STORMWATER MANAGEMENT PLAN REPORT

FOR

MAKHALEMPONGO CHICKENS PORTION 40 OF FARM KILLARNEY

REVISION 0

July 2022

Prepared by: Ntuthuko Mkhwanazi (Pr. Tech. Eng)

Contents

1.	Intro	duction
2.	Over	2 view
3.	Proje	ect Description
4.	Prop	osed stormwater management system3
5.	Site	impact assessment3
6.	Stor	mwater Management Assessment4
6.1	Des	sign Standards4
6.2	Нус	drology5
6	.2.1	Catchment area5
6	.2.2	Runoff coefficients
6	.2.3	Time of concentration
6	.2.4	Rainfall data7
6	.2.5	Storm discharge
6	.2.6	Attenuation Volume
6	.2.7	Attenuation structure
7.	Exec	cution of stormwater Management Plan12
7.1	Со	nstruction – Civil infrastructure
7	.1.1	Attenuation Structures
7	.1.2	Site clearance
7	.1.3	Filter barriers
7	.1.4	Forming of embankments
7	.1.5	Trench excavation
7	.1.6	Re-establishment of vegetation
7.2	Со	nstruction – Top structures
8.	Cond	clusion14
9.	ANN	EXURE A
10.	ANN	EXURE B

1. Introduction

Ntusa Consulting Engineers was appointed by Makhalempongo Chickens to prepare a stormwater management plan (SWMP) for the proposed addition of two chicken broilers at the Makhalempongo Chickens portion 40 of farm killarney located within the Cato Ridge area under the eThekwini Local Municipality.

In accordance with the National Environmental Management Act, Water Act and National Building Regulations, a stormwater management plan is required in order to ascertain reasonable water control, conservation and management of the environment. The Stormwater Management prescribes that the stormwater discharge from privately owned or commercial site be controlled and limited to the predevelopment scenario.

2. Overview

Land development can dramatically alter the hydrologic cycle of a site and, ultimately, an entire watershed. Prior to development, native vegetation can either directly intercept precipitation or draw that portion that has infiltrated into the ground and return it to the atmosphere through evapotranspiration. Development can remove this beneficial vegetation and replace it with lawn or impervious cover, reducing the sites evapotranspiration and infiltration rates.

Clearing and grading a site can remove depressions that store rainfall. Construction activities may also compact the soil and diminish its infiltration ability, resulting in increased volumes and rates of stormwater runoff from the site. Impervious areas that are connected to each other through gutters, channels, and storm sewers can transport runoff more quickly than natural areas. This shortening of the transport or travel time quickens the rainfall runoff response of the drainage area, causing flow in downstream waterways to peak faster and higher than natural conditions. These increases can create new and aggravate existing downstream flooding. Increased peak flows produce greater fluctuations between normal and storm flow rates, which can increase erosion and greatly exceed the required flow in the Municipal stormwater drainage system.

The key objectives of the stormwater Management Plan for the Development are to define measures to:

- Ensure compatibility of the site with relevant regulations and by-laws from the stormwater perspective;
- Protect all life and property from damage by stormwater floods;
- Prevent erosion of soil by wind and water, and
- Develop a conceptual Surface Water Management Plan for the site during construction and post development when compared to pre-development.

3. Project Description

The site is located at **29°47'53.55"S**, **30°34'38.04"** E at the Cato Ridge (Killarney) Area. The site consists of 7 broiler houses, bio security area, manager's resident and a storage area. There are existing stormwater management facilities that were built for the mentioned structures.

The proposed development comprises of additional 2 broiler houses with an area of 1674m² and 1854m² and a roundabout for trucks. The proposed additional developed area contributes **4.24 percent** of the site area.

4. Proposed stormwater management system

The broad ideals of the stormwater management philosophy account for the following:

- Reuse of the existing downstream drainage system;
- Compliance with the standard and specific conditions of Authorisation of the Department of Agriculture & Environmental Affairs Record of Decision once available;
- Compliance with the relevant Municipal stormwater management policy;
- Compliance with the National Water Act (Act no.36, 1998); and
- Current national and international best management practices.

5. <u>Site impact assessment</u>

Without appropriately designed stormwater intervention measures, the proposed development plan could have the following detrimental effects:

Physical impacts

- Hydrologic regime alterations increase in discharge rate (volume per unit time) due to increases in flow velocities along existing engineered channels and conduits;
- Hydraulic regime alterations increase in discharge volume due to decreases in depression storage and infiltration;
- Thermal increased water temperatures of storm flows at the pipe outfalls, due to runoff from discharge from attenuation ponds, could impact temperature sensitive biota; and
- Other and attenuation of trash and debris could result in loss of visual amenity and possibly impact sensitive biota.

6. Stormwater Management Assessment

6.1 Design Standards

The following general design standards have been adopted.

Guidelines for Human Settlement Planning and Design

In general, the proposed stormwater management system is designed in accordance with the Guidelines for Human Settlement and Design, compiled by CSIR Building and Construction Technology & Department of Housing.

eThekwini Municipality Stormwater Management Policy

Stormwater management policy is driven by the eThekwini Municipality Coastal Engineering, Stormwater and Catchment Management Department, in conjunction with the Environmental Management Department and essentially falls under the following categories:

✤ Water quality

Policy dictates that adequate measures be instituted during the construction phase to minimise transportation and deposition of silt from the construction site during storm events.

Each development is individually assessed for other pollutants and toxicants, based on proposed land use, and site specific requirements are prescribed.

Policy dictates that storm flows stemming from new developments shall not exceed the flows prior to such development having taken place. To this end, the 1:10 and 1:50 storm recurrence intervals have been defined as the two benchmarks.

Dual drainage system

Policy dictates the application of a dual drainage system, with the minor system (e.g. closed conduit systems) catering for frequent storm events and major system (e.g. overland flow routes) for less frequent but severe storm events.

Department of Water Affairs and Forestry

In general, the proposed stormwater attenuation dams are designed in accordance with the National Water Act (Act 36 of 1998), Section 39, General Authorizations, as published in Government Notice 26/28 no.399, dated 26 March 2004. The general Authorisation mitigates impact and risk by limiting the maximum storage of dams on a site to 50000m³ and the maximum wall height of any structure to 5m.

The design standard applicable for stormwater modeling prescribes that the stormwater outflow from the site be limited to the predevelopment discharge for the 10 and 50-year recurrence interval storms. Attenuation measures must provide for the difference between the pre-development 1:50 year and post development 1:50 year storms or pre-development 1:50 year and 1:10 year post development. The values that yields higher flow is adopted as indicated in the calculations set out below.

Furthermore, the rate of outflow from the attenuation structure must exceed the predevelopment 1:10 year peak rate until the 1:50 year storage is reached.

6.2 Hydrology

6.2.1 Catchment area

The proposed development is shown on the site plan. The total site area for calculations, as per Architectural Plans and post development characteristics are shown as follows:

SCHEDULE OF AREAS:								
Description	Area		Percentage					
Pre-development								
Undeveloped	m²	97716	86.44					
Post-development								
Proposed building	m²	3528	3.61					
Roundabout	m²	615.75	0.63					
Undeveloped	m²	93572.25	82.77					
Total proposed development	m²	4143.75	4.24					

6.2.2 Runoff coefficients

For the calculation of coefficients of runoff for both the pre and post development. These coefficients have been calculated based on the soil conditions, topography and finished surface volume types.

The difference between the pre and post development coefficients of runoff determines the volume to be attenuated.

6.2.3 Time of concentration

The time of concentration is calculated using hydrological estimates. Using the Bransby Williams Formula for flow lengths greater than 200m, the time of concentration, Tc is calculated from the following equation:

 $Tc = 60(0.87 \ x \ L^2 \div 10^9 \div S) \land 0.385$

The surface reduction factor (r.) is as follows:

Surface Reduction Fac	tor
Type of Surface	Factor (r)
Smooth paving	0.02
Clean soil	0.1
Sparse grass	0.3
Mod grass	0.4
Thick bush/grass	0.8

For pre-development scenario, r = 0.4

For post development scenario, r = 0.02

The minimum allowable time of concentration for design is guided by the following table:

TIME OF CONCENTRATION							
Thick vegetation	15min						
Cultivated areas/Parks	15min						
Residential Areas	15min						
Fully developed	10min						

6.2.4 Rainfall data

		RAINF	ALL DAT	4								
Return Period	Storm Duration											
Return Fenou	5min	10min	15min	30min	45min	60min						
2	11.4	15.2	18.1	22.8	26.2	28.8						
5	16.6	22.2	26.3	33.3	38.2	42.1						
10	21.0	28.0	33.2	42.0	48.2	53.1						
20	26.0	34.7	41.1	52.0	59.7	65.8						
50	34.0	45.4	53.8	68.1	78.1	86.1						
100	41.3	55.2	65.4	82.7	94.9	104.6						
200	50.0	66.8	79.1	100.1	114.8	126.6						

The rainfall data for the site recorded for the nearest rain gauge is as follows:

6.2.5 Storm discharge

The design calculations for predevelopment and post development scenarios are as follows:

			RA	FIONAL METHOD			
Description of Catchment			Makhalempor	ngo Chicken Poultry			
River Detail							
Calculated by		N. Mkhwana	azi		Date	31/07/2	2022
			Phys	ical characteristic			
Size of catchment (A)			0.11305	km²	Rainfa region	-	Summ er
Longest watercourse (L)			0.4	km	Are	a distril factor	
Average slope (Sav)			1.528	m/m	Rura I	Urba n	Lakes
Dolomite area (D%)			0	%	100	0	0
Mean annual precipitation (MAF	?)		966	mm			
			Rural (1)			Urban	(2)
Surface slopes	%	Factor	Cs	Description	%	Facto	C2
Vleis and pans	0	0.05	0	Lawns	70	•	02
Flat area	45	0.11	4.95	Sandy, flat (<2%)	0	0.08	0
Hilly	45	0.2	9	Sandy, steep (>7%)	0	0.18	0
Steep area	10	0.3	3	Heavy soil, flat (<2%)	0	0.15	0
Total	100	-	0.1695	Heavy, soil, steep (>7%)	10	0.3	3
Permeability	%	Factor	Ср	Residential areas			
Very permeable	0	0.05	0	Houses	0	0.5	0
Permeable	60	0.1	6	Flat	0	0.6	0
Semi-permeable	20	0.2	4	Industry			
Impermeable	20	0.3	6	Light industry	0	0.65	0
Total	100	-	0.16	Heavy industry	0	0.7	0

Vegetation	%	Factor	Cv	Business			
Thick bush and plantation	70	0.05	3.5	City centre	0	0.6	0
Light bush and farm-lands	15	0.15	2.25	Suburban	0	0.85	0
Grasslands	15	0.25	3.75	Streets	90	0.95	85.5
No vegetation	0	0.3	0	Maximum flood	0	1	0
Total	100	-	0.095	Total (C2)	100	-	0.885
Time of co	ncentratio	on (Tc)		Notes:			
Overland (3)		Defined w	vatercourse	Manuals : SANRAL Drainage Manual and Geometric Design			
				Notes			
$T_{C} = 0,604 \left(\frac{rL}{\sqrt{S_{av}}}\right)^{0,467}$		$T_{c} = \left(\frac{0}{10}\right)$	$\left(\frac{0.87 L^2}{0.00 S_{av}} \right)^{0.385}$				
	hours	0.232	hours				

		Run-off coeffi	cient - Predevelopm	nent			
Return period (years), T	2	5	10	20	50	100	Мах
Run-off coefficient, C1 $(C1 = Cs + Cp + Cv)$	0.4245	0.4245	0.4245	0.4245	0.4245	0.4245	
Adjusted for dolomite areas, $C1D = (C1(1-D\%)+(C1D\%(SUM(Dfactor X Cs\%)))$							
Adjustment factor for initial saturation, Ft	1	1	1	1	1	1	
Adjustment run-off coefficient, CT	0.4245	0.4245	0.4245	0.4245	0.4245	0.4245	

			Rainfall				
Return period (years), T	2	5	10	20	50	100	Max
Point precipitation (mm) Pt	12	18	20	25	32	40	
Point intensity (mm/hr), Pi = Pt/Tc	51.72414	77.5862069	86.2068966	107.7586207	137.931	172.41379	
Area reduction factor ARFT (7)	0.75	0.8	0.85	0.9	0.95	1	
Average intensity (mm/hr), IT = Pi x ARFT	38.7931	62.06896552	73.2758621	96.98275862	131.0345	172.41379	
Return period (years), T	2	5	10	20	50	100	Max
Peak flow (m ³ /s) $Q_{T} = \frac{C_{T}I_{T}A}{3,6}$	0.517131	0.827409052	0.97680235	1.292826643	1.746752	2.2983585	
		Run-off coeffic	ient - Post develop	ment		••	
Return period (years), T	2	5	10	20	50	100	Max
$\begin{array}{ll} \text{Run-off coefficient, C1} & (\text{C1} = \text{Cs} + \\ \text{Cp} + \text{Cv}) \end{array}$	0.885	0.885	0.885	0.885	0.885	0.885	
Adjusted for dolomite areas, C1D = (C1(1- D%)+(C1D%(SUM(Dfactor X Cs%) (4)							
Adjustment factor for initial saturation, Ft	1	1	1	1	1	1	
Adjustment run-off coefficient, CT	0.885	0.885	0.885	0.885	0.885	0.885	
			Rainfall				
Return period (years), T	2	5	10	20	50	100	Max
Point precipitation (mm) Pt	12	18	20	25	32	40	
Point intensity (mm/hr), Pi = Pt/Tc	51.72414	77.5862069	86.2068966	107.7586207	137.931	172.41379	
Area reduction factor ARFT (7)	0.75	0.8	0.85	0.9	0.95	1	
Average intensity (mm/hr), IT = Pi x ARFT	38.7931	62.06896552	73.2758621	96.98275862	131.0345	172.41379	
Return period (years), T	2	5	10	20	50	100	Max
Peak flow (m ³ /s) $Q_T = \frac{C_T I_T A}{3,6}$	1.078117	1.724987069	2.03644307	2.695292295	3.641639	4.7916307	

The design discharge, Q, corresponding to the allowable time of concentration for both the predevelopment and post development scenarios is as in the table below and the following graph showing the run-off hydrograph:

Storm Recurrence interval (yr)	Pre- development Q (m3/s)	Post- development Q (m3/s)
10	0.977	2.036
50	3.498	3.641

6.2.6 Attenuation Volume

6.2.7 Attenuation structure

From the calculations, the total volume required for storage is based on the 1:50 year peak storm discharge, $V = 8.58m^3$. This is the total volume of water to be detained on the site.

There is an existing stormwater retention pond / attenuation tank that was designed to detain the runoff from the proposed hardened areas. The dimensions of the existing storage pond is: 45m x 23m x 1m. The resultant runoff from the proposed two additional broiler houses will be accounted for in the existing storage system. Therefore, there will be no need to construct a new storage system. If there is a need to construct a new system for the additional runoff volume, then the following should be noted.

The attenuation stormwater volume is not to be less than 8.58m³

The recommended size of the tank is 4.00m long x 2.15m wide x 1.0m deep = $8.6m^3$

This allows the tank to have a:

- 0.15mm freeboard in the event of minor blockages and siltation in the tank.
- Attenuate the volume required.

7. Execution of stormwater Management Plan

This strormwater management plan seeks to mitigate the adverse effects of development on downstream receiving waters and/or built environment through effective and sustainable runoff, sediment and pollutant control measures during construction of the civil works, the ensuring construction of the broiler houses and finally upon completion of all construction.

7.1 Construction – Civil infrastructure

7.1.1 Attenuation Structures

The attenuation structures, storage ponds or grassed swales shall be constructed prior to construction of the two additional broiler houses and roundabout or once pipe systems are functional in this catchment.

7.1.2 Site clearance

Site clearance must be carried out with due care and attention to the effect, whether short-term or long-term, that this removal will have on erosion potential.

7.1.3 Filter barriers

Precautionary filter barriers such as silt fencing, straw bale barriers shall be installed on the site at all times to contain soil erosion and prevent any eroded material from being transported.

7.1.4 Forming of embankments

Where embankments have to be formed, stabilization and erosion control measures shall be implemented without delay.

7.1.5 Trench excavation

Trenching for services shall be programmed to commence immediately preceding installation of the services and said trenches shall be backfilled and compacted, to a density at least equivalent to the density of the adjacent in-situ soils, immediately thereafter. Where it is unavoidable that trenches remain open and unattended temporary check dams shall be constructed in the invert of the trench.

7.1.6 Re-establishment of vegetation

Landscaping and re-vegetation of areas not occupied by impervious surfaces shall be programmed to commence immediately after civil works have been completed, or have reached a stage where newly established ground cover is not at risk from construction activities.

7.2 Construction – Top structures

The discharge from the roof area and hardened areas will be collected in a piped network and directed to the attenuation tank or ponds as indicated on the site plan. Annexure A. There is no access to municipal stormwater in the vicinity of the site therefore discharge will be attenuated by means of a soak away or retention pond.

8. <u>Conclusion</u>

The earthworks operation must be carried out by a suitably qualified contractor. The specifications with respect to the following will be issued on the bulk earthworks drawings and details upon appointment of a contractor.

- Material utilization plan in terms of the platform cutting and filling.
- Extents of the cutting and filling. Specifications of the platform and required compaction. The controls and procedures.
- Stormwater Management for the pre and post scenarios.

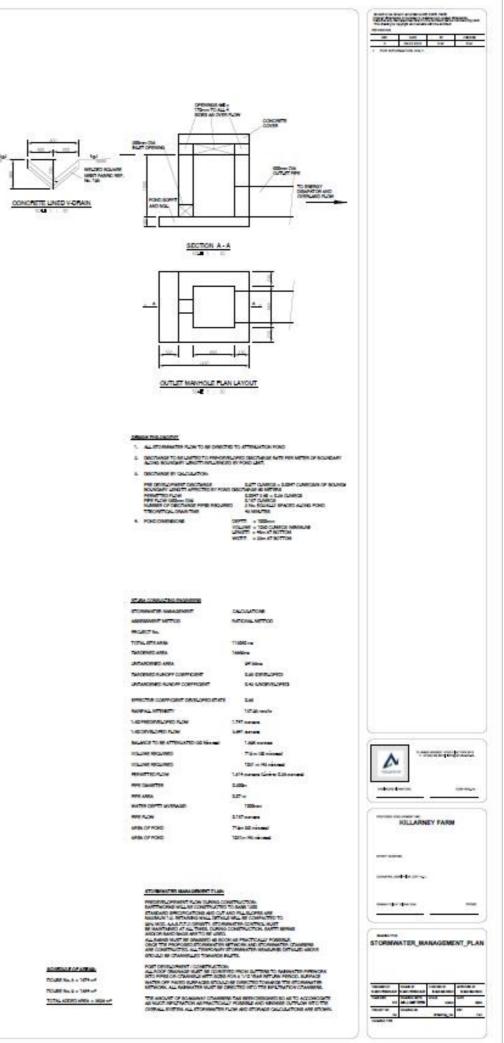
Measures must be introduced during the construction phase which will mitigate environmental impacts.

These will be in the form of the following construction methods and procedures.

- Earth drains to the top of cut embankments.
- Temporary v-drains
- Silt curtains along drains and cut and fill embankments to mitigate erosion and prevent excessive discharge of latent soil elements into the environmental sensitive areas boundary.
- The use of shade clothes strategically positioned along the environmental sensitive areas so that no contamination with respect to dust and litter enter this boundary.

Yours Faithfully

A


Ntuthuko Mkhwanazi (Pr. Tech. Eng.)

076 647 8979

9. ANNEXURE A

SWMP PLAN LAYOUT

200	ION THE DECIMIT
2.	AL STORAGE
+	GROTHAGE TOP
	DECTANDE IN C
	HE ODIELONE HOUSEN LINE HERETROPUS HERETROPUS HUMBEROPUS HUMBEROPUS
	PORCONENEIO

10. <u>ANNEXURE B</u>

CALCULATIONS

Site:	Makhalempongo Ch	icken Pou	ltry Farm (Kill	larnev)													
	PRE and POST dev			- //													-
Descr:	lat 29'47'53.55" lon		3.04														-
	N. MKHWANAZI					Site Area (m²)	Topre (min)	To post (mins)									
Date:	31-Jul-22					113050.00	15.00										
Date.	01 001 22				_	10000.00	10.00	10.00									
				BAIN DATA mm/hr	lpre	lpost											
	RI Reduction factor		or poor ,			15.0	0.000	0.0007	Reqd Storage 2xTc	Total hardened	"						
RI (yrs)	0.75		CTPOST		30 <mark>15.0</mark> 72 51.7			QPOST 1.079	_		mean runoff		area2	area2 alt	area 3	inter y27y1	
	0.75			51.72 51. 77.59 77.								505 808) U) O	0 (-	
10	0.85								954			954		, 0 1 0			
20				107.76 107.								1262					
50									1705	1795	1795	1705		· · · · · ·			
100		0.42				_			2244			2244	i i	, õ			
DWA METHO										KERBY" FOR							
PRE/RURAL RU	unoff Coefficient			POST/URBAN	Runoff Coeffi	icient		Overland flo	v T(mins) =	36(rD/1000/S	••••]••••						
Catchment M			MAP	URBAN	%			Dist (m)		r factor							
Catchment S	olope CS			Lawn sandy<2%	(0.00			smooth pavin								
< 3%		0		Lawn sandy>7%	(Slope	clean soil	0.10							_
3-10%		45		Lawn heavy<2%	(1.53	sparse grass	0.30	1						_
10 - 30 %		45		Lawn heavy>7%	10				mod grass	0.40	NOTE:						_
> 30 %		10 100		Residential single Flats/dense townships		0.50			thick bush/gra choose r	∎ 0.80 0.40							
Soil Permeat	hilitu Ce	7.	0.17	Industry , light		0.60		T overland (mi			used should not exceed						
Very perm (Dun		- 0	0.05	Industry , heavy		0.00		Velocity (m/s))		200m						
Perm (light soil)		60		Business local	(0.60		relooky (mis)		0.40							-
Semi (most soils		20		Business CBD	(0.85	i	Q, Vel, Time of	concentration	n - defined wate	rcourselopen	channel/pi	pe/box culv	1			-
Imperm (rock, p		20		Streets/roofs	90	0.95		INPUT			OUTPUT			n values			-
		100	0.16		100	0.89		Manning n		SHAPE			To mins	smooth con	cr.012		
Vegetal grow	eth Cv	%						Slope (m/m)		Trapezoid	0.27			earth.018			
Dense bush, fo		70			GHTING FACTO			Width (m)		rectangle	0.27			nat.stream.			
Cult land, spars	se bush	15			7.	DWA		Depth (m) not I		FullBoxCulv	0.18			Concicanal	.02		
Grassland		15			0.00			path/distance		Triangle	0.00			asph.016			
Bare Surface		0	0.30		100.00			side slope 1:?		Gutter	0.00			grass.03			
	. "	100				0.00		pipe dia (m)		FullPipeCulv	0.53	3.35	0.746) bushy.05			_
Rural Catchme	nt coeff	Ct =	0.42	Cdesign	100	0.89				NB Pipe is a	ssumed tull						
					_							0.40					-
SHORT STEE	EP BOX CULVERT	S		INLET COEFF C	SHORT ST	EEP PIPF		i <= 250 mm d	_		sloped culver						
	span B	depth D	ню	SQUARE E ROUND					slope	0.01	proped ourver						-
5	0.8				.0	1		2.85714286			0 <h d<0.8<="" td=""><td>H/D>0.8</td><td>g=D2xsart(</td><td> gD)x0.48(S/0</td><td>.4)0.05°/H</td><td>I/D)1.9</td><td>-</td></h>	H/D>0.8	g=D2xsart(gD)x0.48(S/0	.4)0.05°/H	I/D)1.9	-
Q=2/3CBH(2/3	gH) ^{V.S} for H/D<1.2			H/D>!.2 H/D>1.2	Q=0.35g ^{v.5} d	.861H1.639			H/D<=1.28		0.8 <h d<="1.2</td"><td></td><td></td><td></td><td></td><td></td><td>-</td></h>						-
	-															1	-
				0.6 0	d ^{•.} *وQ=0.43	H	m"/s	0.23012801	H/D>=1.28<4		h/d>>1.2	0.2557	q=0.6pi d2	l/4sqrt(2gh)			