the facility, while the substation and Eskom switching station of the Dicoma PV facility are located 1.3 km of the development footprint. The substation and Eskom switching station of the Setaria PV facility are located within the south eastern corner of the PV development footprint. A 132kV Loop-in-Loop Out power line from the Eskom switching station will connect into the Delareyville Munic–Watershed 1 88kV¹. The grid connection infrastructure is located within an assessment corridor of 100m wide.

1.2 Terms of Reference

The main aim of this scoping exercise was to investigate the avifaunal attributes of the proposed PV facilities by means of a desktop analysis of GIS based information and third-party datasets and included a brief site visit which constituted the austral winter season sampling survey.

Since the three proposed PV facilities are spatially autocorrelated (located within the same broad-scale habitat types, topography and climatic conditions), a combined scoping report was compiled which aims to provide an overview of the avifaunal attributes on the following properties ("herewith referred to as the "study site"):

- Portion 1 of the Farm Houthaalboomen 31
- Portion 9 of the Farm Houthaalboomen 31
- Portion 10 of the Farm Houthaalboomen 31
- Portion 0 of Farm Talene 25
- Portion 7 of Farm Elandsfontein 34

However, a separate avifaunal impact report will be compiled for each facility (three reports) during the EIA phase of the project.

The terms of reference for this scoping report are to:

- conduct an assessment on a screening level based on available information pertinent to the ecological and avifaunal attributes on the study site;
- conduct an assessment of all information on a screening level in order to present the following results:

October 2021

- typify the regional vegetation and avifaunal macro-habitat parameters that will be affected by the proposed project;
- provide an indication on the occurrence of threatened, nearthreatened, endemic and conservation important bird species likely to be affected by the proposed project;
- provide an indication of sensitive areas or bird habitat types corresponding to the study site;
- o highlight areas of concern or "hotspot" areas;
- identify potential impacts that are considered pertinent to the proposed development;
- highlight gaps of information in terms of the avifaunal environment;
 and
- o recommend further studies to be conducted as part of the Environmental Impact Assessment (EIA) phase.

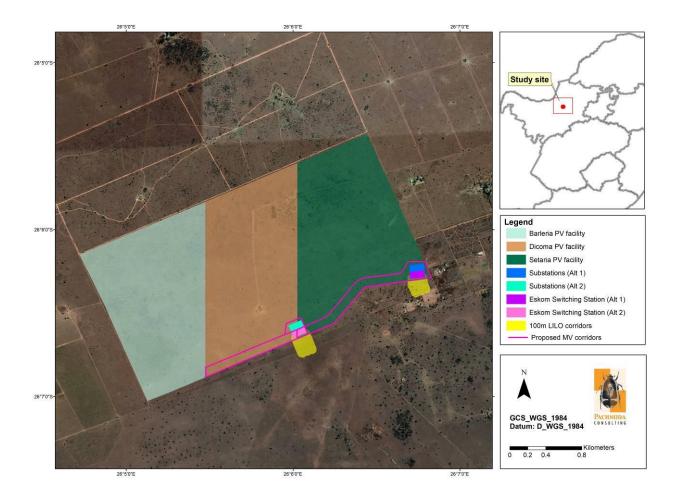


Figure 1: A satellite image illustrating the geographic position of the proposed PV facilities and grid connections.

2. METHODS & APPROACH

The objectives of this phase of the project were to obtain a basic overview of the variation and general status of the avifaunal habitat types and expected bird species likely to be affected by the proposed project.

Also take note that the current report put emphasis on the avifaunal community as a key indicator group on the proposed study area, thereby aiming to describe the preliminary conservation significance of the ecosystems in the area. Therefore, the occurrence of certain bird species and their relative abundances (to be determined during the EIA although herewith deduced from reporting rates) could determine the outcome of the ecological sensitivity of the area and the subsequent layout of the proposed solar facility infrastructure.

The information provided in this report was principally sourced from the following sources/observations:

- relevant literature see section below;
- observations made during a site visit (04 06 August 2021); and
- personal observations from similar habitat types in proximity to the study area, with emphasis on assessments conducted by Pachnoda Consulting (2018) of where an avifauna study was conducted by the author.

2.1 Literature survey and Database acquisition

A desktop and literature review of the area under investigation was commissioned to collate as much information as possible prior to the detailed baseline survey. Literature consulted primarily makes use of small-scale datasets that were collected by citizen scientists and are located at various governmental and academic institutions (e.g. Animal Demography Unit & SANBI). These include (although are not limited to) the following:

- Hockey et al. (2005) for general information on bird identification and life history attributes.
- Marnewick et al. (2015) was consulted for information regarding the biogeographic affinities of selected bird species that could be present on the study area.
- The conservation status of bird species was categorised according to the global IUCN Red List of threatened species (IUCN, 2021) and the regional conservation assessment of Taylor et al. (2015).
- Distributional data was sourced from the South African Bird Atlas Project (SABAP1) and verified against Harrison et al. (1997) for species corresponding to the quarter-degree grid cell (QDGC) 2626AA (Lichtenburg). The information was then modified according to the prevalent habitat types present on the study area. The SABAP1 data provides a "snapshot" of the abundance and composition of species recorded within a quarter degree grid

cell (QDGC) which was the sampling unit chosen (corresponding to an area of approximately 15 min latitude x 15 min longitude). It should be noted that the atlas data makes use of reporting rates that were calculated from observer cards submitted by the public as well as citizen scientists. It therefore provides an indication of the thoroughness of which the QDGCs were surveyed between 1987 and 1991;

- Additional distributional data was also sourced from the SABAP2 database (http://www.sabap2.birdmap.africa). The information was then modified according to the prevalent habitat types present on the study area. Since bird distributions are dynamic (based on landscape changes such as fragmentation and climate change), SABAP2 was born (and launched in 2007) from SABAP1 with the main difference being that all sampling is done at a finer scale known as pentad grids (5 min latitude x 5 min longitude, equating to 9 pentads within a QDGC). Therefore, the data is more site-specific, recent and more comparable with observations made during the site visit (due to increased standardisation of data collection). The pentad grid relevant to the current project is 2605_2605 (although all eight surrounding pentad grid information was also scrutinised).
- The choice of scientific nomenclature, taxonomy and common names were recommended by the International Ornithological Committee (the IOC World Bird List v. 11.2), unless otherwise specified (see www.worldbirdnames.org as specified by Gill et al, 2021). Colloquial (common) names were used according to Hockey et. al. (2005) to avoid confusion;
- The incidental occurrence records for large birds of prey and vulture tracking data were included (only for 2018).
- Data on power line derived bird mortalities were requested from the electrical infrastructure mortality incident register (the dataset was provided by EWT).
- The best practice guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa were also consulted (Jenkins et al., 2017).
- Additional information regarding bird-power line interactions was provided by the author's own personal observations.

2.2 Preliminary Sensitivity Analysis

A preliminary sensitivity map was compiled based on the outcome of a desktop analysis.

The ecological sensitivity of any piece of land is based on its inherent ecosystem service (e.g. wetlands) and overall preservation of biodiversity.

2.3.1 Ecological Function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape

connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (e.g. wetlands) or the overall preservation of biodiversity.

2.3.2 Avifaunal Importance

Avifaunal importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

2.3.3 Sensitivity Scale

- High Sensitive ecosystems with either low inherent resistance or low resilience towards disturbance factors or highly dynamic systems considered important for the maintenance of ecosystem integrity. Most of these systems represent ecosystems with high connectivity with other important ecological systems OR with high species diversity and usually provide suitable habitat for a number of threatened or rare species. These areas should preferably be protected;
- Medium These are slightly modified systems which occur along gradients of disturbances of low-medium intensity with some degree of connectivity with other ecological systems OR ecosystems with intermediate levels of species diversity but may include potential ephemeral habitat for threatened species; and
- Low Degraded and highly disturbed/transformed systems with little ecological function and are generally very poor in species diversity (most species are usually exotic or weeds).

2.3 Limitations

To obtain a comprehensive understanding of the diversity and dynamics of avifaunal community on the study area, as well as the status of endemic, rare or threatened species in the area, detailed assessments should always consider investigations at different time scales (across seasons/years) and through replication. However, due to the fact that the findings in this report were based on a scoping/screening assessment, long-term studies were not feasible and inferred interpretations were mostly based on ad hoc observations.

It should also be realised that bird distribution patterns fluctuate widely in response to environmental conditions (e.g. local rainfall patterns, nomadism, migration patterns, seasonality), meaning that a composition noted at a particular moment in time will differ during another time period at the same locality. For this reason a dry season and wet season survey will be conducted.

Due to the scope of the work presented during a scoping assessment, a detailed investigation of the avifaunal community in the area were not possible and is not perceived as part of the Terms of Reference for a scoping/screening level exercise.

Furthermore, additional information may become known during a later stage of the process or development. This company, the consultants and/or specialist investigators do not accept any responsibility for conclusions, suggestions, limitations and recommendations made in good faith, based on the information presented to them, obtained from the surveys or requests made to them at the time of this report.

The following assumptions are relevant to the literature survey and database acquisition phase:

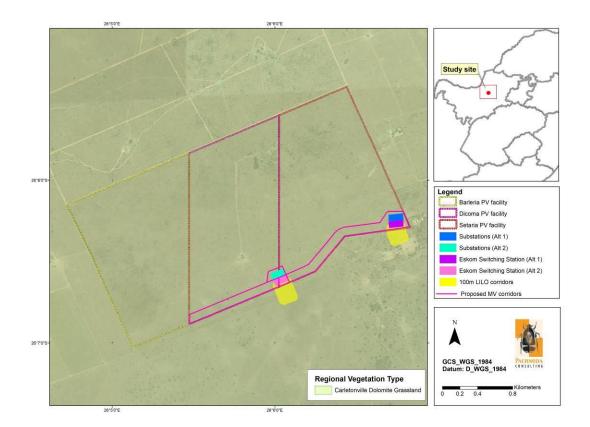
- It is assumed that third party information (obtained from government, academic/research institution, non-governmental organisations) is accurate and true:
- Some of the datasets are out of date and therefore extant distribution ranges may have shifted although these datasets could provide insight into historical distribution ranges of relevant species;
- The datasets are mainly small-scale and could not always consider azonal habitat types that may be present on the study area (e.g. small dams, pans and depressions). In addition, these datasets encompass surface areas larger than the study area that could include habitat types and species that is not present on the study area. Therefore, the potential to overestimate species richness is highly likely while it is also possible that certain cryptic or specialist species could have been overlooked in the past;
- Some of the datasets (e.g. SABAP2) managed by the Animal Demography Unit of the University of Cape Town were only recently initiated and therefore incomplete; and
- In addition, the study site is under private ownership and primarily inaccessible to the public. Since most of the species distribution ranges concerning the relevant datasets are subject to observations made by the public, it is likely that many bird species are overlooked or not formally catalogued for the area.

October 2021

3. PRELIMINARY RESULTS AND DESCRIPTION OF THE AFFECTED ENVIRONMENT

3.1 Locality

The proposed PV facilities comprise of Portions 1, 9 and 10 of the Farm Houthaalboomen 31, Portion 0 of Farm Talene 25 and Portion 7 of Farm Elandsfontein 34, located approximately 5km north west of the town of Lichtenburg in the North West Province (Figure 1).


3.2 Regional Vegetation Description

The proposed PV facilities correspond to the Grassland Biome and more particularly to the Dry Highveld Grassland Bioregion as defined by Mucina & Rutherford (2006). It comprehends an ecological type known as Carletonville Dolomite Grassland (Mucina & Rutherford, 2006) (Figure 2).

From an avifaunal perspective it is evident that bird diversity is positively correlated with vegetation structure, and floristic richness is not often regarded to be a significant contributor of patterns in bird abundance and their spatial distributions. Although grasslands are generally poor in woody plant species, and subsequently support lower bird richness values, it is often considered as an important habitat for many terrestrial bird species such as larks, pipits, korhaans, cisticolas, widowbirds including large terrestrial birds such as Secretarybirds, cranes and storks. Many of these species are also endemic to South Africa and display particularly narrow distribution ranges. Due to the restricted spatial occurrence of the Grassland Biome and severe habitat transformation, many of the bird species that are restricted to the grasslands are also threatened or experiencing declining population sizes.

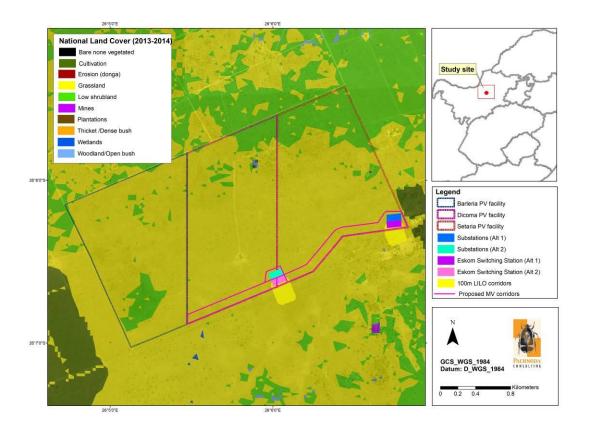
Carletonville Dolomite Grassland is confined to the dolomite plains that stretch from Lichtenburg in the North West Province to sections of rocky grassland in Gauteng, especially between altitudes of 1 350 m and 1 450 m. It occurs on slightly undulating plains dissected by prominent chert ridges, thereby containing a grassland composition rich in floristic species forming a complex mosaic dominated by many plant species.

Currently, only 2 % of the remaining 76 % of untransformed Carletonville Dolomite Grassland is formally protected within the Cradle of Humankind World Heritage Site and various nature reserves such as Abe Baily and Krugersdorp Nature Reserves.

Figure 2: A satellite image illustrating the regional vegetation type corresponding to the study site. Vegetation type categories were defined by Mucina & Rutherford (2006).

3.3 Land cover, land use and existing infrastructure.

According to the South African National dataset of 2013-2014 (Geoterrainimage, 2015) the study site comprehends the following land cover categories (Figure 3):


Natural areas:

- Grassland;
- Low shrubland; and
- Woodland and open bush.

Transformed areas:

Cultivation.

From the land cover dataset it is evident that most of the study site is covered by natural grassland, while the north eastern and south western parts consist of low shrubland. The study site is primarily used for livestock production and livestock grazing. Existing infrastructure includes a homestead and associated farm infrastructure, cattle feedlots and a number of powerline servitudes located on the southern boundary of the site.

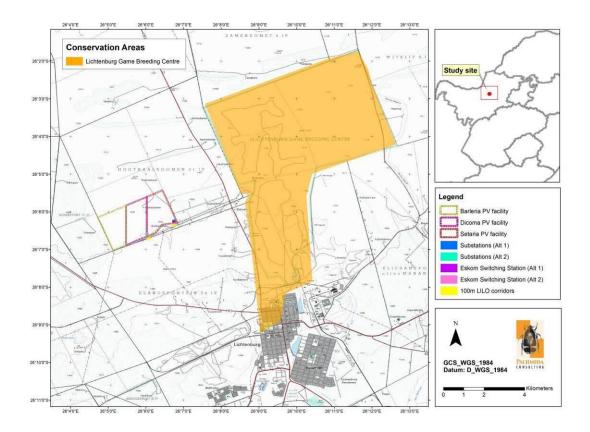


Figure 3: A map illustrating the land cover classes (Geoterrainimage, 2015) corresponding to the proposed study site.

3.4 Conservation Areas, Protected Areas and Important Bird Areas

The study site is located approximately 3km west of the Lichtenburg Game Breeding Centre (Figure 4). This conservation area contains a variety of game species, and the facility used to operate a vulture restaurant which attracts foraging vultures (c. three species) to the region. This area is currently under new management (by lease agreement with the municipality).

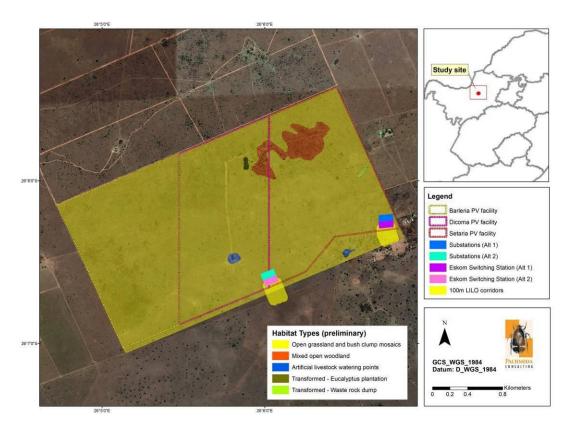
There are no other formal protected areas or any Important Bird and Biodiversity Areas in close proximity to the study site.

Figure 4: A map illustrating the locality of conservation areas in close proximity to the proposed study site.

3.5 Important avifaunal habitat types

Apart from the regional vegetation type, the local composition and distribution of the vegetation associations on the study site are a consequence of a combination of factors simulated by soil type, geology and grazing intensity (presence of livestock) which have culminated in a number of habitat types that deserve further discussion² (Figure 5 and Figure 6):

1. Open mixed dolomite grassland with bush clump mosaics: This unit is prominent on the study site and covers a significant extent in surface area of the proposed PV facilities. It is represented by two discrete floristic variations which also provide habitat for two discrete avifaunal associations. The first floristic variation consists of open untransformed to semi-transformed mixed dolomite grassland and bush clumps with an eminent woody layer. The grassland variation is represented by untransformed and grazed Carletonville Dolomite Grassland, depending on grazing intensity, and dominated by "late-successional" graminoids such a Themeda triandra, Cymbopogon caesius, C. pospischilii, Trachypogon spicatus, Elionurus muticus and Andropogon schirensis. It is occupied by a typical grassland bird composition dominated


² The habitat types are subject to change pending on the outcome of a detailed austral summer survey.

by insectivorous and granivore passerine bird species such as Desert Cisticola, (Cisticola aridulus), Eastern Clapper Lark (Mirafra fasciolata) Melodious Lark (Mirafra cheniana), Spike-heeled Lark (Chersomanes albofasciata), Cape Longclaw (Macronyx capense), Ant-eating Chat (Myrmecocichla formicivora) and African Pipit (Anthus cinnamomeus). Prominent non-passerine species include Orange River Francolin (Scleroptila gutturalis), Swainson's Spurfowl (Pternistis swainsonii), Northern Black Korhaan (Afrotis afraoides), Crowned Lapwing (Vanellus coronatus) and Black-winged Kite (Elanus caeruleus).

The bush clumps form a prominent mosaic characterised by the dominance of a woody layer of Searsia lancea, S. pyroides, Ziziphus mucronata, Gymnosporia buxifolia and Asparagus laricinus. Celtis africana and Olea europaea subsp. africana forms canopy constituents in some areas. The eminent increase in vertical heterogeneity provided by the woody layer is colonised by a "Bushveld" bird association consisting of insectivorous passerines such as Black-chested Prinia (Prinia flavicans), Chestnut-vented Warbler (Sylvia subcoerulea), Kalahari Scrub Robin (Cercotrichas paena), Fiscal Flycatcher (Melaenornis silens), Dark-capped Bulbul (Pycnonotus tricolor) as well as granivores such as Yellow Canary (Crithagra flaviventris) and Southern Masked Weaver (Ploceus velatus). Non-passerine bird taxa are represented by Laughing Dove (Spilopelia senegalensis), Cape Turtle Dove (Streptopelia capicola), Acacia Pied Barbet (Tricholaema leucomelas) and White-backed Mousebird (Colius colius).

- 2. Mixed open woodland: This unit is prominent on the northern parts of the proposed Dicoma and Setaria PV facilities. It is represented by tall microphyllous woodland dominated by Senegalia cf. hereroensis as well as other plant species that are similar in floristic composition to the bush clump mosaics. The tall vertical heterogeneity assists with the colonisation of a "Bushveld" bird association consisting of mainly insectivorous passerines. The latter composition is similar to the bird composition predicted for the bush clump mosaic habitat unit. Other noteworthy species include Crested Barbet (Trachyphonus vaillantii), Crimson-breasted Shrike (Laniarius atrococcineus) and Common Scimitarbill (Rhinopomastus cyanomelas).
- 3. Artificial livestock watering points: These are represented by artificial water troughs and reservoirs with the purpose to provide drinking water to livestock. However, they act as focal congregation areas for many granivore passerine and non-passerine species, including Cape Sparrow (Passer melanurus), Laughing Dove (Spilopelia senegalensis), Namaqua dove (Oena capensis), Scaly-feathered Weaver (Sporopipes squamifrons) and Wattled Starling (Creatophora cinerea).
- 4. Transformed areas: These are represented by an Eucalyptus sp. grove on the Dicoma PV facility and a small waster rock dump on the Setaria PV facility.

These are unimportant habitat for bird species, although the *Eucalyptus* grove could provide roosting habitat for certain non-passerine birds such as the Hadeda Ibis (*Bostrychia hagedash*).

Figure 5: A preliminary habitat map illustrating the avifaunal habitat types on the study site (the habitat types are subject to change pending the outcome of a detailed austral summer survey).

Figure 6: A collage of images illustrating examples of avifaunal habitat types on the study site observed during the austral winter season (August 2021): (a - d) open mixed dolomite grassland and bush clump mosaics, (e - f) mixed open woodland and (g - h) artificial livestock watering points and (i) an *Eucalyptus* sp. grove.

3.6 Species Richness and Predicted summary statistics

Approximately ~200 bird species are expected to occur on the study site and immediate surroundings (refer to Appendix 1 & Table 1). The expected richness was inferred from the South African Bird Atlas Project (SABAP1 & SABAP2) (Harrison et al., 1997; www.sabap2.birdmap.africa) and the presence of suitable habitat in the study area. The expected richness is also strongly correlated with favourable environmental conditions (e.g. during good rains) and seasonality (e.g. when migratory species are present). This equates to 20 % of the approximate 985³ species listed for the southern African subregion⁴ (and approximately 23 % of the 857 species recorded within South Africa⁵). However, the total species richness obtained from the pentad grid 2605_2605 corresponding to the study site contained 176 species, with an average number of 48 species for each full protocol card submitted (for observation of two hours or more). According to personal observations, the average number of species observed on the study site is *ca*. 70 species (obtained during the austral winter season of August 2021).

According to Table 1, the study site is poorly represented by biome-restricted⁶ (see Table 2) and local endemic bird species. It does support *ca.* 30 % of the near endemic species present in the subregion. Prominent wetland features and waterbodies are absent from the study site, thereby explaining the absence and low richness of waterfowl, wading birds and shorebird taxa.

Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2021), endemics and biome-restricted species (Marnewick et al., 2015) expected (*sensu* SABAP1 and SABAP2) to occur in the study site.

Description	Expected Richness Value***
Total number of species*	198 (23 %)
Number of Red Listed species*	11 (8 %)
Number of biome-restricted species - Zambezian and	3 (21 %)
Kalahari-Highveld Biomes)*	
Number of local endemics (BirdLife SA, 2018)*	2 (5 %)
Number of local near-endemics (BirdLife SA, 2018)*	7 (23 %)
Number of regional endemics (Hockey et al., 2005)**	16 (15 %)
Number of regional near-endemics (Hockey et al., 2005)**	21 (34 %)

^{*} only species in the geographic boundaries of South Africa (including Lesotho and Swaziland) were considered.

Avifauna Scoping Report

^{**} only species in the geographic boundaries of southern Africa (including Namibia, Botswana, Zimbabwe and Mozambique south of the Zambezi River) were considered

^{***} Percentage values in brackets refer to totals compared against the South African avifauna (sensu BirdLife SA, 2018).

³ sensu www.zestforbirds.co.za (Hardaker, 2020)

⁴ A geographical area south of the Cunene and Zambezi Rivers (includes Namibia, Botswana, Zimbabwe, southern Mozambique, South Africa, Swaziland and Lesotho).

⁵ With reference to South Africa (including Lesotho and Swaziland (BirdLife South Africa, 2018).

⁶ A species with a breeding distribution confined to one biome. Many biome-restricted species are also endemic to southern Africa.

Table 2: Expected biome-restricted species (Marnewick *et al*, 2015) likely to occur on the study site.

Species	Kalahari- Highveld	Zambezian	Expected Frequency of occurrence
Kalahari Scrub-robin (Cercotrichas paena)	Х		Common
White-throated Robin-chat (Cossypha humeralis)		Χ	Common
White-bellied Sunbird (Cinnyris talatala)		Χ	Common

3.7 Bird species of conservation concern

Table 3 provides an overview of bird species of conservation concern that could occur on the study site based on their historical distribution ranges and the presence of suitable habitat. According to Table 3, a total of 11 species could occur on the study site which includes six globally threatened species, one globally near threatened species, two regionally threatened species and two regionally near-threatened species.

It is evident from Table 3 that the highest reporting rates (>5%) were observed for the globally endangered Cape Vulture (*Gyps coprotheres*) and the globally critically endangered White-backed Vulture (*Gyps africanus*). These species have a high likelihood of occurrence pending the presence of suitable food (livestock carcasses).

The regionally vulnerable Lanner Falcon (*Falco biarmicus*), globally endangered Lappet-faced Vulture (*Torgos tracheliotos*) and globally near threatened Red-footed Falcon (*Falco vespertinus*) show reporting rates between 2% and 5%. These species have a moderate probability of occurrence and are regarded as occasional foraging visitors to the area.

The remaining species have low reporting rates (<2%) and are regarded as irregular foraging visitors with low probabilities of occurrence. However, during the brief scoping site visit it was noticed that extensive areas of suitable foraging habitat persists for some of these species (e.g. Secretarybird Sagittarius serpentarius) despite being ominously absent from the area. It is possible that the low reporting rates reflect the poor coverage of the study area by citizen scientists (e.g. birdwatchers), and some of these species could occur in higher numbers due to being overlooked. As an example, Red-footed Falcons (F. vespertinus) often occur in flocks of the similar-looking Amur Falcon (F. amurensis), which based on reporting rates appear to be a common summer visitor to the area. Therefore, it is highly possible that Red-footed Falcons were previously overlooked or misidentified.

Table 3: Bird species of conservation concern that could utilise the study site based on their historical distribution range and the presence of suitable habitat. Red list categories according to the IUCN (2021)* and Taylor et al. (2015)**.

Species	Global Conservation Status*	National Conservation Status**	Mean Reporting rate: SABAP1 (n=142)	Mean Reporting rate: SABAP2 (n=64)	Preferred Habitat	Potential Likelihood of Occurrence
Anthropoides paradiseus (Blue Crane)	Vulnerable	Near threatened	47.18	-	Prefers open grasslands. Also forages in wetlands, pastures and agricultural land.	Potential vagrant or highly irregular foraging visitor.
Aquila rapax (Tawny Eagle)	Endangered-	Endangered	2.11	-	Lowveld and Kalahari savannas, especially game farming areas and reserves	An irregular visitor or vagrant to the study site.
Ciconia abdimii (Abdim's Stork)	-	Near threatened	7.75	-	Open stunted grassland, fallow land and agricultural fields.	An uncommon summer foraging visitor to areas consisting of secondary grassland or arable land.
Falco vespertinus (Red-footed Falcon)	Near threatened	Near threatened	2.11	3.13	Varied, prefers to hunt open arid grassland and savannoid woodland, often in company with Amur Falcons (F. amurensis).	An occasional summer foraging visitor to the area.
Falco biarmicus (Lanner Falcon)	-	Vulnerable	2.82	9.1 (for pentad 2605_2605)	Varied, but prefers to breed in mountainous areas.	An occasional foraging visitor to the study area.
Gyps coprotheres (Cape Vulture)	Endangered	Endangered	17.16	9.1 (for pentad 2605_2605)	Mainly confined to mountain ranges, especially near breeding	A regular foraging/scavengin g visitor to the study site pending the presence of food (e.g. livestock

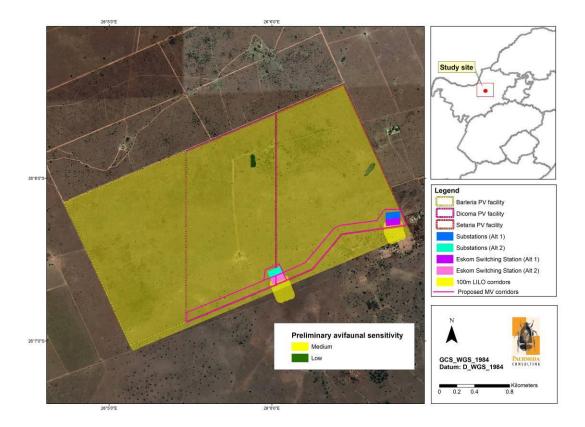
Species	Global Conservation Status*	National Conservation Status**	Mean Reporting rate: SABAP1 (n=142)	Mean Reporting rate: SABAP2 (n=64)	Preferred Habitat	Potential Likelihood of Occurrence
					site. Ventures far afield in search of food.	carcasses).
Gyps africanus (White-backed Vulture)	Critically Endangered	Critically Endangered	16.18	4.5 (for pentad 2605_2605)	Breed on tall, flat-topped trees. Mainly restricted to large rural or game farming areas.	A regular foraging/scavengin g visitor to the study site pending the presence of food (e.g. livestock carcasses).
Leptoptilos crumeniferus (Marabou Stork	-	Near threatened	0.70	1.56	Varied, from savanna to wetlands, pans and floodplains – dependant of game farming areas	An irregular scavenging visitor to the area.
Polemaetus bellicosus (Martial Eagle)	Endangered	Endangered	-	4.5 (for pentad 2605_2605)	Varied, from open karroid shrub to lowland savanna.	An irregular foraging visitor. It was last recorded from pentad 2605_2605 south of the study site on 28 Jan 2012.
Sagittarius serpentarius (Secretarybird)	Endangered	Vulnerable	2.45	1.56	Prefers open grassland or lightly wooded habitat.	Regarded as an irregular foraging visitor to the study site despite the widespread presence of suitable foraging habitat.
Torgos tracheliotos (Lapped-faced Vulture)	Endangered	Endangered	5.63	4.69	Lowveld and Kalahari savanna; mainly on game farms and reserves	A regular foraging/scavenging visitor to the study site pending the presence of food (e.g. livestock carcasses).

3.8 Preliminary avifaunal sensitivity

A preliminary sensitivity map was compiled, illustrating habitat units comprising of potential sensitive elements based on the following arguments (Figure 7):

Areas of medium sensitivity

It includes open mixed woodland, artificial livestock watering points and extensive open grassland and bush clump mosaics. The mixed woodland was often used as roosting platforms for vultures (observed during the dry season survey in August 2021) and supported areas where a higher number of bird species are anticipated to occur.


The artificial livestock watering points attracted large numbers of granivore passerine and non-passerine bird species, of which many need to drink water on a daily basis. The placement of electrical infrastructure in close proximity to these areas could increase potential avian collisions with the infrastructure. These areas are therefore of artificial origin, but could be relocated to other areas.

The extensive open grassland and bush clump mosaics provide potential suitable foraging habitat for some collision-prone bird species, including the Northern Black Korhaan (*Afrotis afraoides*) with the potential to interact (e.g. collide) with the proposed electrical infrastructure. However, reporting rates for threatened and near threatened bird species are anticipated to be relatively low, thereby suggesting a medium sensitivity rating instead of a high sensitivity even though the majority of the habitat is natural. In addition, the open grassland and bush clump mosaics are widespread in the region.

Areas of low sensitivity

These habitat units are represented by transformed types and include a waste rock dump and a *Eucalyptus* plantation.

The preliminary sensitivity map shows a large surface area that is earmarked with medium sensitivity. There is a probability that some of these units or part thereof could have higher (or lower) sensitivity ratings. It is therefore expected that some of the units or part thereof could represent different sensitivity ratings to those displayed in Figure 8 pending the outcome of a detailed austral summer season survey.

Figure 7: A map illustrating the preliminary avifaunal sensitivity of the area based on habitat types supporting bird taxa of conservation concern and important ecological function.

3.9 Overview of Avian Impacts at Solar Facilities

3.9.1 Background to solar facilities and their impact on birds

Birds are mobile, and are therefore also more readily affected by solar facilities than other taxonomic groups (e.g. mobile mammals that could move away from the facilities due to displacement). In fact, birds are also vulnerable to impacts caused by other types of energy facilities such as overhead power lines and wind farms. Little information is available on the impacts of solar energy facilities on birds although Gunerhan et al. (2009), McCrary et al. (1986), Tsoutsos et al. (2005) and the recent investigation reports on bird fatalities in the USA by Kagen et al. (2014) and Walston et al. (2016) provide discussions thereof. These studies have shown that avian fatalities vary greatly between the geographic positions of the solar facilities and also depend on the type of solar facility. In addition, very few of the large solar facilities in operation undertake systematic monitoring of avian fatalities, which explains the lack of detailed information of avian impacts. According to these studies conducted at both Concentrated Solar Power (CSP) and PV facilities, avian incidental fatalities range from 14 to over 180 birds which were summarised over a survey period conducted during one to three years. According to the Walston et al. (2016) assessment, the average annual mortality rate for known utility-scale solar facilities

(the annual number of estimated bird deaths per megawatt of electrical capacity) is 2.7, and 9.9 for known and unknown fatalities (which include carcasses found on the project site of which the death is not known). McCrary *et al.* (1986) found an average rate of mortality of 1.9-2.2 birds per week affecting 0.6-0.7% of the local bird population. However, most of the avian fatalities at these solar facilities are also probably underestimated since 10-30% of dead birds are removed by scavengers before being noted. From these analyses and assessments it was evident that:

- Medium levels of bird fatalities occur at PV sites when compared to CSP sites (when taking powerline collisions into account).
- Approximately 81 % of all avian mortalities were caused by collisions, including collisions with electrical distribution lines.
- Most of the mortalities were small passerines (especially swallows).
- Fatalities at these solar facilities also include waterbirds (e.g. grebes, herons and gulls) which were probably attracted by the apparent "lake effect" caused by the reflective surface of the PV panels.
- Approximately 10-11 % of the fatalities consists of waterbirds, but could be as high as 49 % at certain facilities.
- It is unclear if the "lake effect" caused by the panels (at PV facilities) or mirrors (at CSP facilities) are the main cause of birds colliding or interacting with the infrastructure (since both waterbirds and other passerines are colliding with the infrastructure).
- Most of the fatalities are of resident birds as opposed to migratory species.

In a review report by Harrison *et al.* (2016), an attempt was made to provide evidence of the impacts caused by solar PV facilities alone (not combined with CSP facilities) on birds in the UK. These authors reviewed approximately 420 scientific documents, including 37 so-called "grey" literature from non-government and government organisations for any evidence relating to the ecological impacts of solar PV facilities. Their main findings were as follows:

- The majority of the documents were not relevant and peer-reviewed documents of experimental scientific evidence on avian fatalities were nonexistent.
- Results based on carcass searches suggest that the bird collision risk at PV developments are low, although these studies did not take collision by overhead power lines into account.
- Many of the documents recommended that PV developments in close proximity to protected areas should be avoided.
- The PV panels reflect polarised light, which can attract polarotactic insects with potential impact to their reproductive biology. In addition, the polarising effect of the PV panels may also induce drinking behaviour in some birds, which may mistake the panels for water.

They conclude that impact assessment reports should consider taxon-specific requirements of birds and their guilds.

3.9.2 Potential impacts of PV solar facilities on birds

The magnitude and significance of impacts to birds caused by solar facilities will depend on the following factors:

- The geographic locality of the planned solar facility;
- The size or surface extent of the solar facility;
- The type of solar facility (according to the technologies applied, e.g. PV or Concentrated Solar Power (CSP)); and
- The occurrence of collision-prone bird species (which are often closely related to the locality of the solar facility).

Any planned solar facility corresponding to an area with many threatened, rangerestricted or collision-prone species will have a higher impact on these birds. In addition, any planned solar facility located in close proximity to important flyways, wetland systems or roosting/nesting sites used by the aforementioned species will have a higher impact.

The main impacts associated with PV solar facilities include (Jenkins et al., 2017):

- The loss of habitat and subsequent displacement of bird species due to the ecological footprint required during construction;
- Disturbances caused to birds during construction and operation;
- Direct interaction (collision trauma) by birds with the surface infrastructure (photovoltaic panels) caused by polarised light pollution and/or waterbirds colliding with the panels (as they are mistaken for waterbodies);
- Collision with associated infrastructure (mainly overhead powerlines and reticulation);
- Attracting novel species to the area (owing to the artificial provision of new habitat such as perches and shade) which could compete with the residing bird population.

3.10 Potential Impacts associated with the Dicoma, Barleria and Setaria PV Solar Energy Facilities

Table 4 provides a preliminary summary of the impacts anticipated and a preliminary quantification thereof.

3.10.1 Loss of habitat and displacement of birds

Most of the study site will cleared of vegetation and habitat to accommodate the panel arrays and associated infrastructure. Clearing of vegetation will inevitably result in the loss of habitat and displacement of bird species. From the preliminary results it is evident that large-bodied species are more likely to become displaced as opposed to small passerine species. It is particularly biome-restricted, endemic and conservation important species that are likely to become displaced, as well as habitat

specialists (e.g. grassland specialists) which will disappear from the area. These include mainly passerine and smaller non-passerine species inhabiting the untransformed dolomite grasslands and bush clump mosaics.

To quantify the impact it is necessary to calculate the number of birds (density) lost or displaced by the activity, including estimated density values of important species per unit area of habitat. This will be conducted during an austral summer season survey of the proposed PV facilities. From a preliminary analysis, the following bird species are most likely to be impacted by the loss of habitat due to their habitat requirements, fecundity and conservation status (although not limited to) due to the proposed development:

- Northern Black Korhaan (Afrotis afraoides);
- Melodious Lark (Mirafra cheniana);
- Kalahari Scrub Robin (Cercotrichas paena);
- White-browed Scrub-robin (Cossypha humeralis); and
- Orange River Francolin (Scleroptila gutturalis).

3.10.2 Interaction with overhead powerlines and reticulation

An overhead powerline is proposed in parallel to Eskom's existing powerlines. Birds are impacted in three ways by means of overhead powerlines (described below). It is however a common rule that large and heavy-bodied terrestrial bird species are more at risk of being affected in a negative way when interacting with powerlines in general. These include the following:

Electrocution

Electrocution happens when a bird bridges the gap between the live components or a combination of a live and earth component of a power line, thereby creating a short circuit. This happens when a bird, mainly a species with a fairly large wingspan attempts to perch on a tower or attempts to fly-off a tower. Many of these species include vultures (of the genera *Gyps* and *Torgos*) as well as other large birds of prey such as the Martial Eagle (*Polemaetus bellicosus*) (Ledger & Annegarn, 1981; Kruger, 1999; Van Rooyen, 2000). These species will attempt to roost and even breed on the tower structures if available nesting platforms are a scarce commodity in the area. Other types of electrocutions happen by means of so-called "bird-streamers". This happens when a bird, especially when taking off, excretes and thereby causes a short-circuit through the fluidity excreta (Van Rooyen & Taylor, 1999).


Large transmission lines (from 220 kV to 765 kV) are seldom a risk of electrocution, although smaller distribution lines (88 – 132kV) pose a higher risk. However, for this project, the design of the pylon is an important consideration in preventing bird


electrocutions. The proposed pylon design must incorporate the following design parameters:

- The clearances between the live components should exceed the wingspan of any bird species;
- The height of the tower should allow for unrestricted movement of terrestrial birds between successive pylons;
- The live components should be "bundled" to increase the visibility for approaching birds;
- "Bird streamers" should be eliminated by discouraging birds from perching above the conductors.

It is therefore recommended that the pylon design incorporates "features as illustrated by Figure 8⁷.

From Figure 8 it is clear that perching of birds is discouraged by the addition of diagonal crossbars or by doing away with the crossbars that holds the conductors in place. Bird "streamers" are also eliminated by fitting the poles with bird guards/spikes above the conductors. However, safe perching is facilitated by the fitment of a horizontal bar on top of the pole structure without the risk of electrocution (due to the perpendicular orientation of the bar relative to the conductors).

Figure 8: Two bird-friendly tower designs to be used for the current project.

⁷ Please note that these are examples of recommended pylon designs. These are taken from steel monopole pylons.

Collision

Collisions with earth wires have probably accounted for most bird-powerline interactions in South Africa. In general, the earth wires are much thinner in diameter when compared to the live components, and therefore less visible to approaching birds. Many of the species likely to be affected include heavy, large-bodied terrestrial species such as bustards, korhaans and a variety of waterbirds that are not very agile or manoeuvrable once airborne. These species, especially those with the habit of flying with outstretched necks (e.g. most species of storks) find it difficult to make a sudden change in direction while flying – resulting in the bird flying into the earth wires.

Areas where bird collisions are likely to be high could be ameliorated by marking the lines with appropriate bird deterrent devices such as "bird diverters" and "flappers" to increase the visibility of the lines.

 Physical disturbances and habitat destruction caused during construction and maintenance

It is anticipated that part of the power line servitude will be cleared of vegetation. In addition, construction activities go hand in hand with high ambient noise levels. Although construction is considered temporary, many species will vacate the area during the construction phase and will become temporarily displaced.

The artificial livestock watering points also deserve special consideration since these features are often overlooked or neglected during the construction of power lines as they often attract large numbers of small passerine birds and birds of prey (the latter often include falconiform taxa which hunt small passerines). Construction activities in close proximity to these features could possibly displace these individuals from the area or increase the risk of collision. Nevertheless, these features could easily be removed or relocated to other areas.

Table 4: A preliminary summery of impacts associated with the proposed PV facility and its infrastructure.

Issue 1	Nature of Impact	Extent	No-Go Areas		
Impact: Losses of natural habitat and displacement of birds through physical transformation, modifications, removals and land clearance. This impact is mainly restricted to the					
construction phase and is permanent.					
Habitat destruction and disturbance and/or displacement	Negative, especially for large or terrestrial bird				
of birds	species.	Local	N/a		
Description of expected significance of impact: The impact will be of a long duration, (prior to mitigation). The impact is expected to have a medium significance after proposed					
mitigation suggestions and if the sensitivity map is considered.					
Gaps in knowledge and recommendations for further st	tudy: A wet season survey is proposed to determine	e relative bird densities and distribution	ranges.		

Issue 2	Nature of Impact	Extent	No-Go Areas		
Impact: Avian collision impacts related to the PV facility during the operational phase (collision with the PV panels).					
Potential collision of birds with the PV panel structures	Negative, especially for waterbirds.	Local	N/a		
Description of expected significance of impact: The impact will be of a long duration (prior to mitigation). The impact i expected to have a low significance during recommended					
mitigation recommendations					
Gaps in knowledge and recommendations for further s	tudy: A wet season survey is proposed to determine	occurrence of waterbird species.			

Issue 3	Nature of Impact	Extent	No-Go Areas			
Impact: Avian collision impacts related to the powerline reticulation and new distribution lines during operation.						
Potential collision due to electrical distribution	Potential collision due to electrical distribution Negative, especially for vultures Regional N/a					
Description of expected significance of impact: The impact will be of a long duration (prior to mitigation). and highly probable with a high significance, but may be reduced to a						
medium significance as per recommended mitigation measures (top be assessed during the EIA phase).						
Gaps in knowledge and recommendations for further st	udy: A wet season survey is proposed to determine	occurrence of collision prone bird spe	cies.			

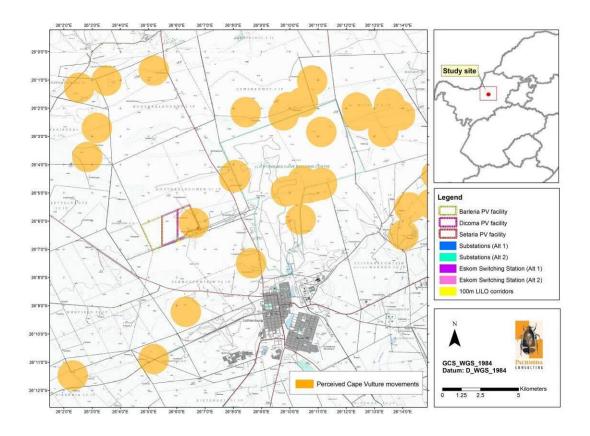
3.11 Collision-prone bird species

A total of 43 collision-prone bird species have been recorded from the study area, of which 20 species are birds of prey (Table 5). Three of these species are vulture species (Cape Vulture *Gyps coprotheres*, White-backed Vulture *Gyps africanus* and Lappet-faced Vulture *Torgos tracheliotos*). Those species with mean reporting rates higher than 10% are regarded to be regular on the site and includes the highly collision-prone and critically endangered White-backed Vulture (*Gyps africanus*).

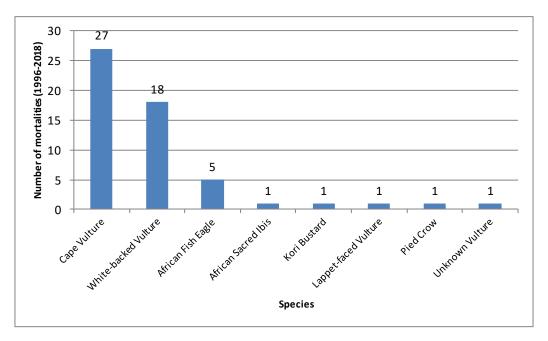
Table 5: Collision-prone bird species and Red listed species (in red) expected to be present on the study site inferred from the South African Atlas Project (SABAP1 & SABAP2).

Species name	Taxonomic name	National conservation status (sensu Taylor et al. (2015)	Mean SABAP2 Reporting Rate (%)	Mean SABAP1 Reporting Rate (%)
Pigeon, Speckled	Columba guinea	·	62.50	69.12
Ibis, Hadeda	Bostrychia hagedash		56.25	81.86
Egret, Western Cattle	Bubulcus ibis		45.31	78.92
Spurfowl, Swainson's	Pternistis swainsonii		42.19	36.27
Guineafowl, Helmeted	Numida meleagris		40.63	59.80
Crow, Pied	Corvus albus		40.63	85.78
Duck, Yellow-billed	Anas undulata		35.94	63.73
Korhaan, Northern Black	Afrotis afraoides		31.25	52.94
Kite, Black-winged	Elanus caeruleus		31.25	59.80
Ibis, Glossy	Plegadis falcinellus		20.31	14.71
Heron, Black-headed	Ardea melanocephala		17.19	47.06
Goose, Egyptian	Alopochen aegyptiacus		17.19	60.78
Francolin, Orange River	Scleroptila gutturalis		15.63	15.20
Dove, Rock	Columba livia		14.06	7.84
Kite, Yellow-billed	Milvus aegyptius		12.50	7.84
Vulture, White-backed	Gyps africanus	Critically Endangered	10.94	16.18
Ibis, African Sacred	Threskiornis aethiopicus		10.94	60.29
Vulture, Cape	Gyps coprotheres	Endangered	7.81	17.16
Goose, Spur-winged	Plectropterus gambensis		6.25	43.14
Hamerkop, Hamerkop	Scopus umbretta		4.69	12.75
Falcon, Lanner	Falco biarmicus	Vulnerable	4.69	2.82
Vulture, Lappet-faced	Torgos tracheliotos	Endangered	4.69	5.63
Harrier-Hawk, African	Polyboroides typus		3.13	0.00
Eagle-owl, Spotted	Bubo africanus		3.13	1.47
Snake-eagle, Black-chested	Circaetus pectoralis		3.13	1.47
Buzzard, Common (Steppe)	Buteo buteo vulpinus		3.13	10.29
Falcon, Red-footed	Falco vespertinus	Near threatened	3.13	2.11

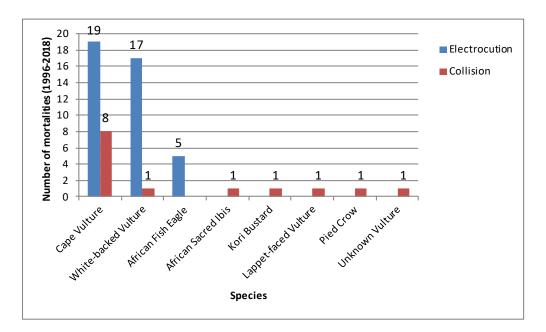
Gull, Grey-headed	Chroicocephalus cirrocephalus		3.13	2.11
Francolin, Coqui	Peliperdix coqui		3.13	2.45
Kestrel, Greater	Falco rupicoloides		3.13	27.94
Eagle, Martial	Polemaetus bellicosus	Endangered	1.56	0.00
Snake-eagle, Brown	Circaetus cinereus		1.56	0.00
Kite, Black	Milvus migrans		1.56	0.70
Stork, Marabou	Leptoptilos crumeniferus	Near threatened	1.56	0.70
Secretarybird	Sagittarius serpentarius	Vulnerable	1.56	2.45
Crow, Cape	Corvus capensis		1.56	20.59
Owl, Western Barn	Tyto alba		1.56	6.37
Goshawk, Southern Pale Chanting	Melierax canorus		-	0.70
Eagle, Tawny	Aquila rapax	Endangered	-	2.11
Crane, Blue	Anthropoides paradiseus	Near threatened	-	47.18
Owl, Marsh	Asio capensis		-	5.63
Stork, White	Ciconia ciconia		-	6.34
Stork, Abdim's	Ciconia abdimii	Near threatened	-	7.75


The study site does not coincide with any prominent wetland system or impoundment which could increase the risk of waterbird collisions with the proposed electrical infrastructure.

3.11.1 *Vultures*


Three species of vulture occur in the study area, which are prone towards electrocution and collision with powerlines. These include the globally critically endangered White-backed Vulture (Gyps africanus), the globally endangered Cape Vulture (G. coprotheres) and the globally endangered Lapped-faced Vulture (Torgos tracheliotos). These species are of international significance and any mortality of adult individuals could have a negative effect on its species' population recruitment. Most of these suffer from a shortage of food supplies which is responsible for low reproductive rates, especially for Cape Vultures (Taylor et al., 2015). In addition, most of these species also tend to congregate at mammalian carcasses, where they feed in large groups, especially in terms of Cape Vultures. In addition, Cape Vultures also typically search for food in groups. It is such congregations which increase the risk of mortalities whenever these individuals forage or roost in close proximity to powerlines. For example, the proposed study area coincides with the foraging rangeland of Cape Vultures as evidenced by dispersal data obtained from vulture individuals fitted with satellite tracking devices and the movements of this species should be considered during the EIA phase of the assessment (Figure 9).

The highest number of mortalities due to electrocution and collision recorded in the study region pertains to Cape Vultures (*Gyps coprotheres*) and White-backed Vultures (*Gyps africanus*) (according to the electrical infrastructure mortality incident register) (Figure 10). Most of the mortalities were caused during electrocution from


smaller distribution lines in the area, although a significant number of Cape Vulture mortalities (c. 30 %) were also caused by collisions with transmission lines (Figure 11). There is a definite correlation between the size (in terms of voltage) of the powerline and the type of mortality, whereby electrocution incidents were prominent from distribution lines, while collisions were caused by transmission lines. Therefore, it is postulated that risk of collision mortalities in vulture species in the area will remain when considering the proposed powerline will be placed alongside existing powerlines. Most of the powerline interactions also occurred in the Ventersdorp and Lichtenburg area (Figure 12), with a single mass mortality involving 10 Cape Vultures and eight White-backed Vultures on 09 March 2009 It clearly shows that when these species congregate (for example when feeding from a carcass in close proximity to a powerline or when roosting on pylons or nearby structures in close proximity to powerlines), the risk of mortality due to both electrocution and collision is greatly increased.

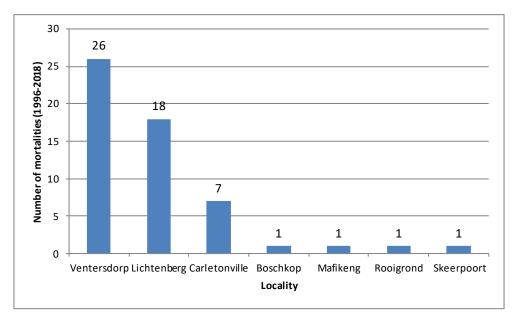

Figure 9: The occurrence of Cape Vultures (*Gyps coprotheres*) within the study region fitted with satellite trackers.

Figure 10: The number of mortalities (electrocutions and collisions) per bird species due to transmission and distribution lines in the study area (1996-2018).

Figure 11: The number of mortalities per bird species caused by electrocutions (distribution lines) and collisions (transmission lines) (1996-2018).

Figure 12: The number of bird mortalities caused by power lines per geographic locality (1996-2018), including the Lichtenburg area.

4. PLAN OF STUDY FOR THE EIA PHASE

Due to the limited level of detail that is normally implemented during a scoping assessment, it is imperative that detailed avifaunal investigations be conducted on the study area at an appropriate season.

4.1 Proposed approach and methods

The following methods are proposed during an austral summer season survey:

- Active searching and the compilation of a bird inventory while traversing much of the available habitat types;
- The determination of the occurrence of Red Data species and collisionprone bird species;
- The identification and mapping of suitable habitat for species of conservation concern while focussing on structural and topographical cues;
- A landscape analysis of important flyways or daily flight paths corresponding to important landscape features; and
- Density estimates will be collected by means of point counts to evaluate the dominant/typical species and their respective relative densities at each site. At each point the number of bird species seen will be recorded, as well as their respective abundances and distance from the observer (by means of a rangefinder). The data generated from the point counts will be analysed according to Clarke & Warwick (1994) based on the computed percentage contribution (%) of each species including the consistency (calculated as the similarity coefficient/standard deviation) of its contribution to the each habitat type.

5. REFERENCES

Birdlife South Africa. 2018. BirdLife South Africa Checklist of Birds in South Africa, 2018.

Clarke, K.R. & Warwick, R.M. 1994. Changes in marine communities: An approach to statistical analysis and interpretation. Natural Environmental Research Council, United Kingdom.

Convention on Biological Diversity. Signed 1993 and ratified 2 November 1995.

Geoterrainimage. 2015. The South African National Land cover Dataset. Version 05.

Gill, F, D Donsker, & P Rasmussen (Eds). 2021. IOC World Bird List (v 11.2). Doi 10.14344/IOC.ML.10.2. http://www.worldbirdnames.org/.

Gunerhan, H., Hepbasli, A. & Giresunlu, U. 2009. Environmental impacts from the solar energy systems. Energy Sources, Part A: *Recovery, Utilization and Environmental Effects* 31: 131-138.

Hardaker, T. 2018. Southern African Bird List - Version 08 - 11 March 2018.

Harrison, C., Lloyd, H. & Field, C. 2016. *Evidence review of the impact of solar farms on birds, bats and general ecology.* NEER012 report, Manchester Metropolitan University, UK.

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.). 1997. *The Atlas of Southern African Birds. Vol. 1 & 2*. BirdLife South Africa, Johannesburg.

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. (eds.) 2005. *Roberts – Birds of Southern Africa*, VIIth ed. The Trustees of the John Voelker Bird Book Fund, Cape Town.

IUCN Red List of Threatened Species. Version 2021. http://www.iucnredlist.org/.

Jenkins, A.R, Ralston-Paton, S & Smit-Robinson, H.A. 2017. Best practice guidelines: Birds and Solar Energy. Guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa. BirdLife South Africa.

Kagen, R.A., Verner, T.C., Trail, PW & Espinoza, E.O. 2014. Avian mortality at solar energy facilities in southern California: A preliminary analysis. Unpublished report by the National Fish and Wildlife Forensics Laboratory, USA.

Kruger, R. 1999. *Towards solving raptor electrocutions on Eskom Distribution Structures in South Africa*. M. Phil. Mini-thesis. University of the Orange Free State. Bloemfontein. South Africa.

Ledger, J. & Annegarn, H.J. 1981. Electrocution Hazards to the Cape Vulture (*Gyps coprotheres*) in South Africa. *Biological Conservation* 20: 15-24.

Marnewick, M.D., Retief, E.F., Theron, N.T., Wright, D.R. And Anderson, T.A. 2015. *Important Bird and Biodiversity Areas of South Africa*. Johannesburg: BirdLife South Africa.

McCrary, M.D., McKernan, R.L., Schreiber, R.W., Wagner, W.D. & Sciarotta, T.C. 1986. Avian mortality at a solar energy power plant. *Journal of Field Ornithology* 57: 135-141.

Mucina, L. & Rutherford, M.C. (eds.). 2006. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia 19*. South African National Biodiversity Institute, Pretoria.

National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004).

Pachnoda Consulting. 2018. Development of the Lichtenburg 3 PV solar energy facility and associated infrastructure on a site near Lichtenburg, North West Province. A report compiled for Savanna Environmental.

Taylor, M.R., Peacock, F. & Wanless, R. (eds.). 2015. *The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland*. BirdLife South Africa, Johannesburg

Tsoutsos, T., Frantzeskaki, N. & Gekas, V. 2005. Environmental impacts from solar energy technologies. *Energy Policy* 33: 289-296.

Van Rooyen, C.S. 2000. An overview of Vulture Electrocutions in South Africa. *Vulture News* 43: 5-22.

Van Rooyen, C.S. & Taylor, P.V. 1999. *Bird streamers as probable cause of electrocutions in South Africa*. EPRI Workshop on Avian Interactions with Utility Structures, Charleston, South Carolina.

Vosloo, H. 2003. Birds and power lines. ESI Africa 3: 38.

Walston Jr. L.J., Rollins, K.E., LaGory, K.E., Smith, K.P. & Meyers, S.A. 2016. A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. *Renewable Energy* 92 (2016) 405-414.

www.sabap2.birdmap.africa

Appendix 1: A shortlist of bird species expected to be present on the study area. The list provides an indication of the species occurrence according to SABAP1 and SABAP2 reporting rates.

Ref	Species name	Taxonomic name	SABAP2 Reporting Rate (%)			SABAP1 Reporting
			Full protocol	Adhoc protocol	Incidentals	Rate (%)
533	Babbler, Arrow-marked	Turdoides jardineii	3.13	protect.		27.45
432	Barbet, Acacia Pied	Tricholaema leucomelas	37.50			56.37
431	Barbet, Black-collared	Lybius torquatus	29.69			58.33
439	Barbet, Crested	Trachyphonus vaillantii	64.06			76.96
673	Batis, Chinspot	Batis molitor				38.71
404	Bee-eater, European	Merops apiaster	26.56			16.67
410	Bee-eater, Little	Merops pusillus	4.69			11.27
411	Bee-eater, Swallow-tailed	Merops hirundineus	1.56			3.52
409	Bee-eater, White-fronted	Merops bullockoides	12.50			4.90
808	Bishop, Southern Red	Euplectes orix	59.38			40.20
812	Bishop, Yellow-crowned	Euplectes afer	4.69			6.37
722	Bokmakierie, Bokmakierie	Telophorus zeylonus	45.31			50.49
709	Boubou, Southern	Laniarius ferrugineus	3.13			25.49
731	Brubru, Brubru	Nilaus afer	1.56			1.41
544	Bulbul, African Red-eyed	Pycnonotus nigricans	43.75			63.73
545	Bulbul, Dark-capped	Pycnonotus tricolor	35.94			46.57
872	Bunting, Cinnamon-breasted	Emberiza tahapisi	14.06			10.29
874	Bunting, Golden-breasted	Emberiza flaviventris				7.35
871	Bunting, Lark-like	Emberiza impetuani	1.56			0.70
723	Bush-shrike, Grey-headed	Malaconotus blanchoti	1.56			0.00
196	Buttonquail, Kurrichane	Turnix sylvaticus				0.70
154	Buzzard, Common (Steppe)	Buteo buteo vulpinus	3.13	16.67		10.29
860	Canary, Black-throated	Crithagra atrogularis	40.63			41.18
866	Canary, Yellow	Crithagra flaviventris	60.94			37.25
859	Canary, Yellow-fronted	Crithagra mozambicus				8.82
575	Chat, Anteating	Myrmecocichla formicivora	43.75	33.33		63.73
570	Chat, Familiar	Oenanthe familiaris	4.69			2.94
631	Cisticola, Cloud	Cisticola textrix	18.75			2.45
630	Cisticola, Desert	Cisticola aridulus	15.63			3.43
646	Cisticola, Levaillant's	Cisticola tinniens	40.63			16.18
642	Cisticola, Rattling	Cisticola chiniana	10.94			1.47
629	Cisticola, Zitting	Cisticola juncidis	37.50			4.90
504	Cliff-swallow, South African	Petrochelidon spilodera	29.69			34.80
4131	Coucal, Burchell's	Centropus burchellii	20.31			46.08
278	Courser, Double-banded	Rhinoptilus africanus				2.82
277	Courser, Temminck's	Cursorius temminckii				2.94
216	Crane, Blue	Anthropoides paradiseus				47.18

Ref	Species name	Taxonomic name	SABAP2 Reporting Rate (%)			SABAP1 Reporting
			Full protocol	Adhoc protocol	Incidentals	Rate (%)
621	Crombec, Long-billed	Sylvietta rufescens	3.13			0.70
523	Crow, Cape	Corvus capensis	1.56			20.59
522	Crow, Pied	Corvus albus	40.63			85.78
344	Cuckoo, Black	Cuculus clamosus				1.61
352	Cuckoo, Diderick	Chrysococcyx caprius	32.81			32.35
346	Cuckoo, Great Spotted	Clamator glandarius				0.70
348	Cuckoo, Jacobin	Clamator jacobinus				4.84
351	Cuckoo, Klaas's	Chrysococcyx klaas				2.45
347	Cuckoo, Levaillant's	Clamator levaillantii				1.61
343	Cuckoo, Red-chested	Cuculus solitarius				24.19
317	Dove, Laughing	Spilopelia senegalensis	93.75	16.67	1	90.69
318	Dove, Namaqua	Oena capensis	9.38	16.67		33.82
314	Dove, Red-eyed	Streptopelia semitorquata	71.88	16.67	1	78.92
940	Dove, Rock	Columba livia	14.06			7.84
517	Drongo, Fork-tailed	Dicrurus adsimilis	1.56	16.67		77.42
96	Duck, Yellow-billed	Anas undulata	35.94			63.73
142	Eagle, Martial	Polemaetus bellicosus	1.56			0.00
134	Eagle, Tawny	Aquila rapax				2.11
368	Eagle-owl, Spotted	Bubo africanus	3.13			1.47
61	Egret, Western Cattle	Bubulcus ibis	45.31			78.92
600	Eremomela, Yellow-bellied	Eremomela icteropygialis				0.70
119	Falcon, Amur	Falco amurensis	21.88			13.38
114	Falcon, Lanner	Falco biarmicus	4.69			2.82
120	Falcon, Red-footed	Falco vespertinus	3.13			2.11
820	Finch, Red-headed	Amadina erythrocephala	28.13			61.97
789	Weaver (=Finch), Scaly- feathered	Sporopipes squamifrons	20.31			6.37
837	Firefinch, Red-billed	Lagonosticta senegala	17.19			7.84
707	Fiscal, Southern	Lanius collaris	70.31	16.67		87.75
678	Flycatcher, Fairy	Stenostira scita				3.92
665	Flycatcher, Fiscal	Melaenornis silens	43.75			58.82
661	Flycatcher, Marico	Melaenornis mariquensis	6.25			5.88
654	Flycatcher, Spotted	Muscicapa striata	17.19			11.76
173	Francolin, Coqui	Peliperdix coqui	3.13			2.45
179	Francolin, Orange River	Scleroptila gutturalis	15.63			15.20
339	Go-away-bird, Grey	Corythaixoides concolor	18.75	16.67		41.18
89	Goose, Egyptian	Alopochen aegyptiacus	17.19			60.78
88	Goose, Spur-winged	Plectropterus gambensis	6.25			43.14
165	Goshawk, Southern Pale Chanting	Melierax canorus				0.70
192	Guineafowl, Helmeted	Numida meleagris	40.63	16.67		59.80
288	Gull, Grey-headed	Chroicocephalus cirrocephalus	3.13			2.11

Ref	Species name	Taxonomic name	SABAP2 Reporting Rate (%)			SABAP1 Reporting
			Full protocol	Adhoc protocol	Incidentals	Rate (%)
72	Hamerkop, Hamerkop	Scopus umbretta	4.69	process:		12.75
171	Harrier-Hawk, African	Polyboroides typus	3.13			0.00
55	Heron, Black-headed	Ardea melanocephala	17.19			47.06
440	Honeyguide, Greater	Indicator indicator	4.69			2.45
442	Honeyguide, Lesser	Indicator minor	3.13			0.98
418	Hoopoe, African	Upupa africana	42.19	16.67		77.45
424	Hornbill, African Grey	Lophoceros nasutus				12.75
81	Ibis, African Sacred	Threskiornis aethiopicus	10.94			60.29
83	Ibis, Glossy	Plegadis falcinellus	20.31			14.71
84	Ibis, Hadeda	Bostrychia hagedash	56.25			81.86
851	Indigobird, Village	Vidua chalybeata				4.90
122	Kestrel, Greater	Falco rupicoloides	3.13			27.94
125	Kestrel, Lesser	Falco naumanni	17.19			14.22
402	Kingfisher, Brown-hooded	Halcyon albiventris				18.63
128	Kite, Black	Milvus migrans	1.56			0.70
130	Kite, Black-winged	Elanus caeruleus	31.25	50.00	1	59.80
129	Kite, Yellow-billed	Milvus aegyptius	12.50	16.67		7.84
1035	Korhaan, Northern Black	Afrotis afraoides	31.25			52.94
247	Lapwing, African Wattled	Vanellus senegallus	1.56			3.43
245	Lapwing, Blacksmith	Vanellus armatus	68.75			73.53
242	Lapwing, Crowned	Vanellus coronatus	64.06			72.06
1183	Lark, Eastern Clapper	Mirafra fasciolata	15.63			24.02
488	Lark, Red-capped	Calandrella cinerea	1.56			6.34
456	Lark, Melodious	Mirafra cheniana	0.00			0.00
458	Lark, Rufous-naped	Mirafra africana	29.69			33.33
460	Lark, Sabota	Calendulauda sabota	3.13			4.93
474	Lark, Spike-heeled	Chersomanes albofasciata	20.31			25.98
703	Longclaw, Cape	Macronyx capensis	25.00			36.27
510	Martin, Banded	Riparia cincta	10.94			4.41
803	Masked-weaver, Southern	Ploceus velatus	76.56			69.12
392	Mousebird, Red-faced	Urocolius indicus	50.00	16.67		51.47
390	Mousebird, Speckled	Colius striatus	12.50	10.07		14.71
391	Mousebird, White-backed	Colius colius	48.44			54.90
734	Myna, Common	Acridotheres tristis	67.19	16.67		0.00
637	Neddicky	Cisticola fulvicapilla	15.63	10.07		12.75
371	Nightjar, European	Caprimulgus europaeus	15.00			0.70
372	Nightjar, Rufous-cheeked	Caprimulgus rufigena				4.84
521	Oriole, Black-headed	Oriolus larvatus	4.69			25.98
						6.37
		•	1.00			5.63
		•				2.94
359 361 365	Owl, Western Barn Owl, Marsh Owlet, Pearl-spotted	Tyto alba Asio capensis Glaucidium perlatum	1.56			

Ref	Species name	Taxonomic name	SABAP2 Reporting Rate (%)			SABAP1 Reporting
			Full	Adhoc protocol	Incidentals	Rate (%)
387	Palm-swift, African	Cypsiurus parvus	39.06			21.08
682	Paradise-flycatcher, African	Terpsiphone viridis	9.38			11.76
852	Paradise-whydah, Long-tailed	Vidua paradisaea	1.56			2.11
531	Penduline-tit, Cape	Anthoscopus minutus	1.56			0.00
311	Pigeon, Speckled	Columba guinea	62.50	16.67		69.12
692	Pipit, African	Anthus cinnamomeus	35.94			21.57
695	Pipit, Buffy	Anthus vaalensis				2.11
238	Plover, Three-banded	Charadrius tricollaris	32.81			25.98
282	Pratincole, Black-winged	Glareola nordmanni				0.70
650	Prinia, Black-chested	Prinia flavicans	65.63			31.37
649	Prinia, Tawny-flanked	Prinia subflava	7.81			3.92
830	Pytilia, Green-winged	Pytilia melba	1.56			2.82
189	Quail, Common	Coturnix coturnix				0.98
844	Quailfinch	Ortygospiza atricollis	9.38			4.90
805	Quelea, Red-billed	Quelea quelea	40.63			29.90
606	Reed-warbler, African	Acrocephalus baeticatus	18.75			1.96
581	Robin-chat, Cape	Cossypha caffra	18.75			61.27
582	Robin-chat, Whitethroated	Cossypha humeralis	-	-	-	-
412	Roller, European	Coracias garrulus	1.56			1.96
514	Tit, Ashy	Melaniparus cinerascens	-	-	-	-
413	Roller, Lilac-breasted	Coracias caudatus	1.56			14.08
421	Scimitarbill, Common	Rhinopomastus cyanomelas	14.06			20.97
586	Scrub-robin, Kalahari	Cercotrichas paena	29.69			18.14
588	Scrub-robin, White-browed	Cercotrichas leucophrys	1.56			1.47
105	Secretarybird	Sagittarius serpentarius	1.56			2.45
711	Shrike, Crimson-breasted	Laniarius atrococcineus	14.06	16.67		28.92
706	Shrike, Lesser Grey	Lanius minor	17.19			7.35
708	Shrike, Red-backed	Lanius collurio	26.56			16.67
146	Snake-eagle, Black-chested	Circaetus pectoralis	3.13			1.47
145	Snake-eagle, Brown	Circaetus cinereus	1.56			0.00
786	Sparrow, Cape	Passer melanurus	71.88	16.67		71.57
784	Sparrow, House	Passer domesticus	51.56	16.67		51.47
4142	Sparrow, Southern Grey-headed	Passer diffusus	17.19			6.86
780	Sparrow-weaver, White-browed	Plocepasser mahali	68.75			60.78
484	Sparrowlark, Chestnut-backed	Eremopterix leucotis	1.56			9.15
485	Sparrowlark, Grey-backed	Eremopterix verticalis				5.63
185	Spurfowl, Swainson's	Pternistis swainsonii	42.19		1	36.27
737	Starling, Cape Glossy	Lamprotornis nitens	28.13			82.35
746	Starling, Pied	Lamprotornis bicolor	7.81			39.22
735	Starling, Wattled	Creatophora cinerea	42.19			51.96
576	Stonechat, African	Saxicola torquatus	40.63			57.84

Ref	Species name	Taxonomic name	SABAP2 Reporting Rate (%)			SABAP1 Reporting
			Full	Adhoc protocol	Incidentals	Rate (%)
78	Stork, Abdim's	Ciconia abdimii	p.o.coc.	protect.		7.75
73	Stork, Marabou	Leptoptilos crumeniferus	1.56			0.70
80	Stork, White	Ciconia ciconia				6.34
772	Sunbird, Amethyst	Chalcomitra amethystina	6.25			18.63
755	Sunbird, Marico	Cinnyris mariquensis	1.56			0.00
763	Sunbird, White-bellied	Cinnyris talatala	9.38			35.29
493	Swallow, Barn	Hirundo rustica	31.25			35.78
502	Swallow, Greater Striped	Crecopis cucullata	48.44			36.76
498	Swallow, Pearl-breasted	Hirundo dimidiata				0.70
501	Swallow, Red-breasted	Crecopis semirufa	3.13	16.67		3.92
384	Swift, Horus	Apus horus				2.11
385	Swift, Little	Apus affinis	32.81			31.86
383	Swift, White-rumped	Apus caffer	28.13			18.63
714	Tchagra, Brown-crowned	Tchagra australis	7.81			6.86
275	Thick-knee, Spotted	Burhinus capensis	3.13			19.12
557	Thrush, Groundscraper	Turdus litsipsirupa	7.81			24.02
1104	Thrush, Karoo	Turdus smithi	57.81			66.18
658	Warbler, Chestnut-vented	Sylvia subcaerulea	40.63			30.88
316	Turtle-dove, Cape	Streptopelia capicola	17.19	16.67		58.82
106	Vulture, Cape	Gyps coprotheres	7.81			17.16
108	Vulture, Lappet-faced	Torgos tracheliotos	4.69			5.63
107	Vulture, White-backed	Gyps africanus	10.94			16.18
686	Wagtail, Cape	Motacilla capensis	57.81			86.27
607	Warbler, Marsh	Acrocephalus palustris	3.13			0.00
599	Warbler, Willow	Phylloscopus trochilus	9.38			5.39
839	Waxbill, Blue	Uraeginthus angolensis	20.31			4.41
843	Waxbill, Common	Estrilda astrild	17.19			6.37
838	Waxbill, Orange-breasted	Amandava subflava	3.13			1.96
840	Waxbill, Violet-eared	Granatina granatina	1.56			6.34
799	Weaver, Cape	Ploceus capensis	6.25			30.88
568	Wheatear, Capped	Oenanthe pileata	7.81			9.80
564	Wheatear, Mountain	Oenanthe monticola				11.76
1172	White-eye, Cape	Zosterops virens	25.00			66.18
594	Whitethroat, Common	Sylvia communis				0.70
846	Whydah, Pin-tailed	Vidua macroura	28.13			22.55
847	Whydah, Shaft-tailed	Vidua regia				0.70
818	Widowbird, Long-tailed	Euplectes progne	35.94	16.67		56.37
813	Widowbird, Red-collared	Euplectes ardens	3.13			2.11
814	Widowbird, White-winged	Euplectes albonotatus	20.31			4.41
419	Wood-hoopoe, Green	Phoeniculus purpureus	12.50			16.18
450	Woodpecker, Cardinal	Dendropicos fuscescens				8.06