Stormwater Management Plan

Prepared by:
Phakanani Environmental Consultants
08 Burger Street
Polokwane
0699

Contact Person: Mr. Tsunduka Hatlane
Tel (LP): 015 295 7391
Tel (GP): 011 941 1953
Fax: 086 618 5960
Email: tsunduka@phakanani.co.za
Web: WWW.PHAKANANI.CO.ZA

Prepared for:
Jeka Resources (Pty) Ltd
78 The Plantation Club
Frederick Road
Fourways
2191

Contact Person: Mr. Thembani Jeffrey
Marhanele
Tel: (082) 305 0008
Facsimile: 086 667 0334
Email: thembani@jekaresources.co.za
PROJECT DETAILS

<table>
<thead>
<tr>
<th>DEA Reference No</th>
<th>DEA Ref: 14/12/16/3/3/2/1049</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project title</td>
<td>Proposed construction of a 90MW PV solar park project, and 66KV transmission line to connect to the existing substation over portions 3, 4, 6 and the remaining extent of the farm Weltevreden 746-LS within the Polokwane Local Municipality, Limpopo Province</td>
</tr>
<tr>
<td>Authors</td>
<td>Mr Tsunduka Hatlane (MSc) Ms Luceth Khumbuzi (BSc)</td>
</tr>
<tr>
<td>Client</td>
<td>Jeka Resources (Pty) Ltd</td>
</tr>
<tr>
<td>Report Status</td>
<td>Stormwater Management Plan</td>
</tr>
<tr>
<td>DEA Enquiries</td>
<td>Mr Vicent Chauke (012 399 9399 vchauke@environment.gov.za)</td>
</tr>
</tbody>
</table>
Table of Contents

1. PURPOSE .. 4
2. BRIEF DESCRIPTION OF THE SITE ... 5
3. STORMWATER MANAGEMENT PRINCIPLES .. 5
 3.1. Engineering Specifications ... 6
4. CONCLUDING STATEMENT.. 7
1. PURPOSE

It is widely recognized that developments impact negatively on drainage systems. By taking greater cognisance of natural hydrological patterns and processes, it is possible to develop stormwater management systems in a manner that reduces these potentially negative impacts and mimic nature. The main risks associated with inappropriate stormwater management are increased erosion risk and risks associated with flooding. Therefore, this stormwater management plan and the erosion management plan are closely linked to one another and be managed together.

This Stormwater Management Plan addresses the management of stormwater runoff from the development site and significant impacts relating to resultant impacts such as soil erosion and downstream sedimentation. The main factors influencing the planning of stormwater management measures and infrastructure are:

- Annual average rainfall;
- Rainfall intensities;
- Soil and vegetation cover;
- Topography and slope gradients; and
- Placing of infrastructure and infrastructure design.

The objective of the plan is to provide measures to address runoff from disturbed portions of the site, such that they:

- Do not result in concentrated flows into natural watercourses i.e. provision should be made for temporary or permanent measures that allow for attenuation, control of velocities and capturing of sediment upstream of natural watercourses.
- Do not result in any necessity for concrete or other lining of natural watercourses to protect them from concentrated flows off the development.
- Do not divert flows out of their natural flow pathways, thus depriving downstream watercourses of water.

This stormwater management plan must be updated and refined once the construction/civil engineering plans have been finalised.
2. BRIEF DESCRIPTION OF THE SITE

The proposed development area is situated approximately 8km south of the city of Polokwane within the Polokwane Local Municipality, Limpopo Province. The area is located adjacent the Witkop Silica Mine and Eskom Silica Substation. The proposed development includes the associated infrastructure.

The proposed development is located in the summer rainfall region of South Africa. The area receives about 500-600 mm mean precipitation per annum and 17.3°C mean annual temperature. The proposed site comprises soils of the shallower rocky soils like Glerosa/mispah soil form and topography of the study area is varied and moderately undulating plain of about 0-9%. There is no dam or natural wetland area present within the proposed site.

3. STORMWATER MANAGEMENT PRINCIPLES

In the design phase, various stormwater management principles should be considered including:

- Prevent concentration of stormwater flow at any point where the ground is susceptible to erosion.
- Reduce stormwater flows as far as possible by the effective use of attenuating devices (such as swales, berms, silt fences). As construction progresses, the stormwater control measures are to be monitored and adjusted to ensure complete erosion and pollution control at all times.
- Minimise the area of exposure of bare soils to minimise the erosive forces of wind, water and all forms of traffic.
- Ensure that development does not increase the rate of stormwater flow above that which the natural ground can safely accommodate at any point in the sub-catchments.
- Ensure that all stormwater control works are constructed in a safe and aesthetic manner in keeping with the overall development.
- Plan and construct stormwater management systems to remove contaminants before they pollute surface waters or groundwater resources.
- Contain soil erosion, whether induced by wind or water forces, by constructing protective works to trap sediment at appropriate locations. This applies particularly during construction.
- Avoid situations where natural or artificial slopes may become saturated and unstable, both during and after the construction process.
Design and construct roads to avoid concentration of flow along and off the road. Where flow concentration is unavoidable, measures to incorporate the road into the major stormwater system should be taken, with the provision of detention storage facilities at suitable points.

To assist with the stormwater run-off, gravel roads should typically be graded and shaped with a 2-3% crossfall back into the slope, allowing stormwater to be channeled in a controlled manor and to assist with any sheet flow on the site.

Where the construction of a building causes a change in the vegetative cover of the site that might result in soil erosion, the risk of soil erosion by stormwater must be minimised by the provision of appropriate artificial soil stabilisation mechanisms or re-vegetation of the area. Any inlet to a piped system should be fitted with a screen, or grating to prevent debris and refuse from entering the stormwater system.

Preferably all rivers and drainage channels on site and contained within the larger area of the property (i.e. including buffer zone) should remain in the natural state so that the existing hydrology is not disturbed.

3.1. Engineering Specifications

A detailed Stormwater Management Plan describing and illustrating the proposed stormwater control measures must be prepared by the Civil Engineers during the detailed design phase. This should include erosion control measures. Requirements for project design include:

- Erosion control measures to be implemented before and during the construction period, including the final stormwater control measures (post construction). The location, area/extent (m²/ha) and specifications of all temporary and permanent water management structures or stabilisation methods must be indicated within the Stormwater Management Plan.
- The drainage system for the site should be designed to specifications that can adequately deal with a 1:50 year intensity rainfall event or more to ensure sufficient capacity for carrying stormwater around and away from infrastructure. Procedures for stormwater flow through a project site need to take into consideration both normal operating practice and special circumstances. Special circumstances in this case typically include severe rainfall events.
- An onsite Engineer or Environmental Officer to be responsible for ensuring implementation of the erosion control measures on site during the construction period.
- The Developer holds ultimate responsibility for remedial action in the event that the approved stormwater plan is not correctly or appropriately implemented and damage to the environment is caused.
During the construction phase, the contractor must prepare a Stormwater Control Method Statement to ensure that all construction methods adopted on site do not cause, or precipitate soil erosion and shall take adequate steps to ensure that the requirements of the Stormwater Management Plan are met before, during and after construction. The designated responsible person on site, as indicated in the Stormwater Control Method Statement shall ensure that no construction work takes place before the stormwater control measures are in place.

An operational phase stormwater management plan should be designed and implemented, with a view to preventing the passage of concentrated flows off hardened surfaces and onto natural areas.

4. CONCLUDING STATEMENT

A detailed Stormwater Management Plan describing and illustrating the proposed stormwater control measures will be prepared.