DEVELOPMENT OF THE HARMONY ONE PLANT SOLAR PV FACILITY NEAR VIRGINIA, FREE STATE PROVINCE

Avifauna Scoping Report

July 2022

Compiled by:

Pachnoda Consulting CC Lukas Niemand Pr.Sci.Nat

PO Box 72847 Lynwood Ridge Pretoria 0040

Prepared for:

Savannah Environmental (Pty) Ltd

PO Box 148 Sunninghill Gauteng 2157 0040

EXECUTIVE SUMMARY

Pachnoda Consulting cc was requested by Savannah Environmental (Pty) Ltd on behalf of Freegold Harmony (Pty) Ltd to compile an avifauna scoping report for the proposed Harmony One Plant Solar PV facility and associated infrastructure with a contracted capacity of up to 30MW located in the town of Welkom and 14km north west of the town of Virginia, Free State Province.

The objectives of this phase of the project were to obtain a basic overview of the variation and general status of the avifaunal habitat types and expected bird species likely to be affected by the proposed project.

Five avifaunal habitat types were identified on the study site and surroundings, ranging from moist mixed and secondary grassland, grassy depressions and inundated quarries to transformed and landscape/manicured areas. The study site was also surrounded by a number of pans and the Witpan Dam, which provide habitat for a large number of waterbird taxa. A total of 178 bird species have been recorded within the study area, including 11 Red listed species (threatened and near threatened species).

The main potential impacts associated with the proposed PV solar facility are expected to be the following:

- The loss of habitat and subsequent displacement of bird species due to the ecological footprint required during construction.
- Direct interaction (collision trauma) by birds with the surface infrastructure (photovoltaic panels) caused by polarised light pollution and/or waterbirds colliding with the panels (as they are mistaken for waterbodies).
- Collision with associated infrastructure (mainly overhead powerlines and reticulation).

In addition, a total of 80 collision-prone bird species have been recorded from the study area (*sensu* atlas data), of which 62 species were waterbird and shorebird taxa and another 10 species were birds of prey. These also included the near threatened Greater Flamingo (*Phoenicopterus roseus*) and Lesser Flamingo (*Phoeniconaias minor*) which were both regular foraging visitors to the nearby Witpan Dam and the many smaller pans in the area.

The study site was located in close proximity to many prominent wetland systems or pans, and therefore the risk of waterbird colliding with the proposed infrastructure was considered to be high. In addition, a high frequency of waterbirds was expected commuting over the site on a daily basis. Therefore, it is important that the layout of the proposed PV facility, especially the placement of the PV arrays coincides with areas where the frequency of passing waterbirds was low in order to minimise potential bird collisions.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
TABLE OF CONTENTS	II
LIST OF FIGURES	II
LIST OF TABLES	III
LIST OF APPENDICES	IV
DECLARATION OF INDEPENDENCE	V
1. INTRODUCTION	
1.1 PROJECT DESCRIPTION	
1.2 TERMS OF REFERENCE	2
2. METHODS & APPROACH	5
2.1 LITERATURE SURVEY AND DATABASE ACC	
2.2 PRELIMINARY SENSITIVITY ANALYSIS	8
2.3 LIMITATIONS	
3. PRELIMINARY RESULTS AND DESC	CRIPTION OF THE AFFECTED
ENVIRONMENT	
3.1 LOCALITY	
3.2 REGIONAL VEGETATION DESCRIPTION	
3.3 LAND COVER, LAND USE AND EXISTING INF	
3.4 Conservation Areas, Protected Are	
3.5 ANNOTATIONS ON THE NATIONAL WEB	
Tool	
3.6 PRELIMINARY AVIFAUNAL HABITAT TYPES.	
3.7 Species Richness and Predicted sum	
3.8 BIRD SPECIES OF CONSERVATION CONCE	
3.9 PRELIMINARY AVIFAUNAL SENSITIVITY	
3.10 OVERVIEW OF AVIAN IMPACTS AT SOLAR	
•	heir impact on birds27
	ies on birds28
3.11 POTENTIAL IMPACTS ASSOCIATED WITH THE	
3.11.1 Loss of habitat and displacement of	
3.11.2 Collision trauma caused by photov	• • • • • • • • • • • • • • • • • • • •
•	es and reticulation30
3.12 COLLISION-PRONE BIRD SPECIES	
4. PLAN OF STUDY FOR THE EIA PHASE	
4.1 PROPOSED APPROACH AND METHODS	
5. REFERENCES	38
LIGT OF FIGURES	
LIST OF FIGURES	
Figure 4. A man illustration the manner to	sition of the managed Herman
Figure 1: A map illustrating the geographic pos	
Plant solar PV facility. The map also shows	• •
facility known as Harmony Central Plant Sol	ai FV 3

Figure 2: A satellite image illustrating the geographic position of the proposed Harmony One Plant Solar PV facility and proposed alternatives
Figure 3: A map illustrating the quarter-degree grid cells that were investigated for
this project
Figure 4: A map illustrating the pentad grids that were investigated for this project 8
Figure 5: A satellite image illustrating the regional vegetation type corresponding to
the study site and immediate surroundings. Vegetation type categories were
defined by Mucina & Rutherford (2006; updated 2012)
Figure 6: A map illustrating the land cover classes (Geoterrainimage, 2015)
corresponding to the proposed study site and immediate surroundings
Figure 7: The animal species sensitivity of the study site and immediate surroundings
according to the Screening Tool
Figure 8: The relative avian sensitivity of the study site and immediate surroundings according to the Screening Tool
Figure 9: The relative terrestrial biodiversity sensitivity of the study site and immediate surroundings according to the Screening Tool
Figure 8: A preliminary habitat map illustrating the avifaunal habitat types on the
study site and immediate surroundings (the habitat types are subject to change
pending the outcome of a detailed baseline surveys)
Figure 11: A map illustrating the preliminary avifaunal sensitivity of the area based on
habitat types supporting bird taxa of conservation concern and important
ecological function
Figure 12: Two bird-friendly tower designs to be used for the current project 32
Figure 13: Examples of bird flight diverters to be used on the power lines: Nocturnal
LED solar-charged bird diverter (left) and Viper live bird flapper (right)
LIST OF TABLES
Table 1: A summary table of the total number of species, Red listed species
(according to Taylor et al., 2015 and the IUCN, 2022), endemics and biome-
restricted species (Marnewick et al., 2015) expected (sensu SABAP2) to occur in
the study site and immediate surroundings
Table 2: Expected biome-restricted species (Marnewick et al, 2015) likely to occur on
the study site and immediate surroundings
Table 3: Bird species of conservation concern that could utilise the study site based
on their historical distribution range and the presence of suitable habitat. Red list
categories according to the IUCN (2022)* and Taylor et al. (2015)**
Table 4: A preliminary summery of impacts associated with the proposed PV facility
and its infrastructure34
Table 5: Collision-prone bird species and Red listed species (in red) expected to be
present on the study site and immediate surroundings inferred from the South
African Atlas Project (SABAP2)35

LIST OF APPENDICES

Appendix 1: A shortlist of bird species recorded on the study area. The list provides an indication of the species occurrence according to SABAP2 reporting rates. 40

DECLARATION OF INDEPENDENCE

I, Lukas Niemand (Pachnoda Consulting CC) declare that:

- I act as the independent specialist in this application to Savannah Environmental (Pty) Ltd and Freegold Harmony (Pty) Ltd.;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have no vested financial, personal or any other interest in the application;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my
 possession that reasonably has or may have the potential of influencing any decision to be taken with
 respect to the application by the competent authority; and the objectivity of any report, plan or
 document to be prepared by myself for submission to the competent authority; and
- All the particulars furnished by me in this form are true and correct.

Lukas Niemand (Pr.Sci.Nat)

25 July 2022

Lukas Niemand is registered with The South African Council for Natural Scientific Professionals (400095/06) with more than 20 years of experience in ecological-related assessments and more than 15 years in the field of bird interactions with electrical and renewable energy infrastructure. He has conducted numerous ecological and avifaunal impact assessments including Eskom Transmission projects, hydro-electric schemes, solar farms and other activities in South Africa and other African countries.

1. INTRODUCTION

1.1 Project Description

Pachnoda Consulting cc was requested by Savannah Environmental (Pty) Ltd on behalf of Freegold Harmony (Pty) Ltd to compile an avifauna scoping report for the proposed Harmony One Plant Solar PV facility and associated infrastructure with a contracted capacity of up to 30MW. The Harmony One Plant Solar PV facility is based near Harmony 1 Gold Plant operations located in the town of Welkom and ~14km north west of the town of Virginia within the Matjhabeng Local Municipality respectively, and within the Lejweleputswa District Municipality, Free State Province.

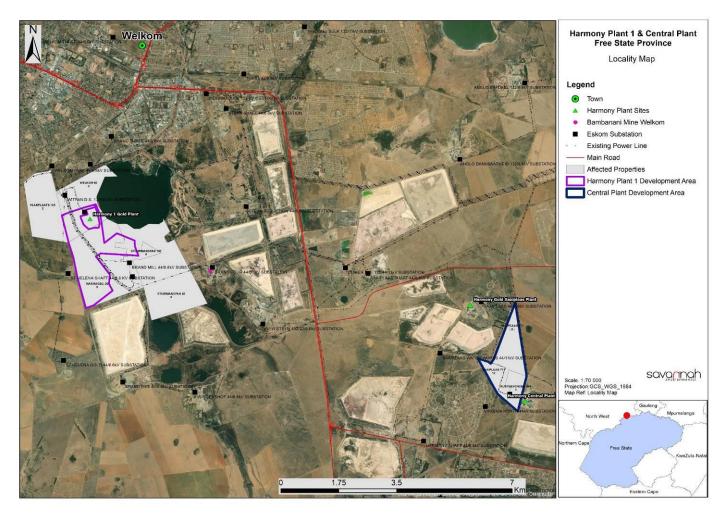
The solar facility will be located on a 75ha development area, which will include the PV arrays, associated infrastructure and grid connection infrastructure (Figure 2). The infrastructure associated PV facility includes:

- Solar PV arrays comprising of bifacial PV modules and mounting structures, using single axis tracking technology. Once installed, it will stand up to 5m above ground level.
- Inverters and transformers, a SCADA room, and maintenance room.
- Cabling between the project components.
- Balance of Plant:
 - Existing spare switchgear panels, upgraded switchgear circuit breakers or additional switchgear panels.
 - o EK self-build works as defined in the CEL.
- On-site facility substation to facilitate the connection between the solar PV facilities and Eskom electricity grid. The Size and Capacity of the on-site stations will be 40MW.
- An onsite Medium voltage (MV) switching station forming part of the collector substation.
- Temporary laydown areas.
- Access roads, internal roads and fencing around the development area.
- Up to 132kV Overhead Power Lines (OHPL) with a maximum of 30m height with a 30m servitude width.
- Underground LV cabling will be used on the PV sites.

The PV facility will be located on the following farm portions:

Farm Name	Portion Number
STUIRMANSPAN 92	RE/90
STUURMANSPAN 157	RE/157
MARMAGELI 20	RE/20
WELKOM 80	RE/80

The facility will tie-in to the Brand gold (6.6/132 kV) substation. The grid line will have a connection capacity of up to 132kV. The line connecting the PV facility to the respective substation will be up to 44kV.


To avoid areas of potential sensitivity and to ensure that potential detrimental environmental impacts are minimised as far as possible, the developer will identify a suitable development footprint within which the infrastructure of Harmony One Plant Solar PV facility and its associated infrastructure is proposed to be located and fully assessed during the EIA Phase.

1.2 Terms of Reference

The main aim of this scoping exercise was to investigate the avifaunal attributes of the proposed PV facility by means of a desktop analysis of GIS based information and third-party datasets and included a brief site visit which constituted the austral winter season sampling survey.

The terms of reference for this scoping report are to:

- conduct an assessment on a screening level based on available information pertinent to the ecological and avifaunal attributes on the study site and immediate surroundings;
- conduct an assessment of all information on a screening level in order to present the following results:
 - typify the regional vegetation and avifaunal macro-habitat parameters that will be affected by the proposed project;
 - provide an indication on the occurrence of threatened, nearthreatened, endemic and conservation important bird species likely to be affected by the proposed project;
 - provide an indication of sensitive areas or bird habitat types corresponding to the study site and immediate surroundings;
 - highlight areas of concern or "hotspot" areas;
 - identify potential impacts that are considered pertinent to the proposed development;
 - highlight gaps of information in terms of the avifaunal environment;
 and
 - o recommend further studies to be conducted as part of the Environmental Impact Assessment (EIA) phase.

Figure 1: A map illustrating the geographic position of the proposed Harmony One Plant solar PV facility. The map also shows the proposed location of another PV facility known as Harmony Central Plant Solar PV.

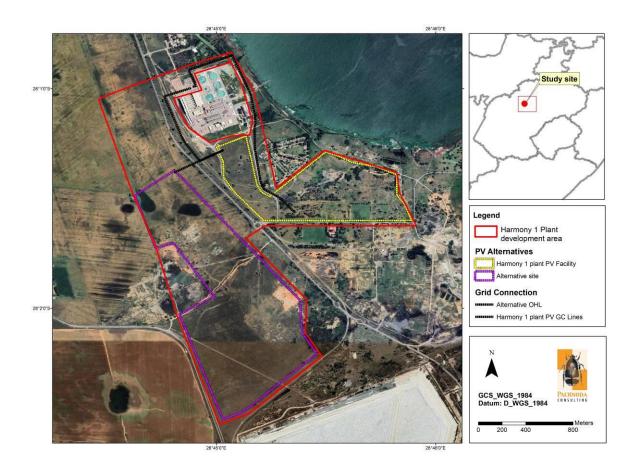


Figure 2: A satellite image illustrating the geographic position of the proposed Harmony One Plant Solar PV facility and proposed alternatives.

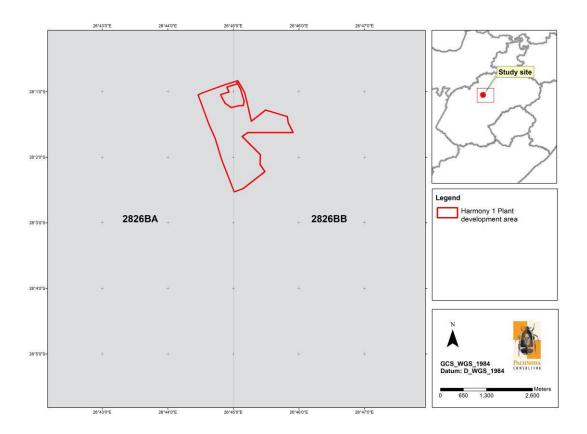
2. METHODS & APPROACH

The objectives of this phase of the project were to obtain a basic overview of the variation and general status of the avifaunal habitat types and expected bird species likely to be affected by the proposed project.

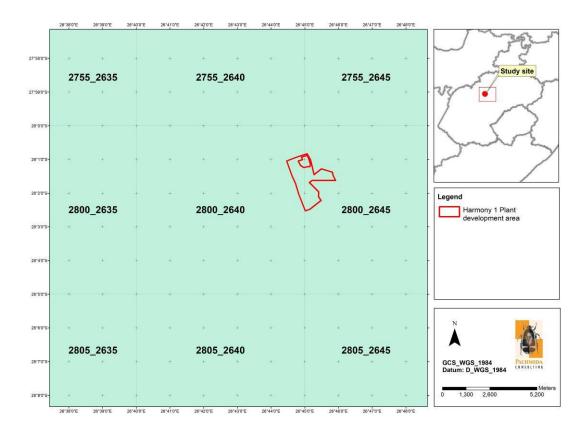
Also take note that the current report put emphasis on the avifaunal community as a key indicator group on the proposed study site and immediate surroundings, thereby aiming to describe the preliminary conservation significance of the ecosystems in the area. Therefore, the occurrence of certain bird species and their relative abundances (to be determined during the EIA although herewith deduced from reporting rates) could determine the outcome of the ecological sensitivity of the area and the subsequent layout of the proposed solar facility infrastructure.

The information provided in this report was principally sourced from the following sources/observations:

- relevant literature see section below;
- observations made during a site visit (06 09 June 2022); and
- personal observations from similar habitat types in close proximity to the study area, with emphasis on assessments conducted by Pachnoda Consulting (2020).


2.1 Literature survey and Database acquisition

A desktop and literature review of the area under investigation was commissioned to collate as much information as possible prior to the detailed baseline survey. Literature consulted primarily makes use of small-scale datasets that were collected by citizen scientists and are located at various governmental and academic institutions (e.g. Animal Demography Unit & SANBI). These include (although are not limited to) the following:


- Hockey et al. (2005) for general information on bird identification and life history attributes.
- Marnewick et al. (2015) was consulted for information regarding the biogeographic affinities of selected bird species that could be present on the study area.
- The conservation status of bird species was categorised according to the global IUCN Red List of threatened species (IUCN, 2022) and the regional conservation assessment of Taylor et al. (2015).
- Distributional data was sourced from the South African Bird Atlas Project (SABAP1) and verified against Harrison et al. (1997) for species corresponding to quarter-degree grid cells (QDGCs) 2826BA (Bloudrif) and 2826BB (Virginia) (Figure 3). The information was then modified according to the prevalent habitat types present on the study area. The SABAP1 data provides a "snapshot" of the abundance and composition of species recorded

within a quarter degree grid cell (QDGC) which was the sampling unit chosen (corresponding to an area of approximately 15 min latitude x 15 min longitude). It should be noted that the atlas data makes use of reporting rates that were calculated from observer cards submitted by the public as well as citizen scientists. It therefore provides an indication of the thoroughness of which the QDGCs were surveyed between 1987 and 1991;

- Additional distributional data was also sourced from the SABAP2 database (http://www.sabap2.birdmap.africa). The information was then modified according to the prevalent habitat types present on the study area. Since bird distributions are dynamic (based on landscape changes such as fragmentation and climate change), SABAP2 was born (and launched in 2007) from SABAP1 with the main difference being that all sampling is done at a finer scale known as pentad grids (5 min latitude x 5 min longitude, equating to 9 pentads within a QDGC). Therefore, the data is more site-specific, recent and more comparable with observations made during the site visit (due to increased standardisation of data collection). The pentad grids relevant to the current project are 2800_2640 and 2800_2645 (although all eight pentad grids surrounding grid 2800_2640 were also scrutinised; Figure 4).
- The choice of scientific nomenclature, taxonomy and common names were recommended by the International Ornithological Committee (the IOC World Bird List v. 12.1), unless otherwise specified (see www.worldbirdnames.org as specified by Gill et al, 2022). Colloquial (common) names were used according to Hockey et. al. (2005) to avoid confusion;
- The best practice guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa were also consulted (Jenkins et al., 2017).
- Additional information regarding bird-power line interactions was provided by the author's own personal observations.

Figure 3: A map illustrating the quarter-degree grid cells that were investigated for this project.

Figure 4: A map illustrating the pentad grids that were investigated for this project.

2.2 Preliminary Sensitivity Analysis

A preliminary sensitivity map was compiled based on the outcome of a desktop analysis.

The ecological sensitivity of any piece of land is based on its inherent ecosystem service (e.g. wetlands) and overall preservation of biodiversity.

2.3.1 Ecological Function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (e.g. wetlands) or the overall preservation of biodiversity.

2.3.2 Avifaunal Importance

Avifaunal importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

2.3.3 Sensitivity Scale

- High Sensitive ecosystems with either low inherent resistance or low resilience towards disturbance factors or highly dynamic systems considered important for the maintenance of ecosystem integrity. Most of these systems represent ecosystems with high connectivity with other important ecological systems OR with high species diversity and usually provide suitable habitat for a number of threatened or rare species. These areas should preferably be protected;
- Medium These are slightly modified systems which occur along gradients of disturbances of low-medium intensity with some degree of connectivity with other ecological systems OR ecosystems with intermediate levels of species diversity but may include potential ephemeral habitat for threatened species; and
- Low Degraded and highly disturbed/transformed systems with little ecological function and are generally very poor in species diversity (most species are usually exotic or weeds).

2.3 Limitations

To obtain a comprehensive understanding of the diversity and dynamics of avifaunal community on the study area, as well as the status of endemic, rare or threatened species in the area, detailed assessments should always consider investigations at different time scales (across seasons/years) and through replication. However, due to the fact that the findings in this report were based on a scoping/screening assessment, long-term studies were not feasible and inferred interpretations were mostly based on ad hoc observations.

It should also be realised that bird distribution patterns fluctuate widely in response to environmental conditions (e.g. local rainfall patterns, nomadism, migration patterns, seasonality), meaning that a composition noted at a particular moment in time will differ during another time period at the same locality. For this reason two surveys will be conducted during the data collection.

Due to the scope of the work presented during a scoping assessment, a detailed investigation of the avifaunal community in the area were not possible and is not perceived as part of the Terms of Reference for a scoping/screening level exercise.

Furthermore, additional information may become known during a later stage of the process or development. This company, the consultants and/or specialist investigators do not accept any responsibility for conclusions, suggestions, limitations and recommendations made in good faith, based on the information presented to them, obtained from the surveys or requests made to them at the time of this report.

The following assumptions are relevant to the literature survey and database acquisition phase:

- It is assumed that third party information (obtained from government, academic/research institution, non-governmental organisations) is accurate and true;
- Some of the datasets are out of date and therefore extant distribution ranges may have shifted although these datasets could provide insight into historical distribution ranges of relevant species;
- The datasets are mainly small-scale and could not always consider azonal habitat types that may be present on the study area (e.g. small dams, pans and depressions). In addition, these datasets encompass surface areas larger than the study area that could include habitat types and species that is not present on the study area. Therefore, the potential to overestimate species richness is highly likely while it is also possible that certain cryptic or specialist species could have been overlooked in the past;
- Some of the datasets (e.g. SABAP2) managed by the Animal Demography
 Unit of the University of Cape Town were only recently initiated and therefore
 incomplete; and
- In addition, the study site is under private ownership and primarily inaccessible to the public. Since most of the species distribution ranges concerning the relevant datasets are subject to observations made by the public, it is likely that many bird species are overlooked or not formally catalogued for the area.

3. PRELIMINARY RESULTS AND DESCRIPTION OF THE AFFECTED ENVIRONMENT

3.1 Locality

The proposed PV facility will be located near Harmony Gold Central Plant operations located ~6km north east of the town of Virginia and ~11km south east of the town of Welkom, Free State Province (Figure 1).

3.2 Regional Vegetation Description

The proposed PV facility corresponds to the Grassland Biome and more particularly to the Dry Highveld Grassland Bioregion as defined by Mucina & Rutherford (2006). It comprehends an ecological type known as Vaal-Vet Sandy Grassland (Mucina & Rutherford, 2006) (Figure 5).

From an avifaunal perspective it is evident that bird diversity is positively correlated with vegetation structure, and floristic richness is not often regarded to be a significant contributor of patterns in bird abundance and their spatial distributions. Although grasslands are generally poor in woody plant species, and subsequently support lower bird richness values, it is often considered as an important habitat for many terrestrial bird species such as larks, pipits, korhaans, cisticolas, widowbirds including large terrestrial birds such as Secretarybirds, cranes and storks. Many of these species are also endemic to South Africa and display particularly narrow distribution ranges. Due to the restricted spatial occurrence of the Grassland Biome and severe habitat transformation, many of the bird species that are restricted to the grasslands are also threatened or experiencing declining population sizes.

The Vaal-Vet Sandy Grassland occurs in the Free State and North-West Provinces, where it extends from Lichtenburg and Ventersdorp southwards to Klerksdorp, Leeudoringstad, Bothaville and the Brandfort area north of Bloemfontein. It occurs at an altitude of 1 220-1 560 m and is mainly confined to aeolian and colluvial sand overlying shales and mudstones. The floristic structure of the Vaal-Vet Sandy Grassland is mainly a low tussocky grassland with many karroid elements. In its untransformed condition, *Themeda triandra* is an important dominant graminoid, while intense grazing and erratic rainfall is responsible for an increase of *Elionurus muticus*, *Cymbopogon pospischilii* and *Aristida congesta*.

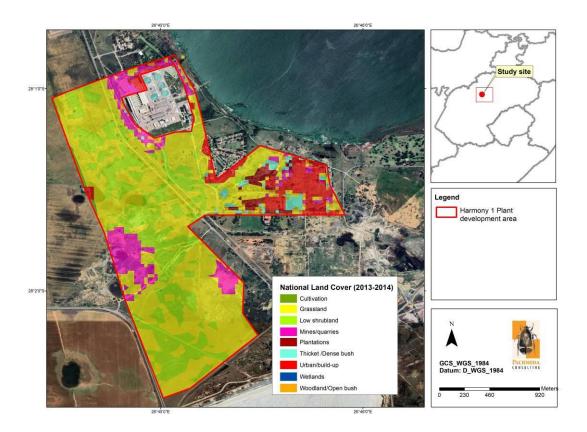
The Vaal-Vet Sandy Grassland is a threatened (**Endangered**) ecosystem with only a few remaining patches of untransformed grassland being statutorily conserved (c. 0.3 % at Bloemhof Dam, Schoonspruit, Sandveld, Faan Meintjies, Wolwespruit and Soetdoring Nature Reserves). In addition, the Vaal-Vet Sandy Grassland is a Critically Endangered Ecosystem (as per Section 52 of National Environmental Management Biodiversity Act, (Act No. 10 of 2004)) and a Critical Biodiversity Area

as per the Free State Conservation Plan (DESTEA, 2015). More than 63 % of this grassland type is already transformed by cultivation, and intense livestock grazing.

Figure 5: A satellite image illustrating the regional vegetation type corresponding to the study site and immediate surroundings. Vegetation type categories were defined by Mucina & Rutherford (2006; updated 2012).

3.3 Land cover, land use and existing infrastructure.

According to the South African National dataset of 2013-2014 (Geoterrainimage, 2015) the study site comprehends the following land cover categories (Figure 7):


Natural areas:

- Grassland;
- Low shrubland; and
- Wetlands;

Transformed areas:

- Mines and quarries; and
- Build-up areas.

From the land cover dataset it is evident that most of the study site is covered by natural grassland and low shrubland. However, quarries and build-up areas is also respectively prevalent on the western and eastern parts of the study site (the latter includes manicured and landscaped habitat consisting of exotic tree species. The majority of the study site (consisting of natural grassland) is primarily vacant with the exception of the eastern section which consists of homesteads and build-up land.

Figure 6: A map illustrating the land cover classes (Geoterrainimage, 2015) corresponding to the proposed study site and immediate surroundings.

3.4 Conservation Areas, Protected Areas and Important Bird Areas

The study site does not coincide with any conservation area or Important Bird and Biodiversity Area (IBA). The nearest conservation area to the proposed study site is the Willem Pretorius Game Reserve, which is located 45 km south-east of the study site. The Willem Pretorius Game Reserve is also a recognised IBA (SA044).

3.5 Annotations on the National Web-Based Environmental Screening Tool

Regulation 16(1)(v) of the Environmental Impact Assessment Regulations, 20145 (EIA Regulations) provides that an applicant for Environmental Authorisation is required to submit a report generated by the Screening Tool as part of its application. On 5 July 2019, the Minister of Environmental Affairs, Forestry and Fisheries published a notice in the Government Gazette giving notice that the use of the

Screening Tool is compulsory for all applicants to submit a report generated by the Screening Tool from 90 days of the date of publication of that notice.

The Screening Tool is intended to allow for pre-screening of sensitivities in the landscape to be assessed within the EA process. This assists with implementing the mitigation hierarchy by allowing developers to adjust their proposed development footprint to avoid sensitive areas. The Screening Tool report will indicate the (preliminary) environmental sensitivities that intersect with the proposed development footprint as defined by the applicant as well as the relevant Protocols.

As the Screening Tool contains datasets that are mapped at a national scale, there may be areas where the Screening Tool erroneously assigns, or misses, environmental sensitivities because of mapping resolution and a high paucity of available and accurate data. Broad-scale site investigations will provide for an augmented and site-specific evaluation of the accuracy and 'infilling' of obvious and large-scale inaccuracies. Information extracted from the National Web-based Environmental Screening Tool (Department of Environmental Affairs, 2020), indicated that the study site and immediate surroundings hold a **medium** sensitivity with respect to the relative animal species protocol (Figure 7) (report generated 25/04/2022):


Figure 7: The animal species sensitivity of the study site and immediate surroundings according to the Screening Tool.

Sensitive features include the following:

Sensitivity	Feature(s)	
Low	Low sensitivity	
Low	Reptilia-Smaug giganteus	
Low	Mammalia-Ourebia ourebi ourebi	

According to the results of the screening tool, a low probability of occurrence is evident for threatened bird species although the eastern section holds a medium sensitivity for a threatened lizard and mammal species.

It is evident that the study site and immediate surroundings correspond to a **low** avian theme sensitivity (see Figure 8).

Figure 8: The relative avian sensitivity of the study site and immediate surroundings according to the Screening Tool.

Sensitive features include the following:

Sensitivity	Feature(s)
Low	Low sensitivity

However, the study site and immediate surroundings hold a **very high** sensitivity with respect to the relative terrestrial biodiversity theme (Figure 9):

Figure 9: The relative terrestrial biodiversity sensitivity of the study site and immediate surroundings according to the Screening Tool.

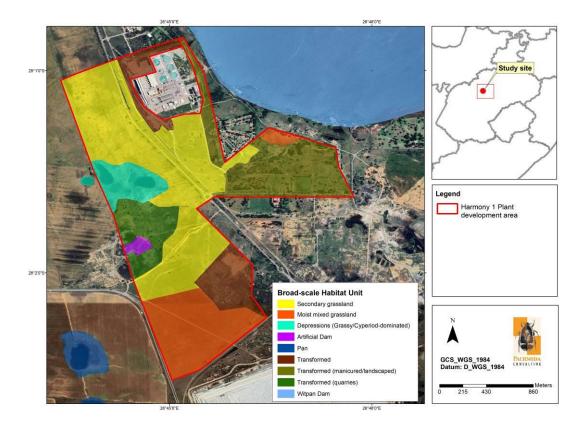
Sensitive features include the following:

Sensitivity	Feature(s)
Very High	Critical Biodiversity Area 1
Very High	Endangered Ecosystem

It is evident from the results of the Screening Tool report that part of the entire study area coincides with a Critical Biodiversity Area 1 (CBA 1) as per the Free State Biodiversity Plan (DESTEA, 2015). In addition, the study site also coincides with an Endangered ecosystem which is represented by the Vaal-Vet Sandy Grassland.

3.6 Preliminary avifaunal habitat types

Apart from the regional vegetation type, the local composition and distribution of the vegetation associations on the study site and immediate surroundings are a consequence of a combination of factors simulated by geomorphology, presence of inundated wetland features and past land use practice which have culminated in a number of habitat types that deserve further discussion¹ (Figure 11):


1. Secondary grassland: This unit is prominent on the study site and covers a significant surface area on the western part of the proposed PV facility which was probably utilised as cultivation in the past. It represents a grassland sere

¹ The habitat types are subject to change pending on the outcome of a detailed baseline surveys.

with a secondary albeit monotonous composition that is dominated by *Cynodon dactylon* and graminoid species of the genus *Eragrostis*. The expected bird composition is represented by widespread cryptic grassland species of which the richness is low. Typical bird species expected to be present include a variety of cisticolas (Cloud Cisticola *Cisticola textrix*, Desert Cisticola *C. aridulus* and Zitting Cisticola *C. juncidis*), Cape Longclaw (*Macronyx capense*), Rufous-naped Lark (*Mirafra africana*) and Long-tailed Widowbird (*Euplectes progne*). It also provides ephemeral foraging habitat for collision-prone species such as the Northern Black Korhaan (*Afrotis afraoides*).

- 2. Moist mixed grassland: This unit is located on the southern part of the study site as well as at the western boundary adjacent to the Witpan Dam shoreline. The graminoid structure and composition is essentially similar to that of the secondary grassland unit, although the graminoid composition appears to be higher and more diverse and it is located on soils with a high moisture content (probably due to seepage from the nearby slimes dams and pans). The bird composition is also similar to that of the secondary grassland although it provides habitat for high numbers of foraging passerine birds, especially when burned (caused by veld fires). Large numbers of foraging granivores and insectivores colonise this grassland sere during the dry season which include prominent species such as Red-billed Quelea (Quelea quelea), Pied Starling (Lamprotornis bicolor), Red-capped Lark (Calandrella cinerea), Southern Red Bishop (Euplectes orix) and Long-tailed Widowbird (E. progne). The endemic Melodious Lark (Mirafra cheniana) is a regular foraging and potential breeding resident (pers. obs.).
- 3. Depressions: This habitat occurs on the western part of the study site and is represented by a series of small grassy depressions of which the basins are colonised by members of the Cyperaceae, especially species of the genus Eleocharis, Kyllinga and Cyperus. The edges are often dominated by Eragrostis gummiflua. This habitat provides habitat for a unique bird composition represented by many smaller wetland-associated passerine species, although larger non-passerines such as waterfowl were absent since the presence of open water and lentic conditions were uncommon, which will discourage waterfowl and shorebirds from utilising the habitat. Expected typical bird species include Zitting Cisticola (C. juncidis), Levaillant's Cisticola (C. tinniens) and Quailfinch (Ortygospiza atricollis).
- 4. Artificial dam and inundated quarries: These are represented by mined quarries which have become inundated during precipitation events and groundwater infiltration. Although artificial of origin, these often provide ephemeral foraging habitat for widespread waterfowl and shorebird such as Egyptian Goose (Alopochen aegyptiacus), Little Grebe (Tachybaptus ruficollis), Red-knobbed Coot (Fulica cristata) and Three-banded Plover (Charadrius tricollaris).

5. Transformed and landscaped (manicured) areas: These areas are represented by build-up land and landscaped areas of which the tree cover is predominantly composed of exotic species. These features are invariably also artificial although colonised by a high number of bird species which favours the vertical heterogeneity provided by the tree canopy. However, the bird composition is expected to be represented by a "bushveld" composition which is often present in urban landscaped (manicured) gardens and parks (c. Ring-White-browed necked Dove Streptopelia capicola, Sparrow-weaver Plocepasser mahali, Red-eyed Dove S. semitorquata, Common Myna Acridotheres tristis, Crested Barbet Trachyphonus vaillantii and Cape Starling Lamprotornis nitens).

Figure 10: A preliminary habitat map illustrating the avifaunal habitat types on the study site and immediate surroundings (the habitat types are subject to change pending the outcome of a detailed baseline surveys).

3.7 Species Richness and Predicted summary statistics

Approximately ~178 bird species have been recorded within the study area refer to (Appendix 1 & Table 1), although it is more likely that between 80 - 100 bird species could occur within the physical boundaries of the study site (according to the habitat types and the ecological condition thereof). The richness was inferred from the South African Bird Atlas Project (SABAP2)² (Harrison al.. 1997; et www.sabap2.birdmap.africa) and the presence of suitable habitat in the study area. This equates to 18 % of the approximate 987³ species listed for the southern African subregion⁴ (and approximately 20 % of the 871 species recorded within South Africa⁵). However, the species richness obtained from the pentad grids corresponding to the study area (c. 2800 2640 and 2800 2645) range between 123 and 148 species (which include a number of large pans and dams which were not present within the physical boundaries of the study site), with an average number of 70 species for each full protocol card submitted (for observation of two hours or more; range= 35-101 species).

According to Table 1, the study area is poorly represented by biome-restricted⁶ (see Table 2) and local endemic and near-endemic bird species. It supports *ca.* 21 % of the near -endemic species present in the subregion. However, a large percentage of the species recorded in the study area is represented by waterbirds and shorebird taxa (ca. 37% of the total number of recorded bird species, sensu SABAP2).

Table 1: A summary table of the total number of species, Red listed species (according to Taylor et al., 2015 and the IUCN, 2022), endemics and biome-restricted species (Marnewick et al., 2015) expected (*sensu* SABAP2) to occur in the study site and immediate surroundings.

Description	Expected Richness Value
Total number of species*	178 (20 %)
Number of Red Listed species*	11 (8 %)
Number of biome-restricted species – Zambezian and	2 (14 %)
Kalahari-Highveld Biomes)*	
Number of local endemics (BirdLife SA, 2022)*	3 (8 %)
Number of local near-endemics (BirdLife SA, 2022)*	6 (20 %)
Number of regional endemics (Hockey et al., 2005)**	16 (15 %)
Number of regional near-endemics (Hockey et al., 2005)**	13 (21 %)

^{*} only species in the geographic boundaries of South Africa (including Lesotho and eSwatini) were considered.

_

² The expected richness statistic was derived from pentad grids 2800_2640 and 2800_2645 totalling 177 bird species (based on 39 full protocol cards).

³ sensu www.zestforbirds.co.za (Hardaker, 2020), including four recently confirmed bird species (vagrants.

⁴ A geographical area south of the Cunene and Zambezi Rivers (includes Namibia, Botswana, Zimbabwe, southern Mozambique, South Africa, eSwatini and Lesotho).

⁵ With reference to South Africa (including Lesotho and eSwatini (BirdLife South Africa, 2022).

⁶ A species with a breeding distribution confined to one biome. Many biome-restricted species are also endemic to southern Africa.

Table 2: Expected biome-restricted species (Marnewick *et al*, 2015) likely to occur on the study site and immediate surroundings.

Species	Kalahari- Highveld	Zambezian	Expected Frequency of
			occurrence
Kalahari Scrub-robin (Cercotrichas paena)	Х		Uncommon
White-bellied Sunbird (Cinnyris talatala)		X	Uncommon

3.8 Bird species of conservation concern

Table 3 provides an overview of bird species of conservation concern that could occur on the study site and immediate surroundings based on their historical distribution ranges and the presence of suitable habitat. According to Table 3, a total of 11 species could occur on the study area which includes two globally threatened species, three globally near threatened species, two regionally threatened species and four regionally near-threatened species.

It is evident from Table 3 that the highest reporting rates (>10%) were observed for the globally endangered Maccoa Duck (*Oxyura maccoa*), the regionally endangered Yellow-billed Stork (*Mycteria ibis*), the globally near threatened Lesser Flamingo (*Phoeniconaias minor*) and Curlew Sandpiper (*Calidris ferruginea*) and the regionally near threatened Greater Flamingo (*Phoenicopterus roseus*). These species are regarded as regular foraging visitors to the pans and the Witpan Dam which occur adjacent to the study site. However, these species are probably absent on the physical study site due to the absence of any suitable habitat on the study site. *Nevertheless, birds dispersing or commuting between the nearby pans and Witpan Dam will have to fly over the study site and could potentially interact (collide) with the PV panels and associated electrical infrastructure.*

The regionally vulnerable Lanner Falcon (*Falco biarmicus*) appears to be resident on the study site, where it as observed hunting pigeons and doves between the Harmony one plant and the onsite substation. This species was previously overlooked since it was last recorded during 2014 in the study area (sensu SABAP2).

The remaining species have low reporting rates (<10%) and are regarded as irregular foraging visitors with low probabilities of occurrence. The low probability of occurrence for these species is due to absence of suitable habitat (mainly foraging habitat) on the study site and the historical displacement of these species owing to increased anthropogenic disturbances (e.g. agriculture, mining activities and pedestrians).

^{**} only species in the geographic boundaries of southern Africa (including Namibia, Botswana, Zimbabwe and Mozambique south of the Zambezi River) were considered

^{***} Percentage values in brackets refer to totals compared against the South African avifauna (sensu BirdLife SA, 2022).

Table 3: Bird species of conservation concern that could utilise the study site based on their historical distribution range and the presence of suitable habitat. Red list categories according to the IUCN (2022)* and Taylor et al. (2015)**.

Species	Global Conservation Status*	National Conservation Status**	SABAP2 reporting rate	Preferred Habitat	Potential Likelihood of Occurrence
Calidris ferruginea (Curlew Sandpiper)	Near-threatened		12.82	Generally confined to muddy fringes of inland pans and large impoundments, lagoons and estuaries.	Regular summer non-breeding visitor to the shoreline habitat of nearby pans and large impoundments. Probably absent on the physical study site due to the absence of suitable habitat. Birds dispersing between pans could potentially fly over the site and may interact with the PV panels.
Ciconia abdimii (Abdim's Stork)	-	Near-threatened	2.56	A non-breeding summer visitor to open grassland and recently tilled agricultural land.	Probably highly irregular foraging visitor in summer. Highly seasonal and often absent in some years. It has not been recently observed on the study area (it was lass recorded during 2010; sensu SABAP2).
Charadrius pallidus (Chestnut- banded Plover)	-	Near-threatened	7.69	Partial to the shoreline of saline pans and also saltworks.	An uncommon visitor to the shoreline habitat of nearby pans. Probably absent on the physical study site due to the absence of suitable habitat. Birds dispersing between pans could potentially

Species	Global Conservation Status*	National Conservation Status**	SABAP2 reporting rate	Preferred Habitat	Potential Likelihood of Occurrence
					fly over the site and may interact with the PV panels.
Eupodotis caerulescens (Blue Korhaan)	Near-threatened	(delisted)	2.56	Prefers extensive open short grassland and cultivated land.	Vagrant, probably absent and historically displaced due to anthropogenic activities. It has not been recently observed on the study area (it was last recorded during 2012: sensu
Falco biarmicus (Lanner Falcon)	-	Vulnerable	2.56	Varied, but prefers to breed in mountainous areas although also using old disused mine voids.	SABAP2). It appears to be resident on the study site where it was frequently observed hunting pigeons and doves between the main Harmony One plant and the on-site substation (pers. obs.).
					This individual was probably overlooked since it was previously recorded during 2014 on the study site.
Oxyura maccoa (Maccoa Duck)	Endangered	Vulnerable	58.97	Large saline pans and shallow impoundments.	A regular foraging visitor and possibly also breeding visitor to the pans and impounds adjacent to the study site.
					Probably absent on the physical study site due to the absence of suitable habitat. Birds dispersing between pans

Species	Global Conservation Status*	National Conservation Status**	SABAP2 reporting rate	Preferred Habitat	Potential Likelihood of Occurrence
					could potentially fly over the site and may interact with the PV panels en electrical infrastructure.
Mycteria ibis (Yellow-billed Stork)	-	Endangered	17.95	Wetlands, pans and flooded grassland.	A regular foraging visitor to the pans and impounds adjacent to the study site. Probably absent on the physical study site due to the absence of suitable habitat. Birds dispersing between pans could potentially fly over the site and may interact with the PV panels en electrical infrastructure.
Phoeniconaias minor (Lesser Flamingo)	Near-threatened	Near-threatened	64.10	Restricted to large saline pans and other inland water bodies containing cyanobacteria.	A regular foraging visitor to the shallow margins of Witpan Dam (pers. obs.) and probably also the nearby smaller pans. Probably absent on the physical study site due to the absence of suitable habitat.
Phoenicopterus roseus	-	Near-threatened	69.23	Restricted to large saline pans and	Birds dispersing between the pans and dams in the area could potentially fly over the site and may interact with the PV panels en electrical infrastructure. A highly regular foraging visitor
(Greater Flamingo)				other inland water bodies.	to the shallow margins of

	Global	National	SABAP2		Potential
Species	Conservation	Conservation	reporting	Preferred Habitat	Likelihood of
	Status*	Status**	rate		Occurrence
					Witpan Dam
					(pers. obs.) and probably also
					the nearby
					smaller pans.
					Probably absent
					on the physical
					study site due to the absence of
					suitable habitat.
					Birds dispersing
					between the
					pans and dams in the area
					could potentially
					fly over the site
					and may interact with the
					PV panels en
					electrical
					infrastructure.
Rostratula	-	Near-threatened	2.56	Prefers well-	A highly
benghalensis (Greater Painted-				vegetated seasonally	irregular foraging visitor
snipe)				inundated	and probably
				depressions and	absent on the
				pans, especially in the Savanna	study site.
				Biome.	It has not been
					recently
					observed on the study area (it
					was last
					recorded during
					2012; sensu SABAP2).
Sagittarius	Endangered	Endangered	2.56	Prefers open	A highly
serpentarius	Endangoroa	Endangorod	2.00	grassland or lightly	irregular
(Secretarybird)				wooded habitat.	foraging visitor
					and probably absent on the
					study site.
					Historically
					displaced due to
					anthropogenic activities.
					It has not been
					It has not been recently
					observed on the
					study area (it
					was last recorded during
					2009; sensu
					SABAP2).

3.9 Preliminary avifaunal sensitivity

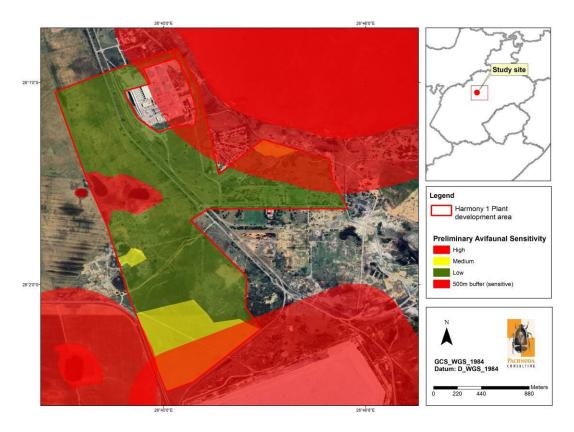
A preliminary sensitivity map was compiled, illustrating habitat units comprising of potential sensitive elements based on the following arguments (Figure 12):

Areas of high sensitivity

It includes the grassy depressions, all adjacent pans and the buffer zones.

The grassy depressions have the potential to attract passerine bird species with high affinities for wetland-associated habitat units. It thereby contributed towards the local avian richness in supporting bird species that are otherwise absent from the surrounding terrestrial "dryland" grassland units.

More importantly, the nearby pans and the Witpan Dam support large congregations of waterfowl and shorebirds taxa, including globally and regionally threatened and near threatened species (e.g. flamingo taxa). These pans are also important from a functional and dynamic perspective at the landscape level since it forms part of an "inter-connected" system or "stepping stones" within the regional catchment, meaning that environmental conditions at these pans (e.g. water levels, salinity, food availability, availability of shoreline habitat) are constantly changing. Therefore, none of the pans within catchment are similar to each, thereby providing a continuous supply of resources for waterbirds which tend to commute on a daily basis over the study site and along the edges of the slimes dams (which are often inundated). The placement of electrical infrastructure and PV panels in close proximity to these areas as well as on areas where the frequency of fly-overs by waterbirds are high could increase potential avian collisions with the infrastructure. Nevertheless, the inundaed quarries are of artificial origin, and could be removed.


Areas of medium sensitivity

It includes the moist mixed grassland and the artificial impoundment/quarry. The grassland provide potential suitable foraging habitat for a high number of bird species and bird individuals when compared to the other units. However, reporting rates for threatened and near threatened bird species are anticipated to be relatively low, thereby suggesting a medium sensitivity rating instead of a high sensitivity even though the majority of the habitat is natural. In addition, the inundated quarry attracts small numbers of waterfowl and shorebirds which feed and roost along the margins, especially Spur-winged Goose (*Plectropterus gambiensis*), Egyptian Goose (*Alopochen aegyptiacus*), South African Shelduck (*Tadorna cana*) and Three-banded Plover (*Charadrius tricollaris*).

Areas of low sensitivity

These habitat units are represented by transformed types and include the secondary grasslands, a build-up land and landscaped/manicured areas.

The preliminary sensitivity map shows a large surface area that is earmarked with low sensitivity. There is a probability that some of these units or part thereof could have higher (or lower) sensitivity ratings. It is therefore expected that some of the units or part thereof could represent different sensitivity ratings to those displayed in Figure 121pending the outcome of a detailed baseline survey.

Figure 11: A map illustrating the preliminary avifaunal sensitivity of the area based on habitat types supporting bird taxa of conservation concern and important ecological function.

3.10 Overview of Avian Impacts at Solar Facilities

Table 4 provides a preliminary summary of the impacts anticipated and a preliminary quantification thereof.

3.10.1 Background to solar facilities and their impact on birds

Birds are mobile, and are therefore also more readily affected by solar facilities than other taxonomic groups (e.g. mobile mammals that could move away from the facilities due to displacement). In fact, birds are also vulnerable to impacts caused by other types of energy facilities such as overhead power lines and wind farms. Little information is available on the impacts of solar energy facilities on birds although Gunerhan et al. (2009), McCrary et al. (1986), Tsoutsos et al. (2005) and the recent investigation reports on bird fatalities in the USA by Kagen et al. (2014) and Walston et al. (2016) provide discussions thereof. These studies have shown that avian fatalities vary greatly between the geographic positions of the solar facilities and also depend on the type of solar facility. In addition, very few of the large solar facilities in operation undertake systematic monitoring of avian fatalities, which explains the lack of detailed information of avian impacts. According to these studies conducted at both Concentrated Solar Power (CSP) and PV facilities, avian incidental fatalities range from 14 to over 180 birds which were summarised over a survey period conducted during one to three years. According to the Walston et al. (2016) assessment, the average annual mortality rate for known utility-scale solar facilities (the annual number of estimated bird deaths per megawatt of electrical capacity) is 2.7, and 9.9 for known and unknown fatalities (which include carcasses found on the project site of which the death is not known). McCrary et al. (1986) found an average rate of mortality of 1.9-2.2 birds per week affecting 0.6-0.7 % of the local bird population. However, most of the avian fatalities at these solar facilities are also probably underestimated since 10-30 % of dead birds are removed by scavengers before being noted.. From these analyses and assessments it was evident that:

- Medium levels of bird fatalities occur at PV sites when compared to CSP sites (when taking powerline collisions into account).
- Approximately 81 % of all avian mortalities were caused by collisions, including collisions with electrical distribution lines.
- Most of the mortalities were small passerines (especially swallows).
- Fatalities at these solar facilities also include waterbirds (e.g. grebes, herons and gulls) which were probably attracted by the apparent "lake effect" caused by the reflective surface of the PV panels.
- Approximately 10-11 % of the fatalities consists of waterbirds, but could be as high as 49 % at certain facilities.
- It is unclear if the "lake effect" caused by the panels (at PV facilities) or mirrors (at CSP facilities) are the main cause of birds colliding or interacting with the infrastructure (since both waterbirds and other passerines are colliding with the infrastructure).
- Most of the fatalities are of resident birds as opposed to migratory species.

In a review report by Harrison *et al.* (2016), an attempt was made to provide evidence of the impacts caused by solar PV facilities alone (not combined with CSP facilities) on birds in the UK. These authors reviewed approximately 420 scientific documents, including 37 so-called "grey" literature from non-government and government organisations for any evidence relating to the ecological impacts of solar PV facilities. Their main findings were as follows:

- The majority of the documents were not relevant and peer-reviewed documents of experimental scientific evidence on avian fatalities were nonexistent.
- Results based on carcass searches suggest that the bird collision risk at PV developments are low, although these studies did not take collision by overhead power lines into account.
- Many of the documents recommended that PV developments in close proximity to protected areas should be avoided.
- The PV panels reflect polarised light, which can attract polarotactic insects with potential impact to their reproductive biology. In addition, the polarising effect of the PV panels may also induce drinking behaviour in some birds, which may mistake the panels for water.

They conclude that impact assessment reports should consider taxon-specific requirements of birds and their guilds.

3.10.2 Potential impacts of PV solar facilities on birds

The magnitude and significance of impacts to birds caused by solar facilities will depend on the following factors:

- The geographic locality of the planned solar facility;
- The size or surface extent of the solar facility;
- The type of solar facility (according to the technologies applied, e.g. PV or Concentrated Solar Power (CSP)); and
- The occurrence of collision-prone bird species (which are often closely related to the locality of the solar facility).

Any planned solar facility corresponding to an area with many threatened, rangerestricted or collision-prone species will have a higher impact on these birds. In addition, any planned solar facility located in close proximity to important flyways, wetland systems or roosting/nesting sites used by the aforementioned species will have a higher impact.

The main impacts associated with PV solar facilities include (Jenkins et al., 2017):

- The loss of habitat and subsequent displacement of bird species due to the ecological footprint required during construction;
- Disturbances caused to birds during construction and operation;

- Direct interaction (collision trauma) by birds with the surface infrastructure (photovoltaic panels) caused by polarised light pollution and/or waterbirds colliding with the panels (as they are mistaken for waterbodies);
- Collision with associated infrastructure (mainly overhead powerlines and reticulation);
- Attracting novel species to the area (owing to the artificial provision of new habitat such as perches and shade) which could compete with the residing bird population.

3.11 Potential Impacts associated with the proposed PV Solar Facility

3.11.1 Loss of habitat and displacement of birds

Most of the study site will cleared of vegetation and habitat to accommodate the panel arrays and associated infrastructure. Clearing of vegetation will inevitably result in the loss of habitat and displacement of bird species. From the preliminary results it is evident that smaller passerine species are likely more likely to become displaced as opposed to small passerine species. It is particularly endemic species that are likely to become displaced, as well as habitat specialists (e.g. grassland specialists) which will disappear from the area.

To quantify the impact it is necessary to calculate the number of birds (density) lost or displaced by the activity, including estimated density values of important species per unit area of habitat. This will be conducted during a baseline survey of the proposed study area. From a preliminary analysis, the following bird species are most likely to be impacted by the loss of habitat due to their habitat requirements, fecundity and conservation status (although not limited to) due to the proposed development:

- Melodious Lark (Mirafra cheniana);
- Cloud Cisticola (Cisticola textrix); and to a lesser extend also
- Kalahari Scrub Robin (Cercotrichas paena);
- Northern Black Korhaan (Afrotis afraoides).

3.11.2 Collision trauma caused by photovoltaic panels (the "lake-effect")

The presence of pans, inundated quarries and the Witpan Dam in close proximity to the study site increase the risk of waterbirds and shorebird taxa interacting with the PV panels. A number of species were observed with a high frequency of occurrence which traversed the study site in on a daily basis (bird dispersing between the pans) which could interact with the PV panels.

Placement of the proposed PV panels will be critical and should preferably correspond to the northern part of the study site and as well as the appropriate application of bird deterrent devices such as a combination of rotating

flashers/reflectors, including diverters which emit light during nigh time to increase the visibility of the infrastructure for birds such as flamingos which tend to disperse during the night. Post construction monitoring to quantify mortalities will be important during to early operational phase in order to determine "hotspot" areas which may require additional mitigation measures.

Desktop results and site observations show that the following species could interact with the panel infrastructure:

- South African Shelduck (Tadorna cana);
- Egyptian Goose (Alopochen aegyptiaca);
- Spur-winged Goose (Plectropterus gambiensis);
- Yellow-billed Duck (Anas undulata);
- White-faced Duck (Dendrocygna viduata);
- Red-billed Teal (Anas erythrorhynchus);
- Cape Teal (Anas capensis);
- Cape Shoveller (Anas smithii);
- Glossy Ibis (Plegadis falcinellus);
- Black-winged Stilt (Himantopus himantopus);
- Three-banded Plover (Charadrius tricollaris); and potentially also
- Greater Flamingo (Phoenicopterus roseus);
- Lesser Flamingo (*Phoeniconaias minor*);
- Maccoa Duck (Oxyura maccoa);
- White-breasted Cormorant (*Phalacrocorax lucidus*)
- Reed Cormorant (Microcarbo africanus);
- African Sacred Ibis (Threskiornis aethiopicus) and potentially also
- Little Grebe (Tachybaptus ruficollis);
- Black-headed Heron (Ardea melanocephala);
- Red-knobbed Coot (Fulica cristata);
- Grey Heron (Ardea cinerea);
- Little Egret (Egretta garzetta);
- Great Egret (Ardea alba);
- African Darter (Anhinga rufa);
- Common Moorhen (Gallinula chloropus) and
- African Swamphen (*Porphyrio madagascariensis*).

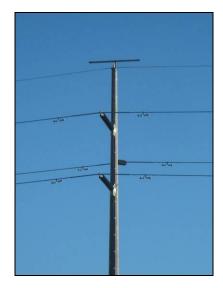
3.11.3 Interaction with overhead powerlines and reticulation

A 132kV overhead powerline is proposed to tie-in to the Brand gold (6.6/132 kV) substation. Birds are impacted in three ways by means of overhead powerlines (described below). It is however a common rule that large and heavy-bodied terrestrial bird species are more at risk of being affected in a negative way when interacting with powerlines in general. These include the following:

Electrocution

Electrocution happens when a bird bridges the gap between the live components or a combination of a live and earth component of a power line, thereby creating a short circuit. This happens when a bird, mainly a species with a fairly large wingspan attempts to perch on a tower or attempts to fly-off a tower. Many of these species include vultures (of the genera *Gyps* and *Torgos*) as well as other large birds of prey such as the Martial Eagle (*Polemaetus bellicosus*) (Ledger & Annegarn, 1981; Kruger, 1999; Van Rooyen, 2000). These species will attempt to roost and even breed on the tower structures if available nesting platforms are a scarce commodity in the area. Other types of electrocutions happen by means of so-called "bird-streamers". This happens when a bird, especially when taking off, excretes and thereby causes a short-circuit through the fluidity excreta (Van Rooyen & Taylor, 1999).

Large transmission lines (from 220 kV to 765 kV) are seldom a risk of electrocution, although smaller distribution lines (88 – 132kV) pose a higher risk. However, for this project, the design of the pylon is an important consideration in preventing bird electrocutions. The proposed pylon design should incorporate the following design parameters:


- The clearances between the live components should exceed the wingspan of any bird species;
- The height of the tower should allow for unrestricted movement of terrestrial birds between successive pylons;
- The live components should be "bundled" to increase the visibility for approaching birds;
- "Bird streamers" should be eliminated by discouraging birds from perching above the conductors.

It is therefore recommended that the pylon design incorporates "features as illustrated by Figure 13⁷.

From Figure 13 it is clear that perching of birds is discouraged by the addition of diagonal crossbars or by doing away with the crossbars that holds the conductors in place. Bird "streamers" are also eliminated by fitting the poles with bird guards/spikes above the conductors. However, safe perching is facilitated by the fitment of a horizontal bar on top of the pole structure without the risk of electrocution (due to the perpendicular orientation of the bar relative to the conductors).

⁷ Please note that these are examples of recommended pylon designs. These are taken from steel monopole pylons.

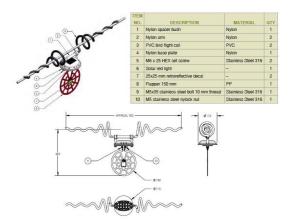


Figure 12: Two bird-friendly tower designs to be used for the current project.

Collision

Collisions with earth wires have probably accounted for most bird-powerline interactions in South Africa. In general, the earth wires are much thinner in diameter when compared to the live components, and therefore less visible to approaching birds. Many of the species likely to be affected include heavy, large-bodied terrestrial species such as bustards, korhaans and a variety of waterbirds that are not very agile or manoeuvrable once airborne. These species, especially those with the habit of flying with outstretched necks (e.g. most species of storks) find it difficult to make a sudden change in direction while flying – resulting in the bird flying into the earth wires.

Areas where bird collisions are likely to be high could be ameliorated by marking the lines with appropriate bird deterrent devices such as "bird diverters" and "flappers" to increase the visibility of the lines. For the current project it is proposed that the overhead powerlines (including existing lines) also considers the fitment of dynamic devices such as the "Viper live bird flapper" and nocturnal LED solar-charged bird diverters owing to the potential nocturnal flyovers by flamingo taxa (see figure 13).

Figure 13: Examples of bird flight diverters to be used on the power lines: Nocturnal LED solar-charged bird diverter (left) and Viper live bird flapper (right).

 Physical disturbances and habitat destruction caused during construction and maintenance

It is anticipated that part of the powerline line servitude will be cleared of vegetation. In addition, construction activities go hand in hand with high ambient noise levels. Although construction is considered temporary, many species will vacate the area during the construction phase and will become temporarily displaced.

Table 4: A preliminary summery of impacts associated with the proposed PV facility and its infrastructure.

Issue 1	Nature of Impact	Extent	No-Go Areas						
Impact: Losses of natural habitat and displacement of birds through physical transformation, modifications, removals and land clearance. This impact is mainly restricted to the									
construction phase and is permanent.									
Habitat destruction and disturbance and/or displacement	Negative, especially for endemic species.	Local	N/a						
of birds									
Description of expected significance of impact: The imp	act will be of a long duration, (prior to mitigation). The	ne impact is expected to have a low sig	gnificance after proposed						
mitigation suggestions and if the sensitivity map is considered due to the current poor ecological condition of most of the terrestrial habitat types									
Gaps in knowledge and recommendations for further st	tudy: A baseline survey determine relative bird dens	ities and distribution ranges.							

Issue 2	Nature of Impact	Extent	No-Go Areas							
Impact: Avian collision impacts related to the PV facility du	Impact: Avian collision impacts related to the PV facility during the operational phase (collision with the PV panels).									
Potential collision of birds with the PV panel structures	Negative, especially for waterbirds and shorebird taxa	Local and immediate surrounding area	Potentially the southern part of the study area where a high frequency of passing birds is expected on a daily basis.							
Description of expected significance of impact: The imp										
medium significance according to placement of PV arrays and appropriate mitigation and monitoring protocols (to be assessed during the EIA phase).										
Gaps in knowledge and recommendations for further s	tudy: A wet season survey is proposed to determine	e occurrence of waterbird species.								

Issue 3	Nature of Impact	Extent	No-Go Areas						
Impact: Avian collision impacts related to the powerline reticulation and new distribution lines during operation.									
Potential collision due to electrical overhead distribution lines	Negative, especially for large-bodied species and potentially also storks and flamingo taxa	Site and immediate surroundings	Potentially the southern part of the study area where a high frequency of passing birds is expected on a daily basis.						
Description of expected significance of impact: The impact will be of a long duration (prior to mitigation) and probable with a medium significance, but may be reduced to a moderate or even low significance as per recommended mitigation measures (to be assessed during the EIA phase).									
	Gaps in knowledge and recommendations for further study: A baseline survey is proposed to determine occurrence of collision prone bird species.								

3.12 Collision-prone bird species

A total of 80 collision-prone bird species have been recorded from the study area, of which 62 species are waterbirds and 10 species are birds of prey (Table 5). According to Table 5, it is evident that the number of potential collision-prone species that could occur in the study area is high (c. 45% of the total number of bird species recorded in the area).

Table 5: Collision-prone bird species and Red listed species (in red) expected to be present on the study site and immediate surroundings inferred from the South African Atlas Project (SABAP2).

		SABAP2 Reporting Rate				
Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards	
Abdim's Stork	Ciconia abdimii	2.56	1	6.25	1	
African Darter	Anhinga rufa	41.03	16	6.25	1	
African Fish Eagle	Haliaeetus vocifer	15.38	6	0.00	0	
African Rail	Rallus caerulescens	7.69	3	0.00	0	
African Sacred Ibis	Threskiornis aethiopicus	43.59	17	0.00	0	
African Snipe	Gallinago nigripennis	33.33	13	6.25	1	
African Spoonbill	Platalea alba	33.33	13	0.00	0	
African Swamphen	Porphyrio madagascariensis	79.49	31	6.25	1	
Amur Falcon	Falco amurensis	2.56	1	0.00	0	
Black Crake	Zapornia flavirostra	20.51	8	0.00	0	
Black Heron	Egretta ardesiaca	25.64	10	6.25	1	
Black Sparrowhawk	Accipiter melanoleucus	5.13	2	0.00	0	
Black-crowned Night Heron	Nycticorax nycticorax	10.26	4	0.00	0	
Black-headed Heron	Ardea melanocephala	38.46	15	0.00	0	
Black-necked Grebe	Podiceps nigricollis	71.79	28	0.00	0	
Black-winged Kite	Elanus caeruleus	53.85	21	12.50	2	
Black-winged Stilt	Himantopus himantopus	84.62	33	18.75	3	
Blue Korhaan	Eupodotis caerulescens	2.56	1	6.25	1	
Blue-billed Teal	Spatula hottentota	74.36	29	6.25	1	
Cape Shoveler	Spatula smithii	79.49	31	12.50	2	
Cape Teal	Anas capensis	79.49	31	12.50	2	
Chestnut-banded Plover	Charadrius pallidus	7.69	3	0.00	0	
Common Buzzard	Buteo buteo	7.69	3	6.25	1	
Common Greenshank	Tringa nebularia	28.21	11	0.00	0	
Common Moorhen	Gallinula chloropus	87.18	34	0.00	0	
Common Ringed Plover	Charadrius hiaticula	12.82	5	0.00	0	
Common Sandpiper	Actitis hypoleucos	25.64	10	6.25	1	
Curlew Sandpiper	Calidris ferruginea	12.82	5	0.00	0	
Egyptian Goose	Alopochen aegyptiaca	79.49	31	18.75	3	

Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards
Fulvous Whistling Duck	Dendrocygna bicolor	25.64	10	0.00	0
Giant Kingfisher	Megaceryle maxima	5.13	2	0.00	0
Glossy Ibis	Plegadis falcinellus	79.49	31	12.50	2
Goliath Heron	Ardea goliath	53.85	21	6.25	1
Great Crested Grebe	Podiceps cristatus	28.21	11	0.00	0
Great Egret	Ardea alba	2.56	1	0.00	0
Greater Flamingo	Phoenicopterus roseus	69.23	27	37.50	6
Greater Painted-snipe	Rostratula benghalensis	2.56	1	0.00	0
Grey Heron	Ardea cinerea	33.33	13	12.50	2
Grey Plover	Pluvialis squatarola	2.56	1	0.00	0
Grey-headed Gull	Chroicocephalus cirrocephalus	69.23	27	6.25	1
Helmeted Guineafowl	Numida meleagris	76.92	30	6.25	1
Intermediate Egret	Ardea intermedia	20.51	8	0.00	0
Kelp Gull	Larus dominicanus	2.56	1	0.00	0
Kittlitz's Plover	Charadrius pecuarius	25.64	10	6.25	1
Lanner Falcon	Falco biarmicus	2.56	1	0.00	0
Lesser Flamingo	Phoeniconaias minor	64.10	25	25.00	4
Lesser Kestrel	Falco naumanni	7.69	3	0.00	0
Little Bittern	Ixobrychus minutus	5.13	2	0.00	0
Little Egret	Egretta garzetta	33.33	13	0.00	0
Little Grebe	Tachybaptus ruficollis	79.49	31	12.50	2
Maccoa Duck	Oxyura maccoa	58.97	23	12.50	2
Marsh Owl	Asio capensis	2.56	1	0.00	0
Marsh Sandpiper	Tringa stagnatilis	23.08	9	0.00	0
Northern Black Korhaan	Afrotis afraoides	82.05	32	12.50	2
Orange River Francolin	Scleroptila gutturalis	15.38	6	0.00	0
Pied Avocet	Recurvirostra avosetta	66.67	26	6.25	1
Pied Kingfisher	Ceryle rudis	10.26	4	6.25	1
Purple Heron	Ardea purpurea	41.03	16	0.00	0
Red-billed Teal	Anas erythrorhyncha	82.05	32	0.00	0
Red-knobbed Coot	Fulica cristata	92.31	36	25.00	4
Reed Cormorant	Microcarbo africanus	79.49	31	6.25	1
Ruff	Calidris pugnax	64.10	25	6.25	1
Secretarybird	Sagittarius serpentarius	2.56	1	0.00	0
South African Shelduck	Tadorna cana	61.54	24	6.25	1
Southern Pochard	Netta erythrophthalma	66.67	26	12.50	2
Speckled Pigeon	Columba guinea	92.31	36	6.25	1
Spotted Eagle-Owl	Bubo africanus	23.08	9	0.00	0
Spur-winged Goose	Plectropterus gambensis	71.79	28	12.50	2
Squacco Heron	Ardeola ralloides	64.10	25	6.25	1
Swainson's Spurfowl	Pternistis swainsonii	74.36	29	18.75	3

		SABAP2 Reporting Rate				
Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards	
Three-banded Plover	Charadrius tricollaris	84.62	33	6.25	1	
Western Cattle Egret	Bubulcus ibis	79.49	31	18.75	3	
Whiskered Tern	Chlidonias hybrida	48.72	19	0.00	0	
White-backed Duck	Thalassornis leuconotus	12.82	5	0.00	0	
White-breasted Cormorant	Phalacrocorax lucidus	48.72	19	6.25	1	
White-faced Whistling Duck	Dendrocygna viduata	84.62	33	6.25	1	
White-winged Tern	Chlidonias leucopterus	35.90	14	12.50	2	
Wood Sandpiper	Tringa glareola	23.08	9	0.00	0	
Yellow-billed Duck	Anas undulata	82.05	32	6.25	1	
Yellow-billed Stork	Mycteria ibis	17.95	7	0.00	0	

4. PLAN OF STUDY FOR THE EIA PHASE

Due to the limited level of detail that is normally implemented during a scoping assessment, it is imperative that detailed avifaunal investigations be conducted on the study area at an appropriate season.

4.1 Proposed approach and methods

The following methods are proposed during an austral summer season survey:

- Active searching and the compilation of a bird inventory while traversing much of the available habitat types;
- The determination of the occurrence of Red Data species and collisionprone bird species;
- The identification and mapping of suitable habitat for species of conservation concern while focussing on structural and topographical cues:
- A landscape analysis of important flyways or daily flight paths corresponding to important landscape features; and
- Density estimates will be collected by means of point counts to evaluate the dominant/typical species and their respective relative densities at each site. At each point the number of bird species seen will be recorded, as well as their respective abundances and distance from the observer (by means of a rangefinder). The data generated from the point counts will be analysed according to Clarke & Warwick (1994) based on the computed percentage contribution (%) of each species including the consistency (calculated as the similarity coefficient/standard deviation) of its contribution to the each habitat type.
- Suitable bird repelling structures and bird diverters will be provided to avoid collision of birds with the PV facility and associated powerlines.

5. REFERENCES

Birdlife South Africa. 2022. BirdLife South Africa Checklist of Birds in South Africa, 2018.

Clarke, K.R. & Warwick, R.M. 1994. Changes in marine communities: An approach to statistical analysis and interpretation. Natural Environmental Research Council, United Kingdom.

DESTEA (2015). Free State Biodiversity Plan. compiled by Nacelle B. Collins.

Geoterrainimage. 2015. The South African National Land cover Dataset. Version 05.

Gill, F, D Donsker, & P Rasmussen (Eds). 2022. IOC World Bird List (v 12.1). Doi 10.14344/IOC.ML.10.2. http://www.worldbirdnames.org/.

Gunerhan, H., Hepbasli, A. & Giresunlu, U. 2009. Environmental impacts from the solar energy systems. Energy Sources, Part A: *Recovery, Utilization and Environmental Effects* 31: 131-138.

Hardaker, T. 2020. Southern African Bird List - Version 10 - 22 December 2020.

Harrison, C., Lloyd, H. & Field, C. 2016. *Evidence review of the impact of solar farms on birds, bats and general ecology.* NEER012 report, Manchester Metropolitan University, UK.

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.). 1997. *The Atlas of Southern African Birds. Vol. 1 & 2.* BirdLife South Africa, Johannesburg.

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. (eds.) 2005. *Roberts – Birds of Southern Africa*, VIIth ed. The Trustees of the John Voelker Bird Book Fund, Cape Town.

IUCN Red List of Threatened Species. Version 2022. http://www.iucnredlist.org/.

Jenkins, A.R, Ralston-Paton, S & Smit-Robinson, H.A. 2017. Best practice guidelines: Birds and Solar Energy. Guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa. BirdLife South Africa.

Kagen, R.A., Verner, T.C., Trail, PW & Espinoza, E.O. 2014. Avian mortality at solar energy facilities in southern California: A preliminary analysis. Unpublished report by the National Fish and Wildlife Forensics Laboratory, USA.

Kruger, R. 1999. *Towards solving raptor electrocutions on Eskom Distribution Structures in South Africa*. M. Phil. Mini-thesis. University of the Orange Free State. Bloemfontein. South Africa.

Ledger, J. & Annegarn, H.J. 1981. Electrocution Hazards to the Cape Vulture (*Gyps coprotheres*) in South Africa. *Biological Conservation* 20: 15-24.

Marnewick, M.D., Retief, E.F., Theron, N.T., Wright, D.R. And Anderson, T.A. 2015. *Important Bird and Biodiversity Areas of South Africa*. Johannesburg: BirdLife South Africa.

McCrary, M.D., McKernan, R.L., Schreiber, R.W., Wagner, W.D. & Sciarotta, T.C. 1986. Avian mortality at a solar energy power plant. *Journal of Field Ornithology* 57: 135-141.

Mucina, L. & Rutherford, M.C. (eds.). 2006. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia 19*. South African National Biodiversity Institute, Pretoria.

National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004).

Pachnoda Consulting. 2020. ORYX - TETRA4 33kV Powerline, Virginia, Free State Province. A report compiled for Green Environmental.

Taylor, M.R., Peacock, F. & Wanless, R. (eds.). 2015. *The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland*. BirdLife South Africa, Johannesburg

Tsoutsos, T., Frantzeskaki, N. & Gekas, V. 2005. Environmental impacts from solar energy technologies. *Energy Policy* 33: 289-296.

Van Rooyen, C.S. 2000. An overview of Vulture Electrocutions in South Africa. *Vulture News* 43: 5-22.

Van Rooyen, C.S. & Taylor, P.V. 1999. *Bird streamers as probable cause of electrocutions in South Africa*. EPRI Workshop on Avian Interactions with Utility Structures, Charleston, South Carolina.

Vosloo, H. 2003. Birds and power lines. ESI Africa 3: 38.

Walston Jr. L.J., Rollins, K.E., LaGory, K.E., Smith, K.P. & Meyers, S.A. 2016. A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. *Renewable Energy* 92 (2016) 405-414.

www.sabap2.birdmap.africa

Appendix 1: A shortlist of bird species recorded on the study area. The list provides an indication of the species occurrence according to SABAP2 reporting rates.

щ	O N	Calantifia Nama		SABAP2 Reporting Rate				
#	Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards		
78	Abdim's Stork	Ciconia abdimii	2.56	1	6.25	1		
432	Acacia Pied Barbet	Tricholaema leucomelas	33.33	13	0.00	0		
52	African Darter	Anhinga rufa	41.03	16	6.25	1		
149	African Fish Eagle	Haliaeetus vocifer	15.38	6	0.00	0		
418	African Hoopoe	Upupa africana	17.95	7	0.00	0		
228	African Jacana	Actophilornis africanus	2.56	1	0.00	0		
387	African Palm Swift	Cypsiurus parvus	58.97	23	0.00	0		
692	African Pipit	Anthus cinnamomeus	76.92	30	18.75	3		
197	African Rail	Rallus caerulescens	7.69	3	0.00	0		
544	African Red-eyed Bulbul	Pycnonotus nigricans	30.77	12	6.25	1		
606	African Reed Warbler	Acrocephalus baeticatus	41.03	16	0.00	0		
81	African Sacred Ibis	Threskiornis aethiopicus	43.59	17	0.00	0		
250	African Snipe	Gallinago nigripennis	33.33	13	6.25	1		
85	African Spoonbill	Platalea alba	33.33	13	0.00	0		
576	African Stonechat	Saxicola torquatus	79.49	31	12.50	2		
208	African Swamphen	Porphyrio madagascariensis	79.49	31	6.25	1		
119	Amur Falcon	Falco amurensis	2.56	1	0.00	0		
575	Ant-eating Chat	Myrmecocichla formicivora	56.41	22	18.75	3		
493	Barn Swallow	Hirundo rustica	43.59	17	12.50	2		
203	Black Crake	Zapornia flavirostra	20.51	8	0.00	0		
64	Black Heron	Egretta ardesiaca	25.64	10	6.25	1		

ш	Common Nama	Calantifia Nama		SABAP2 Reporting Rate				
#	Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards		
159	Black Sparrowhawk	Accipiter melanoleucus	5.13	2	0.00	0		
650	Black-chested Prinia	Prinia flavicans	94.87	37	12.50	2		
431	Black-collared Barbet	Lybius torquatus	5.13	2	0.00	0		
69	Black-crowned Night Heron	Nycticorax nycticorax	10.26	4	0.00	0		
55	Black-headed Heron	Ardea melanocephala	38.46	15	0.00	0		
5	Black-necked Grebe	Podiceps nigricollis	71.79	28	0.00	0		
245	Blacksmith Lapwing	Vanellus armatus	92.31	36	31.25	5		
860	Black-throated Canary	Crithagra atrogularis	79.49	31	6.25	1		
130	Black-winged Kite	Elanus caeruleus	53.85	21	12.50	2		
270	Black-winged Stilt	Himantopus himantopus	84.62	33	18.75	3		
223	Blue Korhaan	Eupodotis caerulescens	2.56	1	6.25	1		
839	Blue Waxbill	Uraeginthus angolensis	2.56	1	0.00	0		
99	Blue-billed Teal	Spatula hottentota	74.36	29	6.25	1		
722	Bokmakierie	Telophorus zeylonus	15.38	6	0.00	0		
714	Brown-crowned Tchagra	Tchagra australis	2.56	1	0.00	0		
509	Brown-throated Martin	Riparia paludicola	71.79	28	6.25	1		
703	Cape Longclaw	Macronyx capensis	74.36	29	12.50	2		
581	Cape Robin-Chat	Cossypha caffra	15.38	6	0.00	0		
94	Cape Shoveler	Spatula smithii	79.49	31	12.50	2		
786	Cape Sparrow	Passer melanurus	92.31	36	25.00	4		
737	Cape Starling	Lamprotornis nitens	23.08	9	0.00	0		
98	Cape Teal	Anas capensis	79.49	31	12.50	2		
316	Ring-necked Dove	Streptopelia capicola	97.44	38	18.75	3		
686	Cape Wagtail	Motacilla capensis	92.31	36	6.25	1		

ш	0 N	Onlandiin Nama		SABAP2 F	Reporting Rate	
#	Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards
450	Cardinal Woodpecker	Dendropicos fuscescens	7.69	3	0.00	0
484	Chestnut-backed Sparrow-Lark	Eremopterix leucotis	2.56	1	0.00	0
236	Chestnut-banded Plover	Charadrius pallidus	7.69	3	0.00	0
658	Chestnut-vented Warbler	Curruca subcoerulea	15.38	6	6.25	1
631	Cloud Cisticola	Cisticola textrix	33.33	13	6.25	1
154	Common Buzzard	Buteo buteo	7.69	3	6.25	1
263	Common Greenshank	Tringa nebularia	28.21	11	0.00	0
210	Common Moorhen	Gallinula chloropus	87.18	34	0.00	0
734	Common Myna	Acridotheres tristis	66.67	26	0.00	0
189	Common Quail	Coturnix coturnix	5.13	2	0.00	0
233	Common Ringed Plover	Charadrius hiaticula	12.82	5	0.00	0
258	Common Sandpiper	Actitis hypoleucos	25.64	10	6.25	1
733	Common Starling	Sturnus vulgaris	2.56	1	0.00	0
378	Common Swift	Apus apus	2.56	1	0.00	0
843	Common Waxbill	Estrilda astrild	28.21	11	0.00	0
439	Crested Barbet	Trachyphonus vaillantii	41.03	16	0.00	0
242	Crowned Lapwing	Vanellus coronatus	92.31	36	12.50	2
251	Curlew Sandpiper	Calidris ferruginea	12.82	5	0.00	0
630	Desert Cisticola	Cisticola aridulus	53.85	21	0.00	0
352	Diederik Cuckoo	Chrysococcyx caprius	30.77	12	0.00	0
278	Double-banded Courser	Rhinoptilus africanus	20.51	8	6.25	1
89	Egyptian Goose	Alopochen aegyptiaca	79.49	31	18.75	3
404	European Bee-eater	Merops apiaster	28.21	11	0.00	0
678	Fairy Flycatcher	Stenostira scita	7.69	3	0.00	0

щ	Common Name	Caiantifia Nama		SABAP2 Reporting Rate				
#	Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards		
570	Familiar Chat	Oenanthe familiaris	2.56	1	0.00	0		
665	Fiscal Flycatcher	Melaenornis silens	5.13	2	6.25	1		
101	Fulvous Whistling Duck	Dendrocygna bicolor	25.64	10	0.00	0		
395	Giant Kingfisher	Megaceryle maxima	5.13	2	0.00	0		
83	Glossy Ibis	Plegadis falcinellus	79.49	31	12.50	2		
56	Goliath Heron	Ardea goliath	53.85	21	6.25	1		
4	Great Crested Grebe	Podiceps cristatus	28.21	11	0.00	0		
58	Great Egret	Ardea alba	2.56	1	0.00	0		
603	Great Reed Warbler	Acrocephalus arundinaceus	7.69	3	0.00	0		
86	Greater Flamingo	Phoenicopterus roseus	69.23	27	37.50	6		
230	Greater Painted-snipe	Rostratula benghalensis	2.56	1	0.00	0		
502	Greater Striped Swallow	Cecropis cucullata	41.03	16	0.00	0		
419	Green Wood Hoopoe	Phoeniculus purpureus	5.13	2	0.00	0		
54	Grey Heron	Ardea cinerea	33.33	13	12.50	2		
241	Grey Plover	Pluvialis squatarola	2.56	1	0.00	0		
288	Grey-headed Gull	Chroicocephalus cirrocephalus	69.23	27	6.25	1		
84	Hadada Ibis	Bostrychia hagedash	82.05	32	0.00	0		
192	Helmeted Guineafowl	Numida meleagris	76.92	30	6.25	1		
784	House Sparrow	Passer domesticus	7.69	3	0.00	0		
60	Intermediate Egret	Ardea intermedia	20.51	8	0.00	0		
586	Kalahari Scrub Robin	Cercotrichas paena	2.56	1	6.25	1		
583	Karoo Scrub Robin	Cercotrichas coryphoeus	2.56	1	6.25	1		
1104	Karoo Thrush	Turdus smithi	10.26	4	0.00	0		
287	Kelp Gull	Larus dominicanus	2.56	1	0.00	0		

ш	Common Name	Scientific Name		SABAP2 F	Reporting Rate	
#	Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards
237	Kittlitz's Plover	Charadrius pecuarius	25.64	10	6.25	1
114	Lanner Falcon	Falco biarmicus	2.56	1	0.00	0
317	Laughing Dove	Spilopelia senegalensis	84.62	33	25.00	4
87	Lesser Flamingo	Phoeniconaias minor	64.10	25	25.00	4
125	Lesser Kestrel	Falco naumanni	7.69	3	0.00	0
604	Lesser Swamp Warbler	Acrocephalus gracilirostris	82.05	32	0.00	0
646	Levaillant's Cisticola	Cisticola tinniens	92.31	36	0.00	0
67	Little Bittern	Ixobrychus minutus	5.13	2	0.00	0
59	Little Egret	Egretta garzetta	33.33	13	0.00	0
6	Little Grebe	Tachybaptus ruficollis	79.49	31	12.50	2
253	Little Stint	Calidris minuta	56.41	22	0.00	0
385	Little Swift	Apus affinis	61.54	24	0.00	0
852	Long-tailed Paradise Whydah	Vidua paradisaea	2.56	1	0.00	0
818	Long-tailed Widowbird	Euplectes progne	64.10	25	18.75	3
103	Maccoa Duck	Oxyura maccoa	58.97	23	12.50	2
397	Malachite Kingfisher	Corythornis cristatus	17.95	7	0.00	0
361	Marsh Owl	Asio capensis	2.56	1	0.00	0
262	Marsh Sandpiper	Tringa stagnatilis	23.08	9	0.00	0
	Melodious Lark	Mirafra cheniana	n/a			
564	Mountain Wheatear	Myrmecocichla monticola	2.56	1	6.25	1
318	Namaqua Dove	Oena capensis	28.21	11	0.00	0
637	Neddicky	Cisticola fulvicapilla	41.03	16	12.50	2
1035	Northern Black Korhaan	Afrotis afraoides	82.05	32	12.50	2
179	Orange River Francolin	Scleroptila gutturalis	15.38	6	0.00	0

ш	Common Nama	Calantifia Nama		SABAP2 F	Reporting Rate	
#	Common Name	Scientific Name	Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards
1171	Orange River White-eye	Zosterops pallidus	23.08	9	0.00	0
838	Orange-breasted Waxbill	Amandava subflava	51.28	20	0.00	0
269	Pied Avocet	Recurvirostra avosetta	66.67	26	6.25	1
394	Pied Kingfisher	Ceryle rudis	10.26	4	6.25	1
746	Pied Starling	Lamprotornis bicolor	64.10	25	6.25	1
846	Pin-tailed Whydah	Vidua macroura	35.90	14	6.25	1
57	Purple Heron	Ardea purpurea	41.03	16	0.00	0
844	Quailfinch	Ortygospiza atricollis	61.54	24	6.25	1
708	Red-backed Shrike	Lanius collurio	2.56	1	0.00	0
837	Red-billed Firefinch	Lagonosticta senegala	20.51	8	0.00	0
805	Red-billed Quelea	Quelea quelea	61.54	24	12.50	2
97	Red-billed Teal	Anas erythrorhyncha	82.05	32	0.00	0
488	Red-capped Lark	Calandrella cinerea	35.90	14	6.25	1
314	Red-eyed Dove	Streptopelia semitorquata	84.62	33	6.25	1
392	Red-faced Mousebird	Urocolius indicus	43.59	17	0.00	0
820	Red-headed Finch	Amadina erythrocephala	25.64	10	0.00	0
212	Red-knobbed Coot	Fulica cristata	92.31	36	25.00	4
453	Red-throated Wryneck	Jynx ruficollis	5.13	2	0.00	0
50	Reed Cormorant	Microcarbo africanus	79.49	31	6.25	1
940	Rock Dove	Columba livia	12.82	5	0.00	0
256	Ruff	Calidris pugnax	64.10	25	6.25	1
458	Rufous-naped Lark	Mirafra africana	41.03	16	6.25	1
789	Scaly-feathered Weaver	Sporopipes squamifrons	2.56	1	6.25	1
105	Secretarybird	Sagittarius serpentarius	2.56	1	0.00	0

#	Common Name	Scientific Name	SABAP2 Reporting Rate			
			Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards
504	South African Cliff Swallow	Petrochelidon spilodera	20.51	8	0.00	0
90	South African Shelduck	Tadorna cana	61.54	24	6.25	1
707	Southern Fiscal	Lanius collaris	89.74	35	25.00	4
4142	Southern Grey-headed Sparrow	Passer diffusus	23.08	9	0.00	0
803	Southern Masked Weaver	Ploceus velatus	97.44	38	18.75	3
102	Southern Pochard	Netta erythrophthalma	66.67	26	12.50	2
808	Southern Red Bishop	Euplectes orix	84.62	33	18.75	3
390	Speckled Mousebird	Colius striatus	10.26	4	0.00	0
311	Speckled Pigeon	Columba guinea	92.31	36	6.25	1
474	Spike-heeled Lark	Chersomanes albofasciata	46.15	18	0.00	0
368	Spotted Eagle-Owl	Bubo africanus	23.08	9	0.00	0
275	Spotted Thick-knee	Burhinus capensis	2.56	1	0.00	0
88	Spur-winged Goose	Plectropterus gambensis	71.79	28	12.50	2
62	Squacco Heron	Ardeola ralloides	64.10	25	6.25	1
185	Swainson's Spurfowl	Pternistis swainsonii	74.36	29	18.75	3
238	Three-banded Plover	Charadrius tricollaris	84.62	33	6.25	1
851	Village Indigobird	Vidua chalybeata	7.69	3	0.00	0
735	Wattled Starling	Creatophora cinerea	41.03	16	6.25	1
61	Western Cattle Egret	Bubulcus ibis	79.49	31	18.75	3
305	Whiskered Tern	Chlidonias hybrida	48.72	19	0.00	0
104	White-backed Duck	Thalassornis leuconotus	12.82	5	0.00	0
391	White-backed Mousebird	Colius colius	15.38	6	0.00	0
763	White-bellied Sunbird	Cinnyris talatala	2.56	1	0.00	0
47	White-breasted Cormorant	Phalacrocorax lucidus	48.72	19	6.25	1

#	Common Name	Scientific Name	SABAP2 Reporting Rate			
			Full Protocol (%)	Number of cards	Ad Hoc Protocol (%)	Number of cards
780	White-browed Sparrow-Weaver	Plocepasser mahali	94.87	37	12.50	2
100	White-faced Whistling Duck	Dendrocygna viduata	84.62	33	6.25	1
383	White-rumped Swift	Apus caffer	25.64	10	0.00	0
495	White-throated Swallow	Hirundo albigularis	53.85	21	12.50	2
304	White-winged Tern	Chlidonias leucopterus	35.90	14	12.50	2
814	White-winged Widowbird	Euplectes albonotatus	2.56	1	0.00	0
599	Willow Warbler	Phylloscopus trochilus	17.95	7	0.00	0
264	Wood Sandpiper	Tringa glareola	23.08	9	0.00	0
866	Yellow Canary	Crithagra flaviventris	33.33	13	0.00	0
96	Yellow-billed Duck	Anas undulata	82.05	32	6.25	1
76	Yellow-billed Stork	Mycteria ibis	17.95	7	0.00	0
812	Yellow-crowned Bishop	Euplectes afer	30.77	12	6.25	1
629	Zitting Cisticola	Cisticola juncidis	46.15	18	0.00	0