

Wind Relic (Pty) Ltd 54 Thomas Road Walmer Port Elizabeth 6070 South Africa DNV Energy Systems Renewables Advisory Unit 1706

Unit 1706 17th Floor

Portside Building 4 Bree Street Foreshore, 8001

Cape Town, South Africa

Date:Our reference:Your reference:02 November 2021PP224951-PE-L-01Choje Solar

Dear Mr Newcombe,

CHOJE SOLAR PV PROJECTS - BASIC ASSESSMENT SUBMISSION: GEOTECHNICAL

The geotechnical investigations, field testing and reporting conducted thus far for the Choje wind and solar PV projects, bears reference.

An initial Desktop Geotechnical Report (*ref PP225941-ZACT-R-01*, February 2019) and a Preliminary Phase Geotechnical Study (*ref PP224951-PE-R-02-A*, September 2019) have been completed by DNV South Africa. These reports cover the Choje West site area, which encompasses the onshore wind and solar PV site footprints being contemplated by Wind Relic (Pty) Ltd. These investigations comprised of base geological, geohydrological, topographical and seismic mapping, followed by site intrusive studies (trial pitting, dynamic density testing and rotary core borehole drilling), selected sampling for laboratory analysis and geotechnical reporting. A 12-month groundwater monitoring survey has also been conducted on monitoring boreholes installed during these studies.

I can confirm that the geotechnical works completed thus for are sufficient for the purposes of initial site geotechnical evaluation as part of a Basic Assessment Reporting process for the contemplated 2x 300MW solar PV facilities.

Upon authorisation, prior to commencement of the design phase, a detailed geotechnical study comprising further drilling, trial pitting, geophysics, laboratory testing and pile deflection (pull-out) testing will need to be conducted in order to categorise and optimise an appropriate foundation design.

Sincerely for DNV South Africa (Pty) Ltd

Dr Richard Fyvie Principal Engineering Geologist SACNASP Registration #400287/07

Mobile: +27 76 904 3091 Direct: +27 21 418 1891 Richard.Fyvie@dnv.com

DNV·GL

Choje Windfarm Preliminary Geotechnical Investigation

WIND RELIC

Document No.: PP224951-PE-R-02-A

Date: 02 October 2019

IMPORTANT NOTICE AND DISCLAIMER

- 1. This document is intended for the sole use of the Customer as detailed on the front page of this document to whom the document is addressed and who has entered into a written agreement with the DNV GL entity issuing this document ("DNV GL"). To the extent permitted by law, neither DNV GL nor any group company (the "Group") assumes any responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Customer), and no company in the Group other than DNV GL shall be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by DNV GL, the Group or any of its or their servants, subcontractors or agents. This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.
- This document is protected by copyright and may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated or referred to in this document and/or in DNV GL's written agreement with the Customer. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of DNV GL. A Document Classification permitting the Customer to redistribute this document shall not thereby imply that DNV GL has any liability to any recipient other than the Customer.
- 3. This document has been produced from information relating to dates and periods referred to in this document. This document does not imply that any information is not subject to change. Except and to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, DNV GL shall not be responsible in any way in connection with erroneous information or data provided to it by the Customer or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.
- 4. Any wind or energy forecasts estimates or predictions are subject to factors not all of which are within the scope of the probability and uncertainties contained or referred to in this document and nothing in this document guarantees any particular energy output, including factors such as wind speed or irradiance.

KEY TO DOCUMENT CLASSIFICATION

For disclosure only to named individuals within the Strictly Confidential

Customer's organization.

For disclosure only to individuals directly concerned with

the subject matter of the document within the Customer's

organization.

Commercial in Confidence Not to be disclosed outside the Customer's organization.

Not to be disclosed to non-DNV GL staff. DNV GL only

Distribution for information only at the discretion of the

Customer (subject to the above Important Notice and Customer's Discretion Disclaimer and the terms of DNV GL's written agreement

with the Customer).

Available for information only to the general public (subject Published

to the above Important Notice and Disclaimer).

Private and Confidential

Project name: Choje Wind Farm DNV GL - Energy Report title: Preliminary Geotechnical Investigation Renewable Advisory Customer: Wind Relic, 15th Floor, Metife Centre Thomas Road, Walmer, Port Elizabeth, South Africa 7 Walter Sisulu Avenue, Contact person: Mr Bill Emslie, Mr Hylton Newcombe Foreshore, Cape Town, South Date of issue: 2 October 2019 Africa PP224951 Project No.: PP224951-PE-R-02-A Document No.: Issue: Α Status: DRAFT Task and objective: Preliminary Geotechnical Investigation for the proposed Choje Windfarm, Eastern Cape, South Africa Prepared by: Verified by: Approved by: R Fyvie D Rimmer G van der Toorn Principal Engineer Senior Engineer Country Manager ☐ Strictly Confidential Keywords: ☐ Private and Confidential ☐ Commercial in Confidence ☐ DNV GL only □ Customer's Discretion ☐ Published © 2017 DNVGL Entity All rights reserved. Reference to part of this report which may lead to misinterpretation is not permissible. 2 October 2019 Α DRAFT R. Fyvie D. Rimmer G van der Toorn

Table of contents

EXECUTIVE SUMMARY	VII
1 INTRODUCTION	
1.1 Terms of Reference	1
1.2 Technical Investigation Standards	1
2 LOCAL AND REGIONAL GEOLOGY, SEISMICITY AND TOPOGRAPHY	2
3 INVESTIGATION METHODOLOGY	2
3.1 Boreholes	4
3.2 Trial Pits	5
3.3 Dynamic Cone Penetrometer (DCP) Tests	6
4 TESTING POSITIONS AND ROUTE EXCAVATABILITY	7
4.1 Soft excavation	7
4.2 Intermediate excavation	8
4.3 Hard rock excavation	8
4.4 Boulder excavation Class A	8
4.5 Boulder excavation Class B	9
5 GEOTECHNICAL RESULTS	9
5.1 Ground Profile	9
5.2 Laboratory Test Results	15
•	
6 GEOTECHNICAL SITE ASSESSMENT AND RECOMMENDATIONS	22
6 GEOTECHNICAL SITE ASSESSMENT AND RECOMMENDATIONS	
6.1 Turbine Foundations	23 24
6.1 Turbine Foundations	23 24
6.1 Turbine Foundations	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability 6.4 Site Structures	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability 6.4 Site Structures 6.5 Excavatability	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability 6.4 Site Structures 6.5 Excavatability 6.6 Use of on-site materials	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability 6.4 Site Structures 6.5 Excavatability 6.6 Use of on-site materials 6.7 Site Drainage	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability 6.4 Site Structures 6.5 Excavatability 6.6 Use of on-site materials 6.7 Site Drainage 6.8 Further Studies Required	
6.1 Turbine Foundations 6.2 Crane Platforms and Access Roads 6.3 Slope Stability 6.4 Site Structures 6.5 Excavatability 6.6 Use of on-site materials 6.7 Site Drainage 6.8 Further Studies Required 7 CONCLUSION	

Table of tables

Table 5-1: Borehole Simplified Results	10
Table 5-2: Trial Pit Horizon Summary Table	14
Table 5-3: Atterberg Limits and Particle Size Test Results	17
Table 5-4: Soil Density and Strength Test Results Summary	18
Table 5-5: UCS Strength Test Results	
Table 5-6: Point Load Test Results	
Table 5-7: Soil corrosivity tests results	
Table 5-8: Groundwater chemistry tests results	22
Table 6-1: Borehole excavatability estimations	26
Table of plates Plate 1: Rotary core drilling at borehole position E64	
Table of charts	
Chart 6-1: DCP Penetration Results	16

APPENDICES

Appendix A: Borehole and Trial Pit Orientation Plans

Appendix B: Borehole Logs

Appendix C: Trial Pit Profiles

Appendix D: Laboratory Test Results

List of abbreviations

Abbreviation	Meaning
ACI	American Concrete Institute
AISC	American Institute of Steel Construction
ASTM	American Society for Testing and Materials
BS	British Standard
CBR	California Bearing Pressure
CPT	Cone Penetration Test
CSW	Continuous Surface Wave
DCP	Dynamic Cone Penetrometer
DPSH	Dynamic Penetrometer Super Heavy
DNV	Det Norske Veritas
DNV GL	DNVGL Entity
IBC	International Building Council
IEC	International Electrotechnical Commission
LS	Linear Shrinkage
MASW	Multi-Channel Analysis of Surface Waves
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PI	Plasticity Index
RQD	Rock Quality Designation
SANS	South African National Standard
SPT	Standard Penetration Test
TLB	Tractor-Loader-Backhoe
WTG	Wind Turbine Generator

EXECUTIVE SUMMARY

DNV GL has conducted a preliminary geotechnical investigation for the proposed Choje Wind Farm. This report follows from the Choje Wind Farm Desktop Report, which provides the background geological information and site description for the project. The preliminary geotechnical investigation (first phase) consisted of nine rotary core boreholes, drilled from surface to a depth of 30m. Boreholes were supplemented by additional trial pit excavation at borehole positions, as well as at the proposed Eastern Block substation and Western Block 400MTS. Trial pits and boreholes were sampled where appropriate and samples submitted for a suite of laboratory-based geotechnical testing. All logs and test results are contained within this report. The study was conducted as an initial early-stage investigation into the variability of sub-surface conditions that may be expected to be encountered across the site. It is intended to be followed by further Preliminary Geotechnical Investigations, as well as then the detailed geotechnical investigation prior to final foundation design.

The results of the preliminary geotechnical investigation indicate that generally hard rock conditions prevail close to surface across the majority (approximately 70%) of the site. The underlying strata consists of sandstone, siltstone, mudstone and tillite. Excavation for founding will necessitate the use of localized blasting or hard excavation to reach anticipated founding depth. In the remaining 30% of ground conditions, very soft rock, deep sands and weathered pedogenic calcrete were encountered. These would require soil improvement methods through an adapted foundation design, the potential shifting of turbine locations to areas of better founding, or the cancellation of turbines located at complex founding sites.

DNV GL has provided recommendations for further geotechnical testing and investigations required at the Choje Windfarm site during supplementary phases of ground investigation.

1 INTRODUCTION

DNV GL South Africa was appointed to conduct early-stage geotechnical investigations at a site in the Eastern Cape, South Africa, in support of the proposed Choje Wind farm development. The project proceeded with a site visit undertaken by DNV GL and Wind Relic (the "Customer"), culminating in the production of PP225941-ZACT-R-01-A Choje Wind Farm Desktop Geotechnical Report in February 2019. The Choje Wind Farm Desktop Geotechnical Report should be read in conjunction with this report for the project background and supporting geological information.

The Choje Wind Farm project will consist of an estimated 3000MW of onshore wind turbines, divided into an Eastern and Western block, located between Grahamstown and Somerset East, Eastern Cape, South Africa. The project is intended to be developed in multiple phases, with initially approximately 550MW in the Eastern Block, and 1250MW in the West. These may be divided into 6 sub-windfarms, of approximately 200-250MW size. Current layout iterations are being conducted by DNV GL, modeled on a series of differing turbine sizes in the 4 – 6MW range. Provisional layouts have been utilised in selecting the drilling and testing positions for this preliminary geotechnical survey. It is conceivable that the positions may shift with further refinement, however this is not a significant concern as the preliminary geotechnical study is not intended to supply point-specific geotechnical data, but rather an initial insight into potential geologies that may be encountered on the site.

The study involved the drilling of 9 HQ-sized rotary core boreholes at proposed turbine positions, 26 trial pits and 26 in-situ Dynamic Cone Penetrator (DCP) tests at turbine locations, crane platforms and substation positions. Selected disturbed samples were retrieved from testing positions for laboratory analysis.

The ground conditions described in this report refer specifically to those encountered in the excavated trial pits and drilled boreholes. It is therefore quite possible that differing conditions may be encountered elsewhere on the sites during construction. There is no warranty that the information is totally representative of the whole investigation area.

1.1 Terms of Reference

DNV GL has been appointed by Wind Relic (the "Customer") to conduct a number of development-phase activities in support of the establishment of the proposed Choje Wind Farm. This includes the preliminary geotechnical investigation report, conducted by DNV GL South Africa in terms of accepted proposal and signed SFA #L2C177021_SA_P_01-A_V1. Subcontractors utilised in support of the production of this report include *Outeniqua Geotechnical Laboratories* of George (geotechnical testing and field support), *ControLab Materials Testing Laboratory* of East London (rock sample testing) and *JG Afrika Engineers* of Durban (geohydrology).

1.2 Technical Investigation Standards

- The geotechnical investigation was performed according to best practice as directed by the following Standards:
- SANRAL, (2010). Standard Specification for Subsurface Investigation;

- Committee of State Road Authorities, (1993). Standard Specification for Subsurface Investigations;
- SABS 1200D (1988). Standardized Specification for Civil Engineering Construction;
- Jennings, J.E., Brink, A.B.A. and Williams, A.A.B. (1973). *Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa*. Transactions of the South African Institution of Civil Engineers, Vol. 15;
- Proceedings of the Symposium on Exploration for Rock Engineering (1976). A Guide to Core Logging for Rock Engineering. Core Logging Committee of the South Africa Section of The Association of Engineering Geologists.

2 LOCAL AND REGIONAL GEOLOGY, SEISMICITY AND TOPOGRAPHY

Readers are referred to the previous issued DNV GL report for this project, PP225941-ZACT-R-01-A Choje Wind Farm Desktop Geotechnical Report dated 21 February 2019, for comment on previous geotechnical work in the area, local and regional geological environment, seismicity, a description of the topographical conditions, comment on construction materials, and Geotechnical Founding Classes of the Choje Windfarm site.

3 INVESTIGATION METHODOLOGY

The field investigation entailed:

- (i) The drilling of nine (9) HQ3-sized boreholes at predetermined WTG foundation positions utilising rotary core drilling methods. Boreholes were drilled vertically, to depths of 30m each;
- (ii) The machine excavation of trial pits at predetermined positions at each of the 9 selected turbine positions. One trial pit was excavated within the foundation footprint, and a second trial pit excavated approximately 50 70m away at the potential crane platform position;
- (iii) The retrieval of selected disturbed subsoil samples and groundwater samples for laboratory analyses;
- (iv) The establishment of *in situ* density conditions, where possible, adjacent to excavated trial pits through Dynamic Cone Penetrometer (DCP) testing.
- (v) Disturbed samples were retrieved from boreholes and trial pits and submitted to a South African SANAS-Accredited Civil Engineering laboratory (*Outeniqua Geotechnical Laboratories*) in accordance with South African National Standards (SANS) test methods (TMH1 and SANS3001), British Standards (BS) or the American Society for Testing and Materials (ASTM) standards as applicable.

Figure 1 overleaf provides illustrates the positions of all borehole and trial pit investigation points on the site.

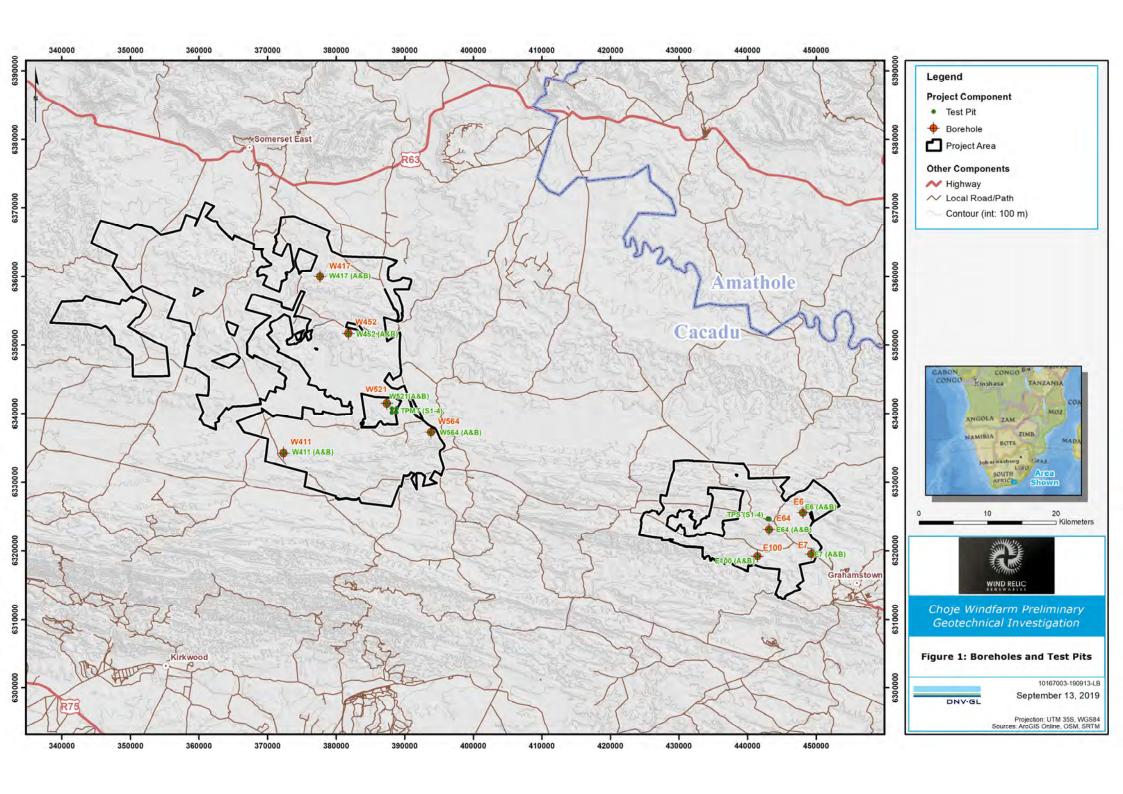


Table 3.1 indicates the various investigation methods employed on site. Additional in-situ forms of testing not yet deployed during the preliminary study are still reflected in the table headings for indicative planning for the detailed geotechnical investigation.

Table 3.1: Investigation Methods

Turbine Position	Borehole	Standard Penetration Test	Electrical Resistivity	Thermal Resistivity	Standpipe Installed	CSW	DCP	MASW	Trial Pit
E6	Х	Х					X2		X2
E7	Х	Х					X2		X2
E64	Х	Х					X2		X2
E100	Х	Х					X2		X2
*SS-E Block							X4		X4
*400 MTS-W							X4		
Block									X4
W411	Х	X			Х		X2		X2
W417	Х	Х			Х		X2		X2
W452	Х	Х			Х		X2		X2
W521	Х	Х			Х		X2		X2
W564	Х	Х			Χ		X2		X2

^{*} Substation position

3.1 Boreholes

Nine (9) boreholes were drilled at predetermined WTG positions utilising rotary core drilling methods, on a HQ3 drill-string size by the drilling Contractor *EarthTech Geotechnical Services*. Sampling during the exploration was performed using Standard Penetration Test (SPT) where possible, although SPTs widely refused across the site owing to dense residual soils and weathered rock. Split spoon tube sampling was also attempted, however geological conditions did not cater for any successfully being retrieved. The positions of all WTG boreholes are illustrated in Figure 1. The soil conditions and rock strata described using standard methods and terminology outlined by *Jennings et al.* (1973) and the *Core Logging Committee of South Africa* (1976). Borehole logs and photographic plates are included in Annexure B.

Representative soil samples were subjected to laboratory testing, including Particle Size, Atterberg Limits, hydrometer, Moisture Content, whereas representative rock core samples were subjected to Point Load Strength Index and Unconfined Compressive Strength (UCS) tests. Fifty-millimeter standpipes were installed in all boreholes after completion of the drilling and core extraction. Boreholes were flushed after a minimum of three-day period (in order for the drilling fluid *Easimix* to degrade) and then sampled on the recharged groundwater. Groundwater samples were collected from several boreholes for pH and electrical conductivity

(EC) tests to determine the corrosivity (acidity and salinity) of groundwater against buried structures and services.

Plate 1: Rotary core drilling at borehole position E64

3.2 Trial Pits

Twenty-six (26) trial pits were machine excavated at predetermined positions by means of a Tractor-Loader-Backhoe (TLB). The co-ordinate positions of all trial pits are illustrated in the logs attached in Annexure C.

One (1) trial pit, at each of the WTG founding positions was excavated to a depth of 3.00m or refusal, whichever came first. In addition, one (1) trial pit, was excavated approximately 50-70m away at each of the potential crane platform positions. Four (4) trial pits were also excavated as the proposed Eastern Block substation position, to a depth of 3.00m each or refusal, whichever came first. Another four (4) trial pits were additionally excavated at the proposed 400 MTS position on the Western Block.

All trial pits were profiled by and the soil conditions described using standard methods and terminology outlined by Jennings et al. (1973) Representative soil samples retrieved from trial pits were subjected to Modified AASHTO moisture/density, California Bearing Ratio (CBR), Foundation Indicator, Moisture Content, Relative Density and Thermal Resistivity. Representative samples of various soil types were collected for pH and electrical conductivity (EC) to determine the potential aggressiveness (corrosivity) of the soil towards buried structures and underground electrical services.

Plate 2: Trial pit excavation at W417 position (photo credit: Outeniqua Geotechnical Laboratory)

3.3 Dynamic Cone Penetrometer (DCP) Tests

DCP tests were conducted adjacent to trial pit at the turbine locations and substation positions. Tests were conducted from the current surface level to depths of 2m or refusal, which ever come first.

An aspect of DCP testing that must always be noted is the climatic condition on the day the tests are undertaken, as precipitation events may adjust the shaft frictional indices and affect results. DCP testing was conducted under *dry conditions* during the Choje Preliminary Study, with no recent rainfall having been recorded in the area. Soil moisture content values were therefore low.

The results of DCP tests are provided in accompaniment to the trial pit logs in Appendix C of this report.

4 TESTING POSITIONS AND ROUTE EXCAVATABILITY

Figure 2 below provides an indication of the borehole and trial pit orientation relationship at WTG E100 position. The remaining 8 borehole/trial pit orientation plots (**Figures 3-10**) are presented in Appendix A.

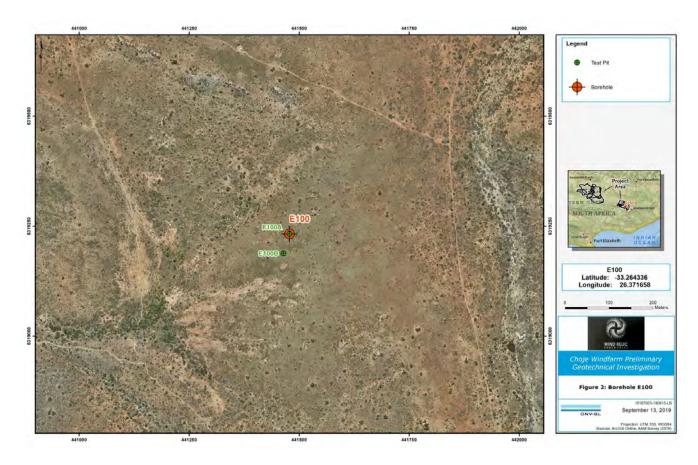


Figure 2: Borehole E100 position plan

Excavatability considerations for the turbine positions and access road routes are described in terms of SABS 1200 D (1988). Excavatability indicates the ease at which *in-situ* material is removed and what excavation methods should be utilised. Excavation classes are provided based upon the ease at which material can be removed by mechanised plant of varying power classes.

4.1 Soft excavation

Soft excavation, other than in restricted excavation, shall be excavation in material that can be efficiently removed or loaded, without prior ripping, by any of the following plant:

i) a bulldozer of mass (including mass of ripper if fitter) approximately 22t and flywheel power approximately 145 kW, or

- ii) a tractor-scraper unit of total mass approximately 28t and flywheel power approximately 245 kW, pushed during loading by a bulldozer equivalent to that specified in (b) (1) below, or
- iii) (iii) a track type front-end loader of mass approximately 22t and flywheel power approximately 145 kW

In the case of restricted excavation, soft excavation shall be excavation in material that can be efficiently removed by a back-acting excavator of flywheel power approximately 0.1- kW per millimeter of tined-bucket width, without the use of pneumatic tools such as paving breakers.

4.2 Intermediate excavation

Intermediate excavation, other than in restricted excavation, shall be excavation (excluding soft excavation) in material that can be efficiently ripped by a bulldozer of mass approximately 35t, fitted with a single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220 kW.

In the case of restricted excavation, intermediate excavation shall be excavation (excluding soft excavation) in material that requires a back-acting excavator of flywheel power exceeding 0,10 kW per millimeter of tined-bucket width or the use of pneumatic tools before removal by equipment equivalent to that specified in above.

4.3 Hard rock excavation

Hard rock excavation, other than in restricted excavation, shall be excavation (excluding boulder excavation) in material that cannot, before removal, be efficiently ripped by a bulldozer equivalent to that specified in above. It must be noted that such excavation generally includes material such as formations of unweathered rock that can be removed only after blasting.

In the case of restricted excavation, hard rock excavation shall be excavation in material (excluding boulder excavation) that cannot be efficiently removed without blasting or without wedging and splitting.

For the purposes of isolated hard rock excavation, this may also include the use of an excavator-mounted rock hammer (rock pecker).

4.4 Boulder excavation Class A.

Boulder excavation Class A shall be excavation in material containing more than 40% by volume of boulders of size in the range 0,03-20 m³, in a matrix of soft material or smaller boulders. Excavation of solid boulders or lumps of size exceeding 20 m³ will be classed as hard rock excavation.

Excavation of fissured or fractured rock will not be classed as boulder excavation but as hard rock or intermediate excavation, according to the nature of the material.

4.5 Boulder excavation Class B.

Boulder excavation Class B shall be excavation of boulders only, which are in a material containing 40% or less by volume of boulders of size in the range of 0,03-20 m³, in a matrix of soft material or smaller boulders, and which require individual drilling and blasting in order to be loaded by a track type front-end loader or back-acting excavator, as the case may be, as specified in (a) above. The excavation of the rest of the material will be classed as soft or intermediate excavation, according to the nature of the material.

Estimation percentages of excavation classes for the existing access roads on the site are based upon a 1.0m deep roadbed excavation, and reflected below:

	Excavation Class (SABS 1200D)	Estimated Percentage (%)
а	Soft excavation	65
b	Intermediate excavation	15
С	Hard excavation	10
d	Boulder excavation Class A	5
е	Boulder excavation Class B	5

It must be noted that the excavation percentages stated above are estimates generated from point-source information in the form of trial pits placed at potential turbine positions and sub-station sites. No guarantee can be provided for variations in excavatability conditions in between trial pit locations.

5 GEOTECHNICAL RESULTS

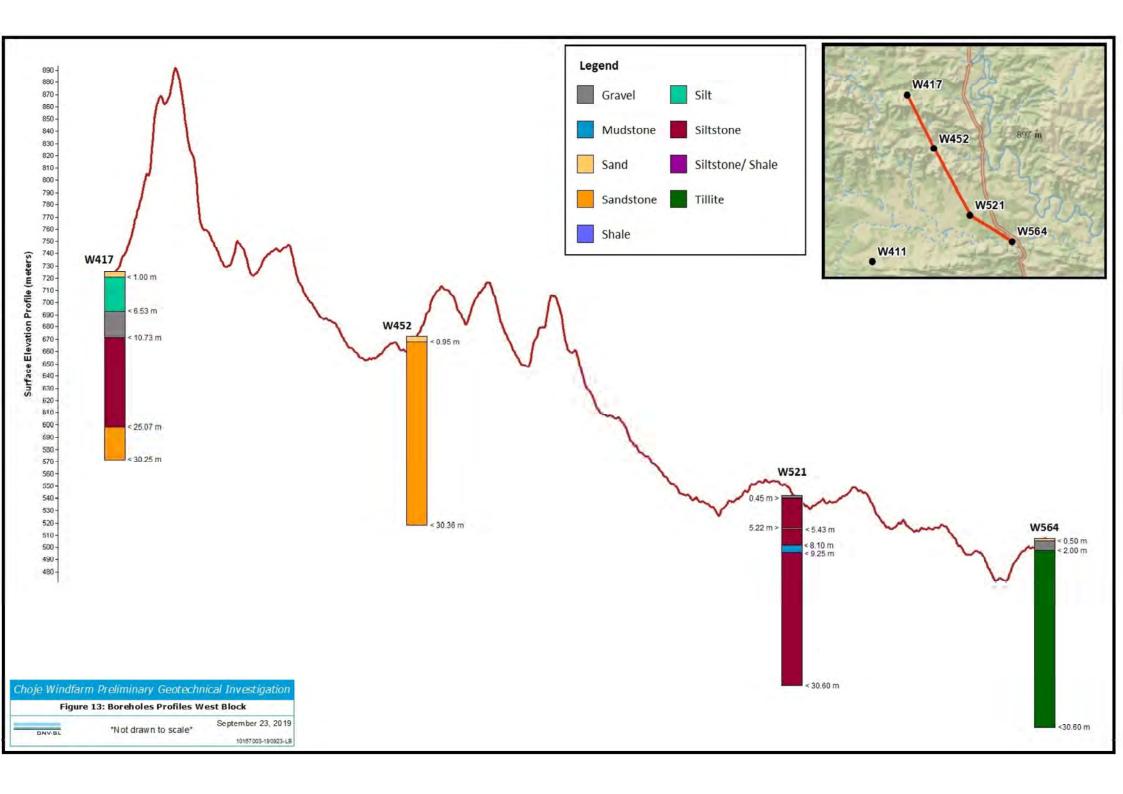
5.1 Ground Profile

The results of the field studies at the Choje windfarm site allow a general picture of the regional soil and rock conditions to be compiled. The significant size of the project means that the geological terrain varies markedly across the site area, with individual turbine positions sited in deep soils and hard rock alike. General themes for the broad area, however, are consistent and may be informed upon to guide the initial preliminary design of WTG foundations, access roads and structures. Table 5.1 provides a summary of the most significant information gathered from the nine boreholes drilled on the Eastern and Western Blocks.

The local rock types observed in the boreholes consisted of sedimentary rock types sandstone, siltstone, mudstone and shale, as well as a large amount of glacial tillite. The near-surface part of the rock profile demonstrated high to moderate weathering and a tendency for high to moderate fracturing. Rock hardness varies according to rock type, with sandstone and tillite typically being medium to very hard and the argillaceous rocks being very soft to medium hard.

Significant variation in the hardness of the tillite was observed between boreholes (compare logs from E7 and E64), associated with the degree of weathering the tillite has been subjected to under the influence of groundwater. Significant core loss was recorded in a number of the boreholes at shallow founding depth of

2-4m (e.g. E6, W411, W417 – See Appendix B). Core loss in calcareous soils is unsurprising (W417), as fines wash out during the drilling process, however core loss in rock is largely due to the highly fractured, highly weathered and soft nature of shallow rock at these positions.


Table 5-1: Borehole Simplified Results

Borehole No.	Description	Soil Cover Depth	SPTs	Rock Condition	Medium Hard Rock Depth	Groundwater Depth
E6	Dense gravelly silty SAND, overlying light brown SILTSTONE rock	2.89m	1.45m (R) 2.80m (R) 5.55m (R)	Highly weathered, highly fractured, very soft rock. Significant core loss above 6m.	Below 6m	8.81m
E7	Medium dense gravelly SILT, overlying light brown to grey TILLITE rock	0.75m	1.50m (R)	Highly weathered, very highly to moderately fractured very soft to soft rock,	Below 15.7m	None
E64	Medium dense GRAVEL with COBBLES, overlying dark olive TILLITE rock	0.62m	-	Moderately weathered, very highly to moderately fractured, hard rock	Below 0.62m	22.11m
E100	Medium dense silty GRAVEL, overlying red- orange to black SHALE	1.67m	-	Highly weathered, highly to very highly fractured, very soft rock	Soft rock below 16.6m	16.85m
W411	Dense silty gravelly SAND, overlying dark grey TILLITE	1.58m	1.55m (R)	Highly weathered, highly to very highly fractured, soft to medium hard rock. Core loss above 8m.	Below 4.5m	26.27m
W417	Dense gravelly CALCAREOUS SILT with COBBLES, overlying dark olive SILTSTONE	10.73m	2.20m (R) 3.80m (R)	Highly weathered, very highly to moderately fractured, soft rock. Significant core loss above 11m.	Below 18.7m	23.83m
W452	Dense gravelly silty SAND, overlying dark olive to grey SANDSTONE	0.95m	-	Moderately to slightly weathered, highly to slightly fractured, medium hard to hard rock	Below 0.95m	16.54m
W521	Medium dense clayey GRAVEL, overlying dark grey SILTSTONE	0.45m	-	Highly weathered, very highly fractured, soft to medium hard rock	Below 1.5m	26.05m
W564	Medium dense silty sandy GRAVEL with sporadic BOULDERS, overlying dark olive TILLITE	2.00m	-	Highly to moderately weathered, very highly fractured, soft to medium hard rock	Below 6.8m	19.20m

R = Refusal of SPT in excessively dense substrate / cobbles

The measured orientation of bedding planes varies between horizontal to $\sim 45^{\circ}$ (compare E100 to W521). Dominant joint orientation varies from subvertical to $\sim 45^{\circ}$. Joints tend to be narrow to wide, rough to slightly rough, and stained with minimal clay infill, indicating a partial opening of the joint structures. Drawing a correlation for continuity between strata is problematic across such marked distances as between boreholes at Choje WF, as demonstrated by the illustrative cross-section depicted in Figures 13 and 14 overleaf, showing the Western and Eastern block borehole sections respectively. The variation in rock type

and condition is a function to the inclined nature of regional strata in the area, which dips away from the horizontal. It is also a function of the depositional history of the sedimentary strata, showing repeating cycles of sandstone and mudstone with then regional metamorphism altering to shale and quartzitic sandstones. The glacial actions and deposition of tillite equally have affected this strata distribution. Lastly, the variation is a function of localized topography and ensuing chemical alteration at each borehole position.

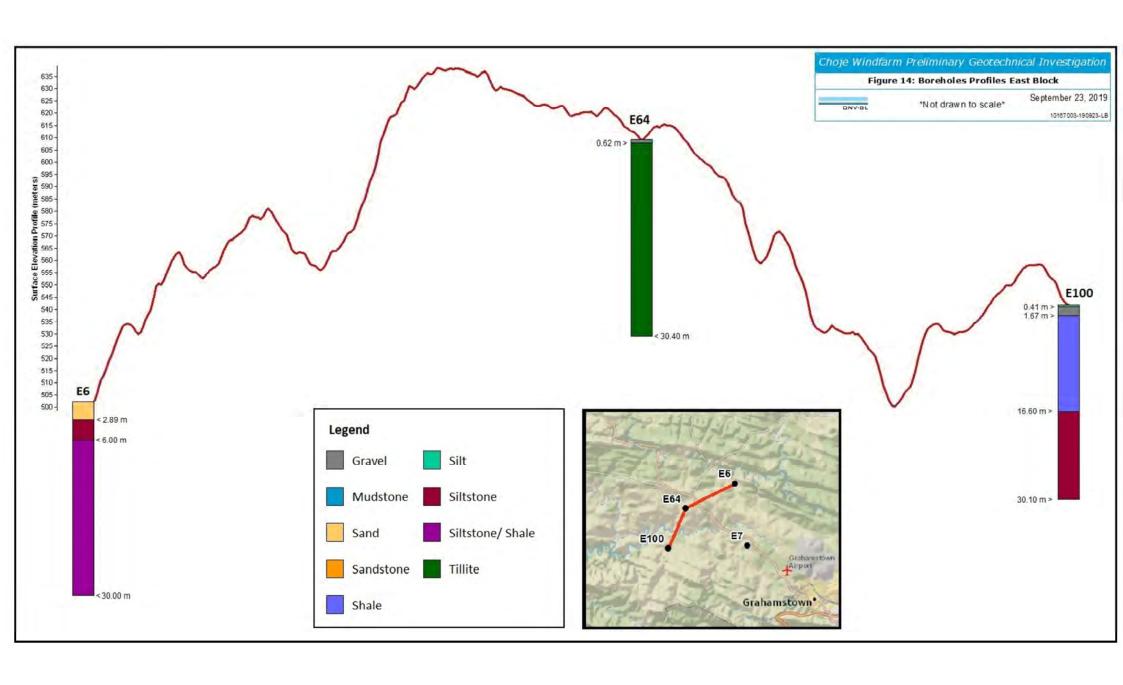


Table 5.2 provides a summary of the soil cover depths and pedogenic variations recorded across the twenty-six excavated trial pits.

Table 5-2: Trial Pit Horizon Summary Table

Trial Pit No.	Imported (fill) soil (mm)	Transported soil (mm)	Residual soil (mm)	Rock/Hardpan (mm)	Total depth of test pit (mm)	Refusal?
E6A	-	2100	-	100	2200	Yes
E6B	-	1750	-	-	1750	Yes
E7A	-	200	300	100	600	Yes
E7B	-	300	500	200	1000	Yes
E64A	-	200	200	150	550	Yes
E64B	-	150	250	200	600	Yes
E100A	-	300	800	400	1500	Yes
E100B	-	400	1100	400	1900	Yes
SS1	-	-	100	200	300	Yes
SS2	-	-	300	100	400	Yes
SS3	-	80	170	150	400	Yes
SS4	-	200	250	150	600	Yes
MTS1	-	200	300	200	700	Yes
MTS2	-	2900	-	-	2900	No
MTS3	-	-	400	350	750	Yes
MTS4	-	600	-	250	850	Yes
W411A	-	1700	-	500	2200	Yes
W411B	-	2300	-	-	2300	Yes
W417A	-	2800	-	-	2800	No
W417B	-	2900	-	-	2900	No
W452A	-	1300	-	50	1350	Yes
W452B	-	350	150	50	550	Yes
W521A	-	150	200	100	450	Yes
W521B	-	100	250	150	500	Yes
W564A	-	350	-	600	950	Yes
W564B	-	350	-	350	700	Yes

As may be noted, the majority of trial pits excavated across the site presented early refusal of the TLB at depths shallower than the anticipated 3.0m below existing ground level. This is symptomatic of the density of the colluvial, alluvial and residual soils across the site, enhanced by the dry conditions and frequency of cobbles and calcification (magnesium and ferric ion deposition as calcrete) in the profile.

The soil profile observed in shallow test pits on the site is quite variable in terms of particle sizes, but is typically dominated by coarse, granular soils with a significant amount of silt-sized fines (i.e. silty gravelly sand and silty sandy gravel). The soil cover recorded in test pits is generally thin (<2m), with localised thick accumulations of transported alluvium occurring along or adjacent to natural drainage lines, most notably at WTG W417 where soil cover extends to a depth of 10.7m. Localised, but significantly thick deposits of high-

level terrace gravel were encountered at the 400MTS substation (refer to soil profile MTS2, Appendix C).

Results of the DCP testing illustrated a picture of generally competent soil conditions for lightly loaded structures at shallow depths across the site. DCPs mostly refused within 1.0m of surface, with many refusing within the upper 0.5m. Refusal was broadly due to dense soil conditions, as well as the presence of cobbles in the profile, which are widespread throughout the transported and residual soils on the Choje site. Pedogenic accumulation of ions and the ensuing calcification of the profile is also widespread in arid conditions such as these, and further "weakly cements" the soil profile, leading to increased density and resistance to the DCP probe.

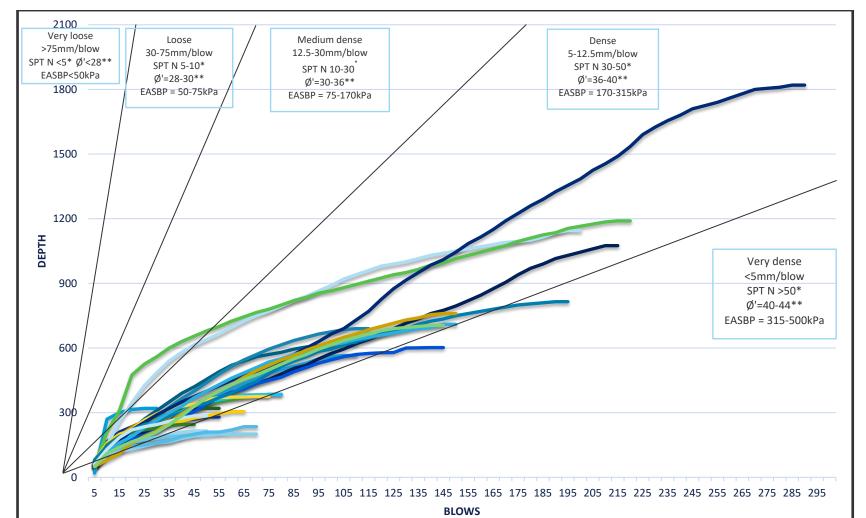
The results of all DCPs are plotted in Chart 5.1 and demonstrate the general trend of "dense" soil types across the site.

5.2 Laboratory Test Results

Laboratory test results herewith presented are as retrieved from borehole soil and cores, trial pits and groundwater standpipes. All samples may be classified as *disturbed* samples, as Shelby tube sampling within boreholes was unsuccessful due to high soil density.

5.2.1 Grading and Atterberg Limits

Representative soil samples were collected from test pits and borehole core for grading, Atterberg limits and moisture content tests (foundation indicator) to determine the index properties of the insitu soils and classify the soil types according to the Universal Soil Classification (USC) system. The results of the tests are shown in Table 5.3.


The lab results indicate that the soils are dominated by silty sands and silty gravels, with low clay content (generally <10% clay) and low to medium plasticity of fines (PI max 28, but PI of whole sample <15). Potential expansivity according to the Van der Merwe method (Van der Merwe, 1964) is low in all test samples.

5.2.2 Soil Density and Strength Tests

Representative soil samples were collected for modified AASHTO density, CBR and indicator tests to determine the compaction/strength relationship and potential as natural construction material for use in earthworks and road pavements. The results of the tests are summarised in Table 5.4.

The test results indicate sporadic sources of potentially useful natural materials (G5-G7 quality in terms of the TRH14 classification system) for earthworks and road-building purposes, but the several of the tests indicate moderate plasticity and low CBR values, the combined effect of which reduces the quality of the materials to G9 or G10. The tests also indicate that the *in-situ* soils tend to be slippery in wet conditions and dusty in dry conditions, with corrugations becoming a maintenance problem. Plasticity and grading are important in the selection of suitable materials for gravel wearing course on access roads.

Recommendations for material usage are given in the following section of this report.

Chart 6-1: DCP Penetration Results

*after Brink et al (1982)

** after Peck *et al* (1974)

Table 5-3: Atterberg Limits and Particle Size Test Results

	Sample	Atte	erberg L	imits	Pä	article A	nalysis	(%)			USC
TP No	Depth (mm)	PI	LL	LS	Clay	Silt	Sand	Gravel	MC*	PE**	***
	(IIIII)				TEST P	PITS					
E6A	400-2100	5	19	2.5	8	42	49	1	7	Low	CL-
								•			ML SM-
E6B	800-1750	7	21	3.5	9	28	46	17	5.2	Low	SC
E7A	200-500	15	36	7.5	3	24	21	52	9.4	Low	GC
E7B	300-800	20	46	10	3	14	13	70	7	Low	GC
E64A	200-400	17	35	8.5	5	32	16	47	8.4	Low	GC
E64B	150-400	16	34	8	4	30	13	53	7.7	Low	GC
E100A	300-1100	20	45	10	7	13	13	67	8.9	Low	GC
E100B	400-1500	19	39	9.5	4	11	15	70	6.8	Low	GC
SS1	0-100	5	20	2.5	2	12	17	69	4	Low	GM- GC
SS2	0-300	11	26	5.5	3	18	20	59	6	Low	GC
SS3	80-250	8	25	4	2	14	12	72	4.2	Low	GC
SS4	200-450	20	39	10	3	26	19	52	10.4	Low	GC
MTS1	200-500	13	35	6.5	1	20	15	64	12.9	Low	GC
MTS2	900-2900	SP	SP	0.5	0	4	46	50	3.9	Low	GP
MTS3	0-400	12	31	6	1	7	15	77	7.8	Low	GC
MTS4	250-600	NP	NP	0	1	10	29	60	9.1	Low	GM
W411A	750-1700	28	56	14	1	12	27	60	13.4	Low	GC
W411B	450-1500	19	44	9.5	1	13	31	55	11.7	Low	GC
W417A	1300-2800	17	40	8.5	1	22	52	25	11.6	Low	SC
W417B	800-2900	15	31	7.5	6	49	31	14	10.7	Low	CL
W452A	500-1800	17	39	9	2	21	42	35	12.5	Low	GC
W452B	350-500	21	38	10.5	3	23	33	41	9.7	Low	GC
W521A	150-350	17	37	8.5	1	7	9	83	6.8	Low	GP- GC
W521B	100-350	8	28	4	1	8	16	75	9.1	Low	GP- GC
W564A	350-950	9	31	4.5	1	6	21	72	10.9	Low	GP- GC
W564B	350-700	4	27	2	1	12	35	52	8.6	Low	GM
				T	BOREH	OLES		T	T		
E6	500-1500	11	25	5.5	6	49	42	3	12.2	Low	CL
E6	2100-3000	7	22	3.5	2	15	18	65	4.2	Low	GM- GC
E7	500-840	11	25	5.5	9	20	41	30	2	Low	SC
E100	1100-1680	19	44	9.5	6	14	11	69	3.3	Low	GC
W411	550-1500	24	52	12	6	16	31	47	11.9	Low	GC
W417	2180-2980	13	41	6.5	2	19	33	46	10.8	Low	GM
W417	3580-5080	18	42	9	2	26	37	35	26.4	Low	GC

W452	500-950	19	32	9.5	8	46	25	21	6	Low	CL
W564	500-1000	12	51	6	1	7	11	81	5.4	Low	GP- GM

^{*} Insitu Moisture Content ** Potential Expansiveness *** Unified Soil Classification

Table 5-4: Soil Density and Strength Test Results Summary

	Sample			CBR at			Swell	PI		MDD/	TRH14
TP No	Depth (mm)	100 %	98%	95%	93%	90%	(%)	(%)	GM	ОМС	Class
E6A	400-2100	20	17	12	9	4	1.33	5	0.59	2006/9.5	G10
E6B	800-1750	17	15	11	8	4	0.94	11	0.77	2026/9.1	G10
E7A	200-500	60	52	40	32	20	0.33	16	2.38	1974/8.9	G9
E7B	300-800	20	18	15	13	10	0.65	19	2.41	2014/12.0	G10
E64A	200-400	20	18	15	13	10	0.28	13	2.61	2056/9.4	G8
E64B	150-400	15	15	14	13	12	0.06	13	2.23	2040/10.0	G8
E100A	300-1100	12	10	8	6	4	0.33	20	2.31	2012/12.1	G10
E100B	400-1500	17	16	14	13	11	1.14	19	2.70	2102/11	G10
SS1	0-100	82	69	49	36	16	0.08	5	2.55	2106/7.8	G5
SS2	0-300	33	29	24	20	14	0.01	7	2.66	2108/8.4	G7
SS3	80-250	33	29	23	19	13	0.17	11	2.44	2130/7.9	G7
SS4	200-450	40	35	26	20	12	0.32	13	2.29	1860/12.5	G8
MTS1	200-500	37	34	30	27	23	0.07	16	2.38	1850/14.3	G8
MTS2	400-900	62	51	34	23	6	0.00	8	2.39	1626/17.3	G7
MTS3	0-400	37	32	24	19	11	0.08	15	2.50	1976/10.7	G9
MTS4	250-600	109	89	57	37	5	0.02	SP	2.43	1612/18.1	G5
W411A	750-1700	51	42	30	21	9	0.81	29	2.00	1598/18.8	G10
W411B	450-1500	23	21	17	15	11	0.33	23	2.14	1762/15.9	G10
W417A	700-1300	16	13	9	7	3	0.06	12	1.82	1766/16.6	G10
W417B	800-2900	33	27	18	12	4	0.20	12	0.98	1766/14.4	G10
W452A	500-1800	55	45	31	21	6	0.08	13	1.94	1832/14.5	G10
W452B	350-500	5	4	3	2	1	1.06	19	2.02	1872/11.7	G10
W521A	150-350	64	54	39	29	14	0.08	18	2.64	1900/12.5	G9
W521B	100-350	62	53	40	31	18	0.18	14	2.61	1896/12.4	G8
W564A	350-950	74	65	52	43	29	0.00	SP	2.59	1730/19.6	G5
W564B	350-700	70	57	39	27	9	0.02	5	1.90	1786/14.8	G6

5.2.3 Rock Strength Tests

Selected samples of intact rock core were collected from foundation influence zones (2 - 4m below existing ground level) in boreholes for Uniaxial Compressive Strength (UCS) tests to determine rock strength and estimate bearing capacity for turbine foundations. The results of the tests are summarised in Table 4.

The tests indicate low UCS values for the weakly cemented calcrete soil at W417 (2.9MPa). The highly

weathered tillite at E7 also displayed relatively low UCS values (9.2MPa) as expected, when compared to the harder, moderately weathered tillite from E64 (50-63MPa). The sandstone from W452 displayed very high UCS values (70-106MPa).

In general, the tests indicate the highly variable strength of the different rock types, with some potentially low UCS values which will have to be factored in to the final foundation design. All tested rock showed, however, UCS values in excess of 2MPa.

Table 5-5: UCS Strength Test Results

BH No	Depth (m)	Strength (MPa)	Failure Type
E7	2.78-3.12	9.2	Shattered
E7	3.17-3.45	29.2	Sheared
E64	1.60-1.87	63.8	Sheared
E64	2.31-2.58	50.0	Shattered
W411	4.93-5.05	14.1	Sheared
W411	7.80-7.93	43.0	Sheared
W417	6.64-6.76	2.9	Shattered
W417	7.43-7.57	2.9	Shattered
W417	10.73-10.93	41.4	Sheared
W452	2.46-2.65	70.8	Shattered
W452	2.65-2.85	106.7	Shattered
W521	2.27-2.46	13.2	Shattered
W521	2.71-2.95	9.6	Shattered
W564	4.96-5.10	27.7	Shattered
W564	6.60-6.72	78.6	Shattered

Selected samples of fragmented rock core were also collected from similar foundation influence zones in borehole cores and subjected to point load strength index (PLT) tests to estimate rock strength and estimate bearing capacity for turbine foundations. The results of the tests are summarised in Table 5.6.

Several of the samples were recorded by the laboratory as fracturing as the test commenced and returned no meaningful results, but several other samples produced results ranging from $I_s = 0.2$ to 9.1, which roughly correlates to UCS of 4-180MPa. Again, the tests indicate the soft nature of some of the rocks, specifically the shale from E6 and E100 and weathered tillite from E7, and the relatively hard tillite from E64 and W411 and sandstone from W452.

Table 5-6: Point Load Test Results

BH Number	Depth (m)	Point Load (kN)	Point Load strength index
E6	6.57-6.66	0	0.00
E6	6.57-6.66	0	0.00
E6	7.13-7.22	0	0.00
E6	8.00-8.18	0	0.00
E6	8.34-8.46	0	0.00
E7	1.50-1.61	0	0.00
E7	1.61-1.69	0	0.00
E7	2.62-2.70	1	0.29
E64	0.87-1.06	16	4.30
E64	2.62-2.68	2	0.50
E64	3.59-3.70	13	3.28
E100	1.71-1.79	0	0.00
E100	2.00-2.07	0	0.00
E100	10.32-10.42	0	0.00
W411	1.79-1.89	0	0.00
W411	4.65-4.83	12	3.02
W411	4.83-4.88	10	2.52
W417	5.16-5.30	0	0.00
W417	5.30-5.45	0	0.00
W417	5.69-5.79	1	0.27
W417	9.67-9.76	0	0.00
W417	11.30-11.40	6	1.51
W452	2.00-2.08	1	0.27
W452	2.08-2.23	34	9.14
W452	3.92-4.02	17	4.57
W521	2.00-2.15	1	0.25
W521	2.54-2.64	5	1.26
W521	2.95-3.11	0	0.00
W564	2.12-2.24	3	0.76
W564	2.97-3.07	0	0.00
W564	3.07-3.17	12	3.02

5.2.4 Soil and Groundwater Chemistry Results

Representative samples of various soil types were collected for pH and electrical conductivity (EC) to determine the potential aggressiveness (corrosivity) of the soil towards buried structures and underground electrical services. The results of the tests are summarised in Table 5.7.

Table 5-7: Soil corrosivity tests results

TP No	Sample Depth(mm)	pН	EC μS/m
E6A	400-2100	8.09	846
E6B	300-800	7.37	475
E7A	200-500	7.23	287
E7B	300-800	7.39	219
E64A	200-400	6.07	201
E64B	150-400	6.11	213
E100A	300-1100	8.60	361
E100B	400-1500	7.25	463
SS1	0-100	6.20	187
SS2	0-300	6.08	185
SS3	80-250	6.37	212
SS4	200-450	6.61	223
MTS1	200-500	7.48	209
MTS2	400-900	7.58	224
MTS3	0-400	7.67	129
MTS4	250-600	7.97	202
W411A	750-1700	7.70	302
W411B	450-1500	7.55	1685
W417A	1300-2800	7.01	206
W417B	800-2900	7.62	864
W452A	500-1300	8.10	229
W452B	350-500	8.10	272
W521A	150-350	8.26	360
W521B	100-350	7.60	225
W564A	350-900	7.98	250
W564B	350-700	8.00	241

The tests indicate slightly elevated pH levels (alkaline conditions) with sporadic moderate conductivity in some tests, indicating potentially corrosive conditions towards buried metals. The exception being at position WTG E64 and in the vicinity of the Eastern Block proposed substation site, where slightly acidic soils were encountered.

In addition to the soil tests, groundwater samples were also collected from installed standpipes in several boreholes for pH and Electrical Conductivity (EC) tests to determine the corrosivity (acidity and salinity) of groundwater against buried structures and services. This was conducted even though the depth to the groundwater table currently exceeds 8m below natural ground level and would have little effect of foundations, as testing occurred during winter. Seasonal fluctuations of the groundwater table may still result in an upwards movement of the resting groundwater level and proximity to foundations after rainfall events. The results of the tests are summarised in Table 5.8 overleaf.

Table 5-8: Groundwater chemistry tests results

BH No	Depth of water table (m)	рН	EC mS/m
E6	8.81	7.2	101
E7	-	-	-
E64	22.11	6.9	106
E100	16.85	7.3	101
W411	26.27	*	*
W417	23.83	*	*
W452	16.54	8.7	48
W521	26.05	*	*
W564	19.20	8.1	223

The test results indicate slightly elevated pH levels (alkaline) in some samples combined with brackish/slightly saline groundwater quality. The results indicate fairly high dissolved salts (mainly Cl⁻), with TDS estimated at 6.7xEC (mS/m). Brackish water can be highly corrosive towards exposed metallic structures and steel reinforcement, requiring adequate concrete cover or polymeric coating.

BS EN1008 does not recommend such water for use in the making of steel-reinforced concrete, nor direct exposure of groundwater towards concrete structures as it registers as being slightly corrosive (chemical environment classified as XA1 in terms of BS EN 206-1). COTO (2018) specifies the maximum EC of water for use in general earthworks and layerworks compaction is 150mS/m. This needs to be accounted for in the final foundation and site structural design.

6 GEOTECHNICAL SITE ASSESSMENT AND RECOMMENDATIONS

The assessment of ground conditions for the establishment of a utility-scale wind farm is a complex and detailed undertaking. The dynamic nature of a turbine necessitates review of a wide variety of geotechnical aspects, including bearing capacity, seismic influences, gapping, overturning, settlement, subgrade reactions, excavatability and buoyancy. Whilst these aspects are taken in to consideration during the Preliminary Geotechnical Study, the early stage of the sequencing of the study does not allow for detailed geotechnical design parameters to yet be isolated for each turbine position. The positions will also in all likelihood, shift somewhat as final layout alterations ensue. The focus of this study is therefore not to provide design calculations for effective foundations, but rather to present the results of the geotechnical information retrieved to date and the general foundation considerations that will apply to the site development.

The Choje site is generally located in a stable geological environment, without the presence of dolomitic risk of sinkholes, active fault lines or notable seismicity. The near-surface rock conditions over much of the site will allow for shifts of turbine positions to made where they lie in localised poor founding. This will

necessitate a detailed geotechnical study to be conducted in order to clearly isolate the most economical founding positions as early as possible.

6.1 Turbine Foundations

As has been discussed in earlier sections of this report, the rockhead contact lies at a relatively shallow depth across most of the site. Wind turbine positions are naturally selected in elevated terrain, and thus these are usually in areas of rock outcrop near to surface. With the wide area selected for the Choje project, however, it is inevitable that some positions will be positioned in floodplains and side slopes, with deeper soil cover. Readers are referred to PP225941-ZACT-R-01-A Choje Wind Farm Desktop Report for a description of the prevailing founding classes on the Choje site.

Review of the 9 borehole profiles indicate the majority as providing bearing on suitable rock types close to surface. Whilst no final selection of turbine model has been made for the Choje site at the time of drafting of this report, and therefore no foundation loadings are available, it may be assumed that a bearing capacity of at least 300kPa will be required, but probably higher than this for the high hub height turbines under contention. "Very soft rock" varies in bearing capacity from 200-400kPa, with a Factor of Safety, whilst "soft rock" may range from 400-950kPa. These values are, however, highly variable and dependent upon structural elements prevailing at the site – very soft rock may still provide sufficient bearing for the turbine, provided the base is designed with a footing broad enough to suit.

The RQD readings for some of the positions with shallow rock still show low values of rock quality in the 3m-below-ground-level range (see W411 and W564). This may be ascribed to the high degree of fracturing of notably the tillite and shales. This is a factor to account for, however may also be factored into a suitable design as there will be confining pressure on the in-situ material below the foundation from the surrounding country rock. Therefore, even though the rock is highly fractured, it could potentially still provide adequate founding. The exception may be in areas of high groundwater table, where a fractured substrate could allow for hydraulic "pumping" under the dynamic load fluctuations of the turbine. This could serve to degrade the foundation base. The deep groundwater table in the area, however, suggests this would be unlikely.

For founding at positions of shallow rock head contact, a standard shallow gravity foundation is predicted as being suitable. Embedment depth would be at least 3m it is anticipated, which will require hard excavation at a number of the positions, either through the use of an excavator-fitted rock pecker, or through directional blasting. Footing design in rock should account for the impermeable nature of the substrate and make allowance for buoyancy.

Boreholes E6 and W417 demonstrated ground conditions that are less favourable and would therefore call for an adapted design. E6 displayed sandy cover to just under 3m and then highly to completely weathered, very soft rock with almost total core loss to 6.0m, associated with its position in a non-perennial drainage line and the resultant alluvial deposition. W417 showed highly weather calcareous silt (poorly formed calcrete) in excess of 10m depth, which is problematic from a weak cementation of grains and potential collapsibility point of view. It is also indicative of "pseudo-karst" features prevailing in the area, where calcrete formation may allow for the presence of small voids in the profile. It such positions the turn=bines should potentially be relocated to nearby sites of more favourable founding. Where relocation is not possible, the foundation design will need to be adapted to suit, as well as the in-situ bed preparation prior to the casting of the base. Ground improvement techniques may here be considered, such as dynamic compaction.

The foundation should be over-excavated, and an improved engineered soil raft be constructed. The soil raft should make use of a minimum of G5 – G3 aggregate quality imported material, deposited in maximum of 200mm layers and compacted from 95% to 98% MDD, above which the gravity footing may be commenced. The depth of the improved soil raft will be a function of the final WTG footing size, and its ensuing pressure bulb's zone of influence.

The position E100 demonstrated very soft rock and RQD readings of "0" for much of its upper extent. Where potentially compressible substrate is located 3-5m below surface, engineered soil rafts are usually considered. It is therefore deemed to be a borderline position, which may or may not require an adapted design with improved soil raft. Dynamic compaction would be deemed unsuitable at this position. Further investigatory techniques, such as the dynamic probing super-heavy and geophysics utilised during the detailed geotechnical investigation, would assist in developing the design for this position further.

An alternative solution for turbines located in deep soil cover may also involve piling. The merits of piling at each position are dependent upon the shear friction that may be expected from the surrounding substrate, and the depth to a competent terminating horizon.

For gravity foundations on slopes, the distance between the edge of the foundation and the slope face (measured horizontally at the foundation level) should ideally be not less than 1x the diameter of the foundation. Furthermore, turbine foundations should ideally not be located on slopes which exceed 18°.

Turbine positions located within the 1:100-year floodline should be relocated wherever possible to higher ground. The Somerset-East area is well-known for the potential occurrences of flash-flooding, which may cause significant erosional forces and foundation undermining, should it reach turbine positions.

6.2 Crane Platforms and Access Roads

Trial pits excavated at turbine positions were used to estimate the material properties and depth of cover, whilst DCP testing was conducted in order to inform on soil densities in the area. The results show a dense soil cover generally across the area, widely inculcated with calcrete deposition to varying degrees. Cobbles and boulders are frequent in the upper profile. Clay percentages are mostly low, with heave not anticipated to be a developmental concern. Most DCPs refused close to surface, on dense soils or cobbles. Crane pads are therefore judged to be constructed in the standard manner. Development of the crane platform should proceed with the topsoil being retrieved to a depth of 300mm or hard rock, and stockpiled for later landscaping use. A mixture of soil and rock material excavated from road box cuts and lay down areas may then be used for bulk filling on platforms (cut to fill platforms), provided it meets the minimum specifications (recommended minimum G9 for bulk fill on platforms, compacted to 93% MDD, rockfill, compacted to 8 roller passes). Layers of imported G5 material should then comprise the upper layers, placed in 200mm increments and compacted to 95% MDD at OMC.

The site topography will exert a significant control over the access road layout. Consideration should be given to existing access roads and stream crossings to minimise impacts of earthworks on the site.

Allowance should be made for hard excavations in road box cuts and lay down areas on sloping terrain. Bulk fill materials should be adequately benched into the *in-situ* sloping ground to prevent sliding of the wedge of fill material. The maximum safe slope of permanent road fill embankments is 1v: 2h. Pipe or box culverts will

be required to cross dry riverbeds and streams, and this will require environmental consideration. Adequate camber and side drains should be accommodated in the design of internal access roads to ensure accessibility during peak rainfall events. Access road design widths for blade transport is usually 4.5-6m, as designed by the project pavement engineer. Subsoil drains along roads are not envisaged but may be considered along major access routes.

6.3 Slope Stability

The site topography is characterised by hilly terrain with some steep slopes. The steep hills and ridges are typically underlain by shallow, relatively stable rock formation and global stability problems are unusual. Local stability problems may be encountered adjacent to natural drainage lines where soil cover is typically thicker and stream embankments may be eroded and undermined during peak flood events.

No cuttings were investigated as part of this initial geotechnical study. Any proposed access road cuts in excess of 5m should be drilled as part of the detailed study in order to review the stability and inform on the most appropriate angle of inclination. The Cape and Karoo sediments in the area are relatively horizontal in dip in the low-lying areas, however this changes to near-verticle dipping angles close to ridegelines. Tillite is highly variable in not only composition and weathering, but dip angle as well and should be treated with caution when designing cuttings.

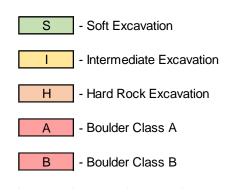
Small portions of the site are also crossed by Jurassic-age dolerite dykes. These form longitudinal ridges that are very resistant to weathering and erosion, as a result of dolerite's high strength and durability. Aggressive blasting may be required to remove unweathered dolerite where access roads are aligned through a ridge.

6.4 Site Structures

The proposed position of the substation in the Eastern Block showed shallow rock conditions, with no trial pit progressing deeper that 0.6m below current ground level. All samples showed silt, sand and gravel, with low activity values bar a single sample from trial pit SS4 between 0.2-0.45m depth which showed a linear shrinkage value of 10. LS values in excess of 8 may be prone to moisture-related shrinkage and lead to cracking of overhead structures. Owing to the shallow depth to rock however, this is not viewed as a significant concern. Structures should proceed on standard strip footings, placed upon medium hard rock at 0.4-0.6m.

The proposed position of the 400MTS in the Western Block showed variability of soil cover. Most trial pits refused at a shallow depth of 0.7m, however one pit proceeded to 2.9m depth without refusing. This may indicate that the three other pits refused on boulders in the profile, and actual rockhead depth is in excess of 3m, or alternatively that the 2.9m pit was positioned over a cavity or rock contact depression. It is recommended that additional pits are excavated at this position prior to foundation design.

All vegetation must be cleared from the areas over which any structures are to be constructed. Furthermore, the upper 200 mm of topsoil must be removed and stockpiled for later use in landscaping / rehabilitation. Cavities remaining in the soil profile must be refilled with a suitable cement-like fill material and recompacted to a similar density as the surrounding soils.


6.5 Excavatability

Section 4 of this report detailed excavatability conditions that may be expected along the access road routes and provided guidelines for excavation classes. Earthworks and excavations at the turbine positions themselves are likely to encounter bedrock and/or boulders which require special consideration in terms of excavatability. Hard excavations, requiring blasting or wedging and splitting are likely to be encountered at depths beyond 1m in many parts of this site.

Table 6.1 overleaf reflects the estimated excavation conditions that may be expected at the nine drilled turbine positions and is based upon the SABS 1200D (1988) excavation classes. Maximum expected founding depth of 5m has been assumed, with conditions divided into reaches of 0-1m, 1-3m and 3-5m depths.

PREDICTED EXCAVABILITY CONDITIONS Depth (m) Position 0.0 - 1.0m 1.0 - 3.0m 3.0 - 5.0m S S WTG E6 н S н WTG E7 S н н WTG E64 Н S I-H WTG E100 S н S-H WTG W411 S S S WTG W417 S н н WTG W452 S-I Н Н WTG W521 S А-Н н WTG W564

Table 6-1: Borehole excavatability estimations

Challenging rocky outcrops presenting obstacles to access roads and level platforms may be expected where positions are located on slopes. Neat excavations are generally not expected possible for many of the Choje positions, with a significant amount of overbreak anticipated along trenches.

Maximum slope angles for temporary excavations for turbine foundations and cable trenches are 1v:0.5h in rock and 1v:1h in soil. Temporary lateral support measures may be required where deep excavations are anticipated.

6.6 Use of on-site materials

Preliminary laboratory testing has shown that multiple sources of good construction material persist across the site, particularly where hard rock is located close to surface. As such positions a single or multi-stage crusher may be deployed to service a few nearby turbine positions and be calibrated to produce selected and subbase grade materials.

Several borrow pits are located across the Choje site, most of which are developed by the Department of Roads & Transport. These BPs are currently the source of a separate licencing study being undertaken, however indicate a good availability of G5-G7 grade natural gravels.

Potential may also exist for good quality concrete and bedding sand in alluvial courses on the site, such as near to position E6. These should be explored in greater detailed by way of trial pits and channel sampling during further studies.

Caution should be extended to the use of Karoo mudrock on the site. Such strata, identifiable by their purple and olive-green varietals, appear moderately weathered and medium hard upon excavation, however rapidly degrade in the presence of exposure to air and the absorption of water vapour into the clay particle interlays of the rock. This results in particle expansion and degradation of the material to a completely weathered state in a few weeks. Should mudstone be utilised on access roads at Choje, it is suggested to be added as a binder material to a coarser particle mix. Alternatively, the material may be excavated and emplaced into the road prism and then quickly covered by successive pavement layers, before degradation takes place.

Naturally occurring hardpan calcrete is also widely occurring across the site, although wasn't specifically targeted or sampled during the course of this study. Calcrete in its well-formed state often occurs as an upper crustal surface phenomenon, and therefore is unlikely to be deposited in thicknesses deeper than 1-2m, however is widespread and may yield quality in the G5-G7 range. Where it has been further weathered, it may develop a higher PI and then could also be used as a binder material to hard-crushed aggregate.

The use of hard rock as concrete aggregate is yet to be explored at the Choje site. A commercial quarry located in the Western Block (*Irhafu Middleton Quarry*) currently provides multiple grades of good quality dolerite, which will serve as an acceptable concrete aggregate. For development of the projects in the Eastern Block the economic viability of transport from this commercial quarry to the site will need to be assessed. Should it prove too costly, then a new aggregate source in the Eastern Block should be developed. Initial reconnaissance indicates that potential hard sandstone is available, as well as possibly unweathered tillite. Both sources would require drilling and sampling. The testing of tillite would need to include thin-section analysis for deleterious minerals, as clast inclusions sometimes have the propensity for alteration to clay-minerals with time.

6.7 Site Drainage

The Choje site is cross by a great number of non-perennial drainage lines, as well as permanent river bodies. As mentioned previously, the site is arid with a low rainfall - 683mm per annuum recorded for Grahamstown (Climate-Data.org, 2019). The site is also traversed by the Department of Water Affairs administered irrigation canal.

Drainage lines are subject to rapid flash-flooding and erosion after heavy precipitation events. Caution must therefore be assumed in the stream protection of stream routes around working areas on the site, as well as turbines bases and crane platforms. The use of gabions and reno mattresses is advised for anti-erosional measures.

The groundwater table was measured in all boreholes and found to lie beyond the current depth of influence of turbine foundations. Quarterly inspections of the groundwater table in boreholes will be conducted over the next 12 months as an ongoing monitoring programme. This report may also be read in conjunction with

the DNV GL subcontracting geohydrologist's report "Desktop Groundwater Feasibility Assessment for Choje Windfarm Projects, Eastern Cape", and referenced 005020R01.

6.8 Further Studies Required

This report represents the findings of a preliminary geotechnical study, performed to obtain initial ground data on the site as a whole. Prior to finalisation of design, a detailed geotechnical study will need to be performed. As a minimum, this should include the following:

- Rotary core drilling of each proposed foundation position to a depth not less than 1.5B, where B = diameter of the proposed WTG foundation footing. Sampling and logging of all trial pits according to South African standards by a professional engineering geologist;
- Excavation of trial pits for bulk material sampling at each turbine position, as well as nearby crane
 platform positions. Sampling and logging of all trial pits according to South African standards by a
 Professional Engineering Geologist;
- Excavation of trial pits for bulk material sampling along access road routes. Trial pit frequency of a
 minimum of 1km intervals, staggered on alternating sides of the centreline, is advised. Sampling
 and logging of all trial pits according to South African standards by a Professional Engineering
 Geologist;
- Retrieval of samples of rock core, disturbed and undisturbed soil and water samples for laboratory analysis. Advanced geotechnical testing;
- Evaluation of subsurface density conditions through the use of DCP and DPSH testing at turbine, road access and structural positions as directed;
- Retrieval of p- and s-wave ground propagation data through the use of CSW and MASW geophysics
 tests. It is advised to utilise both forms of testing on the site, as CSW may provide better
 information in the near-surface environment, however MASW will be more effective in the harder
 rock and deeper penetration of the Karoo and Cape formations;
- In-situ electrical resistivity testing at substation positions and selected turbines;
- In-situ thermal resistivity testing at selected positions along primary cable routes;
- Further material sources reconnaissance studies as required for hard rock aggregate in the Eastern Block;
- Production of a detailed geotechnical investigation report for each sub-windfarm site detailing all required geotechnical parameters for effective WTG foundation design, as well as cable routes, access roads
- Confirmation of geotechnical conditions expected at each turbine location by a professional engineering geologist or geotechnical engineer during construction. Inspections to be performed after excavation of turbine bases, prior to foundation casting to identify any soft spots, unexpected structural variations or groundwater fissures.

7 CONCLUSION

DNV GL has conducted a preliminary geotechnical investigation for the proposed development of a cluster of utility-scale wind farms between Grahamstown and Somerset East, Eastern Cape. The site was investigated by rotary core drilling, trial pitting, in-situ density testing as well as laboratory soil and groundwater testing.

The site has been found to be favourable for the development of wind turbine generators and associated civil roads and structures. Colluvium, alluvium, residual soils, mudstone, siltstone, tillite and sandstone characterised the trial pit profiles and borehole logs across the investigation site. Comment on the excavatability of the material has been provided for the proposed access roads and turbine positions. It is envisaged that hard excavation techniques will predominantly be required across the site due to the shallow depth to rock encountered, but that in an estimated 30% of positions softer ground conditions may prevail.

A required bearing capacity and founding depth was not provided for the site, as turbine selection is still ongoing. It is estimated, however, that a bearing capacity of approximately 300 kPa is available at a depth of 2-3 m across most of the site, except at a lesser number of weathered positions where an adapted foundation design will be required in the form of ground improvement and engineered soil rafts.

Buoyancy conditions may occur at positions in hard rock after heavy rainfall events, where surface drainage has not been adequately designed to prevent water ingress to the foundation excavation. In other positions, however, the deep water table would negate the threat of buoyancy.

Assessment of the rotational stiffness is dependent on the stiffness limits placed on the design by the turbine manufacturer. These have not yet been assessed for the site or a specific turbine model.

The extent of the investigations undertaken is deemed adequate, within the time and budget constraints, to present an overview of the geotechnical conditions across the investigation site.

It must be borne in mind that the overall interpretation of geotechnical conditions is based upon point information derived from the respective test positions and that conditions intermediate to these have been inferred by interpolation, extrapolation and professional judgement. The interpretation of the geotechnical conditions is based on information available at the time of drafting this report by DNV GL South Africa and it's partners.

8 REFERENCES

American Society for Testing Materials (ASTM). 1999. Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation.

Brandt, M. 2011. Seismic Hazard in South Africa. Report for the Council for Geoscience, Pretoria.

Brink, A.B.A. & Bruin, R.M.H. Eds. 1990. *Guidelines for Soil and Rock Logging in South Africa*. 2nd Impression 2008 ed.: Proceedings, Geoterminology Workshop organised by AEG, SAICE and SAIEG.

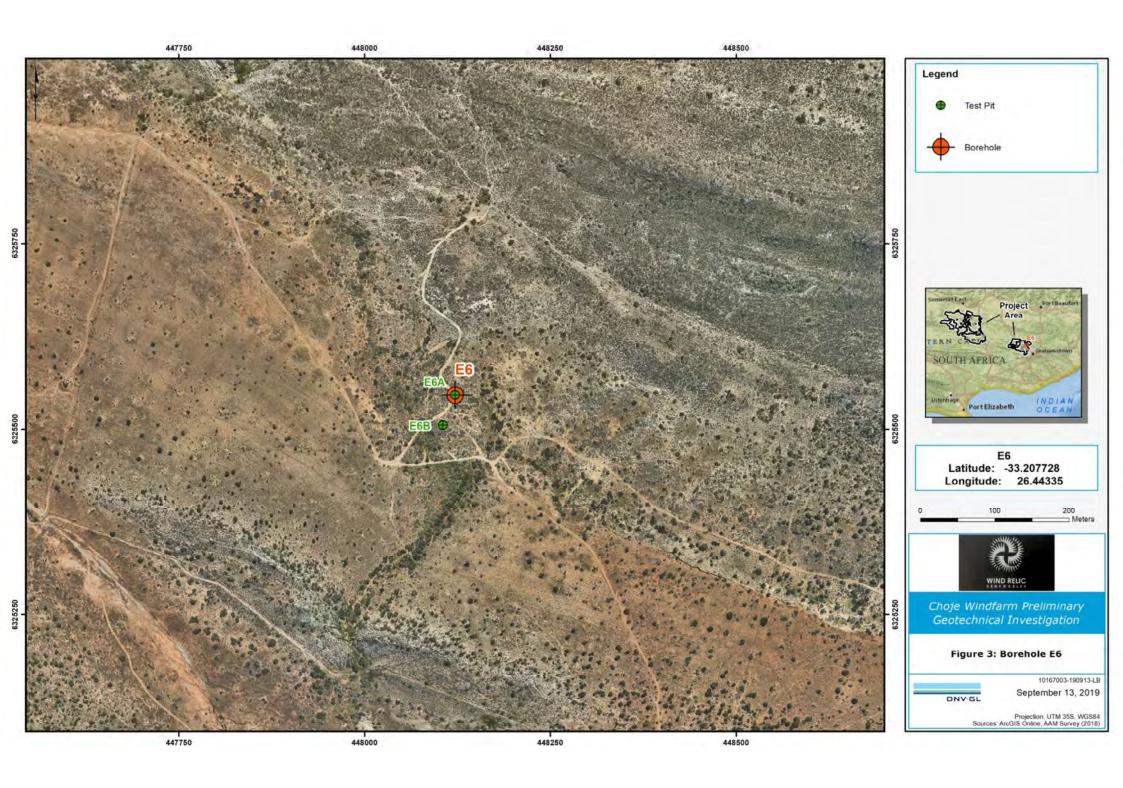
British Standards Institution. 1990. *British Standard methods of test for soils for civil engineering purposes*. Milton Keynes [England]: British Standards Institution.

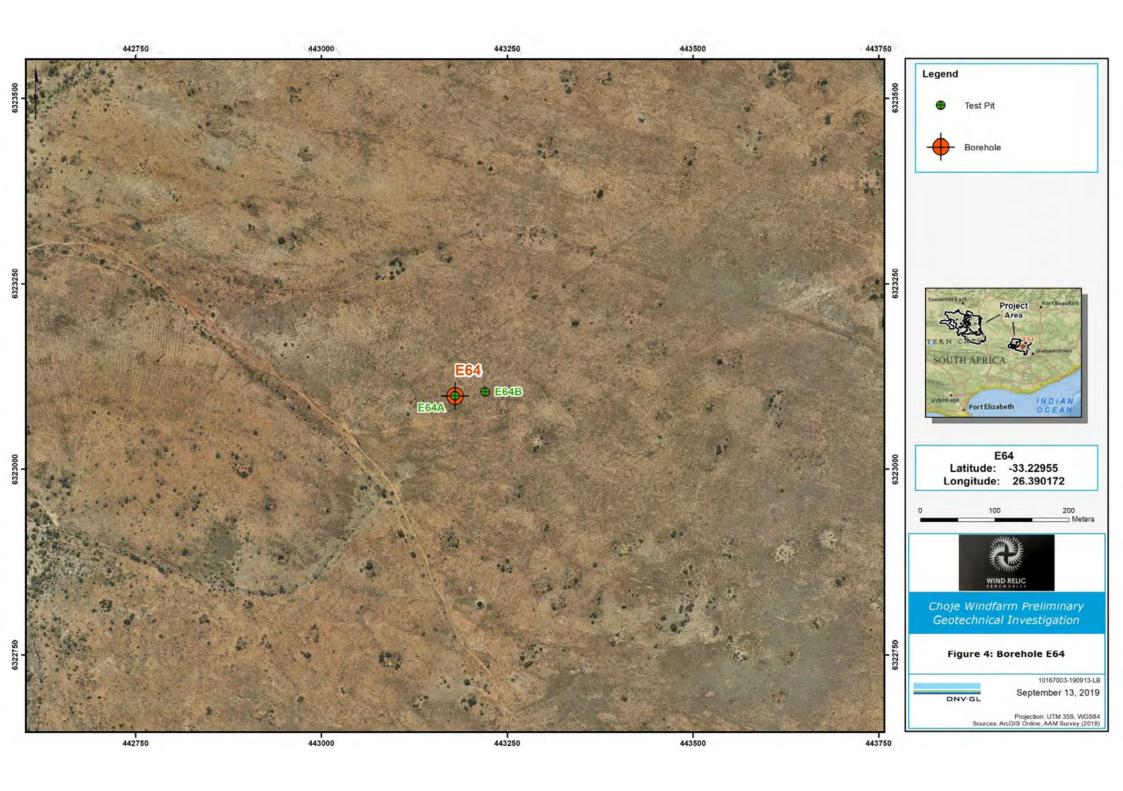
Chief Director of the Geological Survey. 1992. *Seismic Hazard Map of Southern Africa*. 1:6000000. Pretoria: Government Printer.

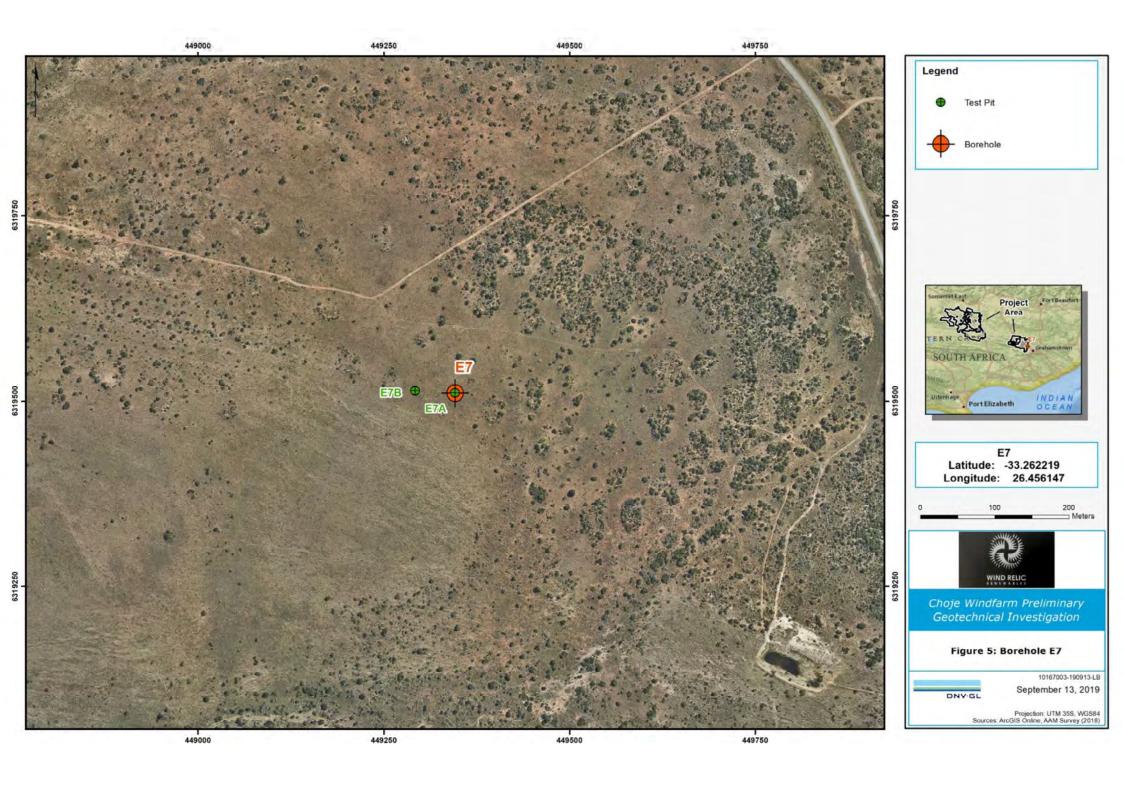
Climate-Data, (2019). *Grahamstown Rainfall*. https://en.climate-data.org/africa/south-africa/eastern-cape/grahamstown-638/#climate-graph

Committee of State Road Authorities, National Institute for Transport and Road Research (CSIR). 1985. Guidelines for road construction materials (TRH14). Pretoria: Dept of Transport.

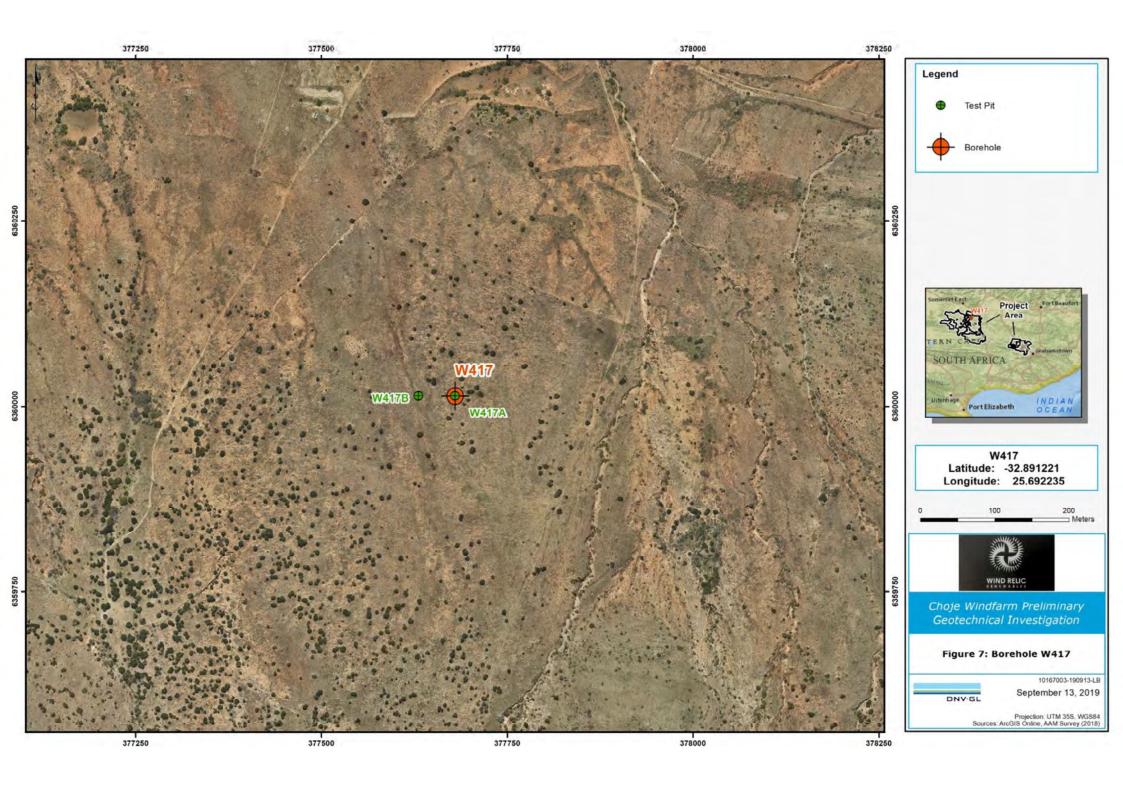
Committee of State Road Authorities, National Institute for Transport and Road Research (CSIR). 1986. *Technical Methods for Highways (TMH1)*. Pretoria: Department of Transport.

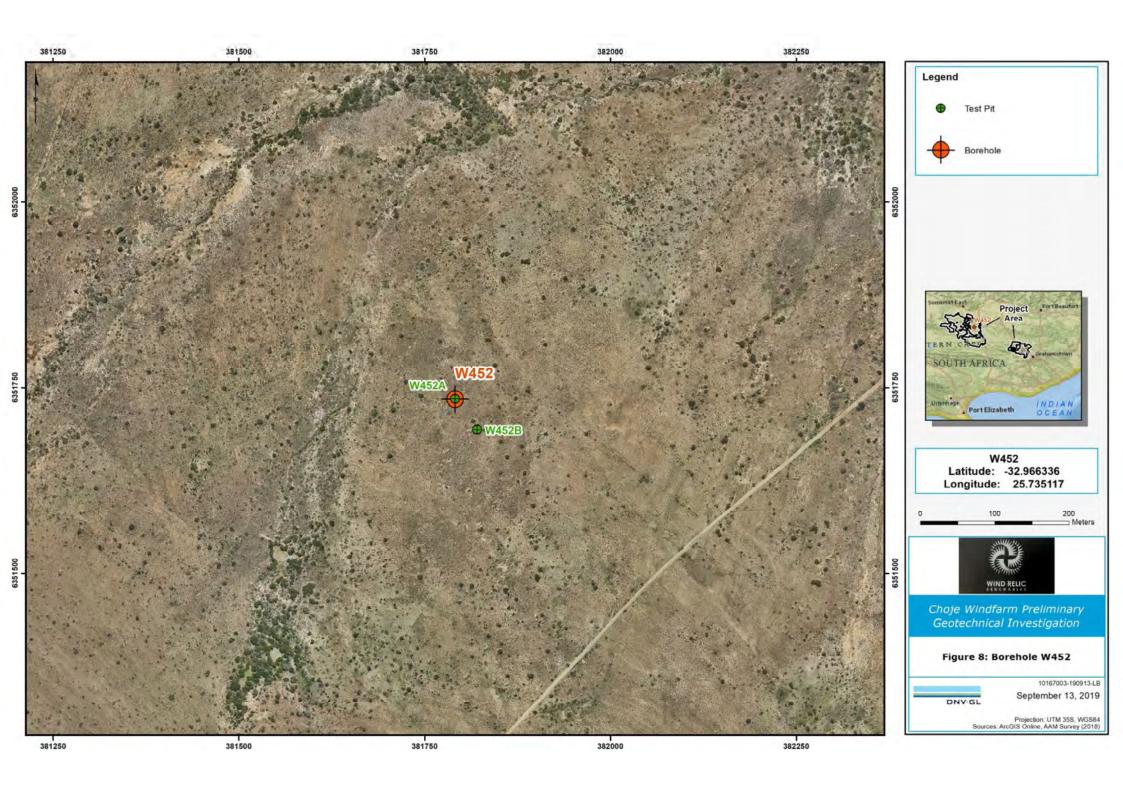

Committee of Transport Officials COTO (2018 - Draft). Standard Specifications for Road and Bridge Works (Draft). South African National Roads Agency SOC Limited, Pretoria.

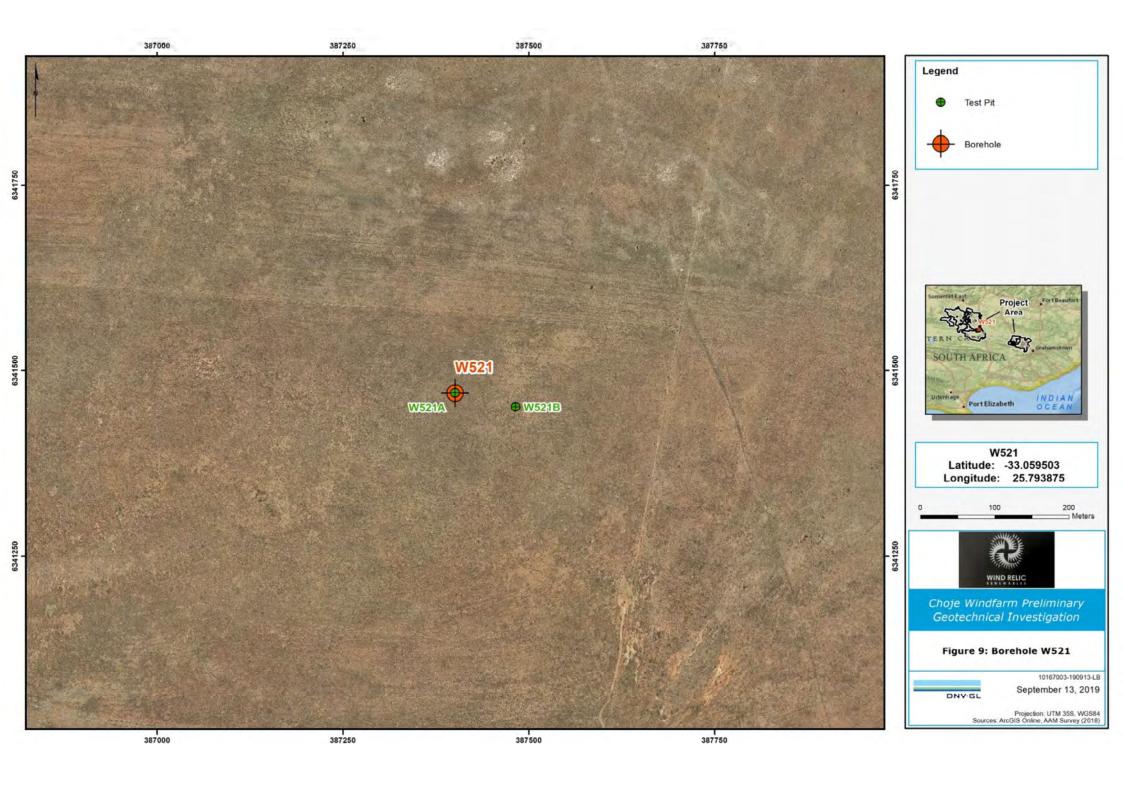

Outeniqua Geotechnical Laboratories (2019). *Preliminary Geotechnical Report: Proposed Choje Wind Energy Facility in the Eastern Cape Province of South Africa, Rev 0.*

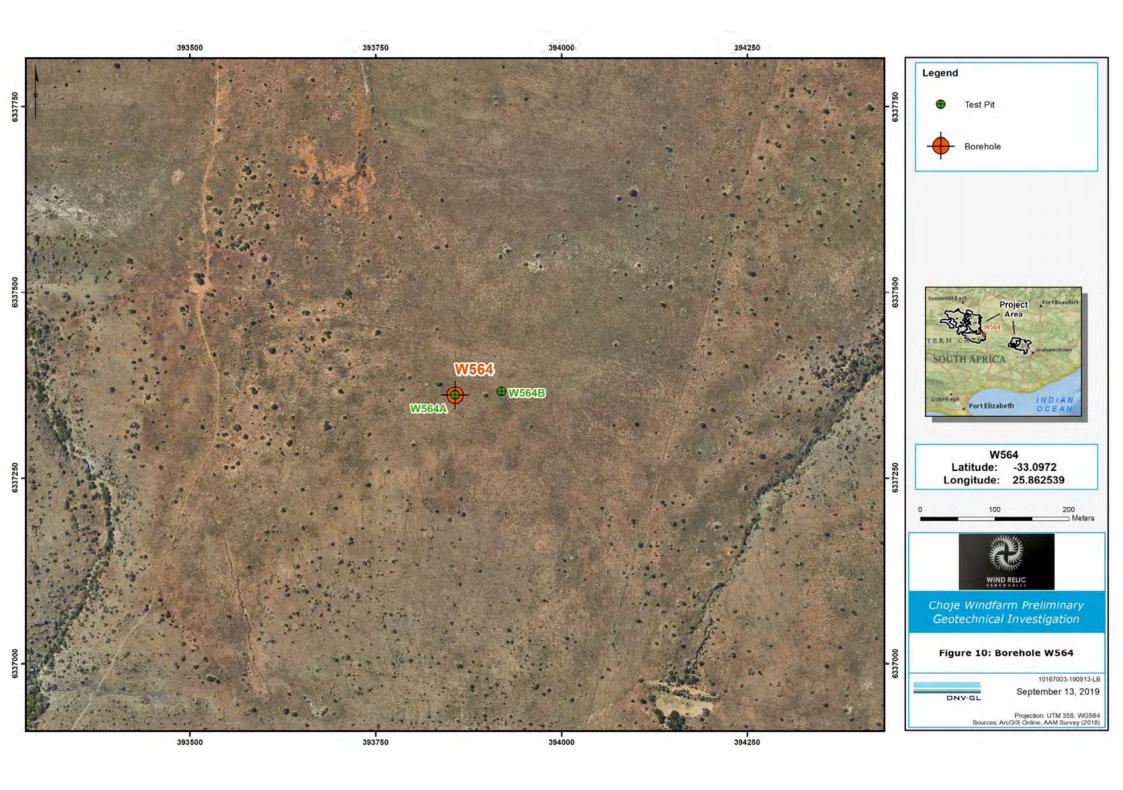

South African Bureau of Standards (SABS). 1982. SABS 1200. *Standardised Specifications for Civil Engineering Construction*. Government Printer. Pretoria.

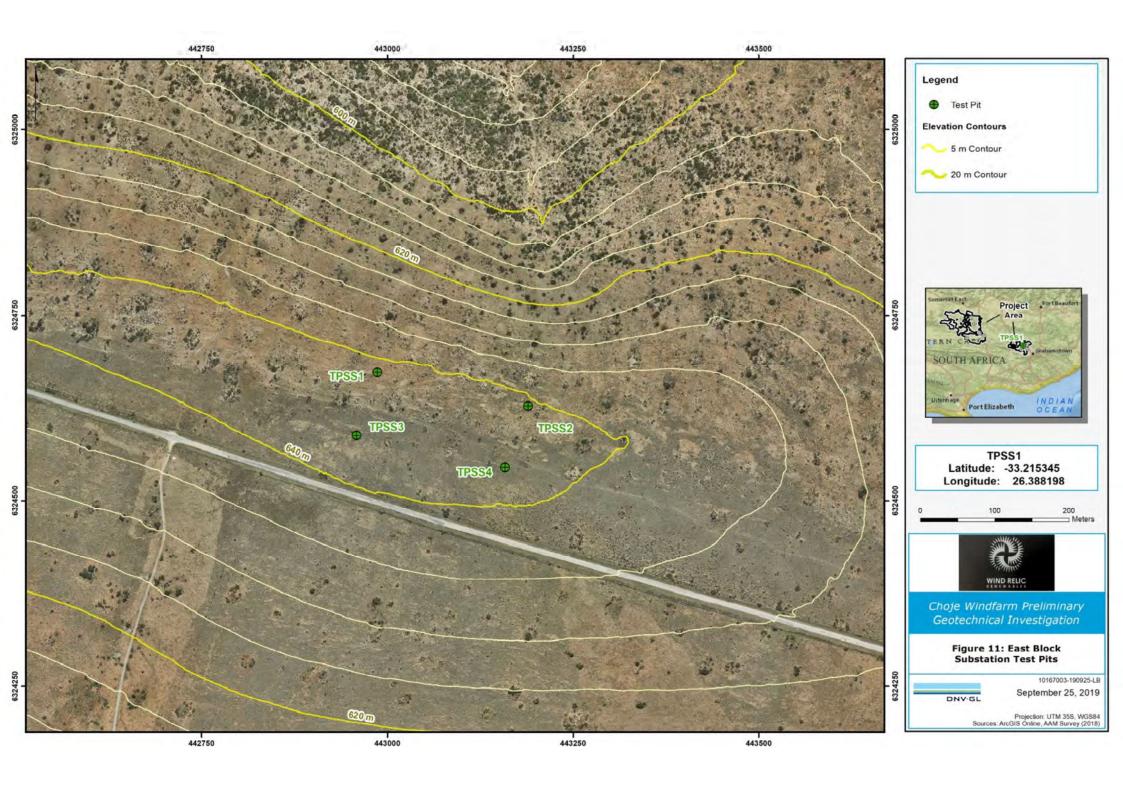
Van der Merwe, D.H. 1964. The prediction of heave from the plasticity index and the percentage clay fraction of soils. Civil Engineer in South Africa. 6(6): 103-106.

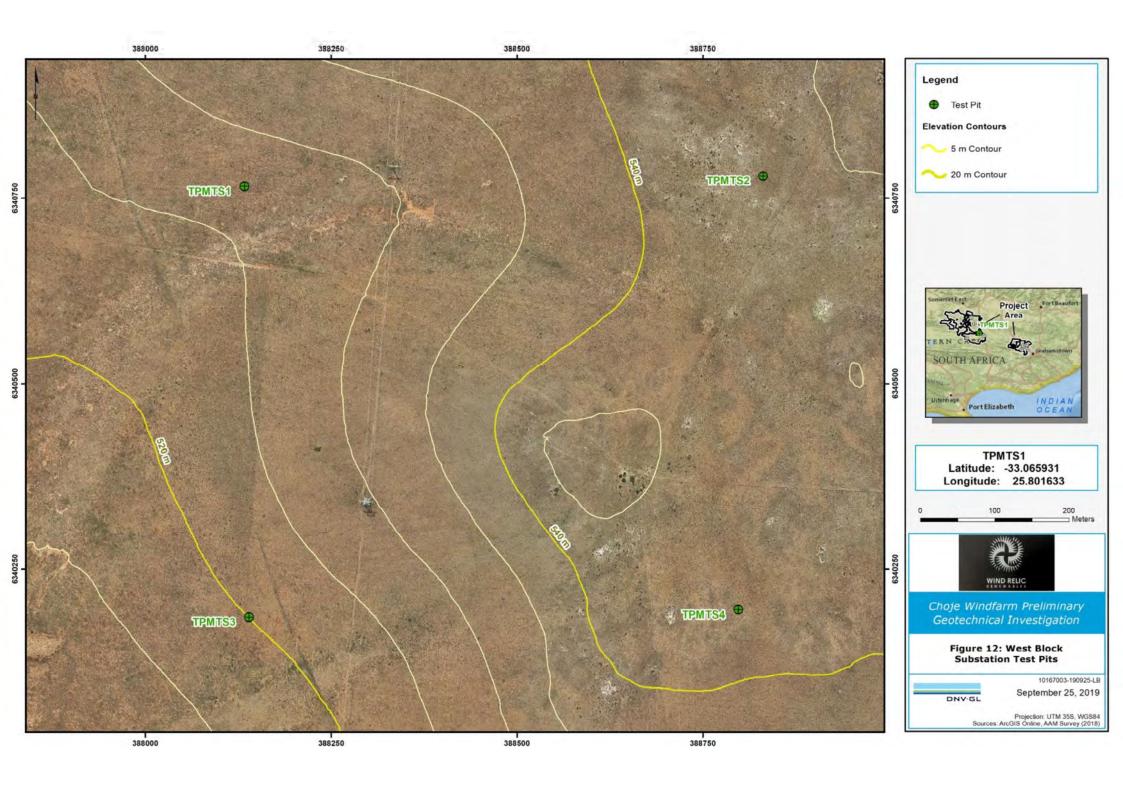

APPENDIX A – BOREHOLE & TRIAL PIT ORIENTATION PLANS

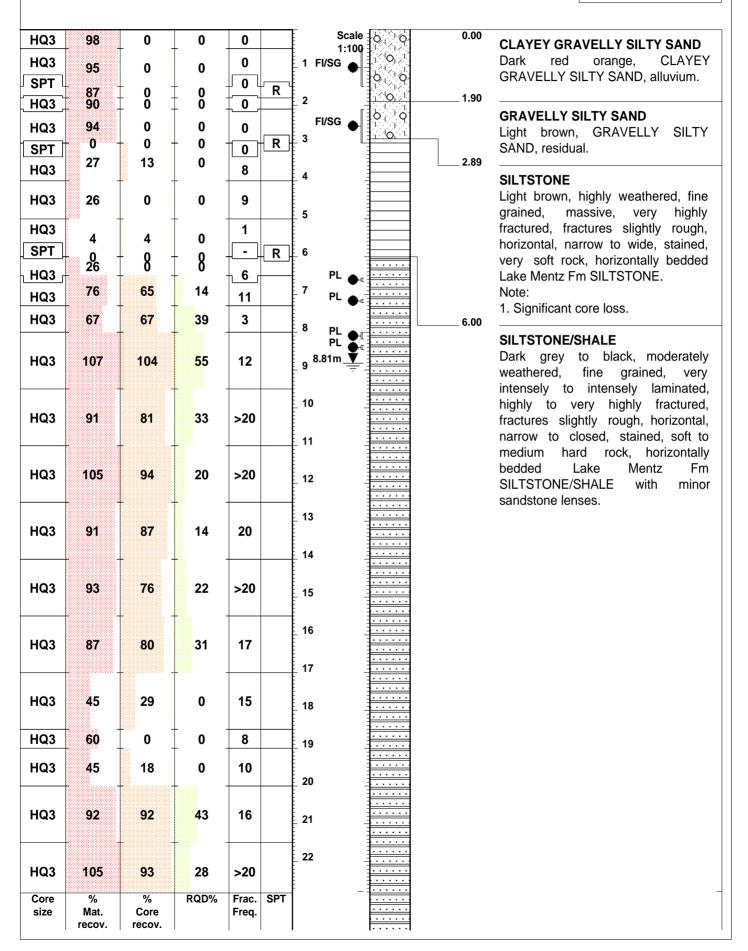












APPENDIX B – BOREHOLE LOGS		

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E6 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E6 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

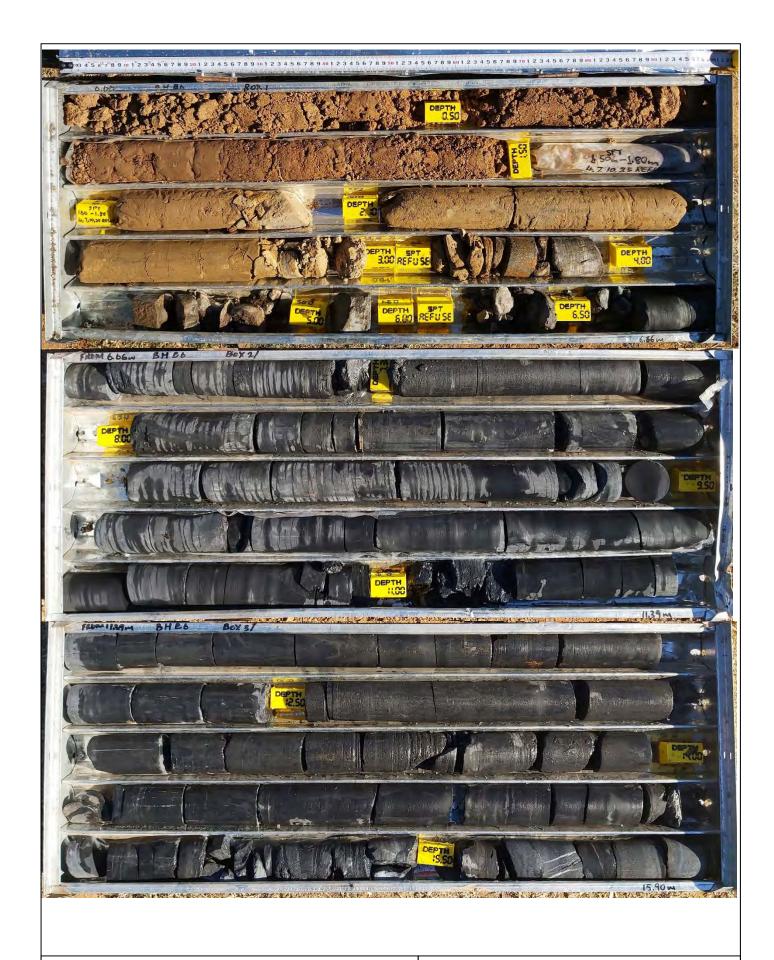
DRILLED BY : Aubrey

LOGGED BY: I Paton

TYPE SET BY : S Gallant

SETUP FILE: SANRAL.SET

INCLINATION: -90°


DATE DRILLED: May 2019

DATE LOGGED : July 2019

DATE: 29/08/2019 16:53 TEXT: C\dot7000\network\E6.txt **ELEVATION:**

X-COORD: X3675924 Y-COORD: 27 Y0051899

HOLE No: E6

CLIENT: DNV GL/WIND RELIC

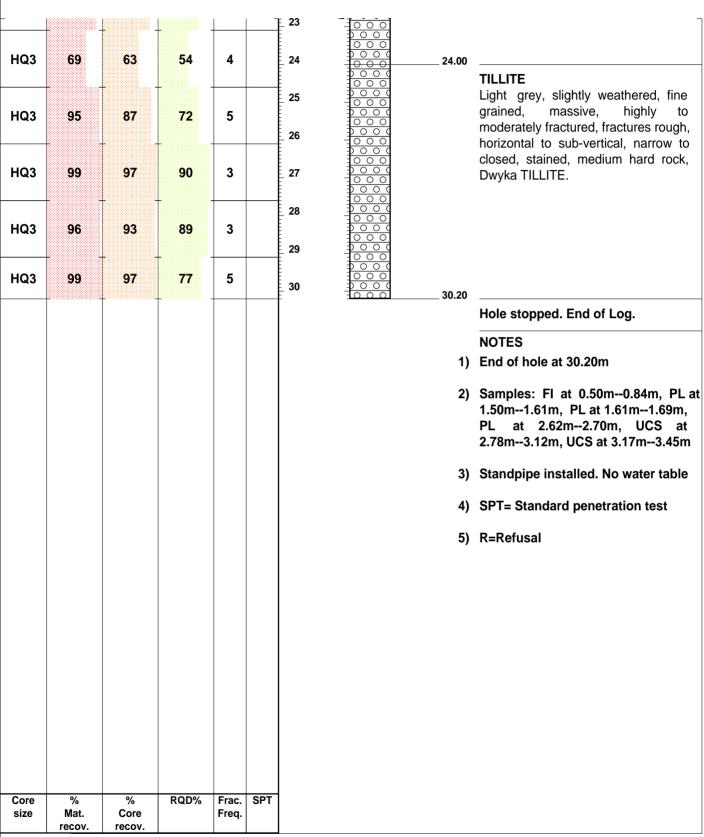
BOREHOLE NO: BH E6 SHEET 1/2

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E6 SHEET 2/2

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E7 Sheet 1 of 2


HQ3 99 32 23 20 1 1		10000000000000	T	ı			T.	6	<u> </u>	0.00	
HQ3 99 32 23 >20 1		60	0	0			É			0.00	
HQ3		89	32	23			1		1 500 c		<u> </u>
HQ3 79 63 37 15 3 UCS		0	0	0 73		R	_	PŁ ●	£ 000	0.75	- INDI OLATEI OILI, IESIUUAI.
HQ3 79 63 37 15 5 UCS	HQ3	100	- 00	12	3		2		000		
HQ3 100 100 96 3	HQ3	79	63	37	15			ucs 🏅			highly weathered, fine grained,
HQ3 91 87 43 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		+	ļ				£ 4	•	000		
HQ3 91 87 43 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HQ3	100	100	96	3				000		rough, horizontal to sub-vertical, narrow to wide, stained and filled,
HQ3 91 87 43 10 6 0 0 0 1. Very highly fractured zones at: 1.23m-1.50m 2.30m-2.50m 2.30m-2.50m 3.45m-3.60m 6.03m-6.46m 9.50m-15.60m. HQ3 85 79 60 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		+	l T	l I			F 3		-000		
HQ3 95 95 85 7 7 8 2.30m-2.50m 3.45m-3.60m 6.03m-6.46m 9.50m-15.60m. HQ3 85 79 60 7 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00	HQ3	91	87	43	10		6		2000		Very highly fractured zones at:
HQ3 95 95 85 7 8							፟፟፟፟፟፟፟፟		000		
HQ3 85 79 60 7 9 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HQ3	95	95	85	7		- 1		000		3.45m-3.60m
HQ3 88 85 29 >20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				ļ .			8		->000		
HQ3 88 85 29 >20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					_		E		3000		
HQ3 88 85 29 >20 10 000 000 000 000 000 000 000 000 00	HQ3	85	79	60	7		9		1000		
HQ3 88 85 29 >20 11		ļ .	-				4.0	1	0000		
HQ3 90 72 40 17 12 000 000 000 000 000 000 000 000 000	HO3	88	85	20	>20		- 10	,	000		
HQ3 90 72 40 17 12 0000 HQ3 83 38 10 18 13 0000 HQ3 74 42 20 7 14 0000 HQ3 69 31 17 >20 15 0000 HQ3 84 83 69 5 16 0000 HQ3 85 72 53 15 18 0000 HQ3 97 95 83 7	1143	- 55	- 55	23	/20		11	I	000		
HQ3 90 72 40 17 12 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		†	-	<u> </u>			["	-	000		
HQ3 83 38 10 18 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HQ3	90	72	40	17		12	2			
HQ3 83 38 10 18 13							Ī		000		
HQ3 74 42 20 7 14 000 000 000 000 000 000 000 000 000	HO3	83	38	10	18		13	3	000		
HQ3 69 31 17 >20 15 000 000 000 000 000 000 000 000 000				<u>.</u>			Į.		000		
HQ3 69 31 17 >20 15 000 000 000 000 000 000 000 000 000	HQ3	74	42	20	7		14	ı	3000		
HQ3 84 83 69 5 HQ3 85 72 53 15 HQ3 97 95 83 7	UO2	en	24	47	- 20				0000		
HQ3 85 72 53 15 18 000 fine grained, massive, highly to moderately fractured, fractures rough horizontal to sub-vertical, narrow stained, medium hard rock, Dwyka TILLITE. HQ3 97 95 83 7	HQ3	69	31	1/	>20		<u> 15</u>)	3000		
HQ3 85 72 53 15 18 000 fine grained, massive, highly to moderately fractured, fractures rough horizontal to sub-vertical, narrow stained, medium hard rock, Dwyka TILLITE. HQ3 97 95 83 7		+	-	+			16	5	1000	15.75	
HQ3 85 72 53 15 18 5000 fine grained, massive, highly to moderately fractured, fractures rough horizontal to sub-vertical, narrow stained, medium hard rock, Dwyka TILLITE.	HQ3	84	83	69	5		["	-	1000		
HQ3 85 72 53 15 18 000 moderately fractured, fractures rough horizontal to sub-vertical, narrow stained, medium hard rock, Dwyka TILLITE.							17	,	000		
HQ3 85 72 53 15 18 000 horizontal to sub-vertical, narrow stained, medium hard rock, Dwyka TILLITE. HQ3 97 95 83 7		Ţ					Ī		-1000		moderately fractured, fractures rough,
19 000 TILLITE.	HQ3	85	72	53	15		18	3	-1000		horizontal to sub-vertical, narrow,
HQ3 97 95 83 7 9000		ļ .	<u> </u>				Ē		1000		
HQ3 97 95 83 7 E = 3000					_		19)	1000		
	HQ3	97	95	83	7		Ē		000		
		<u> </u> .	-	+			<u>⊧</u> 20	J	1000		
HQ3 89 87 67 6 21 3000	HQ3	89	87	67	6		21	l	1000		
000				<u> </u>			Ė		-1000		
22 1000							22	2	000		
HQ3 89 84 73 5	HQ3	89	84	73	5				000		
Core				RQD%		SPT			000		1
size Mat. Core Freq.	sıze				Freq.						

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E7 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

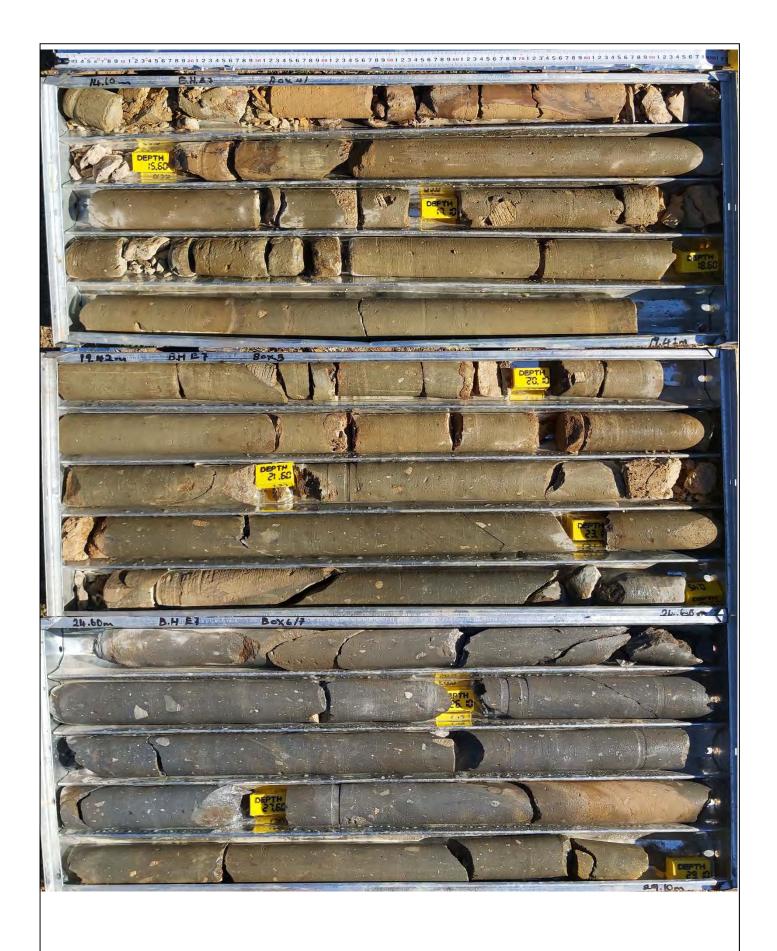
DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY: S Gallant
SETUP FILE: SANRAL.SET

INCLINATION: -90°

DATE DRILLED: June 2019 DATE LOGGED: July 2019

DATE: 29/08/2019 16:54 TEXT: C\dot7000\network\E7.txt **ELEVATION:**


X-COORD : X3681962 Y-COORD : 27 Y0050674

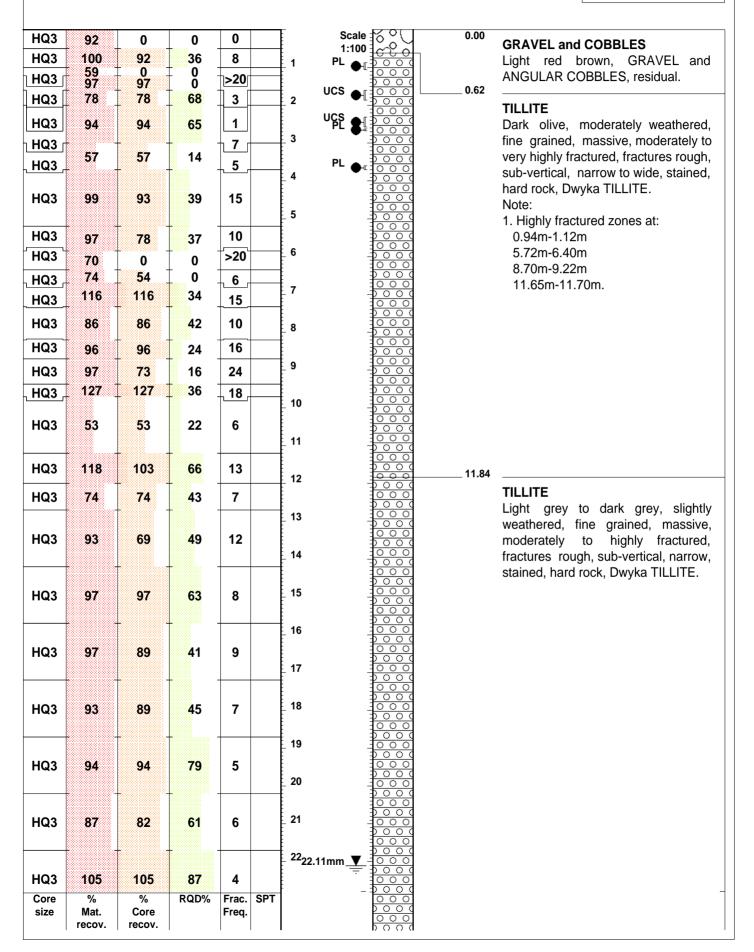
HOLE No: E7

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E7 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

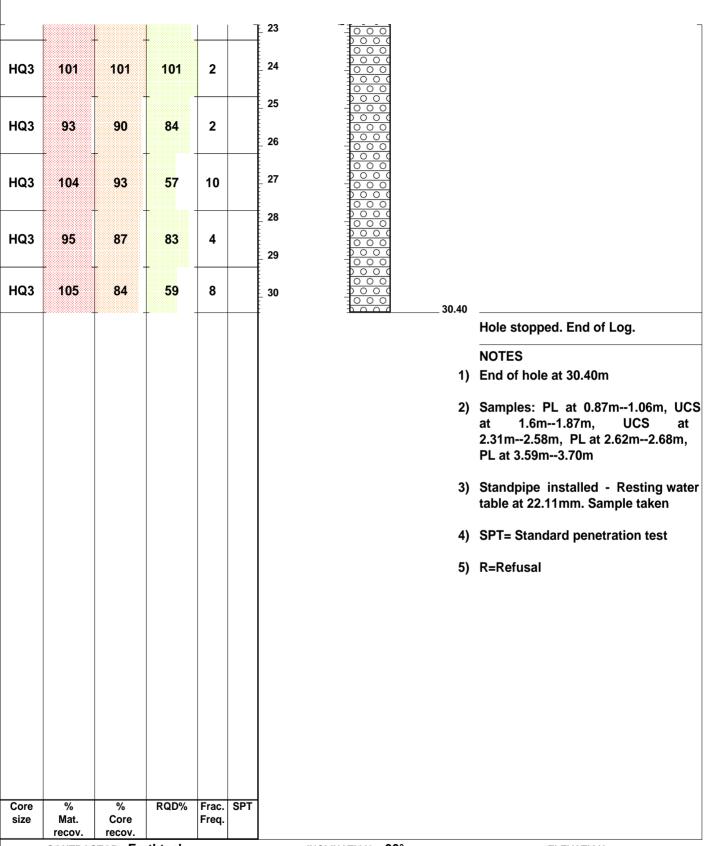
BOREHOLE NO: BH E7 SHEET 2/3


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E7 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E64 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E64 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE :

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY: S Gallant SETUP FILE: SANRAL.SET

INCLINATION: -90°

DATE DRILLED: May 2019
DATE LOGGED: July 2019

DATE: 29/08/2019 16:54 TEXT: C\dot7000\network\E64.txt **ELEVATION:**

X-COORD : X3678372 Y-COORD : 27 Y0056843

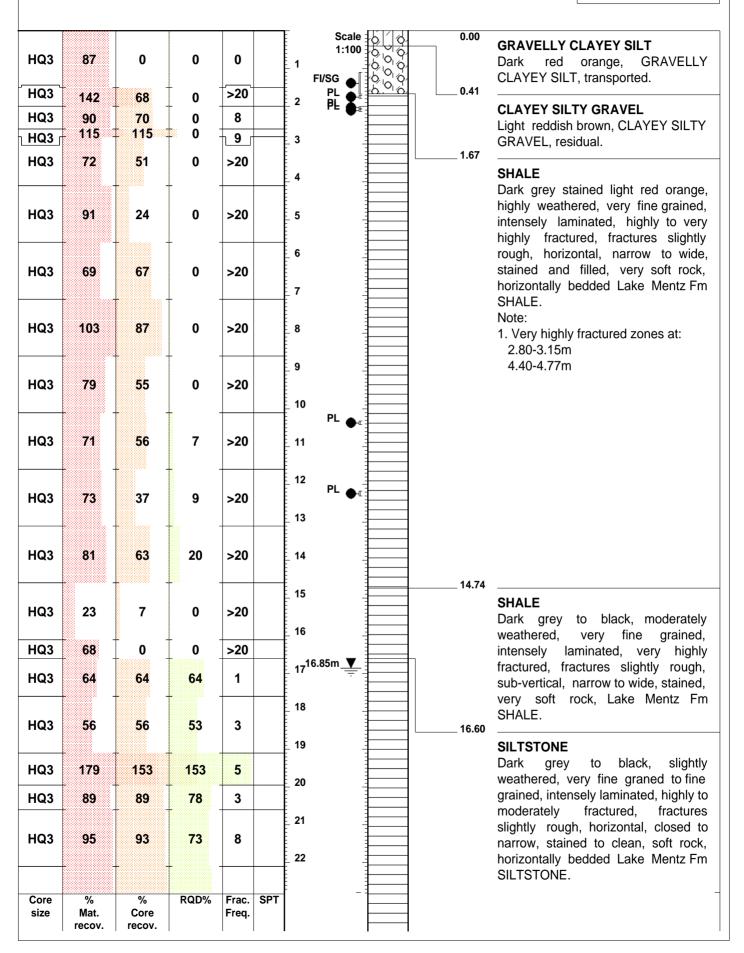
HOLE No: E64

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E64 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

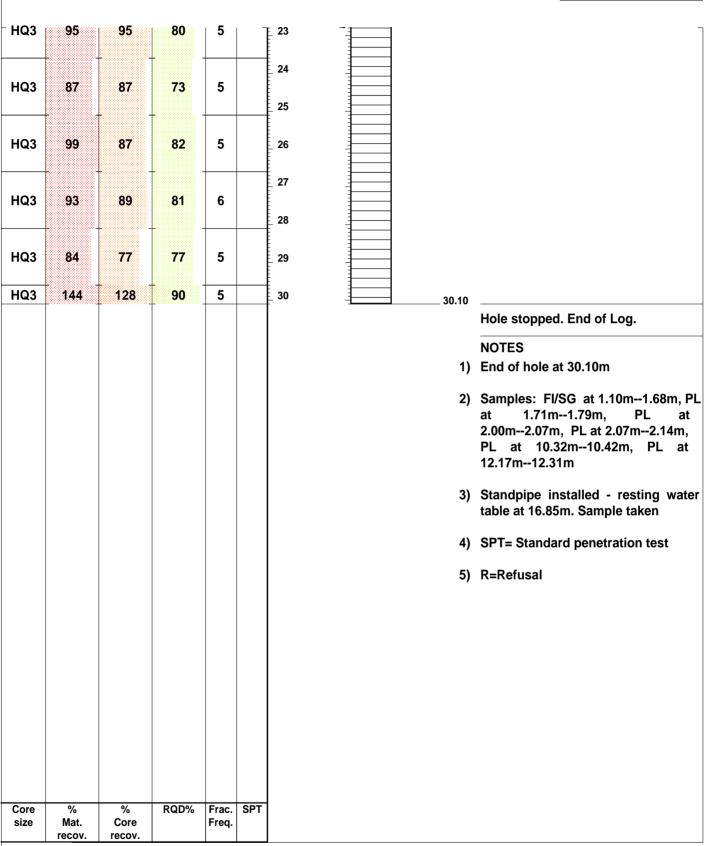
BOREHOLE NO: BH E64 SHEET 2/3


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E64 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: E100 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: E100 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY : S Gallant SETUP FILE : SANRAL.SET

INCLINATION: -90°

DATE DRILLED : June 2019 DATE LOGGED : July 2019

DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\E100.txt

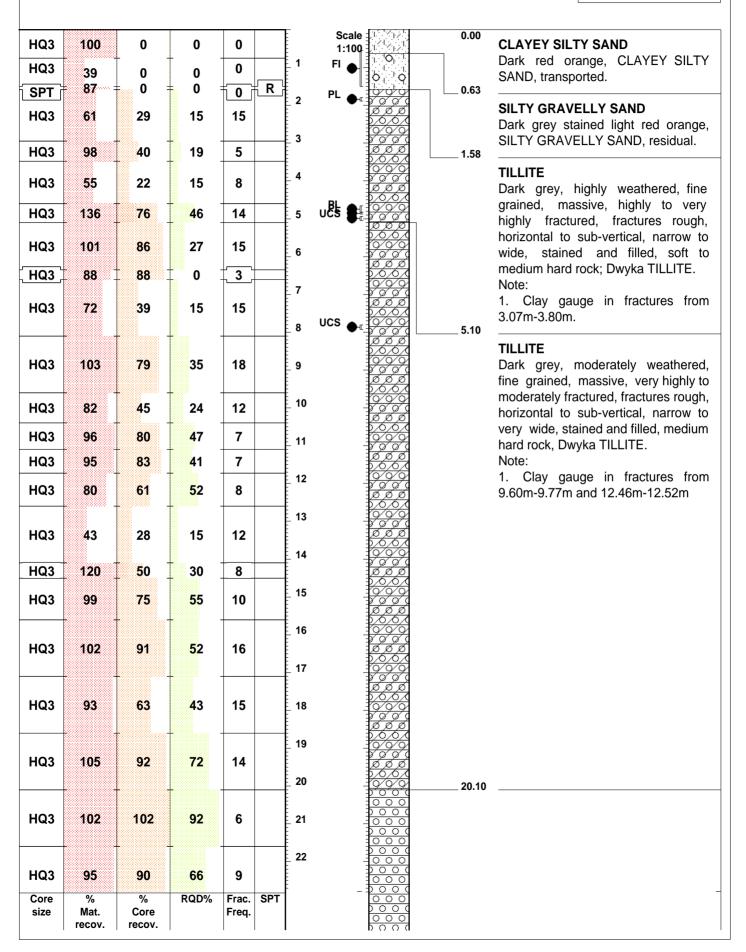
ELEVATION:

X-COORD : X3682241 Y-COORD : 27 Y0058545

HOLE No: E100

CLIENT: DNV GL/WIND RELIC

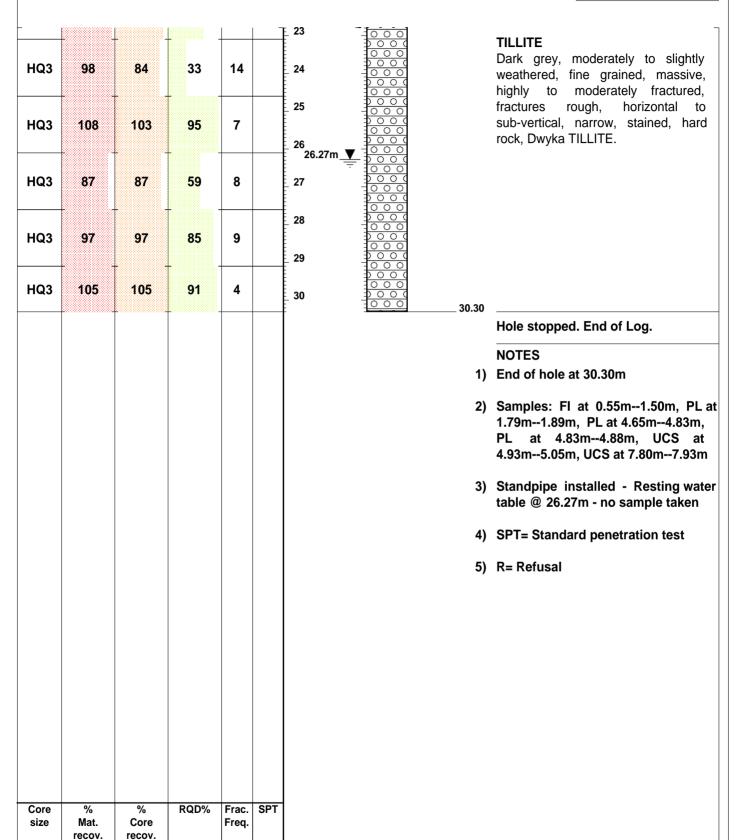
BOREHOLE NO: BH E100 SHEET 1/2


CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH E100 SHEET 2/2

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W411 Sheet 1 of 2



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W411 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE :
DRILLED BY : Aubrey

LOGGED BY : I Paton

TYPE SET BY : S Gallant SETUP FILE : SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\W411.txt

ELEVATION:

X-COORD : X3666540 Y-COORD : 25 Y-058935

HOLE No: W411

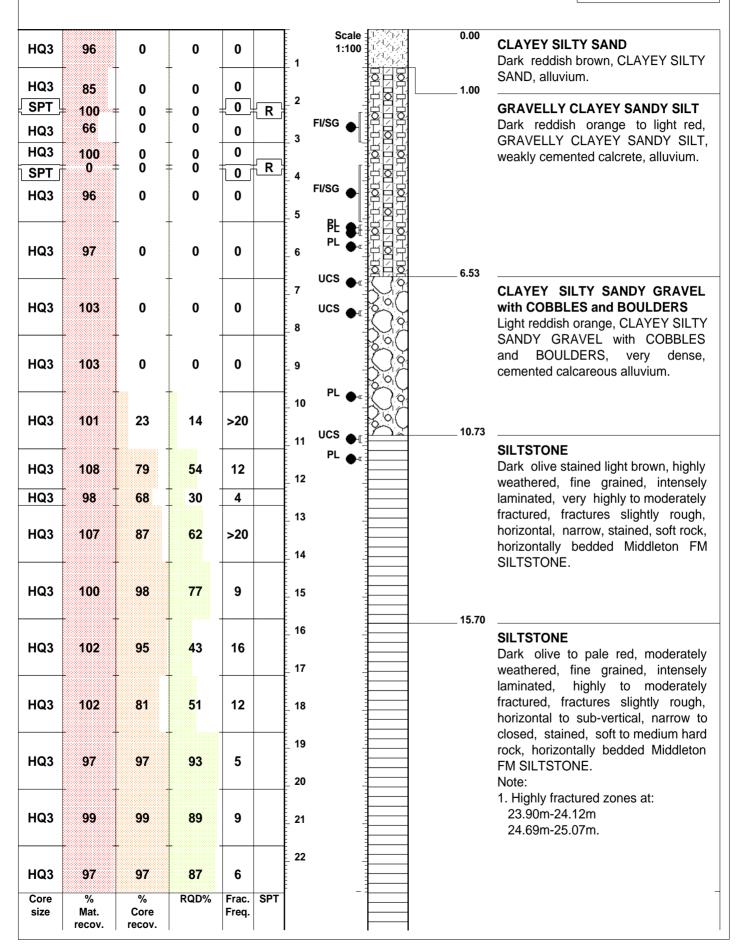
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W411 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W411 SHEET 2/3

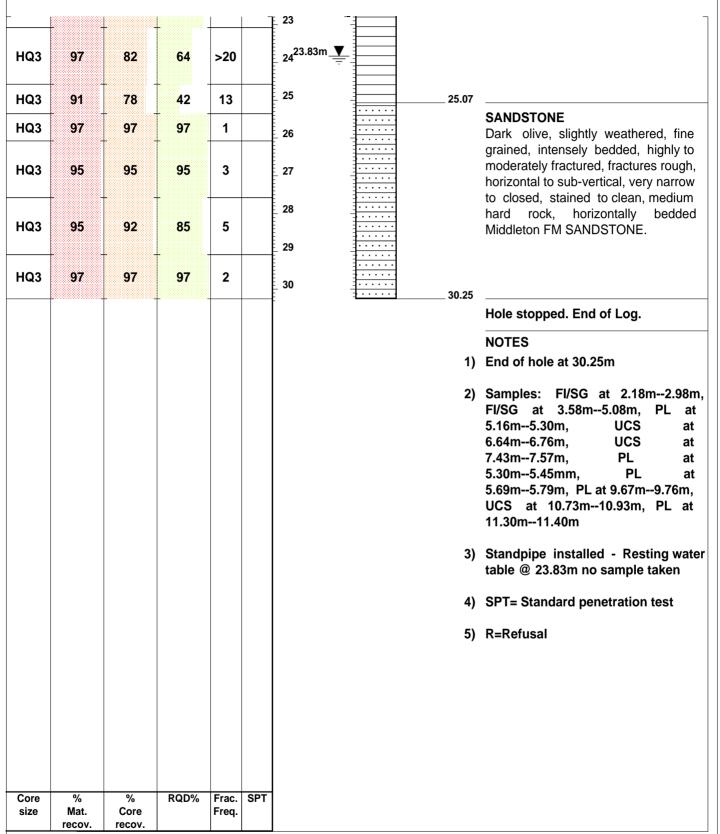
CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W411 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W417 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W417 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE:

DRILLED BY : Andries LOGGED BY : I Paton

TYPE SET BY : S Gallant

SETUP FILE: SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

DATE: 29/08/2019 16:54

TEXT: C\dot7000\network\W417.txt

ELEVATION:

X-COORD : X3640897 Y-COORD : 25 Y-064772

HOLE No: W417

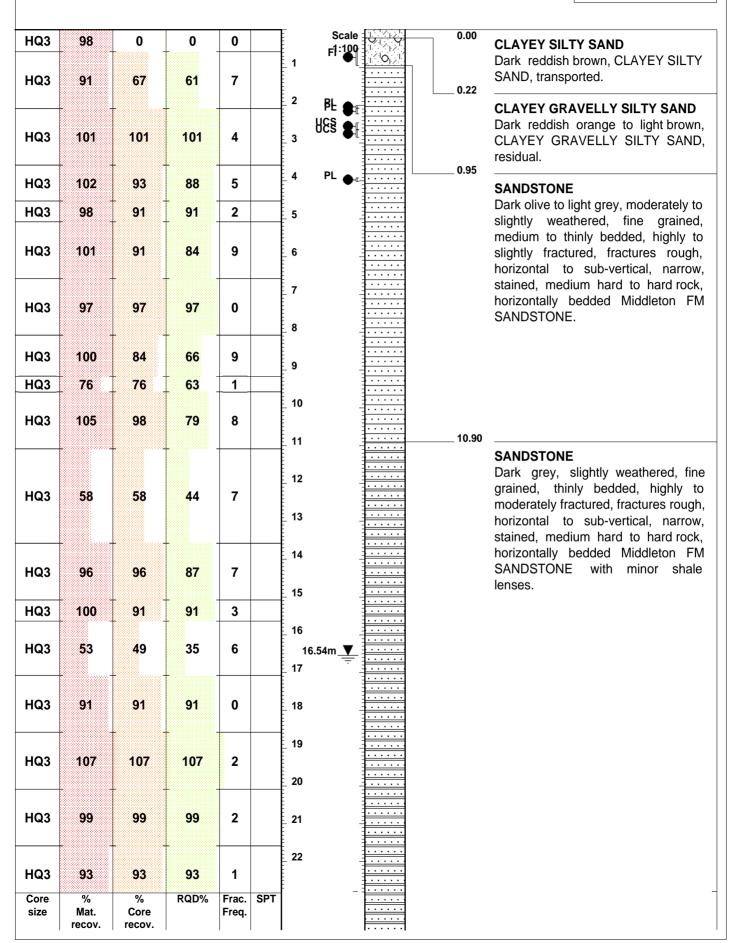
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W417 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

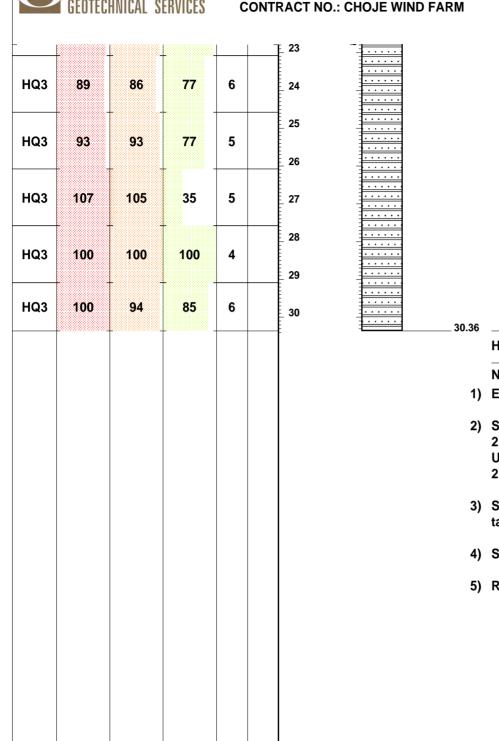
BOREHOLE NO: BH W417 SHEET 2/3

CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W417 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W452 Sheet 1 of 2


JOB NUMBER: 000

HOLE No: W452 Sheet 2 of 2

JOB NUMBER: 000

Frac. SPT

Freq.

Hole stopped. End of Log.

NOTES

- 1) End of hole at 30.36m
- 2) Samples: FI at 0.50m--0.95m, PL at 2.00m--2.08m, PL at 2.08m--2.23m, UCS at 2.46m--2.65m, UCS at 2.65m--2.85m, PL at 3.92m--4.02m
- 3) Standpipe installed Resting water table @ 16.54m - Sample taken
- 4) SPT= Standard penetration test
- 5) R=Refusal

recov. **CONTRACTOR: Earthtech**

%

Core

MACHINE:

%

Mat.

recov.

Core

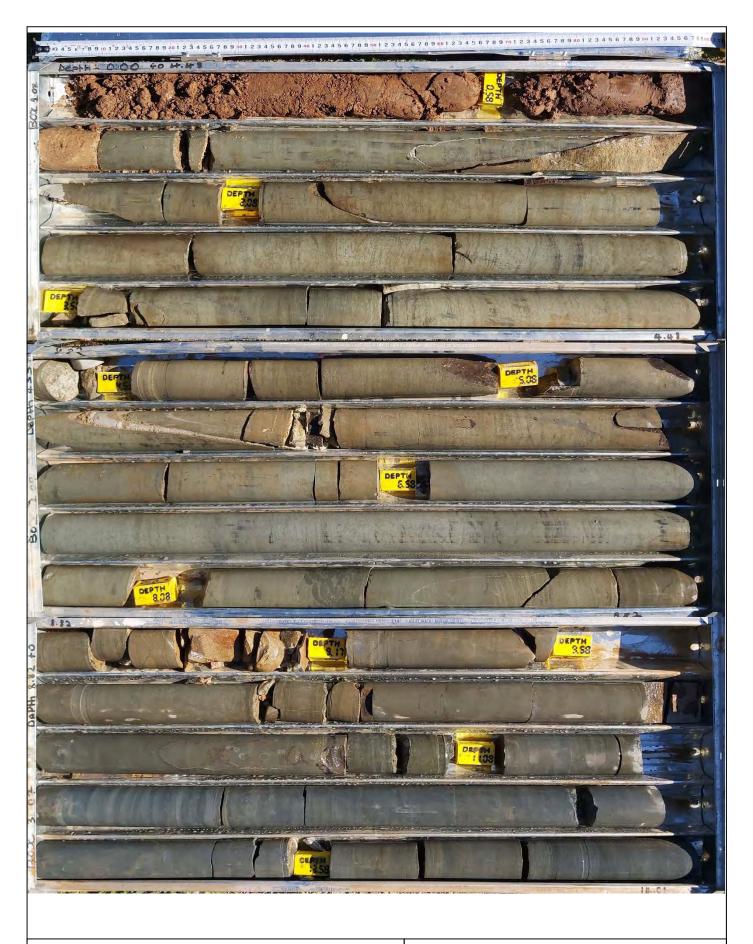
size

DRILLED BY: Aubrey LOGGED BY: I Paton

TYPE SET BY: S Gallant SETUP FILE: SANRAL.SET INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

DATE: 29/08/2019 16:54


TEXT: C\dot7000\network\W452.txt

ELEVATION:

X-COORD: X3649254 Y-COORD: 25 Y-068726

HOLE No: W452

RQD%

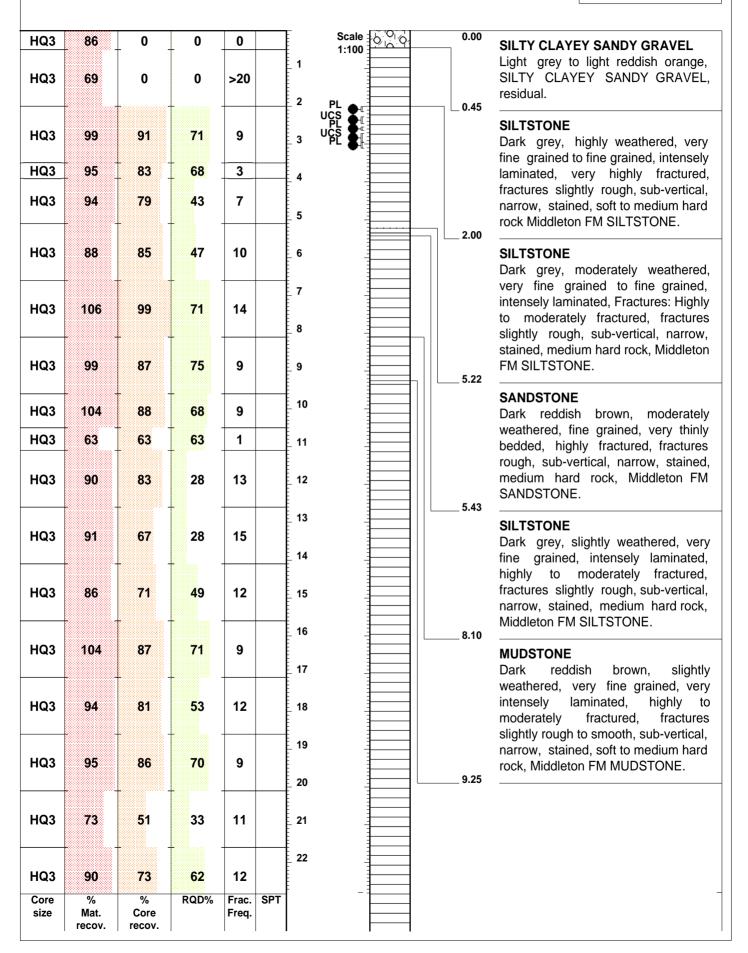
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W452 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W452 SHEET 2/3

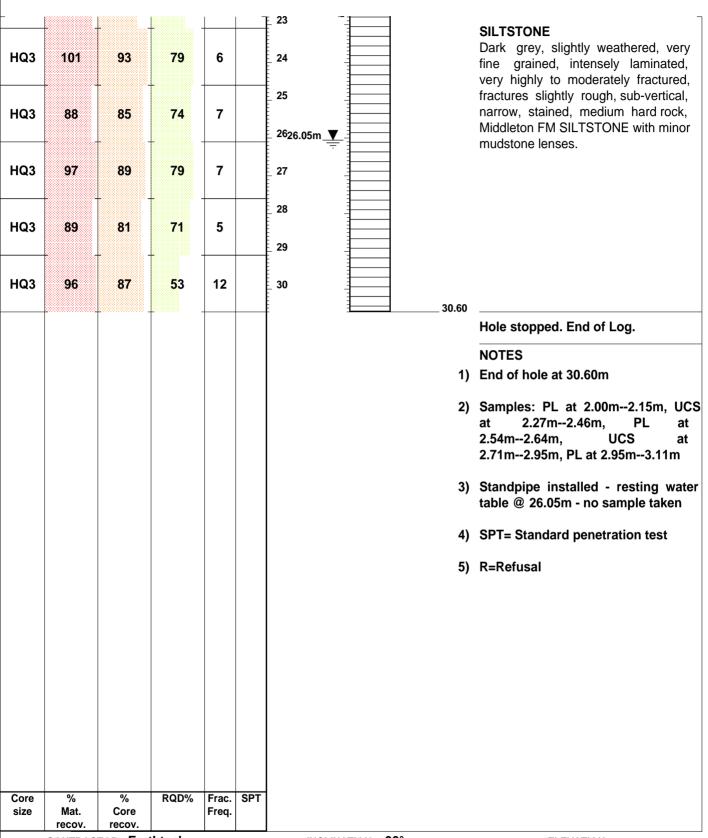
CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W452 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W521 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W521 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE : DRILLED BY : Aubrey

LOGGED BY : I Paton

TYPE SET BY : S Gallant SETUP FILE : SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

DATE: 29/08/2019 16:54

TEXT : C\dot7000\network\W521.txt

ELEVATION:

X-COORD : X3659627 Y-COORD : 25 Y-074141

HOLE No: W521

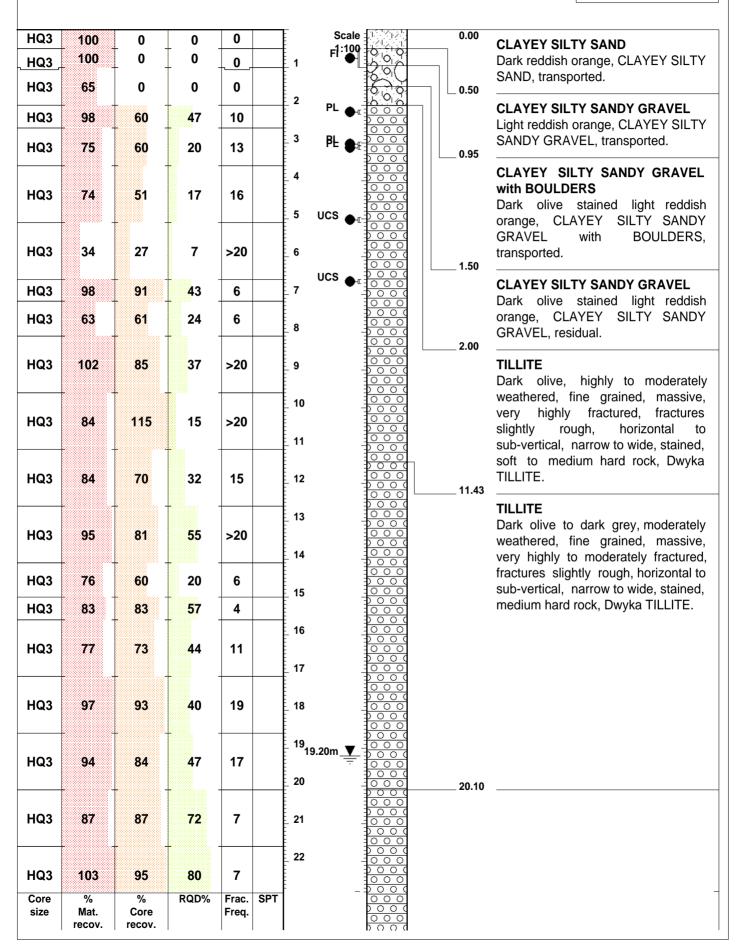
CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W521 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W521 SHEET 2/3

CLIENT: DNV GL/WIND RELIC


BOREHOLE NO: BH W521 SHEET 3/3

CONTRACT NO.: CHOJE WIND FARM

HOLE No: W564 Sheet 1 of 2

JOB NUMBER: 000



CONTRACT NO.: CHOJE WIND FARM

HOLE No: W564 Sheet 2 of 2

JOB NUMBER: 000

CONTRACTOR: Earthtech

MACHINE :

DRILLED BY : Aubrey LOGGED BY : I Paton

TYPE SET BY : S Gallant SETUP FILE : SANRAL.SET

INCLINATION: -90°

DATE DRILLED: July 2019 DATE LOGGED: July 2019

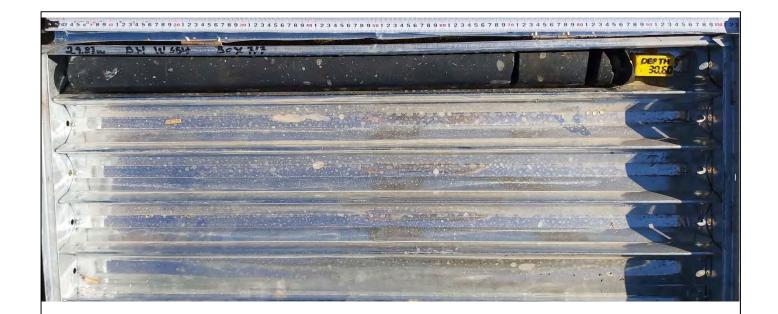
DATE: 29/08/2019 16:55

TEXT : C\dot7000\network\W564.txt

ELEVATION:

X-COORD : X3663859 Y-COORD : 25 Y-080520

HOLE No: W564


CLIENT: DNV GL/WIND RELIC

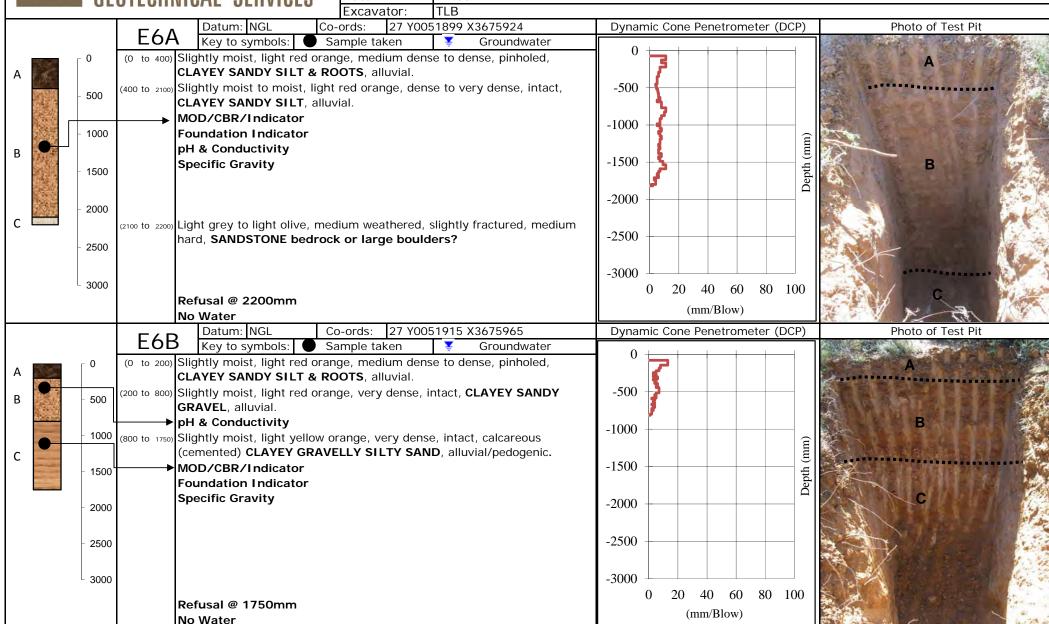
BOREHOLE NO: BH W564 SHEET 1/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W564 SHEET 2/3

CLIENT: DNV GL/WIND RELIC

BOREHOLE NO: BH W564 SHEET 3/3


	TDIAL				
PPENDIX C	<u> – IRIAL</u>	PII & D	CP LOGS		

Geotechnical Soil Profile

Client:	DINV-GL South Africa (Pty) Ltd
Project:	Choje Windfarm Preliminary Geotechnical Investigation
Area:	Grahamstown, Eastern Cape

Date: 21.05.19

Refusal @ 1000mm

No Water

Geotechnical Soil Profile

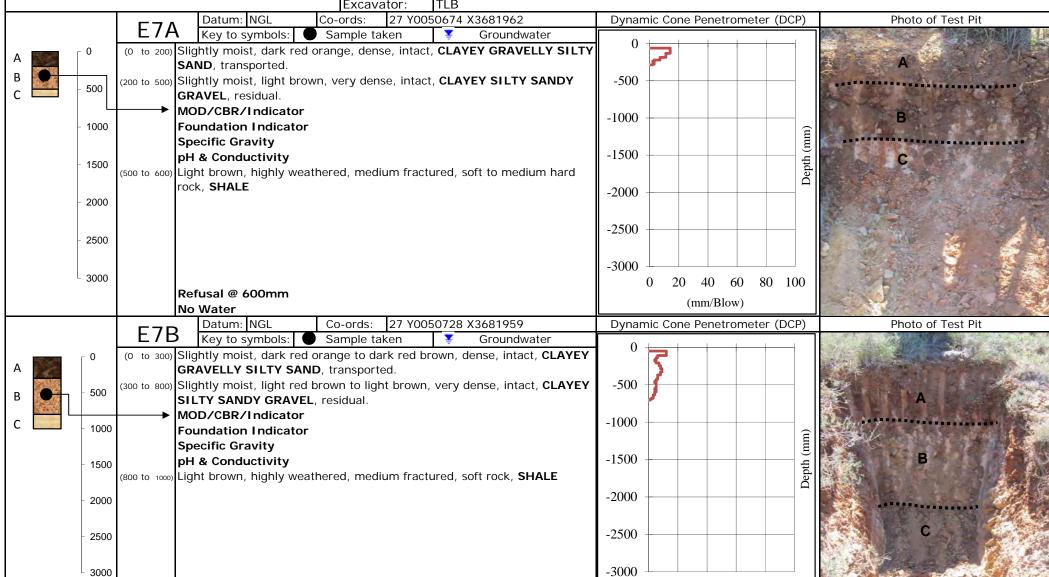
80

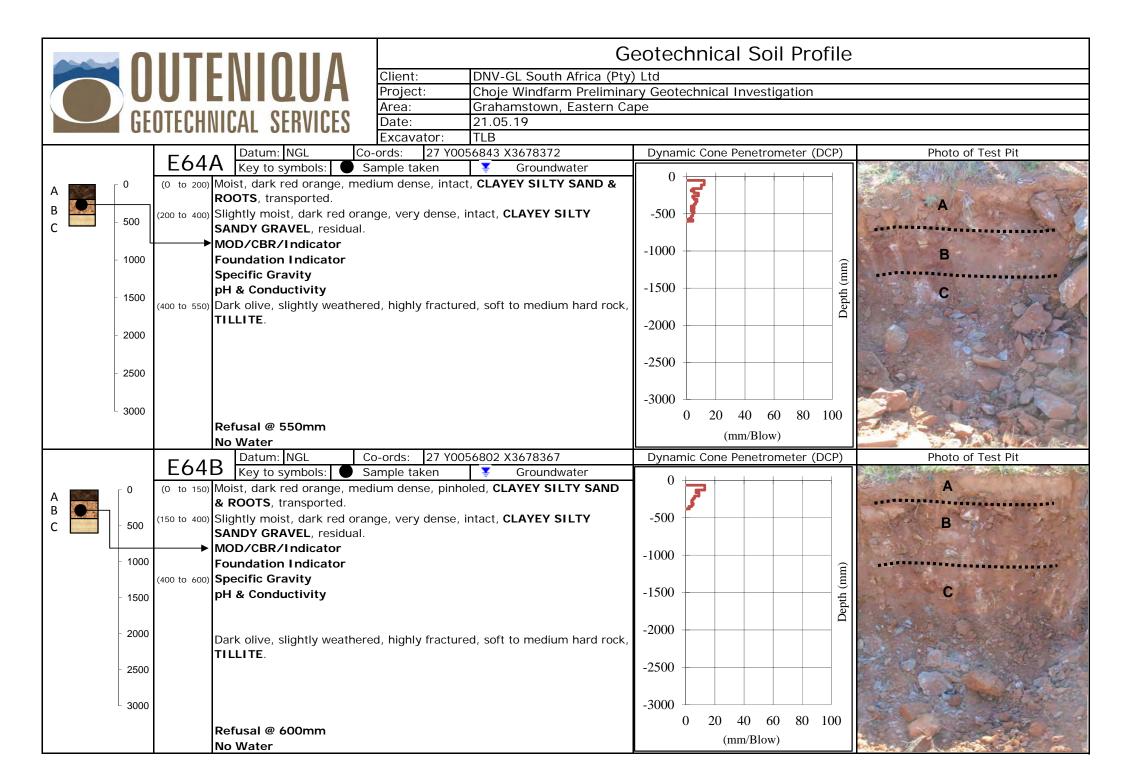
100

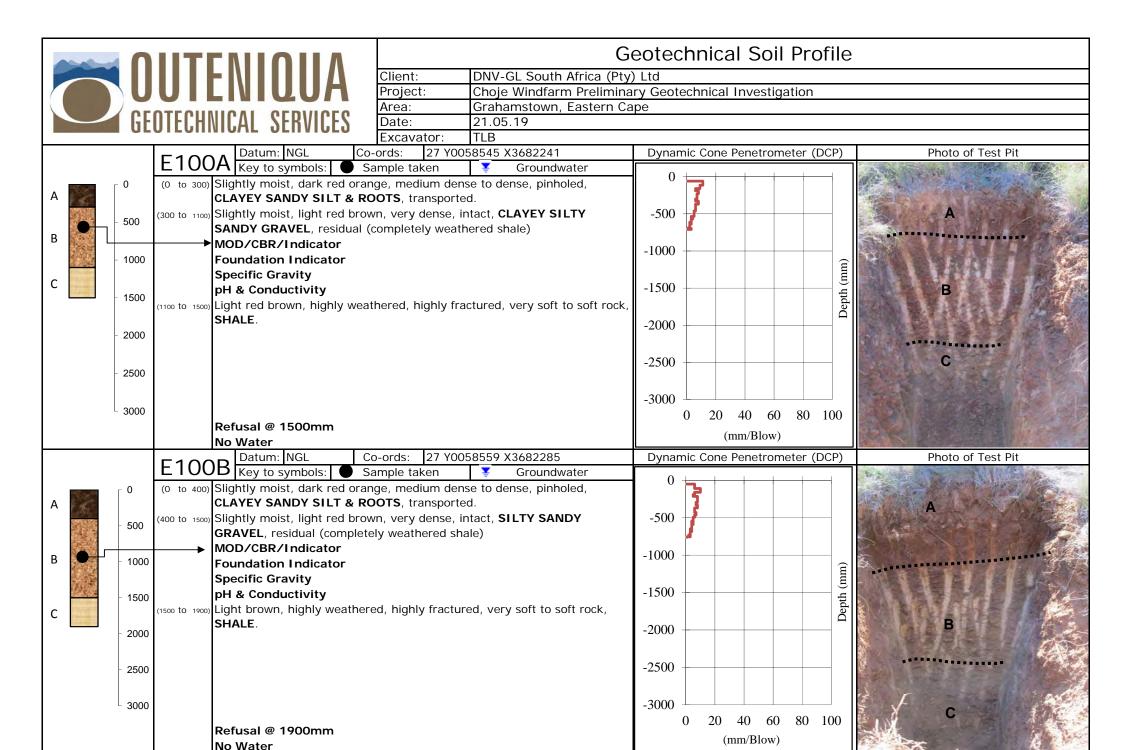
60

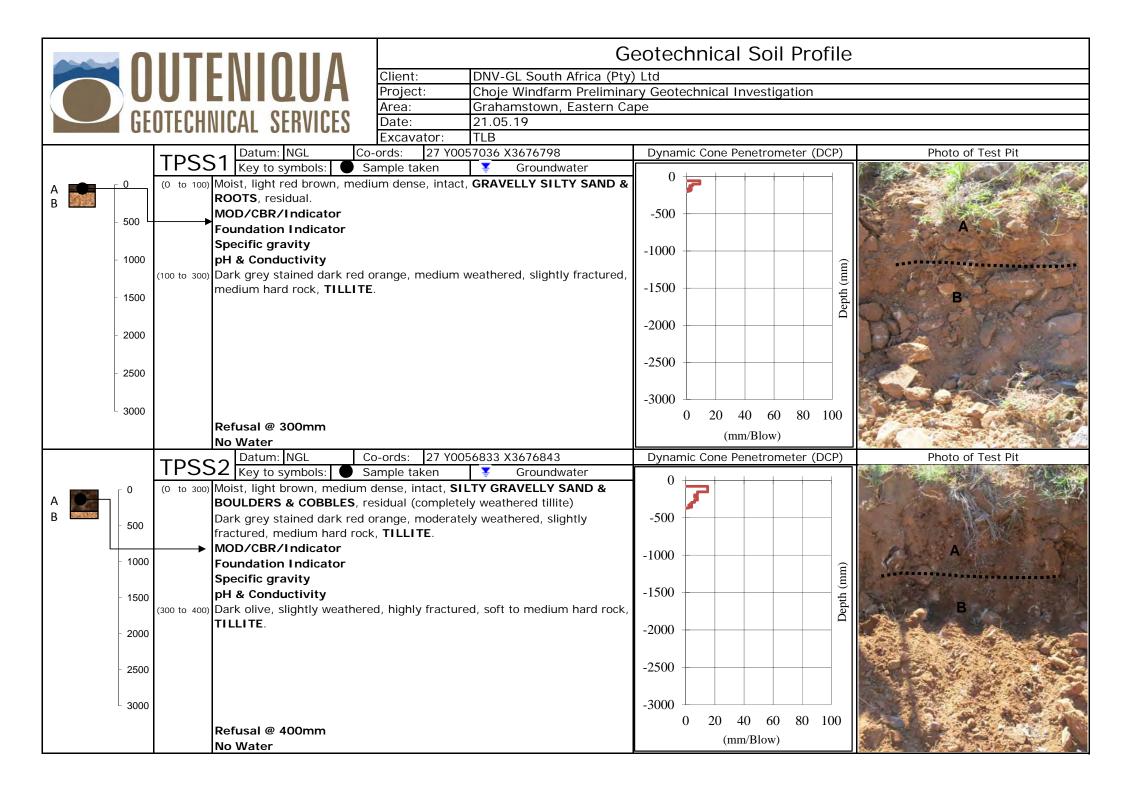
20

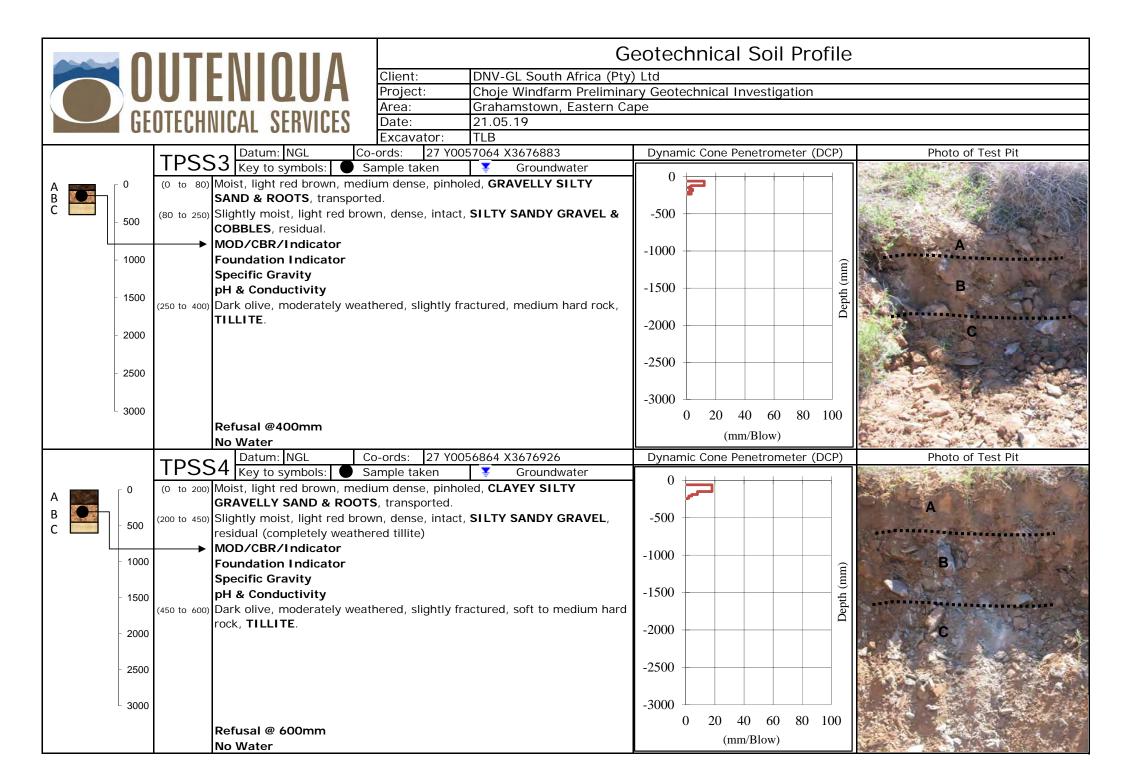
40

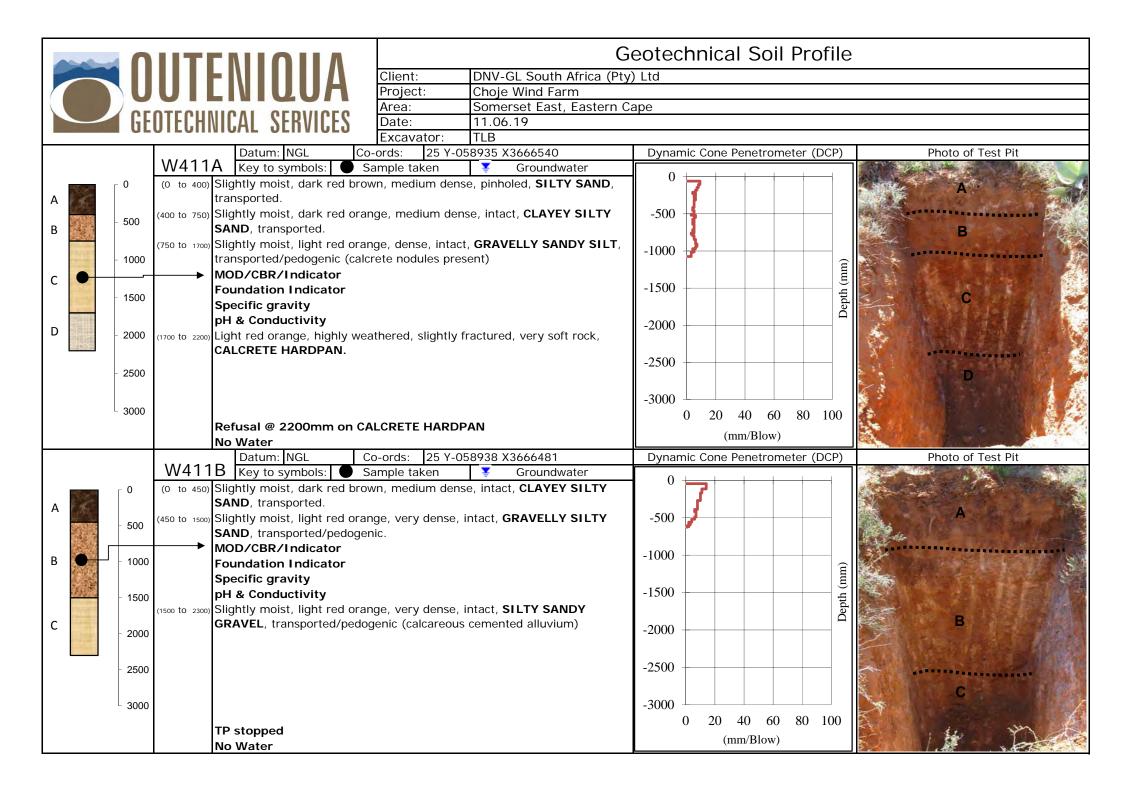

(mm/Blow)

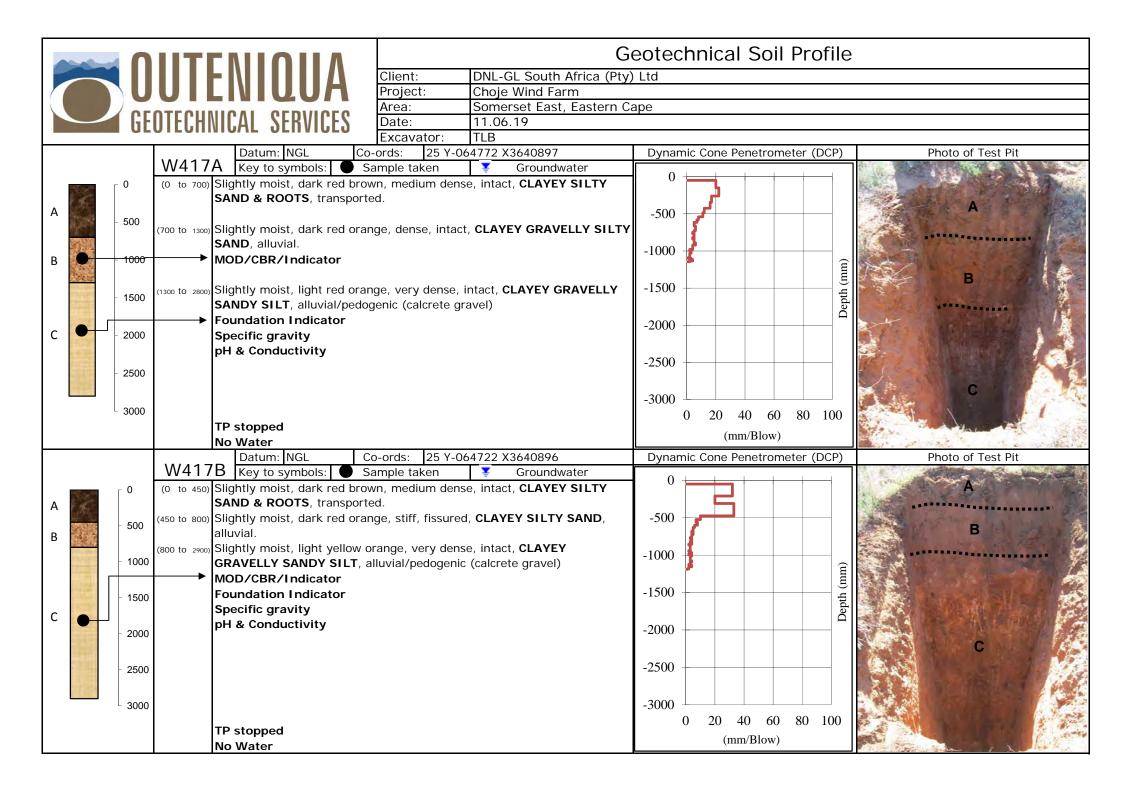

JIIEHIL.	DIVV-GL SOUTH ATTICA (PTy) LTU
Project:	Choje Windfarm Preliminary Geotechnical Investigation

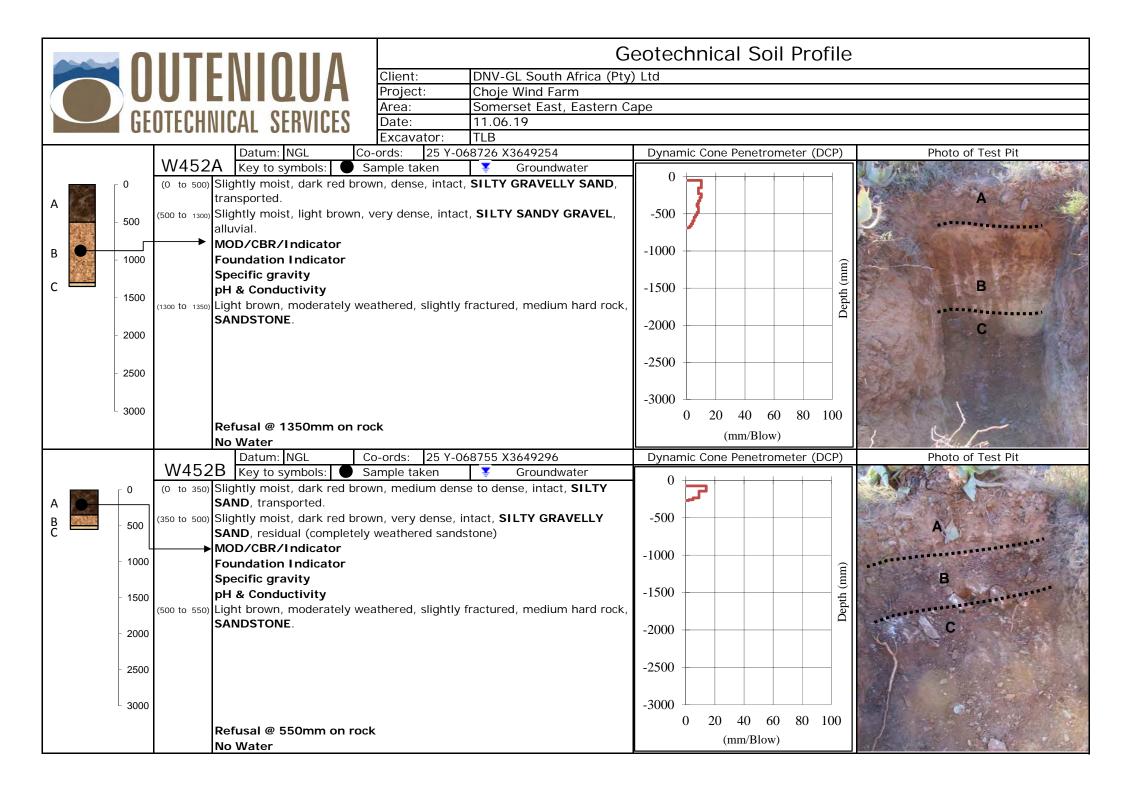

DNIV OL C. II. AC. ... (DI

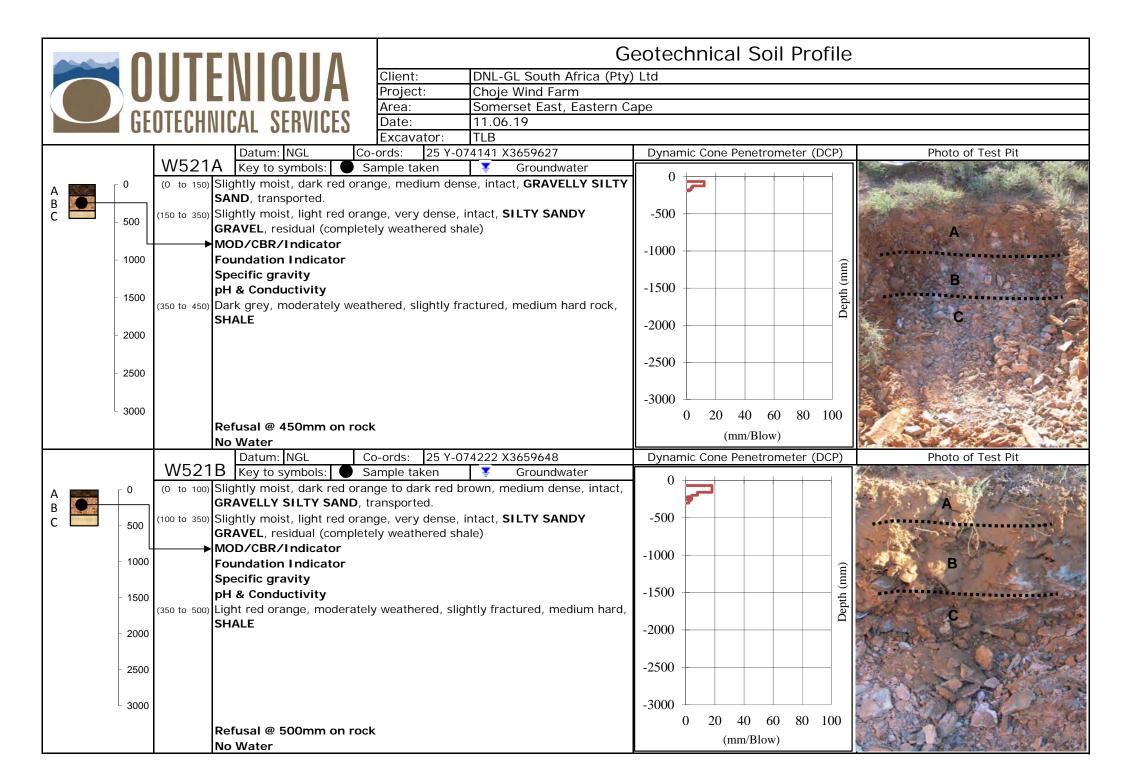

Area: Grahamstown, Eastern Cape Date: 21.05.19

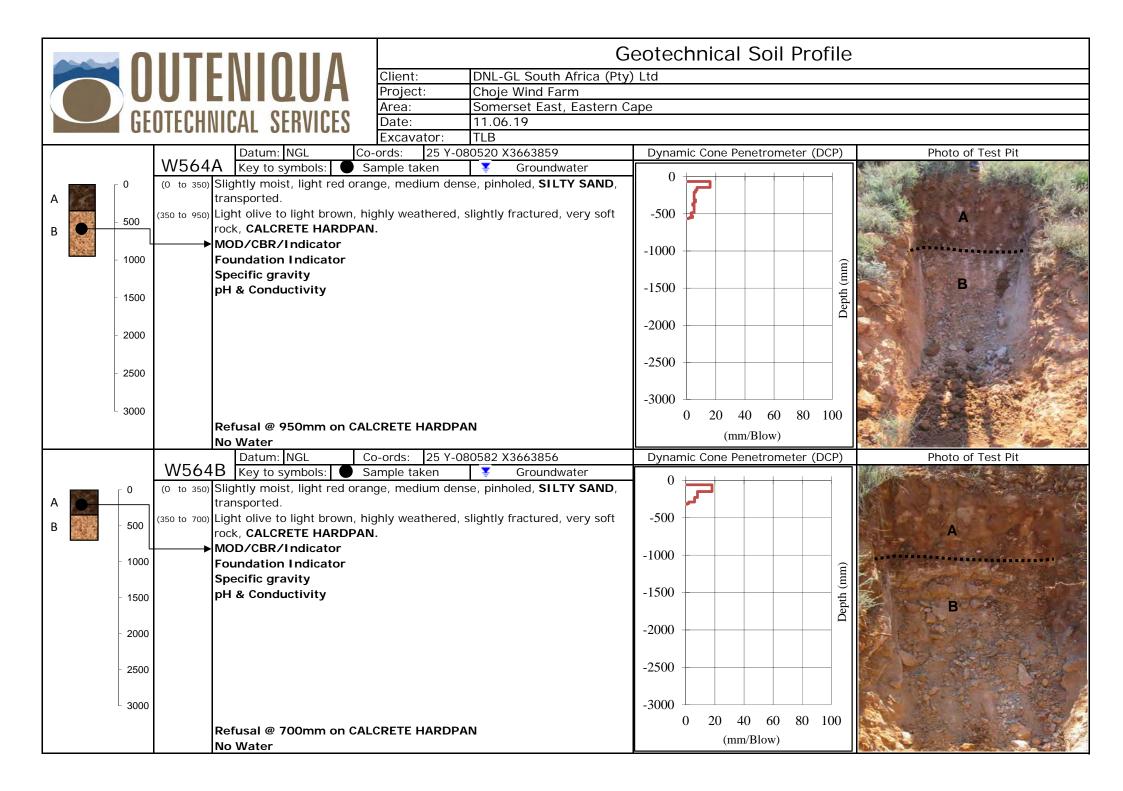

Excavator: TLB

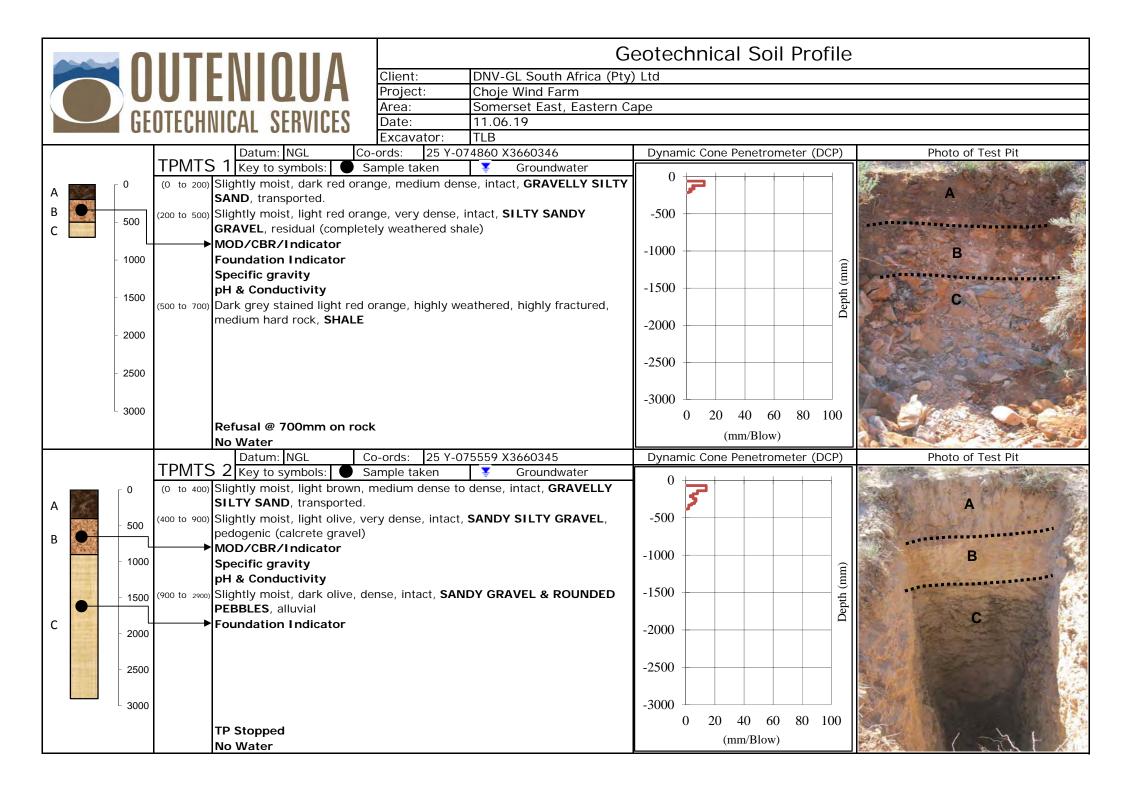


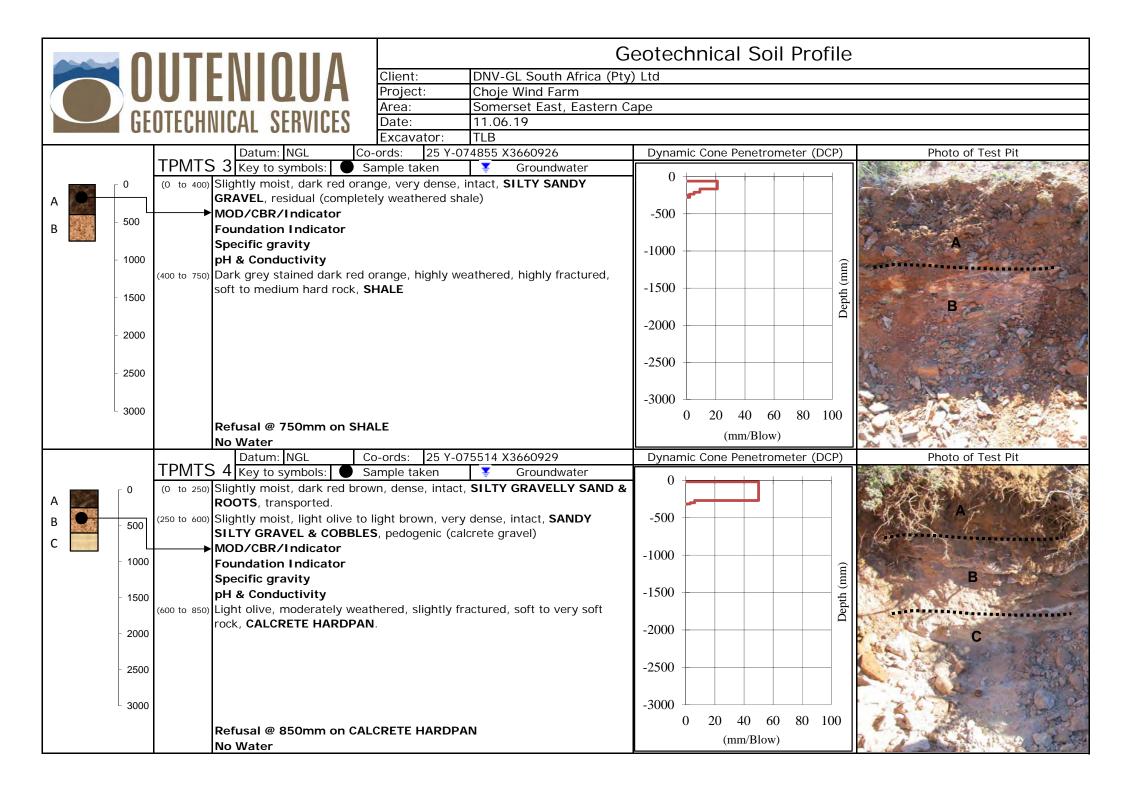




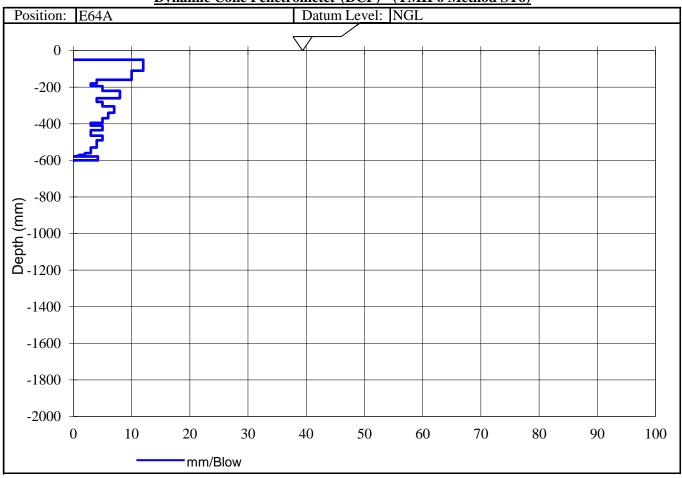








Outeniqua Geotechnical Services cc.


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages :	1 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

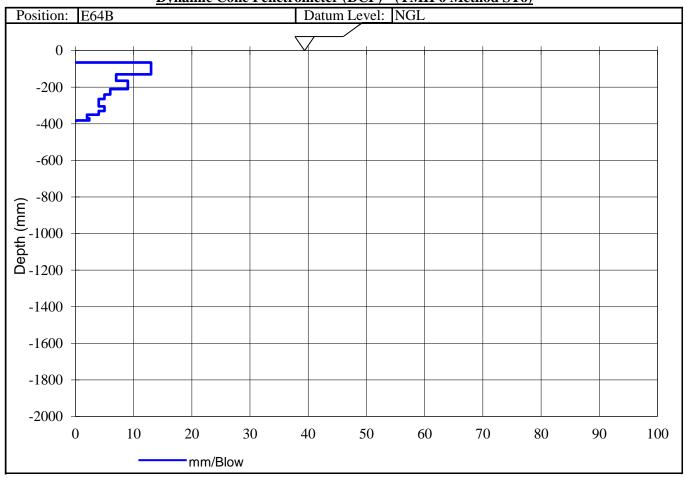
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages :	2 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

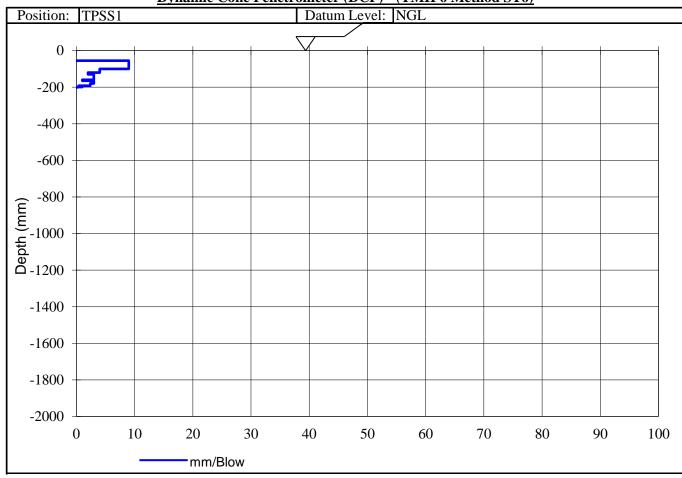
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

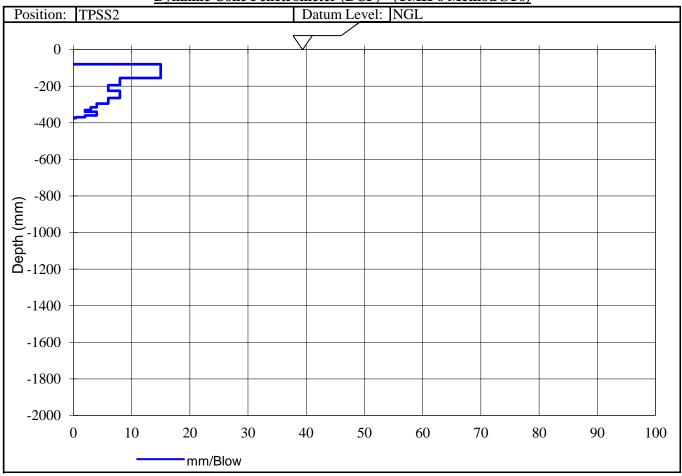
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	3 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

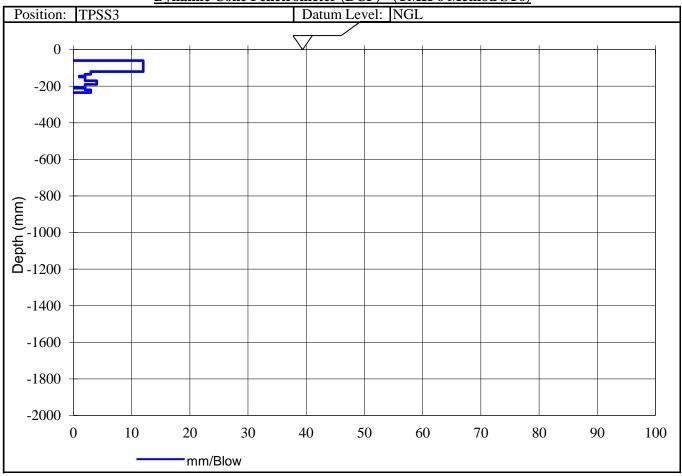
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer:	15th Floor, Metlife Building	Date Received:	28.02.19
Customer.	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	4 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

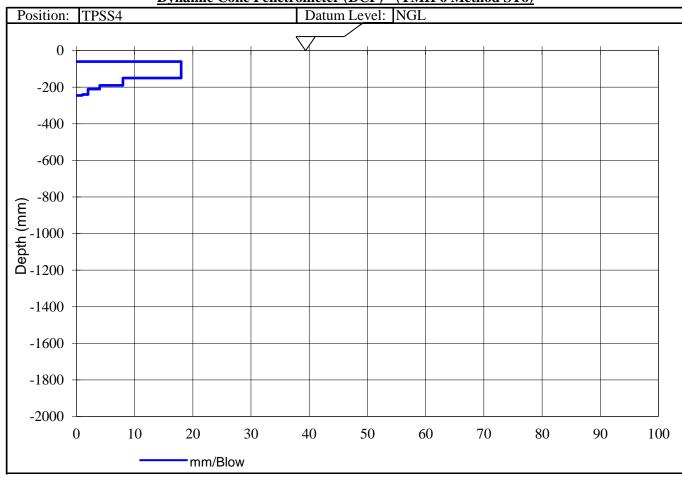
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	5 of 12

TEST REPORT - (TMH 6 Method ST6) **Dynamic Cone Penetrometer (DCP)**

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

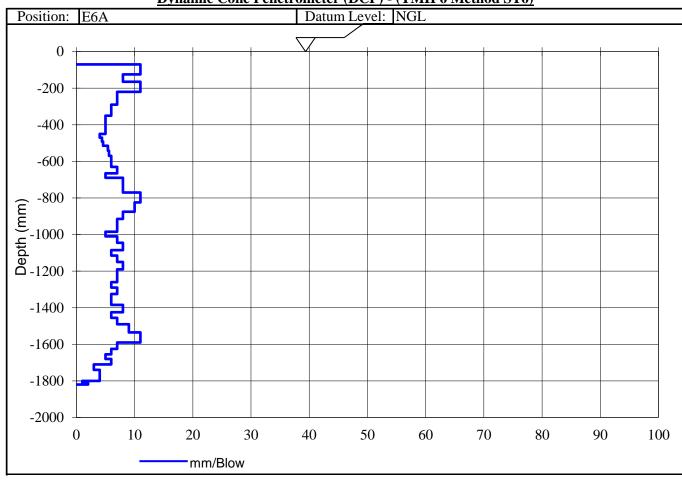
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	6 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	7 of 12

TEST REPORT - (TMH 6 Method ST6) **Dynamic Cone Penetrometer (DCP)**

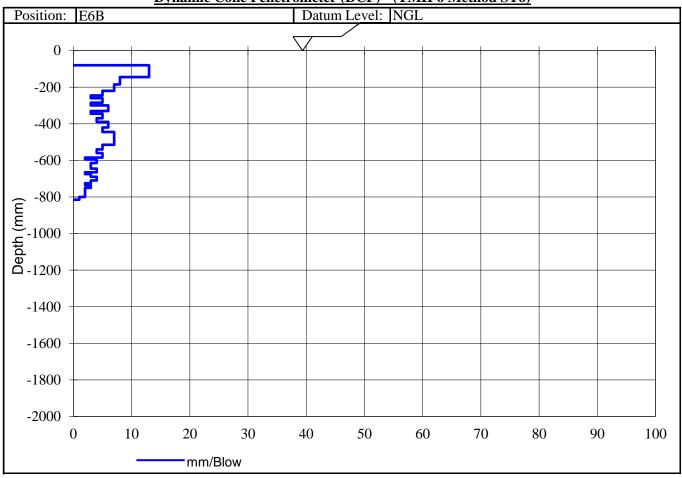
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	8 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

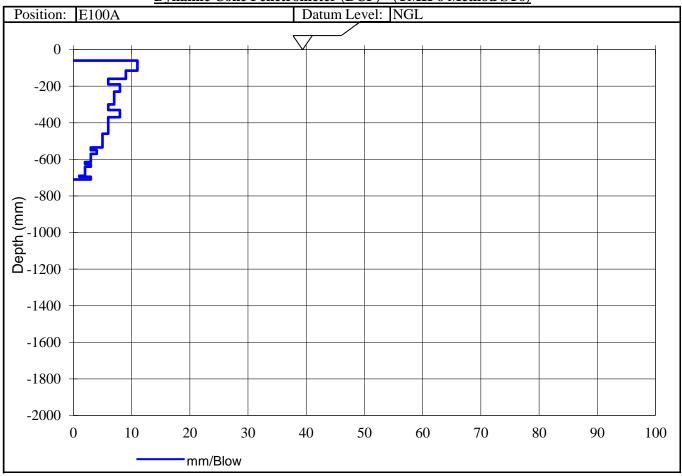
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

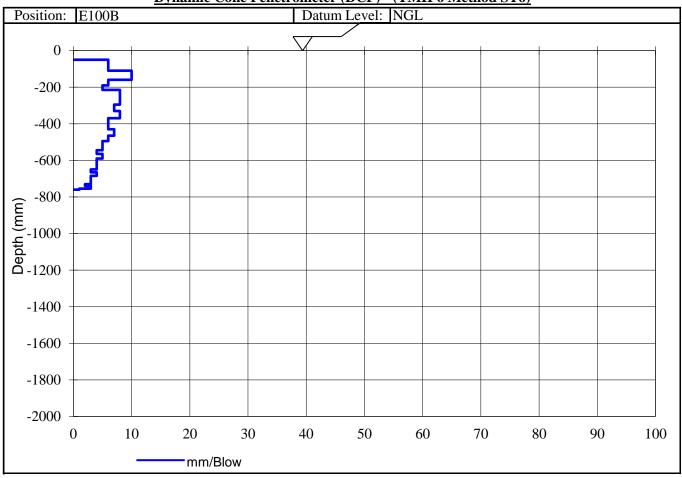
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customor	15th Floor, Metlife Building	Date Received:	28.02.19
Customer.	7 Walter Sisulu Ave, Foreshore	Date Reported :	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	9 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

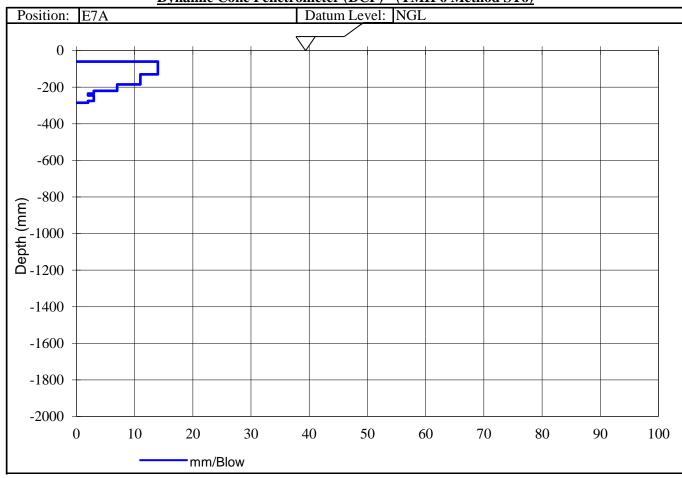
	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customar	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	10 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer	15th Floor, Metlife Building	Date Received:	28.02.19
	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	11 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP)** - (TMH 6 Method ST6)

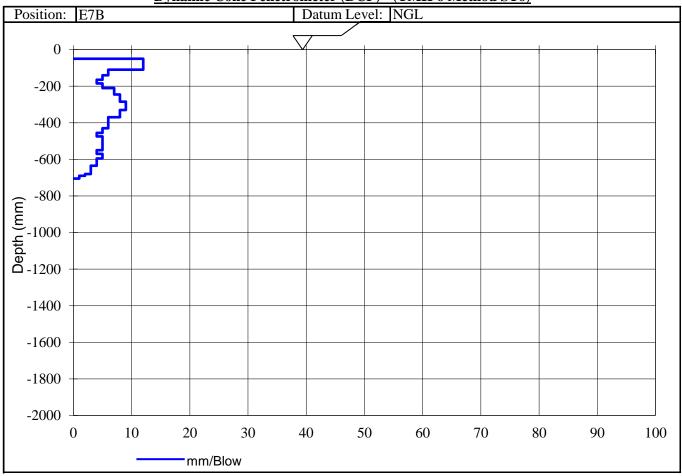
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


Geotechnical Engineering Consultants

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customer:	15th Floor, Metlife Building	Date Received:	28.02.19
Customer.	7 Walter Sisulu Ave, Foreshore	Date Reported:	21.05.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages :	12 of 12

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

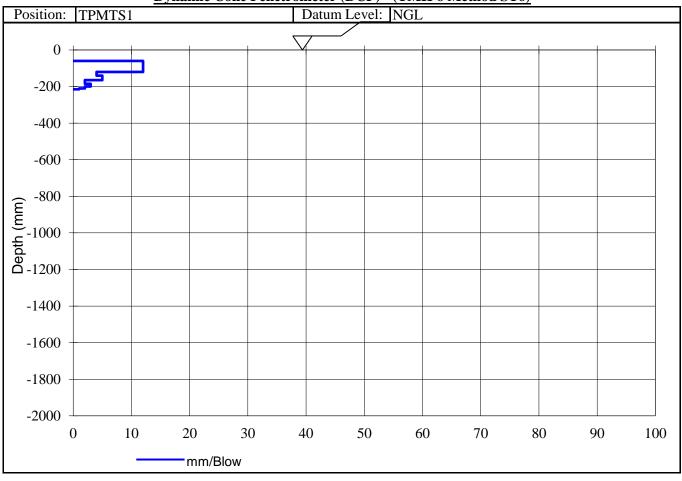
therefrom or for any consequence thereof.

^{1.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention ·	Richard Fyvie	No. of Pages:	1 of 14

TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

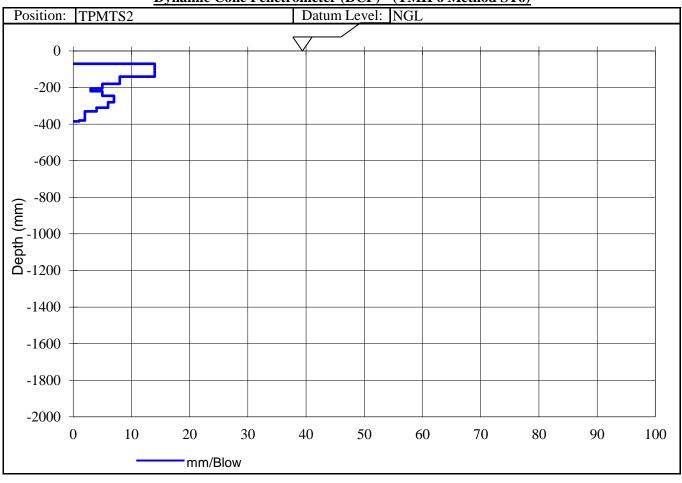
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customan	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	2. of 14

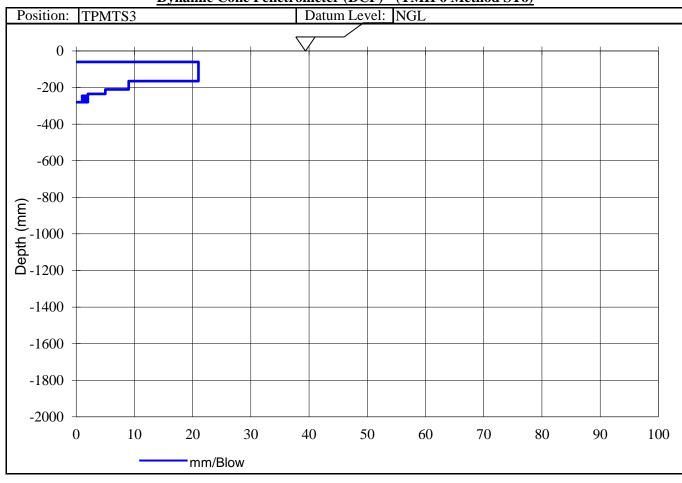
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Evvie	No. of Pages:	3 of 14

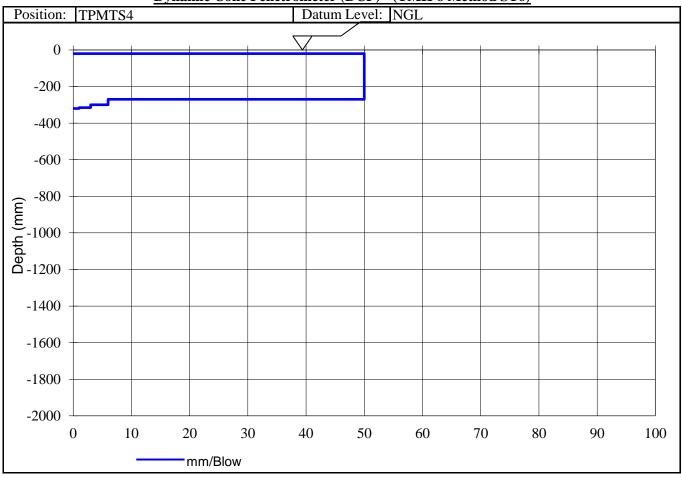
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	4 of 14

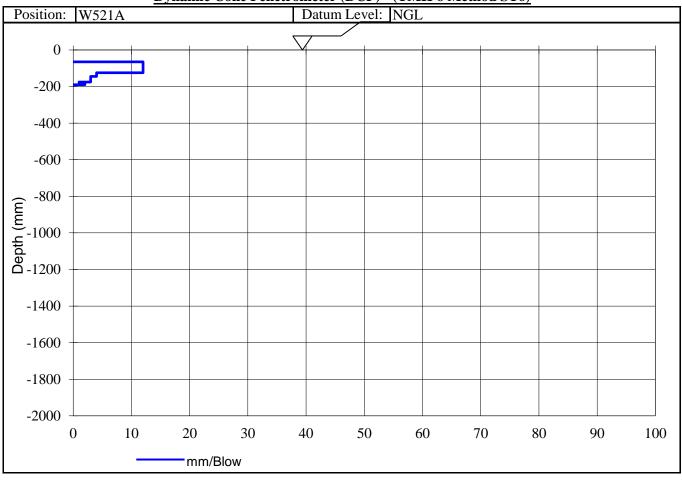
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention ·	Richard Fyvie	No. of Pages:	5 of 14

TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

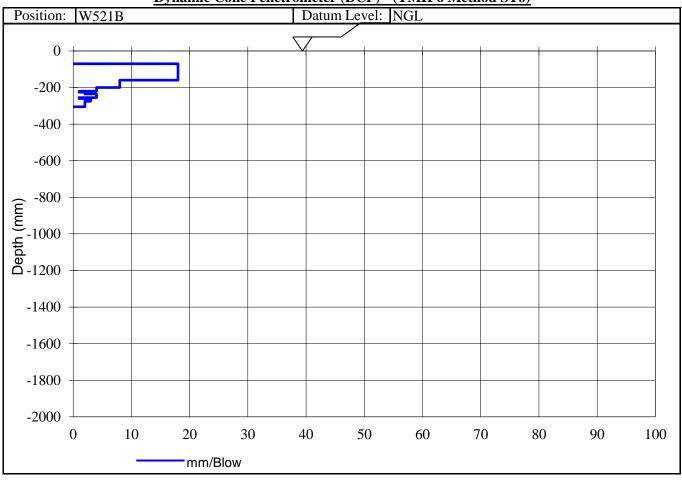
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention:	Richard Fyvie	No. of Pages:	6 of 14

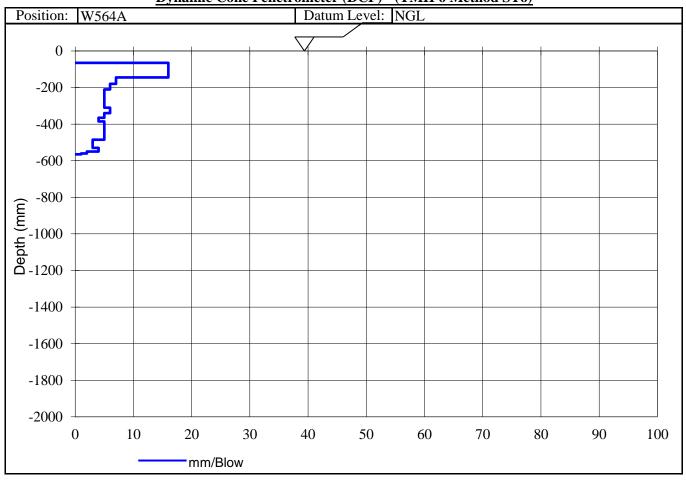
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customan	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	7 of 14

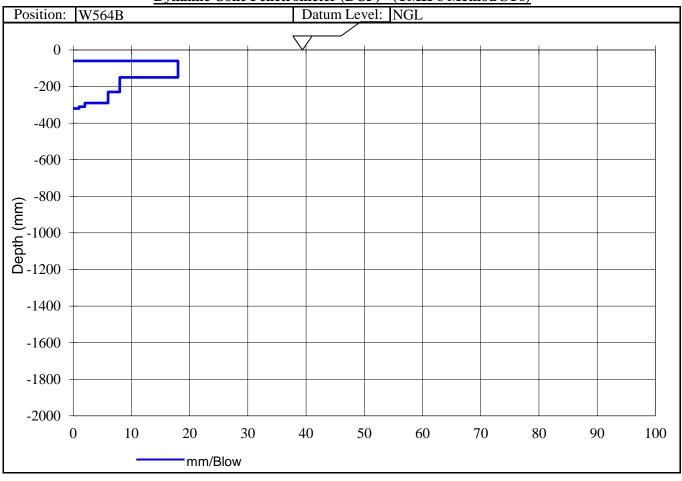
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Evvie	No. of Pages:	8 of 14

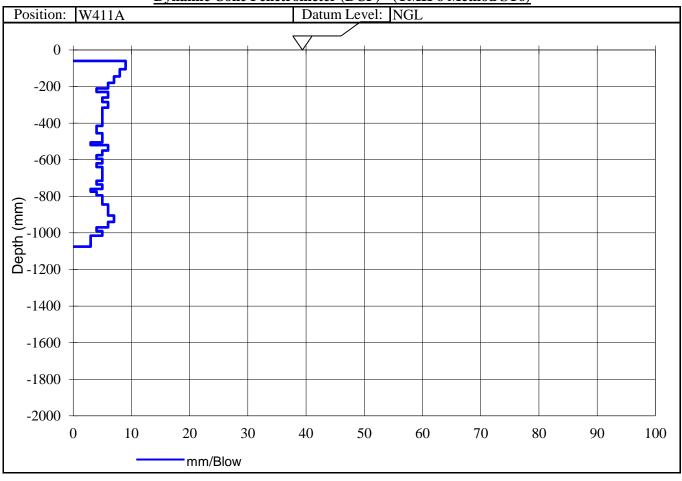
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Cyataman	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	9 of 14

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

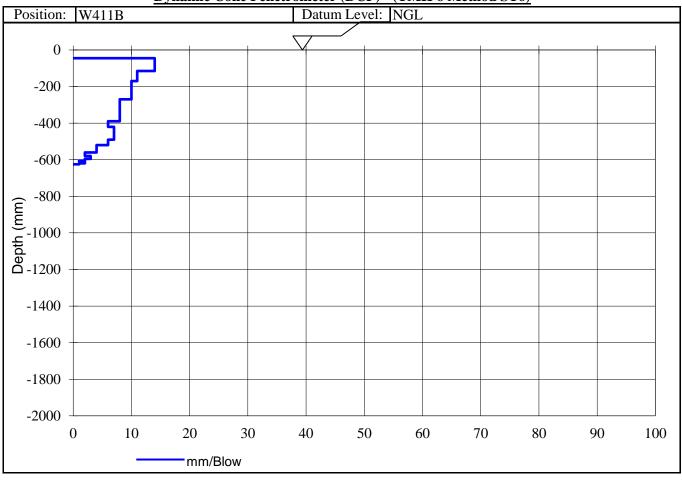
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customan	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	10 of 14

TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

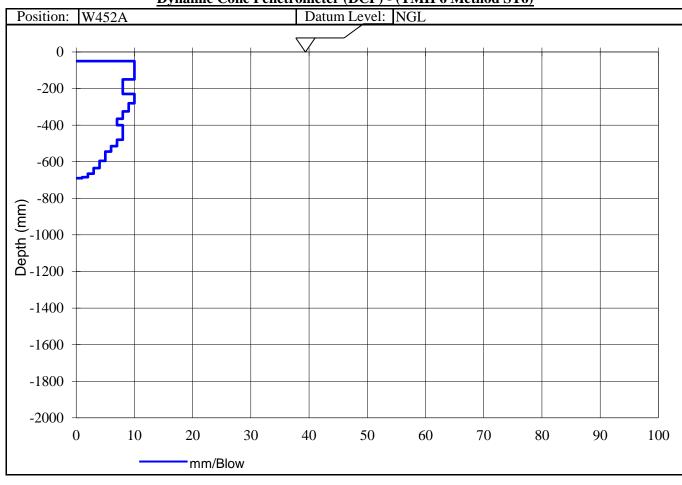
I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention ·	Richard Fyvie	No. of Pages:	11 of 14

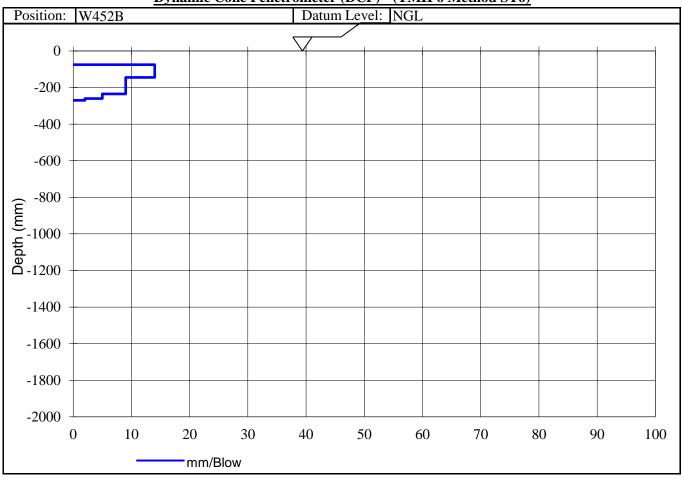
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention ·	Richard Fyvie	No. of Pages:	12 of 14

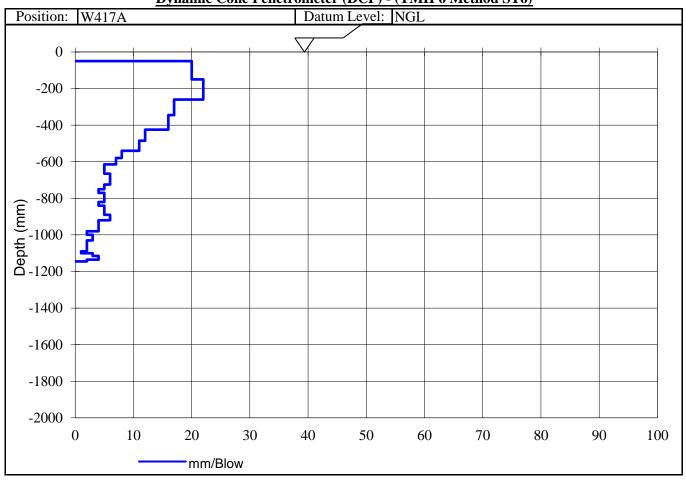
TEST REPORT Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Fyvie	No. of Pages:	13 of 14

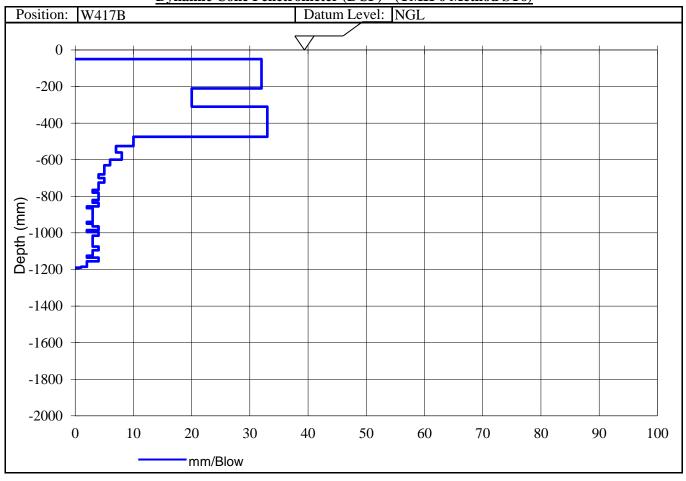
TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

Geotechnical Engineering Consultants


Registration No. 1999/062743/23

18 Clyde Street, Knysna : PO Box 964, Knysna, 6570

Tel: 044 3820502 : Fax: 044 3820503 : e-mail: iain@outeniqualab.co.za

	DNV-GL South Africa (Pty) Ltd	Project:	Choje Wind Farm
Customon	15th Floor, Metlife Building	Date Received:	28.02.19
Customer:	7 Walter Sisulu Ave, Foreshore	Date Reported:	11.06.19
	Cape Town, 8001	Req. Number:	
Attention :	Richard Evvie	No. of Pages:	14 of 14

TEST REPORT **Dynamic Cone Penetrometer (DCP) - (TMH 6 Method ST6)**

I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc.

Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

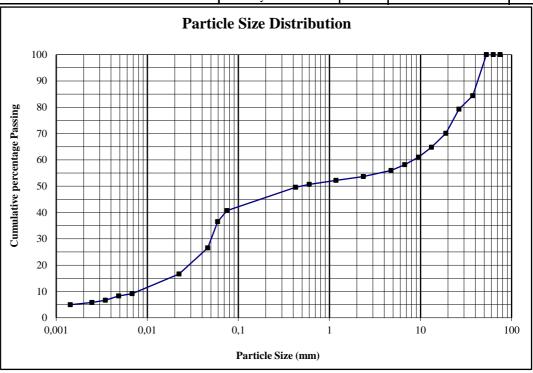
While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

APPENDIX D – LABORATORY TEST RESULTS

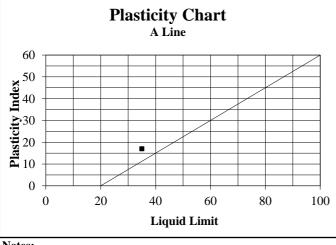
Registration No. 2009/230653/23

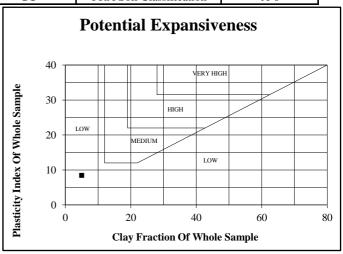
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	1/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Reddish Orange - Clayey Silty Sandy Gravel	Sample Number:	13130		
Position:	E 64A	Liquid Limit	35	Linear Shrinkage	8,5
Depth:	200-400	Plasticity Index	17	Insitu M/C%	8,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	84
26,5	79
19,0	70
13,2	65
9,5	61
6,7	58
4,75	56
2,36	54
1,18	52
0,600	51
0,425	50
0,075	41
0,0591	37
0,0462	27
0,0223	17
0,0068	9
0,0049	8
0,0035	7
0,0025	6
0,0014	5

% Clay	5	% Silt	32	% Sand	16	%	Gravel	47
Unified Soil Classification		ion	GC	PRA Soil C	lassificatio	on	A	-6

Notes:

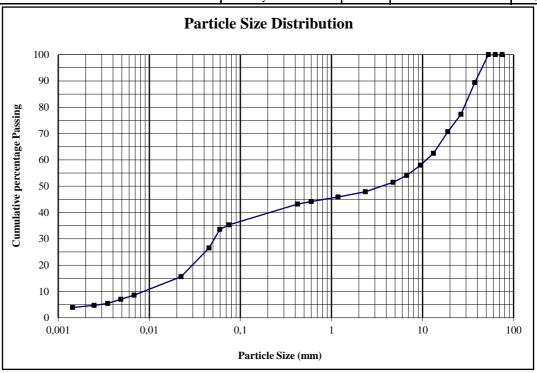
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

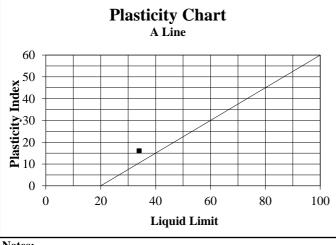
Registration No. 2009/230653/23

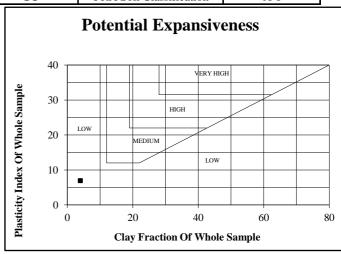
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	2/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Reddish Orange - Clayey Silty Sandy Gravel	Sample Number:	13132		
Position:	E 64B	Liquid Limit	34	Linear Shrinkage	8
Depth:	150-400	Plasticity Index	16	Insitu M/C%	7,7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	89
26,5	77
19,0	71
13,2	63
9,5	58
6,7	54
4,75	52
2,36	48
1,18	46
0,600	44
0,425	43
0,075	35
0,0595	34
0,0453	27
0,0223	16
0,0068	9
0,0049	7
0,0035	5
0,0025	5
0,0014	4

% Clay	4	Ç	% Silt	30	% Sand	13	%	Gravel	53
Unified Soil Classification		ion	GC		PRA Soil Classification			A	-6

Notes:

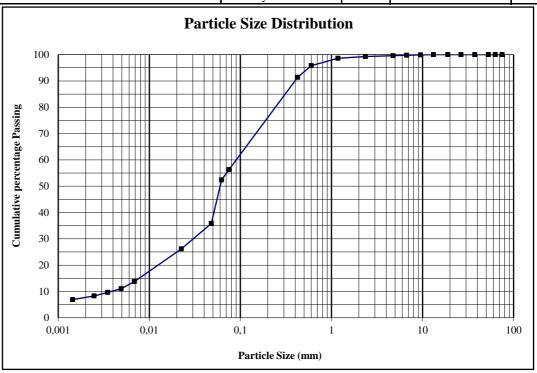
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

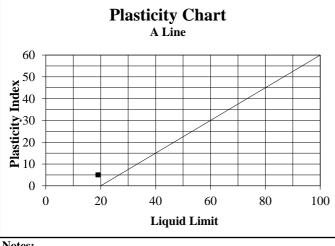
Outeniqua Lab EC cc. Materials Testing Laboratory Registration No. 2009/230653/23

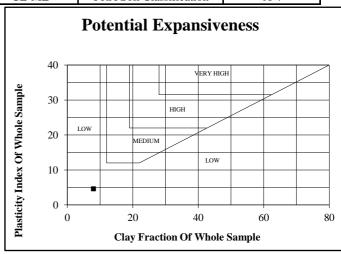
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	3/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Clayey Sandy Silt	Sample Number:		13134	
Position:	E 6A	Liquid Limit	19	Linear Shrinkage	2,5
Depth:	400-2100	Plasticity Index	5	Insitu M/C%	7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	100
9,5	100
6,7	100
4,75	100
2,36	99
1,18	99
0,600	96
0,425	91
0,075	56
0,0623	52
0,0480	36
0,0225	26
0,0069	14
0,0049	11
0,0035	10
0,0025	8
0,0014	7

% Clay	8	(% Silt	42	% Sand	49	%	Gravel	1
Unified Soil	Classificat	ion	CL-	ML	PRA Soil C	lassificatio	on	A	-4

Notes:

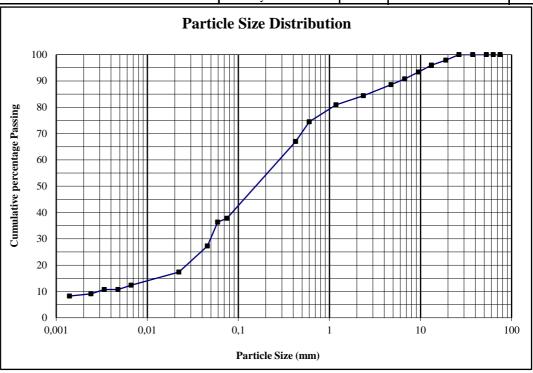
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

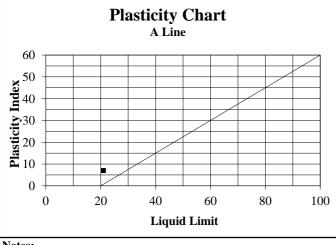
Registration No. 2009/230653/23

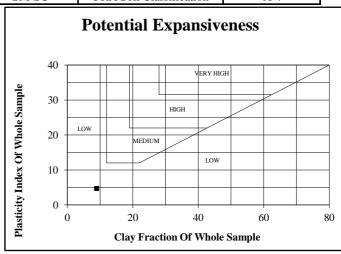
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	4/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Yellowish Orange - Clayey Gravelly Silty Sand	Sample Number:	13136		
Position:	E 6B	Liquid Limit	21	Linear Shrinkage	3,5
Depth:	800-1750	Plasticity Index	7	Insitu M/C%	5,2

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	98
13,2	96
9,5	93
6,7	91
4,75	89
2,36	84
1,18	81
0,600	75
0,425	67
0,075	38
0,0591	36
0,0458	27
0,0223	17
0,0066	12
0,0048	11
0,0034	11
0,0024	9
0,0014	8

% Clay	9	(% Silt	28	% Sand	46	%	Gravel	17
Unified Soil	Classificat	ion	SM	-SC	PRA Soil C	lassificatio	on	A	-4

Notes:

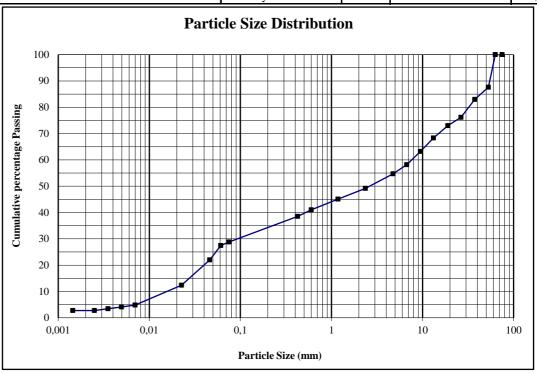
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

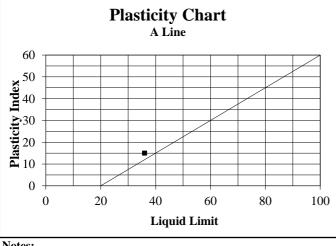
Registration No. 2009/230653/23

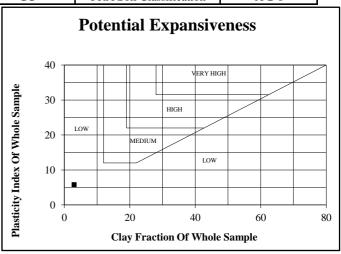
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer :	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	5/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Brown - Clayey Silty Sandy Gravel	Sample Number:	13138		
Position:	E 7A	Liquid Limit	36	Linear Shrinkage	7,5
Depth:	200-500	Plasticity Index	15	Insitu M/C%	9,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	88
37,5	83
26,5	76
19,0	73
13,2	68
9,5	63
6,7	58
4,75	55
2,36	49
1,18	45
0,600	41
0,425	39
0,075	29
0,0610	27
0,0462	22
0,0226	12
0,0070	5
0,0049	4
0,0035	3
0,0025	3
0,0014	3

% Clay	3	Ç	% Silt	24	% Sand	21	%	Gravel	52
Unified Soil	Classificat	ion		С	PRA Soil C	lassificatio	on	A-:	2-6

Notes:

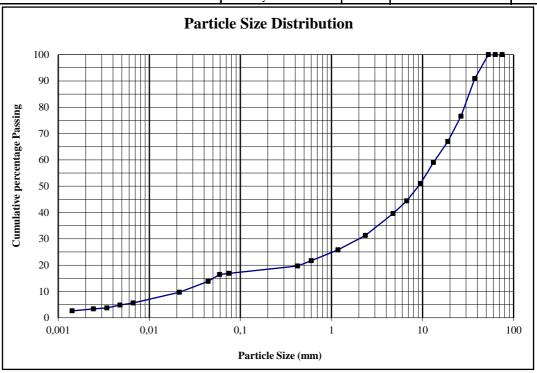
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

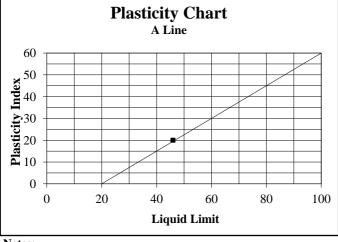
Registration No. 2009/230653/23

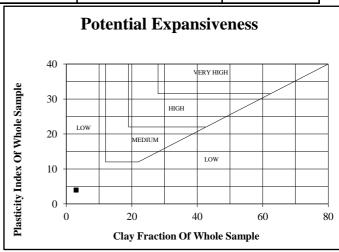
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer :	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	6/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown to Light Brown - Clayey Silty Sandy Gravel	Sample Number:	13140		
Position:	E 7B	Liquid Limit	46	Linear Shrinkage	10
Depth:	300-800	Plasticity Index	20	Insitu M/C%	7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	91
26,5	77
19,0	67
13,2	59
9,5	51
6,7	44
4,75	40
2,36	31
1,18	26
0,600	22
0,425	20
0,075	17
0,0591	16
0,0443	14
0,0215	10
0,0066	6
0,0048	5
0,0034	4
0,0024	3
0,0014	3

% Clay	3	Ç	% Silt	14	% Sand	13	%	Gravel	70
Unified Soil Classification		tion	(;	С	PRA Soil C	lassificatio	on	A-:	2-7

Notes:

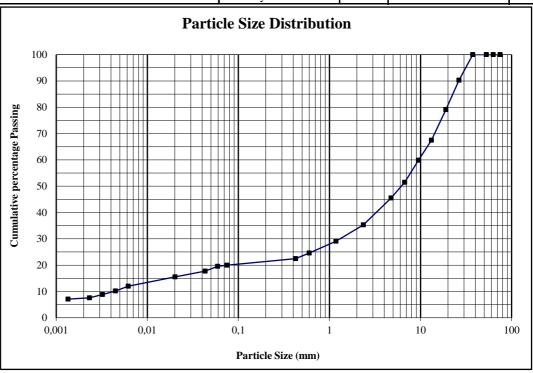
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

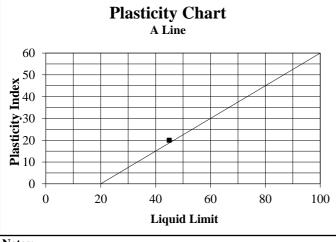
Registration No. 2009/230653/23

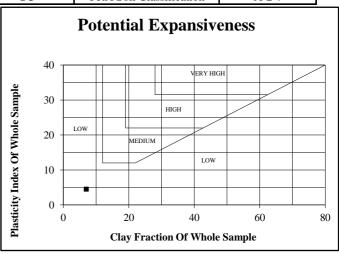
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer	Po Box 964	Date Received:	23/05/19
I —	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	7/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Clayey Silty Sandy Gravel	Sample Number:	13142		
Position:	E 100A	Liquid Limit	45	Linear Shrinkage	10
Depth:	300-1100	Plasticity Index	20	Insitu M/C%	8,9

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	90
19,0	79
13,2	68
9,5	60
6,7	52
4,75	46
2,36	35
1,18	29
0,600	25
0,425	23
0,075	20
0,0591	20
0,0432	18
0,0202	16
0,0062	12
0,0045	10
0,0032	9
0,0023	8
0,0014	7

% Clay	7	9	% Silt	13	% Sand	13	%	Gravel	67
Unified Soil Classification		tion	G	С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

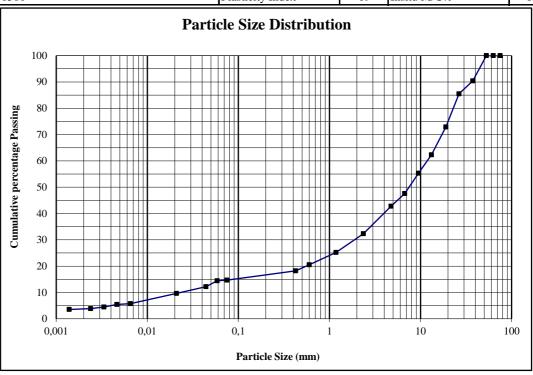
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

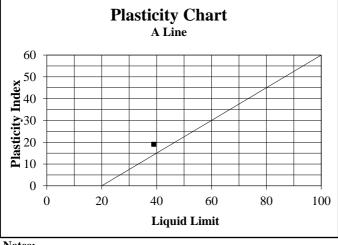
Registration No. 2009/230653/23

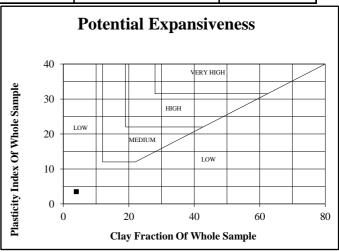
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	8/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Sandy Gravel	Sample Number:	13144		
Position:	E 100B	Liquid Limit	39	Linear Shrinkage	9,5
Depth:	400-1500	Plasticity Index	19	Insitu M/C%	6,8

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	90
26,5	86
19,0	73
13,2	62
9,5	55
6,7	48
4,75	43
2,36	32
1,18	25
0,600	21
0,425	18
0,075	15
0,0585	14
0,0440	12
0,0209	10
0,0065	6
0,0046	5
0,0033	4
0,0024	4
0,0014	4

% Clay	4	(% Silt	11	% Sand	15	%	Gravel	70
Unified Soil				C	PRA Soil C	lassificatio	on	A-	2-6

Notes:

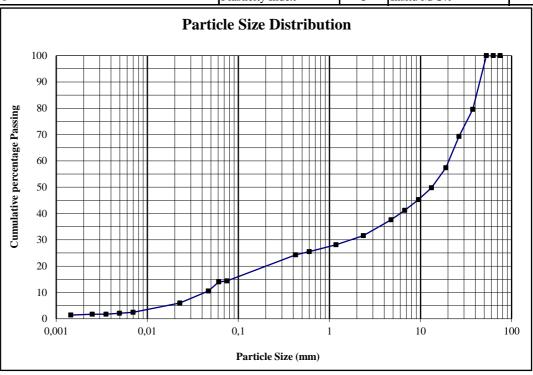
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

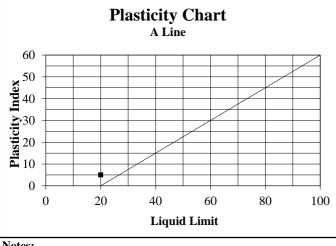
Registration No. 2009/230653/23

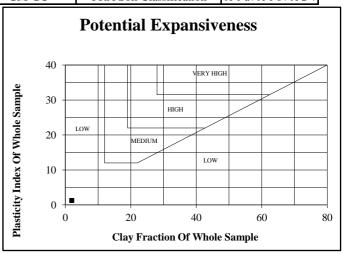
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customar	Po Box 964	Date Received:	23/05/19
Customer:	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	9/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Gravelly Silty Sand	Sample Number:	13146		
Position:	TP SS1	Liquid Limit	20	Linear Shrinkage	2,5
Depth:	0-100	Plasticity Index	5	Insitu M/C%	4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	80
26,5	69
19,0	57
13,2	50
9,5	45
6,7	41
4,75	38
2,36	32
1,18	28
0,600	26
0,425	24
0,075	14
0,0610	14
0,0468	11
0,0228	6
0,0070	2
0,0049	2 2
0,0035	
0,0025	2
0,0014	1

% Clay	2	,	% Silt	12	% Sand	17	%	Gravel	69
Unified Soil Classification GM-GC		PRA Soil C	lassification	on	A-1-a / A-	1-b / A-2-4			

Notes:

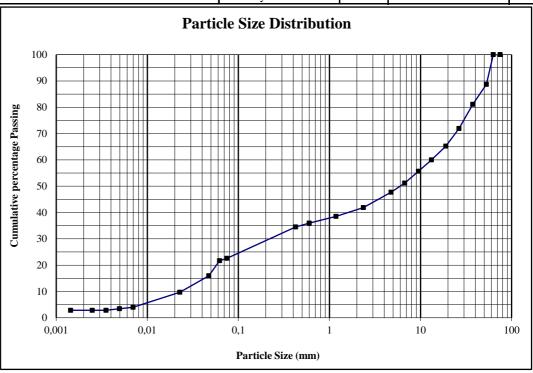
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

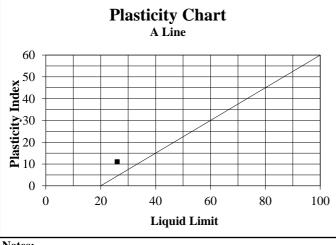
Registration No. 2009/230653/23

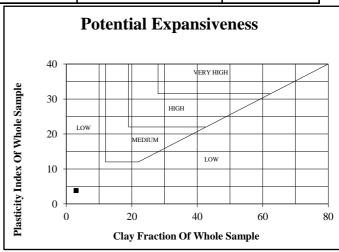
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	10/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Gravelly Sand with Boulders & Cobbles	Sample Number:	13148			
Position:	TP SS2	Liquid Limit	26	Linear Shrinkage	5,5	
Depth:	0-300	Plasticity Index	11	Insitu M/C%	6	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	89
37,5	81
26,5	72
19,0	65
13,2	60
9,5	56
6,7	51
4,75	48
2,36	42
1,18	39
0,600	36
0,425	35
0,075	23
0,0623	22
0,0474	16
0,0228	10
0,0070	4
0,0049	3
0,0035	3
0,0025	3
0,0014	3

% Clay	3	Ç	% Silt	18	% Sand	20	%	Gravel	59
Unified Soil Classification			С	PRA Soil C	lassificatio	on	A-	2-6	

Notes:

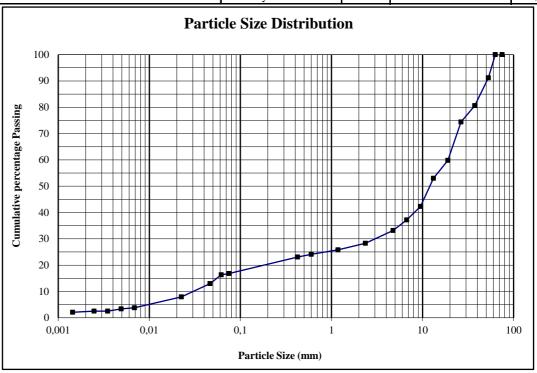
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

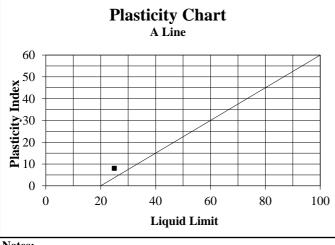
Registration No. 2009/230653/23

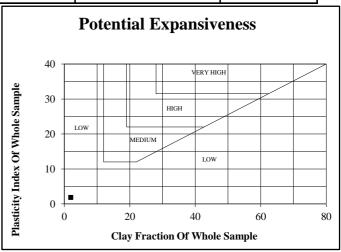
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer	Po Box 964	Date Received:	23/05/19
Customer:	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	11/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Sandy Gravel with Cobbles	Sample Number:		13150	
Position:	TP SS3	Liquid Limit	25	Linear Shrinkage	4
Depth:	80-250	Plasticity Index	8	Insitu M/C%	4,2

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	91
37,5	81
26,5	74
19,0	60
13,2	53
9,5	42
6,7	37
4,75	33
2,36	28
1,18	26
0,600	24
0,425	23
0,075	17
0,0617	16
0,0464	13
0,0225	8
0,0069	4
0,0049	3
0,0035	3
0,0025	3
0,0014	2

% Clay	2		% Silt	14	% Sand	12	%	Gravel	72
Unified Soil	Classificat	ion		С	PRA Soil C	lassificatio	on	A-	2-4

Notes:

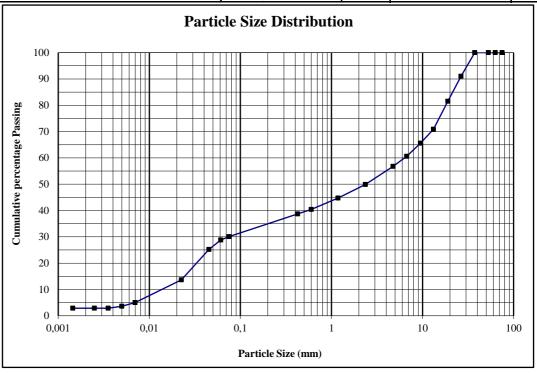
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

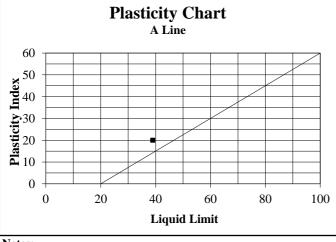
Registration No. 2009/230653/23

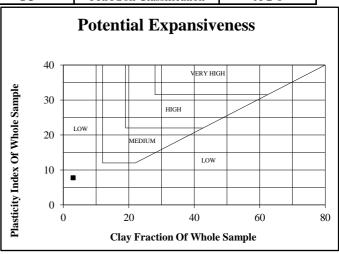
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
	Knysna	Date Reported:	26/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	12/12

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Light Reddish Brown - Silty Sandy Gravel	Sample Number:		13152	
Position:	TP SS4	Liquid Limit	39	Linear Shrinkage	10
Depth:	200-450	Plasticity Index	20	Insitu M/C%	10,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	91
19,0	82
13,2	71
9,5	66
6,7	61
4,75	57
2,36	50
1,18	45
0,600	40
0,425	39
0,075	30
0,0610	29
0,0451	25
0,0225	14
0,0070	5
0,0050	4
0,0035	3
0,0025	3
0,0014	3

% Clay	3	9	% Silt	26	% Sand	19	%	Gravel	52
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

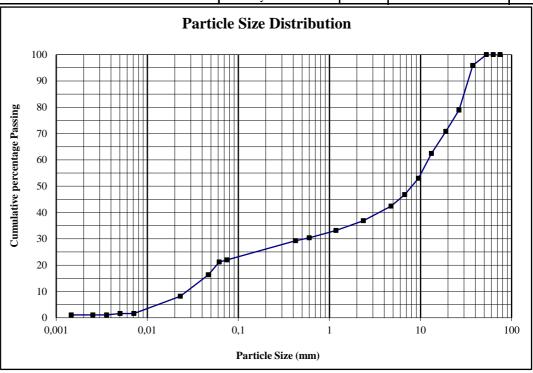
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

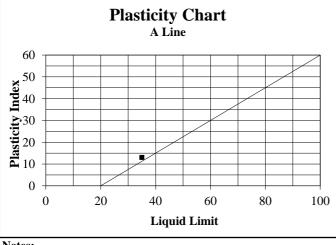
Registration No. 2009/230653/23

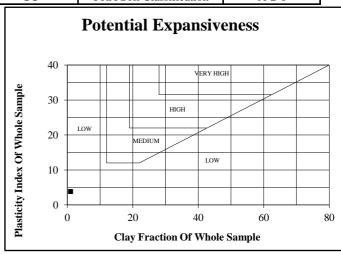
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	1/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Silty Sandy Gravel	Sample Number:	13253		
Position:	TP MTS 1	Liquid Limit	35	Linear Shrinkage	6,5
Depth:	200-500	Plasticity Index	13	Insitu M/C%	12,9

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	96
26,5	79
19,0	71
13,2	62
9,5	53
6,7	47
4,75	42
2,36	37
1,18	33
0,600	30
0,425	29
0,075	22
0,0617	21
0,0468	16
0,0230	8
0,0071	2
0,0050	2
0,0036	1
0,0025	1
0,0015	1

% Clay	1	% Silt	20	% Sand	15	%	Gravel	64
Unified Soil	Classificat	ion	GC	PRA Soil C	lassification	on	A-	2-6

Notes:

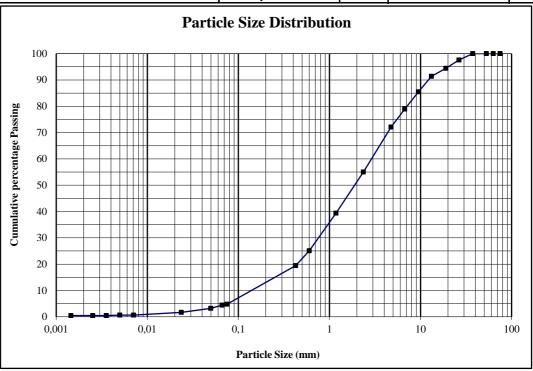
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

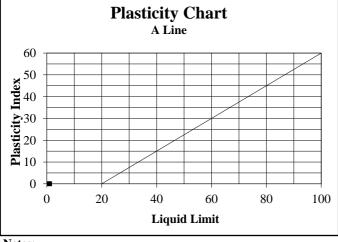
Registration No. 2009/230653/23

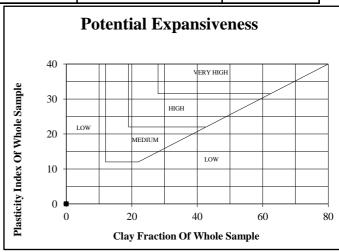
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	2/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Olive - Sandy Gravel	Sample Number:	13255		
Position:	TP MTS 2	Liquid Limit	SP	Linear Shrinkage	0,5
Depth:	900-2900	Plasticity Index	SP	Insitu M/C%	3,9

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	98
19,0	94
13,2	91
9,5	86
6,7	79
4,75	72
2,36	55
1,18	39
0,600	25
0,425	19
0,075	5
0,0665	4
0,0498	3
0,0236	2
0,0071	1
0,0050	1
0,0036	0
0,0025	0
0,0015	0

% Clay	0	(% Silt	4	% Sand	46	%	Gravel	50
Unified Soil	Classifica	tion	G	iΡ	PRA Soil C	lassification	on	A-1-a / A-	1-b / A-2-4

Notes:

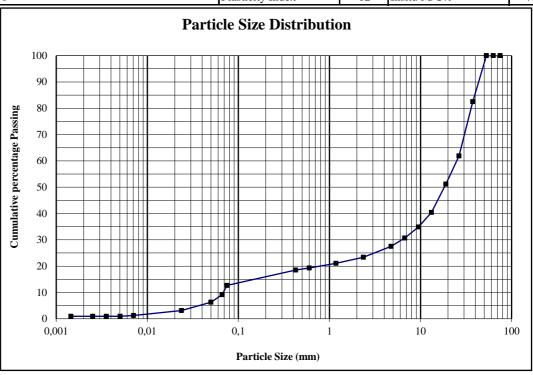
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

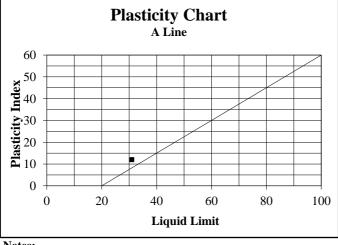
Registration No. 2009/230653/23

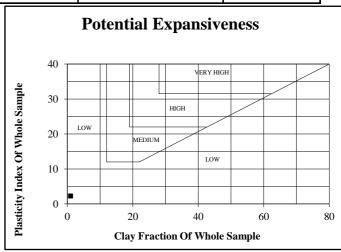
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	3/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Dark Reddish Orange - Silty Sandy Gravel	Sample Number:	13257		
Position:	TP MTS 3	Liquid Limit	31	Linear Shrinkage	6
Depth:	0-400	Plasticity Index	12	Insitu M/C%	7,8

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	83
26,5	62
19,0	51
13,2	40
9,5	35
6,7	31
4,75	28
2,36	23
1,18	21
0,600	19
0,425	19
0,075	13
0,0665	9
0,0500	6
0,0238	3
0,0071	1
0,0050	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	Ç	% Silt	7	% Sand	15	%	Gravel	77
Unified Soil	Classificat	ion		C	PRA Soil C	lassificatio	on	A-	2-6

Notes:

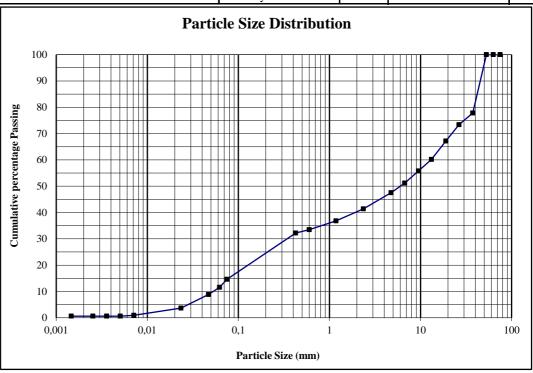
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

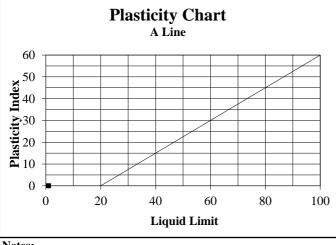
Registration No. 2009/230653/23

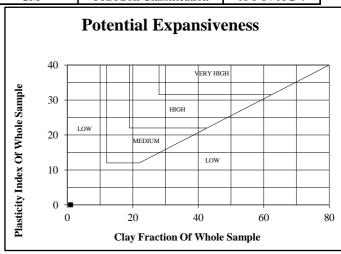
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	4/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Olive to Light Brown - Sandy Silty Gravel with Cobbles	Sample Number:	13259		
Position:	TP MTS 4	Liquid Limit	NP	Linear Shrinkage	0
Depth:	250-600	Plasticity Index	NP	Insitu M/C%	9,1

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	78
26,5	73
19,0	67
13,2	60
9,5	56
6,7	51
4,75	48
2,36	41
1,18	37
0,600	34
0,425	32
0,075	15
0,0623	12
0,0470	9
0,0234	4
0,0071	1
0,0051	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	% Silt	10	% Sand	29	%	Gravel	60
Unified Soil	Classificat	tion C	iΜ	PRA Soil C	lassification	on	A-1-b	/ A-2-4

Notes:

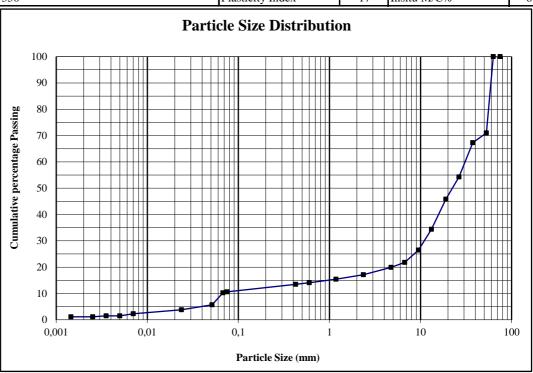
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

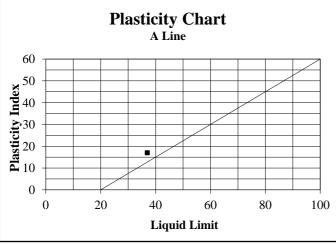
Registration No. 2009/230653/23

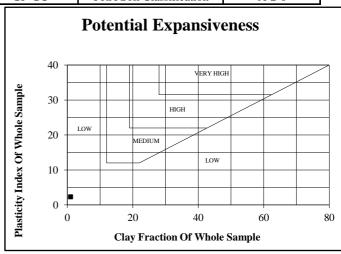
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	5/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	13261				
Position:	W 521A	Liquid Limit	37	Linear Shrinkage	8,5
Depth:	150-350	Plasticity Index	17	Insitu M/C%	6,8

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	71
37,5	67
26,5	54
19,0	46
13,2	34
9,5	27
6,7	22
4,75	20
2,36	17
1,18	15
0,600	14
0,425	14
0,075	11
0,0676	10
0,0515	6
0,0238	4
0,0070	2
0,0050	2
0,0035	2
0,0025	1
0,0015	1

% Clay	1	(% Silt	7	% Sand	9	%	Gravel	83
Unified Soil	Classificat	ion	GP-	-GC	PRA Soil C	lassificatio	on	A-	2-6

Notes:

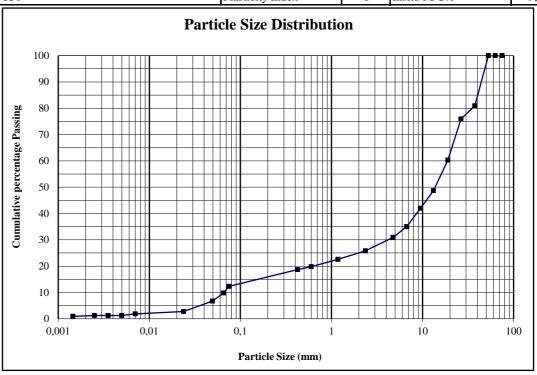
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

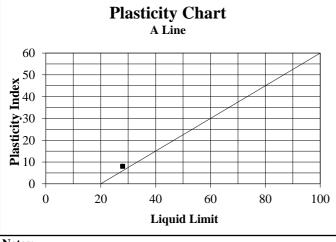
Registration No. 2009/230653/23

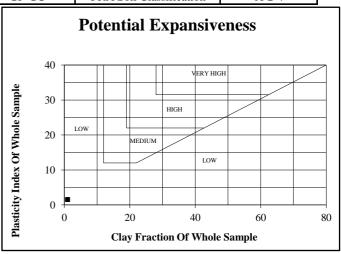
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	6/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	13263				
Position:	W 521B	Liquid Limit	28	Linear Shrinkage	4
Depth:	100-350	Plasticity Index	8	Insitu M/C%	9,1

Depth:						
Sieve Size(mm)	% Passing					
75,0	100					
63,0	100					
53,0	100					
37,5	81					
26,5	76					
19,0	60					
13,2	49					
9,5	42					
6,7	35					
4,75	31					
2,36	26					
1,18	23					
0,600	20					
0,425	19					
0,075	12					
0,0653	10					
0,0494	7					
0,0238	3					
0,0070	2					
0,0050	1					
0,0035	1					
0,0025	1					
0,0015	1					

% Clay	1	(% Silt	8	% Sand	16	%	Gravel	75
Unified Soil Classification		ion	GP-	-GC	PRA Soil C	lassificatio	on	A-	2-4

Notes:

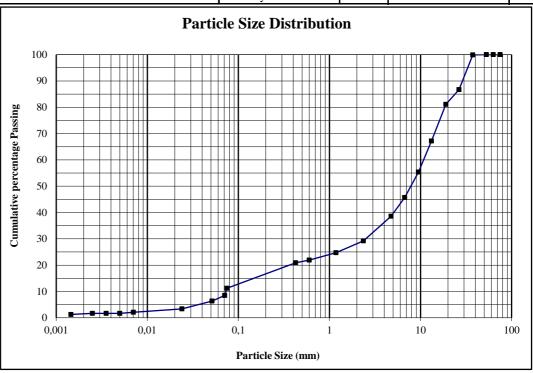
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

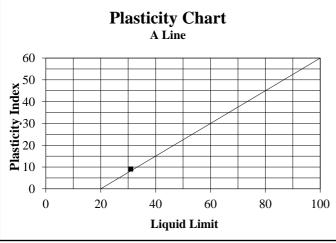
Registration No. 2009/230653/23

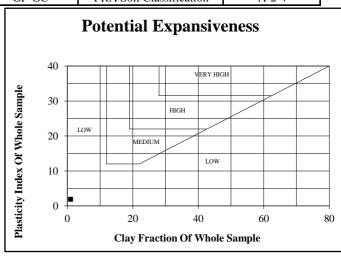
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	7/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	13265				
Position:	W 564A	Liquid Limit	31	Linear Shrinkage	4,5
Depth:	350-950	Plasticity Index	9	Insitu M/C%	10,9

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	87
19,0	81
13,2	67
9,5	55
6,7	46
4,75	39
2,36	29
1,18	25
0,600	22
0,425	21
0,075	11
0,0707	8
0,0515	6
0,0240	3
0,0070	3 2 2 2
0,0050	2
0,0035	
0,0025	2
0,0015	1

% Clay	1	(% Silt	6	% Sand	21	%	Gravel	72
Unified Soil	Classificat	ion	GP-	-GC	PRA Soil C	lassificatio	on	A-	2-4

Notes:

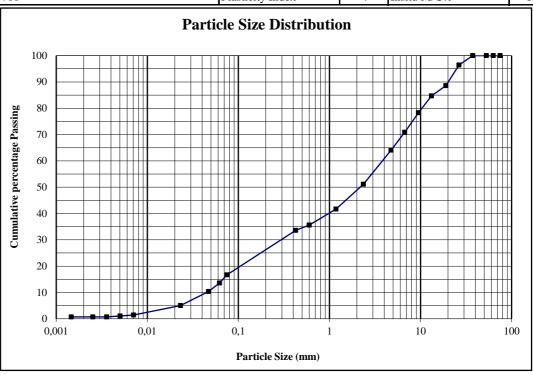
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

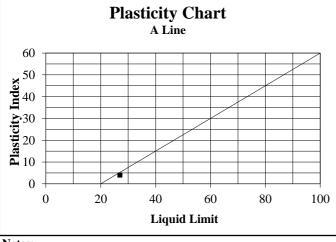
Registration No. 2009/230653/23

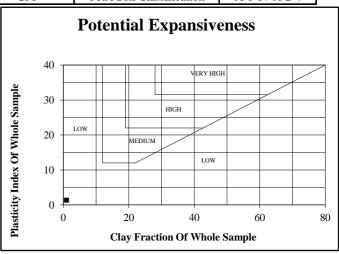
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	8/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Olive to Light Brown - Calcrete	Sample Number:			
Position:	W 564B	Liquid Limit	27	Linear Shrinkage	2
Depth:	350-700	Plasticity Index	4	Insitu M/C%	8,6

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	96
19,0	89
13,2	85
9,5	78
6,7	71
4,75	64
2,36	51
1,18	42
0,600	36
0,425	34
0,075	17
0,0623	14
0,0470	10
0,0232	5
0,0071	1
0,0050	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	% S	Silt	12	% Sand	35	%	Gravel	52
Unified Soil	Classificat	tion	G	M	PRA Soil C	lassificatio	on	A-1-b	/ A-2-4

Notes:

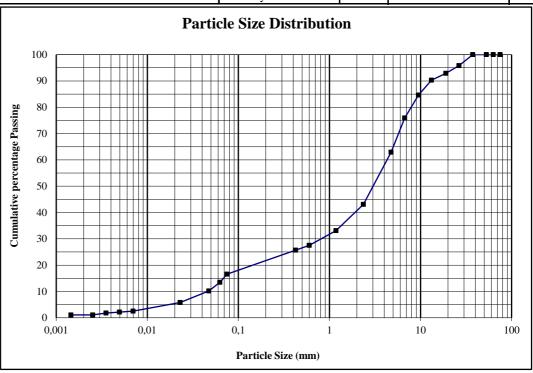
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

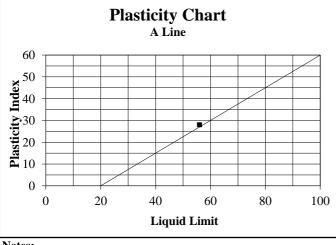
Registration No. 2009/230653/23

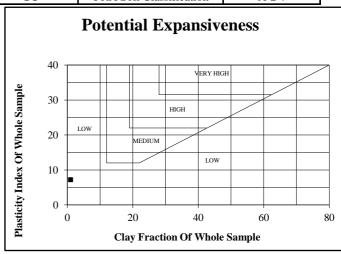
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	9/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Gravelly Sandy Silt	Sample Number:	13269		
Position:	W 411A	Liquid Limit	56	Linear Shrinkage	14
Depth:	750-1700	Plasticity Index	28	Insitu M/C%	13,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	96
19,0	93
13,2	90
9,5	85
6,7	76
4,75	63
2,36	43
1,18	33
0,600	28
0,425	26
0,075	17
0,0626	13
0,0474	10
0,0229	6
0,0070	3
0,0049	2
0,0035	2
0,0025	1
0,0015	1

% Clay	1	9	% Silt	12	% Sand	27	%	Gravel	60
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

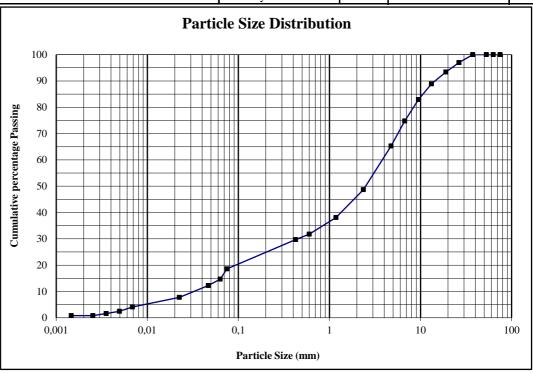
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

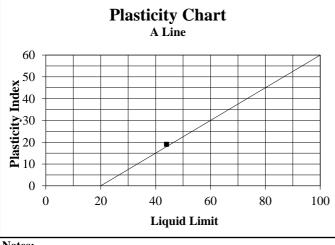
Registration No. 2009/230653/23

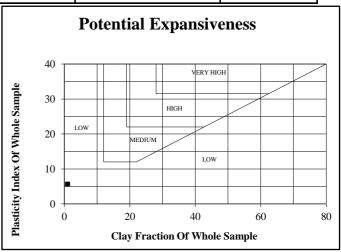
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	10/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Orange - Gravelly Silty Sand	Sample Number:	13271		
Position:	W 411B	Liquid Limit	44	Linear Shrinkage	9,5
Depth:	450-1500	Plasticity Index	19	Insitu M/C%	11,7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	97
19,0	93
13,2	89
9,5	83
6,7	75
4,75	65
2,36	49
1,18	38
0,600	32
0,425	30
0,075	19
0,0632	15
0,0468	12
0,0225	8
0,0069	4
0,0049	2
0,0035	2
0,0025	1
0,0015	1

% Clay	1	% Silt	13	% Sand	31	%	Gravel	55
Unified Soil	Classificat	10n (iС	PRA Soil C	lassificatio	on	A-	2-7

Notes:

· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

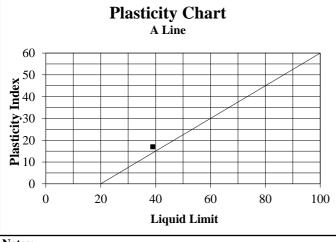
Registration No. 2009/230653/23

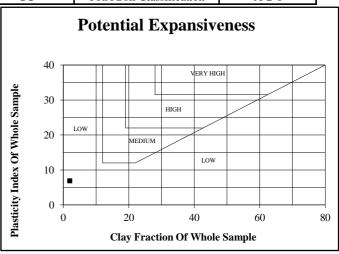
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	11/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	al Description: Light Brown - Silty Sandy Gravel Sample Number:			13273			
Position:	W 452A	Liquid Limit	39	Linear Shrinkage	9		
Depth:	500-1800	Plasticity Index	17	Insitu M/C%	12,5		

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	97
9,5	93
6,7	90
4,75	84
2,36	69
1,18	54
0,600	44
0,425	41
0,075	34
0,0610	24
0,0453	20
0,0228	10
0,0069	5
0,0049	4
0,0035	3
0,0025	2
0,0015	2

% Clay	2	ç	% Silt	21	% Sand	42	%	Gravel	35
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-:	2-6

Notes:

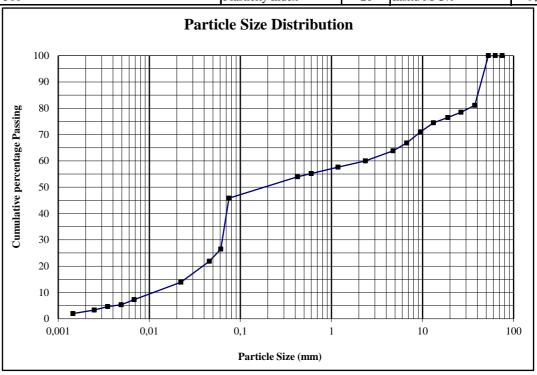
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

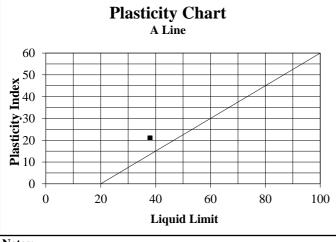
Registration No. 2009/230653/23

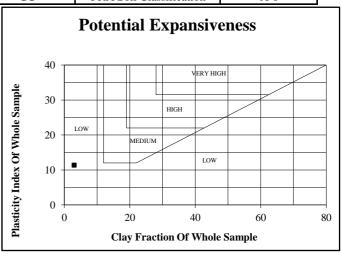
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	12/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Reddish Brown - Silty Gravelly Sand	Sample Number:		13275	
Position:	W 452B	Liquid Limit	38	Linear Shrinkage	10,5
Depth:	350-500	Plasticity Index	21	Insitu M/C%	9,7

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	81
26,5	79
19,0	77
13,2	75
9,5	71
6,7	67
4,75	64
2,36	60
1,18	58
0,600	55
0,425	54
0,075	46
0,0610	26
0,0458	22
0,0223	14
0,0068	7
0,0049	5
0,0035	5
0,0025	3
0,0015	2

% Clay	3	%	6 Silt	23	% Sand	33	%	Gravel	41
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A	-6

Notes:

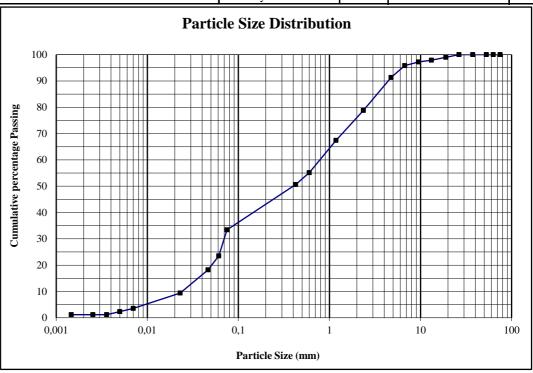
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

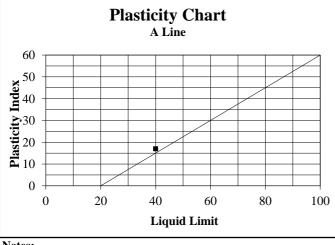
Registration No. 2009/230653/23

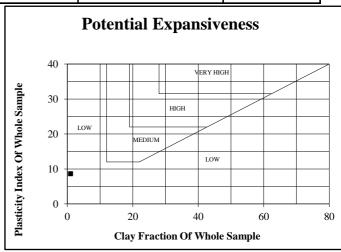
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	13/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Reddish Qrange - Clayey Gravelly Sandy Silt Sample Number:			13277			
Position:	W 417A	Liquid Limit	40	Linear Shrinkage	8,5		
Depth:	1300-2800	Plasticity Index	17	Insitu M/C%	11,6		

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	99
13,2	98
9,5	97
6,7	96
4,75	91
2,36	79
1,18	67
0,600	55
0,425	51
0,075	33
0,0610	24
0,0464	18
0,0229	9
0,0070	4
0,0050	2
0,0036	1
0,0025	1
0,0015	1

% Clay	1	% Silt	22	% Sand	52	%	Gravel	25
Unified Soil	Classificat	tion	SC	PRA Soil C	lassificatio	on	A-:	2-6

Notes:

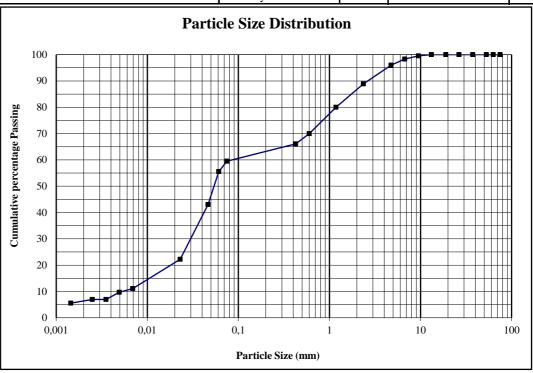
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

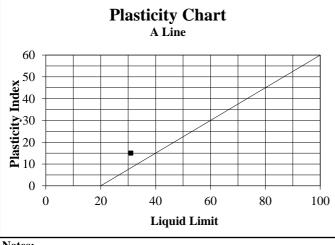
Registration No. 2009/230653/23

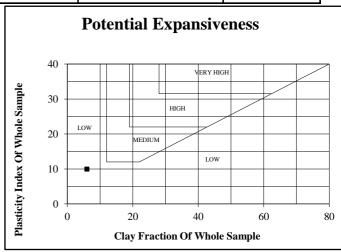
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	14/14

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Yellowish Orange - Clayey Gravelly Sandy Silt	Sample Number:		13279	
Position:	W 417B	Liquid Limit	31	Linear Shrinkage	7,5
Depth:	800-2900	Plasticity Index	15	Insitu M/C%	10,7

Deptn:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	100
9,5	100
6,7	98
4,75	96
2,36	89
1,18	80
0,600	70
0,425	66
0,075	60
0,0610	56
0,0464	43
0,0229	22
0,0069	11
0,0049	10
0,0035	7
0,0025	7
0,0014	6

% Clay	6	9	% Silt	49	% Sand	31	%	Gravel	14
Unified Soil	Classificat	tion	C	L	PRA Soil C	lassificatio	on	A	-6

Notes:

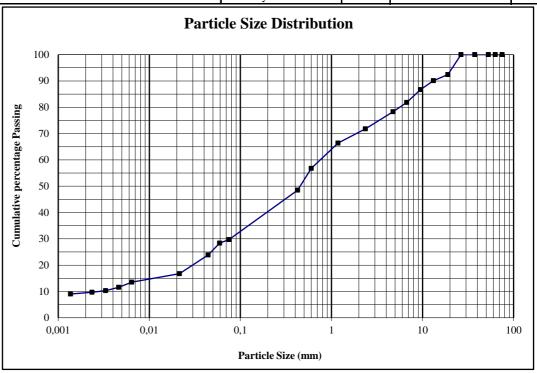
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

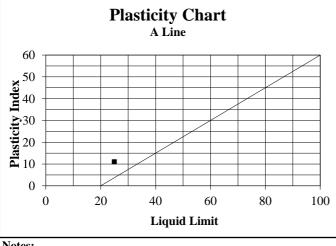
Registration No. 2009/230653/23

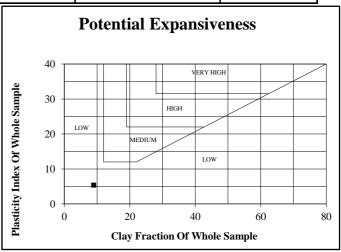
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	1/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Dark Red Orange - Gravelly Sandy Clayey Silt	Sample Number:		13486		
Position:	BH - E 7A	Liquid Limit	25	Linear Shrinkage	5,5	
Depth:	500-840	Plasticity Index	11	Insitu M/C%	2	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	92
13,2	90
9,5	87
6,7	82
4,75	78
2,36	72
1,18	66
0,600	57
0,425	49
0,075	30
0,0591	28
0,0443	24
0,0215	17
0,0064	14
0,0046	12
0,0033	10
0,0024	10
0,0014	9

% Clay	9	Ç	% Silt	20	% Sand	41	%	Gravel	30
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-	2-6

Notes:

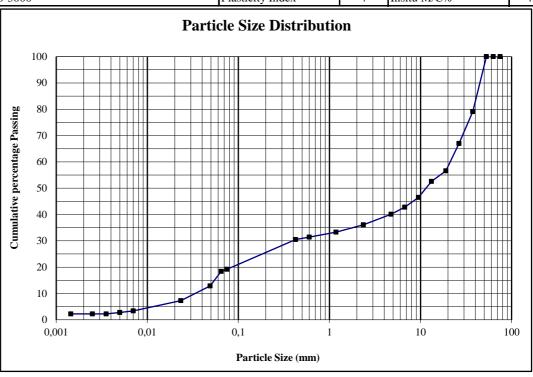
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

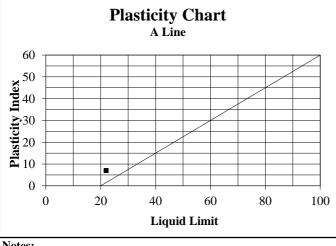
Registration No. 2009/230653/23

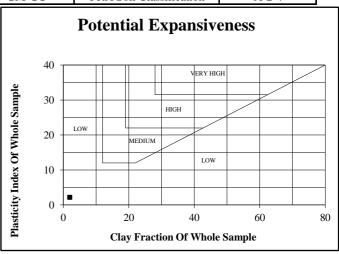
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	2/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Sample Number:		13487		
Position:	BH - E 6C	Liquid Limit	22	Linear Shrinkage	3,5
Depth:	2100-3000	Plasticity Index	7	Insitu M/C%	4,2

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	79
26,5	67
19,0	57
13,2	53
9,5	47
6,7	43
4,75	40
2,36	36
1,18	33
0,600	31
0,425	31
0,075	19
0,0647	18
0,0490	13
0,0234	7
0,0070	3
0,0050	3
0,0035	2
0,0025	2
0,0014	2

% Clay	2	(% Silt	15	% Sand	18	%	Gravel	65
Unified Soil	Classificat	ion	GM	-GC	PRA Soil C	lassificatio	n	A-	2-4

Notes:

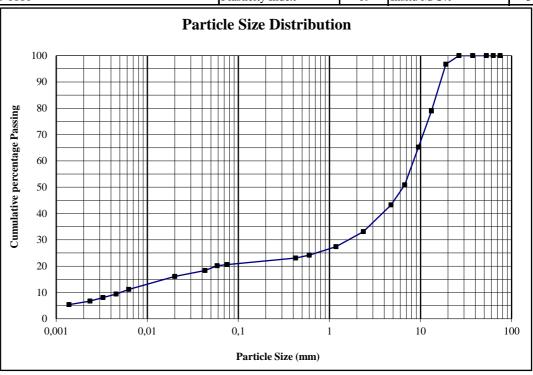
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

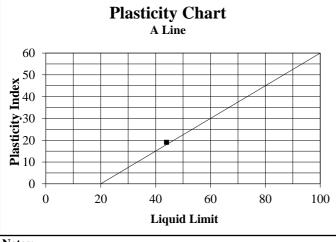
Registration No. 2009/230653/23

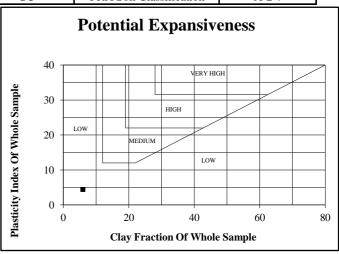
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	3/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Red Brown - Clayey Sandy Gravel	Sample Number:		13488	
Position:	BH - E 100A	Liquid Limit	44	Linear Shrinkage	9,5
Depth:	1100-1680	Plasticity Index	19	Insitu M/C%	3,3

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	97
13,2	79
9,5	65
6,7	51
4,75	43
2,36	33
1,18	27
0,600	24
0,425	23
0,075	21
0,0585	20
0,0429	18
0,0200	16
0,0062	11
0,0045	9
0,0033	8
0,0024	7
0,0014	5

% Clay	6	(% Silt	14	% Sand	11	%	Gravel	69
Unified Soil	Classificat	ion	G	iC	PRA Soil C	lassificatio	on	A-:	2-7

Notes:

· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

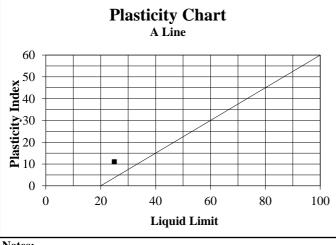
Registration No. 2009/230653/23

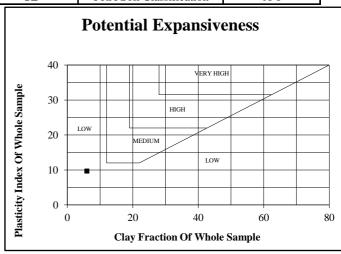
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za

	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	4/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Red Orange - Clayey Gravelly Silty Sand	Sample Number:	13489		
Position:	BH - E 6A	Liquid Limit	25	Linear Shrinkage	5,5
Depth:	500-1500	Plasticity Index	11	Insitu M/C%	12,2

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	100
9,5	100
6,7	100
4,75	99
2,36	98
1,18	95
0,600	91
0,425	88
0,075	61
0,0610	56
0,0464	44
0,0229	23
0,0070	10
0,0050	7
0,0035	6
0,0025	6
0,0014	6

% Clay	6	Ç	% Silt	49	% Sand	42	%	Gravel	3
Unified Soil	Classificat	tion	C	L	PRA Soil C	lassificatio	on	A	-6

Notes:

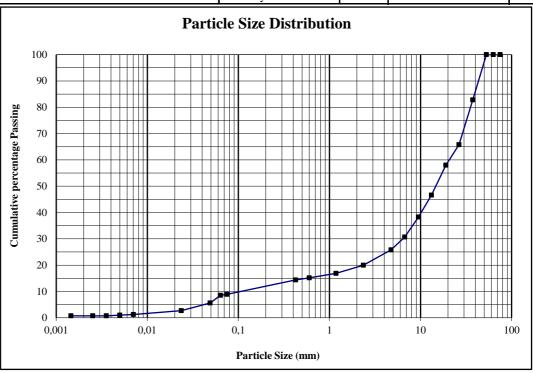
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

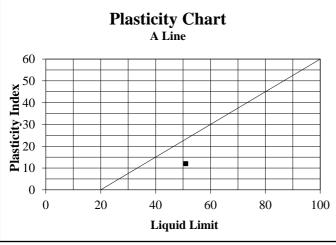
Registration No. 2009/230653/23

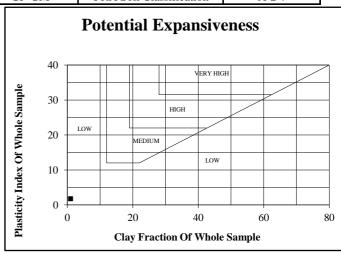
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	5/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Light Red Orange - Clayey Silty Sandy Gravel	Sample Number:		13490	
Position:	BH - W 564A	Liquid Limit	51	Linear Shrinkage	6
Depth:	500-1000	Plasticity Index	12	Insitu M/C%	5,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	83
26,5	66
19,0	58
13,2	47
9,5	38
6,7	31
4,75	26
2,36	20
1,18	17
0,600	15
0,425	14
0,075	9
0,0638	9
0,0490	6
0,0236	3
0,0070	1
0,0050	1
0,0036	1
0,0025	1
0,0015	1

% Clay	1	Ç	% Silt	7	% Sand	11	%	Gravel	81
Unified Soil Classification		tion	GP-	GM	PRA Soil C	lassificatio	on	A-	2-7

Notes:

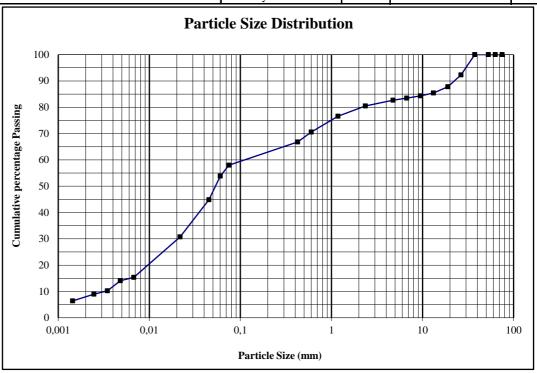
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

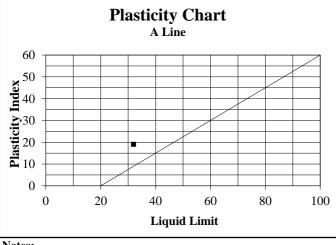
Registration No. 2009/230653/23

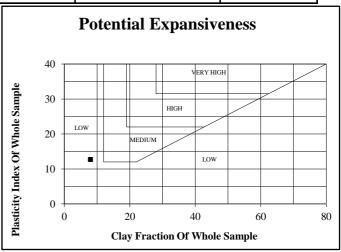
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	6/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a), A2, A3, A4, A5) & (ASTM Method D422)


Material Description:	Sample Number:	13491			
Position:	BH - W 452F	Liquid Limit	32	Linear Shrinkage	9,5
Depth:	500-950	Plasticity Index	19	Insitu M/C%	6

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	92
19,0	88
13,2	85
9,5	84
6,7	84
4,75	83
2,36	81
1,18	77
0,600	71
0,425	67
0,075	58
0,0601	54
0,0451	45
0,0218	31
0,0068	15
0,0048	14
0,0035	10
0,0025	9
0,0014	6

% Clay	8	Ç	% Silt	46	% Sand	25	%	Gravel	21
Unified Soil	Classificat	ion	C	L	PRA Soil C	lassificatio	on	A	-6

Notes:

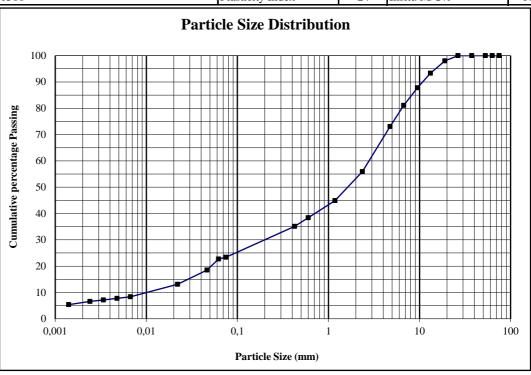
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

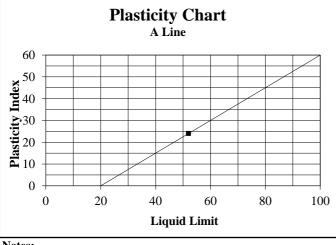
Registration No. 2009/230653/23

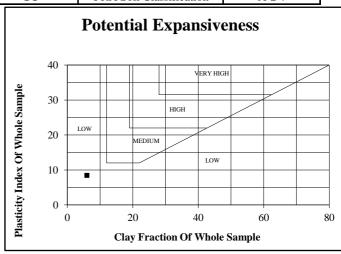
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	7/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Grey Stained Light Red Orange - Silty Gravelly Sand	Sample Number:	13492		
Position:	BH - W 411A	Liquid Limit	52	Linear Shrinkage	12
Depth:	550-1500	Plasticity Index	24	Insitu M/C%	11,9

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	98
13,2	93
9,5	88
6,7	81
4,75	73
2,36	56
1,18	45
0,600	38
0,425	35
0,075	23
0,0623	23
0,0464	19
0,0221	13
0,0067	8
0,0048	8
0,0034	7
0,0024	7
0,0014	5

% Clay	6	(% Silt	16	% Sand	31	%	Gravel	47
Unified Soil	Classificat	ion		С	PRA Soil C	lassificatio	on	A-	2-7

Notes:

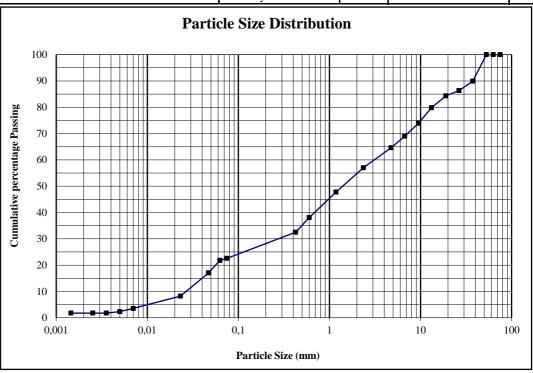
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

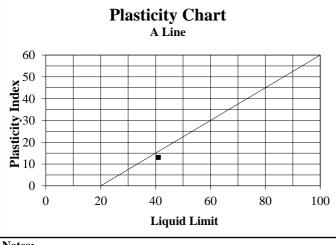
Registration No. 2009/230653/23

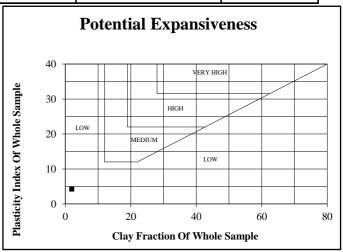
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	8/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Red Orange to Light Grey - Clayey Sandy Silt	Sample Number:	13493			
Position:	BH - W 417A	Liquid Limit	41	Linear Shrinkage	6,5	
Depth:	2180-2980	Plasticity Index	13	Insitu M/C%	10,8	

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	90
26,5	86
19,0	84
13,2	80
9,5	74
6,7	69
4,75	65
2,36	57
1,18	48
0,600	38
0,425	33
0,075	23
0,0626	22
0,0470	17
0,0232	8
0,0070	4
0,0050	2
0,0036	2 2 2 2
0,0025	2
0,0015	2

% Clay	2	Ç	% Silt	19	% Sand	33	%	Gravel	46
Unified Soil Classification		ion	G	M	PRA Soil C	lassificatio	on	A-	2-7

Notes:

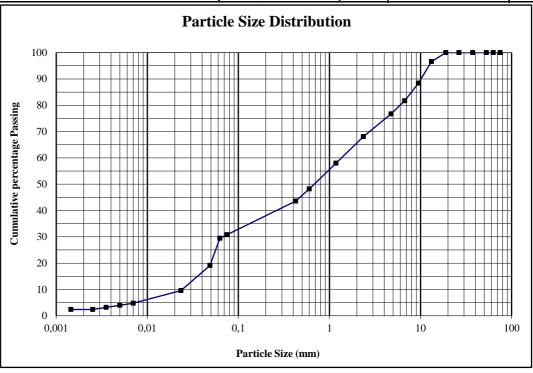
· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

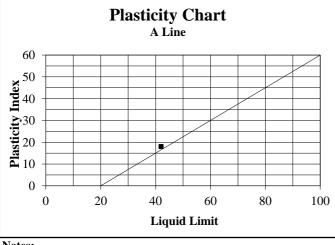
Registration No. 2009/230653/23

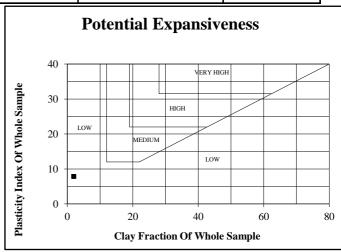
170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za


	Quteniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	26/07/19
Customer.	Knysna	Date Reported:	26/08/19
	6570	Req. Number:	665/19
Attention:	Iain Paton	No. of Pages:	9/9

TEST REPORT


FOUNDATION INDICATOR - (TMH 1 Method A1(a),A2,A3,A4,A5) & (ASTM Method D422)


Material Description:	Dark Red Orange to Light Grey - Gravelly Clayey Sandy Silt	Sample Number:		13494	
Position:	BH - W 417C	Liquid Limit	42	Linear Shrinkage	9
Depth:	3580-5080	Plasticity Index	18	Insitu M/C%	26,4

Depth:	
Sieve Size(mm)	% Passing
75,0	100
63,0	100
53,0	100
37,5	100
26,5	100
19,0	100
13,2	97
9,5	88
6,7	82
4,75	77
2,36	68
1,18	58
0,600	48
0,425	44
0,075	31
0,0626	29
0,0488	19
0,0234	10
0,0070	5
0,0050	4
0,0035	3
0,0025	2
0,0015	2

% Clay	2	ģ	% Silt	26	% Sand	37	%	Gravel	35
Unified Soil	Classificat	tion		С	PRA Soil C	lassificatio	on	A-:	2-7

Notes:

· Specimens delivered to Outeniqua Lab in good order.

- 1. The test results are reported with an approximate 95% level of confidence.
- 2. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab
- 3. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
- 4. Measuring Equipment, traceable to National Standards is used where applicable
- 5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth : PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project :	Choie Windfarm
	1 · · · · · · · · · · · · · · · · · · ·	. .	3
Customer:	Po Box 964	Date Received:	
Customer.	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	1/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(1N	IH 1 Method A	1(a),A2,	,AJ,	
		Material I						13129
	ple Position (SV)	E 64A	Spec.	on	E 64B	Spec.	uo	Sieve Analysis
	th (mm)	200-400	G8 -	Opinion	150-400	G8 -	Opinion	100
Sam	ple No	13129	TRH 14	Oľ	13131	TRH 14	Oį	90 80 970 970
ls	Source Colour Soil Type Classification	Test			Test F			© 60 8 50 8 40
Materials	Colour	Dark Reddis	sh Orange		Dark Reddish Orange			15 60 8 50 4 40 95 30 10 20
late	Soil Type	Clayey Silty S	andy Grave	1	Clayey Silty Sa	ndy Grave	el	95 40 Sig 30
\geq	Classification	Unkno	own		Unkno	wn		930 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	48			100			222.01
ည	53.0 mm	41			65			CBR Chart
ssir	37.5 mm	29			50			
Percentage Passing	26.5 mm	28			47			(%)
ıge	19.0 mm	26			41			1860
'nta	13.2 mm	22			37			
rce	4.75 mm	17			32			
Pe	2.00 mm	16			30			1,0 90 92 94 96 98 100 102
	0.425 mm	13			27			Compaction (%)
	0.075 mm	10,1			19,8			13131
			l Mortar &	c Co				
	ling Modulus	2,61			2,23			Sieve Analysis
Coar	rse Sand <2.0 >0.425	15,3			8,4			90 80
	ed. <0.250 >0.150	20,4			25,2			70 8 60
	ilt <0.075	64,3			66,4			Percentage Passing
	id Limit (%)	33			30			96 40 ey 30
	ticity Index (%)	13			13			50 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Line	ar Shrinkage (%)	6,5			6,5			0,0 0,1 1,0 10,0 100,0
	3		R / Density	Rela		T		Sieve Size
١_	Max Dry Density (kg/m ³)	2056			2040			CBR Chart
	Opt Moisture Content (%)	9,4			10,0			100,0
MOD	Mould Moisture Con. (%)	9,4			10,0			
	@100% Mod AASHTO	99,7			100,3			(%)
	Swell (%)	0,28	≤1.5	✓	0,06	≤1.5	✓	CB № (%)
NRB	100% NRB	95,9			96,1			
Z	Swell (%)	0,43			0,08			1,0
Proc	100% Proctor	92,0			91,4			90 92 94 96 98 100 102
P	Swell (%)	0,55			0,09			Compaction (%)
	@ 100% Mod AASHTO	20			15			13129
SR.	@ 98% Mod AASHTO	18 15			15			Wearing Course Graph
CB	@ 95% Mod AASHTO				14			550,0
	@ 93% Mod AASHTO	13	>10	*	13	>10	*	300,0 - Slippery 3,50,0 - 3,00 0 -
т.	@ 90% Mod AASHTO nsitu Moisture Content (%)	10 N/A	≥10	本	12 N/A	≥10	*	\$50,0 - Good
H-11	isitu Moisture Content (%)		oil Classifi	coti			<u> </u>	500.0 Slippery Sli
	TRH 14	G8	CIASSIII	cail	G8			변50,0 - Good 변50,0 -
	PRA System	A-2-6			A-2-6			50,0 Ravels and Corrugates
	Unified System	GP-GC			GC			0 4 8 12 16 20 24 28 32 36 40 44 48
	Office Bystem	01-00			JC	l	ш	Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project :	Choie Windfarm
	Po Box 964	Date Received :	3
Customer:	Knysna	Date Reported :	
	6570		
			439/19
Attention:	Iain Paton	No. of Pages:	2/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI			(11)	IH 1 Method A	1(a),A2	AJ_{j}	
		Material Iı						13133
	ple Position (SV)	E 6A	Spec.	uc	E 6B	Spec.	uc	Sieve Analysis
	th (mm)	400-2100	G10 -	Opinion	800-1750	G10 -	Opinion	100
Sam	ple No	13133	TRH 14	Op	13135	TRH 14	Op	90
S	5 Source	Test	Test Pit Test Pit			<u>8</u> 70		
rial	Colour	Light Reddi	sh Orange		Light Yellowi	sh Orange		8 50 50 50 50 50 50 50 50 50 50 50 50 50
Materials	Source Colour Soil Type Classification	Clayey Sa			Clayey Gravelly			9 40 9 30 E 20
\geq	Classification	Unkno			Unkno			930 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)				•			0,0 0,1 1,0 10,0 100,0
1124	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			
50	53.0 mm	100			100			CBR Chart
sin	37.5 mm	100			100			100,0
as	26.5 mm	100			100			3
se I	19.0 mm	100			100			CB# (%)
ıtag	13.2 mm	99			98			8
Percentage Passing	4.75 mm	97			95			
Per	2.00 mm	97			93			1,0 85 90 95 100 105
	0.425 mm	89			81			85 90 95 100 105 Compaction (%)
	0.075 mm	55,7			49,8			13135
	0.075 11111		l Mortar &	c Co				13133
Grad	ding Modulus	0,59	I WIOI tai C	Col	0,77			Sieve Analysis
	rse Sand <2.0 >0.425	8,3			12,5			90
	ed. <0.250 >0.150	34,1			33,6			50 80 F 70
	ilt <0.075	57,6			53,8			8 60 50
	aid Limit (%)	20			26			9 40
	ticity Index (%)	5			11			20 Passing
	ear Shrinkage (%)	2,5			5,5			
Line	ai Sililikage (70)		R / Density	Pol				0,0 0,1 1,0 10,0 100,0 Sieve Size
	Max Dry Density (kg/m ³)	2006	Delisity	KCI	2026			Sieve Size
	Opt Moisture Content (%)	9,5			9,1			CBR Chart
MOD	Mould Moisture Con. (%)	9,3			9,3			100,0
Σ	@100% Mod AASHTO	99,7			99,4			
	Swell (%)	1,33	≤1.5	/	0,94	≤1.5	✓	8
~	100% NRB	94,0	≥1.5	,	94,2	≥1.5	_	CB) (%)
NRB	Swell (%)	1,34			1,26			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100% Proctor	88,5	+		90,0			1,0
Proc	Swell (%)	1,43	1		1,50			85 90 95 100
F	@ 100% Mod AASHTO	20			1,30			Compaction (%)
	@ 98% Mod AASHTO	17			15			13133
38	@ 95% Mod AASHTO	12			11			Wearing Course Graph
CB	@ 93% Mod AASHTO	9			8			550.0
	@ 90% Mod AASHTO	4	≥3	*	8 4	≥3	*	\$50,0 - Slippery 3400,0 -
т.		N/A	∠3	_ ^	N/A		1	500,0 \$50,0 \$50,0 \$50,0 \$50,0 \$6
Insitu Moisture Content (%)			oil Classifi	iootic			L	250,0 - (May be Dusty) 250,0 - (May be Dusty) 200,0 - Ravels
<u> </u>	TDU 14	G10	on Classiii	icati(G10	I		Footble (May be Dusty) Ravels
-	TRH 14							50,0 50,0 0,0 Ravels and Corrugates
-	PRA System	A-4			A-6 SC			0 4 8 12 16 20 24 28 32 36 40 44 48
Ц	Unified System	CL-ML			sc sc			Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	23/05/19
Customer.	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	3/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(11)	MH 1 Method A	1(a),A2.	,AJ,	
		Material I1						13137
	ple Position (SV)	E 7A	Spec.	n E	E 7B	Spec.	uc	Sieve Analysis
	th (mm)	200-500	G9 -	Opinion	300-800	G10 -	Opinion	100
Sam	ple No	13137	TRH 14	Ор	13139	TRH 14	Ор	90
S	5 Source	Test	Pit		Test P	it		270
rial	E Colour	Light B	rown		Light Reddish Brown to Light Brown			8 50 So
Materials	Source Colour Soil Type Classification	Clayey Silty S		el	Clayey Silty Sa	ndy Grave	el	9 40 9 30 8 30
\geq	Classification	Unkno			Unkno	-		9 30 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	x. Stone size in hole (mm)	O III III	1		0	.,,11		0,0 0,1 1,0 10,0 100,0
IVIU	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			
50	53.0 mm	86			100			CBR Chart
ii.	37.5 mm	76			62			100,0
ass	26.5 mm	69			58			
e F	19.0 mm	62	1		51			CBM (%)
ıtag	13.2 mm	52	1		46			O C C
Percentage Passing	4.75 mm	34	1		32			
ere	2.00 mm	27			25			1,0
	0.425 mm	20			19			84 86 88 90 92 94 96 98 Compaction (%)
					-			-
	0.075 mm	15,9	13446	2 0	15,0			13139
Cas	dina Madulua		l Mortar &	e Co				Sieve Analysis
	ding Modulus	2,38			2,41			90
	rse Sand <2.0 >0.425	24,2			24,9			80
	ed. <0.250 >0.150	15,8			14,9			
	ilt <0.075	60,0			60,2			© 50 © 40
	nid Limit (%)	37			42			9 30 9 20
	ticity Index (%)	16			19			8 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line	ear Shrinkage (%)	8,0	D / ID : '	D 1	9,5			0,0 0,1 1,0 10,0 100,0
	M D D : (1 / 5)		R / Density	Kei				Sieve Size
	Max Dry Density (kg/m ³)	1974			2014			CBR Chart
MOD	Opt Moisture Content (%)	8,9			12,0			100,0
X	Mould Moisture Con. (%)	8,8			12,0			
	@100% Mod AASHTO	97,2	.1.7		98,5			(%)
	Swell (%)	0,33	≤1.5	✓	0,65	≤1.5	✓	CB⅓ (%)
NRB	100% NRB	91,1			94,6			l °
Z	Swell (%)	0,78			0,95			10
Proc	100% Proctor	86,5	1		87,7			1,0 85 90 95 100
P	Swell (%)	1,09			1,14			Compaction (%)
	@ 100% Mod AASHTO	60			20			1515/
~	@ 98% Mod AASHTO	52			18			
CB	@ 95% Mod AASHTO	40			15			Wearing Course Graph
-	@ 93% Mod AASHTO	32			13			500,0 - 350,0 - Slippery
	@ 90% Mod AASHTO	20	≥7	✓	10	≥3	✓	500,0 Slippery Good (May be lifety) Ravels Good Slippery Good (May be lifety) Ravels Good Ravels and Corrugates Ravels Good G
Insitu Moisture Content (%)		N/A			N/A			\$00,0 - Good (May be Dusty)
			oil Classifi	icati				900,0 - Materials Good Raveis
	TRH 14	G9			G10			3 00,0
	PRA System	A-2-6			A-2-7			0,0 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
	Unified System	GC			GC			Grading Coefficient (Gc)
								7

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth : PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	23/05/19
Customer:	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	4/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI			(1 10	IH I Metnod A	11(a),A2	,AJ,	
C	1 D ::: (CIV)	Material I			E 100D	I a		13141
	ple Position (SV)	E 100A	Spec.	Opinion	E 100B	Spec.	Opinion	Sieve Analysis
	th (mm)	300-1100	G10 -	pini	400-1500	G10 -	pini	100
Sam	ple No	13141	TRH 14	Ō	13143	TRH 14	Ō	
lls	Source Colour Soil Type Classification		Test Pit Test Pit					80 8 8 50 List 60 E 50 List 60
eria	Colour	Light Redd			Light Reddis			8 50 0 40
Materials	Soil Type	Clayey Silty S	Sandy Grave	el	Silty Sandy Gra			95 30 95 30
2	\(\tilde{\times}\) Classification	Unkn	iown		Unkno	own		930 9210 940 9510
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			66			Sieve Size
	63.0 mm	100			55			ann ai .
50	53.0 mm	100			49			CBR Chart
ssir	37.5 mm	92			46			
Pas	26.5 mm	87			43			8
ge	19.0 mm	79			38			CBR (%)
nta	13.2 mm	65			33			
Percentage Passing	4.75 mm	42			20	1		
Pe	2.00 mm	31			14			1,0 1 9 92 94 96 98 100
	0.425 mm	21			9			Compaction (%)
	0.075 mm	17,1			6,7			13143
			il Mortar &	& Cor	stants			
Grad	ding Modulus	2,31			2,70			Sieve Analysis
	rse Sand <2.0 >0.425	30,4			37,8			90 80
M	ed. <0.250 >0.150	13,7			15,4			<u>50</u> 70
S	ilt <0.075	55,9			46,9			20
Liqu	uid Limit (%)	47			37			9 40 13 30
	ticity Index (%)	20			19			5 20 10
	ear Shrinkage (%)	10,0			9,5			0,0 0,1 1,0 10,0 100,0
		СВ	R / Density	Rela	tionship			Sieve Size
	Max Dry Density (kg/m ³)	2012			2102			
Q	Opt Moisture Content (%)	12,1			11,0			CBR Chart
MOD	Mould Moisture Con. (%)	11,8			10,8			100,0
	@100% Mod AASHTO	98,2			97,9			
	Swell (%)	0,33	≤1.5	✓	1,14	≤1.5	✓	CB(3)
B	100% NRB	94,0			93,0			8
NRB	Swell (%)	0,78			1,34			
20	100% Proctor	89,4			88,5			1,0 1 95 100
Proc	Swell (%)	1,09			1,54			85 90 95 100 Compaction (%)
	@ 100% Mod AASHTO	12			17	1		13141 _13143
	@ 98% Mod AASHTO	10			16	1		
BR	@ 95% Mod AASHTO	8			14	1		Wearing Course Graph
C	@ 93% Mod AASHTO	6			13	1		550,0 500,0 - \$350,0 - Slippery
	@ 90% Mod AASHTO	4	≥3	*	11	≥3	√	350.0
I	nsitu Moisture Content (%)	N/A			N/A	†		350,0 - Good (May be Dusty)
	Soil Classification						\$00,0 - Sood (May be Dusty) 250,0 - Erodible (May be Dusty) \$50,0 - Materials \$50,0 - Good Ravels	
	TRH 14	G10			G10			250,0 - Good Good 150,0 - Good Rawels and Corrupates
	PRA System	A-2-7			A-2-6	1		0,0 + + + + + + + + + + + + + + + + + +
	Unified System	GC			GW-GC	1		0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
	oimong delivered to Outonia				2 00	1		Grading Coefficient (GC)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{2.} The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	23/05/19
Customer :	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	5/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CHEHORIVI	A BEARING R		(11)	THE I WICHIOU A	11(a) ₉ ,112	,113,1	
C	nla Dagition (CV)	Material Inc		1	TD CC2	C	_	13145
	ple Position (SV)	TP SS1	Spec.	Opinion	TP SS2	Spec.	Opinion	Sieve Analysis
	th (mm)	0-100	G5 -	pin	0-300	G7 -	pin	100
	ple No	13145	TRH 14	0	13147	TRH 14	0	
ıls	Source Colour Soil Type Classification	Test P			Test 1			80 D70 Uss 60 R 50 A 40
eris	Colour	Light Reddish Brown		Light Reddis			8 50 4 40	
Materials	Soil Type	Gravelly Sil	ty Sand		Silty Gravelly Sand with	h Boulders, C	obbles	6 30 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 30 9 9 9 30 9 9 9 9
2	☐ Classification	Unknov	wn		Unkno	wn		9 30 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			54			CBR Chart
130	53.0 mm	56			42			100,0
ssir	37.5 mm	51			34			
Pa	26.5 mm	41			31			%
ige	19.0 mm	35			27			CBB (%)
nta	13.2 mm	32			24			o l
Percentage Passing	4.75 mm	25			18			
Pe	2.00 mm	20			15			1,0 88 90 92 94 96 98 100
	0.425 mm	16			12			Compaction (%)
	0.075 mm	9,4			7,1			13147
			Mortar &	k Co				
Grad	ling Modulus	2,55	≥1.5	✓	2,66	≥0.75	✓	Sieve Analysis
	rse Sand <2.0 >0.425	20,0			19,7			90
M	ed. <0.250 >0.150	33,0			32,0			<u> </u>
S	ilt <0.075	47,0			48,3			70 Paccentage Passing 40 Passing
Liqu	iid Limit (%)	19	≤30	✓	24			90 40 BB 30
	ticity Index (%)	5	≤10	✓	7	≤12	✓	5 20 10
	ear Shrinkage (%)	2,5	≤5	√	3,5			0,0 0,1 1,0 10,0 100,0
		CBR	/ Density	Rela	ationship			Sieve Size
	Max Dry Density (kg/m ³)	2106			2108			
Q	Opt Moisture Content (%)	7,8			8,4			CBR Chart
MOD	Mould Moisture Con. (%)	7,7			8,3			100,0
	@100% Mod AASHTO	98,1			98,8			3
	Swell (%)	0,05	≤0.5	✓	0,01	≤1.5	✓	CB⅓ (%)
B	100% NRB	93,5			95,3			8
NRB	Swell (%)	0,08			0,03			
20	100% Proctor	89,9			88,8			1,0 85 90 95 100
Proc	Swell (%)	0,13			0,06			Compaction (%)
	@ 100% Mod AASHTO	82			33	1		15145 _1514/
٠. ا	@ 98% Mod AASHTO	69			29	1		
BR	@ 95% Mod AASHTO	49	≥45	✓	24	1		Wearing Course Graph
S	@ 93% Mod AASHTO	36			20	≥15	✓	550,0 500,0 - 3,50,0 - Slippery
	@ 90% Mod AASHTO	16			14			700,0
J	nsitu Moisture Content (%)	N/A			N/A			350,0 - Good (May be Dusty)
	(/0/		il Classifi	icatio		1	-	300,0 Good (May be Dusty) 250,0 Frodible (May be Dusty) 300,0 Materials 300,0 Good (May be Dusty) 300,0 Ravels 300,0 Good (May be Dusty) 300,0 Good
	TRH 14	G5			G7			登50,0 - Good
	PRA System	A-1-a / A-1-b / A-2-4			A-2-4	1		0,0 +
	Unified System	GP-GM.GC			GW-GC	1		0 4 8 12 16 20 24 28 32 36 40 44 48
Ь	simona delizared to Outonia				3,7 30	1		Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{2.} The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

_	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	23/05/19
Customer :	Knysna	Date Reported:	19/06/19
	6570	Req. Number:	439/19
Attention:	Iain Paton	No. of Pages:	6/6

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI			(11)	IH 1 Method A	I(a),A2.	,AJ,	
		Material In						13149
	ple Position (SV)	TP SS3	Spec.	on	TP SS4	Spec.	uo	Sieve Analysis
	th (mm)	80-250	G7 -	Opinion	200-450	G8 -	Opinion	100
Sam	ple No	13149	TRH 14	Oŗ	13151	TRH 14	Oŗ	90
ls	Source Colour Soil Type Classification	Test l			Test P			But so
Materials	E Colour	Light Reddis	h Brown		Light Reddish Brown			9 50 50 40 40
late	Soil Type	Silty Sandy Gravel	ly with Cob	bles	Silty Sandy	Gravel		0.00 do
ĮΣ	Classification	Unkno	wn		Unkno			930 820 910 910
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			
ğ	53.0 mm	66			86			CBR Chart
ssir	37.5 mm	54			80			
Percentage Passing	26.5 mm	47			66			8
ıge	19.0 mm	42			61			1860
inta	13.2 mm	37			55			0
rce	4.75 mm	26			39			
Pe	2.00 mm	22			30			1,0 88 90 92 94 96 98 100
	0.425 mm	19			23			Compaction (%)
	0.075 mm	14,2			18,4			13151
		Soi	Mortar &	c Cor	nstants			
	ling Modulus	2,44	≥0.75	√	2,29			Sieve Analysis
Coa	rse Sand <2.0 >0.425	14,7			25,1			90 80
	ed. <0.250 >0.150	21,9			14,2			50 70
	ilt <0.075	63,4			60,7			<u>a</u> 50
	id Limit (%)	29			34			95 40 83 30
	ticity Index (%)	11	≤12	✓	13			50 20 10
Line	ar Shrinkage (%)	4,5			6,5			0,0 0,1 1,0 10,0 100,0
			R / Density	Rela				Sieve Size
_	Max Dry Density (kg/m ³)	2130			1860			CBB Chart
MOD	Opt Moisture Content (%)	7,9			12,5			CBR Chart
Ĭ	Mould Moisture Con. (%)	7,7			12,4			
	@100% Mod AASHTO	99,3			99,6			(%)
L_	Swell (%)	0,17	≤1.5	✓	0,32	≤1.5	✓	CBM (%)
NRB	100% NRB	95,5			94,5			
Z	Swell (%)	0,43			0,63			
Proc	100% Proctor	90,1			89,6			1,0 85 90 95 100 105
P	Swell (%)	0,78			0,80			Compaction (%)
	@ 100% Mod AASHTO	33			40			15149
2	@ 98% Mod AASHTO	29			35			Wearing Course Graph
CB	@ 95% Mod AASHTO	23			26			Wearing Course Graph
1	@ 93% Mod AASHTO	19	≥15	✓	20	> 10	J.	\$10,0 - Slippery
_	@ 90% Mod AASHTO	13			12	≥10	*	#400,0 1 #50,0 1 Good
I	nsitu Moisture Content (%)	N/A	oil Classic	004	N/A			500.0 Slippery Sli
	TDU 14		oil Classifi	catio				350,0 - Good
-	TRH 14	G7			G8			50,0 0,0 Ravels and Corrugates
	PRA System	A-2-6 GC			A-2-6 GC		\vdash	0 4 8 12 16 20 24 28 32 36 40 44 48
<u> </u>	Unified System	UC.			UC			Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth : PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customor	Po Box 964	Date Received:	14/06/19
Customer:	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	1/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

Sample Position (SV) TP MTS Spec. \$ 400-900 \$ 67 - \$ 5		CALIFORN	A BEARING I		(11)	III I Wicinou A	11(a),112	9/1J9/	
Doph (mm)	C	unla Desition (CV)				TD MTC 2	C		13252
Source		*		_	ion			ion	Sieve Analysis
Source					pin			pin	
Soil Type					0			0	80
Soil Type	als	Source							<u>ig</u> 60
Max. Stone size in hole (mm) 75.0 mm	erië	전 Colour				_			8 50
Max. Stone size in hole (mm) 75.0 mm	Aat	Soil Type	_	-					\$\vec{\partial}{\partial} 30 \\ \partial 20 \\ \qquad
75.0 mm			Unkn	own		Unkno	own		9 10
CBR Char CBR Char	Max								0,0 0,1 1,0 10,0 100,0
Sol Max Dry Density (kg/m²) 1850 162 100 1									Sieve Size
Sol									CBR Chart
O.425 mm	ngu					-			
O.425 mm	issi								
O.425 mm	. Pa								(%)
O.425 mm	age								1860
O.425 mm	ent								
O.425 mm	erce								10
0.075 mm	P.								90 92 94 96 98 100 102
Soil Mortar & Constants Coarse Sand (2.0 > 0.425 18.8 38.7 Med. (-0.250 > 0.150 21.9 35.1									H
Coarse Sand		0.075 mm							13254
Coarse Sand				il Mortar &	& Cor				Sieve Analysis
Med. <0.250 >0.150 21.9 35.1							≥0.75	✓	100
Max Dry Density (kg/m²) 1850 1626			,						80
Max Dry Density (kg/m²) 1850 1626			· ·						9 70 9 60
Max Dry Density (kg/m²) 1850 1626									0 50 0 40
Max Dry Density (kg/m²) 1850 1626									gg 30
Max Dry Density (kg/m²) 1850 1626							≤12	✓	8 20 10
Max Dry Density (kg/m³) 1850 1626	Line	ear Shrinkage (%)				,			0,0 0,1 1,0 10,0 100,0
QP Opt Moisture Content (%) 14,3 17,3 Mould Moisture Con. (%) 14,3 17,3 @ 100% Mod AASHTO 100,9 100,4 Swell (%) 0,07 ≤1.5 ✓ 0,000 ≤1.5 ✓ Swell (%) 0,11 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,03 □ 0,05 0,04 0,05 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,05 0,04 0,04 0,05 0,04 0,05 0,04 0,04 0,04 0,04 0,04		Inc. 20 10 10 10 10 10 10 10 10 10 10 10 10 10		R / Density	Rela		1		Sieve Size
Mould Moisture Con. (%)									CBP Chart
@ 100% Mod AASHTO 100,9 100,4 Swell (%) 0,07 ≤1.5 ✓ 0,00 ≤1.5 ✓ BZ 100% NRB 96,3 94,9 ✓ Swell (%) 0,11 0,03 ✓ Swell (%) 0,14 0,05 ✓ © 100% Mod AASHTO 37 62 ✓ © 98% Mod AASHTO 34 51 ✓ © 93% Mod AASHTO 27 23 ≥15 ✓ © 90% Mod AASHTO 23 ≥10 € ✓ Insitu Moisture Content (%) N/A N/A Silppery Soil Classification Soil Classification Rawels Rawels PRA System A-2-6 A-2-4 ✓ 6 A-2-4 ✓ Unified System GC GP-GM GP-GM Grading Coefficient (Gc) Grading Coefficient (Gc)	OD								
Swell (%)	Ĭ								
No. Swell (%) O,11 O,03 O,03 O,05 Swell (%) O,14 O,05 O,15 O									8
No. Swell (%) O,11 O,03 O,03 O,05 Swell (%) O,14 O,05 O,15 O				≤1.5	✓		≤1.5	✓	1000
100% Proctor 91,8 90,3 100 105 85 90 95 100 105 10	RB					,			0
## @ 100% Mod AASHTO	Z	` '	,						
## @ 100% Mod AASHTO	10								85 90 95 100 105
## @ 98% Mod AASHTO	P								
## @ 95% Mod AASHTO 30 34 550,0				1					13232
Solition Solition	2								Wearing Course Cresh
W 93% Mod AASHTO 27 23 ≥15 V									550,0
PRA System A-2-6 A-2-4 0.0 A-2-9 0.0 A-2-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	-						≥15	✓	\$100,0 - Slippery
PRA System A-2-6 A-2-4 0.0 A-2-9 0.0 A-2-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	<u> </u>			≥10	√				#100,0 1 #550,0 - Good
PRA System A-2-6 A-2-4 0.0 A-2-9 0.0 A-2-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	lı	nsitu Moisture Content (%)		1.1.01.12					250,0 Erodible (May be Dusty) Ravels
PRA System A-2-6 A-2-4 0.0 A-2-9 0.0 A-2-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<		TDII 14		Sou Classif	icatio		1		#50,0 - Geed
PRA System A-2-6 A-2-4 Unified System GC GP-GM Grading Coefficient (Gc) Grading Coefficient (Gc)									
		-		-					0,0 1 1 1 1 1 1 1 1 1 1 1
	Щ	•				GP-GM			Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

_	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	14/06/19
Customer :	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	2/7

TEST REPORT

(TMH 1 Mothod A1(a) A2 A3 A4 A5 A7 A8)

	<u>CALIFORNI</u>	<u>A BEARING R</u>	<u> ATIO -</u>	(TN	MH 1 Method A	1(a),A2,	A3,	<u>A4,A5,A7,A8)</u>
		Material In	dicators					13256
Sam	ple Position (SV)	TP MTS 3	Spec.	u	TP MTS 4	Spec.	'n	a:
	th (mm)	0-400	G9 -	ini	250-600	G5 -	Opinion	Sieve Analysis
Sam	ple No	13256	TRH 14	Opinion	13258	TRH 14	Op	90
S	5 Source	Test I	Pit		Test P	it		80 60 70
Materials	Colour	Dark Re	ddish		Light Olive to L	ight Brow	n	8 50
ate	Soil Type	Silty Sandy			Sandy Silty Gravel			95 40 95 30
Σ̈́	Source Colour Soil Type Classification	Unkno			Unknov		0105	## 20 9 10
Max	x. Stone size in hole (mm)	Chino	W 11		Chillo	VII		9 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IVIAA	75.0 mm	100			66			Sieve Size
	63.0 mm	70			58			<u> </u>
50	53.0 mm	62			58			CBR Chart
ing	37.5 mm	47			56			100,0
ass	26.5 mm	43			49			
je F	19.0 mm	36			45			CB ³ (%)
Percentage Passing	13.2 mm	33			41			8
cer	4.75 mm	25			32			
Per	2.00 mm	21			27			1,0
_	0.425 mm	17			21			90 92 94 96 98 100 Compaction (%)
	0.075 mm	12,0			8,6			13258
	0.073 11111		 Mortar &	r Co				13236
Gra	ding Modulus	2,50	Wiortar 6	CO	2,43	≥1.5	V	Sieve Analysis
	rse Sand <2.0 >0.425	18,9			20,7	≥1.J	ľ	90
	led. <0.250 >0.150	24,5			47,4			50 80 F 70
	ilt <0.075	56,6			31,9			8 60 50
	aid Limit (%)	31			SP	≤30	✓	<u>9</u> 40
	ticity Index (%)	15			SP	<u>≤30</u>	· /	9 20 g 30 g 20
	ear Shrinkage (%)	7,5			0,5	<u>≤5</u>	· /	
Line	car Similikage (70)	,	R / Density	Rela	,			0,0 0,1 1,0 10,0 100,0 Sieve Size
	Max Dry Density (kg/m ³)	1976	Delisity	Itti	1612			5.5.5.5.5
۵	Opt Moisture Content (%)	10,7			18,1			CBR Chart
MOD	Mould Moisture Con. (%)	10,7			18,1			1000,0
≥	@100% Mod AASHTO	98,3			100,3			4000
	Swell (%)	0,08	≤1.5	✓	0,02	≤0.5	✓	80,0
В	100% NRB	94,3			93,2			180,0 20,0 10,0
NRB	Swell (%)	0,13			0,04			
2	100% Proctor	90,9			90,1			1,0
Proc	Swell (%)	0,39			0,10			85 90 95 100 105 Compaction (%)
F	@ 100% Mod AASHTO	37			109			13230 _13236
	@ 98% Mod AASHTO	32			89			10200
BR	@ 95% Mod AASHTO	24			57	≥45	√	Wearing Course Graph
CB	@ 93% Mod AASHTO	19			37			550,0 500,0 950,0 - Slippery
	@ 90% Mod AASHTO	11	≥7	✓	5			500,0 \$50,0 \$50,0 \$50,0 \$50,0 \$0
T	nsitu Moisture Content (%)	N/A			N/A			350,0 - Good 800,0 - Good May be Dusty)
H	(,v)		oil Classifi	catio				250,0 - Erodible - Ravels
	TRH 14	G9			G5			Control Cont
	PRA System	A-2-6			A-1-a / A-1-b / A-2-4			0,0 +
	Unified System	GP-GC			#DIV/0!			0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
	aimong delivered to Outonice		1					Grading Coefficient (GC)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	3/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI	A BEARING		(110	III I WIEUIOU A	11(a),A2	,AJ,		
C	1 D ::: (GM)	Material I	_		W.5 21D	I G		13260	
	ple Position (SV)	W5 21A	Spec.	Opinion	W5 21B	Spec.	Opinion	Sieve Analysis	
	th (mm)	150-350	G9 -	pini	100-350	G8 -	pini	100	
Sam	ple No	13260	TRH 14	Ō	13262	TRH 14	Ō		
lls	Source Colour Soil Type Classification	Test			Test l			80 By 70 Lius 60 85 50	
eria	Colour	Light Reddi			Light Reddish Orange			8 50 0 40	
Materials	Soil Type	Silty Sand	ly Gravel		Silty Sandy	Gravel		9 40 pt 30 U 20	
2	Classification	Unkn	own		Unkno	wn		9 30 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0	
	75.0 mm	100			100			Sieve Size	
	63.0 mm	100			69			222.01	
50	53.0 mm	73			57			CBR Chart	
ssir	37.5 mm	61			52				
Pas	26.5 mm	53			46			9	
ge	19.0 mm	42			39			CBB# (%)	
Percentage Passing	13.2 mm	34			33			0	
rce	4.75 mm	21			23				
Pe	2.00 mm	16			18			1,0 1 90 92 94 96 98 100	
	0.425 mm	12			13			Compaction (%)	
	0.075 mm	8,0			8,6			13262	
			il Mortar &	c Cor					
Grad	ling Modulus	2,64			2,61			Sieve Analysis	
	rse Sand <2.0 >0.425	26,8			27,3			90	
M	ed. <0.250 >0.150	24,4			23,9			<u>si</u> 70	
S	ilt <0.075	48,8			48,9			Parse 40 40 40 40 40 40 40 40 40 40 40 40 40	
Liqu	iid Limit (%)	38			31			90 40 81 30	
	ticity Index (%)	18			14			5 20 10	
	ear Shrinkage (%)	9,0			7,0			0,0 0,1 1,0 10,0 100,0	
	<u> </u>	СВ	R / Density	Rela	tionship			Sieve Size	
	Max Dry Density (kg/m ³)	1900			1896				
Q	Opt Moisture Content (%)	12,5			12,4			CBR Chart	
MOD	Mould Moisture Con. (%)	12,5			12,3			100,0	
	@100% Mod AASHTO	98,7			99,9				
	Swell (%)	0,08	≤1.5	√	0,18	≤1.5	✓	CB⅓ (%)	
B	100% NRB	94,5			94,0			80	
NRB	Swell (%)	0,13			0,76				
2	100% Proctor	90,6			88,5			1,0	
Proc	Swell (%)	0,17			0,78			85 90 95 100 105 Compaction (%)	
	@ 100% Mod AASHTO	64			62				
٠. ا	@ 98% Mod AASHTO	54			53			•	
BR	@ 95% Mod AASHTO	39			40			Wearing Course Graph	
C	@ 93% Mod AASHTO	29			31			550,0 500,0 - \$350,0 - Slippery	
	@ 90% Mod AASHTO	14	≥7	✓	18	≥10	✓	3 00,0 -	
I	nsitu Moisture Content (%)	N/A			N/A			350,0 - Good (May be Dusty)	
			Soil Classif	icatio		1	ı	800,0 250,0 250,0 800,0 Erodible (May be Dusty) Ravels	
	TRH 14	G 9			G8			数50,0 - 数00,0 - の50,0 -	
	PRA System	A-2-6			A-2-6			0,0 + 1 1 1 1 1 1 1 1 1 1	
	Unified System	GP-GC			GW-GC			0 4 8 12 16 20 24 28 32 36 40 44 48	
	simona delivered to Outonia		_1			-		Grading Coefficient (Gc)	

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

_	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
	Po Box 964	Date Received:	14/06/19
Customer :	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	4/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CHEHORIVI	A BEARING R		(11)	III I Miculou A	1(a)9/12	,713,	
Corr	mla Dosition (CV)	Material Inc			W/5 64D	Cnoo		13264
	ple Position (SV)	W5 64A	Spec.	Opinion	W5 64B	Spec.	Opinion	Sieve Analysis
	th (mm)	350-950	G5 -	pin	350-700	G6 -	pin	100
	ple No	13264	TRH 14	0	13266	TRH 14	0	
Materials	Source Colour Soil Type Classification	Test P			Test F			80 D70 Urs 60 Se 50 4 40
eria	Colour	Light Olive to Light Brown		Light Olive to I	_	'n	8 50 6 40	
Íate	Soil Type	Calcre	te		Calcre	ete		1430 02 30 20 20 20 20 20 20 20 20 20 20 20 20 20 2
2	☐ Classification	Unkno	wn		Unkno	wn		9 30 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Max	. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			222.01
50	53.0 mm	77			93			CBR Chart
ssir	37.5 mm	72			90			
Pas	26.5 mm	57			88			3
ge	19.0 mm	53			82			CBB (%)
nta	13.2 mm	46			76	1		0
Percentage Passing	4.75 mm	27			62	1		
Pe	2.00 mm	19			51			1,0 88 90 92 94 96 98 100 102
	0.425 mm	14			39			Compaction (%)
	0.075 mm	7,8			21,1			13266
			Mortar &	c Cor		1		
Grac	ling Modulus	2,59	≥1.5	\checkmark	1,90	≥1.2	√	Sieve Analysis
	rse Sand <2.0 >0.425	27,3			23,3			90
	ed. <0.250 >0.150	32,5			35,0			<u>p</u> 80
S	ilt <0.075	40,2			41,7			Percentage Passing
	iid Limit (%)	SP	≤30	√	27			90 40 Bg 30
	ticity Index (%)	SP	≤10	√	5	≤12	√	5 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	ar Shrinkage (%)	0,5	≤5	✓	2,5			
	2 \ /		/ Density	Rela	tionship	1		0,0 0,1 1,0 10,0 100,0 Sieve Size
	Max Dry Density (kg/m ³)	1730	ĺ		1786			<u> </u>
	Opt Moisture Content (%)	19,6			14,8			CBR Chart
	Mould Moisture Con. (%)	19,6			14,7			100,0
_	@100% Mod AASHTO	100,9			99,6			
	Swell (%)	0,00	≤0.5	√	0,02	≤1.0	√	CBB(%)
В	100% NRB	95,8			96,5			8
NRB	Swell (%)	0,00			0,05			
ြ	100% Proctor	90,1			91,0			1,0
Proc	Swell (%)	0,00			0,06			90 92 94 96 98 100 102 Compaction (%)
<u> </u>	@ 100% Mod AASHTO	74			70			
	@ 98% Mod AASHTO	65			57			
BR	@ 95% Mod AASHTO	52	≥45	✓	39			Wearing Course Graph
CI	@ 93% Mod AASHTO	43			27	≥25	*	550,0 500,0 350,0 - Slippery
	@ 90% Mod AASHTO	29			9			#50,0 - #200,0 - #550,0 -
Jı	nsitu Moisture Content (%)	N/A			N/A			350,0 - Good (May be Dusty)
	(/0/		oil Classif	icatio		1		250,0 - Erodible Ravels
	TRH 14	G5			G6			き50,0 - Good Good 50,0 - Rays/search Corruptes
	PRA System	A-1-a / A-1-b / A-2-4			A-1-b / A-2-4	<u> </u>		0,0
	Unified System	GP-GM			GM	1		0 4 8 12 16 20 24 28 32 36 40 44 48
<u> </u>	simona delizared to Outonia		l	1	Cin	I	ı	Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

^{2.} The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the m confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

Customan	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm		
	Po Box 964	Date Received:	14/06/19		
Customer :	Knysna	Date Reported:	15/08/19		
	6570	Req. Number:	511/19		
Attention:	Iain Paton	No. of Pages:	5/7		

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFORNI	<u>A4,A5,A7,A8)</u>							
		13268							
Sample Position (SV)		W 411A	Spec.	uc	W 411B	Spec.	uc	Sieve Analysis	
Depth (mm)		750-1700	G10 -	Opinion	450-1500	G10 -	Opinion	100	
Sample No		13268	TRH 14	Ор	13270	TRH 14	Ор	90	
S	5 Source	Test	Pit	Test Pit			80 570 uis 60 se 50 4 40		
ria	E Colour	Light Reddish Orange		Light Reddish Orange Gravelly Silty Sand Unknown					
Materials	Source Colour Soil Type Classification	Gravelly Sandy Silt Unknown					D 40 B 30		
Σ	Classification						930 20 20 20 20 20 20 20 20 20 20 20 20 20		
Max. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0		
	75.0 mm	100			100			Sieve Size	
	63.0 mm	100			100				
ф	53.0 mm	100			100			CBR Chart	
sin	37.5 mm	100			100			1.50,5	
Pas	26.5 mm	98			89			9	
ge	19.0 mm	97			84			CB# (%)	
Percentage Passing	13.2 mm	95			77			Ö	
rce	4.75 mm	73			56				
Peı	2.00 mm	49			41			1,0 88 90 92 94 96 98 100 102	
	0.425 mm	33			30			Compaction (%)	
	0.075 mm	19,0			15,5			13270	
			l Mortar &	c Co					
Grad	ding Modulus	2,00			2,14			Sieve Analysis	
	rse Sand <2.0 >0.425	33,7			25,4			90 80	
Med. <0.250 >0.150 Silt <0.075		27,6			36,3			50 80 70 Fig.	
		38,8		38,3			8 60 50		
Liquid Limit (%)		61			48			70 70 888 iud 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	ticity Index (%)	29			23			5 20 10	
	ear Shrinkage (%)	14,5			11,5			0,0 0,1 1,0 10,0 100,0	
		CBI	R / Density	Rela	tionship			Sieve Size	
	Max Dry Density (kg/m ³)	1598	1		1762				
Ö	Opt Moisture Content (%)	18,8			15,9			CBR Chart	
MOD	Mould Moisture Con. (%)	18,8			15,9			100,0	
~	@100% Mod AASHTO	99,6			100,0			9	
	Swell (%)	0,81	≤1.5	✓	0,33	≤1.5	✓	CB)	
æ	100% NRB	95,3			94,9			8	
NRB	Swell (%)	0,94			0,30				
Proc	100% Proctor	90,3			89,2			1,0 85 90 95 100 105	
Pr	Swell (%)	0,98			0,63			Compaction (%)	
CBR	@ 100% Mod AASHTO	51			23			13200	
	@ 98% Mod AASHTO	42			21			•	
	@ 95% Mod AASHTO	30			17			Wearing Course Graph	
	@ 93% Mod AASHTO	21			15			500,0 - \$\frac{2}{6}\frac{1}{6}\f	
L	@ 90% Mod AASHTO	9	≥3	√	11	≥3	✓	3400,0 - 350,0 -	
I	nsitu Moisture Content (%)	N/A N/A						350,0 - Good 300,0 - (May be Dusty)	
	Soil Classification						500,0 500,0 350,0 350,0 500,0 500,0 500,0 60		
TRH 14		G10			G10			 00,0	
	PRA System	A-2-7			A-2-7			0,0 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48	
	Unified System	GM			GC			Grading Coefficient (Gc)	
		7							

· Specimens delivered to Outeniqua Lab in good order.

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or

for any consequence thereof

Outeniqua Lab EC cc. Materials Testing Laboratory

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	6/7

TEST REPORT

CALIFORNIA BEARING RATIO - (TMH 1 Method A1(a), A2, A3, A4, A5, A7, A8)

	CALIFURNI			(1N)	<u> 1H 1 Method A</u>	1(a),A2	,AJ,	
		Material Iı			_			13272
	pple Position (SV)	W 452A	Spec.	uc	W 452B	Spec.	uc	Sieve Analysis
	th (mm)	500-1800	G10 -	Opinion	350-500	G10 -	Opinion	100
Sam	pple No	13272	TRH 14	OF	13274	TRH 14	OF	90
S	5 Source	Test	Pit		Test P	it		80 570 uis 60 se 4 40
ria	E. Colour	Light B	rown		Dark Reddsis	h Brown		
Materials	Source Colour Soil Type Classification	Silty Sand	y Gravel		Silty Gravel	ly Sand		D 40 B 30
Σ	Classification	Unkno	own		Unkno	wn		930 20210 2010 2010
Max	x. Stone size in hole (mm)							0,0 0,1 1,0 10,0 100,0
	75.0 mm	100			100			Sieve Size
	63.0 mm	100			100			
ф	53.0 mm	100			100			CBR Chart
sin	37.5 mm	100			49			1.50,0
Pas	26.5 mm	97			49			9
ge	19.0 mm	95			49			CB ³ (%)
Percentage Passing	13.2 mm	91			48			Ö
rce	4.75 mm	67			42			
Pe	2.00 mm	48			38			1,0 90 92 94 96 98 100
	0.425 mm	33			32			Compaction (%)
	0.075 mm	24,9			27,8			13274
	1		l Mortar &	c Co		l		
Grad	ding Modulus	1,94			2,02			Sieve Analysis
	rse Sand <2.0 >0.425	32,0			14,6			90
	led. <0.250 >0.150	16,4			11,9			B0 80 70
S	ilt <0.075	51,7			73,5			Buil see 60 40 40 40 40 40 40 40 40 40 40 40 40 40
Liqu	uid Limit (%)	29			36			90 40 By 30
	ticity Index (%)	13			19			5 20 10 10
	ear Shrinkage (%)	6,5			9,5			0,0 0,1 1,0 10,0 100,0
		CB	R / Density	Rela	ationship			Sieve Size
	Max Dry Density (kg/m ³)	1832			1872			
Q	Opt Moisture Content (%)	14,5			11,7			CBR Chart
MOD	Mould Moisture Con. (%)	14,4			11,8			10,0
~	@100% Mod AASHTO	99,4			100,2			
	Swell (%)	0,08	≤1.5	✓	1,06	≤1.5	√	CBR (%)
æ	100% NRB	96,5			94,1			l ö
NRB	Swell (%)	0,08			1,24			
Proc	100% Proctor	90,7			91,8			1,0 90 92 94 96 98 100 102
Pr	Swell (%)	0,09			1,55			Compaction (%)
	@ 100% Mod AASHTO	55			5			132/2
~	@ 98% Mod AASHTO	45			4			
CBF	@ 95% Mod AASHTO	31			3			Wearing Course Graph
	@ 93% Mod AASHTO	21			2			500,0 - \$\frac{2}{6}\$\frac{2}{6}\$\frac{1}{
L	@ 90% Mod AASHTO	6	≥3	*	1	≥3	*	500.0 Slippery 350.0 Slippery 400.0 Good \$50.0 Good 800.0 (May be Dusty)
I	nsitu Moisture Content (%)	N/A			N/A			300,0 - Good (May be Dusty)
		S	oil Classif	icatio	n			250,0 250,0 Erodble May be Dusty) Ravels
	TRH 14	G10			G10			 00,0
	PRA System	A-2-6			A-2-6			0,0 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
	Unified System	GC			GC			Grading Coefficient (Gc)
		•						7

· Specimens delivered to Outeniqua Lab in good order.

L Malgraff (Member) For Outeniqua Lab EC cc. Technical Signatory

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

Outeniqua Lab EC cc. Materials Testing Laboratory

Registration No. 2009/230653/23

170 Sidwell Avenue, Sidwell, Port Elizabeth: PO Box 3186, George Industria, 6536

Tel: 041 4512464 : Fax: 041 4534959 : e-mail: luwayne@outeniqualab.co.za / agovender@outeniqualab.co.za T0619

	Outeniqua Geotechincal Services cc	Project:	Choje Windfarm
Customer:	Po Box 964	Date Received:	14/06/19
Customer.	Knysna	Date Reported:	15/08/19
	6570	Req. Number:	511/19
Attention:	Iain Paton	No. of Pages:	7/7

TEST REPORT

(TMH 1 Mothod A1(a) A2 A3 A4 A5 A7 A8)

0.425 mm 39 63 Compaction	10,0 100,0 ize
Depth (mm) 700-1300 G10 -	10,0 100,0 ize
Source Test Pit Dark Reddish Orange Clayey Gravelly Silty Sand Unknown Unknown Clayey Gravelly Sandy Silt Unknown Unknown Soil Type Classification Unknown Unkno	10,0 100,0 ize
Test Pit	10,0 100,0 ize
Source Test Pit Dark Reddish Orange Clayey Gravelly Silty Sand Unknown Unknown Clayey Gravelly Sandy Silt Unknown Unknown Soil Type Classification Unknown Unkno	10,0 100,0 ize
Colour Dark Reddish Orange Clayey Gravelly Sand Unknown Unknown Unknown Clayey Gravelly Sand Unknown	10,0 100,0 ize
Soil Type Clayey Gravelly Silty Sand Unknown Unk	10,0 100,0 ize
Max. Stone size in hole (mm) 75.0 mm 100 100 100 53.0 mm 100 100 37.5 mm 100 100 37.5 mm 100 100 37.5 mm 100 26.5 mm 58 100 19.0 mm 13.2 mm 4.75 mm 53 96 2.00 mm 51 89 0.425 mm 39 63	10,0 100,0 ize
Max. Stone size in hole (mm) 75.0 mm 100 100 100 53.0 mm 100 100 37.5 mm 100 100 37.5 mm 100 100 37.5 mm 100 26.5 mm 58 100 19.0 mm 13.2 mm 4.75 mm 53 96 2.00 mm 51 89 0.425 mm 39 63	10,0 100,0 ize
75.0 mm 100 100 100 53.0 mm 100 100 100 53.0 mm 100 100 100 53.0 mm 100 100 53.0 mm 100 100 53.0 mm 100 100 53.0 mm 58 100 100 56.5 mm 58 100 100 100 100 100 100 100 100 100 10	ize
63.0 mm 100 100 100 100 100 100 100 100 100	nart
53.0 mm 100 100 100 100.	nart
37.5 mm 100 100 26.5 mm 58 100 100 100 100 100 100 100 100 100 10	
0.425 mm 39 63 Compaction	
	96 98 100 102 on (%)
0.075 mm 28,3 49,8 13278 Soil Mortar & Constants	
Grading Modulus 192 0.09 Sieve Anal	lysis
Coarse Sand <2.0 >0.425 24,1 29,5	
Silt <0.075 55,5 55,7	
Silt <0.075 55,5 55,7 2 50 50 50 50 50 50 50	
Med. <0.250 >0.150 20,4 14,8 Silt <0.075	
Linear Shrinkage (%) 6,0 6,0	
CBR / Density Relationship	
Max Dry Density (kg/m³) 1766 1766	
	ıart
Opt Moisture Content (%) Mould Moisture Con. (%) 16,6 14,4 100,0 CBR Ch	
1 @100% Mod AASHTO 00.7 1 100.5	•
© 100% MOU AASH 10 99,7 100,5 Swell (%) 0,06 ≤1.5 ✓ 0,20 ≤1.5 ✓ 0,20 (€)	
Swell (%) 0,06 \$1.3 \ \ 0,20 \$1.3 \ \ \ \ \ \ \ \ \ \ \	
2 100% NRB 95,9 96,3 Swell (%) 0,14 0,24	
Swell (%) 0,14 0,24 0,24 0,24 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,1	
1 1 (a) 1 (a) 30 35 35 35 35 35 35 35 35 35 35 35 35 35	100 105
G 1000/ M 1 A A CUTTO 16	
@ 98% Mod AASHTO 13 27	132/8
	se Graph
## @ 95% Mod AASHTO 9 18 550,0 Wearing Cours 18 550,0 50	
@ 93% Mod AASHTO 7 12 5000 5000 5000 5000 5000 5000 5000 5	pery
W 90% MOd AASH 10 5 25 1	od e Dusty)
Soil Classification N/A Solice So	Ravels
Sui Ciassification	ood
TPU 14 C10 C10 C10 G000 G000 G000 G000 G000 G0	
TRH 14 G10 G10 G00,0 G00	Corrugates
TRH 14 G10 G10 PRA System A-2-6 A-6 Unified System GC SC	4 28 32 36 40 44 48

· Specimens delivered to Outeniqua Lab in good order.

L Malgraff (Member) For Outeniqua Lab EC cc. Technical Signatory

^{1.} The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the me confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

^{3.} This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Director of Outeniqua Lab EC cc.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-06-25

KNYSNA

DATE TESTED: 2019-07-10

6570

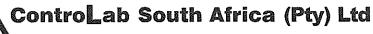
DATE REPORTED: 2019-07-11

TEST REPORT NO: 95584

ATT:

Mr I Paton

pH & CONDUCTIVITY


· .			
SAMPLE NO.	TEST POSITION & DEPTH (mm)	pH	Conductivity (μS/m) (Micro Siemens / m)
3803	E64A - (200 - 400)	6.07	201
3804	E64B - (150 - 400)	6.11	213
3805	TPSS1 - (0 - 100)	6.20	187
3806	TPSS2 - (0 - 300)	6.08	185
3807	TPSS3 - (80 - 250)	6.37	212
3808	TPSS4 - (200 - 450)	6.61	223
3809	E6A - (400 - 2100)	8.09	846
3810	E6B - (300 - 800)	7.37	475
3811	E100A - (300 - 1100)	8.60	361
3812	E100B - (400 - 1500)	7.25	463
3813	E7A - (200-500)	7.23	287
3814	E7B - (300 - 800)	7.39	219
3815	TPMTS1 - (200 - 500)	7.48	209

The above test results are pertinent to the samples received and tested only. While the tests are carried out according to the recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Laboratory Manager:

_J_Atterbury

Page 1 of 2

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-06-25

KNYSNA

DATE TESTED: 2019-07-10

6570

DATE REPORTED: 2019-07-11

41 ..

TEST REPORT NO: 95584

ATT:

Mr I Paton

pH & CONDUCTIVITY

Aura.	- 6 Y	Mana.	4,5°
SAMPLE NO.	TEST POSITION & DEPTH (mm)	рН	Conductivity (μS/m) (Micro Siemens / m)
3816	TPMTS2 - (400 - 900)	7.58	224
3817	TPMTS3 - (0 - 400)	7.67	129
3818	TPMTS4 - (250 - 600)	7.96	202
3819	W521A - (150 - 350)	8.26	360
3820	W521B - (100 - 350)	7.60	225
3821	W564A - (350 - 950)	7.98	250
3822	W564B - (350 - 700)	8.00	241
3823	W411A (750 - 1700)	7.70	302
3824	W411B - (450 - 1500)	7.55	1685
3825	W452A - (500 - 1300)	8.10	229
3826	W452B - (350 - 500)	8.10	272
3827	W417A - (1300 - 2800)	7.01	206
3828	W417B - (800 - 2900)	7.62	864

The above test results are pertinent to the samples received and tested only. While the tests are carried out according to the recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Laboratory Manage

J Atterbury

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

TO308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200

OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-07-25

KNYSNA

DATE TESTED:

2019-08-08

6570

DATE REPORTED:

2019-08-12

Mr I Paton ATT:

TEST REPORT NO.: 96046 O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:		4354	4358	4387	4388	4408	
POSITION	14.75. 2.77	W417	W417	E6	E6	E100	
DEPTH (m)		2.18 - 2.98	3.58 - 5.08	0.50 - 1.50	2.10 - 3.00	1.10 - 1.68	
DESCRIPTION:	97°	Gravelly	Gravelly	√ cly	Gravelly	cly sty	
<u> </u>	N.	cly sdy	cly sdy	gravelly	sty s	gravel	
		🤌 st	st	sty s 💍 ⊂		. 2	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

.815	50.0 mm				**************************************	le-	<u> </u>
	37.5 mm		es.	Sad			ą Ģ
	28.0 mm		gj), kiel		ar yangi ar yangi	'V.	
	20.0 mm 🦽				us" Luir		:
	14.0 mm ⊚			*** ***			
APERTURE	10.0 mm	47.5 -				18 m 18 8 m	
:RT	7.1 mm			graphic and the second	4)		
APE €	5.0 mm	4		7 m. 1 784 - 344 35 - 3	* 12/50.		•
É.	2.0 mm	. 25	Q.	er : Salatangan na			griffer d Star 19
)E	1.0 mm		14. 14. 17.	7		- 3	·
SIEVE	0.600 mm 🦠				<>	Š.	
	0,425 mm	The same of the sa		4			
	0.300 mm	*		2			
	0.150 mm				<u>생</u> 및	*6 ** **	
(0.075 mm				20		. A
		MAT	ERIAL CHARACTE	RISTICS			

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5				AND THE RESERVE OF THE PERSON	, Š	\ .
Apparent Density	SANS 3001 AG20/21	2687	2683	2679	2697	2616	
Loose Bulk Density	TMH1 B9	p day.				194 184	
Compacted Bulk Density	TMH1 B9						
Ave Least Dimension (ALD)	SANS 3001 AG2			-3			
Flakiness Index	SANS 3001 AG4	# W		100	100		2 P
Sand Equivalent	SANS 3001 AG5			1	2. Q**		Part .

STRENGTH TESTS

317 27	A. P. S.		 47 77	,1415	4 1	
A.C.V. (%)	SANS 3001 AG10			**	, C	
10 % FACT DRY (KN)	SANS 3001 AG10	*	.۵٧		5 67 5 62	
10 % FACT WET (KN)	SANS 3001 AG10		39"	·.	43. T	
Wet Dry Relationship (%)	Sy				ζ.

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

Atterbury

Page 1 of 1

2019-06-25

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services PROJECT: **CHOJE WIND FARM**

> P O Box 964 DATE RECEIVED:

KNYSNA DATE TESTED: 2019-07-10

DATE REPORTED: 6570 2019-07-30

TEST REPORT NO.: Mr I Paton ATT: 95584 O/N: AGGREGATE ANALYSIS TEST REPORT SAMPLE NO: 3803 3804 3805 POSITION E64A E64B TPSS1 DEPTH mm 200 - 400 150 - 400 0 - 100 DESCRIPTION: cly sty Gravelly cly sty sdy gravel sdy gravel sty s SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm **EVE APERTURE** 10.0 mm 7.1 mm 5.0 mm 2.0 mm 1.0 mm 0.600 mm 0.425 mm 0.300 mm 0.150 mm 0.075 mm MATERIAL CHARACTERISTICS Finess Modulus SANS 3001 PR5 2636 Apparent Density 2610 2636 SANS 3001 AG20/21 **TMH1 B9** Loose Bulk Density **TMH1 B9** Compacted Bulk Density SANS 3001 AG2 Ave Least Dimension (ALD) SANS 3001 AG4 Flakiness Index SANS 3001 AG5 Sand Equivalent STRENGTH TESTS SANS 3001 AG10 A.C.V. (%) SANS 3001 AG10 10 % FACT DRY (KN) SANS 3001 AG10 10 % FACT WET (KN Wet Dry Relationship (%)

The above lest results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory

l'Atterbury

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services PROJECT: CHOJE WIND FARM

P.O Box 964 DATE RECEIVED: 2019-06-25

KNYSNA DATE TESTED: 2019-07-10 6570 DATE REPORTED: 2019-07-30

Mr I Paton TEST REPORT NO.: 95584. AGGREGATE ANALYSIS TEST REPORT SAMPLE NO: 3806 3808 3807 POSITION TPSS2 TPSS3 TPSS4 DEPTH mm 0 - 30080 - 250 200 - 450 **DESCRIPTION:** sty gravelly sty sdy sty s sand & gravel & gravel Boulders & Cobbles Cobbles SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm **EVE APERTURE** 10.0 mm 7.1 mm 5.0 mm 2.0 mm 1.0 mm 0.600 mm 0.425 mm 0.300 mm 0.150 mm 0.075 mm MATERIAL CHARACTERISTICS Finess Modulus SANS 3001 PR5 **Apparent Density** 2642 2667 2657 SANS 3001 AG20/21 **TMH1 B9** Loose Bulk Density TMH1 B9 **Compacted Bulk Density** SANS 3001 AG2 Ave Least Dimension (ALD) SANS 3001 AG4 Flakiness Index SANS 3001 AG5 Sand Equivalent STRENGTH TESTS SANS 3001 AG10 A.C.V. (%) SANS 3001 AG10 10 % FACT DRY (KN) SANS 3001 AG10 10 % FACT WET (KN) Wet Dry Relationship (%)

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Page 2 of 9

Technical Signatory:__

_J Atterbury

STR008

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

TO308 ISO/IEC 17026:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

Outeniqua Geotechnical Services

PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

DATE TESTED:

2019-07-10

6570

DATE REPORTED:

2019-07-30

Mr I Paton

TEST REPORT NO.:

95584 O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	437	3809	3810	3811			
POSITION		E6A	E6B	E100A	1		133
DEPTH mm	A. P	400 - 2100	800 - 1750	300 - 1100	4. 4		
DESCRIPTION:		cly sdy	cly	cly sty		4.1° 2.1°	: 12 첫
		st	gravelly	sdy	- A		
No.			sty s	Gravel	ef .	2. P	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

	.0 mm			2 B			
37.	.5 mm	w.S		14.00 m	J. J.		ĘĢ.
28.	.0 mm						24
28.	.0 mm ূ	J. P. T.			44		*, ·
1 44	.0 mm	A. C.		4- 4.	<u> </u>	18 m	
	.0 mm	Wer a		, Ø	32 de 1		
<u>7.1</u>	mm			A State			
HG 5.0) mm	5.		C.A.	**	4:	3.
ய்	mm			- Carlosom			1
当.0	mm	V _L		V 11.7	4 4 4 65		Port.
2.0 1.0 0.6	600 mm						<i>y</i>
	25 mm	192 1932		4	# 35	Ž.	
0,3	00 mm	*		25			
0.1	50 mm						
)75 mm				22		_3
		MATE	ERIAL CHARACTI	ERISTICS			

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5				146	and the second	\$ X
Apparent Density	SANS 3001 AG20/21	2665	2666	2667	3 5 . ⁷	, Ta	
Loose Bulk Density	TMH1 B9	<i>\$</i>		4.	<i>Z</i> ************************************	19	
Compacted Bulk Density	TMH1 B9 🛒	·					
Ave Least Dimension (ALD)) SANS 3001 AG2			40			
Flakiness Index	SANS 3001 AG4	- S		Service Servic	J.		Ş
Sand Equivalent	SANS 3001 AG5	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \					· \

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	Wall Commencer		%0 40.	\$ ·	N	
10 % FACT DRY (KN) SANS 3001 AG10	W		, Š	र्वें		
10 % FACT WET (KN) SANS 3001 AG10						
Wet Dry Relationship (%)	<u> </u>	-	/ P		<u> </u>	<u>\$</u>

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

J Atterbury

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services PROJECT: CHOJE WIND FARM

P O Box 964 DATE RECEIVED: 2019-06-25

KNYSNA DATE TESTED: 2019-07-10
6570 DATE REPORTED: 2019-07-30

TEST REPORT NO.: ATT: Mr I Paton 95584 AGGREGATE ANALYSIS TEST REPORT SAMPLE NO: 3812 3813 3814 POSITION E100B E7A E7B DEPTH mm 400 - 1500 200 - 500 300 - 800 **DESCRIPTION:** sty sdy cly sty cly sty Gravel sdy sdy Gravel Gravel SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm **EVE APERTURE** 10.0 mm 7.1 mm 5.0 mm 2.0 mm 1.0 mm 0.600 mm 0.425 mm 0.300 mm 0.150 mm 0.075 mm MATERIAL CHARACTERISTICS SANS 3001 PR5 Finess Modulus **Apparent Density** 2742 2783 2633 SANS 3001 AG20/21 TMH1 B9 Loose Bulk Density TMH1 B9 Compacted Bulk Density SANS 3001 AG2 Ave Least Dimension (ALD) SANS 3001 AG4 Flakiness Index **SANS 3001 AG5** Sand Equivalent STRENGTH TESTS SANS 3001 AG10 A.C.V. (%) SANS 3001 AG10 10 % FACT DRY (KN) SANS 3001 AG10 10 % FACT WET (KN)

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

J Atterbury

Wet Dry Relationship (%)

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

TO308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

Mr I Paton

DATE TESTED:

6570

2019-07-10

DATE REPORTED:

2019-07-30

TEST REPORT NO.:

95584

O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	15. 17.5	3815	3816	3817			
POSITION		TPMTS1	TPMTS2	TPMTS3	A.C		, da
DEPTH mm		200 - 500	400 - 900	0 - 400			N. 7
DESCRIPTION:		sty sdy	sty sdy	sty sdy	197		
	ew Lati	Gravel	Gravel	Gravel		<u> </u>	
	e.	\$\frac{1}{2}					

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

gajir.	50.0 mm				Ç.w	
Litt Salas Salas	37.5 mm	25				6 (A)
	28.0 mm	11/2 A		2. 2 2		
	20.0 mm			4" 4.5.		***
	14.0 mm	9	- Get 1	4		
R	10.0 mm	- 197 7	. (1) 2. (4)	10,777		
APERTURE	7.1 mm					
APE	5.0 mm	ζ.	8	₹. ^{6e}		2
Щ.	2.0 mm	. Ž	The state of the s			35 ¹ 66′ €
一一	1.0 mm			<i>₩</i>		
SIEVE	0.600 mm				2	
	0.425 mm		安		17%	
	0.300 mm					
6	0.075 mm	2	V _{ere}	-75		2.
Brown Harris		MATERIAL	CHARACTERISTICS	1. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5				14	\$4	<i>y</i> >
Apparent Density	SANS 3001 AG20/21	2754	2608	2611			
Loose Bulk Density	TMH1 B9	<i>(2</i> /2		16. 14.	# The state of the	18	
Compacted Bulk Density	TMH1 B9 🚕 🚫 🦠				-		
Ave Least Dimension (ALD)	SANS 3001 AG2			. 5			
Flakiness Index	SANS 3001 AG4			Maggal anns			₹\$
Sand Equivalent	SANS 3001 AG5	4.74		2 2			

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10		
10 % FACT DRY (KN) SANS 3001 AG10	97 5	
10 % FACT WET (KN) SANS 3001 AG10		
Wet Dry Relationship (%)		3.

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

J Atterbury

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY.

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Outeniqua	Geotechnical Services	

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

PROJECT:

2019-06-25

KNYSNA

DATE TESTED:

2019-07-10

6570

2019-07-30

DATE REPORTED:

95584

Mr I Paton

TEST REPORT NO.:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	\$ 2	3818	3819	3820			
POSITION		TPMTS4	W521A	W521B	1		6
DEPTH mm		250 - 600	150 - 350	100 - 350	14 P		1. 14.2
DESCRIPTION:	4.8. ^x	sty sdy	sty sdy	sty sdy	14 MA		
	a¥	Gravel &	Gravel	Gravel	A ^X		\$
* * * * * * * * * * * * * * * * * * * *		Cobbles				/// 2.7 1. 4.	

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

8	50.0 mm			. Š		3	
Tarta	37.5 mm	W	Ž	The state of the s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$Q.
	28.0 mm			V. Z	2.5		
The state of the s	20.0 mm					A. Santa	
	14.0 mm 🖗			***	296. 1 160. 160.		
APERTURE	10.0 mm	in the last		الر		14.50	
ЖT	7:1 mm						
APE	5.0 mm		50,	a P	4	× ×	d Sas
Щ.	2.0 mm	4. N	æř.	(Constant			
SIEVE	√1.0 mm				(3) ⁷ •		
0)	0.600 mm				\$	Ţ.	Va.pr. ii
	0.425 mm ^{(**}	<i>4</i>				. 2	
	0.300 mm	\$/ *			8		
	0.150 mm			42			
	0.075 mm			Ç/		Ž.	. D

MATERIAL CHARACTERISTICS

Finess Modulus	SÂNS 3001 PR5	22			42	.465	
Apparent Density	SANS 3001 AG20/21	2593	2555	2663			
Loose Bulk Density	TMH1 B9				\$		
Compacted Bulk Density	TMH1 B9				-	. 1	
Ave Least Dimension (AL	D) SANS 3001 AG2			70			
Flakiness Index	SANS 3001 AG4	炭	97 ₄	"The gift"	3		4.2
Sand Equivalent	SANS 3001 AG5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10			V	a X	100	
10 % FACT DRY (KN) SANS 3001 AG10	Š		*			
10 % FACT WET (KN) SANS 3001 AG10			A Comment			
Wet Dry Relationship (%)	-	% .	07			À.

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

Page 6 of 9

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

Mr I Paton

DATE TESTED:

2019-07-10

6570

DATE REPORTED:

2019-07-30

TEST REPORT NO.:

95584

O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	4	3821	3822	3823		egy.	
POSITION	. 12	W564A	W564B	W411A			
DEPTH mm	14.5° 7.5°	350 - 950	350 - 700	750 - 1700	Ą ^y		
DESCRIPTION:		Calcrete	Calcrete	Gravelly	7(5)		
	<i>.</i>	Hardpan	Hardpan	sdy st	2.5	1	
Ž.		î.		**************************************	÷		

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

,4 ⁸⁰	50.0 mm			ea Valoria			
	37.5 mm	<u>.</u>		New Y			
	≥ 28.0 mm ≥ 3.50						W. The second second
	20.0 mm 🚕	400			100 100 (100 (100 (100 (100 (100 (100 (1	A.S. San	86. 3
	14.0 mm	2 ₁ 3 24 2		%·	# # 2 17.4 17.5		
APERTURE	10.0 mm	325 5			<u>.</u>		
IR	7.1 mm						
APE	5.0 mm	<u> </u>		£40	[97]	N.	,Sa
ш	2.0 mm		:	22/20/20/20			
	1.0 mm				GO ^N		N
SIEVE	0.600 mm	41					
	0.425 mm	200			ig L	2	
	0:300 mm			4 4 7			
	√0.150 mm					<u> </u>	
Ĉ	0.075 mm	. 3		G/			. Š
(20)		MAT	ERIAL CHARACT	ERISTICS			1

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5				37		
Apparent Density	SANS 3001 AG20/21	<u>2</u> 637	2558	2654			
Loose Bulk Density	TMH1 B9	?		10 mg/s	<u> </u>		
Compacted Bulk Density	TMH1 B9 🛒				·	2.4	
Ave Least Dimension (ALD)	SANS 3001 AG2			3 O	e.	\$#*	
Flakiness Index	SANS 3001 AG4	8.8		Capy.			
Sand Equivalent	SANS 3001 AG5				y (A)		N. S. C.

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10		ra ta		A.	
10 % FACT DRY (KN) SANS 3001 AG10	§*	, s	22°		
10 % FACT WET (KN) SANS 3001 AG10					
Wet Dry Relationship (%)	4.		2/		<u>)</u>

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlap.

Technical Signatory:

Atterbury

Page 7 of 9

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services PROJECT:

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

DATE TESTED:

6570

2019-07-10

DATE REPORTED:

2019-07-30

ATT: Mr I Paton TEST REPORT NO.: 95584

O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:	Egy ²	3824	3825	3826		7.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	
POSITION		W411B	W452A	W452B			, Na
DEPTH mm		450 - 1500	500 - 1300	350 - 500			
DESCRIPTION:		Gravelly	sty sdy	sty	12.7	. 5.	ed.
	3	sty s	Gravel	Gravelly			
24		i.		sand			

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

24 (2.2) 30.0 Hillst			*!	
37.5 mm	<u></u>	Sim ²		
28.0 mm 20.0 mm	The state of the s			
20.0 mm			April Lister	
	N. Committee of the com	10°	<u> </u>	
10.0 mm 7.1 mm 5.0 mm		ing states	(P	Section 1
7.1 mm				
5.0 mm			54	* * * * * * * * * * * * * * * * * * *
ய <u>2.0 mm</u>	<u>. 2</u>		200	
2.0 mm 1.0 mm 0.600 mm			(4 ³)	
0.600 mm				
0.425 mm	1			4
0.300 mm		_ (2)		
0.075 mm	Ž ^u		35	À
	MATERIAL CH	IARACTERISTICS		

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5				6,75	32/	
Apparent Density	SANS 3001 AG20/21	2492	2613	2752	<i>3</i> 37	(%	
Loose Bulk Density	TMH1 B9	*		्री (वे.			
Compacted Bulk Density	TMH1 B9 ूर्	-					
Ave Least Dimension (ALD)	SANS 3001 AG2			26		Δ»	
Flakiness Index	SANS 3001 AG4						8 G
Sand Equivalent	SANS 3001 AG5	The state of the s			, 6 ³⁷		K. 347

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10	7 - Tar.	 **************************************	(Zs.)		
10 % FACT DRY (KN) SANS 3001 AG10			Wa.	- Jan 1987	
10 % FACT WET (KN) SANS 3001 AG10		, in the second second			
Wet Dry Relationship (%)	8		/ ng/	<i>55</i> 5	X

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

Atterbury

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

CHOJE WIND FARM

P O Box 964

DATE RECEIVED:

2019-06-25

KNYSNA

DATE TESTED:

2019-07-10

6570

DATE REPORTED:

2019-07-30

ATT: Mr I Paton

TEST REPORT NO.:

95584

O/N:

AGGREGATE ANALYSIS TEST REPORT

SAMPLE NO:		3827	3828	, V.			
POSITION	J. S.E.	W417A	W417B	N. P.			il.
DEPTH mm 😪		1300 - 2800	800 - 2900	gradustania.			. A
DESCRIPTION:	9	cly	cly		198		
	i.	Gravelly	Gravelly	\$7'	No. 1 The second	N.	
		sdy st	sdy st		, Car		

SIEVE ANALYSIS % PASSING SIEVES: Method SANS 3001: AG1

,p	ំ50.0 mm		10 m		Ş*	
S. Edward	37.5 mm	¥.5	and the second			
	28.0 mm		9			
	20.0 mm		N.X	and ander	A.	
	14.0 mm 🔄		\$20 4			
Ä	10.0 mm	* di	, e , e 3a	1045		
APERTURE	.7.1 mm					
APE	5.0 mm			14	ਦ ਬ	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.
щ	2.0 mm		# W. W. W			
<u>Ü</u>	1.0 mm	7 day			·	33.
SIEVE	0.600 mm			. S		
	0.425 mm	\$ **	÷	i, * Sud	4	
	0.300 mm	() 2 () 2				
	0.150 mm					
Ć.	0.075 mm				·	

MATERIAL CHARACTERISTICS

Finess Modulus	SANS 3001 PR5				Gjetig ***	. 50	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Apparent Density	ANS 3001 AG20/21	2674	2684		3.4	Ţ.	
Loose Bulk Density	TMH1 B9			ye.			
Compacted Bulk Density	TMH1 B9 🛒		•				
Ave Least Dimension (ALD)	SANS 3001 AG2				,	Ş.	
Flakiness Index	SANS 3001 AG4	*5		Comment of the Commen			₹\$
Sand Equivalent	SANS 3001 AG5				20 M		

STRENGTH TESTS

A.C.V. (%) SANS 3001 AG10		V ² 41.7	
10 % FACT DRY (KN) SANS 3001 AG10			
10 % FACT WET (KN) SANS 3001 AG10			10 To
Wet Dry Relationship (%)	ž.		

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards, Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Technical Signatory:

Atterbury

Page 9 of 9

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-07-25

KNYSNA

DATE TESTED: 2019-08-13

6570

DATE REPORTED: 2019-08-15

ATT: Mr | Paton

REF NO.: 96046

ROCK UCS CORE STRENGTH TEST - ASTM D 2938

	, as		CORE	TEST DAT	A		
SAMPLE NO.:	POSITION	TOTAL LENGTH OF CORE SUBMITTED (mm)	LENGTH OF CORE AFTER TRIMMING (mm)	CORE DIAMETER (mm)	DENSITY (Kg/m³)	STRENGTH UCS (MPa)	COMMENTS
4362	W417 @ 5.30 - 5.45m	154			SAM	PLE BROKE	N BEFORE TEST - PLI DONE
4365	W417 @ 10.73 - 10.93m	210	123	63	2712	41.4	FAILURE TYPE - SHEARED
4370	W411 @ 4.93 - 5.05m	123	110	63	2514	14.1	FÄILURE TYPE - SHEARED
4371	W411 @ 7.80 - 7.93m	142	116	63	2666	43.0	FAILURE TYPE - SHEARED
4374	W452 @ 2.46 - 2.65m	192	128	61	2614	70.8	FAILURE TYPE - SHATTERED
4375	W452 @ 2.65 - 2.85m	210	126	61 🖫	2675	106.7	FAILURE TYPE - SHATTERED
4378	W521 @ 2.27 - 2.46m	203	122	62	2671	13.2	FAILURE TYPE - SHATTERED
4380	W521 @ 2.71 - 2.95m	220	126	63	2668	9.6	FAILURE TYPE - SHATTERED
4385	W564 @ 4.96 - 5.10m	150	129	61	2618	27.7	FAILURE TYPE - SHATTERED
4386	W564 @ 6.60 - 6.72m	120	় 110	63	2715	78.6	FAILURE TYPE - SHATTERED
4396	E6 @ 8.00 - 8.18m	138			SAM	PLE BROKE	N BEFORE TEST - PLI DONE
4397	E6 @ 8.34 - 8.46m	124		V.,/	SAM	PLE BROKE	N BEFORE TEST - PLI DONE
4401	E7 @ 2.78 - 3.12m	300	120	61	2124	9.2	FAILURE TYPE - SHATTERED
4402	© E7 @ 3.17 - 3.45m	298	124	63	2271	29.2	FAILÛRE TYPE - SHEARED
4404	E64 @ 1.60 - 1.87m	280	122	63	2645	63.8	FÄILURE TYPE - SHEARED
4405	E64 @ 2.31 - 2.58m	290	<u>)</u> 124	63	2677	50.0	FAILURE TYPE - SHATTERED
4412	E100 @ 10.32 - 10.42m	110		Y 78.00	≈s SAM	PLE BROKE	N BEFORE TEST - PLI DONE
4413	E100 @ 12.17 - 12.31m	120	SAMPL	E BROKEN	INTO SMAL	L PIECES B	EFORE TEST - NO TEST DONE
4359	W417 @ 5.16 - 5.30m	140		As:	SAM	PLE BROKE	N BEFORE TEST - PLI DONE
4360	W417 @ 6.64 - 6.76m	150	105	63	1995	2.9	FAILURE TYPE - SHATTERED
4361	W417 @ 7.43 - 7.57m	130	104	63	2344	2.9	FAILURE TYPE - SHATTERED
O.Y			5. 2°%.			- 4	V

NOTE 1: S/NO.: 4359, 4360, 4361 - CORES TOO HARD FOR TRIAXIAL (CD) - UCS DONE INSTEAD NOTE 2: S/NO.: 4362, 4396, 4397, 4412, 4359 - CORES BROKEN BEFORE TEST - PLI DONE INSTEAD

The above test results are pertinent to the samples received and tested only.

While the tests are carried out according to recognized standards Control ab shall not be liable for errondous testing or reporting thereof.

This report may not be reproduced except in full without prior consent of Control.ab.

Remarks:

Page 1 of 2

Technical Signatory:

J Atterbury TR005

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426
CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax 043 743 9942, P O Box 346, East London, 5200
OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Outeniqua Geotechnical Services

PROJECT: CHOJE WIND FARM

P O Box 964

DATE RECEIVED: 2019-07-25

KNYSNA

DATE TESTED: 2019-08-13

6570

DATE REPORTED: 2019-08-15

ATT: Mr I Paton

REF NO.: 96046

DE	TERN	IINA	TION	OF P	OINT L	OAD I	NDICES	- ISRM:	RTH	325-89
SAMPLE NO.	TEST	DEPTH FROM (m)	DEPTH TO (m)	TEST TYPE	HEIGHT D (mm)	WIDTH W (mm)	Min Xsect Area A = W*D	EQUIV CORE DIA De= D²	POINT LOAD P (kN)	P LOAD STRENGTH
	á.s.	Ç.	-			1	7 - 13 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ja ^{all}		
4363	W417	5.69	5.79		61	160	9760	3721	1	0.27
4364	W417	9.67	9.76	* *	63	106	6678	3969	0	₁₉₆₀ 0.00
4366	W417	11.30	11.40		63	111	6993	3969	6	1.51
4367	W411	1.79	1.89		63	100	6300	3969	0	0.00
4368	W411	4.65	4.83		. 63	204	12852	3969	12	3.02
4369	W411	4.83	4.88	ν.	63	80	5040	3969	10	2.52
4372	W452	2.00	2.08		61	79	4819	3721	1	0.27
4373	W452	2.08	2.23	Z -	61	196	² 11956	3721	34	9.14
4376	W452	3.92	4.02	**.	61	168	10248	s 3721	17	్ర 4.57
4377	W521	2.00	2.15		63	175	· 11025	3969	1, *	0.25
4379	W521	2.54	2.64		63	100	6300	3969	5	1.26
4381	W521	2.95	3.11		<u>63</u>	182	11466	3969	. o	0.00 ا
4382	W564	2.12	2.24	N.	63	111	6993	3969	3	0.76
4383	W564	2.97	3.07		63	115	7245	3969	0	0.00
4384	W564	3.07	3.17		63	122	7686	3969	12	3.02
4389A	∞ E6	6.57	6.66	Diam	63	75	4725	/ 3969	0	<i>-</i> 0.00
4389B	E6	6.57	6.66		63	68	4284	3969	0 <	0.00
4391	E6	7.13	7.22		63	88	5544	3969	0	0.00
4398	E7	1.50	1.61		, 59	147	8673	3481	0	0.00್ಲಿ
4399	E7 _	1.61	1.69	4	61	70	4270	3721	0	0.00
4400	E7	2.62	2.70		59	115	6785	3481	1	0.29
4403	E64	0.87	1.06	T.	61	130	7930	ુ 3721	16	4.30
4406	₹ E64	2.62	2.68	ĺ	63	57	3591	3969	2	0.50
4407	E64	3.59	3.70	1	63	119	7497	3969	13	3.28
4409	E100	1,71	1.79		61	59	3599	3721	0	0.00
4410	E100	2.00	2.07	ļ .	61	72	4392	3721	0	0.00
4359	W417	5.16	5.30		63	70	4410	3969	0	0.00
4362	W417	5.30	5.45		63	94	5922	3969	0	<i>-</i> 0.00
4396	E6	8.00	8.18 _{\(\)}		63	34	2142	3969	0	0.00
ا 4397	E6	8.34	8.46	1	63	41	2583	3969	0 🔩	0.00
4412	E100	·	10.42	1	61	101	6161	3721	0	2.00

The above test results are pertinent to the samples received and tested only.

While the tests are carried out according to recognized standards Control ab shall not be liable for erroneous testing or reporting thereof.

This report may not be reproduced except in full without prior consent of ControLab.

Technical Signatory:

J Atterbury TR0050

ABOUT DNV GL

Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas and energy industries. We also provide certification services to customers across a wide range of industries. Combining leading technical and operational expertise, risk methodology and in-depth industry knowledge, we empower our customers' decisions and actions with trust and confidence. We continuously invest in research and collaborative innovation to provide customers and society with operational and technological foresight. Operating in more than 100 countries, our professionals are dedicated to helping customers make the world safer, smarter and greener.