DRAKENSTEIN MUNICIPALITY

PRELIMINARY CIVIL ENGINEERING SERVICES REPORT

FOR

THE PROPOSED DEVELOPMENT OF ERF 8378, Paarl, VLAKKELAND TOWNSHIP

SEPTEMBER 2014

Prepared for :

DRAKENSTEIN MUNICIPALITY P O BOX 1 MAIN STREET PAARL 7622

TEL : (021) 807 4500 FAX : (021) 872 8054

Prepared by :

LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS P O BOX 79 PAARL 7622 TEL : (021) 872 0622 FAX : (021) 872 0619

CONTENTS LIST

PAGE

1	INTRODUCTION AND SCOPE OF WORK 1
2	LOCATION AND BACKGROUND1
3	INFORMATION UTILIZED 1
4	PRELIMINARY DESIGN CRITERIA1
5	BULK EARTHWORKS
6	ACCESS AND ROADS
6.1	INTERNAL ROADS
6.1.1	Road widths2
6.1.2	Bellmouth radii
6.2	PROVISIONAL ROAD LAYER WORKS
6.3	ESTIMATED COSTS OF PROPOSED ROAD INFRASTRUCTURE
7	WATER SUPPLY
7.1	EXISTING WATER SUPPLY
7.2	WATER DEMAND
7.3	BULK SERVICES
7.4	LINK SERVICES
7.5	INTERNAL RETICULATION
7.6	ESTIMATED COSTS OF PROPOSED WATER INFRASTRUCTURE
8	SEWERAGE
8.1	EXISTING SERVICES
8.2	EXPECTED SEWAGE FLOW
8.3	BULK SERVICES
8.4	LINK SERVICES
8.5	INTERNAL RETICULATION
8.6	WASTEWATER TREATMENT WORKS
8.7	ESTIMATED COSTS OF PROPOSED SEWER INFRASTRUCTURE
9	STORMWATER
9.1	STORMWATER DESIGN PRINCIPLES
9.2	MINOR SYSTEM
9.3	MAJOR SYSTEM
9.4	GLOBAL WARMING/CLIMATE CHANGE
9.5	ESTIMATED COSTS OF PROPOSED STORMWATER INFRASTRUCTURE
10	ELECTRICITY SERVICES
11	SUMMARY OF ESTIMATED COSTS
12	CONCLUSION

ANNEXURES

ANNEXURE A	:	LOCALITY PLAN
ANNEXURE B	:	EARTHWORKS
ANNEXURE C	:	ITS (PTY) LTD: TRANSPORT IMPACT STUDY
ANNEXURE D	:	LAYOUT OF ROADS & ASSOCIATED STORMWATER
ANNEXURE E	:	GEOTECHNICAL INVESTIGATION
ANNEXURE F	:	TYPICAL ROAD CROSS SECTIONS
ANNEXURE G	:	VLAKKELAND AFFORDABLE HOUSING DEVELOPMENT, WELLINGTON: CAPACITY ANALYSIS OF THE BULK WATER & SEWER SERVICES
ANNEXURE H	:	WATER RETICULATION LAYOUT
ANNEXURE I	:	BULK SEWER LAYOUT SEWER NETWORK LAYOUT
ANNEXURE J	:	STORMWATER MASTERPLAN ADDENDUM TO THE STORMWATER PLAN PREPARED BY LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS
ANNEXURE K	:	ERF VLAKKELAND DEVELOPMENT FRAMEWORK ELECTRICAL SERVICES PROPOSED MEDIUM VOLTAGE LAYOUT
ANNEXURE L	:	COST SUMMARY

(ii)

1 INTRODUCTION AND SCOPE OF WORK

Lyners Consulting Engineers and Project Managers was appointed as part of Professional Resource Team (PRT) as Consulting Civil Engineers for the provision of a Preliminary Civil Engineering Services Report for the proposed development of erf 8378, Paarl (Vlakkeland Township). It is the intention to develop a mixed use (light industrial, commercial, retail and residential), mixed income, sustainable development.

1

The purpose of this report is to provide background information in terms of engineering services required, as well as the intended design methodology thereof and possible restrictions and options in terms of providing engineering services.

The result of this study will be used to inform representatives for the future development of the site that will feed into and align with the Human Settlement Plan (HSP), the Spatial Development Framework (SDF) and provincial government's strategic objectives.

This report is based on a draft town planning layout, the urban design, site inspections, and liaison with the local authority, previous studies and available existing services information.

2 LOCATION AND BACKGROUND

A locality plan is included in Annexure A. Erf 8378 (and surrounding erven included in the development); Paarl of approximately 100 ha is situated east of Jan van Riebeeck Drive (MR201) and west of Bo-Dal Road (DR1119). It is bordered in the south by erf 1341 and the north by erven 2569 and 361 as well as the Newton Residential area. The site is currently undeveloped and the intention is to develop approximately 3260 residential units with the following components:

- Subsidy housing (BNG);
- Mixed housing;
- Temporary relocation area (TRA);
- Affordable rental and GAP Housing;
- Enhanced serviced sites;
- Commercial and light industrial land uses;
- Crèche and worship facilities;
- Primary- and Secondary Schools; and
- Sports facilities

3 INFORMATION UTILIZED

The following information was used in the preparation of the report:

- Layout of proposed development by NuPlan Africa (2.552-S1-06);
- A detailed topographical survey of the entire site, including culverts and existing channels;
- Project meetings and reports completed by the project professional team;
- Site visits;
- 1:10 000 Ortho photo's (GIS Information);
- Aerial photograph;
- Drakenstein Municipality Sewer master plan (June 2012);
- Drakenstein Municipality Water master plan (June 2012):
- Vlakkeland Affordable Housing Development, Wellington: Capacity Analysis of the Bulk Water & Sewer Services (26 August 2014) by GLS Consulting.

4 PRELIMINARY DESIGN CRITERIA

The development will provisionally consist of 3260 residential units.

All design criteria will be based on the following:

- "Guidelines for Human Settlement Planning and Design" referred to as the "Red Book";
- the National Building Regulation (SANS 10400);

- the Code of Practice: Water Supply and Drainage for Buildings (Part 1 & 2) (SANS 10252);
- the Standards of the Civil Engineering Department of Drakenstein Municipality.

5 BULK EARTHWORKS

The site slopes in an east westerly direction at an average slope of approximately 1.5 %. The majority of the land is currently vacant and covered with grass. There is a small settlement of pig farmers located towards the western boundary. Visibility of the site is good from Jan van Riebeeck Road and Bo-Dal Road.

Due to the general slope of the site, the western area is very low and needs to be filled to allow for drainage away from the residential units. A slope of 0.75 % was used for the bulk earthworks. The proposed layout of the earthworks is shown on drawing no 0894/EW/001 included in Annexure B.

6 ACCESS AND ROADS

ITS (Pty) Ltd Engineers were appointed to conduct a Transport Impact Study and their report with reference ITS 3194.1 dated August 2013 and subsequent addendum to this report with reference ITS 3194.1 dated 21 August 2014 are included in Annexure C.

6.1 INTERNAL ROADS

6.1.1 Road widths

The road reserve widths of the internal roads vary between 10 m - 25 m.

Please refer to the proposed road and stormwater layout shown on drawing no 0894/RD/001 included in Annexure D.

6.1.2 Bellmouth radii

The bellmouth radii were kept as large as possible. The radii will vary between 8 m and 12 m.

6.2 PROVISIONAL ROAD LAYER WORKS

The structural design period of all pavement layers should be 20 years. Structural design of pavement layers will be in accordance of the TRH4 and the "Red Book" requirements and the envisaged traffic.

A preliminary geotechnical report was conducted (April 2008) and is attached in Annexure E. From this report it is estimated that the typically road layer works will be as described in Table 6.2.1.

	Kerbing		Layer works			
Road Description	High	Low	Road surface	G4 Base	G5 Subbase	Selected layer (sand/insitu)
High order roads (Bulk - 25 m)	BK2 & C1	BK2 & C1	40 mm premix	150 mm	150 mm	300 mm
Middle order roads (Link - 10 m & 20 m)	MK10	CK5	35 mm premix	150 mm	150 mm	300 mm
Lower order roads (Internal - 10 m & 13 m)	MK10	CK5	35 mm premix	150 mm	125 mm	200 mm

Table 6.2.1: Provisional road layer works and details

Typical road cross sections are also included in Annexure F.

6.3 ESTIMATED COSTS OF PROPOSED ROAD INFRASTRUCTURE

The following costs were estimated and exclude VAT, contingencies and professional fees.

Service	Description	Cos	sts
Bulk	Road reserves	R	19 902 241
Link	Road reserves 10 m – 20 m	R	5 854 144
Internal	Road reserves 10 m – 13 m	R	35 903 085
TOTAL		R	61 659 470

The total costs for the proposed roads infrastructure are R 61 659 470.

7 WATER SUPPLY

7.1 EXISTING WATER SUPPLY

Currently there is no dedicated water supply system for the proposed development of Vlakkeland. However, this development lies within the Paarl/Wellington water distribution system and options were investigated where and how this development can connect onto the existing system.

GLS Consulting investigated the impact of this development on the existing water distribution system in their report 'Vlakkeland Affordable Housing Development, Wellington: Capacity Analysis of the Bulk Water & Sewer Services dated 26 August 2014 (GLS report) included in Annexure G.

7.2 WATER DEMAND

The water demand for this development is summarised in Table 1: Potential future land developments in the GLS report. The annual average daily demand (AADD) is 1522 kl/d.

7.3 BULK SERVICES

The GLS report stated that the existing bulk services (Leliefontein and Strawberry King pipelines) have insufficient capacity to accommodate the total Vlakkeland development.

The following items were identified for upgrading:

Item	Description
DWW.B5	Booster pump station on the Leliefontein pipeline (increase capacity from 182 l/s to 347 l/s).
DWW.B23, DWW.B24 & DWW.B25	Replace the existing Strawberry King pipeline with a new 560 mm diameter HDPE pipe.
DWW1.47 & DWW1.27	250 mm diameter pipe

7.4 LINK SERVICES

The following link services were identified:

Item	Description
DWW1.24a, DWW1.24b & DWW1.24c	315 mm diameter pipe

7.5 INTERNAL RETICULATION

The internal reticulation network will consist primarily of HDPE PE100 PN12.5 (110 mm diameter to 200 mm diameter) pipes with individual erf connections. It is the intention to provide a basic network of larger diameter pipes to fulfil the fire requirements with smaller diameter pipes to supply the normal domestic demand.

Pipes will be installed according to SANS 1200 with a minimum cover of 800 mm above pipes not constructed in roadways and 1000 mm for pipes constructed in roadways.

The preliminary water reticulation layout is shown on drawing no 0894/W/001 included in Annexure H.

7.6 ESTIMATED COSTS OF PROPOSED WATER INFRASTRUCTURE

The following costs were estimated and exclude VAT, contingencies and professional fees.

Service	Description	Costs
Bulk	Items DWW.B5, DWW.B23, DWW.B24 & DWW.B25. See Table 2 in the GLS report.	R 57 945 336
Link	Items DWW1.26, DWW1.27 & DWW1.47. See Table 2 in the GLS report.	R 1 246 327
Internal	All pipes 200 mm diameter and smaller	R 10 444 716
TOTAL		R 69 636 379

The total costs for the proposed water infrastructure are R 69 636 379.

8 SEWERAGE

8.1 EXISTING SERVICES

There are currently no bulk sewerage services available in the vicinity of the proposed development with adequate capacity to accommodate the flows from Vlakkeland. However, this development lies adjacent the Paarl sewer network and options were investigated where and how this development can connect onto the existing system.

GLS Consulting investigated the impact of this development on the existing sewer network in their report 'Vlakkeland Affordable Housing Development, Wellington: Capacity Analysis of the Bulk Water & Sewer Services dated 26 August 2014 (GLS report) included in Annexure G.

8.2 EXPECTED SEWAGE FLOW

The expected peak day dry weather flow (PDDWF) for this development is summarised in Table 1: Potential future land developments in the GLS report. The PDDWF is 1111 kl/d.

8.3 BULK SERVICES

Due to the topography of the development all sewage will flow towards the existing Mbekweni pumping station to the west. The GLS report stated that a new bulk sewer from Jan van Riebeeck Road to the existing Mbekweni pump station is required. This pump station also needs to be upgraded to accommodate the increased flow as well as a new rising main to the Paarl WWTW. The bulk sewer is shown on drawing no. 0894/BS/001 included in Annexure I.

ltem	Description
DPS1.3	275 m x 675 mm diameter pipe to replace existing 450 mm diameter sewer.
DPS1.4	Upgrade capacity of existing Mbekweni PS from 100 l/s to 185 l/s
DPS1.5	1420 m x 500 mm diameter rising main to upgrade existing 300 mm diameter rising main.
DPS1.6	1025 m x 450 mm diameter bulk sewer
DPS1.7	505 m x 400 mm diameter bulk sewer

The following items were identified for upgrading:

8.4 LINK SERVICES

The following link services were identified:

ltem	Description
DPS1.10	144 m x 315 mm diameter pipe
DPS1.11b	484 m x 200 mm diameter pipe
DPS1.11c & DPS1.11d	656 m x 160 mm diameter pipe

8.5 INTERNAL RETICULATION

A new sewerage system consisting of a minimum diameter of 160 mm PVC-U class 34 sewer pipes will be constructed to service all the units. Individual erf connections will also be provided. The sewerage system will drain towards the west from where it will flow under gravity towards the Mbekweni pumping station.

Please refer to the proposed sewer network layout shown on drawing no 0894/FS/001 included in Annexure I.

8.6 WASTEWATER TREATMENT WORKS

From discussions with Ronald Brown of Drakenstein Municipality it appears that the Paarl WWTW has sufficient capacity, but this needs to be confirmed in writing by Drakenstein Municipality.

8.7 ESTIMATED COSTS OF PROPOSED SEWER INFRASTRUCTURE

The following costs were estimated and exclude VAT, contingencies and professional fees.

Service	Description	Costs
Bulk	DPS1.3, DPS1.4, DPS1.5, DPS1.6, DPS1.7 & DPS1.8. See Table 3 in the GLS report.	R 7 467 330
Link	DPS1.10, DPS1.11b, DPS1.11c & DPS1.11d. See Table 3 in the GLS report.	R 1 093 085
Internal	All pipes 200 mm diameter and smaller	R 11 259 224
TOTAL		R 19 819 639

The total costs for the proposed sewer infrastructure are R 19 819 639.

9 STORMWATER

A Stormwater Management Plan was completed (October 2013) and is attached in Annexure J.

The proposed stormwater layout is shown on drawing no. 0894/RD/001 included in Annexure D.

9.1 STORMWATER DESIGN PRINCIPLES

The internal stormwater network for the proposed development will be accommodated in a major and minor system.

The minor system is for the convenience of the public and requires that the run-off be removed rapidly from the erven by means of a system of catchpits and manholes with spacing not more than 80 meters between structures, and a network of underground pipes or culverts. This system is usually designed for a design storm occurrence of 2 years for residential land uses, and 5 years for high value general commercial and industrial areas.

The major system will accommodate storms of higher occurrence intervals and consists of natural watercourses, large conduits, roads, stormwater storage facilities and floodplains. These systems are usually "open" or above ground systems, and usually accept stormwater from the minor system.

9.2 MINOR SYSTEM

The pipe network per sub-catchment will drain towards detention facilities located to the west of Beets Street. This pipe network will have a minimum diameter of 375 mm and a maximum diameter of 1200 mm diameter with minimum velocities of 0,7 m/s to ensure the clean flow of the system and a maximum velocity of 2.5 m/s to ensure the efficiency of the network. This network of pipes will be designed to accommodate the smaller floods.

Detention ponds will collect stormwater and slowly release it at a controlled rate so that downstream areas are not flooded or eroded. The ponds will be dry structures that can serve as open areas or parks during dry seasons and detention facilities during wet periods.

9.3 MAJOR SYSTEM

The major system will be able to accommodate larger floods by means of the proposed street network as well as shaped areas to convey stormwater safely away from properties. Part of the major storm event will be accommodated in the pipe network.

Detention ponds will collect the generated run-off from the minor storm system. Run-off will be slowly released at a controlled rate, to ensure that downstream areas and stormwater conduits are not being placed under pressure to deal with vast quantities of uncontrolled run-off. Ponds will normally be designed to retain the difference between pre- and post- development calculated run-off for various recurrences. Available capacities and constraints of the downstream conduits and reticulation will also be accommodated within the design.

The detention ponds will be designed to accommodate either sports grounds or public open spaces during the dry season, but act as detention facility during the wetter seasons, when run-off generated requires to be retained.

A low flow channel will also be installed to accommodate smaller flows and therefor provide a longer drier 'sport or open space' area during the year.

9.4 GLOBAL WARMING/CLIMATE CHANGE

The likely effect of climate change on storm intensities was included in the run-off calculations. It was found that the point storm rainfall figures used in the Sinske report are 12-51 % higher than the University of Kwazulu Natal storm rainfall data which includes a 15 % increase for climate change. See report no. MC160/1 Revision 0 dated 27 August 2014, Addendum to the Stormwater Plan prepared by Lyners Consulting Engineers and Project Managers, prepared by Graeme McGill Consulting included in Annexure J.

It is therefore concluded that no further adjustment needs to be made to the Sinske report or to the Stormwater Management Plan to allow for climate change effect.

9.5 ESTIMATED COSTS OF PROPOSED STORMWATER INFRASTRUCTURE

The following costs were estimated and exclude VAT, contingencies and professional fees.

Service	Description	Costs
Bulk	Channels to be constructed, detention ponds, construction of culverts and all diameter pipes greater than 750 mm diameter	R 30 291 320
Link	All 525 mm to 750 mm diameter pipes and subsurface drainage	R 1 409 840
Internal	All 375 mm diameter and 450 mm diameter pipes, subsurface drainage	R 15 082 753
TOTAL		R 46 783 913

The total estimated costs for the proposed stormwater infrastructure are R 46 783 913.

10 ELECTRICITY SERVICES

See report 'Erf Vlakkeland Development Framework Electrical Services' prepared by Eimac included in Annexure K for a preliminary investigation into the electrical services. Also include in Annexure K is a drawing on primary MV Cabling.

11 SUMMARY OF ESTIMATED COSTS

The cost of the civil infrastructure for the proposed development are summarised in the table below.

Description of civil service	Co	Costs	
Bulk	R	156 391 360	
Link	R	14 080 148	
Internal	R	133 108 397	
Development cost	R	303 579 904	

The cost of the civil infrastructure for the proposed development is estimated at approximately R 303 579 904 (excluding VAT, including professional fees (2012) and 10 % contingencies). A detailed cost estimate is attached in Annexure L.

It is estimated that a total number of 3260 erven could be developed on the proposed site. Therefore the estimated cost to develop one erf is approximately R 93 000.

* Please note that the cost estimate merely provides indicative costs and final costing can only be determined after a detailed geotechnical study and final layout is confirmed and approved. All costs are determined on current costs – September 2014 and no escalation has been allowed for.

12 CONCLUSION

It seems feasible in terms of the availability of civil engineering services to develop the property, albeit that further bulk services must be constructed to meet the demand of the proposed development. These bulk services are in accordance with the Service Master Plan of the Local Authority.

We are available to discuss any queries at your earliest convenience.

Yours faithfully

Fred Laker Pr Tech Eng Pr CPM MSAICE for LYNERS

ANNEXURE A

LOCALITY PLAN : DRAWING NO 0894/C/000

ANNEXURE B :

EARTHWORKS : DRAWING NO 0894/EW/001

ANNEXURE C :

ITS (PTY) LTD : TRANSPORT IMPACT STUDY

ANNEXURE D :

ROADS & STORMWATER LAYOUT : DRAWING NO 0894/RD/001

ANNEXURE E :

GEOTECHNICAL INVESTIGATION

ANNEXURE F :

TYPICAL ROAD CROSS SECTIONS

ANNEXURE G :

VLAKKELAND AFFORDABLE HOUSING DEVELOPMENT, WELLINGTON: CAPACITY ANALYSIS OF THE BULK WATER & SEWER SERVICES

ANNEXURE H:

WATER RETICULATION LAYOUT : DRAWING NO 0894/W/001

ANNEXURE I :

BULK SEWER LAYOUT

SEWER NETWORK LAYOUT

ANNEXURE J :

STORMWATER MASTERPLAN

ADDENDUM TO THE STORMWATER PLAN PREPARED BY LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS

ANNEXURE K :

ERF VLAKKELAND DEVELOPMENT FRAMEWORK ELECTRICAL SERVICES

PROPOSED MEDIUM VOLTAGE LAYOUT DRAWING NO: 2.552-S1-05

ANNEXURE L :

COST SUMMARY

	18
LYNERS	
PO Box 4901 TYGERVALLEY 7530	Ρ
Tel: 021 914 0300 / Fax: 021 914 0437 email: bellville@lyners.co.za	A

	LOCALITY PLAN							
	PROJECT №. 0894	SCALE NTS	DRAWING No. 0894/C/	000	REV			
7	APPROVED :	drawn LO	DATE 2013-12-11	CHECKED CW	DATE 2013-12-1			

U:\WERKE\0800\0894 - PRT_VLAKKELAND DRAKENSTEIN\DRAWINGS\1.2 ACTIVE\0894-C-000 (LOCALITY PLAN).DWG

PROPOSED DEVELOPM VLAKKELAI

iso a0 (841.00 x 1189.00 mm)

Lyners_AutoCAD.ctb

2013-06-26

		N D
	EXISTING SITE SURVE	
	DESTEN CONTOURS	TOLING CONTOCHS
V		
1996 (1996 ·	427,0 FI	NAL CONTOURS
Kr. Szzapole		
A MARLES MARK		
ANN NIN TELES		
	20	
LEANNE COUNTY SUMMER	A D	
CLINN (CLIME MARCHE		
		the second
	1 1 1 1 30, 5	
	the the state was an	
129.5 10 10		183
121, 5 121, 5 121 X: 3728500		
9700 		
	SCALE (ON A0 DWG) SHEET	
MENT OF ERF 8378 PAARL	SCALE (ON A0 DWG) SHEET 1:2000 10	DF 1
MENT OF ERF 8378 PAARL ND TOWNSHIP	SCALE (ON A0 DWG) SHEET 1:2000 1 C CONTRACT NO. PROJEC 085	DF 1 ST No. 94
MENT OF ERF 8378 PAARL ND TOWNSHIP	SCALE (ON A0 DWG) SHEET 1:2000 10 CONTRACT No. PROJEC 089 DRAWING No.	DF 1 DT NO. 94

DATE OF FIRST ISSUE:

5th Floor. Imperial Bank Terraces Carl Cronje Drive Tyger Waterfront Bellville 7530

> Postnet Suite 127 Private Bag x 7 Tyger Valley 7536

Tel: (021) 914 6211 Fax: (021) 914 7403

e-mail: mail@itse.co.za

homepage: www.itse.co.za

Reg. No. 2001/027205/07

VAT No. 4460198965

Jubelie Projects RHDHV Building, 1st Floor Tygerberg Office Park, 163 Hendrik Verwoerd Drive, Plattekloof, 7500 Tel: 021 930 3090 / Cell: 083 255 1642 e-mail: <u>GNel@jubelie.co.za</u>

> Date: 21 August 2014 ITS Ref: 3194.1

Attention: Mr. Gerhard Nel

Dear Mr Nel,

TRANSPORT IMPACT OF COMBINED DEVELOPMENTS IN THE VICINITY OF THE VLAKKELAND DEVELOPMENT, IN PAARL

ITS Engineers compiled a Transport Impact Study (TIS) for the proposed Vlakkeland Development (ITS 3194) in Paarl, during August 2013. Although this is a comprehensive study, the Drakenstein Municipality requested an investigation for the combined transport impacts of various other developments planned in close proximity of the future Vlakkeland development. The purpose of this letter is to evaluate the transport related impacts of these combined developments and to identify the road upgrades required, over and above the road upgrades recommended for the Vlakkeland development.

The transport impacts of six developments were included in this investigation. These developments include Vlakkeland, Erf 553, Fynbos, Farm 1254 and Erf 16161 plus Erf 8398 Dal Josafat. All these developments will be mixed-use developments, however the majority will include residential land uses.

The locations of these developments relative to the Vlakkeland development are illustrated in **Figure 1** the Locality Plan. The expected vehicle trip generation for each of these developments are summarised below:

	A.M. Peak Hour				P.M. Peak Hour			
	In	Out	Total		In	Out	Total	
1. Vlakkeland	992	1 021	2 013		792	564	1 356	
2. Erf 553	211	258	469		266	213	479	
3. Fynbos	18	34	52		25	27	52	
4. Farm 1254	5	5	10	\bigwedge	5	5	10	
5. Erf 16161 Dal Josafat	797	1 243	2 040		1 202	947	2 149	
6. Erf 8398 Dal Josafat	24	75	99		69	30	90	
Total	2 047	2 636	4 683		2 359	1 786	4 145	

Offices: Pretoria Cape Town The expected vehicle trips from the above developments are illustrated in **Figures 2.1 to 2.6**. It is expected that the combined vehicle trips will be less than the sum of these individual developments, due to the interaction between them. However, these trips were used in the analyses and should illustrate a more critical traffic impact scenario.

Only the total traffic conditions from these combined development trips were investigated as part of this letter, as illustrated in **Figure 3**. The intersection geometries used for these analyses are based on the upgraded intersection layouts as illustrated in **Figure 4**. This figure illustrates both the upgrades recommended as part of the Vlakkeland development as well as the additional upgrades required for the combined developments, over and above the upgrades recommended for the Vlakkeland development. These additional upgrades include the following:

Intersection 1: Jan Van Riebeeck Drive / Ring Road / Roggeland Road intersection:

• Construct a westbound left-turn lane.

Intersection 3: Jan Van Riebeeck Drive / Wamkelekile Road / Buitekant Street intersection:

• Construct a westbound right-turn lane.

With the above upgrades in place all study intersections will continue to operate acceptably during the weekday a.m. and p.m. peak traffic periods of the 2018 Total Traffic conditions.

Annexure A

Figures

List of Figures

Figure 1: Future Development Locations

Figure 2.1: Expected Development Trips: Erf 16161, Dal Josafat

Figure 2.2: Expected Development Trips: Erf 8398, Dal Josafat

Figure 2.3: Expected Development Trips: Fynbos Development

Figure 2.4: Expected Development Trips: Erf 553, Paarl

Figure 2.5: Expected Development Trips: Erf 1254, Paarl (Aurora)

Figure 2.6: Expected Development Trips: All Development Trips

Figure 3: 2018 Total Traffic Conditions

Figure 4: Proposed Upgrades

	PEAK HOUR	WELTEVREI	DE SHOPRITE TIRE LE STREET BUITEKANT VLAKKELAND VLAKKELAND VLAKKELAND D VLAKKELAND D VLAKKELAND D VLAKKELAND D VLAKKELAND	STREET PROPOSED VLAKKELAND DEVELOPMENT					
THE RESIDENTIAL TRAFFIC COUNTS CONSTRUCTED. H AND ONLY A SMAL PROJECT	COMPONENT OF THI WAS DONE. THE BUS IOWEVER MOST OF T LL PERCENTAGE WILL	S DEVELOPMENT WAS ALRE SINESS AND CRECHE LAND U HESE TRIPS IS EXPECTED TO BE DISTRIBUTED ON THE LAND RESIDENTIAL DE ERF 8378, PAARL	ADY BUILT AT THE TIME ISES STILL NEEDS TO B D BE INTERNAL NEWTO ARGER ROAD NETWOR VELOPMENT	E E N TRIPS K. FIGURE: EXP FARM 1254	ECTED DE 4 (AURORA	PEAK HOUR AM PM EVELOPME A) DEVELO	TRIP GENI IN 5 5 ENT TRIP DPMENT	PAARL	TOTAL 10 10 NUMBER: 2.3

Transport Impact Study

Vlakkeland Development

Paarl, Western Cape

August 2013

5th Floor, Imperial Bank Terraces Carl Cronje Drive Tyger Waterfront Bellville, 7550 Tel 021 914 6211 e-mail: mail@itse.co.za

Summary Sheet

Report Type	Transport Impact Study											
Title	Vlakkelan	lakkeland Development										
Location	Paarl, We	'aarl, Western Cape										
Client	Jubelie Pr	ubelie Projects										
Ref. Number	ITS 3194.	TS 3194.1										
Project Team	Christoff Krogscheepers Hugo Engelbrecht Theodore Neels											
Contact Number	Tel: 021 914 6211											
Date	August 2013											
Report Status	Second Draft											
File Name:	G:\3194 Reports\319	Transport 4_Vlakkeland_	Impact TransportSt	Study udy 2013_0	for)8_14.do	Vlakkeland, cx	Paarl\12.					

This transport study was prepared in accordance with the South African National Department of Transport's 'Guidelines for Traffic Impact Studies' PR93/635 (1995) by a suitably qualified and registered professional traffic engineer. Details of any of the calculations on which the results in this report are based will be made available on request.

TABLE OF CONTENTS

Report - Summary Table

This transport impact study is reported in a summary table format instead of a lengthy report to assist review and interpretation of the results. This summary table contains all the relevant information that is contained in a report. It should be sufficient for review and interpretation of the expected traffic impacts as well as the comprehension of the required measures to mitigate the traffic impact. If any more detail is required please contact the authors.

Appendices

Appendix A: Figures Appendix B: Tables

List of Figures

Figure 1: Locality Plan
Figure 2: Site Development Plan
Figure 3: Existing 2013 Lane Configuration
Figure 4: Existing 2013 Traffic Conditions
Figure 5: 2018 Background Traffic Conditions (Existing Lane Configuration)
Figure 6: 2018 Background Traffic Conditions (With Upgrades)
Figure 7: Expected Trip Distribution and Development Trips
Figure 8: 2018 Total Traffic Conditions – (With Final Upgrades)
Figure 9: Proposed Upgrades - Schematic
Figure 10: Road Access Guidelines – Left and Right Turn Lane Warrants
Figure 11: Access Spacing
Figure 12: Proposed Jan van Riebeeck Drive/Vlakkeland Access Intersection Upgrades

List of Tables

Table 1: Existing 2013 Traffic and 2018 Background Traffic

- Table 2: 2018 Background Traffic and 2018 Background Traffic (with upgrades).
- Table 3: 2018 Background Traffic (with upgrades) and 2018 Total Traffic (with upgrades)
- Table 4: Proposed Trip Generation Rates
- Table 5: Expected Development Trips

	Transport Impact S Vlakkeland Development - Paarl,	Study Western Cape					
	This study is an investigation of the Proposed Vlakkeland development on	expected transport related impacts of the the surrounding road network.					
1. Background and Purpose	The purpose of the study is to ide network and to recommend appropria this planned development.	ntify constraints in the surrounding road te mitigation measures that would support					
	Erf Number 8378, Paarl, Western Ca	ape					
2. Locality	The proposed development is loca (Provincial Main Road MR201), west Road DR1119) and south of Rand Str	ated east of Jan van Riebeeck Drive of the Bo Dal Road (Provincial Divisional eet in Newton, Paarl.					
	Refer to Appendix A, Figure 1 for the	Locality Plan.					
	Existing Use: Vacant land with info	rmal residential units					
	The proposed development area is houses along the edges of the propert	mostly vacant land with a few informal ty.					
	Proposed Future Land Use: Reside	ntial, Educational and Business					
	The development will consist of residential units, primary- and high schools as well as small business node. Although the development will generate many new vehicle trips to/from the surrounding road network, it is expected that a substantial proportion of these trips will be internal. The planned extent of these land uses are as follows:						
2. Evicting/Dropped	Primary Schools	1 100 Pupils					
Land Use	High Schools	1 200 Pupils					
	Subsidy Housing	2 350 Units					
	Gap Housing	704 Units					
	Commercial Res Units	107 Units					
	Total Residential Units	3 161 Units					
	Businesses	5 342m ² GLA					
	Municipal Offices	4 313m ⁻ GLA					
	Refer to Appendix A , Figure 2 for the Site Development Plan of the proposed development.						
4. Existing Access	This site currently gains access fro Roggeland Road / Ring Road interse on the Roggeland and Ring Road ap Riebeeck Drive.	om the Jan van Riebeeck Drive via the ection. This intersection is stop controlled proaches and it is free flow along Jan van					
	The major roads in the site vicinity are	e as follows:					
5. Surrounding Roads	Jan van Riebeeck Drive (MR201): Thi 100km/h posted speed limit, two lanes on both sides and no sidewalks. development.	is is a typical Class 2 road with a 60km/h - s per direction, a median island, shoulders MR201 is located to the west of the					

5. Surrounding Roads (continued)	 <u>Bo Dal Road (DR1119)</u>: This is a typical Class 3 road with a 60km/h posted speed limit, one lane per direction, no shoulders and no sidewalks. DR1119 is located to the east of the development. <u>Rand Street</u>: Rand Street is a typical Class 5 residential street with no shoulders or sidewalks. Rand Street is located to the north of the development and it provides access between Vlakkeland and Newton. <u>Roggeland Road/Ring Road</u>: This is a typical Class 4 gravel road with one lane per direction and no shoulders or sidewalks. This road is located to the south of the development. The surrounding road network is show on the Locality Plan (Figure 1 of Appendix A). 						
6. Analyses Hours	 The proposed development will include residential units, schools, businesses and municipal offices. This type of developments typically generate vehicle trips in both the weekday a.m. and p.m. peak hours. The Vlakkeland development will also include "Places of worship". As these trips are mostly generated on Sundays, when the other development trips are at their lowest, it was not included in the analysis. Hence, the following peak hours were included in the analyses: Weekday a.m. peak hour (Surveyed peak hour 07:00 – 08:00) 						
	• Weekday p.m. peak hour (Surveyed peak hour 16:45 – 17:45)						
7. Scenarios Analysed	 2013 Existing Traffic conditions (<i>Based on counted traffic volumes</i>) 2018 Background Traffic conditions (<i>Existing counted traffic volumes plus a growth rate of 3% over five years plus the development trips from the Erf 557 Mbekweni development, as discussed with municipal officials</i>). 2018 Total Traffic conditions (<i>Background Traffic volumes plus the expected Vlakkeland development trips</i>) 						
	Int. 1: Jan v Riebeeck / Ring Road / Roggeland (Stop Control)						
	Int. 2: Jan v Riebeeck / Mbekweni- / Vlakkeland Access (Future Int.)						
8. Study Intersections	Int. 3: Jan v Riebeeck / Buitekant Street (Traffic Signal)						
(existing control)	Int. 4: Jan v Riebeeck / Bo Dal Road (Stop Control) Refer to Figure 3 in Appendix A for the existing lane configuration and intersection controls.						
9. 2013 Existing Traffic Conditions	The results of the existing intersection capacity analysis, based on existing traffic volumes and existing intersection geometry / control as indicated on Figure 3 of Appendix A , are as follows: <u>Jan van Riebeeck Drive / Roggeland Road / Ring Road intersection:</u> Operates						
Traffic Conditions	at an acceptable Level-Of-Service (LOS C) during the a.m. peak hours and LOS D during the p.m. peak hours. <u>Jan van Riebeeck Drive / Buitekant Street intersection:</u> Operates at an acceptable LOS B during both peak hours.						

9 2013 Existing	Jan van Riebeeck Drive / Bo Dal Road: Operates at an acceptable LOS D during the a.m. peak hours and LOS C during the p.m. peak hours.							
Traffic Conditions (continued)	Hence, all the study intersections are currently operating at acceptable Levels- of-Service and therefore NO road upgrades are proposed from an intersection capacity point-of-view. See Figure 4 of Appendix A for the Existing Traffic conditions.							
	The expected vehicle trips from the planned Erf 557 Mbekweni development were included in future traffic conditions analysis. This development should include the following land uses:							
10 Approved	Business zone 9 553 m ²							
Developments/	Community facility 3 171 m ²							
Latent Rights	Gap Housing 436 units							
	Based on these land used and extent, it is expected that this Erf 557 Mbekweni development could generate approximately 480 total peak hour vehicle trips with a relatively balanced inbound and outbound trip distribution.							
	The 2018 Background Traffic volumes were calculated by applying a 3 percent growth rate per annum to the existing / counted traffic volumes over a five year period plus the expected vehicle trips of Erf 557 Mbekweni development.							
	Capacity analyses indicate that most study intersections will experience operational issues during the 2018 Background Traffic conditions, except the Jan van Riebeeck Drive / Buitekant Street intersection. Hence the following upgrades are proposed as part of the 2018 Background Traffic conditions.							
	Jan van Riebeeck Drive / Roggeland Road / Ring Road intersection: Will operate at unacceptable LOS E during the a.m. peak hour and LOS F during the p.m. peak hour.							
	• <u>Proposed Upgrade</u> : Install a Traffic Signal, if and when warranted.							
	• <u>Operations after Mitigation:</u> Acceptable LOS A during both peak hours.							
11. 2018 Background Traffic Conditions	<u>Jan van Riebeeck Drive / Mbekweni / Future Vlakkeland Access intersection:</u> Will operate at acceptable LOS D during the a.m. peak hour. However, it will operate an unacceptable LOS F during the p.m. peak hour.							
	 <u>Proposed Upgrade</u>: Install a Traffic Signal, if and when warranted. Also provide turning lanes on the Jan van Riebeeck Road approaches. Based on the Road Access Guidelines (RAG), a dedicated northbound left-turn and southbound right-turn lanes are warranted. See Figure 10 of Appendix A. 							
	• <u>Operations after Mitigation:</u> Acceptable LOS A during both peak hours.							
	<i>Jan van Riebeeck Drive / Bo Dal Road</i> : Will operate at an unacceptable LOS F during both peak hours.							
	• <u>Proposed Upgrade</u> : Install a Traffic Signal, if and when warranted.							
	<u>Operations after Upgrade:</u> Acceptable LOS B during both peak hours							

	The South African Trip Gener of Transport were used to ca Vlakkeland development, as f	ration Rates (SATGR) lculate the appropriat follows:	manual from the Department e trip generation rates for the						
	Land Use (Source Code)	a.m. rate/hour	p.m. rate/hour						
	Primary School (DoT)	0.9 / Pupil	0.9 / Pupil						
12 Trip Generation	High School (DoT)	0.9 / Pupil	0.9 / Pupil						
Rates	Municipal Office (DOT)	2.3 / 100m ²	2.3 / 100m ²						
	Subsidy Housing (DOT)	0.5 / 100m ²	0.5 / 100m ²						
	Gap Housing (DOT)	0.5 / 100m ²	0.5 / 100m ²						
	Com Res Units (DOT)	0.5 / 100m ²	0.5 / 100m ²						
	The expected development transport trips, as summarise	ected development trips were adjusted to include internal and public trips, as summarised in Table 4 and Table 5 of Appendix B .							
	It is expected that a signific internal. These are vehicle Hence, not all vehicle trips g the external road network. income residential area and by means of public transport a	cant percentage of the trips between the dif generated by this dev The proposed Vlakk a significant percenta and/or walking.	ne development trips will be ferent land uses on the site. relopment were distributed to seland development is a low ge of these trips would occur						
13. Development Trips	Based on the expected trip generation rates as summarised above as well as the impact of internal and public transport trips, the Vlakkeland development is expected to generate the following peak hour trips on the external road network:								
	Peak Hour	In Out	Total						
	Weekday a.m.	992 1 021	2 013						
	Weekday p.m.	792 564	1 356						
	These trips were used to determine the expected 2018 Total Traffic conditions. See Figure 7 for the Expected Development Trips.								
	The following trip distribution	was used:							
	 30% of trips to/from the north along Jan van Riebeeck Drive towards Wellington 								
14 Trip Distribution	 55% of trips to/from the south along Jan van Riebeeck Drive towards Paarl 								
	5% trips to/from Newton via Rand Street								
	5% trips to/from Mbekweni via Wamkelekile Street								
	5% to/from Weltevrede, along Springbok Street								
	Refer to Appendix A, Figure	7 for an illustration of	the Trip Distribution.						
15. Site Access/es	The main future access to intersection along Jan van R south of Buitekant Street and Other accesses to Jan van R to the north and/or Roggeland	the Vlakkeland deve iebeeck Drive (MR20 800 meters north of iebeeck Drive will als d Road/Ring Road to	lopment will be from a new 1), approximately 770 meters Roggeland Road/Ring Road. o be possible via Rand Street the south of the site.						

	Three development accesses are proposed, as follows:								
	 From the existing Jan van Riebeeck Drive / Buitekant Street intersection, through the north of the site via Rand Street and Newton Street. It is recommended that the vehicle demand through Rand Street and Newton Street be kept as low as possible and that no additional road improvements are done along this road section to discourage additional traffic. However, it is recommended that a pedestrian sidewalk of approximately 2 meters wide be provided from the commercial node within Vlakkeland, all the way along Rand Road and Newton Street to the Jan van Riebeeck Road / Buitekant Street intersection, to encourage pedestrian movement along this route. 								
15. Site Access/es (continued)	 A new traffic signal controlled intersection, located 770 meters south of Buitekant Street and 800 meters north of Roggeland Road/Ring Road. This is the main development access and most development trips should be encouraged to use this access to enter and exit the site. This intersection will also provide a future link into Mbekweni. This future signalised intersection will enable safer pedestrian crossing between Vlakkeland and Mbekweni. 								
	 From the existing Jan van Riebeeck Drive / Roggeland Road / Ring Road intersection, to the south of the site via Beets Street. 								
	Jan van Riebeeck Road is a Class 2 Road within a "Sub-Urban" Road Side Environment (RSE). The recommended intersection spacing in the Road Access Guidelines (RAG) is 800 meters for traffic signal controlled intersections, with the above criteria. The distance between the existing Buitekant Street and Roggeland Road intersections is 1 570 meters and there is also an open storm- water channel at the midpoint between these two intersections. Hence, the proposed new Vlakkeland Main Access have to be provided slightly north of the midpoint, at 770 meters south of the Buitekant Street intersection and 800 meters north of the Roggeland Road intersection. This intersection position was discussed and approved in principle with officials at the provincial government. See Figure 12 for the proposed location of the future Van Riebeeck Drive/Vlakkeland Access intersection.								
	The 2018 Total Traffic volumes were calculated by adding the Vlakkeland development trips to the 2018 Background traffic volumes. The analyses of the Total Traffic conditions are based on the upgrades recommended for the Background Traffic conditions. The following upgrades are proposed for the 2018 Total Traffic conditions.								
16. 2018 Traffic Conditions	 Jan van Riebeeck Drive / Roggeland Road / Ring Road intersection: Will operate over capacity during the a.m. peak hour with long side road queues. <u>Proposed Upgrade:</u> Construct dedicated east- and westbound right-turn lanes and upgrade the traffic signal phases and settings to allow for 								
	 turning phases from the side roads. <u>Operations after Mitigation</u>: Acceptable LOS D during both peak hours. 								

1

	<u>Jan van Riebeeck Drive / Mbekweni / Future Vlakkeland Access intersection:</u> The following geometry is recommended to ensure acceptable operations at this intersection as part of the proposed development.									
16. 2018 Traffic Conditions (continued)	nori lane requ righ app	 <u>Proposed Opgrade:</u> Construct a southbound left-turn lane and northbound right-turn lane along Jan van Riebeeck Road. There turning lanes are warranted based on the Road Access Guidelines (RAG) requirements. See Figure 10 of Appendix A. Also provide a separate right-turn lane and a shared through and left-turn lane on the westbound approach. 								
	• <u>Ope</u> hou	<u>erations_after_Mitiga</u> r and LOS C during	<u>ation:</u> Acceptable LOS [the p.m. peak hour.	D during the a.m. peak						
	The upgraded directly related	es as discussed abo ted to the developm	ove should be funded by ent.	the developer, since it is						
	There are two typical Class 3 roads within the Vlakkeland development. The one is the east-west road that enters the site from the new intersection on Jan van Riebeeck Drive and the other is the north-south Beets Street that connects Roggeland Road with this main east-west road. The recommended road reserve widths for these Class 3 roads are 25 meters. However, local widening, up to 30 meters wide, could be considered at major intersections to allow for									
17. Road Reserve widths and intersection spacing	The road reserve widths for the Class 4 roads on-site should be minimum 16 meters, but it could range between 16 and 20 meters. The road reserve widths of the Class 5a roads should be minimum 13 meters wide. Any other Class 5 road reserve that is narrower than 10 meters should be negotiated with the municipal authorities, to illustrate that all municipal services can be accommodated within the specified road reserve space.									
	The road surface ("black top") width for the Class 2 and 3 roads should be 7,4 meters wide and the Class 4 roads should be minimum 7.0 meters wide, but also preferably 7,4 meters to accommodate two-way traffic. The road width of the Class 5 roads could vary between 6 and 4 meters depending on the sub- class and function. This should be confirmed at the detail design stage with the municipal officials.									
	The intersections spacing for the internal roads, as specified in the Provincial Administration of the Western Cape Road Access Guidelines, should be as follows:									
		Between Signals	Major Intersections	Driveway Access						
	Class 3	540 meters	180 meters	Not Recommended						
	Class 4	375 meters	120 meters	60 to 45 meters						
	Existing fa	acilities: There ar site frontages.	re no existing pedestri	ian facilities along the						
18. Pedestrians	Proposed facilities: It is recommended that pedestrian signal heads and phases be provided at the future traffic signals proposed at the Jan van Riebeeck Drive / Vlakkeland Development Access intersection.									

	From site observations it was also noted that pedestrians walk along Jan van Riebeeck Drive and cross Jan van Riebeeck Drive at various locations. Crossing Jan van Riebeeck Drive is unsafe due to excessive vehicle speeds. It is proposed that a fence be provided along the site frontage and that pedestrians should be encouraged to only cross at defined crossing locations. It is recommended that sidewalks of at least 2 meters wide be provided along							
18. Pedestrians (continued)	the Class 3 and Class 4 roads on-site. It is also recommended that a pedestrian sidewalk of 2 meters wide be provided from the commercial node within Vlakkeland, all the way along Rand Road and Newton Street to the Jan van Riebeeck Road / Buitekant Street intersection, to encourage pedestrian movement along this route.							
	Street lighting should be provided at the future Jan van Riebeeck Drive / Vlakkeland Development Access intersection. This should improve the visibility and safety of this intersection for pedestrians during early mornings and late afternoons.							
	Existing facilities: Currently there are no public transport facilities along Jan van Riebeeck Drive in the vicinity of the proposed development.							
19. Public Transport	Proposed facilities: It is recommended that bus / taxi embayment's be provided along Jan van Riebeeck Drive on the downstream side of the Vlakkeland Access intersection as illustrated in Figure 12 , Appendix A . Bus / taxi embayment's should also be provided on-site along the typical Class 3 and Class 4 routes.							
	It is recommended that the parking rates for the various land uses within the Vlakkeland development should be as summarised below. These rates were obtained from the Road Access Guidelines (Table 8.8.2) and illustrate rates for a Public Transport Zone PT1 (high public transport dependency).							
20. Parking	Land use Rate							
g	Residential Units 1 bay / unit							
	Business 2 bays / 100m ²							
	This is a low income area and the expected parking demanded will be less than is typically required.							
	This report investigates the expected transport related impacts of the Vlakkeland development, located east of Jan van Riebeeck Drive, south of the residential area of Newton and west of Bo Dal Road, on Erf 8378, Paarl. This investigation resulted in the following recommendations:							
21 Conclusions and	Existing Traffic: All study intersections are currently operating at acceptable Levels-Of-Service (LOS). Hence, no road upgrades are proposed from an intersection capacity point of view.							
Recommendations	Background Traffic: The following upgrades are proposed for this scenario:							
	 Background Traffic: The following upgrades are proposed for this scenario: Jan v. Riebeeck / Roggeland- / Ring Road intersection: Install a Traffic Signal, if and when warranted. Jan v. Riebeeck / Mbekweni / (Future Vlakkeland access) intersection: Install a Traffic Signal, if/when warranted. Also construct northbound left-turn lane and southbound right-turn lane on Jan van Riebeeck Road plus provide an access road to Mbekweni. 							

	 Jan v. Riebeeck Drive / Bo Dal Road: Install a Traffic Signal, if and when warranted. 								
	Development Trips: The development is expected to generate 2 013 weekday a.m. peak hour trips (992/1 021, in-/outbound) and 1 356 p.m. peak hour trips (792/564, in-/outbound).								
	Access: The main access to the Vlakkeland development will be from a neintersection along Jan van Riebeeck Drive (MR201), approximately 770 meters south of Buitekant Street and 800 meters north of Roggeland Road/Ring Road Other accesses to Jan van Riebeeck Drive will also be possible via Rand Street to the north and/or Roggeland Road/Ring Road to the south of the site.								
	Total Traffic: The following upgrades are proposed for this scenario:								
	Jan v. Riebeeck Drive / Roggeland Road / Ring Road intersection:								
	 Construct dedicated east- and westbound right-turn lanes and upgrade the traffic signal phases and settings to allow for turning phases from the side roads. 								
	Jan v. Riebeeck Drive / Mbekweni / Vlakkeland Access intersection:								
21.Conclusions and	 Construct a southbound left-turn lane and northbound right-turn lane along Jan van Riebeeck Road. Provide a separate right-turn lane and a shared through and left-turn lane on the westbound / development approach and upgrade the traffic signal phases and settings. 								
Recommendations (Continued)	The upgrades should be funded by the developer, since it is directly related to the development.								
	Pedestrians: Provide pedestrian signal heads and phases at the traffic signal of the Jan van Riebeeck Drive / Vlakkeland Development Access intersection Also provide a fence along the site boundary / frontage to force pedestrians only cross at intersections. Provide a sidewalk of at least 2 meters wide alor all major roads on-site and provide a pedestrian sidewalk between the commercial node within Vlakkeland, all the way along Rand Road and Newt Street to the Jan van Riebeeck Road / Buitekant Street intersection								
	Street lighting should be provided at the future Jan van Riebeeck Drive Vlakkeland Development Access intersection. This should improve the visibil and safety of this intersection for pedestrians during early mornings and la afternoons.								
	Public Transport : It is recommended that bus / taxi embayment's be provided along Jan van Riebeeck Drive on the downstream side of the new Vlakkeland Access intersection. Bus / taxi embayment's should also be provided on-site along all the major routes on-site.								
	Parking: To be provided at the rates recommended in Section 20 of this report.								
	See Figure 12, Appendix A for a conceptual layout of the proposed upgrades along Jan van Riebeeck Road at the planned Vlakkeland development access.								
	The impact of this development will be sufficiently mitigated if the upgrades recommended in this report are in place.								

Appendix A

Figures

List of Figures

Figure 1: Locality Plan

- Figure 2: Site Development Plan
- Figure 3: Existing 2013 Lane Configuration
- Figure 4: Existing 2013 Traffic Conditions
- Figure 5: 2018 Background Traffic Conditions (Existing Lane Configuration)
- Figure 6: 2018 Background Traffic Conditions (With Upgrades)
- Figure 7: Expected Trip Distribution and Development Trips
- Figure 8: 2018 Total Traffic Conditions (With Final Upgrades)
- Figure 9: Proposed Upgrades Schematic
- Figure 10: Road Access Guidelines Left and Right Turn Lane Warrants
- Figure 11: Access Spacing
- Figure 12: Proposed Jan van Riebeeck Drive/Vlakkeland Access Intersection Upgrades

Appendix B

Tables

List of Tables

Table 1: Existing 2013 Traffic and 2018 Background Traffic

- Table 2: 2018 Background Traffic and 2018 Background Traffic (with upgrades).
- Table 3: 2018 Background Traffic (with upgrades) and 2018 Total Traffic (with upgrades)
- Table 4: Proposed Trip Generation Rates
- Table 5: Expected Development Trips

Table 1: Existing 2013 Traffic and 2018 Background Traffic

			2013	Existin	g Peak	Hour		20	18 Back	ground Geor	Peak I netry)	Peak Hours (2013 etry)		
No	Intersection	AM Peak Hour			PN	PM Peak Hour			AM Peak Hour			PM Peak Hour		
		LOS	Delay	V/C	LOS	Delay	v/c	LOS	Delay	V/C	LOS	Delay	V/C	
1	Van Riebeeck DR/ Roggeland RD	С	19.6	0.31	D	26.2	0.42	E	39.6	0.62	F	>50	0.89	
2	Van Riebeeck DR/ Future Access	Futu	Future Intersection			Future Intersection			27.3	0.50	F	>50	0.64	
3	Van Riebeeck DR/ Wamkelekile RD	В	19.7	0.49	В	15.5	0.45	С	22.1	0.63	В	16.7	0.74	
4	Van Riebeeck DR/ Springbok St	С	34.4	0.68	С	22.8	0.44	F	>50	>1. 0	F	>50	0.90	

	Table 2: 2018 Background	Traffic and 2018 Background	Traffic (with upgrades).
--	--------------------------	-----------------------------	--------------------------

		2018 Background Peak Hours (2013 Geometry)						2018 Background Peak hour (2018 Background Geometry))18	
No	Intersection	AM Peak Hour			PN	PM Peak Hour			AM Peak Hour			PM Peak Hour		
		LOS	Delay	V/C	LOS	Delay	v/c	LOS	Delay	V/C	LOS	Delay	V/C	
1	Van Riebeeck DR/ Roggeland RD	E	39.6	0.62	F	>50	0.89	A	8.9	0.60	А	9.6	0.60	
2	Van Riebeeck DR/ Future Access	D	27.3	0.50	F	>50	0.64	А	7.8	0.57	А	6.9	0.48	
3	Van Riebeeck DR/ Wamkelekile RD	С	22.1	0.63	В	16.7	0.74	С	29.6	0.72	с	24.7	0.64	
4	Van Riebeeck DR/ Springbok St	F	>50	>1. 0	F	>50	0.90	В	17.7	0.59	В	14.6	0.49	

No		2018 Background Peak hour (2018 Background Geometry)						2018 Total Traffic Conditions (2018 Total Traffic Geometry)					
	Intersection	PM Peak Hour			SAT Peak Hour			PM Peak Hour			SAT Peak Hour		
		LOS	Delay	V/C	LOS	Delay	v/c	LOS	Delay	V/C	LOS	Delay	V/C
1	Van Riebeeck DR/ Roggeland RD	А	8.9	0.60	А	9.6	0.60	D	42.5	0.98	D	44.5	0.73
2	Van Riebeeck DR/ Future Access	А	7.8	0.57	А	6.9	0.48	D	40.7	0.93	С	23.1	0.81
3	Van Riebeeck DR/ Wamkelekile RD	С	29.6	0.72	с	24.7	0.64	С	31.2	0.83	С	21.6	0.67
4	Van Riebeeck DR/ Springbok St	В	17.7	0.59	В	14.6	0.49	С	28.4	0.71	С	26.3	0.60

Table 3: 2018 Background Traffic (with upgrades) and 2018 Total Traffic (with upgrades)

Table 4: Proposed Trip Generation Rates

			Sizo/	Weekday AM Peak Hour						
Land Use	Units	Source	Volume	Rate	In	Out	Internal	Public Transport		
Primary School	100m ²	DOT	1 100	0.90	54%	46%	50%	10%		
High School	100m ²	DOT	1 200	0.90	71%	29%	50%	10%		
Subsidy Housing	Units	DOT210	2 350	0.50	35%	65%	25%	15%		
Gap Housing	Units	DOT210	704	0.50	35%	65%	25%	15%		
Community residential Units	Units	DOT210	137	0.50	35%	65%	25%	15%		
Business	100m ²	ITE815	5 342	5.25	51%	49%	25%	15%		
Municipal Office	100m ²	DOT710	4 313	2.30	85%	15%	25%	15%		
					We	ekday PM Pe	eak Hour			
Primary School	100m2	ITS Adj.	1 100	0.18	43%	57%	50%	10%		
High School	100m2	ITS Adj.	1 200	0.18	46%	54%	50%	10%		
Subsidy Housing	Units	DOT210	2 350	0.50	65%	35%	25%	15%		
Gap Housing	Units	DOT210	704	0.50	65%	35%	25%	15%		
Community residential Units	Units	DOT210	137	0.50	65%	35%	25%	15%		
Business	100m ²	ITE815	5 342	5.43	50%	50%	25%	15%		
Municipal Office	100m ²	DOT710	4 313	2.30	15%	85%	25%	15%		

Table 5: Expected Development Trips

Total Driveway Trips								
Land Line	Weel	kday AM Peak	Hour	Weekday PM Peak Hour				
Land Ose	In	Out	Total	In	Out	Total		
Primary School	535	455	990	85	113	198		
High School	767	313	1080	99	117	216		
Subsidy Housing	411	764	1175	764	411	1175		
Gap Housing	123	229	352	229	123	352		
Community residential Units	24	45	69	45	24	69		
Business	143	137	280	145	145	290		
Municipal Office	84	15	99	15	84	99		
Total Driveway Trips	2087	1958	4045	1381	1017	2399		
	Inte	rnal Trips						
Land Use	In	Out	Total	In	Out	Total		
Primary School	267	228	495	43	56	99		
High School	383	157	540	50	58	108		
Subsidy Housing	103	191	294	191	103	294		
Gap Housing	31	57	88	57	31	88		
Community residential Units	6	11	17	11	6	17		
Business	36	34	70	36	36	73		
Municipal Office	21	4	25	4	21	25		
Internal Trips	847	682	1529	391	312	703		
Public Transport								
Land Use	In	Out	Total	In	Out	Total		
Primary School	53	46	99	9	11	20		
High School	77	31	108	10	12	22		
Subsidy Housing	62	115	176	115	62	176		
Gap Housing	18	34	53	34	18	53		
Community residential Units	4	7	10	7	4	10		
Business	21	21	42	22	22	44		
Municipal Office	13	2	15	2	13	15		
Public Transport	248	255	503	198	141	339		
	Total N	et New Trips	6					
Land Use	In	Out	Total	In	Out	Total		
Primary School	214	182	396	34	45	79		
High School	307	125	432	40	47	86		
Subsidy Housing	247	458	705	458	247	705		
Gap Housing	74	137	211	137	74	211		
Community residential Units	14	27	41	27	14	41		
Business	86	82	168	87	87	174		
Municipal Office	51	9	60	9	51	60		
Total Net New Trips	992	1021	2013	792	564	1356		

Appendix C

Photographs

Photo 1: Northbound view on the Western side of Jan van Riebeeck Drive

Photo 3: Informal Pedestrian pathways west of Jan van Riebeeck Drive

Photo 2: Southbound view on the Eastern Side of Jan van Riebeeck Drive

Photo 4: Pedestrian Pathways east of Jan van Riebeeck Drive

Photo 1: Roggeland Road / Jan van Riebeeck Drive intersection.

Photo 3: Signalised Pedestrian Crossing on Jan van Riebeeck Drive

Photo 2: Jan van Riebeeck Drive / Buitekant Street intersection

Photo 4: Jan van Riebeeck Drive / Springbok Street intersection

)					
PROPOSED SERVICES						
STORMWATER						
MANHOLE/CATCHPIT	375mmØ					
	450mmø					
	750mmø					
	1050mmØ					
	STORMWATER CHANNEL					
WATER						
	110mmø					
	160mmø					
	200mmø					
	315mmØ					
SEWER						
	160mmØ					
	200mmø					
	315mmØ					

ALL RADII ARE 10m UNLESS OTHERWISE INDICATED

LAYERS:	
EARTHWORKS (0894/EW/001):	2 9 25 60 100 210 217
RDADS/SW (0894/RD/001) :	2 4 6 9 25 35 36 37 100-101 201 210 212 214
	218-219
RD KERBS (0894/RD/002) :	2 4 6 9 25 100 101 203 204 205 213 218 219
RD DIMS (0894/RD/003) :	2 4 6 9 100 101 202 203 204 205 210 215
SEWERS (0894/FS/001) :	2 4 6 9 20 27 100 101 201 206 210
SEW HC (0894/FS/002) :	2 4 6 9 20 21 100 101 201 207 210
WATER (0894/W/001) :	2 4 6 9 16 17 26 50 100 101 201 208 210
WAT HC (0894/W/002) :	2 4 6 9 16 17 18 50 100 101 201 209 210
WAT DIMS (0894/W/003) :	2 4 6 9 16 17 19 50 100 101 201 210 216
COMBINED (0894/CS/001) :	2 4 6 9 16 17 20 25 100 101 201 210 211 218
SCALE BAR	

SCALE BAR 0 50 100 150 200 m					DESIGNED	DC	CONSULTING ENGINEERS
Scale 1:2500					DRAWN	SB	
otherwise agreed to in writing and no part of this document, and/or drawing may be reproduced copied or transmitted in any form or by any means whatsoever to any person without written permission by the copyright holder. All dimensions must be verified on site before the works commence. Refer any discrepancies to the Engineer.		ISSUED FOR PRELIMINARY DESIGN ONLY	SEP'14	DC REV			
		DESCRIPTION	DATE	BY CKD	CHECKED		

Lyners_AutoCAD.ctb	2013-06-26

GEOTECHNICAL INVESTIGATION

(

ţ

(

VLAKKELAND LOW COST HOUSING PROJECT

WESTERN CAPE

COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

R.A. Bradshaw & Associates cc Consulting Engineering Geologists

Ref. 1-89607 7 April 2008

ı, E

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

Contents EXECUTIVE SUMMARY 1 INTRODUCTION AND TERMS OF REFERENCE 1. 2 2. INFORMATION USED IN THE STUDY 4 List of information used in this study 2.1 4 2.2 Evaluation procedures used in this investigation 5 3. SITE DESCRIPTION 5 4. NATURE OF THE INVESTIGATIONS 6 4.1 Desk study 6 4.2 Site investigations and associated laboratory testing 6 4.2.1Trial pitting 4.2.2 DCP testing 6 4.2.3 Laboratory testing б 8 5. SITE GEOLOGY AND GROUNDWATER CONDITIONS 8 5.1 General geology 8 5.2 Site geology and soil profiles 8 5.3 Water table 14 6. GEOTECHNICAL EVALUATION 14 6.1 Engineering and material characteristics and constraints 14 6.1.1 Site topography 6.1.2 Soil profiles 14 Grading and Atterberg Limits 6.1.3 14 6.1.4 Moisture-density relationship and CBR 16 6.1.5 Conductivity and pH 🐗 18 6.1.6 Compressibility of the soils 19 6.1.7 Heave 20 6.1.8 Collapse Potential 20 6.1.9 Dispersivity 2I6.1.10 Permeability 21 6.1.11 Condition of houses in the adjacent developments 21 6.2 Slope stability, erosion and inundation 22 6.3 Excavation classification with respect to services 22 23 Impact of the geotechnical character of the site on subsidy housing development 6.4 23 6.4.1 Land usage 6.4.2 Subsidy variations 23 23 7. SITE CLASSIFICATION 25 NHBRC Classification 7.1 25 Geotechnical Classification for Urban Development 7.2 25 R. A. Bradshaw & Associates cc

page i

	COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS	
<u>8.</u>	FOUNDATION RECOMMENDATIONS AND SOLUTIONS	29
<u>9.</u>	DRAINAGE	31
<u>10.</u>	SITE CLEARANCE AND PREPARATION AND EARTHWORKS	31
<u>11.</u>	USE OF ON-SITE MATERIALS FOR CONSTRUCTION PURPOSES	32
<u>12.</u>	ROAD CONSTRUCTION	32
<u>13.</u>	SPECIAL PRECAUTIONARY MEASURES	33
<u>14.</u>	CONCLUSIONS	33

VLAKKELAND LOW COST HOUSING PROJECT

List of Tables

, (

, ,

TABLE 1:	SUMMARY OF GRADING ANALYSES	18
TABLE 2:	RESULTS OF CBR TESTS	19
TABLE 3:	RESULTS OF CHEMICAL TESTS	19
TABLE 4:	RESULTS OF SWELL STRAIN AND PRESSURE TESTS	20
TABLE 5:	GEOTECHNICAL CLASSIFICATION FOR URBAN DEVELOPMENT	28

÷.

6

List of Drawings

FIGURE 1: LOCALITY PLAN	3
FIGURE 2: LAYOUT OF SITE INVESTIGATIONS	7
FIGURE 3: REGIONAL GEOLOGY	9
FIGURE 4.1: SOIL PROFILES IN TRIAL PITS - TP1 to TP24	10
FIGURE 4.2: SOIL PROFILES IN TRIAL PITS - TP25 TO TP46	11
FIGURE 5: GEOLOGY OF THE SITE	15
FIGURE 6: CASAGRANDE PLASTICITY CHART AND PLOT OF POTENTIAL EXPANSIVENESS	17
FIGURE 7: NHBRC CLASSIFICATION	.26
FIGURE 8: GEOTECHNICAL SITE CLASSES	27

Appendices

Appendix A	Description of soil profiles in trial pits and results of DCP tests
Appendix B	Results of laboratory tests
<u></u>	

page ii

Executive Summary

This report describes the results of the combined preliminary and Phase 1 geotechnical investigations for the proposed Vlakkeland Low Cost Housing Project which is located between Paarl and Wellington in the Western Cape.

The geotechnical investigations were undertaken in accordance with the requirements of the Department of Housing's Generic Specification GFSH-2, Geotechnical Site Investigations for Housing Developments, and the NHBRC, and the report can be used, in the future as supplementary, statutory information to accompany applications for subsidised low cost housing.

The current investigation comprised a desk study followed by excavation of forty-six trial pits and sampling for laboratory testing. DCP testing was also undertaken next to the all the pits except those located in the embankment walls of old, abandoned evaporation ponds which cover large area of the ceritral and eastern parts of the site.

Numerous soil types, with weathered bedrock at varying depths, are developed throughout the site. The multiplicity of soil types reflects a complex and variable colluvial and alluvial depositional environment, with pedogenic processes also occurring.

Categorisation of the natural soils into seven groups with similar properties is possible, and three generalised, natural soil profiles and their areas of occurrence can be identified. For descriptive purposes, the areas have been named the Northern Area, the Central Strip and the Southwestern Area. The cohesionless coarse soils forming the fill in the embankment walls of the evaporation ponds are superimposed on two of the natural profiles.

Shallow seasonal perched groundwater is expected in large parts of the site in and immediately after the wet period of the year. In addition, most of the area in the southwestern corner of the site is seasonally wet, with an attendant very shallow seasonal perched water table.

The solls are relatively dense or stiff and they are not significantly compressible except in the Southwestern Area where the estimated settlement is approximately 10mm when the soils are wet.

Active soils are predominantly developed in the Northern Area and the Central Strip and a maximum soil strain up to 15mm is possible.

The soils will not be subject to significant collapse consolidation or dispersion.

Seven terrain mapping units are recognised and the associated geotechnical classifications, in general, reflect that the presence of thin collapsible surficial soils layers, the expected presence of shallow groundwater, the low erodability of the soils, the generally shallow ground slopes, the presence or absence of compressible or active soils, and the seismic environment of the area.

Based on the guidelines in the NHBRC Home Building Manual, conventional strip footings or possibly raft foundations would be appropriate for single-storey houses in parts of the site, but lightly reinforced footings with anciliary structural measures will be required in the Northern Area and reinforcement of footings in probably 60% of the houses in the seasonally wet parts of the Southwestern Area will also be required. Good drainage around the houses is essential, and service/ plumbing precautions will be required, as relevant.

The 1 in 50 and 1 in 100 year floodlines of the Dal River lie within the extreme southwestern and western part of the Southwestern Area and the construction of the flood and inundation control measures appears necessary for the long-term serviceability of this area.

Sub surface drainage measures will be required in the Southwestern Area, if that area is to be developed, and they will also be required next to roads throughout the Southwestern Area. In addition subsurface drainage next to roads in other parts of the site should be considered to prevent saturation and 'mattressing' of the surficial soils.

The evaluation of the subsidy variation should consider the costs of dewatering some trenches in winter, deep services if they run sub parallel to contours, and the cost of non normal footings for the houses. Additional costs will include removal and reworking of the existing embankment walls, handling and spoiling of mixtures of excavated soils that contain clayey material, and overexcavation in service trenches to ensure their stability. The cost of possible flood control or inundation measures and sub surface drainage should also be reflected.

With exception of parts of the Southwestern Area where encroachment of floodlines occurs, and the presence of the embankment walls of the old evaporation ponds, no significant geotechnical constraints are apparent in the study area which is therefore generally considered generally suitable for human settlement and subsidy based housing.

R. A. Bradshaw & Associates cc

2. INFORMATION USED IN THE STUDY

2.1 List of information used in this study

The Council for Geoscience (Pretoria and Bellville) and the National Home Builder's Registration Council (Bellville) were approached for geotechnical information for this area, but no geotechnical data base exists.

Because of the location of the site, organisations such as the Government Mining Engineer and the Department of Water Affairs were not approached for information.

The following maps and associated supplementary information were used in the evaluation of the site:

- 1:50 000 topographic series maps 3319 CA Bain's Kloof and 3318 DB Paarl, Sixth Editions dated 2000.
- 1: 10 000 orthophoto maps. Published by the Director General of Surveys, Mowbray, Cape Town.
- Panchromatic aerial photographs (Job No. 1074, Strip 010, Photo No.'s 1036 and 1037 at a scale of 1:50 000, dated 12 November 2003).
- The Geological Series Map 3318, Cape Town and 3318 Worcester at a scale of 1:250 000 and the associated explanations for the maps entitled 'The Geology of the Cape Town Area' and 'The Geology of the Worcester Area', Geological Survey of South Africa, both dated 1992.
- Sub regional and local context plans were provided by Mr Lochner, including a survey plan which only covered approximately the eastern half of the site.
- A plan showing the contours at 1m intervals at the site was provided by the Drakenstein Municipality together with the 1 in 50 and 1 in 100 flood lines of the Dal River which runs through the extreme southwestern corner of the site.
- National Department of Housing. Project Linked Greenfield Subsidy Project Developments. Geotechnical Site Investigations for Housing Developments. Generic Specification GFSH-2, September 2002.
- National Department of Housing. Home Building Manual, Parts 1, 2 and 3. National Home Builders Registration Council, Revision 1, February 1999.
- A walk-over site inspection was conducted on 31 January, and the existing houses in the vicinity of the project were inspected for signs of structural distress which could be ascribed to geotechnical factors.

Discussions were also held with Mr J. Knaggs of the Drakenstein Municipality. The objectives of the discussions were to obtain information about the evaporation ponds in the eastern parts of the site, and other geotechnical and hydrological conditions at the site.

2.2 Evaluation procedures used in this investigation

The standard specifications GFSH-2 from the National Department of Housing have been followed during the investigations and associated preparatory desk study including sourcing of maps and other documentation. Guidelines from the NHBRC were also considered during compilation of this report.

The initial evaluations that were made were based on air photo interpretation and a study of the geological map and associated explanation. The planning of the investigations was based predominantly on the basic survey plan provided by Mr Lochner.

No exposures of rock outcrop generally occur on or near the site. Consequently the final geotechnical assessments in this report are based predominantly on the results of trial pitting and laboratory testing.

3. SITE DESCRIPTION

The site is located to the east of the R301 between Paarl and Wellington and approximately midway between the two towns.

The site is an irregular, polygonal shape and it is approximately 85 hectare in area. It is bounded to the west by a service road running parallel to the R301, and by vacant ground and existing housing to the north. Vacant ground abuts the northern third of the eastern boundary, with a gravel road running along the southern two-thirds. Mainly vacant ground lies to the south of the southern boundary, but the Dal River and associated dams and dam-like structures occur near the extreme western end of this boundary.

The overall slope of the ground is towards the southwest, with a typical gradient of approximately 1:75, but a strip along the northern boundary has a gradient of approximately 1:18.

Five, very large, abandoned evaporation ponds, which extend north-south almost across the entire width of the site, cover approximately 70% to 80% of the central and eastern parts of the site. Excavations for these ponds and the embankment walls themselves have changed the ground profile. The bases of the ponds, which range up to 100m in width and up to 300m long, are slightly dish-shaped and they have a very gentle fall to the east. Water is trapped in parts of these ponds in winter and reed vegetation occurs in places. The embankment walls vary in size and length, but typically they are 3m to 4m high with slopes at 1:3, and crest widths between 3m and 4m. The upper parts of the embankments have been subjected to wave erosion, and near vertical slopes, occur, in places, just below the crest. The embankment walls have been deliberately breached, in places, to ensure free outflow of stormwater.

The large diameter, cement pipes that previously formed the rising main and gravity pipelines from the sewage works to the west of the R301 to the evaporation ponds apparently run in a northeasterly direction through the centre of the site (only one was identified during site investigations). Outlets structures also occur, generally, in the southwestern corners of the ponds.

Most of the site has a grass cover, which is currently very sparse, in places, but relatively thickly developed in a floodplain or wet area in the southwestern corner of the site. Large gum trees grow along the central parts of the eastern boundary, and large pine trees grow in places in many other parts of the site outside of the evaporation pond area. Port Jackson scrub and trees grow in most areas of the site, but notably in the pond area and in the central parts of the site to the west of the ponds. Wattle and other large trees grow next to the dams and the Dal River in the extreme southwestern corner of the site. An area, which is approximately 0.8 hectare in area and is located against the central part of the western boundary, is currently occupied by the largely abandoned shacks and informal livestock pens and paddocks of emergent farmers. Most of the structures have been abandoned, but a few of the shacks are still occupied, and livestock is still housed, in places.

Gravel tracks criss-cross many parts of the site, and there is still limited vehicular access along the tops of the embankment walls.

The remnants of old brick houses and structures occur near the southwestern corner of the property, and at least one of these is occupied. Paddocks also occur in this area.

Scattered rubble and rubbish has been dumped throughout the site, particularly in the southwestern corner and the extreme eastern parts and, in places, in the evaporation ponds.

4. NATURE OF THE INVESTIGATIONS

4.1 Desk study

Prior to conducting field investigations, a desk top study was undertaken using the information detailed in Section 2.1. In addition, discussions were held with personnel from the Municipality and a walk-over site inspection was also conducted. The contour plan provided by Mr Lochner was used to pre-plan the position of the trial pits for the current investigations.

4.2 Site investigations and associated laboratory testing

The site investigations were undertaken by Mr R. Bradshaw of R.A. Bradshaw & Associates cc during the period 31 January to 7 February 2008.

The soil testing was undertaken by Geoscience Laboratories (Pty) Ltd at their laboratory in Cape Town.

4.2.1 Trial pitting

A total of forty-six trial pits were excavated with a digger/loader at the locations shown on Figure 2. Because no site development plan currently exists, the trial pits were generally excavated on a 200m by 100m, staggered grid, but trial pits were specially excavated, in places, in the embankment walls. Some variation of this grid pattern was also required in the shack and livestock pen area where existing structures had to be avoided or access was not possible.

The objective of the trial pitting was to determine the soil profile to 3m depth as prescribed in GFSH-2, and to provide access for sampling.

The exposures in the trial pits were profiled according to the Jennings, Williams and Brink method, and the descriptions of the soil profiles in the trial pits are presented in Appendix A.

4.2.2 DCP testing

DCP (dynamic cone penetration) tests were undertaken next to all trial pits except those in the embankment walls. However, the probe commonly refused at shallow depths and the full potential depth of lesting (2m) was seldom achieved.

0.000002-000

The objective of the testing was to determine the current relative density/consistency profile to a depth of 2m.

The plots of DCP penetration rates versus depth are also presented in Appendix A.

4.2.3 Laboratory testing

Foundation indicator tests were undertaken on seventeen representative soil samples, and mod/CBR tests were conducted on eight samples.

Oedometer tests were conducted on four undisturbed soil samples to determine the swell strain and swell pressures developed when the samples were saturated. The samples were nominally loaded, after which they were loaded to a pressure equivalent to the overburden pressure plus the expected foundation load. After consolidation had occurred at this pressure, the samples were saturated and allowed to swell freely. After swelling was complete, the samples were loaded until the sample had consolidated beyond its original height (void ratio) immediately prior to saturation.

pH and conductivity tests were also conducted on eight samples.

The results of the laboratory testing are presented in Appendix B.

5. SITE GEOLOGY AND GROUNDWATER CONDITIONS

5.1 General geology

Portions of the 1:250 000 Geological Series Maps, 3318 Cape Town and 3319 Worcester are shown at a scale of 1:125 000 on Figure 3.

Based on the Geological Series Maps, the area in the vicinity of the site is covered by undifferentiated, thin Quaternary sediments (Qs on Figure 3), overlying the Porterville Formation of the Malmesbury Group (Npo).

5.2 Site geology and soil profiles

Although the trial pitting confirmed the general geology described in Section 5.1, more than fifteen soil or material types were exposed in the trial pits, reflecting a complex and variable colluvial and alluvial depositional environment and pedogenic processes. Detailed descriptions of all the soil types are neither practical nor relevant, and the soils have been grouped into eight generalised soil types for descriptive purposes.

The schematic distribution of the generalized soil types in the forty-six trial pits are shown on Figures 4.1 and 4.2, and detailed descriptions of the soil profiles are presented in Appendix A. Summarised descriptions of the eight groupings of soil types are given below:

(i) Made ground

Made ground or fill material was almost exclusively encountered in those trial pits located in the embankment walls of the evaporation ponds.

LEGEND

Qgg, QsUndifferentiated Quaternary sedimentsNcp, NcwpCape Granite SuiteNpo, Nm, NnPorterville, Malmesbury & Norree Formations,
Malmesbury Group

Source: 1:250 000 Geological Series Maps 3318 ape Town and 3319 Worcester

FIGURE 3

SCALE 1 : 125 000

}

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

The made ground is generally layered light grey, greyish brown and orange brown. The soil generally comprises a slightly clayey, silty fine to medium sand, but coarser sands occur in places, and fine to medium gravel is also present. These fill soils were derived from the surficial soils within the pond areas, and, where deep excavation occurred, some finer soils were also excavated which now occur as thin layers of cohesive fill within the general fill.

The thickness of the fill in the embankment walls is variable, but the contour plans indicate a thickness up to 4m.

(ii) Cohesionless coarse soils

These soils mask or masked most of the site with the exception of the southwestern corner.

They generally comprise slightly clayey silty sand with variable proportions of fine to medium sub rounded ferruginised gravel. These gravelly silty sands or silty sandy gravels are brownish grey and the gravel is concentrated towards the basal contact. The soils, which are colluvial in origin in the upper parts of the site and alluvial or alluvial wash in the lower parts, range in thickness from 0.3m to 1.3m. They are weakly comented in places.

(iii) Silty or clayey soils

These soils are of colluvial origin in the upper parts of the site and alluvial in the lower parts.

They commonly occur below the surficial cohesionless coarse soils in the former areas where they are khaki brown and generally less than 0.4m thick. The alluvial varieties are commonly khaki grey and at least 1m thick, in places.

(iv) Gravelly silty or clayey soils

These slightly gravely soils occur as thin layers (0.1m to 0.65m) in places in the upper and central parts of the site, but they are more strongly developed in the western central and northwestern parts of the site.

The soils display variable colours, but they are commonly characterised by blotching and mottling. They are often weakly cemented and contain very minor quantities of fine to medium gravel.

(v) Sandy soils

These soils are not strongly developed in the central and northern parts of the site, but they are concentrated in the southwestern parts where the sand layers range in thickness from 0.4m to 1m in the trial pits. The composition ranges from silty sand to sand, with the sand component commonly medium to coarse.

(vi) Cohesive coarse soils

This grouping includes clayey sandy gravel, gravely clayey sand, clayey gravelly sand, clayey silty gravel, gravely silty sand and clayey silty sand.

The soils are almost exclusively developed in the southern central and southwestern areas of the site, with the gravelly clayey silty and their slightly gravelly derivatives occurring exclusively in the Southwestern

Area. The gravel component of all the soils is commonly, but not exclusively scattered and fine to medium sized. The thickness of the soils varies from 0.35m to more than 1.85m.

(vii) Ferricrete

Dark orange brown and brownish grey, layered, coarse gravel-sized blocks of hardpan ferricrete in a minor coarse sandy matrix were encountered in TP 37 and TP 41 in the southwestern parts of the site. These layers of pedogenic soil were 0.5m and 0.75m thick respectively. It should be noted that fine ferricrete or ferruginised gravels occur in the cohesionless coarse soils in the other parts of the site, particularly the eastern parts.

(viii) Malmesbury soil and weathered rock

Residual Malmesbury soil (sandy clayey silty or sandy silty clay) was encountered in TP 1 where it occurred together with patches of very soft, generally ferruginised greywacke.

Grey, stained and mottled or blotched red or orange brown, highly weathered, very closely to closely jointed (sub vertical foliation and joints), very soft to generally soft greywacke occurs at shallow depth (generally less than 0.8m) in the eastern and northern parts of the site. The weathering is more extensive in places so that very soft rock to very stiff residual soll-like material occurs within the highly weathered rock mass.

Based on the above descriptions and the distribution of soils shown on Figure 4.1 and 4.2, the site can be broadly divided into three areas where the following generalised soil profiles occur:

Northern Area

The generalised soil profile comprises:

- thin cohesionless coarse soils
- over, in places, thin clayey or silty soils,
- over residual Malmesbury soil and mainly highly weathered Malmesbury greywacke

Central Strip

The generalised soil profile comprises:

- cohesionless coarse soils,
- over gravelly silty or clayey alluvium
- over highly weathered Malmesbury greywacke generally at depths of more than 1.5m

Southwestern Area

The generalised soils profile comprises:

- cohesionless coarse soil
- over cohesive coarse alluvial soils with layers of sand, clayey or silty soil and minor hardpan ferricrete

The interpreted distributions of these profiles are shown on Figure 5 from which it is apparent that the areas run sub parallel to the Dal River. The soils were probably deposited by that river and probably also by the Berg River whose broad ancient floodplain extends into the site.

Superimposed on the first two of the generalised soil profiles are the strips of fill that form the embankment walls of the old evaporation ponds. The soils were generally derived from the cohesionless coarse soils that previously masked the footprint of the pond area.

5.3 Water table

Site investigations were conducted towards the end of a dry summer and perched groundwater was only encountered in three trial pits (TP 31, TP 39 and TP 46).

The presence of weakly cemented layers, ferricrete and the juxtaposition of coarse soils over clayey or silty transported soils or weathered bedrock suggests that perched groundwater will be more widespread in and immediately after the wet period of the year.

Anecdotal information plus the vegetation evidence suggests that most of the area in the southwestern corner of the site is seasonally wet, with an attendant very shallow seasonal perched water table.

6. GEOTECHNICAL EVALUATION

6.1 Engineering and material characteristics and constraints

6.1.1 Site topography

Field observations

There is a 27m fall westwards across the site with gradients of approximately 1:18 along the eastern boundary, reducing to approximately 1:75 in the central and particularly western parts of the site.

The overall natural gradient of the site is interrupted by the embankment walls of the evaporation ponds which typically slope at 1:3.

Effect on the development

)

Because of the shallow ground 'gradient and the occurrence of local low areas, surface run-off will be poor and local ponding and flooding could occur, particularly in the southwestern part of the site. Shaping of the ground will be required to improve drainage and encourage run-off.

Deep stormwater and sewer lines will probably also be required in many areas to ensure that the pipelines have an adequate fall.

6.1.2 Soil profiles

<u>Field observations</u>

From the soil profiles in Appendix A and Figure 2, it is apparent that there are numerous soil types, with weathered bedrock at varying depths. However, it is possible to categorise the soils into groups with similar properties and to identify three generalized, natural soil profiles and their areas of occurrence (see Figure 5). The embankment fill is superimposed on the two of these natural profiles.

(

÷

 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

Effect on the development

The following properties of the soil profile could potentially significantly influence the design and construction of houses for this project:

- The engineering properties and specifically the compressibility or heave characteristics of the silty or clayey soils and their slightly gravelly derivatives.
- The engineering properties and specifically the compressibility of the cohesionles's and cohesive coarse soils and the sandy soils.
- The occurrence of weakly cemented layers, particularly in the Central Strip.
- The occurrence of bedrock and residual soils and specifically the potential swell characteristics of the latter.
- The occurrence of groundwater.

The above factors are discussed in the following sections.

6.1.3 Grading and Atterberg Limits

Laboratory results

(

The results of the foundation indicator tests on seventeen samples are presented in Table 1.

The made ground and the cohesionless coarse soils from which the made ground is derived have very low or negligible cohesion and are classified as SC, SW, SP-SW and SP soils.

The silty or clayey soils and their slightly gravely derivatives are classified as CH and SC. They generally have high fines content (silt and clayey) and high liquid limits, plasticity indices and linear shrinkages.

The cohesive coarse soils are generally classified as SC or CL soils. From Figure 6, they generally display medium plasticity.

The residual soils and highly weathered Malmesbury greywacke bedrock have a fines content of more than 50%, and they display medium to high plasticity with moderate to high linear shrinkages.

Effect on development

Figure 6 also suggests the silty or clayey soils and their slightly gravelly derivatives, the cohesive coarse soils and the residual soils and weathered bedrock display medium potential for expansiveness. Heave and compressibility of the soils could therefore influence founding conditions and the foundation layout for the houses.

Compressibility and heave are addressed in Sections 6.1.6 and 6.1.7.

FIGURE 6: CASAGRANDE PLASTICITY CHART AND PLOT OF POTENTIAL EXPANSIVENESS

.

Soil Type	Trial	Deṗth	Particle Size Distribution (%)*				USC Atterberg Li		inzits	
	Pit	(111)	Gravel	Şand	Silt	Clay	Classif.	LL	PI	LS
	TP8	0-2.5	7	71	9	12	SC	24	9	4.7
Made Ground	TP21	0-1.9	4	87	· 6	4	SW		SP	
	TP24	0-1.8	9	80	7	4	SW		SP	
Cohesign less or	TP17	0-1.05	1	82	10	8	SP-SW	17	4	2.2
sand &	TP31	0.6	3	90	5	2	SP		NP	
Silty &	TP13	1.1-2.7	25	.36	19	20	SC	33	14	7.1
soils	TP 17	·1.2	0	5	38	57	СН	[·] 54	30	9.5
Gr silty or clayey soil	TP28	1.0 3	3	28	12	58	СН ′	63	38	9.3
	TP13	1.0	0	57	17	26	SC	50	30	9.2
Cohesive	TP20	0.4-1.25	3	76	6	15	SC	23	9	4.8
or slightly cohesive	TP32	1.5	0	49	11	40	CL	44	26	9.0
grsa,sa αr&sa	TP37	0.9-2.45	3	66	10	21	SC	34	18	4.9
soils	TP45	1.4-2.6	0	27	33	40	CL/CH	50	24	13.2
	TP46	0.8-2.6	Q	45	24	31	CL	32	17	6,1
Residual	TP2	0.75-3.0	3	43	40	15	CL	36	14	6.7
soil & weath.	TP9	0.3-1.25	1	30	49	20	ML	44	12	5.7
rock	TP23	1.3	0	8	30	62	СН	62	36	11.3

TABLE 1: SUMMARY OF GRADING ANALYSES

* Percentage of the soil by weight

Non plastic SP Slig

SP Slightly plastic USC Unified Soil Classification System

6.1.4 Moisture-density relationship and CBR

Laboratory results

4

The results of the mod/CBR tests on the soils are presented in Table 2.

NP

The cohesionless coarse soils and the made ground derived from it have high maximum dry densities and low optimum moisture contents. According to COLTO, the soils would be classed as G6 or G7 soils.

Variable maximum dry densities and optimum moisture contents were recorded for the cohesive soils and their classification ranges from G7 to G10 materials.

The weathered Malmesbury greywacke rock and presumably the residual soils derived from it have negligible CBR strength on saturation.

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

Soil Type	Trial Pit	Depth (m)	Mod. A.A.S.H.T.O. Data		C.B.R. at				Maximum Swell	
		-	M.D.D. (kg/m ³)	O.M.C. (%)	100%	98%	95%	93%	90%	(%)
Made ground	TP8	0-2.5	2144	7.0	60	42	26	18	10	0.2
	TP21	0-1,9	2145	6.6	178 -	108	56	36	18	0.0
	TP24	D-1.8	2251	5.5	109	86	55	44	30	0.2
Cohesionless	TP17	0-1.05	2210	5.2	198	141	82	57	33	0.0
coarse soils	TP27	0-1.0	2172	4.4	255	149	67	39	17	0.0
Cohesive	TP20	0.4-1.25	2150	6.3	55	42	28	22	16	0.9
coarse soils	TP45	1.4-2.6	1802	15.3	1	. 1	1	0	0	11.2
Weathered rock	TP9·	0.3-1.25	1698	15.6	1	1	1	1	0	11.9

TABLE 2: RESULTS OF CBR TESTS

Effect on development

The cohesionless coarse soils in the Northern Area are thinly developed and the low saturated CBR of the underlying residual soils and bedrock will influence the design of the roads in that area.

Similarly, the cohesionless coarse soils are thinly developed in the Central Strip and in the Southwestern Area and the low CBR of the cohesive coarse soils will also influence layerwork design even though areas of sand or thicker cohesionless coarse sands with relatively high CBR also occur.

6.1.5 Conductivity and pH

<u>Test results</u>

The results of the chemical tests on eight soil samples are presented in Table 3.

TABLE 3: RESULTS OF CHEMICAL TESTS

Soil Type	Trial Pit	Depili (nı)	pH	Conductivity (mS/m)
Silty & clayey soils	TP13	1.1-2.35	6.0	14.78
	TP20	0.4-1.25	6.5	40.40
Cobacivo	TP32	0.8-1.8	4.0	23.10
coarse soils	TP37	0.9-2.45	6.2	55.00
	TP45	1.4-2.6	6.4	537.00
	TP46	0.8-2.6	5.3	40.60
Residual soil &	TP2	0.75-3.0	5.0	22.90 ,
weath. rock	TP9	0.3-1.25	5.7	53.60

page 19

The results indicate that all the soils are acidic, generally with low to moderate conductivity.

Effect on development

In general, corrosion of metallic subsurface services is affected by the following physio-chemical properties of the soil: pH, conductivity and moisture content of the soil.

The combination of acidic soils and low to moderate conductivities indicates that mild corrosion of buried metallic services could occur with time.

6.1.6 Compressibility of the soils

Field observations and test results

The results of the DCP tests, which were conducted during summer when soil moisture contents were low, indicate that the soils are currently generally medium dense to dense or very stiff. However, loose conditions extended to more than 1m depth in places in the Central Strip and Southwestern Area.

The soils are likely to loosen/soften with increases in soil moisture content in winter.

Consolidation tests indicate that heave or swell of the cohesive soils is more likely than consolidation.

<u>Effect on development</u>

1

Consolidation settlement of engineered fill derived from soil from the embankment walls and the cohesionless coarse soils will occur, but the thickness of the soils is generally considerably less than 1m and settlements of less than 5mm are therefore expected.

Consolidation of the cohesive coarse soils in the Southwestern Area and particularly the seasonally wet parts of this area will occur and the estimated settlement of these soils when wet is approximately 10mm.

6.1.7 Heave

Field observations and test results

The silty or clayey soils and the cohesive coarse soils are fissured, but no widespread slickensiding was observed. However, linear shrinkages of the soils are commonly large, and Figure 6 suggests that they display medium potential for expansiveness.

Soil Type	Trial Pit	Depth (m)	Swell Strain (%)	Swell Pressure (kPa)
Silty or clayey soil	TP17	0.9	2.4	>219
Gravelly silty or clayey soil	TP28	1.0	1.8	110
Cohesive coarse	TP13	1.0	2.9	180
soil	TP32	1.5	5.5	420
Weathered rock	TP23	1.3	2.7	295

TABLE 4: RESULTS OF SWELL STRAIN AND PRESSURE TESTS

R. A. Bradshaw & Associates cc

The results of swell strain and pressure tests on four undisturbed samples are presented in Table 4. The tests indicate that, for typical foundation plus overburden pressures of approximately 40kPa, soil strains of 2% to 3% are likely but this could increase to 5.5% in places. The swell pressures are in excess of 100kPa.

Effect on development

The active soils include the silty or clayey transported soils and their slightly gravelly derivatives, cohesive coarse soils, and the weathered greywacke bedrock and its residual soils. The latter soils are predominantly developed in the Northern Area and the Central Strip, with residual soil and bedrock at shallow depth in the former area and parts of the latter.

Assuming initially that significant seasonal changes in moisture content extend to depths of 2m, the theoretical heave could be of the order of 40mm. In practice, the soils even in mid to late summer are moist at depth (see Appendix A) and they are partially saturated. The entire 2m theoretical depth is therefore unlikely to become saturated, and maximum soil strains up to 15mm are more likely, given that the upper part of the profile generally comprises relatively inactive cohesionless coarse soils.

6.1.8 Collapse Potential

Field observations and test results

The surficial cohesionless coarse soils are pinholed in places, but these layers are generally less than 0.7m thick and the most open fabric occurs in the upper 0.5m. No laboratory collapse potential tests were therefore undertaken.

<u>Effect on development</u>

The pinholed soils occur at surface and are thinly developed, and collapse consolidation of the soil is not considered a significant factor influencing the design and construction of houses.

6.1.9 Dispersivity

Field observations

Despite having impounded untreated sewage water, no evidence of dispersivity was observed in the embankment walls of the evaporation ponds. The walls are constructed with cohesionless coarse soils.

Effect on development

The silty or clayey soils and the cohesive coarse soils display no characteristics associated with dispersivity. No dispersivity testing was therefore undertaken.

6.1.10 Permeability

Field observation and laboratory results

The cohesionless coarse soils contain a small but significant proportion of fines and, in general, they would be classed as slightly to possibly moderately permeable with permeabilities probably less than 10⁻⁴cm/sec.

All other soils, with the exception of the very minor occurrences of silty sand and sand, contain high proportions of fines and they are therefore slightly to effectively impermeable.

Effect on development

Some infiltration of surface water will occur but the majority will disperse through surface run-off and drainage measures will be required to contro! surface flows of stormwater.

Conditions also exist for the development of perched water tables where cohesionless coarse soils overlie less permeable soils.

6.1.11 Condition of houses in the adjacent developments

<u>Field observations</u>

Inspection of houses to the north of the site indicates that cracking is not generally developed. The houses do not appear to have been constructed as part of a group scheme and it is assumed that, in the absence of control joints, no extensive structural measures or non conventional foundation layouts were used to counter adverse ground conditions.

Effect on development

The general lack of extensive cranking in the houses to the north of the development contradicts the results of the laboratory testing and the assessments above which indicate that active soils could lead to structural problems in the houses. The lack of widespread cracking suggests that either comprehensive foundation design and ancillary structural measures were used to minimise the affects of heave (unlikely) or that, despite the evidence from testing and observations on the site itself, the soils in the existing residential area are only mildly active, or the soil profile below the existing houses differs from that in the Northern Area and Central Strip.

6.2 Slope stability, erosion and inundation

No natural, large-scale instability can occur on the relatively shallow sloping ground at the site.

Deep vertically excavated slopes in service trenches will be unstable and the following cut slope batters can be considered:

0	0 to 1.5m depth	÷.	vertical
9	1.5m to 2.5m		1:0.75
0	>2.5m	-	1:1

These batters should be confirmed on site during construction and statutory provisions will be required to ensure the safety of workers in the trenches. These recommendations should be reviewed if groundwater is encountered, because flatter slopes and/or lateral support will be required.

Exposed surficial cohesionless coarse soils are potentially erodable by water and small shallow eroded channels occur in the mid central and western parts of the site. However, the extent of erosion is minimal and erosion of the surficial soils is not considered a significant factor in the construction of this project.

The 1:50 and 1 in 100 year floodlines are shown on Figures 2, 4, 7 and 8. The information, which was obtained from the Drakenstein Municipality, indicates that inundation of a significant portion of the southwestern corner of this site will occur. Floodlines for the 1 in 10 and 1 in 20 year events were not available, but the Dal River will presumably also cause more frequent inundation of smaller areas during those events.

6.3 Excavation classification with respect to services

According to Tables 2.1 and 2.2 of the Generic Specifications, excavation in the various soil types would be classified according to SABS 1200 D as follows:

Soft Excavation Class:	Made ground, cohesionless coarse sands, silty or clayey soils, slightly gravelly silty or clayey soils, sandy soils and cohesive coarse soils
Intermediate Excavation Class	Weakly cemented cohesive coarse soils, weakly cohesive coarse soils, ferricrete and weathered bedrock

In practice, excavation to 3m depth in the typical soil profile in the Northern Area would generally be classified as Soft Excavation Class with possibly 10% to 15% categorised as Intermediate Excavation.

Weakly cemented layers are commonly developed in the Central Strip and the percentages of Soft and Intermediate Excavation are probably of the order of 70% to 30% respectively.

Weakly cemented layers also occur in places in the Southwestern Area and the percentages of Soft and Intermediate Excavation are probably approximately 85% to 15% respectively.

The surficial sandy soils and possibly the cohesionless coarse soils in winter can be efficiently excavated manually, but all other soils will be difficult to excavate manually, particularly when the soils dry out in summer.

6.4 Impact of the geotechnical character of the site on subsidy housing development

6.4.1 Land usage

There is minimal vegetation cover, and with the correct preparation, site clearance and founding methods and removal of the embankment walls, the entire study area will be suitable for human settlement and subsidy based housing with the exception of the area in the extreme southwestern corner of the site which will be subject to periodic inundation and flooding, and also possibly the seasonally wet parts of the Southwestern Area.

6.4.2 Subsidy variations

In considering the entire site and using Annexure 1 of the General Specification, the following generic subsidy variations for the site and founding conditions are applicable:

II SITE CONDITIONS 1 Seepage/Groundwater 1. Category1 - Permanent or perched water table less than Im below ground surface. This condition is expected seasonally in the southwestern corner of the site, and probably in places, in other areas. Service trenches would have to be dewatered during construction.

page 23

3 Difficulty of servicing land due to slopes

3.1 Type 1 site - average slope measured along a 100m line in any direction from any of the boundaries of the erf is flatter than 1:100

Because the ground contours run consistently northwest-southeast, any services that run consistently parallel or sub parallel to the contours will be located at depth, in places to facilitate free flow in the services.

III FOUNDING CONDITIONS

- I Expansive soils
- 1.1 Class H1

This condition occurs in the Northern Area. The masonry houses will require foundation design, building procedures and precautionary measures to be in accordance with Table 5 of Part 1, Section 2 of the NHBRC Coal Home Building Manual.

Additional factors that are not categorised in Annexure 1 but will affect construction costs include:

- The embankment walls for the old evaporation ponds must be removed and the soils placed as
 engineered fill within the basins of the ponds. The quantity of material to be moved is unknown to
 the Author. The cost of excavation and placing this material should also be reflected in the costing
 and subsidy variation.
- Material that is excavated from road beds, foundation trenches and some foundation trenches in the Northern Area might comprise a mixture of sandy and cohesive soils. Excavated material from deep (>1.25m) service trenches in all areas will also contain a mixture of soils. This material is unsuitable for structural fill and it should not be placed on adjacent erven or under surface beds. The cost of handling and spoiling the materials should be included in the assessment of subsidy variation.
- Over-excavation of trenches in the gravely soils will be required to ensure stability of the sidewalls
 of the service trenches, particularly where groundwater is encountered. The cost of the extra
 excavation, the spoiling of additional quantities of material unsuitable for backfill and the additional
 importation of selected material for backfilling service trenches should be reflected in the costing
 and subsidy variation.

Although the site investigation coverage was extensive, the soil conditions may vary between trial holes. Consequently, subsidy variations could also vary depending on the ground conditions actually encountered.

7. SITE CLASSIFICATION

7.1 NHBRC Classification

According to Table 5 in the Generic Specifications and Table 1, Section 2 of the NHBRC Home Building Manual, Part 1, and based on the assessments given above, the following NHBRC classifications, whose distributions are shown on Figure 7, are applicable to the site:

Northern Area A:	Site Class H1 and H1 with S
Central Strip:	Site Class H and H with S
Southwestern Area:	Site Class S/S1

The 'S' classification in the first two areas currently refers to the fill in the embankment walls, but the classification will largely fall away when the walls are flattened and the material placed in engineered fill.

7.2 Geotechnical Classification for Urban Development

The areas containing the three generalised soil profiles described in Section 5.2, plus the seasonally wet area in southwestern corner, areas with different slope gradients and the area that will be subject to the 1 in 100 year flooding have been classified using the Geotechnical Classification for Urban Development in Table 3 of the GFSH-2 Generic Specifications. For ease of reference, the table from GFSH-2 is presented on the next page as Table 5 of this report.

The terrain mapping units were derived from the results of the site investigation and other data or activities referenced in Section 2 of this report. The extent of the mapping units was determined by extrapolation of information from the trial pits.

The distributions of the terrain mapping units are shown on Figure 8, and the mapping units can be described as follows:

(i) Thin colluvium and alluvium over Malmesbury soils and weathered rock – 1ABEI 2C 3K:

This mapping unit lies between the eastern edge of the evaporation pond area and the eastern boundary.

The classification reflects the presence of potentially slightly collapsible thin soils, perched groundwater more than 1.5 m below ground surface, the low erodability of the soils and ground sloping between 2° and 6°, all of which represent most favourable conditions.

Intermediate constraints include the moderate heave potential of the soil profile and the least favourable constraint is that the site occurs close to the epicentre of the 1969 'Tulbagh' earthquake and a natural seismicity of more than 100 cm/sec² will occur.

(ii) Thin colluvium and alluvium over Malmesbury soil and weathered rock - shallower slopes - 1ABE 2CI 3K

This unit is developed in the area between the northern side of the evaporation ponds and the northern boundary, and the remainder of the Northern Area to the west of the ponds.

11

The classification reflects the same features described in (i) above, but ground slopes of less than 2° represent an intermediate constraint.

(iii) Thin colluvium and alluvium over Malmesbury soils and weathered rock – evaporation pond area – 1ABE 2CI 3K with 1D 3IK

This unit occurs in that part of the Northern Area that falls within the evaporation ponds.

The 1ABE 2CI 3K classification reflects the conditions in the basal areas of the ponds and the explanation was presented in (ii) above.

The classification for the embankment walls is currently 1D 3IK which reflects low soil compressibility, but steep slopes and the seismicity of the region are also considered.

TABLE 5: GEOTECHNICAL CLASSIFICATION FOR URBAN DEVELOPMENT

	CON	STRAINT	Most favourable (1)	Intermediate (2)	Least favourable (3)
	A	Collapsible Soil	Any collapsible horizon or consecutive horizons totaling a depth of less than 750mm in thickness*	Any collapsible horizon or consecutive horizons with a depth of more than 750mm in thickness	A least favourable situation for this constraint does not occur
	в	Seepage	Permanent or perched water table more than 1,5m below ground surface	Permanent or perched water table less than 1,5m below ground surface	Swamps and marshes
	С	Active	Soil Low soil-heave potential anticipated*	Moderate soil heave potential	High soil-heave potential
	D	Highly compressible Soil	Low soil compressibility anticipated*	Moderate soil compressibility	High soil compressibility
1	E	Erodability of soil	Low	Intermedicte	Anneipated
	F	Difficulty of excavation to 1,5m depth	Scattered or occasional boulders less than 10% of the total volume	Rock or hardpan pedocretes between 10 and 40% of the total volume	Rock or hardpan pedocretes more than 40% of the total volume
	G	Undermined ground	Undermining at a depth greater than 240m below surface (except where total extraction mining has not occurred)	Old undermined areas to a depth of 90-240 m below surface where stope closure has ceased	Mining within less than 90-240m of surface or where total extraction mining has taken place
	н	Stability: (Dolomite & Limestone)	Possibly stable. Areas of dolomite overlain by Karoo rocks or intruded by sills. Areas of Black Reef rocks. Anticipated Inherent Risk Class I	Potentially characterised by instability. Anticipated Inherent Risk Classes 2 - 5.	Known sinkholes and dolines. Anticipated Inherent Risk Classes 6-8.
	I	Steep slopes	Between 2° and 6° (all regions)	Slopes between 6° and 18° and less than 2° (Natal and Western Cape) Slopes between 6° and 12° and	More than 18° (Natal and Western Cape) More than 12° (all other regions)
	J	Areas of unstable natural slopes	Lownsk	Intermediate risk	High risk (especially in areas
	к	Areas subject to seismic activity	10% probability of an event less than 100 cm/s ² within 50 years	Mining-induced seismic activity more 100 cm/s ²	Natural seismic activity more than 100 cm/s ²
	L	Areas subject to flooding	A "most favourable" situation for this constraint does not occur	Areas adjacent to a know drainage channel or floodplain with slope less than 1%	Areas within a known drainage channel or floodplain

* These areas are designated as 1A, 1C, 1D, or 1F where localised occurrences of the constraint may arise.

Example: A sub-area designated as Zone 2BF would be an intermediate class with anticipated seepage and excavation problems. A sub-area designated as Zone 3B would be designated as least favourable and not recommended for development due to surface water inundation.

.

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

(iv) Thin alluvium over Malmesbury soils and weathered rock - 1AE 2(B)CI 3K

This unit occurs in the Central Strip.

The classification reflects similar conditions to those discussed in (ii) above, but there is greater likelihood of encountering shallower perched groundwater conditions in winter.

The classification for the embankment walls is currently 1D 3IK which reflects low soil compressibility, but steep slopes and the seismicity of the region are also considered.

(v) Thick alluvium – 2B(D)I 3K

This unit occurs in those parts of the Southwestern Area to the east (downstream) of the 1 in 100 year floodline.

The classification reflects the fact that there will be a perched water table less than 1.5m below ground surface, that the soils have borderline moderate compressibility when wet and the ground slopes are shallow, all of which are intermediate constraints. The seismicity of the region is also reflected.

It should be noted that the southern two-thirds of this area is seasonally wet and that it has a marginal 2L 3B classification.

(vi) Thick alluvium within the 1 in 100 year flood line – 2B(D)I 3KL

This unit occurs in those parts of the Southwestern Area to the West (upstream) of the 1 in 100 year floodline.

The explanation is as per the relevant parts of (iv) above, but the area has lies within a known floodplain.

(vii) Dam area – 3BKL

This unit occurs in the small dam in the extreme southwestern part of the Southwestern Area.

The classification indicates most unfavourable conditions including marshy conditions, its location within a floodplain and the seismicity of the area apply to this dam area.

8. FOUNDATION RECOMMENDATIONS AND SOLUTIONS

Based on the general NHBRC classifications in Section 7.1, and Part 1, Section 2, Tables 5 and 7 of the NHBRC Home Building Manual, the following foundation types are considered appropriate for the houses in the various areas:

- (i) Northern Area Site Class H1
- Lightly reinforced strip footings with articulation joins at all internal/external doors and openings and light reinforcement in the masonry.

Site drainage and plumbing/service precautions will be necessary.

(ii) Northern Area – evaporation pond area – Site Class H1 with S

Once the material from the embankment walls has been removed and placed as thin engineered fill in the basal parts of the ponds, H1 conditions will occur, and the layout and measures described for (i) above are again considered appropriate.

(iii) Central Strip – Site Class H

Normal construction comprising strip footings founded at 0.6m depth are considered appropriate.

Site drainage and plumbing/service precautions are recommended.

(iv) Central Strip – Site Class H/S

3

ſ

Provided that the material from the embankment wall is placed and compacted according to specifications, normal strip footings founded at 0.6m depth are considered appropriate.

Site drainage and plumbing precautions are recommended.

Southwestern Area – non seasonally wet sub area – Site Class S

Normal strip footings founded at 0.6m depth with foundation pressures not exceeding 50kPa are considered appropriate.

Good site drainage is essential.

(vi) Southwestern Area – seasonally wet sub area – Site Class S/S1

The soils are likely to soften/loosen seasonally with increases in soil moisture and the classification would be borderline Site Class S/S1.

Normal strip footings typically founded at 0.6m depth with foundation pressures not exceeding 50kPa will be appropriate for this area. However, allowance should be made for modified normal, lightly reinforced footings in, say, 60% of the houses.

It should be noted that special drainage measures and/or raising of the ground levels are essential in this seasonally wet area.

(vii) Southwestern Area - sub area within the 1 in 100 year floodline - Site Class S/S1

Unless special measures such as protective berms or raising ground levels are instituted, no construction should occur in this area. This restriction should also include the pond or dam in the extreme southwestern corner where the Site Class P (marshy area) occurs.

Raft foundations could be used in all the sub areas of the site with the exception of the seasonally wet parts of the Southwestern Area. The rafts should be carefully designed and constructed to ensure that settlement or heave of the soils are handled by the raft.

9. DRAINAGE

The general slope of the site is very shallow particularly in the Southwestern Area and most parts of the Central Strip. Careful attention to general surface drainage will therefore be required during design and construction. In this respect, extensive drainage measures will be required in the Southwestern Area if that area is to be developed.

Good drainage around the houses is also essential and careful local shaping of the ground and design of stormwater will be required to ensure that drainage is efficient and no ponding of stormwater occurs.

Subsurface drainage will be required next to roads throughout the Southwestern Area. In addition, because the surficial cohesionless coarse soils contain small amounts of fines and are underlain by less permeable soils, subsurface drainage next to roads in other parts of the site should be considered to prevent saturation and 'mattressing' of the surficial soils.

10. SITE CLEARANCE AND PREPARATION AND EARTHWORKS

Site clearance will be extensive and include the following:

- Removal of the large trees that grow in several parts of the site, particularly along the eastern boundary.
- Removal of the Port Jackson bush and trees.
- Demolition and removal of the shacks and livestock pens on the western side of the site.
- Demolition and removal of the old house and other structures in the Southwestern Area.
- Removal of the old feed and gravity lines from the neighbouring sewage works to the evaporation ponds.
- Removal of the outlet/inlet works structures in the ponds.
- Removal and spoiling off the site of the piles of rubble and rubbish scattered throughout most of the site.

Because the site layout is unknown, no specific comment can be made with regard to earthworks requirements with the exception and that the embankment walls will have to be removed and reworked.

It is assumed that the soils from the walls will be placed in the basal areas of the ponds. Irrespective of where it is placed, the areas to be filled must be cleared of vegetation and the small areas where the bases of large trees should be carefully cleared of remnant roots and loose material. The subgrade throughout the cleared areas should then be compacted to at least 90% of mod AASHTO maximum dry density with a ten-tonne, smooth drum, vibratory roller. The material from the embankment walls can then be placed in layers not exceeding 250mm in thickness, moistened to within 2% of optimum moisture content and rotivated, if necessary, to mix the soil and water, and then compacted to 98% of mod density.
Nuclear densimeter (troxler) tests should be undertaken on a routine basis as the layers are placed and at the intervals prescribed in SABS 1200 D.

It should be noted that the soils are moisture sensitive, and it will not be possible to achieve satisfactory compaction in, for example, winter when the soils are wet of optimum or when they are dry towards the end of summer.

Mixtures of sandy and clayey soils should not be placed in the engineered fill.

11. USE OF ON-SITE MATERIALS FOR CONSTRUCTION PURPOSES

The cohesionless coarse soils and the soils in the embankment walls will be suitable for engineered fill provided that the moisture content lies within 2% of optimum moisture content. If not they must be spoiled and imported materials substituted or they must be allowed to dry out.

It is unlikely that they will be suitable for pipe bedding, but they will be suitable for general fill in service trenches and for backfill below surface beds, provided that the soils are neither too wet nor too dry.

In general, the silty or clayey soils and their slightly gravelly derivatives, and the cohesive coarse soils will not be suitable for use as fill, and this material and particularly mixes of the soil types must be spoiled.

The residual and Malmesbury soil and weathered rock could probably be used in engineered fill where it should be compacted to 95% of mod density with a pad foot vibratory roller. It could also be used in the wide service trenches where a sufficiently large compactor can be used. These materials are also moisture sensitive, and mixtures of Malmesbury materials and other soils must be avoided.

Clean sand for bedding, and sub base and basecourse for road layer works should be imported.

12. ROAD CONSTRUCTION

Site preparation for the roads should include excavation of the road bed and removal of any vegetation (roots etc.). The subgrade conditions will then comprise thin remnant cohesionless coarse soils in the Northern Area, thin remnant cohesionless soils over silty or clayey soils in the Central Strip, and silty or clayey soils and cohesive coarse soils in the Southwestern Area.

Based on the results presented in Table 2, the cohesive coarse soils and the Malmesbury materials have very low, saturated CBR's, whereas the other materials have relatively high CBR's and fair to good subgrade properties.

The subgrade in the road bed should be compacted to at least 93% of mod density. The design of the roads and the road layer works should take cognisance of the very low saturated CBR's of the shallow oils in the Northern and Southwestern Areas.

Subsurface drainage will be required next to and probably below the roads in the Southwestern Area, and particularly in the seasonally wet parts. The comment in Section 9 on subsurface drainage next to roads in the other parts of the site should also been noted.

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS.

It should be noted that the trafficability over the cohesionless coarse soils will be difficult in winter because these soils will become saturated. Provision should therefore be made to pioneering temporary access roads with a gravel surfacing.

13. SPECIAL PRECAUTIONARY MEASURES

Special precautionary measures should include the following:

- Inspection of all foundation trenches and DCP testing in the trenches to ensure that the structural design is in accordance with the ground conditions actually encountered.
- Measures should be instituted to safeguard workers in service trenches from collapse of the sidewalls of the trenches.
- The ground should be shaped so that no ponding occurs against the houses.
- Subsurface services should be designed and constructed so that they are located sufficiently far from buildings that their backfilled trenches do not interfere with the foundations for houses and other structures.
- Excess soils from, for example, the road bed or service trenches should not be spoiled on the general site area otherwise the subgrade for the surface beds and possibly for footings will be adversely affected.
- The trial pit positions should be identified during the initial phases of development and special compaction or other special founding measures may be required to ensure the founding conditions for the future houses or roads are adequate.

14. CONCLUSIONS

- a) Numerous soil types, with weathered bedrock at varying depths, are developed throughout the site. The multiplicity of soil types reflects a complex and variable colluvial and alluvial depositional environment, with pedogenic processes also occurring. Categorisation of the natural soils into seven groups with similar properties is possible and three generalised, natural soil profiles and their areas of occurrence can be identified. For descriptive purposes, the areas have been named the Northern Area, the Central Strip and the Southwestern Area.
- b) The cohesionless coarse soils forming the fill in the embankment walls of the old evaporation ponds, which cover large parts of the central and eastern areas of the site, are superimposed on two of the natural profiles.
- c) The presence of weakly cemented layers, ferricrete and the juxtaposition of coarse soils over clayey or silty transported soils or weathered bedrock suggests that seasonal perched groundwater is widespread in and immediately after the wet period of the year. In addition, most of the area in the southwestern corner of the site is seasonally wet, with an attendant very shallow seasonal perched water table.

ł

ł

÷

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

- d) Laboratory testing and field testing indicate that the soils are relatively dense or stiff and they are not significantly compressible except in the Southwestern Area where the estimated settlement is approximately 10mm when the soils are wet.
- e) Active soils are predominantly developed in the Northern Area and the Central Strip and a maximum soil strain up to 15mm is possible.
- f) The soils will not be subject to significant collapse consolidation or dispersion.
- g) Seven terrain mapping units are recognised and the associated geotechnical classifications, in general, reflect that the presence of thin collapsible surficial soils layers, the possible presence of shallow groundwater, the low erodability of the soils, the generally shallow ground slopes, the presence or absence of compressible or active soils, and the seismic environment of the area.
- h) Based on the guidelines in the NHBRC Home Building Manual, conventional strip footings or possibly raft foundations would be appropriate for single-storey houses in parts of the site, but lightly reinforced footings with ancillary structural measures will be required in the Northern Area and reinforcement of footings in probably 60% of the houses in the seasonally wet parts of the Southwestern Area will also be required. Good drainage around the houses is essential, and service/ plumbing precautions will be required, as relevant.
- i) The 1 in 50 and 1 in 100 year floodlines of the Dal River lie within the extreme southwestern and western part of the Southwestern Area and the construction of the flood and inundation control measures appears necessary for the long-term serviceability of this area.
- j) Careful attention to general surface drainage will be required. Sub surface drainage measures will be required in the Southwestern Area, if that area is to be developed, and they will also be required next to roads throughout the Southwestern Area. In addition, because the surficial cohesionless coarse soils contain small amounts of fines and are underlain by less permeable soils, subsurface drainage next to roads in other parts of the site should be considered to prevent saturation and 'mattressing' of the surficial soils.
- k) The evaluation of the subsidy variation for low cost housing should consider the costs of dewatering some trenches in winter, deep services if they run sub parallel to contours, and the cost of non normal footings for the houses. Additional costs will include removal and reworking of the existing embankment walls, handling and spoiling of mixtures of excavated soils that contain clayey material, and over-excavation in service trenches to ensure their stability. The cost of possible flood control or inundation measures and sub surface drainage should also be reflected.
- I) With exception of parts of the Southwestern Area where encroachment of floodlines occurs, and the presence of the embankment walls of the old evaporation ponds, no significant geotechnical constraints are apparent in the study area which is therefore generally considered generally suitable for human settlement and subsidy based housing.

R.A. BRADSHAW Pr.Sci. Nat. for R.A. BRADSHAW & ASSOCIATES cc

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

Appendix A:

DESCRIPTION OF SOIL PROFILES IN TRIAL PITS AND RESULTS OF DCP TESTS

Machine excavating very slowly to 0.95m depth. Depth of hole restricted by hardness of silty sandy gravel layer. GREYWACKE Grey, stained and mottled red brown, highly weathered, very fine grained, very closely to closely jointed (sub verlical foliation and joints), very soft rock to generally soft rock greywacke, SILTY SANDY GRAVEL Dry, grey brown to orange brown, very dense (locally weakly cemented), layered, slightly slity, medium to coarse sandy fine gravel. Colluvium/pedogenic. METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728350 Y: -600 PERCHED WATER TABLE WATER TABLE DATE: 1/2/2008 and very soft rock to very stiff soil. ≻ 23 NOTE: DÝNAMIC CONE PENETRATION TEST AND SOIL PROFILE ł TRIAL PIT NO: TP23 2.00 0.95 UNDISTURBED SAMPLE DISTURBED SAMPLE 010 mc:t [] Q 0 89607 ELEVATION: PROJECT NO: 55 - 110 30 - 55 15 - 30 7 - 15 ×15 Ground Surface Fiim Stiff Very Stiff Very Soft Soft 100 **Clayey Materials:** STARTING DEPTH: (mm/blow) PENETRATION RATE (mm/blow) ₿ 5 - 12,5 12.5 - 30 30 - 75 2 - 5 9 >75 PROJECT: VLAKKELAND ţ Meduum Dense Very loose Very Dense Loose **DCP 23** Dense (m) NOITARTENEG PO HTGED TEST NO: Sandy Materials: (woją/uku)

£

Į

Sandy Materials: (mm/blow) TEST NO: PROJECT: VLAKKELAND DEPTH OF PENETRATION (m) Medium Dense Very Dense Very Joose Loose Dense Į 30 - 75 12.5 - 30 5 - 12.5 2-5 PENETRATION RATE (mm/blow) >75 ð STARTING DEPTH: Clayey Materials: (mm/blow) ġ DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE ; Very Stiff Very Soft Soft Firm Silif ġ 55 - 110 30 - 55 15 - 30 7 - 15 ×110 PROJECT NO: ELEVATION: 89607 0 O 0-1.8m UNDISTURBED SAMPLE DISTURBED SAMPLE TRIAL PIT NO: TP24 0/:0:/:0 Λo 0/:0:/:0 : 1:0:1: ::|:0:|:: 1:0:1:0/ : 0 :: 0: 1: : : 0 :|: 0 : :0:1:0: 888 XXXXXX XXXXX XXXXXX XXXXXX **XXXXX** XXXXX XXXXX 88 888 888 XXXXX 888 888 XXXXX XXXXX σ م. <u>^</u>. ò 2.90 GRAVELLY CLAYEY SILT Slightly moist, grey and mottled brown, very stiff/hard/weakly cemented, slightly fissured, clayey silt with scattered fine gravel. Colluvium/pedogenic. 35 2.50 CLAYEY SANDY GRAVEL Slightly moist, dark orange brown, very stiff, slightly fissured, clayey medium to coarse sandy fine gravel. Colluvium. GRAVELLY SILTY SAND Moist, brownish grey, medium dense, slightly pinholed, slightly clayey silty fine to medium sand with minor fine gravel. Colluvium. ſ light grey, greyish brown and light orange brown, medium dense to dense, layered fill comprising different coloured layers of clayey silty medium to coarse sand with minor fine gravel. Embankment fill. MADE GROUND Dry becoming moist with depth, variably coloured, NOTE: Trial pit excavated into side of embankment. METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728444 Machine excavating very slowly between 2.9m and 3.35m No DCP test undertaken. DATE: 1/2/2008 14 1 :< PERCHED WATER TABLE WATER TABLE -713

.

				silty y.	ly o vertical cke			·			-	
	DATE: 1/2/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728250 Y: -500	•	E GROUND Dry, brown grey, very dense, slightly clayey s / material probably washed into base of evaporation pond. EY SILT Dry, yellow brown, very stiff, fissured, clayey sift, genically altered Malmesbury soil.	CWACKE Grey, stained and blotched orange brown, highl leted, very fine grained, very closely to closely jointed (sub on and joints), very soft rock to generally soft rock greywar ok						<u>V</u> WATER TABLE	<u>K</u> PERCHED WATER TABLE
N TEST AND SOIL PROFILE	89607	TRIAL PIT NO: TP22		XXXXXXX 0.10 MADE	GREY				2.85		O DISTURBED SAMPLE	[] UNDISTURGED SAMPLE
ONE PENETRATIO	PROJECT NO:	Surface ELEVATION:						····			>110 55-110 30 55	
DYNAMIC C		TARTING DEPTH: Ground S	I RATE (тп <i>и</i> рюм) 1000 1000								Clayey Materials: Very Soft (mm/blow) Soft	Suff Suff
	LAKKELAND	ICP 22 S	PENETRATION 10								/ery loose >75 Loose 30 - 75 	idium uense i 1. 12.5 Dense 5-12.5 Au Dania 5-5
	PROJECT: VI	TEST NO: D	87.0	<u></u>	<u> </u>	(m) NOITAAT	ЕРТН ОF РЕИЕ	<u>↓</u>] ¤	ł	ц.	Indy Materials: V. (mm/blow)	

Sandy Materials: (mm/blow) TEST NO PROJECT: VLAKKELAND DEPTH OF PENETRATION (m) Medium Dense Very Dense Very loose Dense Loose 30 - 75 12.5 - 30 5 - 12.5 >75 2 2 2 PENETRATION RATE (mm/blow) STARTING DEPTH: Clayey Materials: (mm/blow) â TL' NAMIC CONE PENETRATION TEST AND SOIL PROFILE Very Soft Very Suir Soft Slift ğ 55 - 110 30 - 55 15 - 30 7 - 15 >110 PROJECT NO; ELEVATION: 89607 0 0 0-1.9m TRIAL PIT NO: TP21 UNDISTURBED SAMPLE DISTURBED SAMPLE XXXXXX XXXXXX XXXXXXX XXXXXX :: XXXXXX XXXXXX ... **XXXXX** 888 XXXXX 2.30 GREYWACKE Grey, stained and mottled red brown, highly weathered, very fine grained, very closely to closely jointed (sub vertical foliation and joints), very soft rock to generally soft rock greywacke, and very soft rock to very stiff soll. 3.50 1.90 SILTY SAND Moist, brownish grey, medium dense, slightly pinholed, slightly clayey silly fine to medium sand. Colluvium, 1 MADE GROUND Dry becoming moist with depth, variably coloured, light grey, greyish brown and light orange brown, medium dense to dense, layered fill comprising different coloured layers of mainly clods of cohesive soil. Embankment fill. clayey silly medium to coarse sand with minor fine gravel, but local NOTE: Trial pit excavated into side of embankment. No DCP test undertaken. METHOD OF INVESTIGATION : COORDINATES: X: 3728148 Y: -405 DATE: 1/2/2008 ¥ ĸ WATER TABLE PERCHED WATER TABLE Digger/loader

	DATE: 1/2/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728057 Y: -288	GRAVELLY SILTY SAND Dry, grey, very denserhard, layered, slightly gravely silly sand. Weakly cemented. Pedogenic. CLAYEY SAND Moist, light grey, strongly blotched light brown, soft to firm fissured, clayey sand. Residual Malmesbury soil. GREYWACKE Grey, stained and blotched orange brown, highly weathered, very fine grained, very dosely to closely jointed (sub vertical follation and joints), very soft rock greywacke bedrock.	义 WATER TABLE 基 PERCHED WATER TABLE	G
ATION TEST AND SOIL PROFIL	NO: 89607	TRIAL PIT NO: TP20	:0::0::0::0::0::0::0::0::0::0::0::0::0:	O DISTURBED SAMPLE	
DYNAMIC CONE PENETR	PROJECT N	STARTING DEPTH: In TP 20 at 0.25m depth.	TRATION RATE (mrbbbw)	75 Clayey Materials: Very Soft >110 -75 (mr/blow) Soft 55-110 5-30 Firm 30-55 12.5 Suff 15-30 -5 Very Suff 7-15	:
	PROJECT: VLAKKELAND	TEST NO: DCP 20	(m) NOTTARTENED 3O HT950 (m) NOTTARTENED 3O HT950 (m) MOTARTENED 3O	Sandy Materials: Very loose >7 (mm/blow) Loose 30- Medium Dense 12.5 Dense 5-1 Very Dense 2-	

••

* (*)

6

÷.

TEST AND SOIL PROFILE	1607 DATE: 31/1/2008	TRIAL PIT NO: TP17 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728050 Y: -500	O Autam SILTY SANDY GRAVEL Dy, Ight greyish thaki becoming light drange brown with depth, very dense, layered, slightly sitly fine to coarse sardy fine to medium gravel. Basal 250mm is weakly cemented. O Autam 0.0101 SILTY SANDY GRAVEL Dy, Ight greyish thaki becoming light drange is one of the to medium gravel. Basal 250mm is weakly cemented. O Autam 0.0101 Link CIATY SILT Slightly moist, grey blotched red brown, very stift, fissured, clayery silvisity day. Colluxium. D Autam CIATY SILT Slightly moist, grey blotched red brown, very stift, fissured, clayery silvisity day. Colluxium. D Autam CIATY SILT Slightly moist, grey blotched red brown, very stift, fissured, clayery silvisity day. Colluxium. D Autam CIATY SILT Slightly moist, grey blotched red brown, hightly day. Colluxium. D Autam CIATY SILT Slightly day. D Autam	O DISTURBED SAMPLE <u>⊻ WATER TABLE</u>] UNDISTURBED SAMPLE <u>¥</u> PERCHIED WATER TABLE
Didic CONE PENETRATION	PROJECT: VLAKKELAND PROJECT ND: 8	TEST NO: DCP 17 STARTING DEPTH: Ground Surface		Sandy Materials: Very loose >75 Clayey Materials: Very Soft >110 (mm/blow) Loose 30 - 75 (mm/blow) Soft 55 - 110 Medium Dense 12.5 - 30 Firm 30 - 55 Dense 5 - 12.5 Suff 15 - 30 Very Dense 2 - 5 Very Stift 7 - 15

- 2

r.

μ	DATE : 31/1/2008	3 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728450 Y: -900	SILTY SANDY GRAVEL Dry to slightly moist, greyish brown, becoming orange brown with depth, dense, pinholed in upper 0,4m, then layered, slightly clayes and sandy, fine to medium, sub rounded ferruginised gravel increasing in concentration towards basal contact. Colluvium (?). Fine roots to 0.15m. SILTY CLAYEY SAND Slightly moist, khaki grey, very stiff to stiff, fissured sitly clayey sand. Colluvium. SANDY CLAYEY SILT Slightly moist, khaki grey, fissured, sandy dayey stift with more sandy patches. Transported.	V WATER TABLE	K PERCHED WATER TABLE
IN TEST AND SOIL PROFI	89607	TRIAL PIT NO: TP1	0:0:0 0:0:0:0 0:0:0:0 0:0:0:0 1:2:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	O DISTURBED SAMPLE	[] UNDISTURBED SAMPLE
DYNAMIC CONE PENETRATIO	PROJECT NO:	ING DEPTH: Ground Surface	(mnhlouw) 10 100 100	Clayey Matarials: Very Soft >110 (mm/blow) Soft 55 - 110 	Very Stiff 15 - 30 Very Stiff 7 - 15
	PROJECT: VLAKKELAND	TEST NO: DCP 13 STARTI	Beerth OF PENETRATION (m)	Sandy Materials: Very loose >75 (mm/blow) Loose 30 - 75	Meguun vense 14.5 - 5 Dense 5 - 12.5 Very Dense 2 - 5

٠,

{

MADE GROUND Dry becoming slightly moist with depth, grey brown, yellow brown and khaki brown, medium dense and stiff, layered fill comprising layers of variable thickness of clayey silly sand, sandy clayey silt and gravely derivatives of these soils. Embankment fill. MADE GROUND Moist, dark khaki and reddish brown, very stiff fill No DCP test undertaken. Pit located in embankment fill. METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728340 Y: -810 comprising mainly clayey silt with minor irregular patches of silty sandy gravel. Embankment fill. PERCHED WATER TABLE DATE: 31/1/2008 WATER TABLE × ж 1 { NOTE: DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE TRIAL PIT NO: TP14 2.40 2.80 UNDISTURBED SAMPLE XXXXX DISTURBED SAMPLE XXXXX XXXXX **XXXXX** XXXXX XXXXX 2000 XXXX XXXXX XXXXX 89607 0 ł PROJECT NO: ELEVATION: >110 55 - 110 30 - 55 15 - 30 7 - 15 Soft . ł (1000 Very Soft Very Stiff 5 Firm 1 i Clayey Materials: (mm/blow) STARTING DEPTH: PENETRATION RATE (mm/blow) ĝ ġ, 12.5 - 30 30 - 75 5 - 12.5 2-5 >75 PROJECT: VLAKKELAND Medlum Dense Very loose Very Dense Dense Loose (m) NOITARTION (m) TEST NO: Sandy Materials: (wold/mm) ŝ i, į

	DATE: 31/1/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728250 Y: -700	LAYEY SILT Slightly molst, greyish yellow, very stiff, strongly ssured, clayer sill. Probably pedogenically altered Malmesbury soll. SREYWACKE Light yellow brown, stained brown, highly weathered, very fine grained, very closely to closely pinted (sub vertical dilation and joints), very soft rock to generally soft rock greywacke, and very soft rock to very stiff soil.	Y WATER TABLE	¥ PERCHED WATER TABLE
ON TEST AND SOIL PROFILE	89607	TRIAL PIT NO: TP15			
DYNAMIC CONE PENETRATIC	PROJECT NO:	EPTH: Ground Surface		Materials: Very Soft >110 Mblow) Soft 55-110 Firm 30-55	Stiff 15-30 Very Stiff 7-15
	PROJECT: VLAKKELAND	TEST NO: DCP 15 STARTING DE	BAREADION (m)	Sandy Materials: Very loose >75 Clayey W (mm/blow) Loose 30 - 75 (mm/ Mndium Dense 12 5 - 30	Very Dense 2 - 5

Sandy Materials: (mm/blow) TEST NO: PROJECT: VLAKKELAND Medium Dense Dense DEPTH OF PENETRATION (m) Very Dense Very loose Loose 30 - 75 12.5 - 30 5 - 12.5 N3 -U3 73 PENETRATION RATE (mm/blow) ö STARTING DEPTH: Clayey Materials; (mm/blow) ġ ,(, Very Soft Soft Firm Sliff VEN Slift NAMIC CONE PENETRATION TEST AND SOIL PROFILE 100 >110 55 - 110 30 - 55 15 - 30 7 - 15 PROJECT NO: ELEVATION: 89607 0 UNDISTURBED SAMPLE DISTURBED SAMPLE TRIAL PIT NO: TP16 XXXXX XXXX XXXXXX NOTE: MADE GROUND Dry becoming moist at depth, light khaki becoming khaki orange with depth, medium dense to dense, layered fill comprising mainly slightly clayey silty fine to coarse sand with scattered gravel. Fine gravel more concentrated in upper 1m. Embankment fill. No DCP test undertaken. Pit located in embankment fill. METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728150 Y: -600 i₩ \leq DATE: 31/1/2008 PERCHED WATER TABLE WATER TABLE

ţ

 \overline{v}

1

. بر

			۲ stift اتا اتا	
2	DATE: 31/1/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728541 Y: -1090	SROUND Slightly moist, light brownish yellow, stiff to ve clayey sandy silt with fine to medium ferruginised gravel k fragments. Embankment fill. No DCP test undertaken, Pit located in embankment	V WATER TABLE <u>ě</u> perched water table
ON TEST AND SOIL PROFILE	89607	TRIAL PIT NO: TP12	MADE G XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	O DISTURBED SAMPLE
NE PENETRATIO	PROJECT NO:	ELEVATION		>110 55-110 30-55 15-30 7-15
DYNAMÍC COI		STARTING DEPTH:	Induction 100 100 100 100 100 100 100 100	Clayey Materials: Very Soft (mm/blow) Soft Firm Stiff
	LAKKELAND			ery loose >75 Loose >75 dium Dense 12.5 - 30 Dense 5 - 12.5 sry Dense 2 - 5
	PROJECT: VI	TEST ÑO:	(m) ИОПТАЯТЭИЗЯ ЗО НТЯЭД	Sandy Materials: V (mm/blow) Mec

ł,

	DATE: 31/1/2008	METHOD OF INVESTIGATION . DI	COORDINATES: X: 3728345 Y: -1026		GROUND Slightly moist, light brownish yellow, stiff to very stiff, d, clayey sandy slit with fine to medium ferruginised gravel ck fragments. Embankment fill. No DCP test undertaken. Pit located in embankment fill.	<u>V</u> WATER TABLE	送 PERCHED WATER TABLE	arritre designed to the second se
UT NAWIC CONE PENETRATION TEST AND SOIL PROFILE	PROJECT NO: 89607	TH: TRIAL PIT NO; TP11	ELEVATION:	(000	MADE XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	A Soft 55-110 O DISTURBED SAMPLE Firm 30-55	Suiff 15-30 [] UNDISTURBED SAMPLE Very Suiff 7-15	
	PHOJECT: VLAKKELAND	· TEST NO: STARTING DEP		PENETRATION RATE (mm/biow) 10 10 100		Sandy Materials: Very loose >75 Clayey Mater (mm/blow) Loose 30 - 75 (mm/blow Medium Dense 12.5 - 30	Dense 5-12.5 Very Danse 2-5	

]

DATE: 31/1/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728250 Y: -900	GRAVELLY SAND Slightly moist, grey brown, medium dense, slightly dayes silly fine gravely sand. Possibly material washed aporation pond. WACKE Grey, stained and motited red brown, highly ared, very fine grained, very closely to closely jointed (sub vertical n and joints), very soft rock to soft rock greywacke, and very ck to stiff soil.	⊻ WATER TABLE ¥ PERCHED WATER TABLE
r No: 89607	TRIAL PIT NO: TP10	Soft ro soft ro soft ro DDE:	0 disturbed sample [] UNDISTURBED SAMPLE
PROJEC	STARTING DEPTH: Ground Surface	ON RATE (mm/blow) 130 130 130 100 100 100 100 100 100 100	Clayey Matorials: Very Soft >110 (mm/blow) Soft 55-110 Firm 30-55 Sulf 15-30 Very Sulf 7-15
PROJECT: VLAKKELAND	TEST NO: DCP 10	C (m) NOITARTENER ROUTING C (m) NOITARTENER C (m) C	Sandy Materials: Very loose >75 (mm/blow) Loose 30 - 75 Medium Dense 12.5 - 30 Dense 5 - 12.5 Very Dense 2 - 5

(

ŝ

/ 4

T AND SOIL PROFILE	89607 DATE: 1/2/2008	TRIAL PIT NO: TP7 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3727930 Y: -300	Control GRAVELLY CLAYEY SAND Slightly molst to molst, dark originge and indication. Control Control Control Kinaki brown, very stiff, fissured dayey medium to coarse sand with fine gravel. Colluvium. Control Control Control Control <th>O DISTURBED SAMPLE ⊻ WATER TABLE I UNDISTURBED SAMPLE</th>	O DISTURBED SAMPLE ⊻ WATER TABLE I UNDISTURBED SAMPLE
DYNALL CONE PENETRATION	PROJECT: VLAKKELAND PROJECT NO:	TEST NO: DCP 7 STARTING DEPTH: Ground Surface		Sandy Materials: Very foose >75 Clayey Materials: Very Soft >110 (mm/blow) Loose 30 - 75 (mm/blow) Soft 55 - 110 Medium Dense 12.5 - 30 Film 30 - 55 30 55 Dense 5 - 12.5 Stiff 15 - 30 Stiff 7 - 15 Very Dense 2 - 5 Very Stiff 7 - 15 Very Stiff 7 - 15

۰.

				ise in the second					
. PROFILE	DATE: 31/1/2008	VO: TP8 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728035 Y: -708		MADE GROUND Dry becoming molst with depth, medium den layered fill comprising mainly fine gravelly, clayey silly sand with clayey sandy silt with fine gravel. Embankment fill.	NOTE: No DCP lest undertaken. Pit located in embankment fil		E WATER TABLE IPLE V	RCHED WATER TABLE	
ILOS ON TEST NOTION TEST AND SOIL	PHOJECT NO: 89607	ELEVATION:				>110 55-110	30 - 55 U DISTURBED SAMPL 15 - 30 II UNDISTURBED SAMPL 7 - 5		
teland	STARTING DEPTH-		PENETRATION RATE (mm/blow) 10 100 100 100			>75 Clayey Materials; Very Soft 30 - 75 (mm/blow) Soft	12.5 - 30 5 - 12.5 2 - 5 Very Stiff		
PROJECT: VLAKKI	TEST NO:			(m) NOITARTENER PENETRATION (m)		Sandy Materials: Very loose (mrt/blow) Loose Mandium Mandium Coose	Very Dense		

T AND SOIL PROFILE	DATE: 31/1/2008	TRIAL PIT NO: TP6 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3727950 Y: -800	O.O.O SILTY SANDY GRAVEL. Dry to slightly molet, pren layered. O.O.O.O orange brown with depty. slity and sandy, fine to medium, sub rounded fampinised of or 0.0 or slightly delaye slity and sandy, fine to medium, sub rounded fampinised pravel increasing in concentration towards basal contact. Coluvium (7). Fine roots to 0.15m. GRETYWACKE Grey, stained and blotched orange brown; bightly weathered, very fine graned, very denarge brown; bightly molet, prok to generally soft cock operatives of the bedrock. Pedogenically altered to 0.75m depth.	O DISTURBED SAMPLE <u>VATER TABLE</u> UNDISTURBED SAMPLE <u>VATER TABLE</u>
DYNAMIC CONE PENETRATION TES	PROJECT: VLAKKELAND PROJECT NO: 89607	TEST NO: DCP 6 STARTING DEPTH: Ground Surface ELEVATION:		Sandy Materials: Very loose >75 Clayey Materials: Very Soft >110 (mm/blow) Loose 30-75 (mm/blow) Soft 55-110 Medum Dense 12.5-30 Stiff 15-30 Danse 5-12.5 Very Stiff 7-15 Very Dense 2-5

а ₁₈

EST AND SOIL PROFILE	07 DATE: 31/1/2008	TRIAL PIT NO: TP5 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3727950	Y: -950	 0:0:0 0:10: <	NOTE: Machine excavating slowly at 2.85m depth.	UISTURDED SAMPLE <u>Vanter Table</u> UNDISTURBED SAMPLE <u>Ferched Water Table</u>
PROJECT: VLAKKEI AND	TEST NO: DCP 5 CTABATILO 2000	STARTING DEPTH: Ground Surface ELEVATION:	PENETRATION RATE (mm/blow) 10 100 1000		Sandy Materials: Very loose >75 Clayey Materials: Very Sort >110 (mm/blow) Loose 30.75 Clayey Materials: Very Sort >110	Medium Dense 12.5-30 VIIII/VUUVV) Solit 55-110 0 Dense 5-12.5 Stiff 15-30 0 Vary Dense 5-5 Very Stiff 7-15 0

• 10

EST AND SOIL PROFILE -		DATE: 31/1/2008	COORDINATES: X: 3728050 COORDINATES: X: 3728050 Y: 2000		SILTY SANDY GRAVEL Dry to slightly moist, greyish brown, becomring orange brown with depth, dense to very dense, pinholed, then layered, gravel increasing in concentration towards basal contact. Colluvium (?). GREYWACKE Grey, stained and blotched orange brown, highly weathered becoming less weathered with depth, very fine grained, very closely to closely jointed (sub vertical foliation and joints), very soft rock to generally soft rock greywacke bedrock. OTE: Machine excavating slowly at 2.65m depth.	<u>V</u> WATER TABLE	A PERCHED WATER TABLE
ATION TEST AND SOIL PROFI	NO: 89607	TRIAL DIT NO. TDA	ION:			O DISTURBED SAMPLE	
DYN/ ONE PENETR	PROJECT	STARTING DEPTH: Ground Surface	ELEVAT	TRATION RATE (mm/blow) 100 100 100		Clayey Materials: Very Soft >110 (mm/blow) Soft 55-110 Firm 30-55 Stiff 15-30	Very Stiff 7 - 15
	PROJECT: VLAKKELAND	TEST NO: DCP 4		1 PENET		Sandy Materials: Very loose >75 (mm/blow) Loose 30 - 75 Medium Dense 12.5 - 30 Dense 5 - 12.5	G-2 astrant Jun

20

•

	DATE: 31/1/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728250 Y: -1100	ILTY SANDY GRAVEL Dry to slightly moist, greyish brown, becoming range brown with depth, medium dense and vine to dense, pinholed, then rygered, slightly clayey slity and sandy, fine to medium, sub rounded inviginised gravel increasing in concentration towards basal contact. colluvium (?). Fine roots to 0.15m. LAYEY SANDY SILT Slightly moist, khaki brown, very stiff, fissured, layey sandy silt. Colluvium. REYWACKE Grey, stained and blotched orange brown, highly reathered, very fine grained, very closely to closely jointed (sub vertical plation and joints), very soft rock to generally soft rock greywacke edrock.	V WATER TABLE ERCHED WATER TABLE
ATION TEST AND SOIL PROFIL	NO: 89607	TRIAL PIT NO: TP2		O DISTURBED SAMPLE [] UNDISTURBED SAMPLE
CONE PENETR	PROJECT	Ground Surface		Very Saft. >110 Soft 55 - 110 Firm 30 - 55 Stift 15 - 30 Very Stift 7 - 15
NAQ		STARTING DEPTH: (Clayey Materials: (mm/blow)
	KELAND			icose >75 ise 30 - 75 1 Dense 12.5 - 30 ise 5 - 12.5 Jense 2 - 5
n - Andrew Carlon Barrow Carlon Bar	PROJECT: VLAK	TEST NO: DCP 2		Sandy Materials: Very i (mn/blow) Loo Medlum Der

× .

A

AND SOIL PROFILE		TRIAL PIT NO: TP1 METHOD OF INVESTIGATION · Discontinue	COORDINATES: X: 12200 COORDINATES: X: 3728350 COORDINATES: X: 3728350 COORDINATES: X: 3728350 COORDINATES: X: 3728350 COORDINATES: X: 3728350 COUCO COUNT (7) Fine roots to 0.45m. Entroginised gravel increasing in concentration towards basal contact. COUCO Collovium (7) Fine roots to 0.45m. Collovium (7) Fi	DISTURBED SAMPLE <u>VATER TABLE</u> MOISTURBED SAMPLE <u>Ř</u> PERCHED WATER TABLE
MIC CONE PENETRATION TEST	PROJECT NO: 89607	ound Surface		soft >110 55 - 110 30 - 55 15 - 30 15 - 30 15 - 15
DYNAI	PROJECT: VLAKKELAND	TEST NO: DCP 1 STARTING DEPTH: Gro		dy Materials: Very loose >75 Clayey Materials: Very Si (mm/blow) Loose 30 - 75 (mm/blow) Suft Medlum Dense 12.5 - 30 Firm Dense 5 - 12.5 Suff Very Si Very Si

•*

	DATE: 1/2/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728550 Y: -600	SROUND Dry becoming moist with depth, variably coloured, y, grayish brown and light orange brown, medium dense a, layered fill comprising different coloured layers of lity medium to coarse sand with minor fine gravel. Internet fill. ELLY SIL TY SAND Moist, brownish grey, medium dense, slightly d, slightly dayey slity fine to medium sand with minor fine gravel. Int. Y SIL TY SAND Moist, brownish grey, medium dense, slightly d, slightly dayey slity fine to medium sand with minor fine gravel. Int. Y SIL TY SAND Moist, brownish grey, medium dense, slightly d, slightly dayey slity fine to medium sand with minor fine gravel. Int. Y SIL TY SIL TY SAND Moist, dark orange brown, very slift, fissured, clayey medium to coarse sandy fine gravel. Colluvium. Y SILT Moist, dark khaki, very slift, fissured, clayey slit. wash. Y SILT Moist, grey and mottled brown, very stift/hard/ comented, slightly fise of embanhment. OTE: Trial pit excavated into side of embanhment.	V WATER TABLE ¥ PERCHED WATER TABLE
PENETRATION TEST AND SOIL PROFILE	ROJECT NO: 89607	TRIAL PIT NO: TP25	MADE G XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	>110 C DISTURBED SAMPLE 55 C DISTURBED SAMPLE 30 - 55 C C DISTURBED SAMPLE 15 - 30 C T - 15 C C DISTURBED SAMPLE 7 - 15 C C C DISTURBED SAMPLE 7 - 15 C C C C C C C C C C C C C C C C C C
DY INAURIC CONE F	PROJECT: VLAKKELAND	TEST NO; STARTING DEPTH:		andy Materials: Very loose >75 Clayey Materials: Very Soft (mm/blow) Soft (mm/blow) Soft ((mm/blow) Loose 30 - 75 (mm/blow) Soft (Medium Dense 12.5 - 30 Sift Dense 5 - 12.5 Stift Very Dense 2 - 5 Very Stift

.

Sandy Materials; (mm/blow) TEST NO: DCP 26 PROJECT: VLAKKELAND DEPTH OF PENETRATION (m) Medium Dense Very Dense Very loose Dense Loose 30 - 75 12,5 - 30 5 - 12.5 2 -57 >75 PENETRATION RATE (mm/blow) 5 STARTING DEPTH: Clayey Materials: (mm/blow) ŝ DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE Very Soft Soft Firm Very Stiff Stiff 1000 55 - 110 30 - 55 15 - 30 7 - 15 >110 PROJECT NO: ELEVATION: 89607 0 UNDISTURBED SAMPLE DISTURBED SAMPLE TRIAL PIT NO: TP26 01:0:/:0 10:101:01: 0/:0/:0 0:0:0 : 0 :: 0 : : 0 :: 0 : : 0 :: 0 : 0.0 0.45 SILTY SANDY GRAVEL Dry, orange brown, very dense, layered, very 0.70 slightly clayey silly medium to coarse gravel. Alluvial wash. CLAYEY SANDY GRAVEL Slightly moist, dark orange brown, very stiff, slightly fissured, clayey medium to coarse sandy fine gravel. Colluvium, <u>130</u> Alluvial wash. CLAYEY SILT Slightly moist, grey and mottled brown, very stiff/hard/ <u>1.50</u> weakly cemented, slightly fissured, dayey silt. Colluvium/[edogenic. LIO CLAYEY SILT Moist, dark khaki, very stiff, fissured, clayey silt. ę 1 NOTE: GRAVELLY SILTY SAND Dry, brownish grey, very dense, slightly pinholed, slightly dayey and fine gravelly silty medium to coarse sand. Alluvial wash. Fine roots to 0.1m. ; Machine excavating very slowly throughout pit and beginning to refuse at 1.5m. METHOD OF INVESTIGATION : Digger/loader coordinates: X: 3728450 Y: -500 ΗĶ 1< DATE: 1/2/2008 PERCHED WATER TABLE WATER TABLE

	DATE : 1/2/2008	METHOD OF INVESTIGATION:Digger/loader COORDINATES:X:3728350 Y: -400	ZELLY SILTY SAND Dry, brownish grey, very dense, slightly led, slightly clayery and fine gravely slity medium to coarse sand. al wash. Fine roots to 0.1m. SANDY GRAVEL Dry, arange brown, very dense, layered, vary ly clayery slity medium to coarse gravel. Alluvial wash. VELLY CLAYEY SILT Slightly moist, grey and mottled brown, utim/Pedogenic. VELLY SILTY SAND Dry to slightly moist, light grey brown, very docally weakly cemented, layered, gravelly slity sand with irregular thin layers of clayey sitt. Alluvial wash/pedogenic.	V. WATER TABLE <u> </u> PERCHED WATER TABLE
TION TEST AND SOIL PROFILE	0: 89607	TRIAL PIT NO: TP27 ON:	: 0 :: 0 : : 0 :: 0 : : 0 :: 0 : :: 0 :: 0 : : 0 : 0 : : 0 : 0 : :: 0 :: 0 : : 0 : 0 : 0 : 0 : :: 0 :: 0 : : 0 : 0 : 0 : 0 : :: 0 :: 0 : : 0 : 0 : 0 : 0 : :: 0 :: 0 : : 0 : 0 : 0 : 0 : :: 0 : 0 : : 0 : 0 : 0 : 0 : :: 0 : 0 : : 0 : 0 : : 0 : 0 : :: 0 :: 0 : : 0 : 0 : : 0 : 0 : :: 0 :: 0 : : 0 :: 0 : : 0 :: 0 : :: 0 :: 0 :: 0 :: 0 :: 0 :: : : 0 :: : : 0 :: : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 :: : : : 0 : : : : : : 0 : : : : : 0 : : : : : 0 : : : : : 0 : : : : : : 0 : : : : : 0 : : : : : : 0 : : : : : : 0 : : : : : : 0 :	O DISTURBED SAMPLE [] UNDISTURDED SAMPLE
DYNAMIC CONE PENETRA	PROJECT N	ARTING DEPTH: Ground Surface	ATE (mn/blow) 100 100	Clayey Materials: Very Soft >110 (mm/blow) Soft 55 - 110 Firm 30 - 55 Stiff 15 - 30 Very Stiff 7 - 15
	PROJECT: VLAKKELAND	TEST NO: DCP 27 ST.	C C C C C C C C C C C C C C C C C C C	Sandy Materials: Very loose >75 (mm/blow) Loose 30 - 75 Medium Dense 12.5 - 30 Dense 5 - 12.5 Very Dense 2 - 5

÷.

	DATE: 1/2/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728150 Y: -200	ILTY GRAVELLY SAND Dry, brownish grey, medium dense, slightly incholed, slightly clayey and fine silty gravelly medium to coarse sand. tigh concentrations of gravel, in places, near basal contact. uluvial wash. Fine roots to 0.1m. SRAVELLY CLAYEY SILT Moist, red brown becoming yellow brown with depth, very stiff, fissured, gravelly clayey silt. Altuvial wash. CLAYEY SILT Slightly moist, khaki grey, fissured, weakiy cemented, sandy clayey silt with more sandy patches. Transported. GREYWACKE Grey, stained and mottled red brown, highly weathered, very fine grained, very closely to closely jointed (sub vertical foliation and joints), very stiff soil. MOTE: Macchine excavating very slowly through the cemented dayey stily layer.	V WATER TABLE ERCHED WATER TABLE
DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE	PROJECT NO: 89607	ARTING DEPTH: Ground Surface TP29 TRIAL PIT NO: TP29	ATE (mm/blow) 10 10 10 10 10 10 10 10 10 10 11 12 13 14 15 16 17 17 17 18 19 10 11 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11 11 12 11 11 11 12 11 11 12 11 12 12 12 12 12 12 <td>Clayey Materials: Very Soft >110 (mm/blow) Soft 55 - 110 Firm 30 - 55 Suff 15 - 30 · Varv Stift 7 - 15</td>	Clayey Materials: Very Soft >110 (mm/blow) Soft 55 - 110 Firm 30 - 55 Suff 15 - 30 · Varv Stift 7 - 15
n ngang n	PROJECT: VLAKKELAND	TEST NO: DCP 29 ST		Sandy Materials: Vory loose >75 (mm/blow) Loose 30 - 75 Medium Dense 12.5 - 30 Dense 5 - 12.5

.

 $\overline{\mathcal{M}}$ Sandy Materials: (min/blow) TEST NO: PROJECT: VLAKKELAND i DEPTH OF PENETRATION (m) Loose Medium Dense Very Dense Very loose 1 Dense Į >75 30 - 75 12.5 - 30 5 - 12.5 2:5 PENETRATION RATE (mm/blow) 5 STARTING DEPTH: Clayey Materials: (mm/blow) 8 DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE Very Soft Soft Firm Stiff 1 Very Stiff 1000 55 - 110 30 - 55 15 - 30 7 - 15 >110 PROJECT NO: ELEVATION: 89607 i 0 UNDISTURBED SAMPLE DISTURBED SAMPLE ļ TRIAL PIT NO: TP30 ļ 0.50 SILTY SANDY GRAVEL Dry, light grey, very dense/weakly cemented, silly saundy fine to medium gravel. Alluvial wash/pedogenic. (Ϊ, NOTE SILTY GRAVELLY SAND Dry, brownish grey, very dense, slightly pinholed, slightly clayey and fine silty gravelly medium to coarse sand. Alluvial wash. Fine roots to 0.1m. ŝ Machine refused at 0.75m depth. No DCP test undertaken. METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728050 Y: -100 DATE : 1/2/2008 ĸ ĸ WATER TABLE PERCHED WATER TABLE 1 i ì 1

	DATE: 1/2/2008	METHOD OF INVESTIGATION:Digger/loader COORDINATES: X: 3728150 Y: 0	AVELLY SILTY SAND Dry becoming rapidly very moist to wet low 0.9m, very dense (weakly cemented) becoming losser with treasing motisture content, layered, gravelly silty coarse sand. uvial wash. ZETWACKE Grey, stained and motiled red brown, highly athered, very soft rock to generally soft rock graywacke, lation and joints), very soft rock to generally soft rock graywacke, d very soft rock to very stiff soli.	✓ WATER TABLE ※ PERCHED WATER TAGLE
ON TEST AND SOIL PROFILÉ	89607	TRIAL PIT NO: TP31	Il dan 101:00 101:00 100:00	O DISTURBED SAMPLE [] UNDISTURBED SAMPLE
IIC CONE PENETRATI	PROJECT NO:	und Surface	8	(ery Solt >110 Solt 55 - 110 Firm 30 - 55 Sulf 15 - 30 Very Sulf 7 - 15
		STARTING DEPTH: Gro	NI RATE (mm/blow) 10 10 10 10 10 10 10 10 10 10 10 10 10	Clayey Materlals: 1 (mm/blow)
	KKELAND	31 .		rry loose >75 Loose 30 - 75 ium Dense 12.5 - 30 Dense 5 - 12.5 ry Denso 2 - 5
	PROJECT: VLAI	TEST NO: DCP		Sandy Materials: Vei (mm/blow) l Medi

Sandy Materials: (mm/blow) TEST NO: DCP 32 PROJECT: VLAKKELAND DEPTH OF PENETRATION (m) Medium Dense Very Dense Very loose Dense Loose <u>U</u>JUU 30 - 75 12.5 - 30 5 - 12.5 23 -57 ~75 PENETRATION RATE (mm/blow) ä STARTING DEPTH: Clayey Materials: (mm/blow) đ DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE Very Soft Soft /ery Silfi Firm Ground Surface 8 55 - 110 30 - 55 15 - 30 7 - 15 110 PROJECT NO: ELEVATION: 4 89607 0 [] 1.5m UNDISTURBED SAMPLE DISTURBED SAMPLE TRIAL PIT NO: TP32 : 0 :/: 0 : /: : 0 : /: : : 0 :/: 0 : /: : 0 : /: : 1:0:1: /::0:/:: /::0:/::/ 0 1: 0 0000 0000 . : 0 :/: 0 : 0:/: 0.80 GRAVELLY CLAYEY SAND Slightly moist to moist, light grey, blotched red brown, very stiff and weakly cemented to 1.2m then very stiff, fissured, gravelly clayey medium to coarse sand. Altuvium. 5 pinholed, slightly dayey and fine sity gravelly medium to coarse sand. 0.30 Coarser grained towards basal contact. Alluvial wash. Fine roots to 0.1m. CLAYEY SILTY GRAVEL Slightly molst, reddish brown, very stiff, ł NOTE: fissured, clayey silty fine gravel. Alluvial wash. ÷ GRAVELLY SILTY SAND Dry, brownish gray, very dense, slightly Ş Weakly cemented layer restricted excavation and depth of pit. METHOD OF INVESTIGATION : COORDINATES: X: 3728257 Y: 100 1 DATE: 1/2/2008 ١ĸ \leq PERCHED WATER TABLE WATER TABLE į Digger/loader I f 1 1

ļį
	DATE: 7/2/2008	METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728450	 W: -300 AVELLY SILTY SAND Dry, greyish brown, very dense, layered and ally slightly pinholed, slightly clayey medium to coarse sand a a fine gravel component. Numeous fine roots to 0.1m. TY SANDY GRAVEL Dry, brownish grey, dense, layered, very hly clayey and silty sandy fine gravel. Allovium. AVELLY CLAYEY SILTY SAND Slightly moist becoming moist with hix khadi to 1.3m then light khald grey, stiff to very stiff fissured, clayey the filtes of clayey silt or weakly cemented soil. Alluvium. Auschine sof clayey silt or weakly cemented soil. Alluvium. E: Machine excavating very slowly at 2.45m. 	 ∠ WATER TABLE ≚ - РЕВСНЕD WATER TABLE
E PENETRATION TEST AND SOIL PROFILE	PROJECT NO: 89607	ICB TRIAL PIT NO: TP34	(1) (1) (1) (1) (1) (1) (1) (1)	-110 55 - 110 30 - 55 15 - 30 7 - 15 7 - 15
DYNAMIC CON	ELAND	STARTING DEPTH: Ground Surfa	PENETRATION RATE (mmblow)	te >75 Clayey Materials: Very Soft 5 30 - 75 (mm/blow) Soft 5 hnse 12.5 - 30 Film 3 5 - 12.5 Stift 3 se 2 - 5 Very Stift
922	PROJECT: VLAKKE	TEST NO: DCP 34		Sandy Materials: Very loose (mm/blow) Loosa Medium Den Dense Very Dense

(1

ч į,

({ ĸ

		DATE: 7/2/2008	HOD OF INVESTIGATION : Digger/loader	Y: 3/28450 Y: -100		4VEL Dry, brownish grey, medium dense, layered, and silly sandy fine gravel. Alluvium.	Y SILTY SAND Slightly moist becoming moist with ey, very stiff, fissured, clayey slity medium sand ind medium gravel. Locally patches of clayey slit soil. Alluvium.	SILT Molst, light khaki grey, blotched and stained tiff, fissured and slightly slickensided, clayey to medium gravel. Alluvium.		· ⊻ WATER TABLE ≚ PERCHED WATER TABLE	
DYNAMIC CONE PENETRATION TEST AND SOIL PROFILE	PROJECT: VLAKKELAND	TEST NO: DCP 38 CTANTING CONTRACT CONTR	TRIAL PIT NO: TP38	ELEVATION:	PENETRATION RATE (mm/blow) 10 100 1000	Sill TY SAND Sill TY Sill TY SAND Sill TY	VETRATION (m)	0 0	Sandy Materials: Very loose >75 Clayey Materials: Very Soli >10	(minublow) Loose 30 - 75 (mm/blow) Soft 55 - 110 O DISTURBED SAMPLE Medium Dense 12.5 - 30 Firm 30 - 55 O DISTURBED SAMPLE Dense 5 - 12.5 Suif 15 - 30 II UNDISTURBED SAMPLE Very Stiff 7 - 15 II UNDISTURBED SAMPLE	

(2)

- AND SOIL PROFILE	DATE: 1/2/2008	TRIAL PIT NO: TP40 METHOD OF INVESTIGATION : Digger/loader	CUCHUNATES: X: 3728257 Y: 100		0: 0: 0 10 0: 0: 0 0: 0	0:00:0:00:00:00:00:00:00:00:00:00:00:00	0:0:0 :010:1035	0/ p / 0 GRAVELLY CLAYEY SILT Moist, red brown becoming yellow brown / 0 / 0 / with depth, firm to stiff, fissured, gravely clayey silt. Alluvial wash.		 0/ p/1 o 0/ p/1 o 0/ p/1 o 0/ p/1 o 10/ p/1 10/ p/1	of bill of CRAVELLY CLAYEY SILT Moist, light khaki, blotched light brown, very l bill of light brown, very of bill of Alluvial wash.	1 0 1 0 1 0 1 0 1 0 1 0 1 4 1 2.65		DISTURBED SAMPLE <u>VATER TABLE</u>		C,
PROJECT: VI AKKEL AND	PROJECT NO: B9607	Cound Surface	ELEVATION:	PENETRATION RATE (mm/blow) 1 10 100 1000				NOITAAT	OF PENS				Sandy Materials************************************	(mm/blow) terrar 2/3 Clayey Materials: Very Soft >110 (mm/blow) Medlum Dense 12,5 - 30 (mm/blow) Soft 55 - 110 O Firm 30 - 55	Very Dense 2-5 V	C

22

÷.,

1.1.

ST AND SOIL PROFILE	07 DATE: 7/2/2008	TRIAL PIT NO: TP42 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728550	0 3	: 0 :: 0: SILTY SANDY GRAVEL Dry, brownish grey, dense, layered, very :: : 0:: 1:: 0::	AND Slightly moist to moist, greyish brown becoming brown, medium dense to dense, intact, very slightly sifty medium to coarse sand. Alluvium.	 :0: : ; :0: GRAVELLY CLAYEY SILTY SAND Moist to very moist at depth, :0: /:: light khaki grey, blotched and stained orange brown, very stiff to :0: : ; :0: stiff, fissured, clayey stily medium to coarse sand with scattered :0: /:: fine graveL Locally very slightly clayey. Alluvium. 	10: 1: 0: 10: 1: 0: 10: 1: 0: 10: 1: 0: 10: 1: 0: 10: 1: 0:	ゴロ: 1: 10: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:		DISTURBED SAMPLE <u>V</u> WATER TABLE	UNDISTURBED SAMPLE & PERCHED WATER TABLE	
PROJECT: VI AKKEI AND	TEST NO: DCP 42	SIAKTING DEPTH: Ground Surface	PENETRATION RATE (mm/blow) 10 100 1000						Sandy Materials: Very Joose >75 Crass Marcel 1. 1. 0.	(mm/biow) Loose 30-75 ユッマy materials: very Soft >10 - 10	Very Dense 2-5 Very Sulf 7-15	

,

	DATE: 7/2/2008	3 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728650 Y: -100	SiLTY SANDY GRAVEL Dry, brownish grey, medium dense to dense, layered, very slightly clayey and silly sand with very minor fine gravel. Alluvium. Radium dense to moist, greyfsh brown becoming brown, medium dense to dense, intact, very slightly silty medium to coarse sand. Alluvium. CLAYEY SILTY SAND Slightly moist, orange brown, dense to very dense, intact, slightly silty clayey sand. Colluvium.	L WATER TABLE E PERCHED WATER TABLE
ATION TEST AND SOIL PROFIL	NO: 89607	TRIAL PIT NO: TP43	:00:00:00:00:00:00:00:00:00:00:00:00:00	O DISTURBED SAMPLE UNDISTURBED SAMPLE
DYNA CONE PENETR	PROJECT	ARTING DEPTH: Ground Surface	ATE (mmblow) 10. 10. 100 100 100 100 100 100 100 100	Clayey Materials: Very Soft >110 (mm/blow) Soft 55-110 Firm 30-55 Stiff 15-30 Very Stiff 7-15
	PROJECT: VLAKKELAND	TEST'NO: DCP 43 ST	Particular and the second seco	Sandy Materials: Very loose >75 (mm/blow) Loose 30 - 75 Medium Dense 12.5 - 30 Dense 5 - 12.5 Very Dense 2 - 5

CLAYEY SMLTY SAND Slightly moist becoming moist at depth, light grey brown becoming orange brown stained with depth, very stiff, fissured to 1.8m (then slightly fissured, slightly clayey, slity fine to medium sand. Alluvium. SANDY CLAYEY SILT Dry to slightly moist, dark grey becoming orangy grey brown with depth, very stiff, fissured, sandy clayey silt Alluvium. CLAYEY SILTY SAND Dry, dark grey, dense, slightly pinholed, organic, dayey slity fine sand. Alluvial wash. Fine roots to 0.1m. METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728748 Y: 6 PERCHED WATER TABLE DATE: 7/2/2008 WATER TABLE × **Ж**! ł DYNAMIC CONE PENETRÁTION TEST AND SOIL PROFILE Ĵ TRIAL PIT NO: TP44 0.30 8 2.80 UNDISTURBED SAMPLE <u>...</u> DISTURBED SAMPLE ÷ 1:7:1: :.... 1:1:2 ÷ | ÷ 1:12 ÷ . ÷ 89607 o 0 PROJECT NO: ELEVATION Ground Surface 55-110 30-55 15-30 7-15 110 1000 Very Soft Firm Stiff Very Stiff Soft \cap STARTING DEPTH: Clayey Materials: PENETRATION RATE (mm/blow) (mm/blow) 5 ____ Ξ. •: 2 12.5 - 30 5 - 12.5 30 - 75 PROJECT: VLAKKELAND >75 2-5 TEST NO: DCP 44 Medium Dense Very loose Very Dense Dense Loose (m) NOITARTENES TO HIGE Sandy Materials: (mm/blaw)

æ

<u>.</u>				
DFILE	DATE: 7/2/2008	P45 METHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 3728650 Y: 100	 CLAYEY SILTY SAND Dry, dark grey, dense, slightly pinholed, <u>a.is</u> organic, clayey silty fine sand. Alluvial wash. Fine roots to 0.1m. SANDY CLAYEY SILT Dry to slightly moist, dark grey becoming orangy grey brown with depth, very stiff, fissured, sandy dayey silt. SILTY GRAVELLY SAND Dry, brownish grey, dense (weakly cemenled), layered, slightly clayey silty moist, dark grey becoming brown with a fine gravely component. Alluvium/pedogenic. <u>ass</u> BRAVELLY CLAYEY SILT Dry to slightly moist, dark grey becoming brown with depth, very stiff, fissured, organic gravely dayey silt. Alluvial wash. <u>LAYEY SILTY SAND Slightly moist, tark grey, strongly stained</u> medium to coarse sand. Alluvium. 	E <u>V</u> WATER TABLE #PLE <u>Š</u> PERCHED WATER TABLE
D SOIL PRO		AL PIT NO: T	「	disturbed Sample UNDISTURBED SAM
N TEST ANI	89607		7 5 0	0 =
IE PENETRATIO	PROJECT NO:	ace ELEVATION:		>110 55 - 110 30 - 55 15 - 30 7 - 15
Lawlic CON		Ground Surf	ge	Very Soft Soft Firm Stift Very Stiff
, , , ,		ARTING DEPTH:	ATE (mmblow) 100 100 100 100 100 100 100 10	Clayey Materials: (mm/blow)
		STI		>75 30-75 12.5-30 5-12,5 2-5
	/LAKKELAND	3CP 45		Very loose Loose tadium Dense Dense Vory Dense
	PROJECT: \	TEST NO: I	(m) MOITARTENER TO HTGED	Sandy Materials: (mnyblow) M

STSAT YAOTAROBAJ 70 STJUSAR

({

(

: A xipuəddy

VLAKKELAND LOW COST HOUSING PROJECT COMBINED REPORT ON PRELIMINARY AND PHASE 1 GEOTECHNICAL INVESTIGATIONS

< 2

<u> </u>	_ _						% (XEU) IIBWG
21	·····			Clay · Percen				<u>@:\\'0:0</u>
- 07		п200.0 + рлв		Silt : Percenta			1000 % 00	<u>8 8 8 9</u>
. 43	ши 	1270.0 + bns I	nmðV.A - 9psir	190199 : Percer			0000 % 86	@ 880
3		ш	n 27.4 - egsine	Gravel : Perce			95 % Comp.	©.B.R. @
Percentag		Kismmu2	Tabulated				.gmoD % 88	@ '8.8.0
		(mm) exi2 eta	Part)	<u> </u>			.qmo2 %001	©.8.8.0
00.001	000.01	000'L	005.0	010.0	100'0 + ()		(%) ().M.O
							HTO (Kg/m³)	SAA OOM
				- And	50 -	thmt	: .Я.8.3; OT 8A.8.1A	HSAA QOM
					0E	L	· · · · · · · · · · · · · · · · · · ·	
					07 👔	L'9	hrinkage	2 1890LJ
		-				14	xəpul c	itsel9
				╼╶┟╣╎╞╎╸┥╶┝╼╌┝╼╴	- 09 ដី	98	timi d t	hupi-l
					- 02	<i>₽₽</i>	Iterberg Limits 25 EA, CA IHN	A AT
						99	0920.0	
					06	64	0.150	
					-1 001	72	0.300	
		nitudintai(1.o.	ri2 oloiteo			92	0.425	
	25.90	: m\2m yiivi	Conduct			82	0.600	
34	0.8	: Hq				68	81.1	
[: (%) inaino	O enuteioM lei	tinî		78	2.00	ល
és.		:% noizıaqzi	a sos			88	2.36	Ē
<u> </u>						<u></u> 26	97.4	S S
				0.0014		001	02'9	ZE
			14	0.0024			09'6	(m
			L	0.0033			00.01	<u>т)</u>
	·		16	9910.0		ļ	00.07	
			3C	0.0180			09.10	
			31 0 1 7	C000.0			00'92	
(%)			(%)	0.0695			00.60	
oisnaqzus lios	TO TSISERICI (mm) slotting		noiznaqeuz lioz	to raimerer of particle (mm)			00.61	
Percentage of	dard ene		Percentage of	191010KH		gnizza¶	siskizu	A 9Y912
]				Percent	<u> </u>	
	55/6	имьге ио: : имьге ио: :	CCIENT SA	о Ц	om , clayey sa	P 2 @ 0.75-3.	гозітіои : Г	30
			I THAIN S	11 210 77		<u></u>	ł	.
		977087	V I NIAA D	-13N -13N		W6 M5	Dick Bradsh	
		27-02-2008	1	atad 776			7700 Newinds	
						əunəvA	boowbiM 71	
		Viakkeland	ECT:	LOAG	SƏ:	tsiooseA & w	RA Bradsha	CLIENT:
100 1018 Dr Gra 593 1411:041 1480	(1201 3743 BZTECES (1201 11201 3743 BZTECES (1201	n unorgenet Tenorgenet	NI 14					
α τ η ί κ τ	я) гатяс	ТАЯОВИ	11					

1

. 201

Por Geoscience shall not the semples received and tested only. While the leafs are carried out according to recognized standards Geoscience shall not be liable for erroneous leasing or reporting thereot. This report may not be reproduced except in full without prior consent of Geoscience.

(0

:)

	Z1			WWZ00:0		-1			, a (iuzat 128) 9VOC	ds aft
[6			DUB HUIG (O'O	Percentage	의	02.0	%(xem) liew2	
ſ	12		mmc/U.0 +		- Percentage	si H	10	Comp.	% 06 @ 'Y B	ro Ci
ſ					ensional : Percentane	S	81	Comp.	8 B @ .A.B	·o
ſ	ercentage	1			Percentac	기	56	Comp.	% 96 @ '8'8'	.
Ī				m2 hatsluds]	•	1	42	Comp.	% 86 @ 'Y'B'	
	000.001	000.01	000.1 (mm) 92	upt.u Sið aldihaq			09	· Comp.	6001 <u>@ .</u> भ.स.	-
					019.0	0'001	0.7	(%)	. <u></u>	
						ni	5144	(_c u/6 <u>X</u>)		
								84 8 LA	,	
							THMT	<u>: '8'8'</u> 5	; OTHZAA GO	W
							4.4	әбехи		
			/				6	Yan		Ļ
						02 8	74	100	ini ottasia)
			/			- 09 8	 *1	7 8 EV 7V7		
			ø					snung Bioq.	1911 Fr	
						- 38	51	09/0.0		
						06	52	091.0	-	1
L			Distribution	Particle Size		001	34	0.300	-	
			: m/Sm <u>v</u>	Λίμουρασί		<u> </u>	34	974.0	1	
			Hd			ļ	40	009'0	1	
	ļ		: (%) វបទវប	oD eruteioM II	ועונו		69	81.1]	
	ă.		:% noistage	SCS DIS				2'00	<u>s</u>	
—						F	92 56	98.0		
			4	6	4100.0	F	96	192 0	l S	
			-	15	0.0024	-	86	09.6	R	
			-		0.0033	F	100	13:20	(mn	
			-	<u></u>	9600.0			00.61	5	
			4	61	0.0183			26.50	(4
				LZ	19EU U	-		09.75		16
10015	(%)	(mm) ələtiraq	1	(%)	00200			60.68		
10 s	Betresura line	Diameter of		soil suspension	particle (mm)			63.00		
7	persion Tes	รเส ราร		Percentage of				00.87		
			I [er Anslvis	Hydromet		rercent Passing	sizyisn.	A SYSIC	
			SMPLE NO. :	CLIENT S						
L			AMPLE NO. :	s [velly sand	clayey gra	TP 8 @ 0-2	NOTINO4		
			SIS	THAIN	A 710 791.0			- WOITGIADS	30	
			780526			MTZA		44		
			27-02-2008	E:	TAG		weda	Dick Brad	:TTA	
							•			
			ліаккејапд	1070			өпиөүА ро	owbiM 71		
64-1 11-	E101 CCJ (120)	XA4 8518 668 (150) ::	NOHWETEL	1031(799	ceiates	asA & wert	PA Brads	CLIENT:	
C T D	I (Y T Ч) 1 (SO DO 109,084	S B I H O RANTEDUCINI WCHAR	IAHUUAA Mordwa Martsuom M	<i>L</i>						
00	<u> </u>						- Q			
ماله	RAIC	11231	出想問)						11

2

The above test results are perinent to the samples received and tested only. While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereot. This report may not be reproduced except in full without prior consent of Geoscience. For Geoscience:

¥.

0

Γ

 $\tilde{\epsilon}^{\eta}_{ij}$

N_ja

21

	For Geoscience			tested only.	bna bavisse	n seiomes ant of im	enihan as silusa	t izai avods odī
07		 WI	m200.0 - agein	Clay : Perce	[06.11	% (xem) Ilaw2
		1200.0 + 006 0	ime \u.v age	Silt : Percen	i	0	90 % Comp.	©.я.в.ว
			ille1.4 - 906106	Sand : Prec			93 % Comp.	<u>ଡ</u> .ମ.ସ.୦
		970 0 + bac m			:		.gmo⊃ % 89	0 .A.B.D
<u> </u>			<u>97 y - 6064080</u>				.qmoO % 89	ю.я.а.о
Percentag			etsludsT			l	.qmo2 %001	ເ <u>ພ</u> .ສ.ສ.ວ
		aris alsit) (mm) ezis	15 g	0.010 L	000	9'CL	(%) '(D.M.O
0.001 001 0					† 0	1090	((k)) O [F	ISAA UOM
				A A A A A A A A A A A A A A A A A A A	10 50	LHMT	: .Я.8.0; O 8A & YA	TH2AA QOM
					- 02	/'c		ร มขอยเก
			- In the second		- 07 Pres	71	xəpul	oijasi9
					+ 05 ŝ	44	լլալդ	pinpi
					09 as min 04	۲۹ ۱۵ :	imil groerg Limi	IA MT
		م الالالال	4		- 08	69	09/0.0	
		o nor				6/	091.0	
					⊥ ₀₀₁	78	0.300	
ra-60-0- 1-3-	9-0-	oitudintaiQ ez	ric eloitts9			83	924.0	
			20000				009'0	
	23.60	: m\2m vtivit				08	81.1	
Ĺ	Σς	: Hu					00.2	(0
Ļ		; (%) tratro	D anutaioM lett	hin!		C6	95'7	m
l	<u> </u>	:% noistagei	<u></u>			66	C1.4	< m
		1 [F100.0		001	0/.9	S N
		. !		0700.0		007	100.8	m
				0.0023			07'61	m
		l I	33	55000			00.61	<u>ت</u>
		1	34	16000			00.02	
	-		43	12100			09.90	
]	23	2660.0			00.00	
			69	6790'0			23 00	
(%)	(mm) ələitnaq		(%) 2011 202beusiou	(mm) ələitraq			00.59	
Percentage of	Diameter of		Percentage of	To reter of			00 92	
tesT noier:	SCS Dispe		ziaylsnA re	Нудготете		Tercent Paiszen	sisylei	rA svsiZ
		лыге ио. : Г	CLIENT SA		ω	37.1-8.0 @ 6 d.		ł
	9628	мече ио. :	∕S		clay	ark yellow silty	PI: NOIT9IAC	DESC
		SIS	YJANA	AJIS ZZ	a MT	SV.		
		922087		REF:		WE	vvv Dick Bradsh	۰ <u>۲</u> ۲
		8002-20-72		∃T≬∩			SDUBIWAN	
						aunavA	poowbiM 71	•
		vlakkeland	E <u>CT:</u>	гоза	St	atsioozeA & w	еңереі8 АЯ	FIENT:
6201 202 6357 7403651 862 X010	09 (65% 4 1721,CH1% (19 1 (1001 XAA 19718 (19 (19 1 (1001 XAA 19718 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	VIA OACA OKIA JAIATZUC IIII IIII OKIA JAIATZUC IIII IIIII OKIA JAIATZUC						
17) LTD	9) 2 3 1 A (OTAROB.	∀ 1 			5 Š		

The spove test results are pertinent to the samples received and tested only.

be liable for enoneous festing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience While the tests are carried out according to recognized standards Geoscience shall not

 $\gtrsim 2$

	9Z								- Ilines (sol evode	a ad T
	11				- Percentage : Yi	elo 🛛		%(xem) (lews	
i	<u></u>		+ 0.002mm	bus mm270.0	- Percentage -	us		Comp.	% 06 @ ਮ ਸ	<u> </u>
i	0		uuu 920 0 +	bus mm37.4 -	nd : Percentage	ES.		Comp.	% E6 @ 'ਮ' <u>ਸ'</u>	5
	epercentage			шш <u>57</u> р - э	geineored : leve	ler		Comp.	% <u>56 @ . v.a.</u>	-
Į		<u> </u>	uwstA	nus betelude				. сотр.	86 @ ' <u><u></u></u>	
	000,001	000"01	(ww) a	zie eldineq			<u></u>	duo ? %		싀
	<u>rna r</u>			0'100	. 010'0	100.0		(%)		4
									JUNU	
						01			TH2AA GON	V
- [50 02	THMT	A.B.O	; OTHSAA GUI	
				0.0	0	30	7.6			
	<u><u></u></u>	┽┈╺╢╢╢╽╽╸				- 07	00		Linear Shrir	
						09 ឆ្នី	30	Xəp	nt outsel? (N.
			P				05	jim	Liquid Li	I
						02 🖷		" & E & Z & I SIIUIT SIZO	HWL	
ļ						- 08	C+-	1001010		
							67	0920.0		7
			Distribution	Particle Size	<u>i luna i i</u>		29	000:0	-	
Ŀ_	<u> </u>		11110111					924.0	-	1
			1: ud	Conductiv]	92	009.0	4	
			· (or) 1110111				62	81.1	1	
			:% Uoisiad	Il Moisture Co	sitini	[16	2.00		
-		.		10 808		l L	63	5.36		
			7	17	5100.0	,	100	97.4	Ш Ш	
			1	22	8700'0	-		02.9	SIZE	
-]	82	0.0032			09'6		
 				31	£600.0	-		13.20	17T)	
			8	34	6210.0			00.61		
\vdash			10	36	0.0354	F		108.85	Ļ	:
	(%)			68	2070.0	-		09.55		
noi	suadens lios	(mm) aloitreq		(%)	particle (mm)			00.60	1	
10 :	Percentage	To retempin		Percentage of	Diameter of			00'64		
	tersion Test	SCS Disp		zizylanA 19	Hydromet		Passing			
			l Lause -	· · · · · · · · · · · · · · · · · · ·			Percent	zizylan.	A svsiZ	
		9776		CLIENTS		ū0	101301	: NOLLISOA		
						clayey sand	lt olive silty	: NOIT9IADS	DE	
			<u>SIS/</u>	(JANA 3	AJIS ZZD	a MIST	ŕ	17		
		ć	[80326 51-05-2000	:	138		Meus	DEIG VOIG		
		C	006 20-26	:3	TAG		-	00//	:ЩА	
								sbnsiweN		
		<u> </u>	Vlakkeland	TECT:	<u>DR</u>	2916100	ылау & Nau аппауА b0			
967Z (A	03 () 033 (015 503 603 603 604 03 () 03 (03 503 604 605 604 605 604 605 605 605 605 605 605 605 605 605 605	an' aintsuidh nomag di 1 3:43 BS1BC58 (150) :3M	n Midlen James (1976) Iomailian	L				<u></u>	CLIENT	
a T	- (YTЯ) - (YTЯ)	RIADI	АЯОВА-	1						
F	S)NR	TEDRY	Pain)						
				/						

' -

The above lest results are pertinent to the samples received and tested only. While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereot. This report may not be reproduced except in full without prior consent of Geoscience, For Geoscience:

31	ш	m\$00.0 + bri	s mmð70.0 - et	Silt : Percentag			.qmoD % C)6 @ 'ਮ'ਬ'ਹ
32	. ພເ	nð70.0 + bns	mmð7.4 - 90s:	Sand : Percen		1	3 % Comp.	.େ @ .ମ.ସ.୦
0		u	іт 27.4 - арыл	Gravel ; Perce			omo % 6	ю @ .Я.8.0
Percentage	ç.	ស្រុកកាល	; bətsludsT				.qmoO % 8	16 @ .A.B.O
		(ສາສ) sziz s	laihe4				.qmoO %00	C.B.R. @ 10
000'001	COD'OL	000°1	001.0	0100	µaara -+-0		(%)	O.M.C.
					- 01		<u>T</u> O (Kg/m²)	HSAA OOM
				هر	- oz	↓HWL	: .ਸ.ਬ.ว ; C 8A & TA	TH2AA GOM
						<i>†</i> 'S	rinkage	42 reari
						50	хэри	Plastic
						53	Limit	pinpid
						¥4	8 EF '7F IH	WL
					- 08	· · ·	stimi.I sradra	4¥
					- 06	92	0920'0	
		-0-1-A				92	0120	
	Ľ	ioitudintaiO a	zi2 əloihs9			88	0020	Î
L	0/.4l	: w/sw גווא	Conduct	 ,		03	9000.0	
-	0.9	: Hq				86	191.1	
		: (%) 1UƏ1UO	U SIUISIOM IBI			66	00.2	(0
		spersion %:	0 505			66	5.36	
L						001	92.4	m
[97	0.0013			02.9	SIZ
	<u></u>		35	0.0023		· · · ·	09'6	
			36	0.0032			13.20	inn i
			L 1 7	0600.0	Ì		00.61	Ŭ
			29	0710.0			56,50	
			55	0.0336			37.50	
			79	Z990'0			53.00	
(%)	(mm) ələitnaq		(%)	particle (mm)			63.00	
To againaction Percentage of	Diameter of		Percentage of	Dismeter of			00.87	1
fest noisra	SCS Dispo		sizylanA 13	Hydromete		Percent Paizza	sisylen	A əvəiZ
		имьге ио	CLIENTS/		m28.3	LP 13 @ 1'5-3	Г: иощгои	
F	2276	MPLE NO.:	/S			s ybns svilo f	П: NOIT9183	DE3
L		515	A IVNV 3	11215 667	U MT 2	₩ ₩		
		27-02-2008	:	TAQ		MeL	Newlands 7700 19618 Bradel	;TTA
		Vlakkeland	IECT:	ояч	səte	icossA & we aunavA t	adsbera AR boowbiM 71	CLIENT:
1000 000 (1000 000 000 000 000 000 000 0	1,0ex7,6at7at,cen14,cen4 1,0ex7,6at7at,cen14,cen4 1,0e14141 at 1a ccs (150)	TAROBA I DACIONIS LANTEUCI SHOPHEJET	alı. ' ")					
MOR	ECHE	ABR)					

be liable for erroneous testing or reporting thereot. This report may not be reproduced except in tult without prior consent of Geoscience The above test results are perfinent to the samples received and tested only. While the tests are carried out according to recognized abandards Geoscience shall not to lighte for composite tests out according therest. This record may not be reportinged at

Clay : Percentage - 0.002mm

% (xem) IIew2

1

.

For Geoscience:

34

(' ł

ÿ $|\mathbf{i}\rangle$

10	<u> </u>				1			•
		<u> </u>	mm200.0 - 91	Clay : Percentac			% (XE	sm.) llew2
		mm200.0 + br	15 mm270.0 - 6	Silt : Percentage			% Comp.	C.B.R. @ 90
<u> </u>		mð70.0 + bn	е штг7.4 - өр	Sand : Percenta			% Comp.	C.B.R. @ 93
0		ا 	пт 27.4 - өры	Gravel : Percen			% Comp.	C.B.R. @ 95
Percentage		numary	2 betsludsT				% Comp.	86 @ 'Y'8'O
		(utu) izte		<u> </u>			.dmo2 %0	01 @ N.B.J
100.000	000.01	1.000	001.0	010'0	100'0		(%)	'0'M'O
	-				† ⁰		(
					1 01		0H 0 /H	
					- oz	<i>VHWL</i>	: '8'8'0 !	OTHSAA GOM
					1 30	<u> </u>		
					- 07 -	50	inkade	Linear Shr
						<u> </u>	хөрц	l oltasiq (
					- 09 2	24	jimi.	i biupi.l
					- 02	77	11 VS. V3 &	IWL —
					- 08		in a start and a start	<i>π</i>
					- 06	56	0920.0	
	<u> </u>				⊥ ₀₀₁	96	0910	Į
		noitudixtai() e	stic eloihe9			20	0080	
	· <u> </u>	: m/Sm yily	Conducti			86	9000.0	
Γ		: Hq				86	81.1	
		: (%) tuatio	ol AnutaioM la	itini	ł	001	00.2	6
Ĺ		:% noistage	IO SOS		ł		5.36	SIE
		1		8	ŀ	····	92.4	≤ m
			97	0.0013	Ī		02.9	SIZ
			99	1200.0	Ĩ		09'6	
			69	0.0029			13.20	m
··			<u> </u>	2800.0			00.01	Ŭ
			84	0.0152	Ļ		56.50	ł
···· —		(R	88	9620.0	Ļ		35.50	35
(%)				0.0583	Ļ		00.88	
noiznaqzuz lioz	num) ələitusq		noiznaqzuz lioz	particle (mm)			63.00	
Percentage of	Tismeter of		Percentage of	Diameter of			00.87	
persion Test	SCS DI ²		zizyirnA 19	Hydromet		Percent Passing	zizylan	A əvəiZ
· · · · · · · · · · · · · · · · · · ·		ком зачеми.	CLIENT S/		ш.	16'0 @ /L d		
	8278	: ON ELR NO. ;	'S		silty clay	It olive & red	: NOIT9190	DES
		SIS,	Y JANA 3	AJIS ZZPO	a MT2	V:	· · · · · · · · · · · · · · · · · · ·	
		L80225		HEF.		Mey	Dick Brads	:IIV
		8002-20-72		ITAO			0022	V alman
						anuoaua	Newlands	
		Vlakkeland	:TOEL:	р КО,	Seiek	ומש מ ASSOC Anney bi	Isusia An	* } ******
621) 822 (021) 86' 130' 130' 1718 1412 (021) 2468) XAR BYLECCO (150) 4 XAR BYLECCO (150) 4	uada okirjamteugki BNCH93J3T	14			0 mot	<u>87 םייייי</u>	CLIENT.
отл (Үтя)	SAIRO	ТАЯОВА	Г					

.

ŝ

The store test results are periment to the samples received and tested only. While the tests are carled out according to recognised standards Geoscience shall not be liable for enconcous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

8		i	nm200.0 - 99si	Clay : Percent		0.00	% (xeu) llaw2
01	۔۔ ښ	m200.0 + bns	mm270.0 - 9gi	Silt : Percenta		33	.dmoD % 0	8 @ .A.B.C
7.8	 	пе70.0 + bns	mmð7.4 - egsti	Sand : Percer		<u> </u>	3 % Comp.	C.B.R. @ 9
	<u></u>	 	m 87.4 - 9geine	Gravel : Perce	:	82	2 % Comp.	6 @ 'Y,B.C
Percentage		2000 Summery	pateingel			141	8 % Comp.	6 @ .A.8.0
u	<u> </u>				<u> </u>	861	.dmo2 %00	100 . 21 8 . 0
000'005	000.01	top) المتناقعة (mm) (1,000 متناقعة (mm)	0,100 Partic	010.0	100'0	Z'9	(%)	0.M.O
					• 0	0177		
, <u>, , , , , , , , , , , , , , , , , , </u>					01	0700		
			2		- oz	IHWL	: 'a.e.ɔ ; o	THEAA GOM
					05	5.2	ліпкаде	lS reaniJ
						4	xəpul	Plastic
		X				LI	Limit	pinpiJ
		7			us sing	44	8 EN 'SV IH.	WL
		/			02		iimi1 grsdrst	1F
	1111 2				- C8	81	0920.0	
					05	51	031.0	
	<u>ــــــــــــــــــــــــــــــــــــ</u>	::::::::::::::::::::::::::::::::::			001	67 .	0.300	
						32	0.425	
		: m\&m thivi	toubroð			68	009.0	
		: Нq				61	81.1	:
		ontent (%) :	O enutaioM Isi	tinl		Z8	2.00	<u>N</u>
		:% noizragai	acs DI			98	35.36	Ē
			· · · · · · · · · · · · · · · · · · ·			66	92'7	т s
			<u> </u>	\$100.0		100	02'9	IZE -
			8	\$200.0			09.6	(m
_		j	6	0'0034			13.20	E.
			· 11	2600'0			00.61	j
	m		61	8810.0			56.50	
	<u> </u>		13	4760.0			35.50	
			18	££70.0		ļ	23.00	
(%)	particle (mm)		(%) 2011 2n2beuztou	particle (mm)			63.00	
To againmonad	To ratemeid		To againeorad	Diameter of			00.87	
tzəT noizre	SCS Dispe		eisylanA 19	Hydromete		Percent Baitza	sizylen	A əvəiZ
		יאוגרב אסיי <u>ן</u>				പെതിവപ		
	9576	WELE NO. :	ds TURI IO 48	· · · · · · · · · · · · · · · · · · ·	ayey sand	yellow brown c	скытюи:	DES
	_	SIS	Y JANA 3	ss sien	ta Mils	SA.		
		L80226		:НЭЯ		wed	Dick Brads	:TTA
		8002-20-72		ЭТАQ			00ZZ	
						anliavy o	shasiwaM	
		viskkeisnd	ដោ	гояч	sət	sibossA & ws	Asberd AH	
	lizol Sovi. Extense fred				-1			
85:1 \$C20 85:1 \$C20 10	CI CHARTE JOHN WORK	R OAOL OK R JAIATEUG	412					
	9 1 2 4 I 8 0	*** • T A R O R A	7 L			(C)		
A C R		斜照照	-))					
المراجع المراجع	المحط المدر البين	\sim	****					

; ï

For Geoscience:

The above test results are periment to the samples received and tested only. While the tests are carried out according to recognized standards Geoscience shall not be liable for enoneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

14

3 B.

Å ł.

	 9			 WWZ00'0 - 6		7	00:0			
Γ	· 9	<u> </u>	mm200.0 + b			4			em) llaw2	
	92				- Percentage	5	91	% Comp.	° 06 @ .Я.8.Э	
	5	<u></u>			Percentar	S	52	% Comp.	0.8.8. @ 93 °	٦
a	อุธวัตอวาอ ^น				traces : levers	2	82	% Comp.	C.B.R. @ 95	1
				12 hateludeT]	45	% Comp.	86 @ .Я.8.Э	
01	100.00	000"01	(۳۳۵) ezis 200.1	çon.o Particia \$			92	% Comp.	001 @ .A.B.D	1
					0.010		6.3	(%)	O.M.C.	1
			 _ 		+	- 01	2150	O (Kg/m³)	THSAA GOM	1
					<u></u>	07		8A 8 TA		
				1		- 02	PHNL	: 0'B'B'	OTH2AA GOM	
						- 05 -	8.4	əɓeyu	Linear Shr	T
							6	Xabi		4
			//				. 23	រូកោរ		
		-					* •	Y 8 EV 'TV II	IWL	Ŧ
			∠ -				:	ւրեւե Մլամե	MF	
		/ /				08	51	0920.0		7
1							72	0.150	1	
(+2)			noltudinteid (Particle Size			07	0.300	1	1
		40'40	1 : w/sw Āu	uppuon				0.425	1	
		5.9	: Hq			}		0.600]	
í.			: (%) tuetuc	D antsiow le			69	81.1		
			:% noiziaqa	PIC SOS		ŀ		5.00	SI	
r						ŀ		95.6		
			ļ	13	100.0	F	66	0/.0	S	
				91	6200.0	F	100	02'6	ZE (
				21	0.0033	F		13.20	(mn)	
<u> </u>				81	9600'0	F		00.61	J I	
				81	0.0183			26.50		
				81	9960.0	8		03.75	ľ.)
	(%)	(mar) and		(%)	2620 0			63.00	i	
noia	iəqzuz lioz	Districte (mm)		noiznaqzuz Hoz	particle (mm)			00.63		
10.9	Percentag			Percentage of	To reter of			00'9Z		
		2C2 Disp		eisylenA 19	Hydromet		теотел 24122.84	zizylan	A svaid	
			: ON BLAMA					<u>l. </u>		
Ĺ		2579	ON BURNA	'S	pues	-1 25m	IF 20 0 0 4	: NOITISO4		
	•		212	X THAIN T	A 10 274					
L				V I VIAN H		UMLSI	<u> </u>			
		۶	3002-20-72	:3	TA0		werta	Dick Brads	TTA	
								Spusiwan		
			AIGKKGISUG	1070	<u></u>		ənnəvA bo	owbiM 71		
	6201 CC0 (12	o) 3044 BS18 CE8 (LSG) :=		<u>.</u> T04U		ciates	O22A & WEI	Isberð AA	CLIENT:	
Băr∠iAC CIII	1 () () () () () () () () () ()) C I I I O I X#Z AIRTZLXUMI X+CPM49 C		12						
 ∕≣īu				і ~						
JL,	INC	HE St	十週間	U III					÷.	

The sbove test results are periment to the samples received and tested only. While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereot. This report may not be reproduced except in full without prior consent of Geoscience.

L A B O R A T O R I E S (PTY) THE DUSTAIL SHID ROAD PARTY INCUSTRATABLE PART	L T D 2011 7: "S
CLIENT: RA Bradshaw & Associates PROJECT: Vlakkeland 17 Midwood Avenue Newlands 7700 DATE: 27-02-2008 ATT: Dick Bradshaw REF: L80226 DESCRIPTION: yeilow brown silty sand POSITION: TP 21 @ 0-1.9m SAMPLE NO.: 9738 Sieve Analysis	
17 Midwood Avenue Newlands 7700 DATE: 27-02-2008 ATT: Dick Bradshaw REF: L80226 ASTM D422 SIEVE ANALYSIS DESCRIPTION: yellow brown silty sand SAMPLE NO.: 9738 POSITION: TP 21 @ 0-1.9m CLIENT SAMPLE NO.: 9738 Sieve Analysis	
7700 DATE: 27-02-2008 ATT: Dick Bradshaw REF: L80226 ASTM D422 SIEVE ANALYSIS DESCRIPTION : yellow brown silty sand POSITION : TP 21 @ 0-1.9m SAMPLE NO. : 9738 Sieve Analysis	
ATT Dick Bradshaw REF: L80226 ASTM D422 SIEVE ANALYSIS DESCRIPTION : yellow brown silty sand SAMPLE NO. : POSITION : TP 21 @ 0-1.9m CLIENT SAMPLE NO. :	
ASTM D422 SIEVE ANALYSIS DESCRIPTION : yellow brown silty sand POSITION : TP 21 @ 0-1.9m Sieve Analysis Percent]
DESCRIPTION : yellow brown silty sand SAMPLE NO. : 9738 POSITION : TP 21 @ 0-1.9m CLIENT SAMPLE NO. : Sirve Analysis Percent	
POSITION : TP 21 @ 0-1.9m CLIENT SAMPLE NO. :	
Sieve Analysia Percent	
Hydrometer Analysis SCS Dispersion T	est
75.00 Diameter of Percentage of Diameter of Percent	age of
63.00 particle (mm) soil suspension particle (mm) soil suspension (%)	ension
53.00 0.0753 10	<u>'</u>
37.50 0.0380 7	
26.50 0.0192 6	
19.00 0.0099 5	
E 13.20 0.0034 5	
<u>9.50</u> 100 0.0024 4	
<u> <u>2.36</u> 79 <u>SCS Dispersion %:</u> <u>2.00</u></u>	
2.00 /4 Initial Moisture Content (%) :	
0.600 29 pH:	
0.425 30 Conductivity mS/m :	
0.300 25 Particle Size Distribution	
0.150 16	
0.0750 10 80 0000000000000000000000000000000	
Atterberg Limits :	
TMH1 A2, A3 & A4	
Plastic Index S-P	
Linear Shrinkage	
MOD AASHTO : C B B : TMHA	
A7 & A8	
MOD AASHTO (Kg/m ³) 2145	
C.B.R. @ 100% Comp. 178	
C.B.R. @ 98 % Comp. 108 Tabulated Summary Percen	age
C.B.R. @ 95 % Comp. 56 Gravel : Percentage - 4.75 mm	
C.B.R. @ 93 % Comp. 36 Sand : Percentage - 4.75mm and + 0.075mm	
C.B.R. @ 90 % Comp. 18 Silt : Percentage - 0.075mm and + 0.002mm	
Swell (max) % 0 00 Ciav : Percentage - 0 002mm	

113

For Geoscience:

The above test results are pertinent to the samples received and tested only. For Geoscie While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

-

ì.

Ċ

63])

1.0

					(L 71		ORIES (PTY) LTD
CLIENT:	RA Brad 17 Midwo Newland	shaw & Asso bod Avenue s	ciates	PRO	JECT:	Vlakkeland		
ATT:	7700 Dick Bra	dahaw		DAT	E:	27-02-2008	3	
		usnaw		REF		L80226		
			451ML	422 SIEV	EANALY	<u>′SIS</u>		•
DE	SCRIPTION	: yellow brow	n gravelly si	lly sand] s		9730	
	POSITION	:[TP 24 @ 0-	1.8m		CLIENT S	AMPLE NO. :		
Sieve A	nalysis	Percent Passing	_	Hydromet	er Analysis	1	SCS Dist	ersion Test
	75.00)	-1	Diameter of	Percentage of			Percentage of
	63.00)	-1	particle (mm)	soil suspension		Diameter of	soil suspension
	53.00	<u></u>		0.0748	<u>(%)</u>		Particle (mm)	(%)
1 `\	37.50		7	0.0376	<u> </u>			
)	26.50			0.0190			· · · · · · · · · · · · · · · · · · ·	
	19.00			0.0098	6			
(mu	13.20	100		0.0034				
	9.50	99		0.0024				
SIZI	6.70	97	-1	0.0014				
L L	4.75	91			<u> </u>	l		l
	2.36	68			SCS DI	spersion %		1
	2.00	63		Initi	al Moisture Co	ontent (%) : 1		ł
	1.18	52						
	0.600	34			Conducti	vity mS/m		
	0.425	26	∦				<u> </u>	L
	0.300	22	100	1-111111-	Particle Size	Distribution	- 	
	0.150	17	- 00					
<u>_</u>	0.0750	11	80 -				7	
Atte	erberg Linu	ts :	70 - 70				7	
iavid I	<u>11 A2, A3 &</u> imit	<u>A4</u>					8	
)Plastic I			1 a 50					
	INAX	<u> </u>						
Linear Shr	inkage							
MOD AASHTO	; C.B.R. : A7 & A8	TMH1	20					
MOD AASHT	O (Kg/m³)	2251	10					
O.M.C.	(%)	5.5						
C.B.R. @ 100	% Comp.	109	0.001	0.010	0,100 Particle S	1.000 Size (mm)	10,000	100,009
C.B.R. @ 98	% Comp.	86			Tabulatada		<u> </u>	
C.B.R. @ 95	% Comp	 	ļ.	Gravel : Dense (Tapulated St	immary		Percentage
C.B.R. @ 02	% Comp		H		age - 4.75 mm			9
C.B.R. @ on				pano : Percentaç	je - 4.75mm ar	nd + 0.075mm	1	80
Swell /			<u> </u>	Siit : Percentage	- 0.075mm and	d + 0.002mm		7
	<u>x) %</u>	0.20	Lo Lo	ay: Percentage	e - 0.002mm			4

ł

The above lest results are pertinent to the samples received and tested only. For Geoscie While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

For Geoscience:

1

ł

						(SCIIE	NCE
						L, 711		ORIES (F	РТҮ) LTD 0.803 ашино 0 7499
CLIENT:	RA Bradsh 17 Midwoo Newlands 7700	naw & Associa od Avenue	ites		PRO	JECT:	Vlakkeland	: (021) 933 8176 FAX, (321)	533 1079
ATT:	Dick Brads	shaw			REF:		L80225		
		A	STM D	14	22 SIEV	EANALY	ŚIŚ		
 DE9				•		1 p		0700	
	POSITION :	TP 28 @ 1.0m				CLIENT SA	AMPLE NO. : AMPLE NO. ;	9730	
Sieve A	nalysis	Percent Passing			Bydromet	er Analysis		SCS Dispe	ersion Test
	75.00				Diameter of	Percentage of		Diameter of	Percentage of
	63.00				particle (mm)	(%)		particle (mm)	(%)
	53.00			Ī	0.0631	69	1		
	37.50				0.0320	66			
L	26.50				0.0160	65			
-	19.00	100			0.0083	63			
มนา)	13.20	99			0.0029	59			
	9.50	99			0.0021	57			
	6.70	98			0.0012	54			
щ	4.75	97		_					
Ш	2.36	93				SCS D	ispersion %:		52
0	2.00	92			Inii	ial Moisture C	ontent (%) :		
	1.18	. 87		1			pH:		
	0.600	82				Conduct	ivity mS/m :	<u> </u>	
	0.425	80	1			Dectiale Siz	o Distributio	-	
	0.300	78	100 T						~~-~-
	0.150	73	90 -					Jor -	
	0.0750	70	80 -						
At	terberg Limi	ts:	70						
TM	HI A2, A3 &	<u>A4</u>							
Liquid	Limit	63		ø	-0-0-				
Plastic	Index	38	1 4 50 7						
Linear Sh	nrinkage	9.3	30 -						
MOD AASHT	O; C.B.R. : A7 & A8	тмн1	20						
MOD AASH	TO (Kg/m³)		10 +						
O.M.C.	. (%)		0.00			<u>. : : : : : : : : : : : : : : : : : : :</u>	<u>;;;;;;;;;;;</u> 1.000	10,000	;;;;;;;;; 100,000
C.B.R. @ 10	00% Comp					Partic	le Size (mm)	• ••• - =	
C.B.R. @ 9	8 % Comp			Γ		Tabulated	Summary		Percentage
C.BR @ 0	5 % Comp				Gravel : Perce	ntage - 4 75 m			3
CBRAG	3 % Comp				Sand : Percen	tage - 4 75mm	and + 0.075n	. <u>.</u> .	28
CBP @ 0	0 % Comm			ł	Silt : Percenta	ae - 0 075mm	and + 0 002m		17
J. D. I.Y. (U) 91	• 70 GOMP. 1			- 1'		94 9.910(IIII)			1 14

Swell (max)%

2

For Geoscience;

58

í j

i,°

)

The above test results are pertinent to the samples received and tested only. While the tests are carried out according to recognized standards Geoscience shall not

be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience

Clay : Percentage - 0.002mm

					57		GE)SGI	HENGE
								TORIE	S (PTY) LTD
CLIENT:	RA Brads 17 Midwor Newlands	haw & Asso od Avenue	ciates		PRC	DJECT;	Vlakkeland	ICI PARCIW INDUISTRI NE: (221) 233 3176 F 	A 7440, IPO, BOX 264 FAROW 7429 AX: f0211 533 1073
ATT:	7700 Dick Brade	show			DAT	E:	27-02-2008	3	
· · · ·		511dW	A C Trag	5	REF		L80225		
		<i>P</i>	40 I IVI	04	ZZ SIEV	E ANAL	YSIS	55	
DE	SCRIPTION :	It grey sand				7 5		9731	
[TP 31 @ 0.6	<u>3m</u>			CLIENT S	SAMPLE NO.	0/01	
Sieve /	Analysis	Percent Passing			Hydromet	ter Analysis]	SCS D	ispersion Test
	75.00				Diameter of	Percentage of	-		Percentage of
	63.00				particle (mm)	soil suspension	L I	particle (m	m) soil suspension
	53.00		_		0.0760	6	1		(%)
	37.50		4		0.0384	4	5		
Î	19.00		4	ļ	0.0192	4	1		
÷Ê	13.20		4	ļ	0.0099	4			
L E	9.50	100	+	-	0.0035	2			
lize	6.70	· 99	-	⊢	0.0024	2			
ц U	4.75	97	4	L	0.0014	1			
Ē	2.36	71		Г		500 D			
0	2.00	66	1	ł	Initi	al Moisturo C	spersion %:		
	1.18	46]						
	0.600	28	 			Conducti	vity mS/m .	<u> </u>	
	0.425	22							
	0.300	18	100 -	[]		Particle Size	Distribution		
l ł	0.150		90 -					1	
	0.0700		80 -					7	
TMH	Toerg Limits		7 0 -						
Liquid L	imit		a 60 -				1		
) Plastic Ir	ndex	N.P.	률 50 -						
Linear Shri	inkage		월 40	-					
MOD AASHTO			30 -						
	; C.B.R. ; _A7 & A8	TMH1	20 -	_					
MOD AASHT	O (Kg/m³)			~~~	D				
C.B.R @ 100	(70)		0.001		0,010	0.100	<u>ii.i.i.i.i.</u> 1.000	10.000	
C.B.R. @ 98	% Comp.		·	 		Particle S	iza (mm)		100.000
C.B.R. @ 95	% Comp			-		Tabulated Su	ттагу		Percentage
C.B.R, @ 93 9	% Comp				vei : Percenta	ge - 4.75 mm			3
C.B.R. @ 90 %	6 Comp			san	a : Percentage	e - 4.75mm an	d + 0.075mm		90
Swell (may	x) %		1	Silt	: Percentage -	0.075mm and	+ 0.002mm		5
				ulay	: Percentage	- 0.002mm			2

For Geoscience:

í

The above test results are pertinent to the samples received and lested only. For Geoscie While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

(PTY) LTD LABORATORIES 71 INDUSTRIKI, RING ROAD PATON INDUSTRIA 7-50, PO. BCX 238 PALOW 7-54 TELEPHONE: (221) 233 8176 FAX. (C21) 503 1078

4

)

)

. .

CLIENT:	RA Bradsh	naw & Associ	ates	PRO	JECT:	Vlakkeland		
	Newlands	ou Avenue						
	7700			DATI	F:	27-02-2008		
ATT:	Dick Brads	shaw		REF:		L80225		
		A	STM D	\$22 SIEV	EANALY	SIS	•	· · · ·
DES	SCRIPTION :	it olive & red o	layey sand] s/	AMPLE NO. :	9732	
	POSITION :	TP 32 @ 1.5n	1		CLIENT SA	AMPLE NO. :		
Sieve A	nalysis	Percent Passing]	Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	(%)		particle (mm)	(%)
	53.00			0.0663	50			
	37.50			0.0339	46			
	26.50			0.0169	44			
	19.00		ļ	0.0088	43			
Ш.	13.20		-	0.0031	41			
	9.50			0.0022	40			
SIZ	6.70			0.0013	38	i j		<u> </u>
щ	4.75	100		F			8	1
NE	2.36	92			SCS D	spersion %:		
0,0	2.00	90		Init	ial Moisture C	ontent (%) :		
	1.18	82			-v- ·	рН :		
	0.600	72			Conduct	ivity mS/m:		<u> </u>
	0.425	67			Particle Siz	e Distributio	n	
	0.300	62						
1	0.150	55	90					
	0.0750		80					
At	terberg Limi	ts :	_ 70 -					
1/2.	<u>HI A2, A3 &</u> Limit	A4	60					
		44	50 +					
Flastic	Index	26	40		sb			
Linear Sh	rinkage	9.0	30					
MOD AASHT	O;C.B.R.; A7 & A8	TMH1	20					
MOD AASH	TO (Kg/m³)		10				-	
O.M.C.	. (%)		0 +		0.100	1.000	10,600	100.000
C.B.R. @ 10	00% Comp.				Partic	le Size (mm)		
C.B.R. @ 91	8 % Comp.				Tabulated	Summary		Percentage
C.B.R. @ 9	5 % Comp.			Gravel : Perce	ntage - 4.75 m	m		0
C.B.R. @ 93	3 % Comp.			Sand : Percen	tage - 4.75mm	and + 0.075m	າມມ	49
C.B.R. @ 90	0 % Comp.	·		Silt : Percenta	ge - 0.075mm a	and + 0.002m	ті 	11
Swell (n	nax)%			Clay : Percent	age - 0.002mm			40

The above test results are pertinent to the samples received and tested only.

For Geoscience:

While the tests are carried out according to recognized standards Geoscience shall not

be liable for erroneous lesting or reporting threeof. This report may not be reproduced except in full without prior consent of Geoscience.

63

 $r_{\rm C}$

ł

K.

CLIENT: RA Bradshaw & Associates 17 Midwood Avenue Newlands 7700 PROJECT: Viakkeland ATT: Dick Bradshaw DATE: 27.02-2008 DESCRIPTION: Itel in ally disystem SAMPLE NO.: 9742 DESCRIPTION: Itel in ally disystem SAMPLE NO.: 9742 DESCRIPTION: Itel in ally disystem SAMPLE NO.: 10742 Steve Analysis Percent Passing Itel in ally disystem SCS Dispersion Test 1 13.20 100 0.0707 31 0.0707 31 0.0380 21 1 13.20 100 0.0073 20 1 2.36 87 0.0180 225 0.013 2.0 0.0073 20 0.0073 20 1 1.18 78 0.0013 20 0.0013 20 1 1.18 78 0.0013 20 0.0013 20 0.0013 20 1 1.18 78 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.	89.	24				L /	A B O R A T IDUSTRIAL FING ROAD P TELEPHONE	ORIES (P ARXW UNDUSTRIA 7440, PC (221) 2038176 FAX (221)	TY)LTD 1.000120917347349 1331079
17 Mickwood Avenue Newkands 7700 DATE: 27.02-2008 ATT: Dick Bradshaw REF: L80228 DESCRIPTION: [I] Olive silly clayey sand SAMPLE NO. 9742 DESCRIPTION: [I] Olive silly clayey sand SAMPLE NO. 9742 Steve Analysis Personage of 63.00 Percentage of 0.0707 SIllemater of particle (mm) SCS Dispersion Test 1 75.00 0.0360 27 Diamater of particle (mm) SCS Dispersion Test 1 10.00 0.0707 31 Diamater of particle (mm) SCS Dispersion Test 1 0.0380 27 Diamater of particle (mm) SCS Dispersion %: Diamater of particle (mm) Olivepension (%) 0.0023 21 D.0032 21 Diamater of particle (mm) SCS Dispersion %: 118 78 60 67 Diamater of particle (mm) SCS Dispersion %: Initial Moleture Content (%): 0.013 20 0.0013 20 Diamater of particle Size Distribution Initial Moleture Content (%): 0.0275 31 7 0.036 10 Initial Moleture Content (%): Initial Moleture Content (%): </td <td>CLIENT:</td> <td>RA Bradsha</td> <td>aw & Associat</td> <td>es</td> <td>PRO</td> <td>IECT:</td> <td>Vlakkeland</td> <td></td> <td></td>	CLIENT:	RA Bradsha	aw & Associat	es	PRO	IECT:	Vlakkeland		
Newlands 7700 DATE: 27-02-2008 ATT: Dick Bradshaw ASTM D422 SIEVE ANALYSIS 1 ASTM D422 SIEVE ANALYSIS 1 1 DESCRIPTION E onive slity clayey sand POSITION E onive slity clayey sand Discrete of Particle Status frage of particle (mm) 5742 Sleve Analysis Percent Passing Image: Site of Particle Status frage of particle (mm) SCS Dispersion Test 1 13.20 1000 0.0707 31 0.0360 27 0.0180 25 0.0013 20 0.0023 20 1 0.0023 20 0.0013 20 1 0.0350 27 0.0100 25 0.0003 21 0.0023 20 0.0013 20 1 1.18 78 0.0023 20 0.0013 20 1 0.0052 0.0053 0.0004 24 0.0004 0.0004 0.0003 20 0.0003 20 0.0004 0.0004 0.0004 1		17 Midwood	d Avenue						
ATT: Dick Bradshaw REF: L02220 ATT: Dick Bradshaw REF: L02220 DESCRIPTION: E01yee sity dispy sand SAMPLE NO.: 5742 Sieve Analysis Passing CLIENT SAMPLE NO.: 5742 Sieve Analysis Passing CLIENT SAMPLE NO.: 5742 0.000 100 Diameter of particle (may samp reside) SCS Dispersion Test 0.0330 27.00 0.0160 25.00 0.0034 24 0.0033 21 0.0032 20 0.0013 20 Size Analysis SCS Dispersion %: 10.001 0.0023 21 0.0023 21 0.0033 21 0.0013 20 11.18 0.0225 0.0013 20 11.118 11.118 0.0225 0.013 20 0.0113 20 11.18 76 0.023 11.118 11.118 11.118 11.118 11.118 11.118 11.111 11.111 11.111 11.111 11.111 11.111 11.111 11.1111 11.111 11		Newlands					27.02.2008	•	
AST IN: D422 SIEVE ANALYSIS 1 DESCRIPTION: It olive silly clavey sand POSITION: SAMPLE NO.: [3742] Sieve Analysis Percent Percentage of soli supersion (%) SCS Dispersion Test 1 75.00 0.0767 31 0.0300 26.50 0.0180 25 1 9.50 99 0.0033 21 0.0300 22 0.0013 20 100 0.0023 20 0.0013 20 100 0.0023 20 0.0013 20 100 0.0023 20 0.0013 20 100 0.0023 20 0.0013 20 100 0.475 97 0.0013 20 1118 76 0.600 67 0.0775 31 0.0013 20 1118 16.2 0.600 67 0.0755 31 0.0013 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <	ΔΤΤ·	7700 Dick Bradel	haw		REF:		L80226		
DESCRIPTION: It olive silty clayey sand POSITION: SAMPLE NO.: 9742 CLIENT SAMPLE NO.: Sieve Analysis Percent Passing CLIENT SAMPLE NO.: SCS Dispersion Test Sieve Analysis Percentage of particle (mm) SCS Dispersion Test 1 75.00 Diameter of particle (mm) SCS Dispersion Test 26.50 0.0707 31 O.0707 19.00 0.0024 24 O.0033 0.0380 27 O.0160 25 0.0023 20 O.0013 20 0.023 20 O.0013 20 0.013 20 SS.00 O.0023 0.013 20 Percentage of soil suspension (%) O.0013 0.0252 0.150 37 O.0750 0.0150 37 0 Percentage of soil suspension O.0013 100 Percentage of 0.0750 100 Percentage or onductivity mS/m: 55.00 101 Percentage or onductivity mS/m: 55.00 O.002 102 O.0750 31 <td< td=""><td><u>A</u>II.</td><td>DICK DIAGO</td><td></td><td>TRA DA</td><td>22 SIEV</td><td>EANALY</td><td>SIS</td><td></td><td>: 7</td></td<>	<u>A</u> II.	DICK DIAGO		TRA DA	22 SIEV	EANALY	SIS		: 7
DESCRIPTION: It of a gays and POSITION: SAMPLE NO.: IT 237 @ 0.9-2.45m Sieve Analysis Percent Passing Percent Percentage of soil supersion (%) SCS Dispersion Test 03.00 0.000 53.00 0.0707 31 0.0386 27 0.0924 24 0.0033 21 0.0034 24 0.0034 24 0.0033 21 0.0034 24 0.0013 20 0.0034 24 0.0033 21 0.0033 20 0.0013 20 0.0034 24 0.0033 21 0.0035 20 0.0013 20 0.0035 20 0.0013 20 0.0053 31 0.0013 20 0.0053 31 0.0013 20 0.150 37 0.0013 20 0.0013 10 0.0013 20 Particle Size Distribution 0.002 0.002 0.0013 20 0.0014 0.0014 0.0014 0.002 0.0013 20 0.0014	L	<u></u>				······································			
POSITION IP 37 (20192.45m) CLENT SAMPLE NOT. Sieve Analysis Percent Particle (mm) SCS Dispersion Test Diameter of particle (mm) 63.00 0.0007 31 0.63.00 0.0007 31 26.50 0.00007 31 0.0003 21 0.0003 21 0.0003 20 0.0013 20 0.0003 21 0.0003 21 0.0003 20 0.0013 20 0.0003 20 0.0013 20 0.0000 66 7 0.0013 20 0.0000 52 0.0013 20 0.0013 20 0.0000 52 0.150 37 0.0013 20 0.0013 20 0.0750 31 70 100 Particle Size Distribution 100	DES	CRIPTION :	It olive silty clay	ey sand	·	S/	AMPLE NO. :	9742	
Sieve Aualysis Percent Passing 75.00 1 63.00 0 63.00 0 75.00 0 63.00 0 75.00 0 63.00 0 75.00 0 63.00 0 75.00 0 9.00 0 9.00 0.00707 19.00 0.0033 0.0180 225 0.0013 20 0.0023 20 0.0013 20 0.0013 20 0.0013 20 11.18 78 0.000 67 0.425 60 0.300 52 0.160 37 0.0750 31 100 Particle Size Distribution 100 Particle Size Distribution 100 Image data data data data data data data dat		POSITION :[<u>IP 37 @ 0.9-2.</u>	. <u>4</u> 5m		ULIENT SA			
75.00 Diameter of particle (mm) Percentage of soil suspension (%) Diameter of particle (mm) Diameter of soil suspension (%) Diameter of particle (mm) Diameter of soil suspension (%) 1 37.50 0.0707 31 0.0380 27 26.50 0.0180 25 0.0033 21 0.0033 0.0033 0.0033 20 9 9.00023 20 0.0013 20 0.0013 20 1 1.18 78 0.0013 20 0.0013 20 0.023 2.00 0.0013 20 0.0013 20 0.0013 20 0.0300 52 0.0013 20 0.0013 20 0.0013	Sieve A	nalysis	Percent Passing		Hydromet	er Analysis	7.8	SCS Dispe	ersion Test
63.00 particle (mm) bin Ball Ball Ball 63.00 0.0707 31 37.50 0.0360 27 19.00 0.0033 21 9.50 99 0.00033 21 0.0023 20 0.0013 20 0.0013 20 0.0013 20 0.0023 20 0.0013 20 0.00030 52 0.0013 20 0.300 52 0.0003 20 0.150 37 0.0000 52 0.150 37 0.0000 52 0.0705 31 0.0000 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90<		75.00			Diameter of	Percentage of		Diameter of	soil suspension
53.00 0.0707 31 37.50 0.0360 27 26.50 0.0094 24 13.20 100 0.033 21 0.0033 21 0.0033 21 0.0033 20 0.0013 20 0.000 67 0.013 20 0.000 52 0.0013 20 0.475 97 31 0.0013 20 0.000 67 0.013 20 0.013 20 0.425 60 0.300 52 0.150 37 0.0750 31 0.0750 31 0 90		63.00			particie (mm)	(%)		particle (mm)	(%)
37.50 0.0360 27 26.50 0.0180 25 19.00 0.0033 21 9.50 99 0.0013 20 0.0023 20 0.0023 21 0.0023 20 0.0013 20 0.0023 20 0.0013 20 0.0023 21 0.0023 21 0.0023 20 0.0013 20 0.0023 20 0.0013 20 0.0025 0.0013 20 0.0013 20 0.425 60 0.300 52 0.0013 00 0.150 37 0.0750 31 90 90 90 0.00750 31 90 90 90 90 90 100 Particle Size Distribution 90 90 90 90 0.00750 31 90 90 90 90 90 0.00 C.B.R. 100 90		53.00			0.0707	31	1		
26.50 19.00 13.20 100 9.50 99 0.70 98 0.0023 20 11 2.36 12.36 87 2.00 86 1.18 78 0.6000 67 0.475 97 111 118 0.6000 67 0.425 60 0.150 37 0.0750 31 100 90 90 90 80 70 70 70 70 70 70 90 90 90 80 90 80 90 80 90 91 90 92 90 93 90 94 90 90 90 90 90 90 90 90 90 90 90 90 90	I	37.50			0.0360	27	25		
19.00 13.20 100 9.50 99 0.0033 21 0.0023 20 0.0013 20 11 2.36 87 20 12.36 87 20 0.0013 20 11 1.18 78 0.600 67 0.003 20 0.425 60 0.300 52 0.150 37 0.0750 31 0.0750 31 100 Particle Size Distribution 100 Particle Size Distribution 100 0.001 100 Particle Size Distribution 100 100 100 0.001 100 Particle Size Distribution 100 100 100 0.001 0.001 0.001 0.001 0.001 0.001 100 0.001 0.001 0.001 0.000 100 100 100 100 0.002 0.001 0.001 0.001 100 100 100 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 100 100 </td <td>)</td> <td>26.50</td> <td></td> <td></td> <td>0.0180</td> <td>25</td> <td></td> <td></td> <td></td>)	26.50			0.0180	25			
Image: Second state state (second s		19.00			0.0094	24]		
S. 9.50 99 6.70 98 0.0023 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.0013 20 0.00150 31 0.00150 31 0.00750 31 0.00750 31 0.00750 31 0.00750 31 0.00750 31 0.00 20 100 90 0.00 0.010 0.00 0.010 0.00 0.010 0.00 0.010 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ê	13.20	100		0.0033	21			
⁶ .70 98 ⁶ .70 98 ⁶ .70 97 ² .36 87 ² .00 86 ¹ .18 78 ⁰ .600 67 ⁰ .0425 60 ⁰ .0300 52 ⁰ .0.0750 31 ⁷⁰	E.	9.50	99		0.0023	_ 20]		
O 4.75 97 2.36 87 Initial Molsturic Content (%): 1.18 78 PH: 6.2 0.600 67 PH: 6.2 0.425 60 PH: 6.2 0.300 52 PH: 6.2 0.150 37 PH: 6.2 0.0750 31 Particle Size Distribution PH: 70 0.0750 31 PH: 6.2 100 Particle Size Distribution PH: 6.2 100 90 Particle Size Distribution PH: 70 70 Particle Size Distribution PH: 70 70 90 Particle Size Distribution PH: 70 70 90 90 90 90 70 70 90 90 90 90 70 70 90 90 90 90 70 90 90 90 90 90	IZE	6.70	98		0.0013	20			
Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : TMH1 A7 & A8 MOD AASHTO ; C.B.R. : TMH1 A7 & A8 O.M.C. (%) Conductivity C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 % Comp. C.B.R. @ 95 %	и Ш	4.75	97		·				•
55 2.00 86 1.18 78 0.600 67 0.425 60 0.300 52 0.150 37 0.0750 31 Atterberg Limits : 70 TMH1 A2, A3 & A4 Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : 7MH1 ACC 70 0.M.C. (%) 0.000 C.B.R. @ 95 % Comp. 0.000 C.B.R. @ 90 % Comp. 0.0000 C.B.R. @ 90 % Comp.<		2.36	87			SCS D	ispersion %:		
1.18 78 pH: 6.2 0.600 67 Conductivity mS/m: 55.00 0.425 60 Particle Size Distribution 0.0750 31 90 Particle Size Distribution 0.0750 31 90 90 90 Atterberg Limits : 70 90 90 90 70 90 90 90 90 80 90 90 90 90 80 90 90 90 90 80 90 90 90 90 80 90 90 90 90 91 90 90 90 90 92 90 90 90 90 93 91 91 91 91 94 92 90 90 90 90 90 90 90 90 90 90 90 0.0.0.0 0.010 0.100 100 100 100.000 0 0.010 0.100 10	0	2.00	86		Ini	tial Moisture C	Content (%) :		4
0.600 67 Conductivity mS/m : 55.00 0.425 60 0.300 52 0.150 37 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 31 0.0750 0.0750 31 0.0750 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000		1.18	78				рН:	6.2	
0.425 60 0.300 52 0.150 37 0.0750 31 Atterberg Limits : 70 TMHI A2, A3 & A4 Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : TMH1 AT & A8 TMH1 O.M.C. (%) 0.0010 C.B.R. @ 100% Comp. 0.010 C.B.R. @ 98 % Comp. 0.010 C.B.R. @ 98 % Comp. Tabulated Summary C.B.R. @ 99 % Comp. 3and : Percentage - 4.75 mm Sand : Percentage - 0.075mm and + 0.075mm 66 Silt : Percentage - 0.075mm and + 0.002mm 10		0.600	67		<u></u>	Conduc	tivity mS/m :	55.00	j
0.300 52 0.150 37 0.0750 31 Atterberg Limits : TMH1 A2, A3 & A4 Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO (Cg/m ³) 0 O.M.C. (%) 20 C.B.R. @ 100% Comp. 0.010 C.B.R. @ 98 % Comp. 0.010 C.B.R. @ 98 % Comp. 0.010 C.B.R. @ 98 % Comp. 3 C.B.R. @ 98 % Comp. 3 C.B.R. @ 98 % Comp. 3 C.B.R. @ 90 % Comp. 3 C.B.R. @ 91 % Comp. 3		0.425	60			Particle Si	ze Distributio	'n	
0.150 37 0.0750 31 Atterberg Limits : 70 TMH1 A2, A3 & A4 Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : TMH1 A7 & A8 MOD AASHTO (Kg/m ³) 0.001 0.M.C. (%) 0.001 C.B.R. @ 98 % Comp. 0.001 C.B.R. @ 98 % Comp. 0.001 C.B.R. @ 98 % Comp. 3.000 C.B.R. @ 98 % Comp. 3.000 C.B.R. @ 90 % Comp. 3.000 Sand ; Percentage - 4.75 mm 3.000 Sand ; Percentage - 0.075mm and + 0.075mm 66 Silt : Percentage - 0.002mm 10		0.300	52	100 T	77000				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
O.0750 31 Atterberg Limits : 70 TMH1 A2, A3 & A4 70 Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : TMH1 AT & A8 70 O.M.C. (%) 0.010 C.B.R. @ 100% Comp. 0.010 C.B.R. @ 98 % Comp. 0.010 C.B.R. @ 98 % Comp. 10 C.B.R. @ 98 % Comp. 30 C.B.R. @ 98 % Comp. 30 C.B.R. @ 93 % Comp. 30 Sand : Percentage - 4.75 mm 3 Sand : Percentage - 0.075mm and + 0.075mm 66 Silt : Percentage - 0.002mm 10	ļ	0.150	37	90 -					
Atterberg Limits : 70 70 70 Ilquid Limit 34 90 60 90 Plastic Index 18 50 50 90 Linear Shrinkage 4.9 30 90 90 MOD AASHTO ; C.B.R. : TMH1 70 70 10 O.M.C. (%) 0.010 0.100 1.000 10.000 C.B.R. @ 100% Comp. 0.001 0.010 0.100 10.000 100.000 C.B.R. @ 98 % Comp. 70 70 70 70 10 10 10 C.B.R. @ 93 % Comp. 70 70 70 70 10		0.0750	31	80				Z	
TMH1 A2, A3 & A4 Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : TMH1 A7 & A8 TMH1 O.M.C. (%) 0 C.B.R. @ 100% Comp. 0.100 1.000 10.000 C.B.R. @ 98 % Comp. 0 0 0.100 1.000 100.000 C.B.R. @ 98 % Comp. Tabulated Summary Percentage 0 0 0 C.B.R. @ 93 % Comp. Sand ; Percentage - 4.75 mm 3 3 3 3 3 C.B.R. @ 90 % Comp. Silt : Percentage - 0.075mm and + 0.075mm 66 3 </td <td>A</td> <td>tterberg Lim</td> <td>its :</td> <td> _ 70 +</td> <td></td> <td></td> <td></td> <td></td> <td></td>	A	tterberg Lim	its :	_ 70 +					
Liquid Limit 34 Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO ; C.B.R. : TMH1 A7 & A8 30 MOD AASHTO (Kg/m³) 0 O.M.C. (%) 10 C.B.R. @ 100% Comp. 100 C.B.R. @ 98 % Comp. 100 C.B.R. @ 98 % Comp. 100 C.B.R. @ 95 % Comp. 100 C.B.R. @ 93 % Comp. 30 C.B.R. @ 93 % Comp. 30 C.B.R. @ 90 % Comp. 30 Swell (max) % 30	TM	1HI A2, A3 a	& <u>A4</u>						
Plastic Index 18 Linear Shrinkage 4.9 MOD AASHTO; C.B.R. : A7 & A8 TMH1 A7 & A8 MOD AASHTO (Kg/m³) TMH1 0 O.M.C. (%) 0.100 1.000 10.000 C.B.R. @ 100% Comp. C.B.R. @ 98 % Comp. Tabulated Summary Percentage C.B.R. @ 98 % Comp. Sand : Percentage - 4.75 mm 3.557 Sand : Percentage - 4.75 mm and + 0.002mm 3.557 Silt : Percentage - 0.075mm and + 0.002mm 10 Clark (max) % Clark (max) % Clark (max) % Clark (max) %	}	1 Lîmit	- 34						
Linear Shrinkage 4.9 MOD AASHTO; C.B.R. : TMH1 A7 & A8 20 MOD AASHTO (Kg/m³) 0 0.M.C. (%) 10 0.M.C. (%) 0.001 C.B.R. @ 100% Comp. 10 C.B.R. @ 98 % Comp. 10000 C.B.R. @ 93 % Comp. 30000 C.B.R. @ 93 % Comp. 30000 C.B.R. @ 90 % Comp. 30000 Sand ; Percentage - 4.75 mm 300000 Silt : Percentage - 0.075mm and + 0.075mm 66 Silt : Percentage - 0.075mm and + 0.002mm 100000 Clay : Percentage - 0.002mm 21	Plastic	c Index	18						
MOD AASHTO ; C.B.R. : TMH1 A7 & A8 10 MOD AASHTO (Kg/m³) 0 O.M.C. (%) 0 C.B.R. @ 100% Comp. 0 C.B.R. @ 98 % Comp. 10 Sand : Percentage - 4.75 mm 3 Sand : Percentage - 4.75 mm 3 Sand : Percentage - 4.75 mm 3 Sand : Percentage - 0.075mm and + 0.075mm 66 Silt : Percentage - 0.075mm and + 0.002mm 10 Clay : Percentage - 0.002mm 21	Linear S	hrinkage	4.9				\$		
MOD AASHTO (Kg/m³) 10	MOD AASH	TO; C.B.R. : A7 & A8	ТМН1	20 -	8- 8 ⁻	-9			
O.M.C. (%) 0 -<	MOD AAS	HTO (Kg/m³)] ¹⁰ †					
C.B.R. @ 100% Comp. Tabulated Summary Percentage C.B.R. @ 98 % Comp. Gravel : Percentage - 4.75 mm 3 C.B.R. @ 93 % Comp. Sand : Percentage - 4.75 mm 3 C.B.R. @ 93 % Comp. Sand : Percentage - 4.75 mm 66 Silt : Percentage - 0.075mm and + 0.002mm 10 10 Swell (max) % Clay : Percentage - 0.002mm 21	0.M.0	C. (%)		1 0 + 0	1 0.010	0,100 Part	<u>1.000</u> 1.000 ticle Size (nam)	10,000	100.000
C.B.R. @ 98 % Comp. Tabulated Summary Percentage C.B.R. @ 95 % Comp. Gravel : Percentage - 4.75 mm 3 C.B.R. @ 93 % Comp. Sand : Percentage - 4.75 mm and + 0.075mm 66 C.B.R. @ 90 % Comp. Silt : Percentage - 0.075mm and + 0.002mm 10 Swell (max) % Clay : Percentage - 0.002mm 21	C.B.R.@	100% Comp.		<u> </u>					<u> </u>
C.B.R. @ 95 % Comp. Gravel : Percentage - 4.75 mm 3 C.B.R. @ 93 % Comp. Sand : Percentage - 4.75 mm and + 0.075mm 66 C.B.R. @ 90 % Comp. Silt : Percentage - 0.075mm and + 0.002mm 10 Swell (max) % Clay : Percentage - 0.002mm 21	C.B.R. @	98 % Comp.]		Tabulated	d Summary		Percentage
C.B.R. @ 93 % Comp. Sand : Percentage - 4.75mm and + 0.075mm 66 C.B.R. @ 90 % Comp. Silt : Percentage - 0.075mm and + 0.002mm 10 Swell (max) % Clay : Percentage - 0.002mm 21	C.B.R. @	95 % Comp.]	Gravel : Perc	centage - 4.75 i	mm		3
C.B.R. @ 90 % Comp. Silt : Percentage - 0.075mm and + 0.002mm 10 Swell (max) % Clay : Percentage - 0.002mm 21	C.B,R. @	93 % Comp.		1	Sand ; Perce	entage - 4.75m	n and + 0.075	mm	66
Swell (max) % Ciay : Percentage - 0.002mm 21	C.B.R. @	90 % Comp.	1]	Silt : Percent	tage - 0.075mm	and + 0.0021	nm	10
	Swell	(max)%		1	Clay : Perce	ntage - 0.002m	m		21

ł

For Geoscience:

()

ţ

The above test results are pertinent to the samples received and tested only. For Geoscie While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

The above lest results are pertinent to the samples received and tested only.

For Geoscience;

11

(🐰

While the tests are carried out according to recognized standards Geoscience shall not

be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

								(3E()	SCIE	NCE
								L	ABORAT	ORIES (F	YY) LTD
						- 2		711	NDUSTRIAL RING ROAD / TELEPHONE	245 () II OUSTRIA 7490, R (021) 933 8176 FAL: (021)	0. 6C./ 201 FAHOW 7495 923 1079
CI IEN	T: RA	Bradeh	aw & Associa		с	q	RO	IFCT:	Vlakkeland		
	17 171	Midwoo	d Avenue	ale	3		1.0.		VIARKEIALIO		
	Nev	wlands									
	770	0				D		E:	27-02-2008		
ATT:	Dicl	k Brads	haw	-	nd a' e	R	EF	- SMALN	L80226	 .	
<u> </u>	·····	24	A	51	ML	1422 <u>SII</u>	≓V.	EANALY	515.		
	DESCRIP	тюн :	dark yellow sill	ty c	lay] s.	AMPLE NO. :	9743	
	POS	ITION :[TP 45 @ 1.4-2	2,61	m			CLIENT S	AMPLE NO. :		
			Percent	1		Tradao		an Analugin]	SCS Disn	ersion Test
			Passing					Descentere of			Decentare of
	<u> </u>	75.00				Diameter	of	soil suspension		Diameter of	soil suspension
		63.00				particle (n	nm)	(%)		particle (mm)	(%)
		53.00				0.064	0	72			
		37.50		}		0.032	4	62			
		26.50				0.016	4	59			
		19.00				0.008	7	52			
Ē	`	13.20				0.003	1	43	_		
5	· [9.50				0.002	2	38	-		
SIZE		6.70				0.001	3	31		L	
щ		4.75	100			·			<u> </u>	· · · ·	-
Ш		2.36	99	1				SCS D	ispersion %:		
Ś		2.00	99				Ini	tial Moisture C	Content (%) :		ļ
		1.18	96						рН :	6.40	-
		0.600	93	<u> </u>				Conduc	tivity mS/m :	537.00	
		0.425	91					Particle Sit	ze Distributio	n	
		0.300	89		100 -						
		0.150	80		90 -						
		0.0750	73	1	80 -						
	Atterbe	rg Limi	ts :	1	_ 70 -		<u> </u>				
	TMH1 A	12, A3 &	<u>A4</u>	'	uss 60 -	<u>_</u>					
L	.iquid Limit	نــــــــــــــــــــــــــــــــــــ	50	'	። ፰ 50 -			<u></u>			
P.	lastic Inde;	x	24								
Line	ear Shrinka	age	13.2	'	2 40 7						
	ASHTO . C	80,	TMUA	ıİ	30 -						
	AG/110 , 0. A7	7 & A8	1 1013 1		20 -						
NOD	AASHTO (Ka/m³)	1802		10 -						
C	.M.C. (%	6)	15.3	1	0 - ce	<u> </u>	<u>.: </u> 0.010	<u>;;;;;;;;;</u> 0.100	1.000	10.000	100.000
C.B.R	@ 100%	Comp	1		4,0			Parti	cle Size (mm)		
CRP	@ Q8 %/	Comp	1	<u>ا</u> _				Tabulated	Summary		Percentage
CBD	@ 05 % (Comp.				Gravel : F	Perc	entage - 4.75 n	 1071		
				Sand · Percentage - 4.75mm and + 0.075mm				 nm	27		
<u>0.0.R</u>	<u>س دوس.</u>	Comp.	0			Silt · Per	ent	ade - 0 075mm	and + 0 002#	187	33
<u></u>	. @ 90 % (comp.	U			Clay (De				····	10
Swe	ell (max))%	11.20			Clay : Per	cen	lage - 0.002mn	1		40

. (81)

ĒB

The above test results are pertinent to the samples received and tested only. For Geocode While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

For Geoscience:

٤.

10 K

2

19 - E

((

<u>*:</u> Ę

Ę

∃EOSCIENCE LABORATORIES

CONSOLIDATION TEST

.

SUMMARY OF READINGS

1

÷3

PROJECT NO : L80225 SAMPLE NO : 9726 POSITION: TP 13 @ 1.0m

Ę

) T

.

.

1.52

PROJECT : Vlakkeland

INITIAL DIAL READING =	1.04 mm
RING DIAMETER =	76.2 mm
H1 =	18.75 mm
H _s =	13.11 mm

OEDOMETER NO	;	1
BEAM RATIO	:	11

BEAM	COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
LOAD			READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
(kg)		(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
0.0		0.00	1.040	1.040	0.000	0	18.750	0.4302
0.1		2.37	1.026	0.014	0.001	0.013	18.737	0.4292
1.0		23.66	0.950	0.090	0.013	0.077	18.673	0.4243
1.75		41.41	0,854	0.186	0.020	0.166	18.584	0.4175
1.75	SAT	41.41	1.384	-0.344	0.020	-0.364	19.114	0.4580
2 75	T ·	65.07	1.318	-0.278	0,026	-0.304	19.054	0.4534
7 75		112.40	1.104	-0.064	0.034	-0.098	18.848	0.4377
8.75		207.05	0.712	0.328	0.047	0.281	18.469	0.4088
·····								
							1	
	<u> </u>							
	1							
	1				· · ·			
			· ·		<u> </u>			
					<u> </u>			
			· · · · · · · · · · · · · · · · · · ·					
	†	}			<u> </u>			
		<u> </u>	<u> </u>					
	1	1	1		1	1	1	

22

{

GEOSCIENCE LABORATORIES

RING DIAMETER =

PROJECT : Vlakkeland

H1 =

6.05 mm 76.4 mm

19.2 mm

H_s = 11.43 mm

CONSOLIDATION TEST

SUMMARY OF READINGS

32 97 PROJECT NO : L80225 SAMPLE NO: 9730 POSITION: TP 28 @ 1.0m

> Th: ł

> > ءَ ا

OEDOMETER NO: 2 BEAM RATIO: 11

		····						
BEAM	COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
LOAD	<u>_</u>		READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
(kg)	<u></u>	(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
	ļ							
0.0	i	0.00	6.050	6.050	0.000	· 0	19.200	0.6798
0.1		2.35	5.914	0.136	0.001	0.135	19.065	0.6680
1.0		23.54	5.530	0.520	0.012	0.508	18.692	0.6353
1.75		41.19	5.432	0.618	0.017	0.601	18.599	0.6272
1.75	SAT	41.19	5.758	0.292	0.017	0.275	18.925	0,6557
_f1 <u>5</u>		64.73	5.676	0.374	0.022	0.352	18.848	0.6490
<u> </u>		111.81	5.412	0.638	0.030	0.608	18.592	0.6266
8.75		205.96	4.900	1.150	0.043	1.107	18.093	0.5829
								-
					··· · · ·			
								<u> </u>
_								
		i	—					
			·					
						1		

INITIAL DIAL READING =

0.0

GEOSCIENCE LABORATORIES

CONSOLIDATION TEST

EOSCIENCE LABORATORIES

•• 00

PROJECT: Vlakkeland

H1 =

H_s =

+

1.083 mm

76.2 mm

19.1 mm

13.61 mm

ONSOLIDATION TEST

INITIAL DIAL READING =

RING DIAMETER =

-61

SUMMARY OF READINGS

PROJECT NO : L80225 SAMPLE NO : 9732 POSITION: TP 32 @ 1.5m

4

(______

٠.

OEDOMETER NO: 7 BEAM RATIO: 11

· · · · · · · · · · · · · · · · · · ·							
COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
		READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
	(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
	0.00	1.083	1.083	0.000	0.	19.100	0.4034
	2.37	1.068	0.015	0.006	0.009	19.091	0.4027
1	23.66	0.940	0.143	0.038	0.105	18.995	0.3957
1	47.33	0,892	0.191	0.052	0.139	18.961	0.3932
SAT	47.33	1.944	-0.861	0.052	-0.913	20.013	0.4705
-	94.65	1.816	-0,733	0.071	-0.804	19.904	0.4625
	189.30	1.487	-0.404	0.093	-0.497	19.597	0.4399
	378.60	1.014	0.069	0.118	-0.049	19.149	0.4070
	757.20	0.549	0.534	0.157	0.377	18.723	0.3757
1							
	<u> </u>					~	
1							
1							
						<u> </u>	
		· · ·	······				
						 _	
<u> </u>	· · · ·						
							<u> </u>
		COMMENTS PRESSURE (Kpa) 0.00 2.37 23.66 47.33 23.66 47.33 94.65 189.30 378.60 757.20	COMMENTS PRESSURE DIAL READING (Kpa) (mm) 0.00 1.083 2.37 1.068 23.66 0.940 47.33 0.892 SAT 47.33 1.944 94.65 1.816 189.30 1.487 378.60 1.014 757.20 0.549 0 0	COMMENTS PRESSURE DIAL READING UNCORRECTED DEFLECTION (Kpa) (mm) (mm) 0.00 1.083 1.083 2.37 1.068 0.015 23.66 0.940 0.143 47.33 0.892 0.191 SAT 47.33 1.944 -0.861 94.65 1.816 -0.733 189.30 1.487 -0.404 378.60 1.014 0.069 757.20 0.549 0.534	COMMENTS PRESSURE DIAL READING UNCORRECTED DEFLECTION MACHINE CORRECTION (Kpa) (mm) (mm) (mm) (mm) 0.00 1.083 1.083 0.000 2.37 1.068 0.015 0.006 23.66 0.940 0.143 0.038 47.33 0.892 0.191 0.052 SAT 47.33 1.944 -0.861 0.052 SAT 47.33 1.944 -0.404 0.093 378.60 1.014 0.069 0.118 757.20 0.549 0.534 0.157	COMMENTS PRESSURE DIAL READING UNCORRECTED DEFLECTION MACHINE CORRECTION CORRECTED DEFLECTION (Kpa) (mm) (mm) (mm) (mm) (mm) 0.00 1.083 1.083 0.000 0 2.37 1.068 0.015 0.006 0.009 2.37 1.068 0.015 0.006 0.009 23.66 0.940 0.143 0.038 0.105 47.33 0.892 0.191 0.052 0.139 SAT 47.33 1.944 -0.861 0.052 -0.913 94.65 1.816 -0.733 0.071 -0.804 189.30 1.487 -0.404 0.093 -0.497 378.60 1.014 0.069 0.118 -0.049	COMMENTS PRESSURE DIAL READING UNCORRECTED DEFLECTION MACHINE CORRECTION CORRECTED DEFLECTION HEIGHT CHANGE (Kpa) (mm) (mm)

JEOSCIENCE LABORATORIES

CONSOLIDATION TEST

5.

60

l

đ

(',
GEOSCIENCE LABORATORIES

CONSOLIDATION TEST

SUMMARY OF READINGS

PROJECT : Vlakkeland

PROJECT NO : L80225 SAMPLE NO : 9729 POSITION: TP 23 @ 1.3rr

 $\frac{1}{2} = 0$

{

3

ł

OEDOMETER NO : 1 BEAM RATIO : 11

••

DELL								
BEAM	COMMENTS	PRESSURF	DIAL	LINGORDAL				
LOAD		- / 14		UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
(kg)		(Kna)	READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	
			(mm)	(mm)	(mm)	(mm)	(mm)	RATIO
0.0		0.00					(000)	
0.1	┽────┥	0.00	1.067	1.067	0.000		10.000	
10	┼───┤	2.38	1.050	0.017	0.002		19.300	0.7049
20	┼┉────┤	23.79	0.895	0 172	0.002	0.015	19.285	0.7036
		47.57	0.827	0.240	0.015	0.157	<u> 19.143 </u>	0.6911
<u></u>	ISAT	47.57	1.342	0.240	0.022	0.218	19.082	0.6857
<u>)4.0</u> _		95.15	1240	-0.275	0.022	-0.297	19.597	0.7312
((190.30	1.025		0.032	-0.214	19,514	0.7230
16.0	[380.60	0.640	0.042	0.045	-0.003	19 303	0.7200
		000.00	0.043	0.424	0.064	0.360	18.040	0.7052
	┝╾╼╼╼╼╼──┤					0.000	10,840	0.0731
	┝╼╾╾┼╸							
							T	
			<u></u>					
				T				
		L	L_				┈╼╌╾┼╾	

(

GEOSCIENCE LABORATORIES

CONSOLIDATION TEST

1

(.

1.1

4

∃OSCIENCE LABORATORIES

ONSOLIDATION TEST

	PPO IECT · Vlakkeland	PROJECT NO SAMPLE NO	: L80225 : 9726
	FROJECT CHARACTERIO	POSITION:	TP 13 @ 1.0m
MPLE DES ATE OF SA Y DENSIT TIAL SATU TIAL MOIS ITIAL VOID	CRIPTION:light olive silty clayey sandMPLE:UNDISTURBED=1853 Kg/m3RATION=0.68TURE CONTENT=11.11 %RATIO=0.4302 •	SPECIFIC DENSITY FINAL SATURATION FINAL MOISTURE CONTENT FINAL VOID RATIO	= 2.65 = 1.14 = 17.51 % = 0.4088
0.4600			
0.4600			
0.4300 데이지			
0.4200			
0.4100			
0.4000	1 10	100 1000	<u>: :</u> 10000

EFFECTIVE NORMAL STRESS (kPa)

<u>с</u> "Д

EOSCIENCE LABORATORIES

DNSOLIDATION TEST

SUMMARY OF READINGS

PROJECT NO : L80225 SAMPLE NO : 9728 POSITION: TP 17 @ 0.9rr

12

¥ 44

3 1

1

PROJECT : Vlakkeland

INITIAL DIAL READING =	1.143 mm
RING DIAMETER =	50.05 mm
H1 =	20.5 mm
H _s =	12.41 mm

OEDOMETER NO : 1 BEAM RATIO : 11

EAM	COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
.OAD			READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
(kg)		(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
0.0		0.00	1.143	1.143	0.000	. 0	20.500	0.6519
0.05		2.74	1.126	0.017	0.001	0.016	20.484	0.6506
0,5		27.42	0.961 .	0.182	0.014	0.168	20.332	0.6384
0.75		41.14	0.890	0.253	0.021	0.232	20.268	0.6332
0.75	SAT	41.14	1.371	-0.228	0.021	-0.249	20.749	0.6720
'nη		109.70	1.295	-0.152	0.031	-0.183	20.683	0.6666
		219.39	1.088	0.055	0.044	0.011	20.489	0.6510
		1						
		-						
. <u> </u>		<u> </u>						
		1						
		1						
		1			1			
		f~,						
		1		· · · · · · · · · · · · · · · · · · ·				
		1			-			
	+							
		1						
	+	1	<u> </u>			1		1
	+						<u> </u>	
	<u>k</u>		[1	I		<u> </u>	

CLIENT: RA Bradshaw & Associates

 \sim

20

12

PROJECT: Vlakkeland

× 1

25

57 A

G:\DA11 WERKE\0800\0894 - PRT_VLAKKELAND DRAKENSTEIN\DRAWINGS\1.2 ACTIVE\0894-C-002-302 (TYPICAL CROSS SECTION - 10M ROAD RESERVE).DWG

Tel: 021 872 0622/ Fax: 021 872 061

email: paarl@lyners.co.za

1. ALL KERBING TO CONFORM TO SABS 927.

2. ALL CONCRETE TO BE 15 MPa / 19 mm

G:\DA11 WERKE\0800\0894 - PRT_VLAKKELAND DRAKENSTEIN\DRAWINGS\1.2 ACTIVE\0894-C-002-303 (TYPICAL CROSS SECTION - 16M ROAD RESERVE).DWG

DRAWN

LO

CHECKED

2014-09-16 CW / DC

DATE

DATE

2014-09-16

APPROVED :

20000 ROAD RESERVE 1500 2000 2500 8000 2500 2000 1500 PARKING/ CYCLE LANE SIDEWALK PARKING/ CYCLE LANE SIDEWALK 0 TYPE BK2 (OR MK10 FOR NARROW ERF FRONTAGES (<6M), ONLY WHERE VEHICULAR ERF ACCESS IS TYPE E1 EDGING REQUIRED.) 75MM G5 GRAVEL VERGE ON 150MM X Х 75MM G5 GRAVEL VERGE ¦ ĝ TYPE C1 COMPACTED IN-SITU sonisor ON 150MM COMPACTED DOUBLE CHANNEL SUB GRADE jЧ IN-SITU SUB GRADE (FALL 2% - 8%) (FALL 2% - 8%) 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 1000 Щ SEWER-- WATER STORMWATER ------40MM MEDIUM CONTINUOUSLY 1500 GRADED ASPHALT SURFACING COMPACTED TO 92% RICE 30MM MEDIUM CONTINUOUSLY GRADED ASPHALT SURFACING 150MM SUB GRADE G7 COMPACTED 150MM BASE COURSE G4 TO 93% MOD AASHTO DENSITY COMPACTED TO 98% MOD AASHTO (100% FOR SAND) 150MM BASE COURSE G4 COMPACTED DENSITY TO 98% MOD AASHTO DENSITY 100MM SUB BASE G5 COMPACTED 150MM SUB BASE G5 COMPACTED TO TO 98% MOD AASHTO DENSITY 95% MOD AASHTO DENSITY 150MM SUB GRADE G7 COMPACTED TO 93% MOD AASHTO DENSITY (100% FOR SAND) 20MM ASPHALT SURFACING 300MM SUB GRADE G7 COMPACTED TO 93% MOD AASHTO DENSITY (100% FOR SAND) CONSULTING ENGINEERS TITLE VLAKKELAND, PAARL - TYPICAL CROSS LYNERS SECTION (20m ROAD RESERVE) PO Box 79 MAIN ROAD PROJECT No. DRAWING No. SCALE REV NOTE PAARL

7646

Tel: 021 872 0622/ Fax: 021 872 061

email: paarl@lyners.co.za

1. ALL KERBING TO CONFORM TO SABS 927.

2. ALL CONCRETE TO BE 15 MPa / 19 mm

G:\DA11 WERKE\0800\0894 - PRT_VLAKKELAND DRAKENSTEIN\DRAWINGS\1.2 ACTIVE\0894-C-002-304 (TYPICAL CROSS SECTION - 20M ROAD RESERVE).DWG

0894

APPROVED :

NTS

DRAWN

LO

0894/C/002-304

2014-09-16 CW / DC

DATE

CHECKED

₿

2014-09-16

DATE

Table 2: Proposed works, cost estimates & phasing - Future Water System

Item No. (See Figures 1 & 2)	m No. Figures Description & 2)		Comments
Vlakkeland -	Wellington		
Distribution Sy	stem Items		
DWW1.24a	690 m x 315 mm Ø Pipe to install	1 143 240	When Vlakkeland phase 1 develops.
DWW1.24b	275 m x 315 mm Ø Pipe to install	482 580	When Vlakkeland phase 2 develops.
DWW1.24c	440 m x 315 mm Ø Pipe to install	745 220	When Vlakkeland phase 4 develops.
DWW1.25a	455 m x 200 mm Ø Pipe to install	417 340	When Vlakkeland phase 1 develops.
DWW1.25b	595 m x 200 mm Ø Pipe to install	537 040	When Vlakkeland phase 1 develops.
DWW1.25c	210 m x 200 mm Ø Pipe to install	207 760	When Vlakkeland phase 1 develops.
DWW1.25d	425 m x 200 mm Ø Pipe to install	391 580	When Vlakkeland phase 2 develops.
DWW1.25e	660 m x 200 mm Ø Pipe to install	592 620	When Vlakkeland phase 3 develops.
DWW1.25f	445 m x 200 mm Ø Pipe to install	408 660	When Vlakkeland phase 5 develops.
DWW1.26	190 m x 160 mm Ø Pipe to install	156 800	When Vlakkeland phase 7 develops.
DWW1.27	945 m x 250 mm Ø Pipe to install	1 066 520	When Vlakkeland phase 7 develops.
DWW1.47	55 m x 250 mm Ø Pipe to install	97 440	When Vlakkeland phase 7 develops.
Sub-totals Dist	ribution System Items	6 246 800	
Bulk Supply Ite	ems		
DWW.B5	New 347 I/s @ 50 m booster pump station on Leliefontein bulk pipeline	4 624 000	Required to augment bulk water supply to Wellington
DWW.B23	5420 m x 560 mm Ø Pipe to install	28 735 000	Replace existing 375 mm diameter pipe (existing pipe in bad condition)
DWW.B24	5625 m x 560 mm Ø Pipe to install	29 802 360	Replace existing 375 mm diameter pipe (existing pipe in bad condition)
DWW.B25	3155 m x 560 mm Ø Pipe to install	16 942 100	Replace existing 375 mm diameter pipe (existing pipe in bad condition)
Sub-totals Wat	er Demand Management	80 103 460	
TOTALS		86 351 000	

* Costs include P&G's, Contingencies & Fees, but exclude EIA studies, registration of servitudes and/or land acquisition and VAT.

Table 3: Proposed works, cost estimates & phasing - Future Sewer System

Item No. (See Figure 3)	Description	Estimated cost * (R-yr 2013/14 value)	Comments
Vlakkeland -	- Wellington		
Distribution Sy	ystem Items		
DPS1.8	180 m x 160 mm Ø New Gravity	196 600	When Vlakkeland phase 7 develops.
DPS1.9	239 m x 200 mm Ø New Gravity	278 600	When Vlakkeland phase 7 develops.
DPS1.10	144 m x 315 mm Ø New Gravity	248 200	When Vlakkeland phase 1 develops.
DPS1.11a	609 m x 200 mm Ø New Gravity	658 900	When Vlakkeland phase 1 develops.
DPS1.11b	484 m x 200 mm Ø New Gravity	530 400	When Vlakkeland phase 1 develops.
DPS1.11c	289 m x 160 mm Ø New Gravity	296 900	When Vlakkeland phase 1 develops.
DPS1.11d	367 m x 160 mm Ø New Gravity	368 400	When Vlakkeland phase 2 develops.
DPS1.11e	310 m x 160 mm Ø New Gravity	316 200	When Vlakkeland phase 3 develops.
Sub-totals dist	ribution system items	2 894 200	
Bulk supply ite	ems		
DPS1.3	275 m x 675 mm Ø replace existing 450 mm Ø bulk sewer	1 139 500	When Vlakkeland phase 7 develops.
DPS1.4	Upgrade capacity of existing Mbekweni PS from 100 l/s to 185 l/s	500 000	When Vlakkeland phase 2 develops.
DPS1.5	1420 m x 500 mm Ø upgrade existing 300 mm Ø rising main.	4 748 900	When Mbekweni PS is upgraded.
DPS1.6	1025 m x 450 mm Ø bulk sewer	3 255 900	New bulk sewer for Vlakkeland and surrounding future areas (including Jan van Riebeeck road-crossing).
DPS1.7	505 m x 400 mm Ø bulk sewer	1 179 600	New bulk sewer for Vlakkeland area.
Sub-totals Bul	k supply items	10 823 900	
TOTALS		13 718 100	

* Costs include P&G's, Contingencies & Fees, but exclude EIA studies, registration of servitudes and/or land acquisition and VAT.

	SCALE (ON A0 DWG)	SHEET
MENT OF ERF 8378 PAARL	1:2000 CONTRACT NO.	1 OF 1 PROJECT No.
		0894
TER RETICULATION		REV
	DATE OF FIRST ISSUE:	
Lyners_AutoCAD.ctb 2013-06-26		c:\users\sandra\documents\vlakke 1in2000 250814.drw

_			
	PROPOSED SERVICES STORMWATER 375mmØ MANHOLE/CATCHPIT 450mmØ 1050mmØ STORMWATER CHANNEL WATER 110mmØ 160mmØ SEWER 160mmØ SEWER 160mmØ 200mmØ 315mmØ 315mmØ		DOS a STORNWATER PLATS (GAP - CRU) 20 UNIS
		BULK SERVER (RUMBUR OFFICE 1:3728500	SPORTS FIELD BROPOSED ROYAL PAL
	LAYERS: EARTHWORKS (0894/EW/001) : 2 9 25 60 100 210 217 ROADS/SW (0894/RD/001) : 2 4 6 9 25 35 36 37 100-101 201 218-219 RD KERBS (0894/RD/002) : 2 4 6 9 25 100 101 203 204 205 2 RD DIMS (0894/RD/003) : 2 4 6 9 100 101 202 203 204 205 SEWERS (0894/FS/001) : 2 4 6 9 20 27 100 101 201 206 21 SEW HC (0894/FS/002) : 2 4 6 9 20 21 100 101 201 207 21 WATER (0894/W/001) : 2 4 6 9 16 17 26 50 100 101 201 WAT HC (0894/W/002) : 2 4 6 9 16 17 18 50 100 101 201 WAT HC (0894/W/003) : 2 4 6 9 16 17 18 50 100 101 201 COMBINED (0894/CS/001) : 2 4 6 9 16 17 20 25 100 101 201	210 212 214 . 13 218 219 200 212 11 210 215 200 210 200 210 200 210 200 210 200 210 200 210 200 210 200 210 200 210 200 211 210	
	0 50 100 150 200 m Scale 1:2500 Copyright of this document and/or drawing rests with Lyners, unless otherwise agreed to in writing and no part of this document and/or drawing may be reproduced copied or transmitted in any form or by any means whatsoever to any person without written permission by the copyright holder. All dimensions must be verified on site before the works commence. Refer any discrepancies to the Engineer.	Image: Second	DC SB SB

Lyners_AutoCAD.ctb

2013-06-26

MENT OF ERF 8378 PAARL	SCALE (ON A0 DWG) 1:2000	SHEET 1 OF 1
ND TOWNSHIP	CONTRACT No.	PROJECT No. 0894
T OF SEWER	DRAWING No. 0894/FS/001	REV
	DATE OF FIRST ISSUE:	

DRAKENSTEIN MUNICIPALITY

STORMWATER MANAGEMENT PLAN

FOR

THE PROPOSED DEVELOPMENT OF ERF 8378, PAARL, VLAKKELAND TOWNSHIP

OCTOBER 2013

Prepared for :

DRAKENSTEIN MUNICIPALITY P O BOX 1 MAIN STREET PAARL 7622

TEL : (021) 807 4500 FAX : (021) 872 8054 Prepared by :

LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS P O BOX 79 MAIN STREET PAARL 7622

TEL	:	(021) 87	72 0622
FAX	:	(021) 87	72 0619

TABLE OF CONTENTS

1	INT	RODUCTION AND SCOPE OF WORK	1				
2	LOC	LOCATION AND BACKGROUND 1					
3	INF	ORMATION UTILIZED	1				
4	GO	ALS OF THE STORMWATER MANAGEMENT PLAN	1				
5	EXI	STING STORMWATER DRAINAGE AND SERVICES	2				
6	COI	NCLUSION FROM STUDIES	2				
6.1	Dro	mmedaris emergency housing project report on bulk stormwater management	2				
	6.1.1	Summary	2				
	6.1.2	Proposed upgrades to be completed west of Jan van Riebeeck Drive	3				
	6.1.3	Cost estimates	4				
6.2	FLO	OD STUDY ERF NO 8378 (VLAKKELAND), PAARL – MBEKWENI, KLEINBOSCH AND DAL RIVERS .	4				
	6.2.1	Summary	4				
6.3	AQL	JATICS ASSESSMENT (VLAKKELAND, PAARL, WESTERN PROVINCE)	5				
	6.3.1	Summary	5				
7	STO	DRMWATER DRAINAGE AND CONTROL SYSTEM	5				
7.1	Purp	pose and design principles	5				
7.2	MIN	IOR SYSTEM	5				
7.3	MA.	IOR SYSTEM	5				
8	ANA	LYSIS OF THE PROPOSED STORMWATER DRAINAGE SYSTEM	6				
8.1	GEN	IERAL	6				
8.2	CON	ISTRAINTS	6				
8.3	Min	or system	6				
8.4	MA.	IOR SYSTEM	6				
	8.4.1	Preliminary design of channels	7				
	8.4.2	Preliminary design of detention facilities	8				
9	MAN	NAGEMENT REQUIREMENTS	9				
9.1	STO	RMWATER SYSTEM	9				
9.2	LITT	ER TRAPS	9				
9.3	DET	ENTION FACILITIES AND CHANNELS	9				
10	COI	NCLUSOIN	9				

ANNEXURES

- ANNEXURE A : DROMMEDARIS EMERGENCY HOUSING PROJECT REPORT ON BULK STORMWATER MANAGEMENT
- ANNEXURE B : FLOOD STUDY ERF NO 8378 (VLAKKELAND), PAARL MBEKWENI, KLEINBOSCH AND DAL RIVERS
- ANNEXURE C : AQUATICS ASSESSMENT (VLAKKELAND, PAARL, WESTERN PROVINCE)
- ANNEXURE D : PROPOSED STORMWATER LAYOUT
- ANNEXURE E : PROPOSED STORMWATER CHANNEL SECTIONS
- ANNEXURE D : ADDITIONAL CALCULATIONS

1 INTRODUCTION AND SCOPE OF WORK

Lyners was appointed by Drakenstein Municipality as part of the Jubelie Professional Resource Team (PRT) as Consulting Civil Engineers for the preparation of a Stormwater Management Plan for erf 8378, Paarl, Drakenstein.

This report is based on a draft town planning layout by Nuplan Africa dated 29 July 2013, site inspections, detailed survey, liaison with local authority, previous studies and available existing services information.

2 LOCATION AND BACKGROUND

A locality plan is attached in Annexure A. Erf 8378, Paarl is approximately 100ha and is situated east of Jan van Riebeeck Drive and west of Bo-Dal Road. It is bordered in the south by erf 1341 and the north by erven 2569 and 361 as well as Newton residential area.

During this study, a flood study and an Aquatics Assessment were completed by Sinske Consult and DH Environmental Consulting (DHEC) respectively to ensure that the correct design parameters were used during design and that no environmental issues could arise during the development of Vlakkeland.

After the aforementioned reports were completed, the PRT discussed the proposed house placement layout with Drakenstein Municipality for approval. During these discussions a report conducted by Ninham Shand (November 2002) was submitted to Lyners for assessment.

Drakenstein Municipality requested this study from the PRT to enable them to make an informed decision regarding the proposed layout.

3 INFORMATION UTILIZED

The following information was provided :

• Drommedaris Emergency Housing project report on bulk stormwater management by Ninham Shand Consulting Engineers (November 2002). Hereafter referred to as Shand Report. (Annexure A)

The following information was used in the preparation of this report :

- A detailed topographical survey of the entire site, including of existing culverts and existing channels,
- Site visits,
- Aerial photographs,
- A flood study Erf No 8378 (Vlakkeland), Paarl Mbekweni, Kleinbosch and Dal Rivers by Sinske Consult, June 2013. Hereafter referred to as Sinske Report. (Annexure B)
- An Aquatics Assessment by DHEC, June 2013. (Annexure C)
- Layout of proposed development by Nuplan Africa (2.551-houseplacements-01)

4 GOALS OF THE STORMWATER MANAGEMENT PLAN

The goal of the stormwater management plan are to :

- Reduce possible flood damage including damage to life, property and the environment.
- Minimize, to the extent practical, any increase in stormwater runoff from the new development.
- Reduce soil erosion caused by new development.
- Assure the adequacy of existing stormwater infrastructure.
- Maintain and prevent further damage to existing stormwater canals.

- Maintain the integrity of stream channels for their biological functions, as well as for drainage.
- To minimize pollution in stormwater runoff from new and existing developments and enhance the physical and biological integrity of stormwater and aquatic life.
- To protect the public safety through a proper design and operation of existing stormwater and additional runoff as a result of the proposed development.

To achieve these goals this plan outlines specific stormwater design and performance for the proposed development.

5 EXISTING STORMWATER DRAINAGE AND SERVICES

As prescribed in detail in the flood study, completed by Sinske Consult, the Vlakkeland development is affected by four rivers, namely :

- Mbekweni River,
- Seven Springs,
- Kleinbosch River; and
- Dal River

In Annexure D the proposed stormwater layout and culverts are indicated. All the above streams flow in a westerly direction towards Jan van Riebeeck Drive and ultimately flow through the three culverts (C, G and I) under Jan van Riebeeck Drive. The flow of culverts C and G joins west of Jan van Riebeeck Drive and continue to flow in the northern channel in a westerly direction.

Stormwater flow through culvert H and I, drains via in the southern channel in a westerly direction.

In the Drommedaris emergency housing project report on bulk stormwater management, certain constraints are stipulated which limits the amount of stormwater released from the Vlakkeland development. Three scenarios were evaluated and analyzed during the aforementioned study.

6 CONCLUSION FROM STUDIES

6.1 DROMMEDARIS EMERGENCY HOUSING PROJECT REPORT ON BULK STORMWATER MANAGEMENT

6.1.1 Summary

The peak flow rate for the Mbekweni catchment was determined as follows:

Flood	1:50	1:100
Peak flow rate	119m ³ /s	135m ³ /s

Three scenarios were evaluated. Scenario 1 represents that two boxes of (southern culvert) Culvert I are blocked and one partially blocked with an invert level of approximately 104.23 masl. Scenario 2 assumed that sediment in one of the blocked boxes of the culvert I is removed to an invert level of approximately 104.23 masl (same level of partially blocked box); and scenario 3 assumes that the entire culvert I are cleared to provide three 3m span x 2.5m rise openings.

With reference to Table 4 : "Maximum routed outflow and headwater elevation at Jan van Riebeeck Road culvert system" from the above mentioned report, the following are calculated.

Return	Culvert	Maximum discharge (m ³ /s)		Maximum headwater elevation (masl)		Overtopping level (masl)		
Period	Cuivert	Scenario		Scenario				
		1	2	3	1	2	2	
1:50 Year	Northern (culvert C)	24.0	19.0	10.0	106.84	106.61	106.24	106.91-107.0
	Middel (culvert G)	64.0	56.0	42.0				
	Southern (culvert I)	21.0	36.0	68.0				
	Total	109.0	111.0	120.0				

For each of the scenarios certain upgrades were proposed for each constraint. The report recommended that Scenario 2 should be implemented to accommodate the 1:50 year flood.

As discussed with Mr J Knaggs of Drakenstein Municipality, he also recommended that Scenario 2 must be further investigated for design purposes.

Therefore the upgrades required (according to scenario 2) on the west side of Jan van Riebeeck Drive should include the following:

6.1.2 Proposed upgrades to be completed west of Jan van Riebeeck Drive.

6.1.2.1 Northern Channel

The northern channel requires the following upgrades.

Location	Additional culverts/raise bank or bridge
Northern branch	0.9
Relocation bridge between Jan van Riebeeck and Pinzi Road	New clear span bridge
culverts	
Pinzi Road culverts (4x3mx2m)	1 x 3.0m x 2.0m
Zingizani Road culvert (4x3.4mx1.7m)	1 x 3.4m x 1.7m
Railway culvert (3x3mx2m)	1 x 3.0m x 2.0m

6.1.2.2 Southern Channel

The following two alternatives were proposed for a section of the southern channel in the Shand Report:

Alternative 1

The installation of culverts would minimize the risk, safety and would have considerable social benefits of facilitating access between adjacent communities as they will be divided by a channel.

Alternative 2

The flow in this section of the channel for this alternative will reach velocities of up to 4m/s and will be lined with concrete blocks or 300mm thick RENO mattresses. This channel will be easily maintained but the high velocities in this open channel would present a possible health and safety risk although the channel would be fenced. Therefore alternative 1 would be preferable.

The following table summarizes the proposed amendments to the southern channel.

Location	Proposed amendments		
Reach between Jan van Riebeeck and Mbekweni Road	Trapezoidal channel with 1:2 side slopes and base width of 4m		
Mbekweni Road culverts	3 x (2.4m x 1.8m) box culverts (one additional culvert barrel)		
Steen reach between	Alternative 1	Alternative 2	
Mbekweni Road culvert and stilling basin	1 x (3.6m x 2.4m) box culvert	Trapezoidal channel with 1:2 side slopes and base width of 4m	
Reach between stilling basin and Drommedaris Road	Trapezoidal channel with 1:2 side slopes and bose width of 4m		
Drommedaris Road culvert	2 x (3.6m x 1.5m) box culverts (one additional culvert barred		
Reach between Drommedaris Road and Railway culverts	Trapezoidal channel with 1:2 side slopes and base width of 8m		
Railway culverts	Existing 1 x (6m x 1.6m) box culvert		

6.1.3 Cost estimates

The capital cost estimates for scenario 2 are summarized in the table below. It should be noted that this cost estimate was conducted in November 2005 and should therefore be escalated.

Location	Cost Scenario 2 (2005)		Total Cost Scenario 2 (2005)	Total Cost Scenario 2 (2013)	
Northern Channel	R	382 157.00			
Southern Channel - Alternative 1	R	9 151 567.00	R 9 533 723.00	R 20 436 381.94	
Northern Channel	R	382 157.00			
Southern Channel - Alternative 2	R	5 027 161.00	R 5409317.00	R 11 595 351.39	

The estimated cost to complete the upgrades of the Northern Channel and Southern Channel, Alternative 1 is R 9 533 723.00 and for Alternative 2 the estimated cost is R 5 409 317.00. These costs include contingencies and VAT, but exclude professional fees and disbursements. These costs escalated at 10% per annum to 2013 will be approximately R 20 436 381.94 and R 595 351.39 for alternative 1 and 2 respectively.

6.2 FLOOD STUDY ERF NO 8378 (VLAKKELAND), PAARL – MBEKWENI, KLEINBOSCH AND DAL RIVERS

6.2.1 Summary

The peak flow rates (Post development) that cross Jan van Riebeeck Drive was determined and summarized in the table below.

Flood	1:50 Year	1:100 Year
Peak flow rate	88.7m ³ /s	113.1m ³ /s

Culvert/Inlet Location	1:50 Year (m³/s)	1:100 Year (m³/s)
А	10.6	13.0
В	10.6	13.0
С	10.6	13.0
D	7.2	9.2
Е	10.8	13.8
F	29.1	36.4
G	39.9	50.2
Н	38.2	49.9
I	38.2	49.9

All the post developments peak flow rates and requirements were determined and are summarized in the table below.

For the proposed development of Vlakkeland, the culverts, inlet and outlet structures should be designed to accommodate the above mentioned flow rates.

Several upgrades to existing culverts was proposed and will be implemented during the detailed designed of the proposed development.

6.3 AQUATICS ASSESSMENT (VLAKKELAND, PAARL, WESTERN PROVINCE)

6.3.1 Summary

The site encompasses a reach of highly degraded streamlines passing through the south western corner of the proposed development. Given that the streamline is already so degraded, from recent and historical abuse, it may be an option well-worth considering re-aligning the streamline.

The proposed position of the detention facility in the south-western corner of the site will be in a degraded area where a small dam once existed. A managed stormwater ponding system would serve the shortcoming of ponds in the area between Vlakkeland and Klein Vlakkeland properties.

7 STORMWATER DRAINAGE AND CONTROL SYSTEM

7.1 PURPOSE AND DESIGN PRINCIPLES

Stormwater system can be categorized into two systems, namely minor and major stormwater systems. The purpose and principle of stormwater control for the proposed development will be accommodated in a single system that includes a major and minor system.

7.2 MINOR SYSTEM

The primary goal of the minor system is to ensure convenience and safety to residents during normal rainfall. The minor system usually consist of road drainage channels and kerbs, kerb inlets, grid inlets, manholes, pipes and open channels to discharge runoff towards the major drainage system. The preliminary sizing of these elements are determined on the basis of short a duration, high intensity rainfall taking into account a concentrated flow entering the minor system.

7.3 MAJOR SYSTEM

The major system will not often be utilized to its full capacity as its purpose is to convey and control large floods. During more severe storms the minor stormwater networks will be flooded and allowance shall be made in the layout and design of roads for escape routes towards bulk stormwater channels and detention ponds. Trapped low points in the layout and design will be avoided as far as possible. These escape routes will consist of larger diameter pipes and channels to ensure stormwater is conveyed in a safe and efficient manner.

8 ANALYSIS OF THE PROPOSED STORMWATER DRAINAGE SYSTEM

8.1 GENERAL

The proposed site will be defined in one catchment area. Additional runoff will be conveyed towards Channel 1 (Seven Springs).

The Mbekweni River will be accommodated in open channel towards culverts B and C where it will flow in a westerly direction.

Runoff entering the proposed development on the eastern boundary will be directed through the stormwater system to culvert E. Channel 1 is proposed to accommodate the flow starting at D and flowing in a westerly direction towards culvert E and ultimately to culvert G. the streamline entering the site in the south will also be accommodated in this channel as proposed in the Aquatics Assessment by DH Environmental Consulting..

The Kleinbosch River will flow through culvert F and join Channel 1 and flow towards culvert G.

The Dal River will flow through culvert H towards culvert I.

8.2 CONSTRAINTS

Due to the constraints stipulated in the Shand Report, the amount of that may be released west of Jan van Riebeeck are summarized in the table below.

Culvert	1:50 Year flood (Scenario 2)
С	19m ³ /s
G	56m ³ /s
I	36m ³ /s
Total	111m³/s

Table 8.2.1 : Flow rate capacity of Jan van Riebeeck culverts

The required capacity of the culverts C, G and I according to the Sinske Report should be as follows :

Culvert	1:50 Year flood (m ³ /s)	1:100 Year flood (m ³ /s)
С	15.9	19.5
G	39.9	50.2
I	38.2	49.9
Total	94.0	119.6

Table 8.2.1 : Required flow rate of Jan van Riebeeck culverts

As the upgrades to the west of Jan van Riebeeck will only be able to accommodate the 1:50 year flood, therefore only the flow rates indicated in table 8.2.1 can be released even in a 1:100 year flood.

8.3 MINOR SYSTEM

The design of the minor stormwater system will allow for smaller floods as previously stated. Design principles will take into account engineering, environmental, ecological health and safety, aquatic, social, construction and design objectives.

8.4 MAJOR SYSTEM

8.4.1 Preliminary design of channels

The following preliminary designs were prepared regarding the sizing of channels.

8.4.1.1 Channel 1

This channel flowing from culvert D towards culvert E and ultimately to culvert G will consists of a combined low flow channel and high flow channel. The channel will have the following estimated dimensions.

The maximum flow depth during a 1:100 year flood will approximately be 0.84m. The channel will mainly consist of grass and grass blocks to ensure a natural feel to the channel. Grass blocks will only be installed in the low flow channel to ensure soil protection during high flow rates.

8.4.1.2 Channel 2

This channel flowing from inlet A towards culvert B and through culvert C will have the following estimated dimensions.

The channel will mainly consist of grass and grass blocks to ensure a natural feel to the channel.

The maximum flow depth of the proposed channel will approximately be 0.8m.

8.4.1.3 <u>Channel 3</u>

This channel flowing in a westerly direction from culvert H towards culvert I will have the following dimensions.

The channel will mainly consist of grass and grass blocks to ensure a natural feel to the channel.

The maximum flow depth of Channel 3 will be 0.88m.

8.4.2 Preliminary design of detention facilities

The Client requested that the additional runoff caused by the development of erf 2569 must also be accommodated by the Vlakkeland development. Currently the additional runoff caused by the development has not been confirmed, but is estimated at approximately 0.5m³/s and 0.6m³ for the 1:50 and 1:100 year floods. This additional detention was also accommodated in the design.

The detention ponds will accommodate the runoff and stormwater at two locations indicated on the layout in Annexure D.

Preliminary design calculations were carried out to determine the required volumes that will be required to return the 1:100 year flood for each detention pond. These calculations indicated that the 1:100 year flood can be accommodated in the detention ponds as described below.

8.4.2.1 Detention pond 1

Detention pond 1 situated to the north-western side of the proposed development next to Jan van Riebeeck Drive has an estimated 1:100 year peak inflow of $(19.5 + 0.6 = 20.1 \text{m}^3/\text{s})$ and an maximum outflow of $19 \text{m}^3/\text{s}$.

The proposed detention pond will require to be able to retain approximately 358m³ during a 1:100 year flood. The area available for detention is approximately 2.13ha (2130m³). Therefore a water depth of approximately 0.2m can be expected during a 1:100 year flood in Pond 1. The overtopping level of Jan van Riebeeck Drive according to Ninham Shand report is approximately 106.94MSL. A freeboard of at least 300mm will be implemented.

8.4.2.2 Detention facility 2

Detention facility/pond is situated to the south west of proposed development next to Jan van Riebeeck Drive. As previously discussed in Section 8.2 will detention pond 2 have an maximum inflow (1:100 year flood) of 101.1m³/s and an outflow of 92m³/s.

The required capacity to accommodate the runoff and stormwater will be 4910m³. An area of approximately 5.88ha (5880m²) is available for detention. The maximum water depth of detention pond 2 will be approximately 0.8m.

The entire detention facility will be able to accommodate approximately 31 500m³ before a level of 105.80MSL is achieved. The overtopping level of Jan van Riebeeck Drive according to Ninham Shand report is approximately 106.94MSL.

9 MANAGEMENT REQUIREMENTS

9.1 STORMWATER SYSTEM

Stormwater structures must be maintained and cleaned to remove silt and debris on a regular basis.

9.2 LITTER TRAPS

Liter traps should be cleaned on regular basis. Liter to be removed and disposed to municipal solid waste.

9.3 DETENTION FACILITIES AND CHANNELS

Detention facilities and channels should have a monthly maintenance program and must include moving of grass in ponds and channels as well asof alien vegetation if necessary. Rodding of drainage pipes must be conducted on a regular basis to ensure no debris are building up in the system.

10 CONCLUSOIN

This stormwater management plan gives a preliminary indication of how stormwater and runoff will be accommodated within the proposed development in terms of quantity and quality. It is however important to note that this report will have to be updated during the detail design phase as more information will be required and analyzed.

A possible Stormwater master plan must be conducted to ensure the assumption made during this report are acceptable.

Some of the existing structures and constraints (culverts, banks, ect) require to be upgraded west of Jan van Riebeeck. Some culverts on the proposed development can be removed while other must be replaced.

With reference to the Aquatics Assessment and the Flood study report there will be no insurmountable issues and constraints. Therefore is the proposed location, erf 8378, favorable for the development of Vlakkeland and will all requirements and constraints can be accommodated during the development thereof.

Fred Laker Pr Tech Eng Pr CPM MSAICE for LYNERS

ANNEXURE A :

DROMMEDARIS EMERGENCY HOUSING PROJECT REPORT ON BULK STORMWATER MANAGEMENT (SHAND REPORT)

ANNEXURE B :

FLOOD STUDY ERF NO 8378 (VLAKKELAND), PAARL – MBEKWENI, KLEINBOSCH AND DAL RIVERS (SINSKE REPORT)

ANNEXURE C :

AQUATICS ASSESSMENT

ANNEXURE D :

PROPOSED STORMWATER LAYOUT

ANNEXURE E :

PROPOSED STORMWATER CHANNEL SECTIONS

ANNEXURE F :

ADDITIONAL CALCULATIONS

Report

THE PROPOSED DEVELOMENT OF ERF 8378, PAARL, VLAKKELAND TOWNSHIP

ADDENDUM TO THE STORMWATER PLAN PREPARED BY LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS

> Report No.: MC160/1 Revision: 0 Date: 2014-08-27

Prepared by:

Graeme McGill consulting

PO Box 332 Durbanville 7551 Tel: 021 975 3255 Fax: 086 517 6574 enquiries@mcgillconsulting.co.za Prepare for:

LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS P O BOX 79 MAIN STREET PAARL 7622 TEL: (021) 862 0622 FAX: (021) 862 0619

THE PROPOSED DEVELOMENT OF ERF 8378, PAARL, VLAKKELAND TOWNSHIP

ADDENDUM TO THE STORMWATER PLAN PREPARED BY LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS

CONTENTS

		PAGE
1	PROPOSED DEVELOPMENT	1
2	SCOPE OF THIS STUDY	2
3	IMPACT OF CLIMATE CHANGE ON RAINFALL INTENSITY FOR VLAKKELAND	3
4	EVALUATION OF STORM RAINFALL USED IN THE SINSKE	
	REPORT	4
5	CONCLUSIONS	6
	REFERENCES	6

THE PROPOSED DEVELOMENT OF ERF 8378, PAARL, VLAKKELAND TOWNSHIP ADDENDUM TO THE STORMWATER PLAN PREPARED BY LYNERS CONSULTING ENGINEERS AND PROJECT MANAGERS

1 PROPOSED DEVELOPMENT

The Western Cape Government plans to develop low cost housing on Erf 8378, Paarl, Vlakkeland. As may be seen in Figure 1, the area is impacted by the runoff from four catchments, viz. the Mbekweni, Seven Springs,Kleinbosch and Dal Rivers.

FIGURE 1: THE PROPOSED DEVELOPMENT AREA IN RELATION TO THE FOUR CATCHMENTS (SINSKE, 2013)
2 SCOPE OF THIS STUDY

This study is in the form an addendum to the Stormwater Management Plan, which has been prepared by Lyners Consulting Engineers and Project Managers.

The study is also supplementary to the flood study which was prepared by the late Dr B. H. Sinske and includes earlier flood studies also prepared by him:

 Flood study Erf no. 8378 (Vlakkeland), Paarl – Mbekweni, Kleinbosch and Dal Rivers – June 2013.

The Drakenstein Municipality has subsequently requested that cogniscance be taken of the possible effects of future climate change on storm rainfall intensities and hence on the stormwater management plan.

This study serves to show that sufficient allowance has been made for the climate change effect.

3 IMPACT OF CLIMATE CHANGE ON RAINFALL INTENSITY FOR VLAKKELAND

The City of Cape Town commisioned the University of Kwazulu Natal to investigate the likely effect of climate change on storm intensities in the Western Cape. The recommendation from this investigation was that an increase of 15% be allowed for. This was accepted by the City and a set of point storm rainfall depths has been prepared for a one minute by one minute grid covering the Western Cape

The point rainfall figures applicable to the Vlakkeland catchments have been extracted friom the Western Cape database and are set out in Table 1 and Figure 2 below.

ACTOR								
Return		Eve	nt Durati	on/Rainfa	ll (inc CC	Factor)		
Period	Min	Min	Min	Min Min		Min	Min	Min
У	5	10	15	30	45	60	90	120
2	69.5	49.5	40.6	28.1	22.5	19.3	15.5	13.3
5	87.4	62.6	51.4	35.4	28.5	24.3	19.6	16.8
10	100.3	71.5	58.9	40.5	32.5	27.8	22.4	19.2
20	112.7	80.7	66.1	45.5	36.6	31.3	25.2	21.6
50	129.7	92.2	75.9	52.3	42.0	36.0	28.9	24.7
100	142.6	101.7	83.6	57.5	46.2	39.6	31.8	27.2
200	155.5	111.3	91.5	62.9	50.5	43.3	34.8	29.8

TABLE 1: POINT STORM RAINFALL INTENSITIES FOR VLAKKELAND EXTRACTED FROM CCT DESIGN GRID INCORPORATING CLIMATE CHANGE FACTOR

FIGURE 2: IDF CURVES FOR VLAKKELAND EXTRACTED FROM CCT DESIGN GRID INCORPORATING CLIMATE CHANGE FACTOR (DE WET, 2014)

4 EVALUATION OF THE STORM RAINFALL USED IN THE SINSKE REPORT

In the report prepared by Dr Sinske the Rational method was used with point rainfall figures extracted from hyetal maps produced by Dr Sinske (1982, 1993, 1999).

The time of concentration for the 4 main catchments. Mbekweni, Seven Springs, Kleinbosch and Dal Rivers range from approximately 0,5 hours to 1,5 hours.

Therefore in order to compare the storm rainfall used in the Sinske report with the figures from the UKZN investigation which included the climate change effect, a 1 hour storm event was evaluated. These data are listed in Table 2 and shown graphically in Figure 3.

It may be seen that the Sinske report point rainfalls are 12-51% higher than the UKZN's figures which includes the allowance for climate change increases.

TABLE 2: POINT STORM RAINFALL FOR VLAKKELAND EXTRACTED FROM CCT DESIGN GRID INCORPORATING CLIMATE CHANGE FACTOR

Return		Event Duration/Rainfall (inc CC Factor)												
Period	Min	Min	Min	Min	Min	Min	Min	Min						
У	5	10	15	30	45	60	90	120						
2	5.79	8.24	10.16	14.03	16.91	19.28	23.27	26.53						
5	7.28	10.43	12.84	17.71	21.35	24.34	29.36	33.50						
10	8.36	11.92	14.72	20.24	24.38	27.83	33.58	38.37						
20	9.39	13.46	16.52	22.73	27.45	31.32	37.76	43.13						
50	10.81	15.37	18.98	26.14	31.51	36.00	43.36	49.49						
100	11.88	16.94	20.89	28.75	34.65	39.60	47.76	54.47						
200	12.96	18.55	22.89	31.47	37.91	43.28	52.17	59.57						

FIGURE 3: SINSKE STORM RAINFALL COMPARED TO CCT DESIGN GRID INCORPORATING CLIMATE CHANGE FACTOR

5 CONCLUSIONS

The point storm rainfall figures used in the Sinske report, which forms the basis of the stormwater management plan for Paarl, Vlakkeland are 12-51 % higher than the UKZN storm rainfall data which includes a 15% increase for climate change.

It is therefore concluded that no further adjustment needs to be made to the Sinske report or to the Stormwater Management Plan to allow for climate change effect.

REFERENCES

Sinske, B.H. (1982) Bepaling van uiterste neerslag vir intermediere reenvalduurtes in Suidelike Afrika Water SA, 8 (3), pp 149-154.

Sinske, B.H. (1993) Vorlesing: Ingenieurshidrologie. Departement van Siviele Ingenieurwese, Universiteit van Stellenbosch.

Sinske, B.H. (1999) Vorlesing: Stedelike Waterboukunde. Departement van Siviele Ingenieurwese, Universiteit van Stellenbosch.

Sinske, B.H. (2013) Flood Study. Erf 8378 (Vlakkeland), Paarl, Mbekweni, Kleinbosch and Dal Rivers.

De Wet, Ben (2014) Stormwater and Sustainability, City of Cape Town, Personal Communication. City of Cape Town Design Rainfall Grid Incorporating a Climate Change Factor.

G A McGILL Pr Eng PrCPM 2014-08-27

Graeme McGill Consulting

		No:: 00:0000	804 10 x R ^w 1, x P.X Area 5.04693 5.04693 5.04693 5.04693 7.0000 10 7.0000 10	Vet Imeter P Occista Met Imeter Mater	TR R R R R R R R R R R R R R R R R R R	APESIU 0025	A 1 (%) 1 (%)	0 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)	< 2,5 (ma) 2,718072 2,718072 2,718072 3,0070500	E 1.108	1.142018 1.142018 1.178042
--	--	--------------	---	---	--	----------------	---------------------	---	--	---------	----------------------------------

U:!Werke1080010804 - PRT_Varkeland Drakensieln)Tee\Calc\00004 - Varkeland canal 2013-10-00 Xiex

UnWerke/0800/0804 - PRT_Viakkeland Drakenstein/TeoiCalc/CWV0894 - Viakkeland canal 2013-10-09. xisx

			Fr	1,16/198	Flood design	å å	Q100	ł.	1.187574
			u U	1.080				ш	1.226
	× 2,5		V (m/s)	2.840014				V (m/s)	3,015966
			0 ()(s)	37940.00				0 (SAI)	46412.33
_	W		(%)	1				1(%)	-
IN	APESIU			0.025				E	0.025
Sureet Namo:	TR		R	0.60016				æ	0,66778
			VVet Perimeter P	22,21637				Porimeter	22.74342
804 22vi x clev X x n/1 -	%vi x cieva x u/t =		Area A (m ⁵)	13.33333				Area A (m²)	15.18750
No:	>	100	νĒ	0.666607			100	ΨÊ	0.75000
hannel 4	dV = X	9	* (H)	18			9	3 E	18
Vlakkeland C	UL.	0	Side Slope	5		sth	0	Side Slope	9
Project :	Flow Depth	CH from	Channel Width (m)	22.00		Design Dep	CH from	Channel Width (m)	22.50

U:/Werke/0800/0864 - PRT_Vlakkeland Drakenstein/Tec/Calc/SW/0894 - Vlakkeland canal 2013-10-09 .xtex

U:\Werke\00000594 - PRT_Vtakkeland Drakenstein\Tec\Calc\SW0694 - Vlakketand canal 2013-10-00 xisk

Detention Pond 1, 1:50 Year Flood

DETENTION DAM SIZE FOR SVALL CATCHVENT FOR TC#T IN DURATION IS 3 TIMES TC AND PEAK RUNOFF AT TC

Detention Pond 1, 1:100 Year Flood

DETENTION DAM SIZE FOR SMALL CATCHMENT FOR TOT TO URATION IS 3 TIMES TO AND PEAK RUNOFF AT TO

Detention Pond 2, 1:50 Year Flood

DETENTION DAM SIZE FOR SWALL CATCHWENT FOR TC=T is DURATION IS 3 TIMES TO AND PEAK RUNOFF AT TC

Detention Pond 2, 1:100 Year Flood

DETENTION DAM SIZE FOR SMALL CATCHVENT FOR TC=T In DURATION IS 3 TIVES TO AND PEAK RUNOFF AT TO

SMPLE TRIANGULAR HYDROGRAPH WITH TC=T Is MAX RUNOFF OCCURS AFTER TC AND RUNOFF IS OVER 3 TIMES TC

Gladstonestraat ⊠ 3603 Tel: +21 SCALE									LEGEND								
PAAN ARROA TIVE PLANNING SOLUTIONS TIVE PLANNING SOLUTIONS 111 Gladstone Street, Durbanville, Suid-Afrika/South Africa Yogenzalley 7536 121 975-1265 PAARL - VLAKKEL PAARL - VLAK	PRIMARY MV CABLE ROUTE from DALWEIDING SUB TO SWITCHING SUBS OF PROPOSED DEVELOPMENT	PHASE BOUNDARIES PROPOSED DRAINAGE CHANNEL	SUBDIVISIONAL AREA BOUNDARY	FLATS (GAP / SOCIAL HOUSING)	SOCIAL HOUSING	TRA	GAP UNITS	SUBSIDY UNITS		TOTAL	PHASE 7: FLATS (SOCIAL) FLATS (GAP/SOCIAL)	PHASE 6: CONSERVATION AREA	PHASE 5: SUBSIDY HOUSING	PHASE 4: SUBSIDY HOUSING GAP	PHASE 3: SUBSIDY HOUSING	PHASE 2: SUBSIDY HOUSING GAP HOUSING	PHASE 1: SUBSIDY HOUSING GAP HOUSING TRA
5 ^s Plan Plan Plan Plan Plan Plan Plan Plan										3 250	504 200 704	•	475	- 72 72	555	215 190 405	308 219 512 1039

address

cell e-maíl Po Box 3615 Tyger Valley 7536

082-557 1164 info@eimac.co.za

15 September 2014

ERF VLAKKELAND DEVELOPMENT FRAMEWORK ELECTRICAL SERVICES

This report is a preliminary study and highlights the following aspects:

- Basis
- Electrical Authority
- Design Standards Imposed
- After Diversity Maximum Demand (ADMD)
- Bulk Connection and Methodology
- Capacity
- Metering
- Street lighting
- BICL
- Servitudes
- Primary MV Cable Routes
- Special Considerations

BASIS

The basis for this preliminary investigation is the drawing 2.552-S1-05, rev 1 May 2014 and related information.

ELECTRICAL AUTHORITY

The Electrical Authority as well as the Local Authority is the Electrical Department of Drakenstein Municipality with Offices in Paarl.

DESIGN STANDARDS IMPOSED

The design standards i.t.o. infrastructure design shall be those of the Electrical Department of Drakenstein Municipality.

The calculation methodology for the Electrical design is to be NRS034-1:2001 – Herman-Beta method and as amended by Drakenstein Municipal Tables.

AFTER DIVERSITY MAXIMUM DEMAND (ADMD)

Using the imposed calculation methodology, preliminary estimation of the ADMD requires a probable ADMD of 11.2MVA on a 7-year load profile and a probable ADMD of 14.8MVA on a 15-year load profile. These figures include the Civic and Business Nodes, Schools, Crèches, Sport Fields and Churches.

BULK CONNECTION AND METHODOLOGY

The preliminary Supply shall be at the existing Dalweiding S/S, to be upgraded to make provision for this development.

Additional switches and transmission equipment shall be required at the feeder Dalweiding S/S. Adequate space is available at the substation for such equipment.

The existing 185 mm² u/g cable running in a North-Easterly direction past the proposed development and feeding existing developments, can be used for an initial small phase of the development, but is inadequate for the total development.

New Bulk 185 mm² u/g transmission cables feeding from Dalweiding S/S shall therefore be required for this development. The total Bulk Infrastructure Upgrade Cost to be incurred by this proposed development shall be pro-rata calculated taking the ratio of required ADMD to Cable Capacity as basis for calculation. CAPACITY

Adequate Capacity shall be available at the Main feeder Dalweiding S/S for this development.

Dalweide S/S shall be upgraded and renewed to cater for the full capacity of this development

Capacity is Inadequate on the existing 185 mm² feeder cable running past the proposed development and a new cable system from Dalweiding S/S shall be required.

A small initial sub-phase can be considered on the existing feeder cabling, but would be inadequate for the first phase as anticipated (3.6 MVA)

METERING

Metering Methodology shall be in accordance with Municipal Requirement, but shall consist of either a splitmetering system or (where usage is less than 1000kW.h per month), prepayment metering.

STREET LIGHTING

Street lighting on Municipality-maintained roads to be:

- 12m bottom-entry and inner control gear chamber sectional steel poles with overhang luminaires, in accordance with Municipal specs on Class 2 distributors
- 9.5m bottom-entry and inner control gear chamber sectional steel poles with overhang luminaires, in accordance with Municipal specs on Class 3 and 4 distributors
- 6.5m bottom-entry and inner control gear chamber sectional steel poles with post-top luminaires, in accordance with Municipal specs on Class 5 distributors

All Lighting to be designed and specified in accordance with Municipal Specification, employing HPS Luminaires of various sizes and power.

BULK INFRASTRUCTURE CONTRIBUTION LEVY (BICL)

BICL shall be payable and is to be calculated in accordance with page 23 of the current Planning Department document.

Costs shall be incurred on upstream equipment at Dalweide S/S and on the upgrade of the feeder transmission cable system.

The total Bulk Infrastructure Upgrade Cost to be incurred by this proposed development shall be pro-rata calculated taking the ratio of required ADMD to Cable Capacity as basis for calculation.

The Pro-Rata Costs so incurred shall be for the account of the development, but is recoverable from the BICL.

address Po

cell e-maíl Po Box 3615 Tyger Valley 7536

082-557 1164 info@eimac.co.za

PRIMARY MV CABLE ROUTES

The Primary MV Cables to be installed for this proposed development are intended to route in the road reserve (on the eastern side thereof) of Jan van Riebeeck Drive. From Jan van Riebeeck Drive it shall route in the road reserve as part of the sidewalks of the main feeder road into the proposed development to the first and second new Switching Substation sites

These Cables to consist of composite sets of 185mm² 11kV underground cable.

SERVITUDES

The following Servitudes are required:

- For 2 Switching Substations 2 Erven of approximately 20mx20m
 - As part of Road Reserves or Public Open Spaces:
 - 6mx3m servitudes for minisubs
 - o 3m line servitudes for MV Cabling
 - o If Road Reserves are inadequate, servitudes must be registered.

SPECIAL CONSIDERATIONS

A warning flag: The BICL to be paid shall in all probability be inadequate to cover the prorata cost of upgrades and the residue shall be for the account of the development.

JJ Veldsman Pr Eng For Eimac(Pty)Ltd

VLAKKELAND PAARL (ENTIRE PROPOSED SITE)

										2014-09-15
COST ESTIMATE: ENGINEERING SERVICES				Inte	rnal	Li	nk	E	3ulk	Total
	Uı	nit	Rate	Quantity	Amount	Quantity	Amount	Quantity	Amount	TOTAL
Civil engineering services:										
Estimated construction period - months					50		5		58	
Preliminary and general	++		15,00%		14 737 609		1 507 908		17 340 934	33 586 452
Site Clearance		B/ha	20 000.00	101	2 020 000		-		-	2 020 000
Demolish existing infrastructure		Sum	100 000,00	3	300 000	-	-	-	-	300 000
Bulk Earthworks : Cut to Fill Bulk Earthworks : Cut to Stockpile		R/m3 R/m3	35,00		18 550 000	-	-	-	-	18 550 000
Bulk Earthworks : Cut to Spoil		R/m3	35,00	-	-	-	-	-	-	-
110mm HDPE PE100 PN12.5	\vdash	R/m	590.46	13 050	7 705 559		-	-	-	7 705 559
160mm HDPE PE100 PN12.5		R/m	580,27	1 500	870 411	-	-	-	-	870 411
200mm HDPE PE100 PN12.5 250mm HDPE PE100 PN12.5		R/m R/m	745,34	2 330	1 868 746	-	-	-	-	1 868 746
315mm HDPE PE100 PN12.5 355mm HDPE PE100 PN12.5		R/m B/m	865,51		-	-		-	-	
525mm GRP		R/m	1 760,45		-	-	-	-	-	-
Water Master Plan Item DWW 1.24a, DWW 1.24b & DWW 1.24c - 315 mm pipe Water Master Plan Item (Possible/provisional upgrades to Network)		R/m Sum	865,51		-	- 1 440	1 246 327	-	-	1 246 327
Water Master Plan Item DWW.B5 - Booster Pump Water Master Plan Items DWW.B23, DWW.B24 & DWW.B25 - 14200 m x 560 mm pipe		Sum Sum	3 300 000,00 53 900 000,00		-	-	-	1	3 300 000 53 900 000	3 300 000
Water Master Plan Items DWW1.27 & DWW1.47 - 1000 m x 250 mm pipe		R/m	745,34		-	-	-	1 000	745 336	745 336
Sewer	+	Sum			-	-	-		-	-
110mm PVC-U Class 34		R/m	640,20	-	-		-		-	-
160mm PVC-U Class 34 200mm PVC-U Class 34		R/m B/m	804,78 855,90	<u>13 665</u> 306	10 997 319 261 905	-			-	<u>10 997 319</u> 261 905
250mm PVC-U Class 34		R/m	909,80			-	-		-	
315mm PVC-U Class 34 355mm PVC-U Class 34		R/m R/m	1 047,87		-	-		-	-	
400mm GRP 450mm GRP	\vdash	R/m B/m	1 791,50		-	-	-	-		-
Water Master Plan Item (Possible upgrades to Network)		Sum	10 000 000,00			-	-	-		-
water Master Plan Items (DPS1.10) 144 m x 315 mm pipe Water Master Plan Items (DPS1.11b) 484 m x 200 mm pipe	┢┼┼	K/m R/m	1 047,87 855.90			144	150 893 414 256		<u> </u>	150 893 414 256
Water Master Plan Items (DPS1.11c & DPS1.11d) 656 m x 160 mm pipe	F	R/m	804,78			656	527 936	-	015 000	527 936
Water Master Plan Items (DPS1.3) 273 IIX 073 IIIII pipe Water Master Plan Items (DPS1.4) Upgrade to Pumping Station		Sum	360 000,00		-	-	-	1	360 000	360 000
Water Master Plan Items (DPS1.5) 1420 m x 500 mm rising main Water Master Plan Items (DPS1.6) 1025 m x 450 mm pipe	++	Sum R/m	3 390 000,00 1 948.90					1 025	3 390 000 1 997 623	3 390 000 1 997 623
Water Master Plan Items (DPS1.7) 505 m x 400 mm pipe	\vdash	R/m	1 791,50		-	-	-	505	904 708	904 708
Stormwater	\vdash	ວບເກ			-	-	-	-		-
300mm 100D		R/m	903,00		-		-		-	-
375mm 100D 450mm 100D		R/m R/m	1 068,75 1 463.00	<u>9 150</u> 1 550	9 779 063 2 267 650	-		-	-	9 779 063 2 267 650
525mm 75D		R/m	1 528,75	-	-	-	-	-	-	-
675mm 75D		R/m R/m	1 574,50	-	-	-		-	-	
750mm 75D 825mm 75D	\vdash	R/m B/m	2 123,00 2 308 75	-	-	580	1 231 340	-		1 231 340
900mm 75D		R/m	2 564,50	-	-	-	-	-	-	
1050mm 75D Subsurface drainage	++	R/m R/m	2 976,00 210,00	- 14 124	2 966 040	- 850	- 178 500	670 1 300	1 993 920 273 000	<u>1 993 920</u> 3 417 540
Outlet Structures	$ \rightarrow $	Sum B/m3	5 000,00	14	70 000			250,000	12 500 000	70 000
Overland stormwater channel 1		Sum	9 524 400,00	-	-	-	-	230 000	9 524 400	9 524 400
Replace and construction of Culverts	\vdash	Sum	1 500 000,00	-	-	-	-	4	6 000 000	6 000 000
Telkom ducts - 110mm single	+-+	R/m	354,60	4 220	1 496 412	425	150 705	-	-	1 647 117
Telkom ducts - 110mm double	\square	R/m	594,60	4 220	2 509 212	255	151 623	-	-	2 660 835
Electrical ducts - 110mm single		R/m	223,00	- 844	188 212	85	18 955	-	-	207 167
Electrical ducts - 110mm double Electrical ducts - 160mm single		R/m B/m	589,00 394 50	- 844	497 116	51	30 039 13 413	-	-	527 155
Electrical cable		R/m	594,60	-	-	-	-	-	-	-
Boads		R/m	223,00	-	-	-	-	-	-	-
Parking area		R/m2	42,53	-	-	-	-	-	-	-
8 m reserve - 4.5m premix 10 m reserve - 4.5m premix	\vdash	R/m R/m	- 2 456.37	- 11 066	- 27 182 135	-	-	-	-	- 27 182 135
13 m reserve - 5.0m premix		R/m	2 851,85	3 058	8 720 950	-	-	-	-	8 720 950
20 m reserve - 8m premix (with sidewalks 1.5m and 1 x 2.5m Parking)		R/m R/m	6 238,45 7 617,11	-	-	450 400	3 046 843	-	-	3 046 843
25 m reserve - 8m premix (with sidewalks 2.0m and 2 x 2.5 Parkings) Intersection and upgrades to existing infrastructure		R/m Sum	7 617,11	-	-			1 300	9 902 241 10 000 000	9 902 241
Misc works								.,		
Misc - Hard Landscaping feature	\square	Sum	-		-		-		- 1	-
Subtotal	\vdash		10.00%		112 988 339		11 560 632		132 947 160	257 496 131
Subtotal - Construction cost	\vdash		10,00%		124 287 173	1	12 716 695	1	146 241 877	283 245 744
Municipal levies (to be resolved)			-	-	-		-		- 1	-
Total for Civil engineering construction	\square				124 287 173		12 716 695		146 241 877	283 245 744
Civil engineering construction cost per erf	\vdash	3260			38 125		3 901		44 859	86 885
Electrical engineering services:	++									
Preliminary and general			-		-		-		-	-
Medium voltage network	Su	um um	-		-					
Street lighting & bollards	Si	um	0				-			-
Subtotal	100/		10.0001		-		-			-
Subtotal - Construction cost	10%		10,00%		-		-			
Misc electrical costs	Si	um			-		-		-	-
Total for Electrical engineering construction					-		-		-	-
Electrical engineering construction cost per erf	μĽ	3260			-		-			-
Civil and Electrical engineering construction cost - excl VAT					124 287 173		12 716 695		146 241 877	283 245 744
Professional fees - Disbursements										
Civil Engineering sevices (% value work)	\vdash				0.010.001.55		1 000 500 55		0.000.000.01	10 405 000 00
Disbursements	10%				<u>8 019 294,50</u> <u>801 9</u> 29,45		1239 502,55 123 950,25		9226803,21 922680,32	<u>1 848 5600,26</u> <u>1 848 5</u> 60,03
Total Fees for Civil engineering services					8 821 223,95		1 363 452,80		10 149 483,53	20 334 160,28
Electrical Engineering services	+-+								<u> </u>	
ECSA 2012 fees	\Box				-		-			-
Disoursements Total Fees for Electrical engineering services	┢──┼─				-		_		<u>├</u>	
Development cost - inclusive of civil alactrical comises and professional for	┢──┼─				100 100 000 00		-		156 001 000 05	-
	++	-			133 100 390,00		14 000 147,77		100 391 300,00	303 379 904,49
Development cost per ert - inclusive of fees		8280			16 075,89		1 700,50		18 887,85	36 664,24
Note : Bulk services contributions, Supervision, Geotechnical investigations, survey etc - to be allowed for in the fe	asibility - No	provision w	vas made for VAT							
		-								

P:\DA11 Werke\0800\0894 - PRT_Vlakkeland Drakenstein\Rep\Lyners\Services Report 2014\0894_Cost estimate for entire site rev1 September 2014