

TRAFFIC IMPACT STUDY

THE PROPOSED TOWNSHIP TO BE SITUATED ON PORTION 3 OF THE FARM DOORNPAN NUMBER 193IP IN JB MARKS LOCAL MUNICIPALITY

CLIENT:

NKANIVO DEVELOPMENT CONSULTANTS UNIT 79, BLOCK 5, LOMBADY BUSINESS PARK 66 GRAHAM ROAD, PRETORIA 0084

PREPARED BY:

ABIDIA CIVIL/STRUCTURAL ENGINEERS CEDARWOOD CRESCENT WEST ACRES NELSPRUIT e: abramuko@gmail.com c: 083 470 2027

Rev 01

19th November 2021

DOCUMENT CONTROL SHEET

THE PROPOSED TOWNSHIP TO BE SITUATED ON PORTION 3 OF THE FARM Project Title DOORNPAN NUMBER 193IP IN JB MARKS LOCAL MUNICIPALITY Report Title TRAFFIC STUDY REPORT Reference Date 19th November 2021

RECORD OF REVISIONS AND AMENDMENTS

Date	Section	Title	Revision No.

QUALITY CONTROL

Prepared By	Designation	Signature	Date
Mfundo Mkhize	Traffic Engineer		2021-11-19
Checked By	Designation	Signature	Date
Abraham Mukokanduku	Traffic Engineer	HA-L-	2021-11-19
Issued By	Designation	Signature	Date
Abraham Mukokanduku	Traffic Engineer	HA-JI-	2021-11-19

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

TABLE OF CONTENTS

DECLA	RATION	6
1. IN	NTRODUCTION	7
1.1.	Background	7
1.2.	Objectives of the Traffic Impact Assessment	7
1.3.	Report Structure	7
1.4.	Methodology	8
1.5.	Development Controls and Property Particulars	8
1.6.	Site Visit	9
1.6.	1. Intersection A – Lephurrwane Street & Manaka Street	10
1.6.	2. Intersection B – Dock Street & Manaka Street	10
1.6.	3. Intersection C – Dock Street & Dingaka Street	11
1.7.	Study Area	12
2. F	XISTING TRAFFIC AND OPERATION SCENARIO	. 14
3. T	RAFFIC DEMAND	14
3.1.	Existing Traffic Condition	14
3.2.	Existing Road Condition	17
3.3.	Planned Future Roads	18
3.3.	1. Provincial and National Roads	18
3.3.	2. Municipal Roads	18
3.3.	3. Non–Motorised Transport, Disabled and Vulnerable Road Users	19
3.4.	Trip Generation	19
3.4.	1. South African Trip Data Manual	19
3.5.	Traffic Analysis Criteria	22
3.5.	1. Peak Hours	22
3.5.	2. Peak Hour Factor	22
3.5.	3. Scenarios	22
3.5.	4. Assumptions	23
3.6.	Existing Traffic Counts	24

4.	FU	TURE OPERATING CONDITIONS OF INTERSECTION	28
4.1	. т	Fraffic Growth	
5.	ΡU	BLIC TRANSPORT AND PARKING	32
5.1	. 2	2020 Estimated Background Traffic	
5.2	. н	lorizon Year	
5.3	. L	atent Rights	
5.4	. P	Public Transport Drop Off Zones	
5.5	. R	Road Reserve	
5.6	. R	Road Classification	33
5.7	. A	Access Throat Length	33
5.8	. P	Proposed Road Improvements	
6.	TR	AFFIC ASSESSMENT	34
6.1	. т	Fraffic Operations	34
6.2	. A	Access	35
6	.2.1.	Sight Distances and Visibility	35
7.	со	NCLUSIONS AND RECOMMENDATIONS	35
7.1	. R	Recommendations	35
7	.1.1.	Development Particulars	
7	.1.2.	Capacity Analysis	
7	.1.3.	Road Reserve	
7	.1.4.	Site Specific Recommendations	
ANN	EXU	IRE A – ON SITE PHOTOS	
ANN	EXU	IRE B – MANUAL COUNTS	40
ANN	ΕΧIJ	IRE C – SIDRA ANALYSIS	

List of Tables

TABLE 1: DOORNPAN – MIXED USE DEVELOPMENT	9
TABLE 2 – TRIP GENERATION ADJUSTMENT FACTORS FOR A LOW VEHICLE DEVELOPMENT	20
TABLE 3 – TRIP GENERATION ADJUSTMENT FACTORS FOR A MIXED USE DEVELOPMENT	21
TABLE 4: INTERSECTION A MOVEMENT SUMMARY FOR EXISTING TRAFFIC CONDITIONS PM PEAK.	25
TABLE 5: INTERSECTION B MOVEMENT SUMMARY FOR EXISTING TRAFFIC CONDITIONS PM PEAK.	26
TABLE 6: INTERSECTION B MOVEMENT SUMMARY FOR EXISTING TRAFFIC CONDITIONS PM PEAK.	26
TABLE 7: PERFORMANCE MEASURES FOR SIGNALISED INTERSECTIONS.	28
TABLE 8: TYPICAL TRAFFIC GROWTH RATES	29
TABLE 9: 2041 TRAFFIC ANALYSIS (INTERSECTION A).	30

List of Figures

FIGURE 1: PROPOSED TOWNSHIP LAYOUT - DOORNPAN	9
FIGURE 2: GEOMETRIC CONFIGURATION OF INTERSECTION A	10
FIGURE 3: GEOMETRIC CONFIGURATION OF INTERSECTION B	11
FIGURE 4: GEOMETRIC CONFIGURATION OF INTERSECTION C	12
FIGURE 5: INTERSECTION OVERVIEW AND LAYOUT	12
FIGURE 6– LOCALITY PLAN	13
FIGURE 7.1–INTERSECTION A EXISTING LOS MAP	14
FIGURE 8.2– INTERSECTION A EXISTING VEH/HR	15
FIGURE 9.3 – INTERSECTION B EXISTING VEH/HR	16
FIGURE 10.4 - INTERSECTION C EXISTING VEH/HR	16
FIGURE 11–INTERSECTION A – ROAD CONDITION	17
FIGURE 12– INTERSECTION B – ROAD CONDITION	17
FIGURE 13 – INTERSECTION C – ROAD CONDITION	18
FIGURE 14.1 – ASSUMED FUTURE MUNICIPAL ROAD	19
FIGURE 15- LEPHURRWANE RD & MANAKA STREET- EXISTING INTERSECTION A LAYOUT	23
FIGURE 16- DOCK STREET AND MANAKA STREET EXISTING INTERSECTION B LAYOUT	24
FIGURE 17– DOCK STREET AND DINGAKA STREET - INTERSECTION C EXISTING LAYOUT	24
FIGURE 18– SOCIAL ECONOMIC DEMOGRAPHICS SDF 2018/2019	29
FIGURE 19 – PROPOSED NODE DEVELOPMENTS (SOURCE: IDP REVIEW 2014/15)	30
FIGURE 20: ROADS INFRASTRUCTURE AROUND THE DEVELOPMENT	32
FIGURE 21: PROPOSED MAIN ACCESSES (INTERSECTION A AND B)	34
FIGURE 21: CAPACITY ANALYSIS (INTERSECTION A)	36

DECLARATION

I certify that this TRAFFIC IMPACT STUDY – **PORTION 3 OF THE FARM DOORNPAN NUMBER 193IP IN JB MARKS LOCAL MUNICIPALITY** was prepared by me according to the requirements of the South African Traffic and Site Traffic Assessment Manual and I have experience and training in the field of traffic and transportation engineering.

Signed..

Date: 19 November 2021

Name	:	Abrahar	n Mukokand	uku (PrEngT	ech; P	rCPM)
Qualification	:	B.Sc. He	ons Civil Eng	gineering		
ECSA Registration #	:	2015701	99			
Company	:	Abidia	Structural	Engineers	and	Project
Managers						
Cell	:	+27 83 4	70 2027			

1. INTRODUCTION

1.1. Background

Abidia Structural Engineers and Project Managers was appointed by Nkanivo Development Consultants in April 2021 to conduct a traffic impact assessment for Township Establishment of Doornpan in JB Marks Local Municipality, within the Dr Kenneth Kaunda District Municipality in the North West Province.

There is a green field on the proposed property and 842 stands have been proposed by the Town Planners for the development – in which 821 stands are residential.

Abidia Structural Engineers and Project Managers conducted traffic assessment at three traffic intersections as follows:

- Intersection A Lephurrwane Street & Manaka Street (26°18'53.21"S, 26°48'2.50"E),
- Intersection B Dock Street & Manaka Street (26°18'22.43"S, 26°48'5.36"E), and
- Intersection C Dock Street & Dingaka Street (26°18'36.56"S, 26°48'33.83"E), for a two-day manual count (Friday 14th and Saturday 15th May 2021).

1.2. Objectives of the Traffic Impact Assessment

The objectives of the Assessment report are as follows:

- To determine the impact that the additional traffic generated by the proposed development will have on the existing and future road network (if applicable);
- To propose measures (if applicable) that could be put in place to accommodate the impact that the proposed development will have on the existing traffic and road conditions;
- To determine suitable access regimes for the proposed development; and
- To provide sufficient information for the approval of the proposed development.

1.3. Report Structure

The remainder of the report is structured as follows:

- The development details, study area and comments on the site visit are provided in **Chapter 2**;
- Matters pertaining to the existing roadway elements, Public transport and pedestrian matters are discussed in **Chapter 3**;

- The existing traffic conditions and proposed development's traffic are described in Chapter 4;
- The capacity analysis of the existing traffic and the impact of the proposed development traffic are detailed in **Chapter 5**;
- The proposed town layout is assessed in terms of access spacing, accommodation of public transport and pedestrians in **Chapter 6**; and
- The TIS conclusions and recommendations are summarised in Chapter 7.

1.4. Methodology

The guidelines as outlined in the TMH 16 Vol 1 – South African traffic Impact and Site Assessment Manual were followed. Guidelines as set by the JB Marks Local Municipality were not available during this study.

In detail, the methodology followed is outlined below:

- From the two-day manual traffic count conducted at Intersection A, Intersection B and Intersection C on a Friday and Saturday current traffic flow patterns were obtained, affected accesses were noted;
- Based on TMH 17 Vol. 1 South African Trip Data Manual, trips that will be generated by the development using applicable trip generation rates as specified in the said manual were noted;
- Taking cognisance of the proposed traffic volumes existing routes were assessed against negative impacts in terms of traffic flow;
- Traffic operation, intersection safety and the existing road condition were assessed; and
- Considering the major findings of this study conclusions and recommendations were made.

1.5. Development Controls and Property Particulars

The development is a greenfield development with informal settlements within the site. The details of the rights applied for and respective trip generation rates are shown in Table 1 below. The developments comprise of the development of Doornpan in JB Marks Local Municipality. The town layout is shown in **Figure 1** below.

| E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Table 1: Do	ornpan – I	VIIXed Us	Development										
Portion	Land	Erven/	Adjustment	Factors	Applied	ł	Land	Trip Ra	ate	Direct	ional Sp	lit (%)	
	Use	Units	Mixed Use	Very	Low	Car	Use	Peak h	our	AM Pe	eak	PM Pe	eak
			Developm	Owne	ership		Code	AM	PM	In	Out	In	Out
			ent										
3 of Farm	Resident	821	Y	YES	(70%	Trip	210	1.0	1.0	0.25	0.75	0.70	0.30
Doornpan	ial 1 (low			Adjus	tment								
193	income)			factor	.)								

Figure 1: Proposed Township Layout - Doornpan

1.6. Site Visit

A site visit was conducted to attain a sense of the area in terms of traffic engineering aspects. The objectives of the site visit were:

- To observe the existing traffic operations and pedestrian movement; and
- To reaffirm the geometric layout of the intersections in the study area.

The site visit was under taken on 14th and 15th May 2021 in clear weather conditions. The observations made during the site visit are summarised in the subsequent sections per intersection in the study area.

1.6.1. Intersection A – Lephurrwane Street & Manaka Street

The observations made relating to the area in the direct vicinity of the intersection include:

- Manaka Street falls under jurisdiction of JB Marks Local Municipality and intersection A remains under the jurisdiction of the JB Marks Local Municipality,
- The locality of the intersection and the surroundings are presented in Figure 2,
- The intersection is four way stop sign controlled,
- Deceleration lanes are not provided to accommodate left turning traffic from the Manaka Street,
- Dedicated pedestrian crossing is not provided at the intersection,

Figure 2: Geometric Configuration of Intersection A

1.6.2. Intersection B – Dock Street & Manaka Street

The observations made relating to the area in the direct vicinity of the intersection include:

- Manaka Street falls under jurisdiction of JB Marks Local Municipality and intersection A remains under the jurisdiction of the JB Marks Local Municipality,
- The locality of the intersection and the surroundings are presented in Figure 3,
- The intersection is a three way stop sign controlled,

- Deceleration lanes are not provided to accommodate left turning traffic into the intersection,
- No dedicated pedestrian crossing is provided at the intersection,

Figure 3: Geometric Configuration of Intersection B

1.6.3. Intersection C – Dock Street & Dingaka Street

The observations made relating to the area in the direct vicinity of the intersection include:

- Manaka Street falls under jurisdiction of JB Marks Local Municipality and intersection A remains under the jurisdiction of the JB Marks Local Municipality,
- The locality of the intersection and the surroundings are presented in Figure 4,
- The intersection is three way stop sign controlled,
- Deceleration lanes are not provided to accommodate left turning traffic into the intersection,
- No dedicated pedestrian crossing is provided at the intersection,

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201| | Cell: +27 (0)83 470 2027 |

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Figure 4: Geometric Configuration of Intersection C

1.7. Study Area

No informal settlement on the proposed site was identified during the site visit.

Figure 5: Intersection Overview and Layout

The proposed Doornpan project will be located on a property that is 88.46ha, which is zoned as follows:

- 4 819 No. Residential 1;
- 4 2 No. Residential 3
- 4 6 No. Business 1;

- 4 1 No. Institutional School;
- 4 No. Institutional Crèche;
- 4 No. Institutional Public Worship;
- 4 1 No. Recreational;
- 4 1 No. Government;
- 4 2 No. Municipal Purposes; and
- 4 2 No. Public Open Space.

Doornpan is predominantly a residential area, with most of commercial activities taking place within Tshing Town. Doornpan will be accessed from **intersection A** being the road serving the proposed Settlement, with **Intersection B**, to be upgraded as an alternative main access. The Proposed development is currently accessible via Manaka Street at intersection A.

Figure 6– Locality Plan

Investigations conducted were mainly on Manaka Street (Intersection A) and Dock Street (Intersection B) which are the main access roads serving proposed Doornpan development and the greater part of Tshing Community.

In general, the area is currently being utilised for both residential and commercial purposes.

2. EXISTING TRAFFIC AND OPERATION SCENARIO

Traffic counts over the two-day period were conducted along the intersections A, B & C on the 14th & 15th May 2021. The manual counts are attached on Annexure B and Sidra Analysis conducted attached as Annexure C. The traffic count was conducted for one weekday (Friday) and one weekend (Saturday).

Also noticed is the lack of a designated taxi rank, lack of drop-off zones esp. near schools, creches and communal amenities.

Also, to note is the absence of covered public transport facilities along all the roads within Doornpan, and we do recommend that Doornpan covered public transport facilities together with drop off zones as articulated in the planning development layout. **Figures 2 to 6** above illustrate the layout of the intersections together with associated facilities.

3. TRAFFIC DEMAND

3.1. Existing Traffic Condition

The effects of COVID 19 affect the existing traffic condition and we have applied a factor of 1.2 to take care of the lockdown effects. A factor of 1.2 has been adopted since the Doornpan community were on a relaxed mode of lockdown, there was minimum compliance to lockdown effects.

Figure 7.1– Intersection A Existing LOS Map

| Website: www.abidia.com |

There is a total of **42 veh/hr**. traversing on Manaka Street from Doornpan side and 28veh/hr with an average traffic flow of **70veh/hr**. on Lephurrwane Street, on intersection **A**. An average growth rate of 3,5% per annum for urban area is utilised in the general traffic analysis.

95% Back of Vehicles veh 0.1 0.1 0.1 0.1 0.1 0.1	Queue Distance m 0.6 0.6 0.6 0.6	Prop. Queued 0.88 0.88 0.88 0.88	Effective Stop Rate per veh 1.14 1.14 1.14 1.14	Avera Spee kn 39 39 39
0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.6 0.6 0.6	0.88 0.88 0.88 0.88	1.14 1.14 1.14 1.14 1.14	39 39 39
0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.6 0.6	0.88 0.88 0.88 0.88	1.14 1.14 1.14 1.14	39 39 39
0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.6 0.8	0.88 0.88 0.88	1.14 <u>1.14</u> 1.14	39
0.1 0.1 0.1 0.1	0.6 0.6 0.8	0.88 0.88	1.14 1.14	3
0.1 0.1 0.1	0.6	0.88	1.14	2
0.1 0.1	0.8			3
0.1 0.1	0.8			
0.1		0.75	1.14	4
	0.8	0.75	1.14	4
0.1	0.8	0.75	1.15	4
0.1	0.8	0.75	1.14	4
0.2	1.1	0.86	1.14	4
0.2	1.1	0.86	1.14	4
0.2	1.1	0.86	1.15	4
0.2	1.1	0.86	1.14	4
0.1	0.8	0.76	1.14	4
0.1	0.8	0.76	1.14	4
0.1	0.8	0.76	1.15	4
0.1	0.8	0.76	1.14	4
0.2	1.1	0.80	1.14	4
	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 movements: De	0.2 1.1 0.2 1.1 0.2 1.1 0.2 1.1 0.2 1.1 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 10.8 0.1 0.8 0.1 0.8 0.1 0.8	0.2 1.1 0.86 0.2 1.1 0.86 0.2 1.1 0.86 0.2 1.1 0.86 0.2 1.1 0.86 0.2 1.1 0.86 0.1 0.8 0.76 0.1 0.8 0.76	0.2 1.1 0.86 1.14 0.2 1.1 0.86 1.14 0.2 1.1 0.86 1.15 0.2 1.1 0.86 1.15 0.2 1.1 0.86 1.14 0.2 1.1 0.86 1.14 0.1 0.8 0.76 1.14 0.1 0.8 0.76 1.14 0.1 0.8 0.76 1.14 0.1 0.8 0.76 1.14 0.1 0.8 0.76 1.14 0.2 1.1 0.80 1.14 0.2 1.1 0.80 1.14 0.2 1.1 0.80 1.14 0.2 1.1 0.80 1.14 overenents. LOS Method: Delay (HCM). belay (HCM).

At intersection B, there is a total of **146 veh/hr**. traversing on Dock Street from Doornpan side and 22 veh/hr on Dingaka Street, towards the proposed development.

Site: INTERSECTION B AM PEAK

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

MOVEMENT SUMMARY

INTERSECTION B

Stop (Two-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Mov ID		Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/
South: D	INGAKA	STREET								·	
1	L	1	0.0	0.025	10.9	LOS B	0.1	0.8	0.13	0.86	46.
3	R	20	0.0	0.025	10.7	LOS B	0.1	0.8	0.13	0.91	46.
Approac	h	22	0.0	0.025	10.7	LOS B	0.1	0.8	0.13	0.91	46
East: DC	OCK STR	RE									
4	L	23	0.0	0.019	8.2	LOS A	0.0	0.0	0.00	0.77	49.
5	Т	13	0.0	0.019	0.0	LOS A	0.0	0.0	0.00	0.00	60.
Approac	h	36	0.0	0.019	5.2	LOS A	0.0	0.0	0.00	0.49	52.
West: DO	OCK STR	R W									
11	Т	9	0.0	0.006	0.1	LOS A	0.0	0.2	0.12	0.00	57.
12	R	1	0.0	0.006	8.6	LOS A	0.0	0.2	0.12	0.98	48.
Approac	h	10	0.0	0.006	1.3	LOS A	0.0	0.2	0.12	0.14	56.
All Vehic	les	68	0.0	0.025	6.4	NA	0.1	0.8	0.06	0.57	50

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:45:39	Copyright © 2000-2010 Akcelik & Associates Pty Ltd	
SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOO	www.sidrasolutions.com RPAN INTERSECTION.sip	INTERSECTION

Figure 9.3 – Intersection B Existing Veh/hr

At intersection C, there is a total of **10 veh/hr**. traversing on Dock Street from Doornpan side and 5 veh/hr, Manaka Street towards the proposed development.

Movem	ent Perf	ormance - V	/ehicles								
	Turn	Demand	нν	Deg.	Average	Level of	95% Back c	f Queue	Prop.	Effective	Avera
10100 12		riow veh/h	%	Sauri	Delay	Service	venicies	Distance	Queuea	Siop Rale	Spee
South: M	IANAKA S	STREET	70	110	300		Ven			per ven	IXI1
1	L	2	0.0	0.004	10.7	LOS B	0.0	0.1	0.03	0.95	46
3	R	2	0.0	0.004	10.5	LOS B	0.0	0.1	0.03	1.00	46
Approach	h	4	0.0	0.004	10.6	LOS B	0.0	0.1	0.03	0.97	46
East: DC	CK STR	E									
4	L	3	0.0	0.002	8.2	LOS A	0.0	0.0	0.00	0.74	49
5	Т	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.00	0.00	60
Approach	h	4	0.0	0.002	6.1	LOS A	0.0	0.0	0.00	0.55	51
West: DC	OCK STR	W									
11	Т	2	0.0	0.004	0.0	LOS A	0.0	0.2	0.03	0.00	59
12	R	4	0.0	0.004	8.5	LOS A	0.0	0.2	0.03	0.79	48
Approach	h	6	0.0	0.004	5.6	LOS A	0.0	0.2	0.03	0.52	51
All Vehic	les	15	0.0	0.004	7.2	NA	0.0	0.2	0.02	0.66	50

Figure 10.4 - Intersection C Existing Veh/hr

3.2. Existing Road Condition

Intersection A is in a fair to poor condition, however though paved there are no road markings with a lot of gravel silting taking place, at all the intersections that were investigated.

Figure 11– Intersection A – Road Condition

In terms of cracking, Manaka Street is a paved road and can be classified, as low that is >0<4%. However, the gravel silting reduces the visual condition index to below 25%, and this VCI can be applied for all intersections as depicted in the images below.

The Visual Condition Index categorises the extent of pavement distress with low % indicating high and visible distress and 100% indicating no signs of visual distress and hence road pavement in fair to good condition with VCI>75%.

No AADT information obtained from a Permanent counting station within Doornpan, hence only the manual counts attached herein under Annexure B.

Figure 12– Intersection B – Road Condition Intersection B is also paved but due to gravel silting taking place it can equally be classified as gravel intersection, and by extension with no stop signs.

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201| | Cell: +27 (0)83 470 2027 |

| E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Figure 13 – Intersection C – Road Condition

Intersection C is also in a poor to fair condition, with very poor road marking and without stop signs.

3.3. Planned Future Roads

3.3.1. Provincial and National Roads

During the development of the Traffic Impact Study, Dr Kenneth Kaunda District Municipality couldn't give information on the infrastructure projects for the District Municipality.

3.3.2. Municipal Roads

Planned new roads in the area will influence the distribution of the trips of the proposed developments and access points to the exiting road network. The development of a road master plan for JB Marks Local Municipality is still at inception stage, and the official only stated that a municipal road is earmarked for future development from N4 to R33. With the above said, though it will not interfere with the proposed boundary development footprint, the analysis was also supposed to cater for the traffic flow generated by such development. However, it is our utmost belief that a considerable analysis will be conducted at that stage.

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201|

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Figure 14.1 – Assumed Future Municipal Road The red line in Figure 10.1 indicates our assumed proposed future municipal connector road, which has a potential to reduce traffic load within the Tshing/Ventersdorp Town.

3.3.3. Non–Motorised Transport, Disabled and Vulnerable Road Users

Pedestrian movement was observed along the three intersection (intersections A, B and C). It is highly recommended that raised zebra crossing be adopted as traffic calming measures at all junctions.

3.4. Trip Generation

The method used to determine trip generation rates are discussed below.

3.4.1. South African Trip Data Manual

Trip generation rates as specified in the TMH17 South African Trip data Manual, the applicable rates for a residential development are shown in the table 2 below.

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Table 2 – Trip generation Adjustment factors for a Low Vehicle development

			Percer Mixed-use	ntage reduction for Low vehicle	or development Very Low	ts in areas with Transit nodes
	Land Use	Size Units	Development	Ownership	Ownership	or Corridors
100	Industrial					
110	Service Industry	100 sqm GLA	5%	20%	30%	15%
120	Heavy industry/manufacturing	100 sqm GLA	5%	20%	30%	15%
121	Mining	1 Employees	5%	20%	30%	15%
130	Industrial Area (Park)	100 sqm GLA	5%	20%	30%	15%
140	Manufacturing	100 sqm GLA	5%	20%	30%	15%
150	Warehousing and Distribution	100 sqm GLA	5%	20%	30%	15%
151	Mini-Warehousing	100 sqm GLA	5%	20%	30%	15%
200	Residential					
210	Single Dwelling Units	1 D/Unit	10%	40%	70%	15%
220	Apartments and Flats	1 D/Unit	15%	30%	50%	15%
225	Student Apartments and Flats	1 D/Unit	25%	50%	80%	15%
231	Townhouses (Simplexes and Duplexes)	1 D/Unit	15%	30%	50%	15%
232	Multi-Level Townhouses	1 D/Unit	15%	30%	50%	15%
251	Retirement Village	1 D/Unit	5%	50%	80%	15%
254	Old-Age Home	1 D/Unit	5%	50%	80%	15%
260	Recreational Homes	1 D/Unit	10%	20%	30%	15%
300	Lodaina					
310	Hotel, Residential	1 Room	20%	20%	30%	15%
330	Hotel Resort	1 Room	20%	20%	30%	15%
350	Guest House	1 Room	20%	30%	50%	15%
400	Recreational and Sport					
430	Golf Course	1 Course	5%	0%	0%	0%
473	Casino	100 som GLA	5%	20%	30%	15%
480	Amusement Park	1 ha	5%	30%	50%	15%
488	Sport Stadium	1000 Seat	5%	30%	50%	15%
492	Health and Fitness Centre	100 sqm GLA	15%	20%	30%	15%
500	Institutional					
520	Public Primary School	1 Student	30%	50%	80%	15%
530	Public Secondary School	1 Student	30%	50%	80%	15%
536	Private School	1 Student	30%	50%	80%	15%
550	University / College	1 Student	20%	40%	60%	15%
560	Places of Public Worship (Weekend)	1 Seat	10%	50%	80%	15%
561	Places of Public Worship (Weekday)	1 Seat	10%	50%	80%	15%
565	Pre-School (Day Care Centre)	1 Student	5%	50%	80%	15%
566	Cemetery	1 Ha	0%	30%	50%	15%
600	Medical					
611	Public Hospital	1 Bed	0%	50%	80%	15%
612	Private Hospital	100 sqm GLA	0%	20%	30%	15%
620	Nursing Home	1 Bed	0%	50%	80%	15%
630	Medical Clinic	100 sqm GLA	0%	50%	80%	15%
700	Office					
710	Offices	100 sqm GLA	20%	20%	30%	15%
713	Home offices and undertakings	1 House	10%	20%	30%	15%
720	Medical consulting rooms	100 sqm GLA	10%	30%	50%	15%
770	Business Centre (Park)	100 sqm GLA	15%	20%	30%	15%
780	Conference Centre	1 Seat	10%	20%	30%	10%

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit

1201| | Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Table 3 – Trip generation Adjustment factors for a Mixed Use development

Land Use (Assume Residetial 2 has 64 Flat Units)		Size Units	Peak	Hour	Generat	ed Trips	Trip Gen Adj. Factor (Very Low Vehicle Ownership)	Adjusted C Tri	Generated ps	AM Pe	ak Split	PM Pe	ak Split	AM	Peak	PM F	Peak
			Trip Rate - AM	Trip Rate - PM	AM Trips	PM Trips	%	AM Trips	PM Trips	In	Out	In	Out	In	Out	In	Out
210 Single Dwelling Units	883	1D/unit	1,0	1	883	883	70%	265	265	25%	75%	70%	30%	66	199	185	79
770 Business	23300	100 sqm GLA	0,6	0,6	140	140	30%	98	98	85%	15%	20%	80%	83	15	20	78
520 & 530 Primary & secondary School	1000	1 Student	0,85	0,3	850	300	80%	170	60	50%	50%	50%	50%	85	85	30	30
820 Municpal	7600	100 sqm GLA	1,5	1,5	114	114	60%	45,6	45,6	85%	15%	20%	80%	38,8	6,8	9,1	36,5
565 Creche (36 students)	288	1 Student	1	0,8	288	230	80%	58	46	50%	50%	50%	50%	29	29	23	23
561 Church (100 seats per church)	400	1 Seat	0,05	0,05	20	20	60%	8	8	50%	50%	50%	50%	4	4	4	4
720 Medical Consulting Rooms	4200	100 sqm GLA	8	8	336	336	50%	168,0	168,0	55%	45%	45%	55%	92,4	75,6	75,6	92,4
Total								812	690					398	414	347	344

Generated trips are hereby listed in the table above, with generated AM trips being used for analysis.

3.5. Traffic Analysis Criteria

Quantification of the traffic operational conditions has been undertaken using appropriate technology with the results of the analysis for the design peak periods under existing conditions being tabulated below showing the traffic volumes used in the analysis. The criteria for assessment are principally delay and volume to capacity ratio (V/C Ratio). A V/C ratio of say 0.5 would represent 50% spare capacity and a ratio of 1.0 would represent conditions where the road or movement is operating at its maximum capacity (i.e. actual volume equals capacity), hence suggesting an intersection upgrade.

The concept of *levels of service* uses qualitative measures that characterize operational conditions within a traffic stream and their perception by motorists and passengers

Delay is in turn expressed in terms of Level of Service (LOS). Level of service (LOS) is a commonly used traffic engineering criteria for assessing the quality of the traffic conditions on a road and can be applicable to two-way flow or specific single directional movements. Level of Service is a qualitative measure describing operational conditions with a traffic stream and their perception/tolerance by the driver and is stated in terms of a scale from A through F, with A displaying the highest quality and F the lowest, a point at which excessive delays occur. The LOS is dependent on certain average delay thresholds when applied to intersections.

3.5.1. Peak Hours

Peak Hours were noted to coincide with morning and afternoon peak periods as below:

- ✤ Morning Peak hour: 08:00 09:00hrs and
- Afternoon Peak hours: 16:00 17:30hrs, these peak periods will inevitably change during weekends especially from 10:30hrs until 16:00hrs.

3.5.2. Peak Hour Factor

A peak hour factor of 0.95 is utilised for analysis.

3.5.3. Scenarios

The following years are noted for this study:

- Scenario 0: 2021 which is base year of assessment
- Scenario 1: Five year after assessment year 2026 of which it is assumed that the development would reach 100% completion with full access to public roads.

- Scenario 2: Ten years after assessment. Year 2031 of which it is assumed that the development would be 5 years.
- Scenario 3: 20 years after assessment. Year 2041 of which it is assumed that the development would 15 years. Recommended geometric upgrades are based on scenario 3, and development traffic has been conducted to highlight the implications of the townships established.

3.5.4. Assumptions

Growth rate in background traffic = 3.0% for a low growth rural town

Table 4 – Typical Growth Rates (Table 1.1 TMH17)

Development Area	Growth rate
Low growth areas	0 - 3%
Average growth areas	3 - 4%
Above average growth areas	4 - 6%
Fast growing areas	6 - 8%
Exceptionally high growth areas	> 8%

Source: City Council of Pretoria (1998)

Traffic volume expansion factor = 1.2 (studies conducted under abnormal conditionslockdown, factored in Sidra Analysis)

Trip distribution – surrogate method

A ten-year limit is intended for medium term planning, long term planning i.e. 20 years was also analysed.

Figure 15– Lephurrwane Rd & Manaka Street- Existing intersection A Layout

| E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Figure 16– Dock Street and Manaka Street Existing intersection B Layout

Figure 17– Dock Street and Dingaka Street - intersection C Existing Layout

It must be noted, specifically for the development, that Intersection A, must be prioritised as the main access and to be upgraded accordingly as a fourway stop controlled with slip lanes as detailed below. However, to further avoid traffic volumes with Manaka Street we further propose that the gravel part of Dock Street towards the development be upgraded to a surfaced road with an improved 3 way stop controlled with slip lanes intersection.

3.6. Existing Traffic Counts

The intersections were analysed in their current situation (layout). The results of the analysis of the operational efficiency of the selected intersections are tabulated below.

Site: INTERSECTION A PM PEAK

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

MOVEMENT SUMMARY

INTERSECTION A

Stop (All-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Mov ID	Turn	Demand Flow veb/b	HV %	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Averag Speed
South: L	EPHURR	WANE ST S	70	10	300		VCII			per ven	KIII
1	L	3	0.0	0.031	23.9	LOS C	0.1	0.8	0.93	1.14	37
2	т	3	0.0	0.031	23.4	LOS C	0.1	0.8	0.93	1.14	37
3	R	3	0.0	0.031	23.7	LOS C	0.1	0.8	0.93	1.14	37
Approac	ch	9	0.0	0.031	23.6	LOS C	0.1	0.8	0.93	1.14	37
East: M/	ANAKA S	TR E									
4	L	3	0.0	0.037	17.3	LOS C	0.1	0.8	0.77	1.14	41
5	т	10	0.0	0.037	16.9	LOS C	0.1	0.8	0.77	1.14	42
6	R	7	0.0	0.037	17.1	LOS C	0.1	0.8	0.77	1.15	42
Approac	ch	20	0.0	0.037	17.0	LOS C	0.1	0.8	0.77	1.14	42
North: L	EPHURR	WANE N									
7	L	3	0.0	0.042	21.1	LOS C	0.1	1.0	0.89	1.14	39
8	т	6	0.0	0.041	20.7	LOS C	0.1	1.0	0.89	1.14	39
9	R	6	0.0	0.041	20.9	LOS C	0.1	1.0	0.89	1.15	39
Approac	ch	15	0.0	0.041	20.9	LOS C	0.1	1.0	0.89	1.14	39
West: M	IANAKA S	TRW									
10	L	4	0.0	0.037	17.8	LOS C	0.1	0.8	0.79	1.14	41
11	т	9	0.0	0.037	17.4	LOS C	0.1	0.8	0.79	1.14	41
12	R	6	0.0	0.037	17.6	LOS C	0.1	0.8	0.79	1.15	41
Approac	ch	19	0.0	0.037	17.6	LOS C	0.1	0.8	0.79	1.14	41
All Vehic	cles	62	0.0	0.041	19.0	LOS C	0.1	1.0	0.83	1.14	40

PSP	rocessed: 01 June 2021 06:44:50 IDRA INTERSECTION 5.0.5.1510 roject: C:\Users\Unathi\Desktoo\MFUNDO\DOORPAN I	Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com NTERSECTION.sip	
F		NTERSECTION.sp	

 Table 4: Intersection A Movement Summary for existing traffic conditions PM peak.

The vehicle load rate is 62veh/hr for the PM peak approach , with an average delay of 19.0sec at 100% lane utilisation culminating to LOS C for all approaches. Intersection A requires an upgrade to cater for Pm Peak and generated traffic.

Site: INTERSECTION B PM PEAK

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

MOVEMENT SUMMARY

INTERSECTION B

Stop (Two-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

May ID	Turn	Demand	1.11.7	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Averag
		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: D		STREET	70	V/C	Sec	_	ven	111	_	per ven	KIII/
1	L	1	0.0	0.020	10.9	LOS B	0.1	0.7	0.12	0.87	46
3	R	16	0.0	0.020	10.7	LOS B	0.1	0.7	0.12	0.92	46
Approac	h	17	0.0	0.020	10.7	LOS B	0.1	0.7	0.12	0.92	46
East: D0	OCK STR	ε									
4	L	17	0.0	0.014	8.2	LOS A	0.0	0.0	0.00	0.76	49
5	Т	9	0.0	0.014	0.0	LOS A	0.0	0.0	0.00	0.00	60.
Approac	h	26	0.0	0.014	5.5	LOS A	0.0	0.0	0.00	0.51	52
West: D	OCK ST	۲W									
11	Т	10	0.0	0.007	0.1	LOS A	0.0	0.3	0.09	0.00	58
12	R	3	0.0	0.007	8.5	LOS A	0.0	0.3	0.09	0.95	48
Approac	h	13	0.0	0.007	2.0	LOS A	0.0	0.3	0.09	0.21	55
All Vehic	cles	57	0.0	0.020	6.3	NA	0.1	0.7	0.06	0.57	51

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:47:36	Copyright © 2000-2010 Akcelik & Associates Pty Ltd	
SIDRA INTERSECTION 5.0.5.1510	www.sidrasolutions.com	INTERCECTION
Project: C:\Users\Unathi\Desktop\MFUNDO\DOORF	INTERSECTION	

 Table 5: Intersection B Movement Summary for existing traffic conditions PM peak.

The vehicle load rate is 57veh/hr for the PM peak approach, with an average delay of 6.3sec at 100% lane utilisation culminating to LOS B for Dingaka Street, though still having LOS A for Dock street.

Table 6: Intersection B Movement Summary for existing traffic conditions PM peak.

	ent Peri	ormance - v	enicles								
May ID		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Averag
		Flow	P74	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: N		STREET	78	v/c	Sec		ven			perven	KI11/
1	L	. 1	0.0	0.002	10.7	LOS B	0.0	0.1	0.03	0.95	46
3	R	1	0.0	0.002	10.5	LOS B	0.0	0.1	0.03	1.00	46
Approac	:h	2	0.0	0.002	10.6	LOS B	0.0	0.1	0.03	0.97	46.
East: DC	OCK STR	E									
4	L	3	0.0	0.002	8.2	LOS A	0.0	0.0	0.00	0.74	49
5	т	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.00	0.00	60
Approac	:h	4	0.0	0.002	6.1	LOS A	0.0	0.0	0.00	0.55	51
West: D	OCK STR	w									
11	т	1	0.0	0.002	0.0	LOS A	0.0	0.1	0.03	0.00	59
12	R	2	0.0	0.002	8.5	LOS A	0.0	0.1	0.03	0.79	48
Approac	:h	3	0.0	0.002	5.6	LOS A	0.0	0.1	0.03	0.52	51
All Vehic	les	9	0.0	0.002	7.0	NA	0.0	0.1	0.02	0.64	50.

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

 Table 8: Intersection C LOS Summary for existing traffic conditions PM peak.

The vehicle load rate is 9veh/hr for the PM peak, with an average delay of 7.0sec culminating to LOS B on Manaka Street.

From the Sidra analysis for the existing traffic, there is need to upgrade the intersections however, there is need to upgrade the road pavement condition as it is in poor to very poor state especially intersection B considered as the main access.

E-mail: abramuco.gmail.com | | **Website:** www.abidia.com |

4. FUTURE OPERATING CONDITIONS OF INTERSECTION

These assumptions were adopted:

- A phf factor of 0,95 for capacity analysis
- Queue lengths indicated are actually average lengths.

For signalised intersections the following will apply:

Table	7: P	erformance	measures	for	Sic	nalised	intersections.
TUDIC		chiormanoc	measures		U IS	Junioca	interscenens.

Period	Maximum Volume/Capacity	Minimum Level of Service
i onou	Left Turn /Through (Straight)	Right Turn
15min Peak	90%	95%

4.1. Traffic Growth

The land along N14 Provincial Road and R30 Road is identified for node development. This land comprises of three farms, Elandskuil RE 206, RE 3/205 and RE 205 and it approximately covers an area of 242ha. Ventersdorp Municipal area is said to be an area of "high density" and "medium accessibility". This implies that, there is a high concentration of people in Ventersdorp and the surrounding rural areas traveling at least thirty (30) minutes to gain urban access, either travelling to Potchestrom of Klerksdorp. Therefore, the proposed node development will have a great impact on the economic growth of Ventersdorp.

Whilst traffic growth has been steady in recent years it is likely to continue at this rate in the medium to long-term. For this assessment, Doornpan falls within average growth areas of less than 3%, and a 3,5% traffic growth over a 20-year horizon (2021 to 2041) has been applied to the existing traffic in line with TMH17-Trip Data Manual.

| E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Ventersdorp

Local Municipality 675 from Census 2011

Area

3,764.05 km²

Population

56,702 (15.06 per km²)

Households

14,562 (3.87 per km²)

Figure 18– Social Economic Demographics SDF 2018/2019 As extracted from Master Integrated Plan for JB Marks LM, Doornpan area is earmarked for

mixed use residential development.

Table 8: Typical Traffic Growth Rates

Table 1.1: Typical Traffic Growth Rates								
Development Area	Growth rate							
Low growth areas	0 - 3%							
Average growth areas	3 - 4%							
Above average growth areas	4 - 6%							
Fast growing areas	6 - 8%							
Exceptionally high growth areas	> 8%							
Source: City Council of Pretoria (1998)								

It was noted that the traffic trends going forward will be much the same as at present with the addition of traffic growth. Only traffic for the days (Friday and Saturday) were obtained and the higher value was considered for future traffic interpolation.

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | Website: www.abidia.com

Figure 19 – Proposed Node Developments (Source: IDP review 2014/15)

There are proposed Mixed use development mainly residential for Doornpan under JB Marks

Local Municipality.

Table 9: 2041 Traffic Analysis (Intersection A).

Intersection A, was analysed as a 3-way stop controlled junction, however, there is need to upgrade the intersection to cater for PM peaks and generated traffic.

Table 13: 2041 Traffic Analysis (Intersection B).

 Table 14: 2041 Traffic Analysis (Intersection C).

5. PUBLIC TRANSPORT AND PARKING

5.1. 2021 Estimated Background Traffic

The AM and PM estimated traffic for the peak hours are indicated in tables above. The horizon year selected for the study is 2026.

5.2. Horizon Year

Based on information provided, the intension is to develop the proposed townships within a period of 5 years.

5.3. Latent Rights

For the purpose of the study no latent trips could be obtained stemming from the latest township applications and approvals.

5.4. Public Transport Drop Off Zones

The proposed project will generate and attract public transport and provision must be made especially along Dock and Manaka Street (provincial road), and within the development in the manner of provision for Drop off zones close to schools, creche, places of worship etc. In that effect 3No. business and 2No. Municipal to have Bus drop off zones within the proposed spatial development in conjunction with Municipal's SDPs.

5.5. Road Reserve

It must be noted that the current situation does allow for 10m road reserve, and we recommend 10m streets on the proposed development.

Figure 20: Roads Infrastructure around the Development

Pedestrian movement is currently not catered for on the intersections, no paved walkways for pedestrians and cyclists and no Zebra Crossing on all intersections.

5.6. Road Classification

Dock and Manaka Street is classified as Minor Distributor (Class 5) linking the Doornpan to the new development.

5.7. Access Throat Length

The queuing of vehicles on a roadway whilst waiting to enter a development could limit the capacity of a road. Developers should ensure that their development make provision, away from the municipal road network, for the queuing/storage of vehicles which want to enter their properties. The access throat lengths of 100m - 120m need to be provided for this development. The standard calculation methodology for access throat length prescribed in COTO – TMH 16, 2012 Volume 2, Chapter 10, need to be applied for this purpose. The proposed access road to provide acceptable throat lengths within the development.

5.8. **Proposed Road Improvements**

There is need for minor improvements on and along Intersection A, and B:

- Four way stop junction upgrade to Intersection A with slip turning lanes;
- Three way stop junction upgrade to Intersection B;
- Upgrade of 1.2km gravel road from Intersection B to the proposed development;
- All culverts to have a raised wing-wall;
- Bus bays rather than taxi rank be constructed in close proximity to schools and places of worship and municipal offices;
- Proper road markings and signage to be installed.

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201|

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Figure 21: Proposed Main Accesses (Intersection A and B)

6. TRAFFIC ASSESSMENT

6.1. Traffic Operations

For safe operations, Doornpan Development will require upgrade from gravel to a paved road if funds permit and regular routine maintenance in the form of appropriate sidewalk, signage and road markings.

The issue of the impact of construction-traffic during construction must be considered. During the construction phase large, heavy trucks, plant and equipment will be accessing the site. The impact on traffic operations will be that these vehicles, being large, take up the majority of the available roadway, particularly on roads that are only 3.0m wide. Opposing traffic will be faced with a reduction in safety and will be forced onto the verge. Whilst this condition cannot be quantified the situation will present itself to existing users on random basis. Construction traffic should where possible utilise the proposed *(along the proposed main access side)* detour during morning and afternoon off-peaks.

6.2. Access

6.2.1. Sight Distances and Visibility

When positioning an access it is important that the shoulder sight distance is adequate and meets or exceeds the minimum requirements for traffic safety reasons.

Normally the main item of concern for an un-signalised intersection is that of adequate shoulder sight distance (SSD), for this intersection shoulder sight distance isn't a concern since no new access is proposed. This is the distance along the road, which the driver of a vehicle exiting the access or turning right into the site needs to be able to see before pulling off from the stop line. The following table depicts the minimum shoulder sight distance requirements for light vehicles, a rigid truck (refuse vehicle, bus) and a heavy articulated truck for the two listed speeds below.

Vehicle Type	For Through Road Speed of:				
	40km/h	60km/h			
Light vehicle (car, LDV, taxi)	75	115			
Rigid vehicle (truck, bus)	130	180			
Articulated truck	150	230			

Table 15:Shoulder sight distance requirements (metres)

7. CONCLUSIONS AND RECOMMENDATIONS

The proposed development can be supported from a traffic flow perspective.

7.1. Recommendations

Based on the conclusions above, it is further recommended that:

- To ensure safe and satisfactory operations, upgrade and routine maintenance for all roads and at intersections be identified along with improvements to road markings and signage;
- Proposed Main Access (Intersection A and B)to have preferably a stop controlled intersection with dedicated left and right turning lanes from the proposed developments, together with acceleration and deceleration 60m lanes, due to space constraints.

- The potential of the 2041 traffic growth will require upgrades to intersections A and B;
- It must be noted that, **Intersection A, and B** are all viable options for alternative access and traffic tributaries.
- That the proposed development will generate 812 trips for AM peak, and 690 trips for PM peak, the same was used for traffic flow analysis.
- Provided the above recommendations are adopted there is no reason of a traffic engineering nature why the proposed residential development should not be permitted to proceed.

7.1.1. Development Particulars

The proposed development comprises of a green field mixed-use development that will be developed within the next 5 years and is known as:

- Doornpan Township development.
- The estimated number of new trips that will be generated from the proposed developments are 812 for AM trips and 690 for PM trips in total and apportioned per development phase.

7.1.2. Capacity Analysis

The capacity analysis was done for the base year 2021 and the 2026 horizon year without and with development traffic. The capacity analysis resulted in acceptable LOS for both intersections.

Figure 21: Capacity Analysis (Intersection A)

7.1.3. Road Reserve

The required road reserves are allowed for in the proposed township layouts.

7.1.4. Site Specific Recommendations

- **Public transport** facilities to be provided
- **Pedestrian Facilities**: It is recommended that a pedestrian walkway of 1.5-2.0m is provided along the Class U4b roads within the proposed developments to facilitate pedestrian movement. However, if funds do not permit, a 15m road reserve to provide pedestrian space and avoid conflict with traffic vehicles.

It is thus recommended that the proposed development be supported from a traffic engineering point of view given the above recommendations are implemented.

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201| | Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com |

| Website: www.abidia.com |

ANNEXURE A – ON SITE PHOTOS

Intersection A

Intersection A

Intersection **B**

Intersection **B**

Intersection C

Intersection C

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201|

| Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com | | Website: www.abidia.com |

Tshing Library

Tshing Library

Church

Disability Centre

Tavern

Tshing Public School

| E-mail: abramuco.gmail.com | | Website: www.abidia.com |

ANNEXURE B – MANUAL COUNTS

15 minute period MANAKA STREET TO DOCK STREET W MANAKA STREET TO DOCK STREET E DOCK STREET W TO MANAKA STREET DOCK STREET E TO MANAKA STREET DOCK STREET E TO MANAKA STREET 06:00 06:15 1 1 1 2 2		-	
period MANAKA STREET TO MANAKA STREET TO DOCK STREET W DOCK STREET W DOCK STREET E MANAKA STREET MANAKA STREET DOCK STREET E MANAKA STREET MANAKA STREET DOCK STREET E DOCK STRE			
DOCK STREET W DOCK STREET E MANAKA STREET MANAKA STREET C T B Tr C T B Tr C T 06:00 06:15 1	TREET E	DOCK STREE	ET W
06:00 06:15 1 2	B Tr	СТВ	a Tr
	0 11		
06:15 06:30 1 1 1			
06:30 06:45		1	
06:45 07:00 1 1 1 1			\rightarrow
07:00 07:15 1 1 2		1	+
			+
			+
			+
08:15 08:30 1		1	+
08:30 08:45			
08:45 09:00 1 1		1	
09:00 09:15 1 1			
09:15 09:30 1 1 1		1	
09:30 09:45 1		2	1
09:45 10:00 1 1			\rightarrow
10:00 10:15 1		\vdash	\rightarrow
			\rightarrow
			+
			+-
			+
			+
11:45 12:00			+
12:00 12:15 1 1		1	+
12:15 12:30 1 1 1		1	-
12:30 12:45		2	
12:45 13:00 1			
13:00 13:15 1 1			
13:15 13:30 1			_
		1	
			+
14:00 14:15		1 1	-
			+
			+-
15:00 15:15		1	+
1515 1530			+
15:30 15:45			-
15:45 16:00 1 1			
16:00 16:15 1 1 1		1	
16:15 16:30		1	
16:30 16:45		1	
16:45 17:00 1 1			1
17:00 17:15 1 1		1	
17:15 17:30			_
17:30 17:45 1 1 1		1	\rightarrow

DOORNPAN DESCRIPTION DATE OF COI COUNTED BY COORDINATI	: 15 M N OF IN UNT: Y: E:	VINUTI VTERSI 14 26*18	E CLAS ECTION MAY	SIFIED 1: 2021 "S, 26	COUN INTER	ITING SECTION	SHEET DN C	1	C= T= B= Tr=	Car Taxi Bus Truck	DOC	K STRE	ET W		AKA ST	TREET	DOC	K STRE	ET E			A B	ID.	ĨA
15 minute		-	١			(•							ſ						+	+			
period	DIN	GAKA	STREE	T TO	DIN	GAKA	STREE	T TO	DO	CK STR	EET W	V TO	DO	CK STR	EET E	TO	D	OCK ST	TREET	E	DC	ock st	REET	w
	c	T	B	Tr	c	T	B	Tr	c	T	B	Tr	c	T	B	Tr	с	т	B	Tr	с	т	B	Tr
06:00 06:15					7	2			1				6			1	3				6	2		
06:15 06:30					4								2				2	2		1	4	2		
06:30 06:45					2	3	-			<u> </u>		-	7	1		3	5	1		-	4			1
06:45 07:00		-			4					-	-	-	4				4	- 4		1	5		\vdash	-
07:15 07:30					5					-	-		3	1			2	-		-	3			-
07:30 07:45					3				1				3			2	3	2			5	2		
07:45 08:00					3	2							5				2	2			4	1		1
08:00 08:15					10								5				4				3			1
08:15 08:30	1				2	2	-			<u> </u>		-	3			3	2	2		1	5			
08:30 08:45					4	- 2	-		2	-	-	-	0	1			2	1	1		6	1		-
09-00 09:15					2						-	-	3			3	6	1		-	7	- 1		-
09:15 09:30	1				7	3				-	-		4	1			2	-			3			1
09:30 09:45					3								2				2	2	1		4	1		
09:45 10:00					6								5				5			1	4	1		
10:00 10:15					10	2							9	- 4		3	2	2			3			
10:15 10:30					3	1	_						6				3	1			8			<u> </u>
10:30 10:45					9		-		1	<u> </u>	<u> </u>	-	8	1		4	3	1		1	4	2	\vdash	-
10:45 11:00					0	1	-			<u> </u>	-	-	3	2		2	2				8 6	2	\vdash	-
11:15 11:30					3	-				-	-		4	5		-	4	2	1		5	-		-
11:30 11:45					4	3			1				4				5	-			6			
11:45 12:00					5	1							5	1		1	3				3	2		1
12:00 12:15					9								8			2	3	1			5	1		
12:15 12:30					6	2			1				5	3			2			1	7	1		
12:30 12:45					7	1	_			<u> </u>		-	7				3	1			3			-
12:45 13:00	1		-		10	2	-			<u> </u>		-	3	1		1	3			-	6		\vdash	<u> </u>
13:15 13:20					6	1				<u> </u>	-		2 5	1			3	2			4	2	\vdash	<u>⊢</u> ¹
13:30 13:45					7	2							7	2		1	4	-			8	-		
13:45 14:00					5	1			1				4				2				3	2		
14:00 14:15					4								3	1			7	2			3	1		
14:15 14:30					3	1							9			1	2			1	4			
14:30 14:45					10								3			1	5	1			4			1
14:45 15:00					7					-	-		5			-	6				3	1		-
15:00 15:15					3	3					-		3	1		- 4	4	1		- 1	2	1		-
15:30 15:45					7						-		7			1	3	1		- 1	3	2		-
15:45 16:00					5	2			1				3	4			5	2			5	-		
16:00 16:15					9	1							7			1	2				3	1		
16:15 16:30	1				6								7				4	2		1	4			
16:30 16:45					5	2							4				4				6	1		
16:45 17:00					10	1				-	-	-	10	1		4	5	1	1		4		\vdash	-
17:00 17:15					7					-	-	-	5				4	2			8	1		-
17:15 17:50					5	3			-	-	-		3			3	6	- 2		1	3		\vdash	-
17:45 18:00					7	1							9				5	1		-	5			
	5	0	0	0	286	47	0	0	10	0	0	0	237	27	0	41	172	41	4	10	231	33	0	8

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201|

															UPN.	RRW	ANE ST	N																		1	A	BIT	MA
DOORINFAIN : 1 Description (IS MINIL XF INTEB	ле с. н. 68010	SFIED C	DUNTI	NG SHE Section	ET A	C Tr B Tr	Car Tasi Bus Thuck					м	ANICA STRE	ETW					www.	IA STRE	ETE													'				
DATE OF COUN COUNTED BY:	π:		5	aturka	y, 15 Ma	ny 2021									L	EPHU	RFWA	NE ST !	5																				
COORDINATE:	;	8189	21'5, 26	482.5	Ø'E																																		
15 minute		٦			ſ	•			ļ		,	ſ				•	¢					4			t			J				ţ	Γ	,	ļ			Î	
poried	LEPH	URB WA	NESTS	LEP	HURR W	ANE ST S	MAA	AKA ST	REET W	TO N	GANA	UA STREE	TETO	MANAGAS	TREET	W TO	MAN	AKA ST	REET E	то	LEPHU	RRWA	IE ST N	MANAK	A STREE	TETO	LEPHUR	9 4 34	EST N	MAN	WA STR	IEET WIT	10 1.5	PHURR	WANE ST	IN	LEPHUR	RPA IN	Æ ST S
	C IO	T	IREET W	C	T	STREET E	L UP	T	R 1	Tr	LEPHU C	TR	STS Tr	C T	A STREE R	TE Tr	C	T	REET	W Tr	<u>то ма</u> с	T I	IREET E	LEPHU C	REWAN	ESTN Tr	C 1	ULL STR R	ETW b	107	T	ANE ST N	1 10 7 C	T	RWANE	57 Tr	C	URRW.	ANEST
06:00 06:15	Ì		-	Ċ	Ĥ	-	1	H		-	1	1		2	1		3		-	<u> </u>	2	1	-	3	-	Ľ	2	1	Ē	Ì	3	-	Ť	Ë	Ť	Ť	Ť	Ť	Ť
06:15 06:30	1	\downarrow	-	1		_				\downarrow	1	-		2			4		\neg		1	-	-	4			1	1				_	Ŧ	1	\square	7	\mp	\mp	\square
06:30 06:45	\vdash	+	+	\vdash	\vdash	+	١,	\vdash	+	+	,	+	+	4	\vdash	H	5	-	+	+	2	+	+	2	+	+	2	+	+	1	+	+	+	+	\vdash	+	+	+	+
07:00 07:15	1	+	+		H	+	Ľ			+	+	+		3	1		4		+	+	2	+	+	2	+	t	3	+	t		1	+	$^{+}$	\pm	Ħ	\pm	÷	\pm	Ħ
07:5 07:30		\neg		1						\downarrow	1			2			2	1			1	1		2			2				1		T		\Box	\exists	2	\mp	\Box
0730 07.45	1	+	+	-	1	+	H,		+	+	+	1	-	4	-	-	5	-	+	+	1	+	+	1	-	+	1	+	+	2	+	+	+	1	++	+	+	+	+
08:00 08:05	H	+	+	\vdash	1	+	ť	H	+	$^+$	+	+	H	4 3	2	H	3		+	+	2	+	+	3	+	t	2	+	t	H	+	+	$^{+}$	3	H	+	1	+	H
08:15 08:30	1			1										3			5				1			3			3			1			T			\Box	1		\Box
0830 0845	H	+	+	-	\vdash	+	1	1	+	+	+	+	-	3	-	-	6	-	+	+	2	+	+	2	-	+	<u>.</u>	+	+	1	+	+	+	+	\vdash	+	+	+	+
09:00 09:15	H	+	+	2	H	+	⊢	H	+	+	3	+	\vdash		H	H	3	-	+	+	3	+	+	1	+	t	1	1	t		+	+	+	4	H	+	+	+	Н
09:15 09:30					1					1		1		3			5	1			2			1			2			2			t	3		1	2	1	\Box
0930 0945	2	+	-		1	-	1		_	+	2	-	-	6	1		4	_	-	-	1	+	+	1	-	-	3	+	-		_	-	╀	-	\square	4	1	+	+
10:00 10:15	1	+	+	\vdash	H	+	⊢	H	+	+	2	+	\vdash	4	H	H	2	1	+	+	2	+	+	3	1	t	2	1	\vdash	1	1	+	+	1	H	+	+	+	Н
10:15 10:30							Ē			1	1			3			5				4			4			4	Ì		1	Ì		t	2		⊐	1	\pm	\Box
10:30 10:45	\square	+	+		\square	-	1		-	+		-	-	2 :	1		3	_	+	+	1	+	+	2	-	-	2	+	-		-	-	╀	+	\vdash	+	1	+	+
10/6 11:00		+	+	4	\vdash	+	⊢	H	+	+	4	+	\vdash	3	\vdash	H	4	-	+	+	1	1	+	1	+	+	2	1	+	2	+	+	+	1	H	+	+	+	+
11:15 11:30					1		1			İ	1	1		4			3			1	2			4	1	t	1				1		t			ᅼ	\pm	\pm	\Box
1130 1145		_	-		\square	_	1			4	-	-		4 :	1		3	1	_	_	1	-	-	2	_	-	3	-		_	_	_	+	1	\square	4	1	+	\square
12:00 12:00	H	+	+	1	\vdash	+	⊢	H	+	+	3	+	⊢	4	\vdash	H	4	-	+	+	-	1	+	1	+	⊢	4	+	+	2	+	+	+	2	H	+	+	+	+
12/5 12:30		\pm		·	\square		t			Ť	1			4	2		5			1	ł	İ		3		t	Ť.		t				t	1	\square	\pm	÷	\pm	\pm
1230 1245	1	\neg					1	1		\downarrow	\downarrow			2			3				4	-		1			2	1		1	1		Ŧ	4	\square	\downarrow	+	\mp	П
12/6 13:00	\vdash	+	+	1	2	+	H	\vdash		+	,	+	\vdash	1	\vdash	Η	5		+	+	2	+	+	3	+	+	3	+	\vdash	,	1	+	+	+	⊢	+	1	+	+
13:15 13:30				Ĺ	H		Ľ	Ħ						i			5				1			4			1						\pm	1	Ħ	_	+	\pm	\pm
13:30 13:45		-			H	-		1		1	1	1		2	1		6			1	1	T		3	1		4	-		1	-		Ŧ	F	H	4	2	Ŧ	\square
13:45 14:00	2	+	+	2	\vdash	+	H	\vdash		+	1	+	\vdash	6	$\left \right $	\vdash	2	1	+	+	1	1	+	1	+	⊢	3	+	\vdash	,	+	+	+	1	⊢	+	+	+	+
1415 1430				ŕ	2		1				1			4			4				2			3			3			-			\pm	-	\square	+	1	\pm	+
1430 1445							Γ							2			6				1			1			2	1					T	1	\Box		1	T	\Box
1445 15:00	H	+	+	-	\vdash	+		1		+	1	1	\vdash	4	\vdash	H	4	1	+	+	1	,	+	1	1	+	4	+	+	2	+	+	+	1	\vdash	+	+	+	+
15:15 15:15	H	+	+	1	H	+	ť	H		+	+	+		6			4			+	+	-	+	2	-		4	+	\vdash	- 1		+	+	+	\vdash	+	1	+	+
15:30 15:45					1		1							4	2		2				3			3			3	1		1				2			1	T	\Box
15:45 16:00	2	-	-		H	-	1	\square		+	1	-	\vdash	6			2	_	-	4	-	-	-	3	+	-	1	+	-	1	1	-	+	-	H	4	÷	+	+
16/15 16/25	H	+	+	\vdash	\vdash	+	⊢	H	+	+	+	+	\vdash	4	\vdash	Η	5	1	+	+	2	+	+	2	+	\vdash	3	+	\vdash	1	+	+	+	1	⊢	+	4	+	+
1630 1645	Ľ			2	H		1				3			i i			3				1			Ì	1		3	2		1			\uparrow	2	\square	+	1	\pm	+
15:45 17:00	1	_								1				6			2		_	1	4	-		3			1	-		2	_		F	F	\square	\square	1	Ŧ	\square
12:00 12:15		+	+	1	1	+	H	H	-	+	,	+	\vdash	1	\vdash	\vdash	2	-	+	+	1	+	+	4	1	+	4	+	+	,	+	+	+	+	\vdash	+	+	+	+
1730 1745	1	+	+	+	H	+	t i	H		+	3	+	+	5 3	1		6	1	+	+	5	+	+	2	+	+	3	+	\vdash	-	+	+	+	+	\vdash	+	1	+	+
17:6 18:00				1			1				1	2		2			4				1	1		2			1			2			T	4		1	1	\pm	\Box
	20	0	0.0	15	11	0.0	1 20	13	0	1	υ	1 (1 0	168 5	1 0	- 0	185	0	0		91	8	0 0	117	7	1 0	1 119	10	0 0	34	10	0	0.7	0 0	0	1	21	0	0 0

DOORNPAN DESCRIPTION DATE OF COI COUNTED BY COORDINATI	: 15 N N OF IN UNT: f: E:	IINUT ITERS 15 26°18	E CLAS ECTION MAY	SIFIED N: 2021 "S, 26	INTER	iting ISECTI 36"E	SHEET ON B		C= T= B= Tr=	Car Taxi Bus Truck	DOC	K STRE	EET W		AKA ST	TREET	DOC	K STRI	EET E	~		AB	D	IA
15 minute		-	1			(•							ſ						•	•			
period	MA	NAKA	STREE	T TO W	MA	NAKA	STREE	TTO	DO	CK STR	REET W	/ TO	DO	CK STR	REET E	TO	D	OCK S	TREET	E	D	oax s	REET	w
	c	T	B	Tr	c	T	B	Tr	c	T	B	Tr	c	T	B	Tr	с	T	В	Tr	с	T	B	Tr
06:00 06:15																								
06:15 06:30	1	-	-	-		-	-	-	1	1	-	-		-				-			-	-	\vdash	-
06:45 07:00		-	-	\vdash	\vdash		\vdash	\vdash		-		\vdash									1		\vdash	
07:00 07:15																								
07:15 07:30														1										
07:30 07:45	1								1				2											
07:45 08:00		_	-	<u> </u>	1	-	-	<u> </u>	1	-	-	-	2			1	1			-	1	<u> </u>	\vdash	-
08:00 08:15		-	-	-		-	-	-	- 2	-	-	-	- 2				1				1	-	\vdash	-
08:13 08:30		-	-	-	2	-	-	-		-	+	-					2				1	-	\vdash	-
08:45 09:00			-		L-	-				-	<u> </u>		1				-				-		\square	
09:00 09:15	1																1				1			
09:15 09:30																								
09:30 09:45					1					1			2								1			
09:45 10:00	1		-	1										1							1			
10:00 10:15		-	-	<u> </u>	⊢	<u> </u>	-	<u> </u>	<u> </u>	1	-	-		-				<u> </u>	-		1	<u> </u>	\vdash	-
10:15 10:30		-	-	-	<u> </u>	1	-	-	<u> </u>	-		-		-				-	-			<u> </u>	\vdash	-
10:45 11:00		-	-	-	-	-	-	-	2	- 4	-	-									1	-	\vdash	-
11:00 11:15		-	-		-	-	-	-	-	-	-	-									1			
11:15 11:30					1					-							1				1			
11:30 11:45																								
11:45 12:00																					1			
12:00 12:15													1								1			
12:15 12:30																	1							
12:30 12:45	1	-	-	<u> </u>	1	-	-	-	<u> </u>	-	-	-			-	-		-	-	-	-	-	\vdash	-
12:45 13:00		-	-	-	⊢	-	-	-	1	-	-	-		-	-	-	1	-	-	-	-	-	\vdash	-
13:15 13:15		-	-		<u> </u>	-	-			-	-		- 1				1						\vdash	
13:30 13:45																	<u> </u>						\vdash	
13:45 14:00																	1							
14:00 14:15													1											
14:15 14:30													1											
14:30 14:45			-	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>									1			-
14:45 15:00		-	-	-	⊢	-	-	-	-	-	-	-		-	-	-		-	-	-		-	\vdash	-
15:00 15:15		-	-	-	<u> </u>	-	-	-	-	-	-	-									1	-	\vdash	-
15:15 15:50		-	-	-	\vdash	-	-	-	-	-	-	-	1				1	1			-	-	\vdash	-
15:45 16:00	1		<u> </u>								<u> </u>		1				1	-			1	1	\vdash	
16:00 16:15																								
16:15 16:30													1											
16:30 16:45					1																1			
16:45 17:00					1								1				1							
17:00 17:15		_	-		-		-	-		-	-	-	1								1		\vdash	-
17:15 17:30	1	-	-	-		-	-	-		-	-	-	\vdash					-				-	\vdash	-
17:45 19:00	2	-	-	-	1	-	-	-		-		-		-			- 2	-			<u> </u>		\vdash	-
27.43 18:00	- 2		-	<u> </u>	10	<u> </u>			- 2							<u> </u>	- 17			-			<u> </u>	

DOORNPAN	: 15 M	INUTE	E CLAS	SIFIED	COUN	TING	SHEET ON C		C= T= B= Tr=	Car Taxi Bus Truck	DOO	K STRE	ET W		i	- C	DOC	K STRE	ET E	~		A B	D	lA
DATE OF COU	JNT:	15	MAY	2021																				
COUNTED BY	1													DING	AKA SI	TREET								
COORDINATE	1	26*18	36.56	"S, 26	*48*33	.83"E																		
		1									_													
		-					•							ſ						-				-
15 minute											₽.			•						~	× -			
period	DIN	SAVA	CTREE	7 70	DIN	CANA	CTREE	T TO	000	W 678	EET M	1 TO	000			TO								
	D	DCK ST	TREET	w	D	OCK S	TREET	E	DI	NGAK/	A STRE	ET	DI	NGAK/	A STRE	ET	D	OCK ST	TREET	E	DO	DOX ST	REET	w
	С	T	B	Tr	С	T	B	Tr	С	T	B	Tr	C	T	В	Tr	с	T	В	Tr	с	T	В	Tr
06:00 06:15					4								3			1								
06:15 06:30					1								1	1		1	2	1			3			
06:30 06:45					2								4	1		1	3				3			
06:45 07:00	1				7						-		1	1		1	3				2		\vdash	
07:00 07:15					2						-		2	1			5				1		\vdash	-
07:15 07:50	_				2 E	2					-		2	1							3		\vdash	-
07:30 07:45	_				5	- 2			- 1		-		2	- 1			6				1	_	\vdash	-
08:00 08:15	_				3								6	1		1	3				2	_		
08:15 08:30	_				5								3			_	-				1		\square	
08:30 08:45	1				8	1							4				2				8	1		
08:45 09:00					5	2							2	1						1	3			
09:00 09:15					4	2			1				3	2		1	3				1			
09:15 09:30					5								1	2		1	2				3	1		
09:30 09:45					2	2		1					11	3			6				1	1		
09:45 10:00					2						-		3	3			4				3		\vdash	-
10:00 10:15	1				3	1		1			-		2	1			1	1			5		\vdash	-
10:15 10:50	_				9	1		1	1		-		2	2		1	4				2		\vdash	-
10:45 11:00	_				4	3		- 1	-		-		2	1		-	3				4	1	\vdash	-
11:00 11:15	-				12	2					-		3	1		1	4				2	-	\vdash	-
11:15 11:30	_				6	2							6	-		_	4				4		\square	
11:30 11:45	1				8				1				2	1			2			1	3			
11:45 12:00	1				4								10	4			2	1			2			
12:00 12:15					8	2		1					5	1			4				1			
12:15 12:30					6								5	1			4				2			
12:30 12:45					4	1					<u> </u>		5			2	3				2		\vdash	<u> </u>
12:45 13:00					8					<u> </u>	-		9				5	_			4		\vdash	-
13:00 13:15					1	1							8	2			2	1			1		\vdash	-
13:30 13:45					6			1	2				7	2			2	1			3		\vdash	-
13:45 14:00					4			-	L 1				6	3		1	2				4		\vdash	
14:00 14:15	2				7	2							5			1	6				4	1	\square	1
14:15 14:30					4								6				2				3			1
14:30 14:45					5	1		1					6	1			4				2			
14:45 15:00					3								5			1	2	1			4			
15:00 15:15		1			9	1							8	1			4	1			3			
15:15 15:30					5			1					2	1			5				4			
15:30 15:45					6			1	1		<u> </u>		2	1		1	3				-		\vdash	-
15:45 16:00					5								4				1				5		\vdash	-
16:15 16:20	1				3								/								3	1	\vdash	-
16:30 16:45	1				7								0 5	1			2			1	4	1	\vdash	-
16:45 17:00	1				8								5	- 1		1	3			-	2		\vdash	
17:00 17:15	-				5								12				5				2		\vdash	
17:15 17:30					4				1				8	1			4				4			
17:30 17:45					4								7				2				3			
17:45 18:00					6								6				3				2			

| Physical: 10 Cedarwood Crescent, Nelspruit 1201| | Postal: 10 Cedarwood Crescent, Nelspruit 1201 | Cell: +27 (0)83 470 2027 | | E-mail: abramuco.gmail.com |

| Website: www.abidia.com |

ANNEXURE C – SIDRA ANALYSIS

Level of Service Method: Delay (HCM)

SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION A

Stop (All-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Movem	ent Pe	rformance - \	/ehicles								
	_	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	lurn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
A (1) 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: L	EPHUF	RRWANE ST S									
1	L	3	0.0	0.024	20.6	LOS C	0.1	0.6	0.88	1.14	39.4
2	Т	3	0.0	0.024	20.2	LOS C	0.1	0.6	0.88	1.14	39.6
3	R	3	0.0	0.024	20.4	LOS C	0.1	0.6	0.88	1.14	39.6
Approac	h	9	0.0	0.024	20.4	LOS C	0.1	0.6	0.88	1.14	39.5
East: MA	ANAKA	STR E									
4	L	4	0.0	0.037	16.9	LOS C	0.1	0.8	0.75	1.14	42.1
5	Т	12	0.0	0.037	16.5	LOS C	0.1	0.8	0.75	1.14	42.4
6	R	6	0.0	0.037	16.7	LOS C	0.1	0.8	0.75	1.15	42.3
Approac	h	22	0.0	0.037	16.6	LOS C	0.1	0.8	0.75	1.14	42.3
North: L	EPHUR	RWANE N									
7	L	7	0.0	0.046	19.6	LOS C	0.2	1.1	0.86	1.14	40.1
8	Т	4	0.0	0.045	19.1	LOS C	0.2	1.1	0.86	1.14	40.4
9	R	7	0.0	0.046	19.4	LOS C	0.2	1.1	0.86	1.15	40.3
Approac	h	19	0.0	0.046	19.4	LOS C	0.2	1.1	0.86	1.14	40.3
West: M	ANAKA	STRW									
10	L	6	0.0	0.036	17.1	LOS C	0.1	0.8	0.76	1.14	41.9
11	Т	9	0.0	0.036	16.7	LOS C	0.1	0.8	0.76	1.14	42.2
12	R	6	0.0	0.036	16.9	LOS C	0.1	0.8	0.76	1.15	42.1
Approac	h	20	0.0	0.036	16.9	LOS C	0.1	0.8	0.76	1.14	42.1
All Vehic	les	70	0.0	0.046	17.9	LOS C	0.2	1.1	0.80	1.14	41.3

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:43:56 SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN IN	Copyright © 2000-2010 Akcelik & Associates Pty Ltd <u>www.sidrasolutions.com</u> NTERSECTION.sip	SIDRA	. - - ОМ
Unlicensed Trial Version			

Level of Service Method: Delay (HCM)

SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION A

Stop (All-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Movem	ent Pe	rformance - \	Vehicles								
	_	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	lurn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: L	EPHUF	RRWANE ST S									
1	L	3	0.0	0.031	23.9	LOS C	0.1	0.8	0.93	1.14	37.3
2	Т	3	0.0	0.031	23.4	LOS C	0.1	0.8	0.93	1.14	37.5
3	R	3	0.0	0.031	23.7	LOS C	0.1	0.8	0.93	1.14	37.5
Approac	h	9	0.0	0.031	23.6	LOS C	0.1	0.8	0.93	1.14	37.4
East: MA	ANAKA	STR E									
4	L	3	0.0	0.037	17.3	LOS C	0.1	0.8	0.77	1.14	41.8
5	Т	10	0.0	0.037	16.9	LOS C	0.1	0.8	0.77	1.14	42.0
6	R	7	0.0	0.037	17.1	LOS C	0.1	0.8	0.77	1.15	42.0
Approac	h	20	0.0	0.037	17.0	LOS C	0.1	0.8	0.77	1.14	42.0
North: L	EPHUR	RWANE N									
7	L	3	0.0	0.042	21.1	LOS C	0.1	1.0	0.89	1.14	39.1
8	Т	6	0.0	0.041	20.7	LOS C	0.1	1.0	0.89	1.14	39.3
9	R	6	0.0	0.041	20.9	LOS C	0.1	1.0	0.89	1.15	39.2
Approac	h	15	0.0	0.041	20.9	LOS C	0.1	1.0	0.89	1.14	39.2
West: M	ANAKA	STR W									
10	L	4	0.0	0.037	17.8	LOS C	0.1	0.8	0.79	1.14	41.4
11	Т	9	0.0	0.037	17.4	LOS C	0.1	0.8	0.79	1.14	41.7
12	R	6	0.0	0.037	17.6	LOS C	0.1	0.8	0.79	1.15	41.6
Approac	h	19	0.0	0.037	17.6	LOS C	0.1	0.8	0.79	1.14	41.6
All Vehic	les	62	0.0	0.041	19.0	LOS C	0.1	1.0	0.83	1.14	40.5

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:44:50 SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN IN	Copyright © 2000-2010 Akcelik & Associates Pty Ltd <u>www.sidrasolutions.com</u> NTERSECTION.sip	SIDRA -	 >N
Unlicensed Trial Version			

Level of Service Method: Delay (HCM)

INTERSECTION A Stop (All-Way) Design Life Analysis (Practical Capacity): Results for 5 years

Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION A

Stop (All-Way)

Design Life Analysis (Practical Capacity): Results for 5 years

Movem	ient Pe	rformance - V	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	EPHUF	RRWANE ST S									
1	L	4	0.0	0.027	20.0	LOS C	0.1	0.6	0.87	1.14	39.8
2	Т	3	0.0	0.027	19.6	LOS C	0.1	0.6	0.87	1.14	40.1
3	R	3	0.0	0.027	19.8	LOS C	0.1	0.6	0.87	1.14	40.0
Approac	h	11	0.0	0.027	19.8	LOS C	0.1	0.6	0.87	1.14	40.0
East: M/	ANAKA	STR E									
4	L	5	0.0	0.037	17.1	LOS C	0.1	0.8	0.76	1.14	41.9
5	Т	10	0.0	0.037	16.7	LOS C	0.1	0.8	0.76	1.14	42.2
6	R	6	0.0	0.037	16.9	LOS C	0.1	0.8	0.76	1.15	42.1
Approac	h	21	0.0	0.037	16.8	LOS C	0.1	0.8	0.76	1.14	42.1
North: L	EPHUR	RWANE N									
7	L	7	0.0	0.043	19.2	LOS C	0.1	1.0	0.84	1.14	40.4
8	Т	5	0.0	0.043	18.8	LOS C	0.1	1.0	0.84	1.14	40.6
9	R	7	0.0	0.043	19.0	LOS C	0.1	1.0	0.84	1.15	40.6
Approac	h	19	0.0	0.043	19.0	LOS C	0.1	1.0	0.84	1.14	40.5
West: M	ANAKA	STR W									
10	L	6	0.0	0.036	17.3	LOS C	0.1	0.8	0.77	1.14	41.8
11	Т	8	0.0	0.036	16.9	LOS C	0.1	0.8	0.77	1.14	42.1
12	R	6	0.0	0.036	17.1	LOS C	0.1	0.8	0.77	1.15	42.0
Approac	h	20	0.0	0.035	17.0	LOS C	0.1	0.8	0.77	1.14	42.0
All Vehic	cles	70	0.0	0.043	17.9	LOS C	0.1	1.0	0.80	1.14	41.3

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

The specified Design Life Target was not reached by the final year in the Design Life Analysis. Results are reported for the final year.

Processed: 01 June 2021 05:54:54 Copyright © 2000-2010 A SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip

Unlicensed Trial Version

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

Level of Service Method: Delay (HCM)

INTERSECTION A Stop (All-Way)

INTERSECTION

Project: C:Users\Unath\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION A Stop (All-Way)

Movem	ient Pei	rformance - Ve	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	EPHUR	RWANE ST S									
1	L	3	2.0	0.029	21.8	LOS C	0.1	0.7	0.90	1.14	38.6
2	Т	3	0.0	0.029	21.4	LOS C	0.1	0.7	0.90	1.14	38.8
3	R	3	0.0	0.029	21.6	LOS C	0.1	0.7	0.90	1.14	38.8
Approad	h	9	0.7	0.029	21.6	LOS C	0.1	0.7	0.90	1.14	38.8
East: M	ANAKA S	STR E									
4	L	3	0.0	0.034	17.5	LOS C	0.1	0.8	0.78	1.14	41.6
5	Т	8	2.0	0.033	17.2	LOS C	0.1	0.8	0.78	1.14	41.9
6	R	6	0.0	0.033	17.3	LOS C	0.1	0.8	0.78	1.15	41.8
Approad	h	18	0.9	0.033	17.3	LOS C	0.1	0.8	0.78	1.14	41.8
North: L	EPHURI	RWANE N									
7	L	3	0.0	0.035	20.2	LOS C	0.1	0.8	0.87	1.14	39.7
8	Т	5	0.0	0.035	19.7	LOS C	0.1	0.8	0.87	1.14	40.0
9	R	5	2.0	0.035	20.1	LOS C	0.1	0.8	0.87	1.15	39.9
Approad	h	14	0.8	0.035	20.0	LOS C	0.1	0.8	0.87	1.14	39.9
West: M	ANAKA	STR W									
10	L	4	2.0	0.032	18.0	LOS C	0.1	0.7	0.80	1.14	41.3
11	Т	6	0.0	0.032	17.6	LOS C	0.1	0.7	0.80	1.14	41.5
12	R	5	2.0	0.032	17.9	LOS C	0.1	0.7	0.80	1.15	41.5
Approad	h	16	1.2	0.032	17.8	LOS C	0.1	0.7	0.80	1.14	41.4
All Vehic	cles	57	0.9	0.035	18.8	LOS C	0.1	0.8	0.83	1.14	40.7

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 05:57:30 SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN I Unlicensed Trial Version	Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com NTERSECTION.sip	SIDRA INTERSECTION	 0N
--	---	-----------------------	--------

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Unlicensed Trial Version

INTERSECTION B

Stop (Two-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Movement Performance - Vehicles												
May ID	Т	Demand	111/	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South: D	INGAK/	ASTREET										
1	L	1	0.0	0.025	10.9	LOS B	0.1	0.8	0.13	0.86	46.3	
3	R	20	0.0	0.025	10.7	LOS B	0.1	0.8	0.13	0.91	46.5	
Approac	h	22	0.0	0.025	10.7	LOS B	0.1	0.8	0.13	0.91	46.5	
East: DOCK STR E												
4	L	23	0.0	0.019	8.2	LOS A	0.0	0.0	0.00	0.77	49.0	
5	Т	13	0.0	0.019	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	36	0.0	0.019	5.2	LOS A	0.0	0.0	0.00	0.49	52.4	
West: D	OCK ST	RW										
11	Т	9	0.0	0.006	0.1	LOS A	0.0	0.2	0.12	0.00	57.6	
12	R	1	0.0	0.006	8.6	LOS A	0.0	0.2	0.12	0.98	48.7	
Approac	h	10	0.0	0.006	1.3	LOS A	0.0	0.2	0.12	0.14	56.2	
All Vehic	les	68	0.0	0.025	6.4	NA	0.1	0.8	0.06	0.57	50.9	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:45:39 SIDRA INTERSECTION 5.0.5.1510 Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Unlicensed Trial Version

INTERSECTION B

Stop (Two-Way) Flow Scale Analysis (Practical Capacity): Results for Flow Scale (chosen as largest for any movement) = 138.0 %

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
South: D		ASTREET	70	V/C	Sec	_	ven		_	per veri	K111/11	
1	L	1	0.0	0.020	10.9	LOS B	0.1	0.7	0.12	0.87	46.3	
3	R	16	0.0	0.020	10.7	LOS B	0.1	0.7	0.12	0.92	46.5	
Approac	h	17	0.0	0.020	10.7	LOS B	0.1	0.7	0.12	0.92	46.5	
East: DO	DCK STI	RE										
4	L	17	0.0	0.014	8.2	LOS A	0.0	0.0	0.00	0.76	49.0	
5	Т	9	0.0	0.014	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	26	0.0	0.014	5.5	LOS A	0.0	0.0	0.00	0.51	52.2	
West: D	OCK ST	RW										
11	Т	10	0.0	0.007	0.1	LOS A	0.0	0.3	0.09	0.00	58.0	
12	R	3	0.0	0.007	8.5	LOS A	0.0	0.3	0.09	0.95	48.6	
Approac	h	13	0.0	0.007	2.0	LOS A	0.0	0.3	0.09	0.21	55.6	
All Vehic	les	57	0.0	0.020	6.3	NA	0.1	0.7	0.06	0.57	51.0	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:47:36 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.5.1510 <u>www.sidrasolutions.com</u> Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION B

Stop (Two-Way)

Design Life Analysis (Practical Capacity): Results for 5 years

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: D	NGAK	A STREET										
1	L	2	2.0	0.023	10.9	LOS B	0.1	0.8	0.12	0.87	46.3	
3	R	19	2.0	0.023	10.8	LOS B	0.1	0.8	0.12	0.92	46.5	
Approac	h	21	2.0	0.023	10.8	LOS B	0.1	0.8	0.12	0.91	46.5	
East: DO	DCK ST	RE										
4	L	21	2.0	0.017	8.2	LOS A	0.0	0.0	0.00	0.76	49.0	
5	Т	10	0.0	0.017	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	31	1.3	0.017	5.5	LOS A	0.0	0.0	0.00	0.51	52.2	
West: D	OCK S	TR W										
11	Т	8	2.0	0.006	0.1	LOS A	0.0	0.3	0.10	0.00	57.8	
12	R	2	2.0	0.006	8.5	LOS A	0.0	0.3	0.10	0.94	48.6	
Approac	h	10	2.0	0.006	2.0	LOS A	0.0	0.3	0.10	0.21	55.4	
All Vehic	les	63	1.7	0.023	6.7	NA	0.1	0.8	0.06	0.59	50.6	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

The specified Design Life Target was not reached by the final year in the Design Life Analysis. Results are reported for the final year.

Processed: 01 June 2021 05:59:52 SIDRA INTERSECTION 5.0.5.1510

Unlicensed Trial Version

Copyright © 2000-2010 Akcelik & Associates Pty Ltd v.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way) Design Life Analysis (Practical Capacity): Results for 5 years

Processed: 01 June 2021 05:59:52 SIDRA INTERSECTION 5.0.5.1510 الالالمحمدية عنه المحمدية عنه المحمدية عنه المحمدية المحمدية المحمدية المحمدية المحمدية المحمدية المحمدية المحمد Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

LOS A

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way) Design Life Analysis (Practical Capacity): Results for 5 years

Processed: 01 June 2021 06:02:30 SIDRA INTERSECTION 5.0.5.1510 الالالمحمدية عنه المحمدية عنه المحمدية عنه المحمدية المحمدية المحمدية المحمدية المحمدية المحمدية المحمدية المحمد Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

LOS A

INTERSECTION B

Stop (Two-Way)

Design Life Analysis (Practical Capacity): Results for 5 years

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: D	DINGAK	A STREET										
1	L	2	2.0	0.019	10.9	LOS B	0.1	0.6	0.11	0.87	46.3	
3	R	14	2.0	0.019	10.8	LOS B	0.1	0.6	0.11	0.93	46.5	
Approac	h	17	2.0	0.018	10.8	LOS B	0.1	0.6	0.11	0.92	46.5	
East: DO	DCK ST	TR E										
4	L	17	2.0	0.014	8.2	LOS A	0.0	0.0	0.00	0.77	49.0	
5	Т	9	2.0	0.014	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	26	2.0	0.014	5.2	LOS A	0.0	0.0	0.00	0.49	52.5	
West: D	OCK S	TR W										
11	Т	9	2.0	0.007	0.1	LOS A	0.0	0.3	0.09	0.00	58.0	
12	R	4	2.0	0.007	8.5	LOS A	0.0	0.3	0.09	0.92	48.6	
Approac	h	13	2.0	0.007	2.4	LOS A	0.0	0.3	0.09	0.25	55.1	
All Vehic	les	56	2.0	0.018	6.2	NA	0.1	0.6	0.06	0.56	51.1	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

The specified Design Life Target was not reached by the final year in the Design Life Analysis. Results are reported for the final year.

Processed: 01 June 2021 06:02:30 Copyright © 2000-2 SIDRA INTERSECTION 5.0.5.1510 <u>www.sidrasolutions</u> Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip

Unlicensed Trial Version

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com NTERSECTION.sip

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way)

LOS A

. ----

Processed: 01 June 2021 05:45:27 SIDRA INTERSECTION 5.0.5.1510 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA ---SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION B Stop (Two-Way)

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: N	/ANAK	A STREET										
1	L	2	0.0	0.004	10.7	LOS B	0.0	0.1	0.03	0.95	46.4	
3	R	2	0.0	0.004	10.5	LOS B	0.0	0.1	0.03	1.00	46.5	
Approac	h	4	0.0	0.004	10.6	LOS B	0.0	0.1	0.03	0.97	46.4	
East: DO	DCK ST	IR E										
4	L	3	0.0	0.002	8.2	LOS A	0.0	0.0	0.00	0.74	49.0	
5	Т	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	4	0.0	0.002	6.1	LOS A	0.0	0.0	0.00	0.55	51.3	
West: D	OCK S	TR W										
11	Т	2	0.0	0.004	0.0	LOS A	0.0	0.2	0.03	0.00	59.2	
12	R	4	0.0	0.004	8.5	LOS A	0.0	0.2	0.03	0.79	48.5	
Approac	h	6	0.0	0.004	5.6	LOS A	0.0	0.2	0.03	0.52	51.7	
All Vehic	cles	15	0.0	0.004	7.2	NA	0.0	0.2	0.02	0.66	50.0	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 05:45:27 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com
Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip
Unlicensed Trial Version

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way)

LOS A

Processed: 01 June 2021 05:46:49 SIDRA INTERSECTION 5.0.5.1510 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION B Stop (Two-Way)

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: N	/ANAK	A STREET										
1	L	1	0.0	0.002	10.7	LOS B	0.0	0.1	0.03	0.95	46.4	
3	R	1	0.0	0.002	10.5	LOS B	0.0	0.1	0.03	1.00	46.5	
Approac	h	2	0.0	0.002	10.6	LOS B	0.0	0.1	0.03	0.97	46.4	
East: DO	DCK ST	IR E										
4	L	3	0.0	0.002	8.2	LOS A	0.0	0.0	0.00	0.74	49.0	
5	Т	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	4	0.0	0.002	6.1	LOS A	0.0	0.0	0.00	0.55	51.3	
West: D	OCK S	TR W										
11	Т	1	0.0	0.002	0.0	LOS A	0.0	0.1	0.03	0.00	59.2	
12	R	2	0.0	0.002	8.5	LOS A	0.0	0.1	0.03	0.79	48.5	
Approac	h	3	0.0	0.002	5.6	LOS A	0.0	0.1	0.03	0.52	51.7	
All Vehic	les	9	0.0	0.002	7.0	NA	0.0	0.1	0.02	0.64	50.3	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 05:46:49 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way)

Processed: 01 June 2021 06:05:45 Copyright © 2000-2010 Ak SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION B Stop (Two-Way)

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: N	1ANAKA	STREET										
1	L	3	2.0	0.006	10.8	LOS B	0.0	0.2	0.07	0.92	46.4	
3	R	3	2.0	0.006	10.6	LOS B	0.0	0.2	0.07	0.97	46.5	
Approac	h	6	2.0	0.006	10.7	LOS B	0.0	0.2	0.07	0.95	46.4	
East: DC	OCK ST	RE										
4	L	4	2.0	0.007	8.2	LOS A	0.0	0.0	0.00	0.89	49.0	
5	Т	8	2.0	0.007	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approac	h	13	2.0	0.007	2.7	LOS A	0.0	0.0	0.00	0.30	55.8	
West: Do	OCK ST	RW										
11	Т	7	2.0	0.008	0.0	LOS A	0.0	0.3	0.06	0.00	58.6	
12	R	5	2.0	0.008	8.6	LOS A	0.0	0.3	0.06	0.87	48.6	
Approac	h	13	2.0	0.008	3.6	LOS A	0.0	0.3	0.06	0.36	54.0	
All Vehic	les	32	2.0	0.008	4.7	NA	0.0	0.3	0.04	0.45	53.0	

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:05:45 Copyright © 2000-2010 A SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Level of Service Method: Delay (HCM)

INTERSECTION B Stop (Two-Way)

Processed: 01 June 2021 06:07:53 Copyright © 2000-2010 Akc SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

INTERSECTION B Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: MANAKA STREET											
1	L	2	2.0	0.004	10.7	LOS B	0.0	0.1	0.06	0.93	46.4
3	R	2	2.0	0.004	10.5	LOS B	0.0	0.1	0.06	0.98	46.5
Approac	h	4	2.0	0.004	10.6	LOS B	0.0	0.1	0.06	0.95	46.4
East: DC	OCK ST	RE									
4	L	4	2.0	0.006	8.2	LOS A	0.0	0.0	0.00	0.86	49.0
5	Т	6	2.0	0.006	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach		11	2.0	0.006	3.3	LOS A	0.0	0.0	0.00	0.35	55.0
West: Do	OCK ST	RW									
11	Т	5	2.5	0.005	0.0	LOS A	0.0	0.2	0.05	0.00	58.8
12	R	3	2.0	0.005	8.5	LOS A	0.0	0.2	0.05	0.89	48.6
Approac	h	8	2.3	0.005	3.2	LOS A	0.0	0.2	0.05	0.34	54.5
All Vehicles		23	2.1	0.006	4.6	NA	0.0	0.2	0.03	0.45	53.1

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: 01 June 2021 06:07:53 Copyright © 2000-2010 A SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: C:\Users\Unathi\Desktop\MFUNDO\DOORPAN INTERSECTION.sip Unlicensed Trial Version

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

