

PROJECT No. 329620

CROSSROADS MALL – KWA THEMA

Portion of R/81 of the Farm Rietfontein 128IR

Revision A – November 2013

STORMWATER MANAGEMENT PLAN

Mott MacDonald PDNA. 25 Scott Street Waverly 2090 PO Box 7707 JOHANNESBURG 2000 Tel: +27 11 566 8300 Fax: +27 11 566 8600 www.mottmacpdna.co.za

Mott MacDonald PDNA CLIENT:	TITLE OF REPORT: PROJECT No. 329620 CROSSROADS MALL – KWA THEMA STORMWATER MANAGEMENT PLAN DIJALO PROPERTY DEVELOPMENTS (Pty) Ltd									
PDNA REPORT NO:	329620/1									
PREPARED BY:	R Bryant Pr Tech Er	ng								
REVIEWED BY:	R Bryant Pr Tech Er	ng 								
APPROVED BY:	P K Sawkins Pr Te									
DESCRIPTION	REVISION	DATE								
REPORT	A	5 November 2013								

CONTENTS

1. INTRODUCTION AND DISCUSSION

- 1.1 Site Locality and General Information
- 1.2 Purpose of Report
- 1.3 Pre-development Site
- 1.4 Post development Site
- 1.5 Stormwater Drainage and Attenuation
- 1.6 Stormwater Management During Construction Activities

2. ANALYSIS RESULTS

3. ANALYSIS SUMMARY

4. ANALYSIS PARAMETERS

5. ANALYSIS

- 5.1 Pre- development Site
 - 5.1.1 Catchment Details
 - 5.1.2 1 in 5 R.I. Hydrograph
 - 5.1.3 1 in 25 R.I. Hydrograph
- 5.2 Post development Site
 - 5.2.1 Catchment, Pipe, Channel and Reservoir Details
 - 5.2.2 1 in 5 R.I. Hydrograph
 - 5.2.3 1 in 25 R.I. Hydrograph

6. DRAWINGS

- C001 Locality Plan
- C002 Aerial Photograph
- C003 Post Development Catchment and Stormwater Drainage Plan
- C004 Reservoir Schematic RES0001

1. INTRODUCTION & DISCUSSION

1.1 Site Locality and General Information

The site, Portion of R/81 of the Farm Rietfontein 128IR, is located on the western corner of the intersection of Kgaswane / Rhokana Street and Tonk Meter Drive (M63). This is north of Kwa-Thema Township Extensions 1, 2 and 3 in Springs. The land is currently undeveloped open grassland with sparse vegetation and trees. The adjoining land or surrounding areas comprises of residential areas, open grassland with sporadic trees, and an industrial depot (Corobrik).

The area of the site measures 19.110 ha.

A locality and aerial plan is included in this report (drawing C001 and C002).

The site slopes to the northwest at an approximate gradient of 1 in 50 (2%).

1.2 Purpose of Report

The Ekurhuleni Metropolitan Municipality requires a Stormwater Management Plan for the development, which includes attenuation proposals for their approval. (The post development peak discharge should not exceed that of the pre- development site for both the 1 in 5 and 1 in 25 year R.I.s)

1.3 Pre-development Site

As mentioned above, the pre-development site is undeveloped open grassland with sparse vegetation and trees. There is no formal stormwater drainage in the vicinity of the site. The roads that border the site drain by road camber / cross-fall only with no visible open drains or culvert crossings

The site slopes to the northwest at an approximate gradient of 2% (1 in 50). This is away from the roads bordering the site. There is a small "pan" located north west of the site. The site and immediate surrounding area forms a gently sloping valley which drains towards the pan.

The pre-development impervious area of the site has been estimated at 1% (un-developed land)

1.4 Post – development Site

The proposed development comprises of the following business/commercial developments: petrol station, KFC and Builder's Warehouse, shopping mall and taxi rank. The impervious areas of the site will consist predominantly of roof areas and concrete slabs for the proposed buildings along with parking areas, access roads and hard landscaping / pedestrian areas.

The impervious area of the proposed development has been ascertained as 90% as stipulated in the "Design Parameters" section of the report.

The proposed design utilizes 1 attenuation pond to reduce the peak discharge from the site to less than the pre-development peak.

The proposed attenuation pond and stormwater drainage are shown on drawing no. C003.

1.5 Stormwater Drainage and Attenuation

The stormwater design philosophy can be summarized. Stormwater run-off from the proposed impervious areas will be collected in stormwater pipes and discharged to the proposed attenuation pond. Certain portions of the roadways and parking areas will be utilized as channels for surcharge flows from the higher intensity storms. The proposed attenuation pond will reduce the peak discharge from the site to less than the predevelopment peak discharge for both the 1 in 5 year and 1 in 25 year design storms. The major pipes within the proposed development (Pipes PIP0001 – PIP0005) have been analysed to determine their diameter and to provide a more accurate model as it would relate to the time of concentration for determining peak flows to the proposed attenuation pond. All pipes within the development will be designed to accommodate at least the peak flow from the 1 in 5 year recurrence interval storm. The major roads within the development have been analysed as channels (Channels CHA0001 – CHA0003) which would convey surcharge flows.

The design standards to be adopted will generally follow the Ekurhuleni Metropolitan Municipality standards as a guideline and would be supplemented with the SANS 1200 series of specifications and SANS 1936 – Part 3 (Development of Dolomite Land). The means for the control and disposal of stormwater around buildings will be in accordance with the requirements of SANS 10400 – Part R.

Some key parameters are listed below;

- Minimum pipe diameter
- 450 mm (in roads)
- 300 mm (in parking areas and around buildings)
- Minimum pipe class 75D
- Pipe specification Spigot and Socket Joint Pipes to SANS 677
- Minimum pipe gradient 1 in 140, maximum pipe gradient 1 in 20.
- Manholes & chambers Engineering brickwork FBSE30 to SANS 227 1986 with water absorption < 14% and efflorescence < 10 in English bond.
- Kerb Inlets Salberg pre-cast concrete units or similar approved.
- Headwalls Either engineering brickwork (specification as per manholes and chambers) or 25 MPa insitu concrete.

The proposed design of the attenuation pond will capture stormwater run-off from the site, attenuate it in accordance with EMM requirements and then discharge it to surface as a point discharge. Although the attenuation requirements will be met, this approach will create a consequential problem with scour and erosion created by a point discharge. This will be addressed by incorporating energy dissipation measures into the apron of the outlet structure and by providing a suitably increased apron width.

The stormwater attenuation pond will be rendered impervious by the use of an approved membrane lining sandwiched within the fill layers. The time lag between the peak inflow and peak outflow for a 1 in 25 year design storm of 25 minutes duration is 16 minutes. The time taken for the pond to completely fill and empty for a 1 in 25 year design storm of 25 minutes duration is approximately 128 minutes.

This report provides analysis of the hydrology and hydraulics associated with the design of the proposed stormwater infrastructure and statements relating to the detailed design of pipes, outlet structures etc. Construction drawings of the required infrastructure will be submitted to EMM for their approval.

1.6 Stormwater Management During Construction Activities

Construction activities and the progression of construction works will increase the peak runoff from the site and will also increase the sediment and pollutant load.

Sediment fences will be erected to minimise the sediment load in overland flow. Temporary cut off drains will be provided on the downstream side of the site. These drains will typically be unlined vee drains. The bulk cut / fill operation for the attenuation pond along with a temporary outlet structure will be constructed at the commencement of the construction works. The cut off drains will discharge to the attenuation pond.

A silt trap will be provided within the attenuation pond. The sediment fences and silt trap will be routinely checked, maintained and the silt trap emptied.

The implementation and maintenance of the proposed measures will ensure that no additional run-off, silting and pollution will adversely affect the surrounding land.

2. ANALYSIS RESULTS

The "**Analysis Summary**" included in this report provides the relevant data for the size of the attenuation pond and the peak discharge rates for the 2 analysed return intervals. (1in5 and 1in25)

The attenuation requirements of the Ekurhuleni Metropolitan Municipality have been satisfied. The post development peak discharge from the site does not exceed the pre-development peak for both the 1 in 5 and 1 in 25 year return intervals. The attenuation pond has been designed to safely route the peak flows for the 1 in 50 year return period.

The storage / attenuation volume provided is 5760 m³ which equates to 301 m³ per hectare. This is within the normal attenuation volume expected for this type of development.

On completion of the project maintenance manuals will be provided to the facilities management team for the development detailing the appropriate inspection and maintenance regimes required for the attenuation pond and stormwater infrastructure.

3. ANALYSIS SUMMARY

CROSSROADS MALL

DESIGN SUMMARY STORMWATER ATTENUATION

AREA	PRE-DEV	1	POST-DE	V	ATT	STORA	GE	ACTUA	L	ATT	T.W.L.	T.W.L.	CREST	OUTLET	CREST	POST-DE	V	FREEBOARD	MAX
(ha)	PEAK RU	N-OFF	PEAK RU	N-OFF	POND	VOLUM	E	STORA	GE	POND	1 in 5	1 in 25	LEVEL	PIPE	LEVEL	PEAK RU	IN-OFF	1 in 25 TWL &	STORAGE TO
	(m3/s)		(NOT ATT	EN)	No	REQUIR	RED	VOLUN	IE	INVERT	(m)	(m)	ATT	DIA	1 in 25	(ATTENU	ATED)	CREST OF	CREST OF
			(m3/s)			(m3/s)		(m3/s)		LEVEL			POND		WEIR	(m3/s)	-	POND	POND
	1 in 5	1 in 25	1 in 5	1 in 25		1 in 5	1 in 25	1 in 5	1 in 25	(m)			(m)	I.d. (m)		1 in 5	1 in 25	(mm)	(m3)
19.110	1.032	2.074	3.799	4.652	RES0001	3404	4753	4320	5760	0.000	0.946	1.318	1.600	0.718	1.200	1.025	1.656	0.282	5,760

TOTAL POST DEVELOPMENT PEAK FLOW m3/s	1.025	1.656
TOTAL PRE DEVELOPMENT PEAK FLOW m3/s	1.032	2.074
ADDITIONAL PEAK FLOW	-0.007	-0.418

ATTENUATION REQUIREMENTS SATISFIED

NOTE - ANALYSIS UNDERTAKEN FOR STORM DURATIONS FROM 5 MINUTES TO 80 MINUTES DURATION

ANALYSIS REPORTED FOR STORM DURATION YIELDING GREATEST PEAK FLOW.

4. ANALYSIS PARAMETERS

CROSSROADS MALL

ANALYSIS PARAMETERS

ITEM	VALUE	COMMENTS
MAP (mm)	711	
CATCHMENT AREA	19.11 h	
CATCHMENT SLOPE	0.0167	
OVERLAND FLOW LENGTH	380 m	
% IMPERVIOUS AREAS		
POST DEVELOPMENT	90%	Shopping Mall - high impervious area
PRE - DEVELOPMENT	1%	Pre-development site
OVERLAND MANNINGS 'n'		
POST - DEVELOPMENT		
PERVIOUS	0.2	Landscaped areas
IMPERVIOUS	0.018	Parking, roads and roof / slab areas
PRE - DEVELOPMENT		
PERVIOUS	0.2	Veld grass
IMPERVIOUS	0.018	Sundry

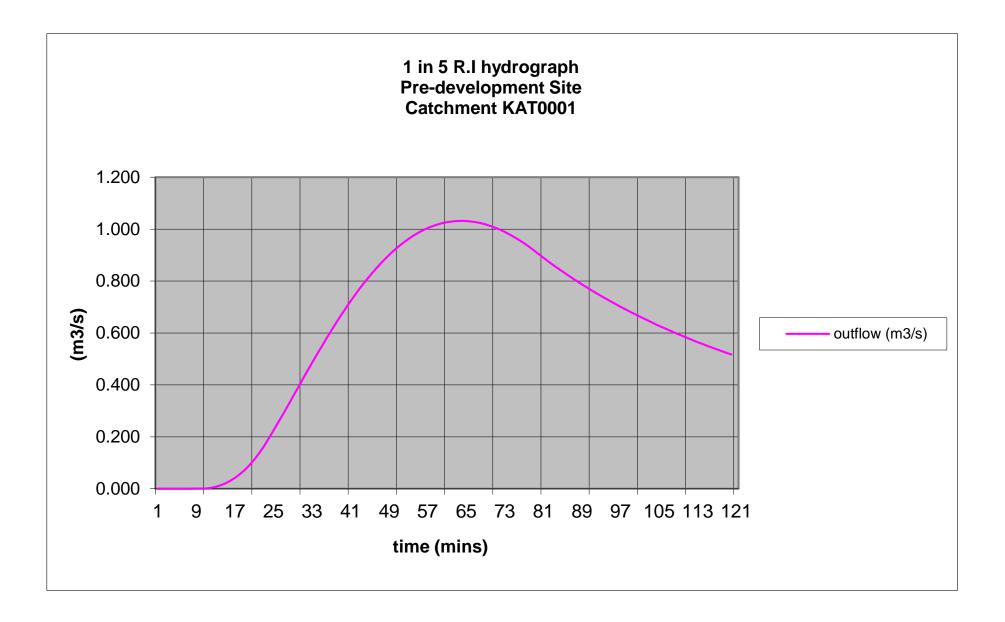
5. ANALYSIS

5.1.1 Pre-development Site Catchment details

Model:Professional	V5.2.74	Project Data Echo Rep	Report Date: 2013/11/05
Rainfall Type: Triangular		Areal Reduction: Unspecif	Mean Annual Percipitation: 711 (mm)
I.D.F Type: HRU/78		Time To Peak: 0.30	Rainfall Region: Inland
		Total Area(ha): 0.0	00
Project No/Name:	329620/1	CROSSROADS MALL PREDEV	

FIOJECTIN	o/Name.	329020/1		RUSSR	UADS MALI							
KAT0001	<end></end>	19.110	0.0156	1	383.00	45	5	0.200	0.020	3.0	1.0	

*

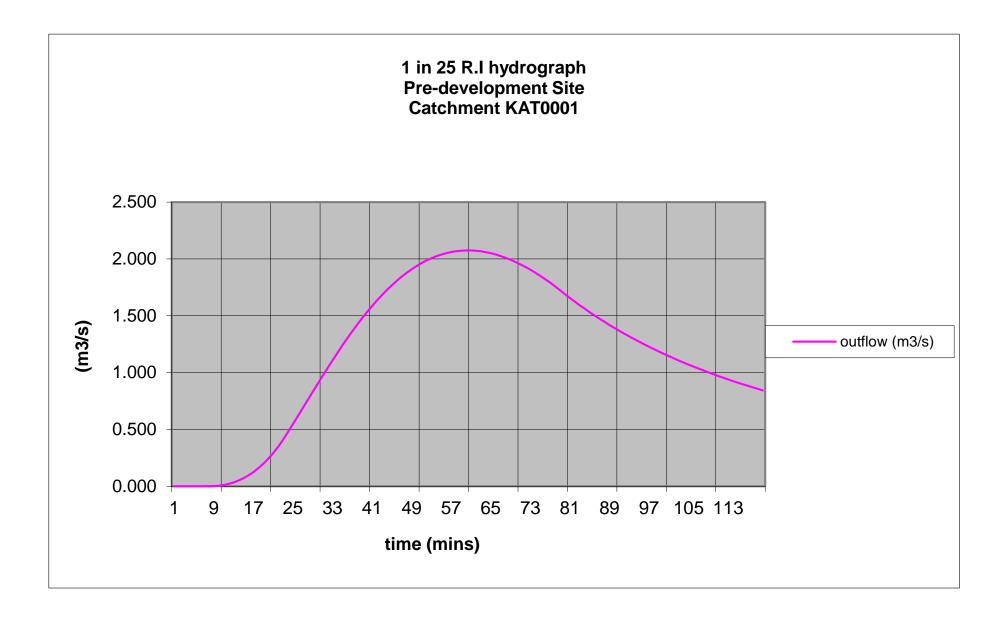

1

5.1.2 Pre-development Site 1 in 5 R.I. hydrograph Catchment KAT0001

CROSSROADS MALL CATCHMENT KAT0001 PRE-DEVELOPMENT SITE 1in5 R.I. HYDROGRAPH

NODE	R.I.	DURATION	TIME	INFLOW	OUTFLOW
		(mins)	(mins)	(m3/s)	(m3/s)
KAT0001	5	80	1	0.000	0.000
KAT0001	5	80	2	0.000	0.000
KAT0001	5	80	4	0.000	0.000
KAT0001	5	80	6	0.000	0.000
KAT0001	5	80	8	0.000	0.000
KAT0001	5	80	10	0.000	0.001
KAT0001	5	80	12	0.000	0.003
KAT0001	5	80	14	0.000	0.013
KAT0001 KAT0001	5 5	80 80	16 18	0.000 0.000	0.030 0.056
KAT0001 KAT0001	5	80 80	10	0.000	0.056
KAT0001 KAT0001	5	80 80	20	0.000	0.072
KAT0001	5	80	20	0.000	0.136
KAT0001	5	80	24	0.000	0.193
KAT0001	5	80	26	0.000	0.256
KAT0001	5	80	28	0.000	0.321
KAT0001	5	80	30	0.000	0.387
KAT0001	5	80	32	0.000	0.452
KAT0001	5	80	34	0.000	0.517
KAT0001	5	80	35	0.000	0.548
KAT0001	5	80	36	0.000	0.579
KAT0001	5	80	38	0.000	0.639
KAT0001	5	80	40	0.000	0.696
KAT0001	5	80	42	0.000	0.749
KAT0001	5	80	44	0.000	0.798
KAT0001	5	80	46	0.000	0.842
KAT0001	5	80	48	0.000	0.882
KAT0001	5	80	50	0.000	0.918
KAT0001	5	80	52	0.000	0.949
KAT0001	5	80	54	0.000	0.974
KAT0001	5	80	56	0.000	0.995
KAT0001	5	80	58	0.000	1.012
KAT0001	5	80	60	0.000	1.023
KAT0001	5	80	62	0.000	1.030
KAT0001	5	80	64	0.000	1.032
KAT0001	5	80	66	0.000	1.030
KAT0001 KAT0001	5 5	80	68 70	0.000	1.023
	_	80	70 72	0.000	1.013
KAT0001 KAT0001	5 5	80 80	72 74	0.000 0.000	0.998 0.980
KAT0001 KAT0001	5	80 80	74	0.000	0.958
KAT0001	5	80	78	0.000	0.933
KAT0001	5	80	80	0.000	0.904
KAT0001	5	80	82	0.000	0.876
KAT0001	5	80	84	0.000	0.849
KAT0001	5	80	86	0.000	0.824
KAT0001	5	80	88	0.000	0.799
KAT0001	5	80	90	0.000	0.776
KAT0001	5	80	92	0.000	0.753
KAT0001	5	80	94	0.000	0.732
KAT0001	5	80	96	0.000	0.711
KAT0001	5	80	98	0.000	0.691
KAT0001	5	80	100	0.000	0.672
KAT0001	5	80	102	0.000	0.654
KAT0001	5	80	104	0.000	0.636
KAT0001	5	80	106	0.000	0.620
KAT0001	5	80	108	0.000	0.603
KAT0001	5	80	110	0.000	0.588
KAT0001	5	80	112	0.000	0.572
KAT0001	5	80	114	0.000	0.558
KAT0001	5	80	116	0.000	0.544
KAT0001 KAT0001	5 5	80 80	118 120	0.000	0.530
NAT0001	Э	80	120	0.000	0.517

PEAK FLOW



5.1.3 Pre-development Site 1 in 25 R.I. hydrograph Catchment KAT0001

CROSSROADS MALL CATCHMENT KAT0001 PRE-DEVELOPMENT SITE 1in25 R.I. HYDROGRAPH

NODE	R.I.	DURATION	TIME	INFLOW	OUTFLOW
		(mins)	(mins)	(m3/s)	(m3/s)
KAT0001	25	80	1	0.000	0.000
KAT0001	25	80	2	0.000	0.000
KAT0001	25	80	4	0.000	0.000
KAT0001	25	80	6	0.000	0.000
KAT0001	25	80	8	0.000	0.001
KAT0001	25	80	10	0.000	0.005
KAT0001	25	80	12	0.000	0.021
KAT0001	25	80	14	0.000	0.050
KAT0001	25	80	16	0.000	0.095
KAT0001	25	80 80	18	0.000	0.158
KAT0001 KAT0001	25 25	80 80	19 20	0.000 0.000	0.197 0.242
KAT0001 KAT0001	25 25	80 80	20 22	0.000	0.242
KAT0001 KAT0001	25	80	24	0.000	0.347
KAT0001	25	80	24	0.000	0.616
KAT0001	25	80	28	0.000	0.759
KAT0001	25	80	30	0.000	0.901
KAT0001	25	80	32	0.000	1.040
KAT0001	25	80	34	0.000	1.174
KAT0001	25	80	35	0.000	1.239
KAT0001	25	80	36	0.000	1.302
KAT0001	25	80	38	0.000	1.422
KAT0001	25	80	40	0.000	1.533
KAT0001	25	80	42	0.000	1.635
KAT0001	25	80	44	0.000	1.726
KAT0001	25	80	46	0.000	1.807
KAT0001	25	80	48	0.000	1.878
KAT0001	25	80	50	0.000	1.937
KAT0001	25	80	52	0.000	1.986
KAT0001	25	80	54	0.000	2.023
KAT0001	25	80	56	0.000	2.050
KAT0001	25	80 80	58	0.000	2.067
KAT0001 KAT0001	25 25	80 80	60 62	0.000 0.000	2.074 2.071
KAT0001 KAT0001	25 25	80 80	64	0.000	2.060
KAT0001	25	80	66	0.000	2.039
KAT0001	25	80	68	0.000	2.010
KAT0001	25	80	70	0.000	1.973
KAT0001	25	80	72	0.000	1.929
KAT0001	25	80	74	0.000	1.879
KAT0001	25	80	76	0.000	1.822
KAT0001	25	80	78	0.000	1.759
KAT0001	25	80	80	0.000	1.691
KAT0001	25	80	82	0.000	1.624
KAT0001	25	80	84	0.000	1.561
KAT0001	25	80	86	0.000	1.502
KAT0001	25	80	88	0.000	1.446
KAT0001	25	80	90	0.000	1.393
KAT0001	25	80 80	92	0.000	1.342
KAT0001 KAT0001	25 25	80 80	94 96	0.000 0.000	1.295 1.249
KAT0001 KAT0001	25 25	80 80	96 98	0.000	1.249 1.206
KAT0001 KAT0001	25 25	80 80	98 100	0.000	1.206
KAT0001 KAT0001	25 25	80 80	100	0.000	1.105
KAT0001	25	80	102	0.000	1.088
KAT0001	25	80	104	0.000	1.052
KAT0001	25	80	108	0.000	1.018
KAT0001	25	80	110	0.000	0.986
KAT0001	25	80	112	0.000	0.955
KAT0001	25	80	114	0.000	0.925
KAT0001	25	80	116	0.000	0.897
KAT0001	4		440	0.000	0.870
KAT0001	25 25	80 80	118 120	0.000	0.870

PEAK FLOW

5.2.1 Post-development Site

Catchment Details Pipe Details Channel Details Reservoir Details

Model:Prof	essional	V5.2.74	Project Data Echo Report							Report Date: 2013/11/05					
Rainfall Ty	pe: Triangula	ır			Areal Reduc	ction: Ur	specif		Mean Annual Percipitation:			711 (mm)			
I.D.F Type:	: HRU/78				Time To P	eak:	0.30			Rainfall	Region:	Inland			
					Total Area	(ha):	0.000)							
Project N	lo/Name:	329620/2	C	ROSS	ROADS MAL	L POST	DEV								
KAT0001	PIP0003	0.948	0.0114	90	115.00	45	5	0.200	0.018	3.0	1.0				
KAT0002	PIP0003	0.449	0.0070	90	133.00	45	5	0.200	0.018	3.0	1.0				
KAT0003	PIP0003	0.581	0.0070	90	160.00	45	5	0.200	0.018	3.0	1.0				
KAT0004	PIP0004	1.747	0.0190	90	164.00	45	5	0.200	0.018	3.0	1.0				
KAT0005	PIP0004	0.462	0.0185	90	148.00	45	5	0.200	0.018	3.0	1.0				
KAT0006	PIP0004	0.727	0.0070	90	209.00	45	5	0.200	0.018	3.0	1.0				
KAT0007	PIP0002	7.571	0.0175	90	330.00	45	5	0.200	0.018	3.0	1.0				
KAT0008	PIP0001	2.912	0.0144	90	193.00	45	5	0.200	0.018	3.0	1.0				
KAT0009	PIP0001	0.603	0.0169	90	113.00	45	5	0.200	0.018	3.0	1.0				
KAT0010	PIP0001	2.111	0.0145	90	193.00	45	5	0.200	0.018	3.0	1.0				
KAT0011	PIP0001	0.522	0.0151	90	159.00	45	5	0.200	0.018	3.0	1.0				
KAT0012	PIP0005	0.477	0.0070	90	112.00	45	5	0.200	0.018	3.0	1.0				

2

Model:Professional V5.2.74

Project Data Echo Report

Time To Peak:

Total Area(ha):

Areal Reduction: Equation

0.30

19.110

Report Date: 2013/11/05

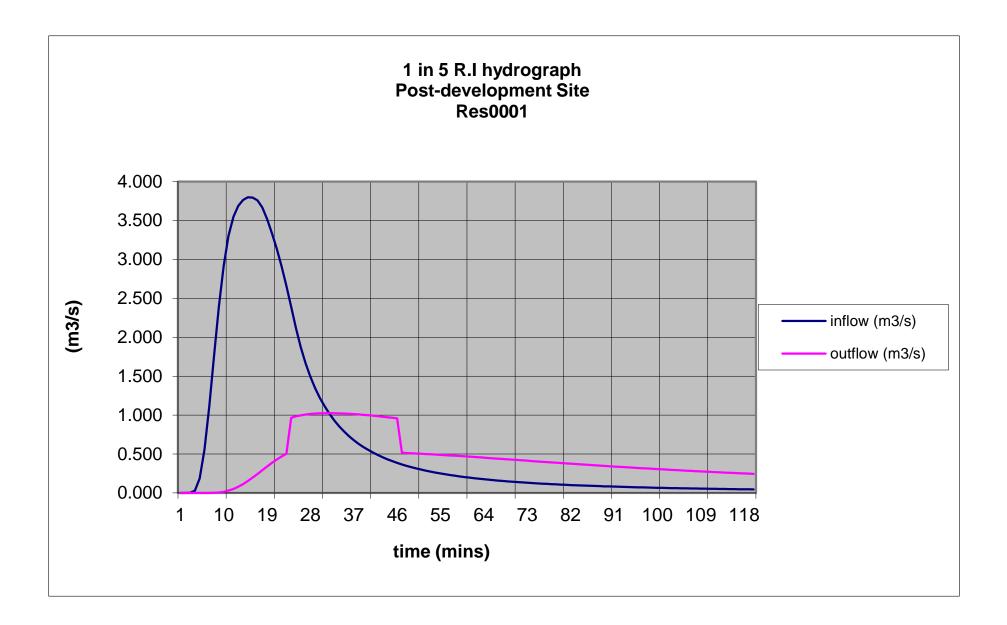
Rainfall Type: Triangular

I.D.F Type: HRU/78

Mean Annual Precipitation: 711 (mm) Rainfall Region: Inland

Pipes Pro	oject No/Name:	329620/2			Тороз	raphical	Kerb Inlet		
Node ID	Drain To	Spill To	Dia (m)	'n'	Slope(m/m)	Length (m)	Eff (%)	Max Flow Cap(m3/s)	
PIP0001	PIP0005	CHA0001	0.869	0.015	0.00700	107.00	100	1.286	
PIP0002	PIP0005	CHA0001	0.869	0.015	0.01500	49.00	100	1.883	
PIP0003	PIP0004	CHA0002	0.514	0.015	0.00700	231.00	100	0.317	
PIP0004	PIP0005	CHA0002	0.869	0.015	0.00700	201.00	100	1.286	
PIP0005	RES0001	CHA0003	1.157	0.015	0.01400	103.00	100	3.902	

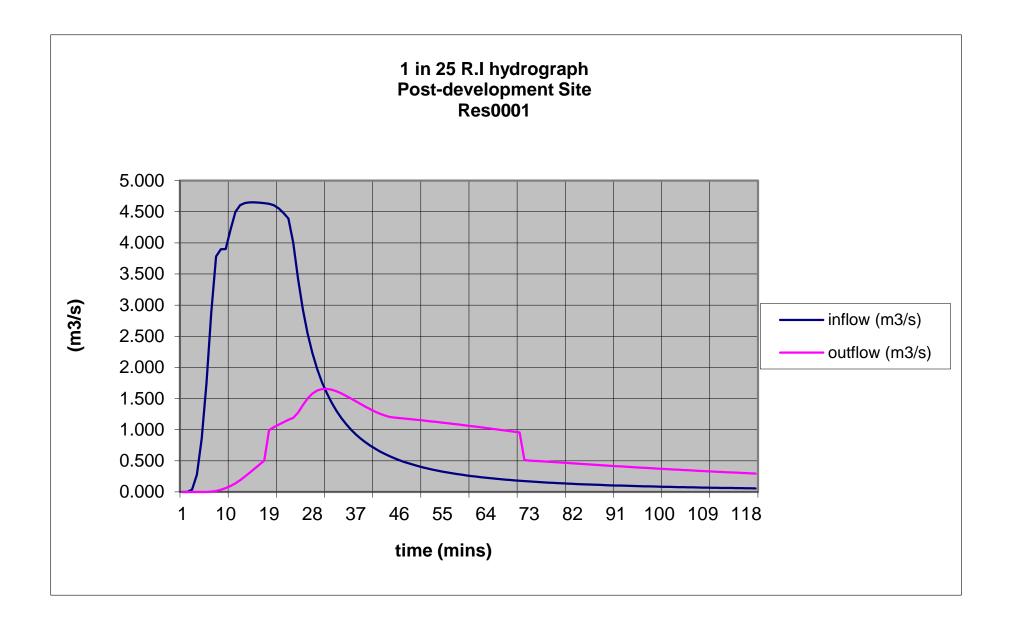
Model:Profe	essional	V5.2.74		Projec	t Data Ec	ho Re		Report Date: 2013/11/05						
Rainfall Typ	e: Triangular			Are	eal Reduction:	Equation	E.		Mean Annual Precipitation: 711 (mm)					
I.D.F Type: HRU/78				T	Time To Peak:	0.30		Rainfall Region: Inland						
				т	otal Area(ha):	19.110								
CHA0001	CHA0003	<none></none>	0.10	40.0000	1.0000	0.15	0.016	Ovf	500.00	0.00700	100	0.445		
CHA0002	CHA0003	<none></none>	0.10	40.0000	1.0000	0.15	0.016	Ovf	300.00	0.00700	100	0.445		
CHA0003	RES0001	<none></none>	0.10	40.0000	1.0000	0.15	0.016	Ovf	100.00	0.01500	100	0.651		

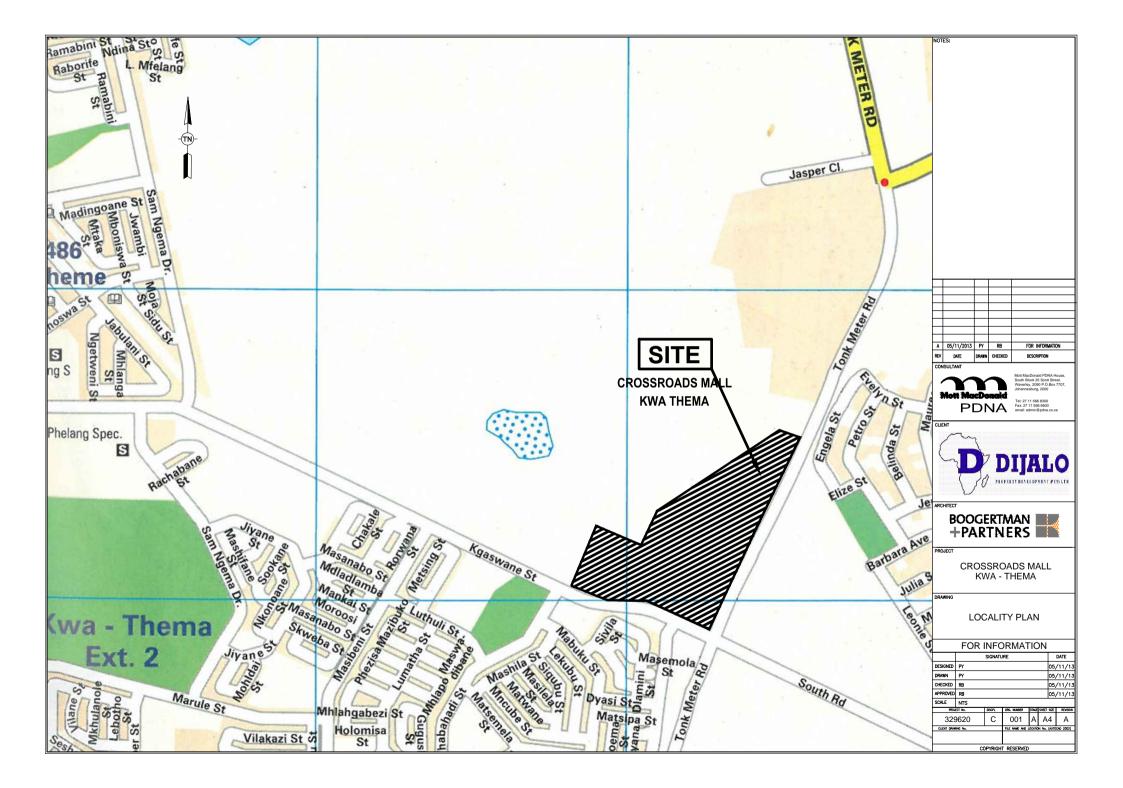

Model:Profess	ional	V5.2.74		J	Reservoi	r Da	ta Echo				Date:	2013/11/	05
Rainfall Type:	Triangular	Areal Red:	Unspe	ecif M.A	F 711 (r	nm)	I.D.F Ty	/pe: HRU/	78 Tin	ne To	Peak: ().30	
Project No/Nan Fotal Area(ha):				CROSSR	OADS MAL	L PO	STDEV					Attenuation Lag Time:	n: 26.980 U
			C	utlet Works	(Pipes)		Outlet W	/orks (Culv	verts)		Outlet W	orks (Spilly	ways)
Node ID Drain To		Elev Points	No	Diameter	Invert Lev	No	Width	Height	Invert Lev	No	Coef	Width	Invert Lev
RES0001	<end></end>	0	1	0.710	0.00	0	0.000	0.00	0.00	1	1.600	6.00	1.20
		I,	L		Re	servo	ir Storage	Contour:	No	E	Elevation	Storage V	/olume (m3)
									1		0.0000		0.000
							- <u>1888 c. 191.</u>	- tijce - en tik to - ti	2		0.1000	36	0.000
									3		0.2000	72	0.000
		A						111 - 5c - 5c - 400	4		0.3000	1,08	0.000
									5		0.4000	1,44	0.000
									6		0.5000	1,80	0.000
									7		0.6000	2,16	0.000
		1				1			8		0.7000	2,52	0.000
									9		0.8000	2,88	0.000
									10		0.9000	3,24	0.000
									11		1.0000	3,60	0.000
'n									12		1.1000	3,96	0.000
				e dista na					13		1.2000	4,32	0.000
-19 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5 - 1915-5									14		1.3000	4,68	0.000
									15		1.4000	5,04	0.000
									16		1.5000	5,40	0.000
									17		1.6000	5,76	0.000

1

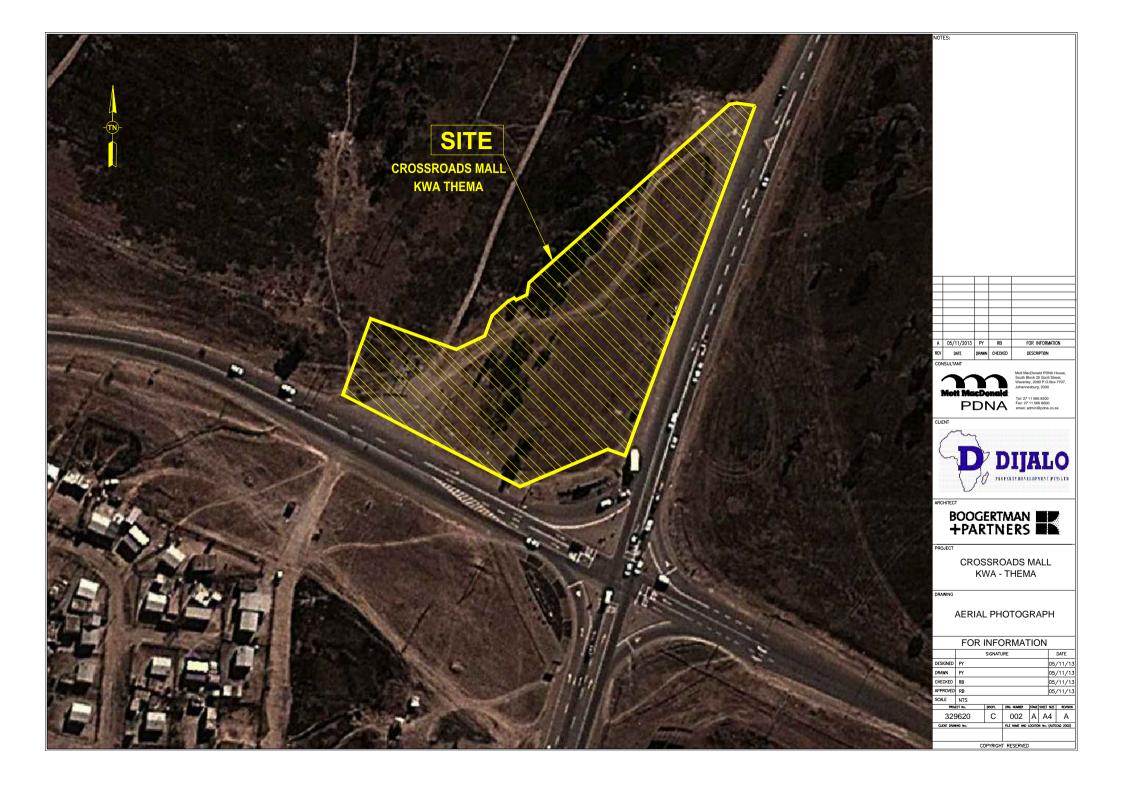
5.2.2 Post-development Site 1 in 5 Year R.I. Hydrograph Res0001

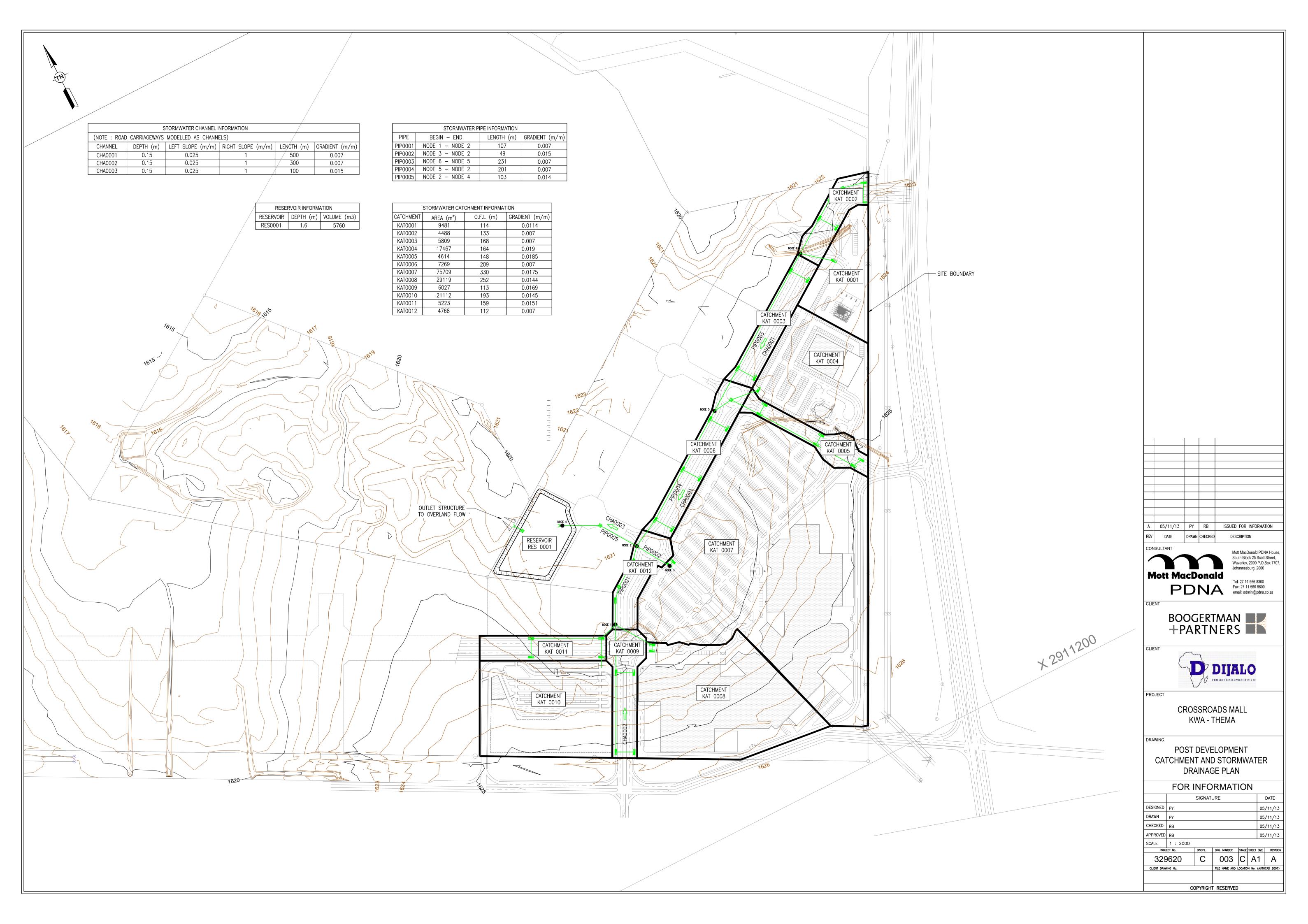
CROSSROADS MALL POST DEVELOPMENT SITE 1 in 5 R.I. HYDROGRAPH RESERVOIR RES0001

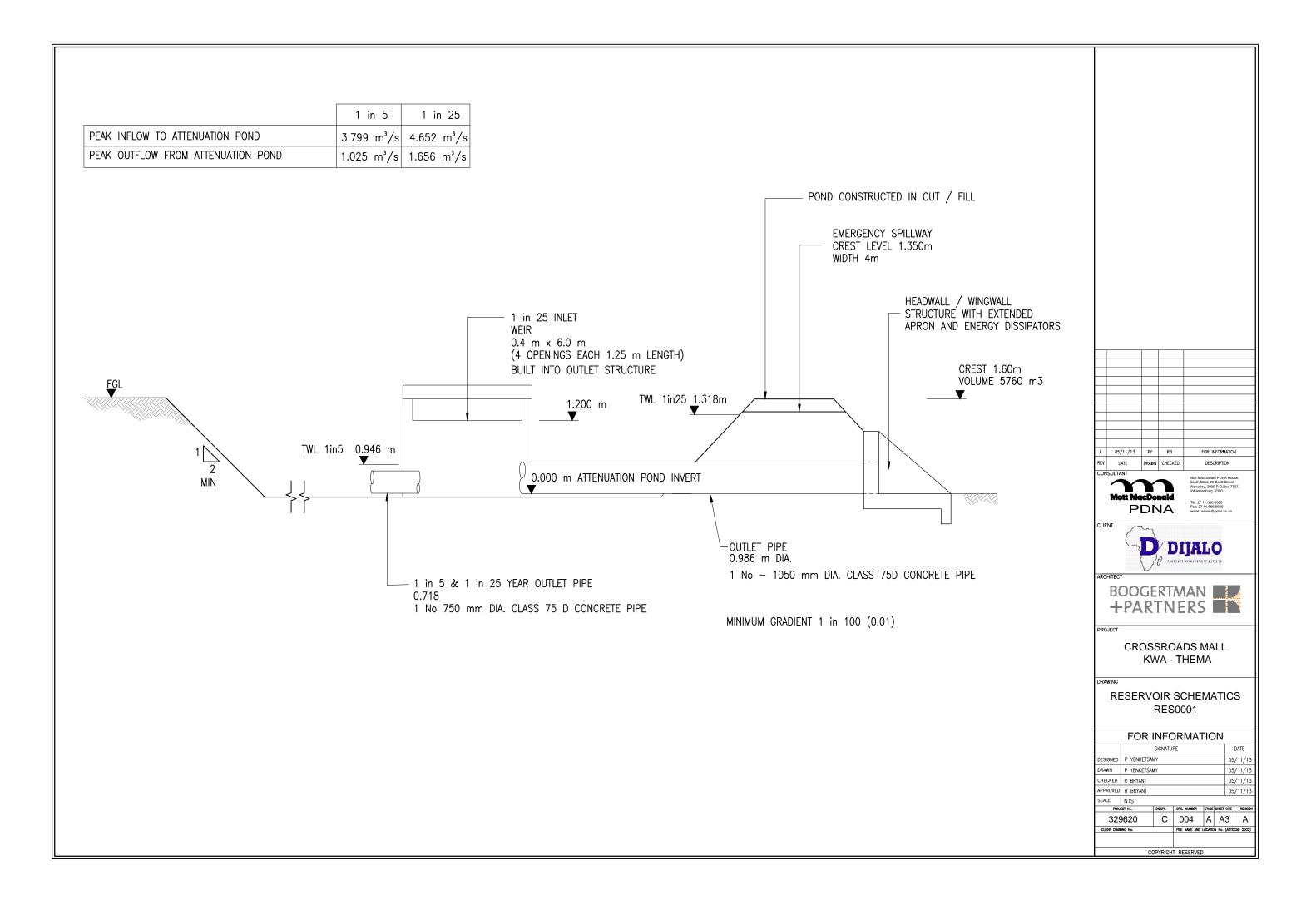

NODE	R.I.	DURATION	TIME	INFLOW	OUTFLOW	DEPTH	1
		(mins)	(mins)	(m3/s)	(m3/s)	(m)	
RES0001	5	25	1	0.000	0.000	0.000	
RES0001	5	25	2	0.000	0.000	0.000	
RES0001	5	25	4	0.028	0.000	0.000	
RES0001	5	25	6	0.556	0.000	0.008	
RES0001	5	25	7	1.111	0.000	0.022	
RES0001	5	25	8	1.766	0.002	0.046	
RES0001	5	25	9	2.395	0.006	0.081	
RES0001	5	25	10	2.916	0.015	0.125	
RES0001	5	25	12	3.549	0.052	0.233	
RES0001	5	25	13	3.687	0.080	0.293	
RES0001	5	25	14	3.765	0.114	0.354	
RES0001	5	25	15	3.799	0.153	0.415	PEAK INFLOW
RES0001	5	25	16	3.796	0.197	0.476	_
RES0001	5	25	17	3.760	0.243	0.537	
RES0001	5	25	18	3.669	0.291	0.595	
RES0001	5	25	20	3.340	0.386	0.702	
RES0001	5	25	22	2.912	0.469	0.794	
RES0001	5	25	24	2.391	0.965	0.867	
RES0001	5	25	25	2.115	0.985	0.892	
RES0001	5	25	26	1.872	0.998	0.909	
RES0001	5	25	28	1.492	1.015	0.931	
RES0001	5	25	30	1.217	1.023	0.943	
RES0001	5	25	32	1.012	1.025	0.946	PEAK OUTFLOW
RES0001	5	25	34	0.854	1.023	0.942	
RES0001	5	25	35	0.789	1.020	0.939	
RES0001	5	25	36	0.730	1.017	0.935	
RES0001	5	25	38	0.632	1.009	0.923	
RES0001	5	25	40	0.552	0.998	0.910	
RES0001	5	25	42	0.487	0.986	0.894	
RES0001	5	25	44	0.432	0.972	0.876	
RES0001	5	25	46	0.387	0.958	0.857	
RES0001	5	25	48	0.348	0.511	0.841	
RES0001	5	25	50	0.315	0.506	0.835	
RES0001	5	25	52	0.286	0.500	0.828	
RES0001	5	25	54	0.262	0.493	0.821	
RES0001	5	25	56	0.240	0.486	0.813	
RES0001	5	25	58	0.221	0.478	0.804	
RES0001	5	25	60	0.204	0.470	0.795	
RES0001	5	25	62	0.189	0.462	0.786	
RES0001	5	25	64	0.176	0.453	0.777	
RES0001	5	25	66	0.164	0.445	0.767	
RES0001	5	25	68	0.154	0.436	0.758	
RES0001	5	25	70	0.144	0.427	0.748	
RES0001	5	25	72	0.135	0.419	0.739	
RES0001	5	25	74	0.127	0.410	0.729	
RES0001	5	25	76	0.120	0.401	0.720	
RES0001	5	25	78	0.113	0.393	0.710	
RES0001	5	25	80	0.107	0.384	0.701	
RES0001	5	25	82	0.102	0.376	0.691	
RES0001	5	25	84	0.096	0.368	0.682	
RES0001	5	25	86	0.092	0.360	0.673	
RES0001	5	25	88	0.087	0.352	0.664	
RES0001	5	25	90	0.083	0.344	0.655	
RES0001	5	25	92	0.079	0.336	0.646	
RES0001	5	25	94	0.076	0.328	0.638	
RES0001	5	25	96	0.073	0.321	0.629	
RES0001	5	25	98	0.069	0.314	0.621	
RES0001	5	25	100	0.067	0.307	0.613	
RES0001	5	25	102	0.064	0.300	0.605	
RES0001	5	25	104	0.061	0.293	0.597	
RES0001	5	25	106	0.059	0.287	0.589	
RES0001	5	25	108	0.057	0.280	0.581	
RES0001	5	25	110	0.055	0.274	0.574	
RES0001	5	25	112	0.053	0.268	0.567	
RES0001	5	25	114	0.051	0.262	0.559	
RES0001	5	25	116	0.049	0.256	0.552	
RES0001	5	25	118	0.047	0.250	0.545	
RES0001	5	25	120	0.046	0.245	0.539	l


5.2.3 Post-development Site 1 in 25 Year R.I. Hydrograph Res0001

CROSSROADS MALL POST DEVELOPMENT SITE 1 in 25 R.I. HYDROGRAPH RESERVOIR RES0001


NODE	R.I.	DURATION	TIME	INFLOW	OUTFLOW	DEPTH	
		(mins)	(mins)	(m3/s)	(m3/s)	(m)	
RES0001	25	25	1	0.000	0.000	0.000	
RES0001	25	25	2	0.000	0.000	0.000	
RES0001	25	25	4	0.277	0.000	0.003	
RES0001	25	25	6	1.745	0.001	0.034	
RES0001	25	25	7	2.885	0.005	0.073	
RES0001	25	25	8	3.783	0.016	0.128	
RES0001	25	25	9	3.898	0.035	0.192	
RES0001	25	25	10	3.902	0.062	0.257	
RES0001	25	25	12	4.499	0.139	0.395	
RES0001	25	25	13	4.606	0.191	0.468	
RES0001 RES0001	25 25	25 25	14 15	4.642 4.652	0.248 0.310	0.543 0.617	PEAK INFLOW
RES0001	25	25	16	4.651	0.374	0.689	FEAK INFLOW
RES0001	25	25	17	4.646	0.439	0.761	
RES0001	25	25	18	4.637	0.503	0.832	
RES0001	25	25	20	4.604	1.040	0.966	
RES0001	25	25	22	4.479	1.121	1.083	
RES0001	25	25	24	4.006	1.191	1.189	
RES0001	25	25	25	3.430	1.271	1.232	
RES0001	25	25	26	2.937	1.393	1.264	
RES0001	25	25	28	2.230	1.579	1.303	
RES0001	25	25	30	1.761	1.653	1.317	
RES0001	25	25	31	1.583	1.656	1.318	PEAK OUTFLOW
RES0001	25	25	32	1.431	1.642	1.315	
RES0001	25	25	34	1.188	1.583	1.304	
RES0001	25	25	35	1.089	1.543	1.296	
RES0001	25	25	36	1.003	1.500	1.288	
RES0001	25	25	38	0.858	1.412	1.269	
RES0001	25	25	40	0.744	1.329	1.248	
RES0001	25	25	42	0.651	1.257	1.227	
RES0001	25	25	44	0.575	1.205	1.205	
RES0001	25	25	46	0.512	1.187	1.183	
RES0001 RES0001	25 25	25 25	48 50	0.459 0.414	1.172 1.156	1.160 1.135	
RES0001	25 25	25 25	50 52	0.414	1.130	1.135	
RES0001	25	25	52 54	0.342	1.122	1.084	
RES0001	25	25	56	0.313	1.104	1.057	
RES0001	25	25	58	0.288	1.086	1.031	
RES0001	25	25	60	0.266	1.067	1.004	
RES0001	25	25	62	0.246	1.048	0.977	
RES0001	25	25	64	0.228	1.028	0.950	
RES0001	25	25	66	0.213	1.008	0.923	
RES0001	25	25	68	0.199	0.988	0.896	
RES0001	25	25	70	0.186	0.967	0.869	
RES0001	25	25	72	0.174	0.513	0.843	
RES0001	25	25	74	0.164	0.500	0.828	
RES0001	25	25	76	0.154	0.489	0.817	
RES0001	25	25	78	0.146	0.479	0.805	
RES0001	25	25	80	0.138	0.469	0.794	
RES0001 RES0001	25 25	25 25	82 84	0.131	0.459	0.783	
RES0001 RES0001	25 25	25 25	84 86	0.124 0.118	0.449 0.439	0.772 0.761	
RES0001	25 25	25 25	88	0.118	0.439	0.750	
RES0001	25	25	90	0.112	0.429	0.740	
RES0001	25	25	92	0.100	0.410	0.729	
RES0001	25	25	94	0.097	0.401	0.719	
RES0001	25	25	96	0.093	0.391	0.708	
RES0001	25	25	98	0.089	0.382	0.698	
RES0001	25	25	100	0.085	0.373	0.689	
RES0001	25	25	102	0.081	0.365	0.679	
RES0001	25	25	104	0.078	0.356	0.669	
RES0001	25	25	106	0.075	0.348	0.660	
RES0001	25	25	108	0.072	0.340	0.651	
RES0001	25	25	110	0.069	0.332	0.642	
RES0001	25	25	112	0.067	0.324	0.633	
RES0001	25	25	114	0.064	0.317	0.624	
RES0001	25	25	116	0.062	0.310	0.616	
RES0001 RES0001	25 25	25 25	118 120	0.060 0.057	0.302 0.296	0.608 0.600	
11230001	20	20	120	0.007	0.290	0.000	l


C001 LOCATION PLAN


C002 AERIAL PHOTOGRAPH

C003 POST DEVELOPMENT CATCHMENT AND STORMWATER DRAINAGE PLAN

C004 RESERVOIR SCHEMATICS RES0001

