

TOWNSHIP ESTABLISHMENT FOR PROPOSED POPO MOLEFE INFORMAL SETTLEMENT (BOITEKONG EXT 39) IN RUSTENBURG MUNICIPALITY

CLIENT:

AKHA MADUNA PROPERTY DEVELOPERS 14 LIVING STONE STREET VRYBURG

PREPARED BY:

CC GROUP (PTY) LTD 251 TIMBAVATI STREET MORELETA PARK PRETORIA e: info@ccgroupafrica.com c: 078 219 3946 w: www.ccgroupafrica.com

> Rev 01 11th November 2019

CC Group Proprietary Limited

TABLE OF CONTENTS

DECLARATION
1. INTRODUCTION
1.1. BACKGROUND
1.2. METHODOLOGY
1.3. STUDY AREA
2. EXISTING TRAFFIC AND OPERATION SCENARIO
3. TRAFFIC DEMAND
3.1. Existing Traffic Condition
3.2. Existing Road Condition 10
3.3. Traffic Redistribution 10
3.4. Traffic Analysis Criteria 11
3.4.1. Peak Hours
3.4.2. Peak Hour Factor 11
3.4.3. Study Years 11
3.5. Existing Traffic Counts 12
4. FUTURE OPERATING CONDITIONS OF INTERSECTION
5. PUBLIC TRANSPORT AND PARKING 21
5.1. PUBLIC TRANSPORT 21
5.2. PROPOSED ROAD IMPROVEMENTS 21
6. TRAFFIC ASSESSMENT 21
6.1. Traffic Operations 21
6.2. Access
6.2.1. Sight Distances and Visibility 22
7. CONCLUSIONS AND RECOMMENDATIONS

7.1. RECOMMENDATIONS	. 23
ANNEXURE A – ON SITE PHOTOS	. 24
ANNEXURE B – MANUAL COUNTS	. 26
ANNEXURE C – SIDRA ANALYSIS	. 30

| E-mail: info@ccgroupafrica.com | | Website: www.ccgroupafrica.com |

List of Tables

TABLE 1– TRIP GENERATION	10
TABLE 2: WEEKDAY (MONDAY) EXISTING TRAFFIC CONDITIONS AM PEAK.	13
TABLE 3: WEEKDAY (MONDAY) EXISTING TRAFFIC CONDITIONS PM PEAK.	14
TABLE 4: WEEKDAY (MONDAY) EXISTING TRAFFIC CONDITIONS AM PEAK.	15
TABLE 5: PERFORMANCE MEASURES FOR SIGNALISED INTERSECTIONS	16
TABLE 6 MONDAY 2024 FUTURE TRAFFIC CONDITIONS AM PEAK.	17
TABLE 7: MONDAY 2024 FUTURE TRAFFIC CONDITIONS PM PEAK	18
TABLE 8: MONDAY 2024 FUTURE TRAFFIC CONDITIONS PM PEAK.	19
TABLE 9: MONDAY 2024 FUTURE TRAFFIC CONDITIONS PM PEAK	20
TABLE 10:Shoulder sight distance requirements (metres)	22

List of Figures

FIGURE 1 - INTERSECTION OVERVIEW AND LAYOUT	. 7
Figure 2 - Descriptive intersection Layout	. 8
FIGURE 3– R510 AND MOLAPO EXISTING INTERSECTION LAYOUT	12

DECLARATION

I certify that this TRAFFIC IMPACT STUDY – **POPO MOLEFE INFORMAL SETTLEMENT (BOITEKONG EXT 39) IN RUSTENBURG LOCAL MUNICIPALITY** was prepared by me according to the requirements of the South African Traffic and Site Traffic Assessment Manual and I have experience and training in the field of traffic and transportation engineering.

- file

:

:

2

2

5

Signed.....

Date: 11 November 2019

Name	
Qualification	
ECSA Registration #	
Company	
Cell	

Abraham Mukokanduku (PrEngTech; PrCPM) B.Sc. Hons Civil Engineering 201570199 C C Group (Pty) Ltd +27 83 470 2027

1. INTRODUCTION

1.1. BACKGROUND

CC Group (Pty) Ltd was appointed by Akha Maduna Property Developers (Pty) Ltd in August 2019 to conduct a traffic impact assessment for Township Establishment for proposed Popo Molefe Informal Settlement (Boitekong Ext 39) in Rustenburg Local Municipality, within the Bojanala Platinum District Municipality in the North West Province.

There is an informal settlement on the proposed property and 4,300 stands have been proposed by the Town Planners for the development – in which 4,237 stands are residential. CC Group (Pty) Ltd conducted traffic assessment at three traffic intersections as follows:

- Intersection A R510 & Molapo Drive (25°38'02.09"S; 27°15'52.26"E),
- Intersection B Molapo Drive & Egoli Street (25°38'01.42"S; 27°17'07.42"E), and
- Intersection C- Molapo Drive & Unknown Gravel Rd (25°38'00.13"S; 27°17'35.34 "E).
 for a one day manual count (Monday)

1.2. METHODOLOGY

The guidelines as outlined in the TMH 16 Vol 1 – South African traffic Impact and Site Assessment Manual were followed. Guidelines as set by the Rustenburg Local Municipality were not adopted.

In detail, the methodology followed is outlined below:

- From the one-day manual traffic count conducted at Intersection A, Intersection B and Intersection C on a weekday (Monday) current traffic flow patterns were obtained, affected accesses were noted;
- Based on TMH 17 Vol. 1 South African Trip Data Manual, trips that will be generated by the development using applicable trip generation rates as specified in the said manual were noted;
- Taking cognisance of the proposed traffic volumes existing routes were assessed against negative impacts in terms of traffic flow;
- Traffic operation, intersection safety and the existing road condition were assessed;
- Taking into account the major findings of this study conclusions and recommendations were made.

1.3. **STUDY AREA**

The informal settlement is on the west of Boitekong Ext 9, 10 and 11 with the main access from Molapo Drive.

Figure 1 - Intersection Overview and Layout

Intersection C- Molapo and Unknown Road

The following intersections were investigated:

- R510 and Molapo Drive a Three Way-signal Controlled-Junction,
- Molapo Drive and Egoli Street a One Way-Stop Sign Controlled-Junction,
- Molapo Drive and Intersection at 25°38'00,13"S; 27°17'35.34 "E a Three Give-Way Sign Controlled - Junction,

Website: www.ccgroupafrica.com |

• Site Access against Generated traffic.

The Intersection, R510 and Molapo Drive, connects to the proposed development, which is a direct route to Popo Molefe from Rustenburg, hence, a very busy intersection. By mere visual assessment on site there is no need to upgrade the signal-controlled intersection. From Rustenburg there are dedicated left and right turn lanes, with the dedicated green time for right turn. Note that the traffic lights were not working at the time of the Traffic Assessment on site.

Figure 2 - Descriptive intersection Layout

The main intersection under investigation is a 3-Give way-sign controlled-junction, with Molapo Drive being the main arterial road serving Popo Molefe and the greater part of Boitekong Communities (ext. 9, 10 and 11).On the proposed location for the development, there are informal shelters and shelters for street vendors.

In general, the area is currently being utilised for both residential and commercial purposes, with social amenities around the study area i.e. several guesthouses and Schools along the western side in close proximity to Popo Molefe Proposed Development.

Molapo Drive connects to R510, which gives access to other communities of big business interest such as Boitekong Ext 9,10 and 11. It can be assumed that any developments in those areas will generate more traffic on R510 and subsequently, at lower margins on Molapo Drive.

| E-mail: info@ccgroupafrica.com | | Website: www.ccgroupafrica.com |

However, there is a gravel road, referred to as Unknown Rd (Gravel Rd on Figure 1 above), at the North Eastern Bordering the proposed development from Molapo Drive, leading to the rest of the development and a Cemetery, which can be the preferred access to serve the proposed development. These Junctions will be analysed under traffic generated analysis, as assumed to be the preferred access and how much impact will they have on the main Junction A i.e. Cnr R510 and Molapo Drive.

There is no construction noticed that is happening besides the need of a proper taxi rank in the area for easy access to public transportation refer to Annexure A – Onsite Photos.

2. EXISTING TRAFFIC AND OPERATION SCENARIO

Traffic counts over the one-day period were conducted along both the adjacent roads on the 28th October 2019. The manual counts are attached on Annexure B and Sidra Analysis was conducted on Annexure C.

The R510/Molapo Drive junction is a signal-controlled intersection with concrete paved sidewalks on semi-mountable kerbs for stormwater drainage on tri-lateral-sides of the intersection. There is a semi-mountable kerbing along the preferred access road for stormwater.

Molapo Drive is a single carriageway with one lane in each direction, with a dedicated right turn lane with assumed dual 45sec green time and 65 sec red-time with R510. Also to note is the existing pedestrian walkways and no covered public transport facilities along the R510 to the North and South of the intersection. Figure 2 above illustartes the layout of the intersection together with associated facilities.

3. TRAFFIC DEMAND

3.1. Existing Traffic Condition

There is a total of 4 565 vehicles traversing on Molapo Drive with a total of 2 420 vehicles from Rustenburg side for Monday, and 271 veh/day from Kanana with a huge traffic flow of 1687 veh/day R510 turning right onto Molapo Drive, and a low traffic flow of 189 veh/day from Molapo Drive towards Kanana area. An average growth rate of 3,5% per annum for

urban area is utilised in the general traffic analysis. The R510 is classified as RISFSA Class R3 – Minor Arterial Road.

3.2. Existing Road Condition

The R510 and Molapo Drive intersection marks the first major intersection from Rustenburg towards Kanana on the provincial road R510.

In terms of cracking, Molapo Drive and the adjacent Egoli Street can be classified, as low to very low that is <4%.

The Visual Condition Index categorises the extent of pavement distress with low % indicating high and visible distress and 100% indicating no signs of visual distress and hence road pavement in poor to very poor condition. The VCI can be assumed to be below 40% and hence the road pavement is deemed in poor condition and upgrades to road pavement envisaged and a must to cater for the Proposed Popo Molefe development.

No AADT information obatined from a Permanent counting station along R510 hence the manual count AADT attached here-in under Annexure B below which approximately 4565veh/day were used for analysis.

3.3. Traffic Redistribution

For 4,237 units proposed onto a below 2000veh/day/lane (i.e. 1876 vehicle flow), it is assumed that most residents will walk and averagely 60% will use private cars, and 5 508 veh/day including attracted and diverting will be generated. However, a redistribution of traffic is assumed to be of higher magnitude given the nature of development and its close proximity to intended potential dwellers in the informal settlement.

With reference to SATDM and TMH 17, the expected trip generation rate is below 65%, refer to Table 1 below.

Description	Size	Trip (Rate per s	Generation ize	In / Out		Trips	
		AM	PM	AM	PM	AM	PM
Popo Molefe Informal Settlement	4,237 sites with 6 people /site	0.60	0.60	65:35	35:65	2 754	2 754
Total						5 5	808

Table 1– Trip generation

| E-mail: info@ccgroupafrica.com | | Website: www.ccgroupafrica.com |

3.4. Traffic Analysis Criteria

Quantification of the traffic operational conditions has been undertaken using appropriate technology with the results of the analysis for the design peak periods under existing conditions being tabulated below showing the traffic volumes used in the analysis. The criteria for assessment are principally delay and volume to capacity ratio (V/C Ratio). A V/C ratio of say 0.5 would represent 50% spare capacity and a ratio of 1.0 would represent conditions where the road or movement is operating at its maximum capacity (i.e. actual volume equals capacity), hence suggesting an intersection upgrade.

The concept of *levels of service* uses qualitative measures that characterize operational conditions within a traffic stream and their perception by motorists and passengers

Delay is in turn expressed in terms of Level of Service (LOS). Level of service (LOS) is a commonly used traffic engineering criteria for assessing the quality of the traffic conditions on a road and can be applicable to two-way flow or specific single directional movements. Level of Service is a qualitative measure describing operational conditions with a traffic stream and their perception/tolerance by the driver and is stated in terms of a scale from A through F, with A displaying the highest quality and F the lowest, a point at which excessive delays occur. The LOS is dependent on certain average delay thresholds when applied to intersections.

3.4.1. Peak Hours

Peak Hours were noted to coincide with morning and afternoon peak periods as below:

- Morning Peak hours: 07:00 -09:00hrs and
- Afternoon Peak hours: 15:00 16:45hrs

3.4.2. Peak Hour Factor

A peak hour factor of 0.95 is utilised for analysis.

3.4.3. Study Years

The following years are noted for this study:

- 2019 Base Year; and
- 2024 Design horizon

A five-year limit is intended for short term planning, no long term planning i.e. was analysed.

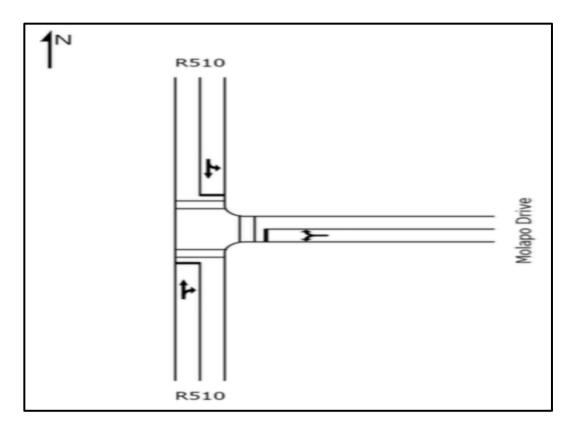


Figure 3– R510 and Molapo Existing intersection Layout

3.5. Existing Traffic Counts

The intersections were analysed in their current situation (layout). The results of the analysis of the operational efficiency of the selected intersections are tabulated below.

Table 2: Weekday (Monday) existing traffic conditions AM peak.

MOVEMENT SUMMARY

Site: R510 & Molapo DR- AM PEAK 1

R510 & Molap Dr AM Peak Signals - Fixed Time Cycle Time = 40 seconds (Practical Cycle Time)

Mov ID	Tum	Demand Flow	нν	Deg. Satn	Average	Level of	95% Back	of Queue Distance	Prop.	Effective Stop Rote	Average
	T GITT	veh/h	%	v/c	Delay sec	Service	Vehicles veh	m	Queued	Stop Rate per veh	Speed km/t
South: F	R510										
2	т	321	5.0	0.592	9.9	LOSA	8.2	60.1	0.82	0.71	43.4
3	R	97	5.0	0.592	18.6	LOS B	8.2	60.1	0.82	0.89	42.0
Approac	ch	418	5.0	0.593	11.9	LOS B	8.2	60.1	0.82	0.75	43.1
East: Mo	olapo Dri	ve									
4	L	72	0.0	0.150	20.5	LOS C	1.8	12.6	0.79	0.75	38.3
6	R	5	0.0	0.151	20.8	LOS C	1.8	12.6	0.79	0.76	38.3
Approac	ch	77	0.0	0.150	20.5	LOS C	1.8	12.6	0.79	0.75	38.3
North: R	8510										
7	L	75	5.0	0.414	17.3	LOS B	6.2	45.0	0.74	0.87	42.7
8	т	254	5.0	0.414	8.9	LOSA	6.2	45.0	0.74	0.63	44.8
Approac	ch	328	5.0	0.414	10.8	LOS B	6.2	45.0	0.74	0.68	44.3
All Vehic	cles	823	4.5	0.593	12.3	LOS B	8.2	60.1	0.78	0.72	43.

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

The vehicle load rate is 823veh/hr for the AM peak, with 5% Heavy Traffic at an average delay of 12.3sec for an average speed of 43.1km/h culminating to LOS B.

Table 3: Weekday (Monday) existing traffic conditions PM peak.

MOVEMENT SUMMARY

Site: R510 & Molapo Drive PM Peak

R510 & Molapo Drive PM PEAK Signals - Fixed Time Cycle Time = 40 seconds (Practical Cycle Time)

Mov ID	Turn	Demand Flow veh/h	нv %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/f
South: R	1510	VOIVII	70	1/6	800		Ven			perven	KITUT
2	т	392	5.0	0.705	12.0	LOS B	10.5	76.5	0.88	0.82	41.0
3	R	97	5.0	0.704	20.6	LOS C	10.5	76.5	0.88	0.95	40.6
Approac	h	488	5.0	0.705	13.7	LOS B	10.5	76.5	0.88	0.85	41.4
East: Mo	lapo Dri	ve									
4	L	2	0.0	0.105	20.3	LOS C	1.3	8.8	0.78	0.73	38.2
6	R	52	0.0	0.105	20.5	LOS C	1.3	8.8	0.78	0.74	38.2
Approac	h	54	0.0	0.105	20.5	LOS C	1.3	8.8	0.78	0.74	38.2
North: R	510										
7	L	57	5.0	0.299	16.7	LOS B	4,4	32.1	0.70	0.87	43.0
8	т	180	5.0	0.299	8.4	LOSA	4.4	32.1	0.70	0.58	45.4
Approac	h	237	5.0	0.299	10.4	LOS B	4.4	32.1	0.70	0.65	44.1
All Vehic	les	779	4.7	0.705	13.2	LOS B	10.5	76.5	0.81	0.78	42.1

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

P1 Across S approach 53 14.5 LOS B 0.1 0.1 0.85 0.85 P3 Across E approach 53 9.8 LOS A 0.0 0.0 0.70 0.70 P5 Across N approach 53 14.5 LOS B 0.1 0.1 0.85 0.85 All Pedestrians 159 12.9 0.80 0.80 0.80	Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P5 Across N approach 53 14.5 LOS B 0.1 0.1 0.85 0.85 All Pedestrians 159 12.9 0.80 0.80 0.80 evel of Service (Aver. Int. Delay): LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM).	P1	Across S approach			LOS B			0.85	
	P3	Across E approach	53	9.8	LOS A	0.0	0.0	0.70	0.70
evel of Service (Aver. Int. Delay): LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM).	P5	Across N approach	53	14.5	LOS B	0.1	0.1	0.85	0.85
	All Ped	estrians	159	12.9				0.80	0.80
				and on success	a delay for	all nodestrian music	wements I O	S Method: D	elay (HCM)

The vehicle load rate is 779veh/hr for the PM peak, with 5% Heavy Traffic at an average delay of 13.2sec for an average speed of 42.1km/h culminating to LOS B.

The Volume/Capacity ratio indicates a maximum of 0.6 (**Lowest LOS C**) which shows the intersection operationg above 60%, and hence no need for an intersection upgrade. However, based on the safety issues noted during counting there is need for a raised median and a painted/lined zebra crossing.

Table 4: Weekday (Monday) existing traffic conditions AM peak.

NON	EME	NT SUM	MAR	Site: Molapo Drive & Unkov Road 1AM PEA							
	Drive & U vo-Way)	Jnkown Road	11								
Mover	ent Per	formance - V	/ehicles								
Mov ID	Tum	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Jnkown R		~	v//6	805					por von	KIIGII
1	L	23	0.0	0.065	11.1	LOS B	0.3	2.2	0.04	0.93	46.0
3	R	37	0.0	0.065	10.9	LOS B	0.3	2.2	0.04	0.99	46.2
Approac	ch	60	0.0	0.065	11.0	LOS B	0.3	2.2	0.04	0.97	46.1
East: M	olapo Driv	/e									
4	L	1	0.0	0.003	8.2	LOSA	0.0	0.0	0.00	0.98	49.0
5	т	5	0.0	0.003	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approad	sh	6	0.0	0.003	1.4	LOSA	0.0	0.0	0.00	0.16	57.8
West M	Iolapo Dri	ve									
11	т	68	0.0	0.039	0.0	LOSA	0.3	1.8	0.04	0.00	59.1
12	R	5	0.0	0.039	8.5	LOSA	0.3	1.8	0.04	1.10	48.7
Approad	sh	74	0.0	0.039	0.6	LOSA	0.3	1.8	0.04	0.08	58.2
	cles	140	0.0	0.065	5.1	NA	0.3	2.2	0.04	0.46	52.3

LOS (Aver. Int. Delay); NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

MOVEMENT SUMMARY

Site: Molapo Drive & Unkwon Rd 2 AM PEAK

Molapo Drive & Unkown Rd 2 AM Peak Stop (Two-Way)

Mov ID	Turn	Demand Flow veh/h	нv %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Jnkown F		70	110	505					per veri	KITET
1	L	6	0.0	0.010	10.8	LOS B	0.0	0.3	0.09	0.91	46.3
3	R	4	0.0	0.010	10.6	LOS B	0.0	0.3	0.09	0.96	46.5
Approac	sh	11	0.0	0.010	10.7	LOS B	0.0	0.3	0.09	0.93	46.4
East: M	olapo Dri	ve									
4	L	4	0.0	0.013	8.2	LOSA	0.0	0.0	0.00	0.98	49.0
5	т	20	0.0	0.013	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approad	sh	24	0.0	0.013	1.4	LOSA	0.0	0.0	0.00	0.17	57.3
West: M	lolapo Dr	ive									
11	т	5	0.0	0.004	0.1	LOSA	0.0	0.2	0.09	0.00	58.1
12	R	2	0.0	0.004	8.5	LOSA	0.0	0.2	0.09	0.92	48.6
Approac	sh	7	0.0	0.004	2.5	LOSA	0.0	0.2	0.09	0.26	55.0
All Vehk	cles	42	0.0	0.013	3.9	NA	0.0	0.3	0.04	0.38	54.0

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Website: www.ccgroupafrica.com |

The vehicle load rate is 140veh/hr for the AM peak for Molapo and Egoli Street, with 0% Heavy Traffic at an average delay of 5.1sec for an average speed of 52.3km/h culminating to **LOS A.** It will be asumed that the AM and PM peak are directly proportional.The vehicle load rate is 42veh/hr for the AM peak for Molapo and Unknown Gravel Road, with 0% Heavy Traffic at an average delay of 3.9sec for an average speed of 54.0km/h culminating to **LOS A.**

There is no need to upgrade the intersections however, there is need to upgrade the road pavement condition as it is in poor to very poor state and ultimately the intersections.

4. FUTURE OPERATING CONDITIONS OF INTERSECTION

These assumptions were adopted:

- A phf factor of 0,95 for capacity analysis
- Queue lengths indicated are actually average lenghts.

For signalised intersections the following will apply:

Table 5: Performance measures for Signalised intersections.

	Maximum Volume/Capacity	Minimum Level of Service		
Period	Left Turn /Through (Straight)	Right Turn		
15min Peak	90%	95%		

3.1 Traffic

Traffic growth is difficult to predict in this area. It is clear that the area has potential for residential and commercial development. Whilst traffic growth has been steady in recent years it is unlikely to continue at this rate in the medium to long-term. For this assessment, a 3,5% traffic growth over a 5-year horizon (2019 to 2024) has been applied to the existing traffic. It was noted that the traffic trends going forward will be much the same as at present with the addition of traffic growth. Only traffic for the day (Monday), as considered the highest was used for future traffic interpolation.

Table 6 Monday 2024 Future traffic conditions AM peak.

MOVEMENT SUMMARY

Site: 510 & MOLAPO DRIVE FUTURE AM PEAK

R510 & Molapo Dr Future AM PEAk

Signals - Fixed Time Cycle Time = 50 seconds (Practical Cycle Time)

Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: F	R510	Vorteri		W/M			-	m		per veh	kmvt
2	т	417	5.0	0.780	15.0	LOS B	15.5	113.4	0.88	0.88	39.0
3	R	183	5.0	0.780	23.6	LOS C	15.5	113.4	0.88	1.00	38.
Approac	0h	600	5.0	0.780	17.7	LOS B	15.5	113.4	0.88	0.02	38.
East: M	OLAPO (OR									
4	L	215	5.0	0.719	29.8	LOS C	9.4	68.9	0.97	0.89	33.0
6	R	95	5.0	0.719	30.0	LOS C	9.4	68.9	0.97	0.89	33.
Approac	ph	309	5.0	0.719	29.8	LOS C	9.4	68.9	0.97	0.89	33.
North: R	8510										
7	L	142	5.0	0.297	15.8	LOS B	5.4	39.6	0.60	0.84	43.0
8	т	142	5.0	0.297	7.4	LOSA	5.4	39.6	0.60	0.51	46.
Approac	oh	284	5.0	0.297	11.6	LOS B	5.4	39.6	0.60	0.67	44.
All Vehic	cies	1194	5.0	0.780	19.4	LOS B	15.5	113.4	0.84	0.85	30.

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

		Demand	8 Average	Level of	Average Back	of Qualia	Prop.	Effective
Mov ID	Description	Flow ped/h	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
P1	Across 5 approach	53	18.5	LOS B	0.1	0.1	0.86	0.86
P3	Across E approach	53	8.4	LOSA	0.0	0.0	0.58	0.58
PS	Across N approach	63	18.5	LOS B	0.1	0.1	0.86	0.86
All Pede	ostrians	150	15.1				0.77	0.77

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual pedestrian movements: Delay (HCM).

Table 7: Monday 2024 Future traffic conditions PM peak.

MOVEMENT SUMMARY

Site: R510 & MOLAPO DRIVE FUTURE PM PEAK

R510 & MOLAPO DR FUTURE PM PEAK

Signals - Fixed Time Cycle Time = 60 seconds (Practical Cycle Time)

Mov ID	Tum	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/
South:	R510			110							
2	т	509	5.0	0.816	17.2	LOS B	20.8	151.6	0.87	0.89	37.3
3	R	183	5.0	0.816	25.8	LOS C	20.8	151.6	0.87	1.03	36.1
Approa	ch	693	5.0	0.816	19.4	LOS B	20.8	151.6	0.87	0.93	37.5
East: M	OLAPO (DR									
4	L	155	5.0	0.791	38.4	LOS D	10.1	73.4	1.00	0.93	29.
6	R	105	5.0	0.791	38.7	LOS D	10.1	73.4	1.00	0.93	29.
Approa	ch	260	5.0	0.791	38.5	LOS D	10.1	73.4	1.00	0.93	29.
North: F	R510										
7	L	108	5.0	0.390	14.6	LOS B	8.3	60.8	0.54	0.91	44.
8	т	340	5.0	0.390	6.3	LOSA	8.3	60.8	0.54	0.47	48.
Approa	ch	448	5.0	0.390	8.3	LOSA	8.3	60.8	0.54	0.58	47.
All Vehi	cles	1401	5.0	0.816	19.4	LOS B	20.8	151.6	0.79	0.82	38.

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Moven	nent Performance -	Pedestrian						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	Across S approach	53	24,3	LOS C	0.1	0.1	0.90	0.90
P3	Across E approach	53	6.5	LOS A	0.0	0.0	0.47	0.47
P5	Across N approach	53	24.3	LOS C	0.1	0.1	0.90	0.90
All Pede	estrians	159	18.4				0.76	0.76

Level of Service (Aver. Int. Delay); LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement); LOS C. LOS Method for individual pedestrian movements: Delay (HCM).

The vehicle load rate is 1401veh/hr for the PM peak, with 5% Heavy Traffic at an average delay of 19.4sec for an average speed of 38.0km/h culminating to LOS B, and at peaks the LOS drops to LOS D. There will be an adition of 622 veh/hr.

Site: Molapo Dr & Unkown Rd 1

FUTURE AM PEAK

Table 8: Monday 2024 Future traffic conditions PM peak.

MOVEMENT SUMMARY

Molapo Dr & Unkwon Rd 1 Future AM PEAK Stop (Two-Way)

Mov ID	Tum	Demand Flow veh/h	нv %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/t
South: u	unkown R	d Southbound									
1	L	79	5.0	0.238	14.0	LOS B	1.2	8.9	0.43	0.84	44.3
3	R	79	5.0	0.238	13.8	LOS B	1.2	8.9	0.43	1.00	44.4
Approac	ch	158	5.0	0.238	13.9	LOS B	1.2	8.9	0.43	0.92	44.3
East: M	olapo Eas	tbound									
4	L	26	5.0	0.095	8.3	LOSA	0.0	0.0	0.00	1.00	49.0
5	т	153	5.0	0.096	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	179	5.0	0.095	1.2	LOSA	0.0	0.0	0.00	0.15	58.
West M	lolapo We	stbound									
11	т	151	5.0	0.132	0.8	LOSA	1.0	7.0	0.32	0.00	53.
12	R	63	5.0	0.132	9.4	LOS A	1.0	7.0	0.32	0.86	48.
Approac	ch	214	5.0	0.132	3.4	LOSA	1.0	7.0	0.32	0.25	52.
All Vehic	cles	551	5.0	0.238	5.7	NA	1.2	8.9	0.25	0.41	51.

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

There must be noted that an increase on veh/hr from 140 to 551 is noted for future.

Site: Molapo Dr & Unkwon Rd 2

FUTURE AM PEAK

Table 9: Monday 2024 Future traffic conditions PM peak.

MOVEMENT SUMMARY

Molapo Dr & Unkwn Rd 2 Stop (Two-Way)

Mover	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Jnkwon S	Southbound									
1 3	L R	38 26	0.0 0.0	0.066 0.066	11.1 10.9	LOS B LOS B	0.3 0.3	2.2 2.2	0.16 0.16	0.88 0.94	46.2 46.4
Approac	ch	64	0.0	0.066	11.0	LOS B	0.3	2.2	0.16	0.90	46.3
East: M	olapo Dr	Eastbound									
4	L	11	0.0	0.027	8.2	LOSA	0.0	0.0	0.00	0.96	49.0
5	Т	42	0.0	0.027	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	53	0.0	0.027	1.6	LOSA	0.0	0.0	0.00	0.19	57.4
West: M	lolapo Dr	Westbound									
11	Т	21	0.0	0.021	0.2	LOSA	0.1	0.9	0.14	0.00	56.9
12	R	14	0.0	0.021	8.6	LOSA	0.1	0.9	0.14	0.84	48.5
Approac	bh	35	0.0	0.021	3.5	LOSA	0.1	0.9	0.14	0.33	53.3
All Vehi	cles	152	0.0	0.066	6.0	NA	0.3	2.2	0.10	0.53	51.3

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Though the LOS is stil A it must be noted that an increase on veh/hr from **40** to **152** is noted for future, and this inevitably calls for intersection upgrade to a two-way stop with right of way to traffic going straight along. However, for an average speed of 51.3km/hr traffic calming measures ought to be implored in terms of raised zebra crossing or rumble strips. It is also proposed that traffic circles for Intersection B and C be envisaged and included in the municipal master plan, for implementation in the 2023/24 financial year.

5. PUBLIC TRANSPORT AND PARKING

5.1. PUBLIC TRANSPORT

The proposed development will generate and attract public transport and provision must be made. However, public transport will or should be catered for within the municipal development. In light of the above, bus bays should be constructed.

Pedestrian movement is existing currently on the intersections. No further upgrades are needed due to the proposed developments, however safety issues are a concern to jaywalking by the residents mainly on Molapo Drive on the westernside of the intersection, a raised zebra crossing or barricaded walkway is proposed, this proposal is for future municipal development planning.

5.2. PROPOSED ROAD IMPROVEMENTS

There is a need for major improvements on and along Molapo Drive:

- The road width to be min 3.5m plus a 0.4m surfaced shoulder and 1.6m gravel shoulder;
- All culverts to have a raised wing-wall;
- A public taxi rank be constructed along Molapo Drive;
- Two (2) No. Traffic circles proposed for 2024 future year;
- Upgrade of existing traffic circle by the Sunrise View Primary and Secondary School;
- A two-way stop be upgraded at Molapo drive and Egoli street junction;
- A two-way stop be introduced at Molapo drive and Unknown Gravel junction; and
- The unknown gravel be upgraded to a paved or surfaced road as it is envisaged as the main tributary for the proposed development.

6. TRAFFIC ASSESSMENT

6.1. Traffic Operations

To ensure safe and satisfactory operations, a certain number of traffic related aspects relating to the development needs to be addressed. Roads mainly Molapo Drive require regular routine maintenance in the form of appropriate sidewalk, signage and road markings especially around the Sunrise View school.

The issue of the impact of construction-traffic during construction must be considered. During the construction phase large, heavy trucks, plant and equipment will be accessing the

site. The impact on traffic operations will be that these vehicles, being large, take up the majority of the available roadway, particularly on roads that are only 11,0m wide. Opposing traffic will be faced with a reduction in safety and will be forced onto the verge. Whilst this condition cannot be quantified the situation will present itself to existing users on random basis. Construction traffic should where possible utilise the proposed detour during morning and afternoon off-peaks.

6.2. Access

6.2.1. Sight Distances and Visibility

When positioning an access it is important that the shoulder sight distance is adequate and meets or exceeds the minimum requirements for traffic safety reasons.

Normally the main item of concern for an un-signalised intersection is that of adequate shoulder sight distance (SSD), for this intersection shoulder sight distance isn't a concern since no new access is proposed. This is the distance along the road, which the driver of a vehicle exiting the access or turning right into the site needs to be able to see before pulling off from the stop line. The following table depicts the minimum shoulder sight distance requirements for light vehicles, a rigid truck (refuse vehicle, bus) and a heavy articulated truck for the two listed speeds below.

Vehicle Type	For Through Road Speed of:			
	40km/h	60km/h		
Light vehicle (car, LDV, taxi)	75	115		
Rigid vehicle (truck, bus)	130	180		
Articulated truck	150	230		

 Table 10:Shoulder sight distance requirements (metres)

7. CONCLUSIONS AND RECOMMENDATIONS

The proposed development can be supported from a traffic flow perspective.

7.1. **RECOMMENDATIONS**

Based on the conclusions above, it is further recommended that:


- To ensure safe and satisfactory operations, routine maintenance for all roads and at intersections be identified along with improvements to road markings and signage;
- ii) A raised median be introduced by the Municipality or Provincial Road, and such scope are not part of this proposed development.
- iii) The potential of the 2024 traffic growth will require the intersections B and C to be upgraded/converted
- iv) Provided the above recommendations are adopted there is no reason of a traffic engineering nature why the proposed residential development should not be permitted to proceed.

| Physical: 251 Timbavati St, Moreleta Park, Pretoria 0181| | Postal: 251 Timbavati St, Moreleta Park, Pretoria 0181|

> | Cell: +27 (0)78 219 3946 | | E-mail: info@ccgroupafrica.com | | Website: www.ccgroupafrica.com |

ANNEXURE A – ON SITE PHOTOS

| Physical: 251 Timbavati St, Moreleta Park, Pretoria 0181| | Postal: 251 Timbavati St, Moreleta Park,

Pretoria 0181

| Cell: +27 (0)78 219 3946 | | E-mail: info@ccgroupafrica.com | | Website: www.ccgroupafrica.com |

Molapo & Unknown Rd Junction C

Molapo & Unknown Rd Junction C

ANNEXURE B – MANUAL COUNTS

	La	cation - Molapo	&R510				28/10/2019
12 Hour Count			VEHICLES				Monday
AM PEAK	07.00 - 08.45	TRUCK = 3.5 PCL					14:45 - 16:15
	07.00 00.45	CAR = 1 PCU					14.45 10.13
							HOURLY
TIME	1 STRAIGHT	1. TURN RIGHT	2 THEN LEET	2. STRAIGHT	3. TURN LEFT	3. TURN RIGHT	HOOKEI
AM PEAK	304,5	91,5	2. TOKN LEFT 0		5. TOKN LEFT 68	5	709,
		840	0			65	709,
morning afternoon	3205,5 6467	1579,5	0	2832 5023	788,5 898,5	124	
PM PEAK	372	91,5	0		49	2	68
TOTAL		-	0	,	1687	189	2182
06:00	9672,5	2419,5	0	7655	1007	105	2102
06:15							
06:30							
06:45							
07:00							
07:15							
07:30				2105		<u> </u>	
07:45		71,5		240,5	68	3	
08:00	<u> </u>	91,5		<u> </u>	56	5	
08:15	210,5	59		<u> </u>	34		
08:30	· · · · ·	40		158,5	49	2	
08:45	64	4 5		<u> </u>	43	2	
09:00	L	52,5		155	42	2	
09:15	194	56		141,5	34	5	
09:30	143,5	34,5		161,5	39	4	
09:45	162	44		136	39	1	
10:00	174	34,5		146,5	52,5	8,5	
10:15	202	32		187,5	51	7,5	
10:30	211,5	46		240,5	51	8,5	
10:45	171	57		180	49	7,5	
11:00	157	33,5		178	48	1	
11:15	166	67,5		125	43	2	
11:30	231,5	54,5		159,5	44		
11:45	145,5	21		159	46	6	
12:00	219,5	50		170	37	5	
12:15	185	49		255	27	7,5	
12:30	206,5	62		188,5	39	4	
12:45	198	55,5		171,5	20	4	
13:00	231,5	71		185	42	9	
13:15							
13:30							
13:45	221	51		191	46	7	
14:00		47		203	37	4	
14:15	254,5	50		235,5	40	3	
14:30		39		211	38	5	
14:45	363,5	80		265	40	8	
15:00		84		362	43,5	4	l
15:15	372	84		250,5	31	3	
15:30		60		295	44	7,5	
15:45		100		168,5	45	5	
16:00		85		265	36	4	
16:00		91		219	34	5	
16:30		98		250	46	3	
16:45		83		260	40	5	
17:00		80,5		283,5	58	7	
17:15		90		174	52	8	
17:15		93,5		235,5	49	10	
		76		184,5	49	6	
17:45							

	Lo	cation - Molapo	&R510				28/10/2019
12 Hour Count			VEHICLES				Monday
AM PEAK	07.00 - 08.45	TRUCK = 3.5 PCL					14:45 - 16:15
/	07100 00115	CAR = 1 PCU					11110 10110
							HOURLY
TIME	1 STRAIGHT	1. TURN RIGHT	2. TURN LEFT	2. STRAIGHT	3. TURN LEFT	3. TURN RIGHT	
AM PEAK	68	0	0	5	22	35	13
morning	788,5	0	0	65	246,5	222	
afternoon	990,5	0	0	140	459	366	
PM PEAK	45	0	0	2	19	35	10:
TOTAL	1779	0	0	205	705,5	588	3277,
06:00							
06:15							
06:30							
06:45							
07:00							
07:15							
07:30							
07:45	68			93	22	0 19	
08:00	<u> </u>			95	9	11	
08:15	34				9 19	35	
08:30				2	<u> </u>	9	
08:45	43			2	9 18	10	
09:00	42			2		13	
09:15	34			5		8	
09:30	39			4	10	17	
09:45	39			1	11	4	
10:00	,,			8,5	15	11	
10:15	51			7,5	11	9	
10:30				8,5	14	11	
10:45	49			7,5	18	11	
11:00	48			1	22	14	
11:15	43			2		16	
11:30	44				14	11	
11:45	46			6		13	
12:00				5	12	12	
12:15	27			7,5	13	10	
12:30	39			4	11	9	
12:45 13:00	20 42			9		7	
13:00	42			9		7	
13:15				8		8	
13:45	47			7	3	2	
13:43	37			4		17	
14:00	40			3	21	18	
14:15	38			5	18	24	
14:45	40			8		18	
15:00	43,5			4		19	
15:15	31			3	21	14	
15:30				7,5		11	
15:45				5			
16:00				4			
16:15				5			
16:30				3			
16:45				5			
17:00				7			
17:15				8		25	
17:30				10		24	
17:45				6			
18:00							

	La	cation - Molapo	&R510				28/10/2019
12 Hour Count			VEHICLES				Monday
	07.00 - 08.45	TRUCK = 3.5 PCL					14:45 - 16:15
	07.00 - 08.45	CAR = 1 PCU)				14.45 - 10.15
		CAR - 1 FCO					HOURLY
TIME		1. TURN RIGHT		2 STRAIGUT	3. TURN LEFT	3. TURN RIGHT	HOUKLY
				2. STRAIGHT			2
AM PEAK	5	0	0	19	0		2
morning	44	0	0	224	0		
afternoon	57	0	0	387	0		
PM PEAK	4,5	0		19		-	23,
TOTAL	101	0	0	611	0	0	71
06:00							
06:15							
06:30							
06:45							
07:00							
07:15							
07:30	3						
07:45	1			19			
08:00	2			18			
08:15	2			7			
08:30	4			0 10			
08:45	5			9 19			
09:00	4			10			
09:15	3			8			
09:30	3			11			
09:45	3			13			
10:00	5			19			
10:15	1			25			
10:30	1			8			
10:45	2			12			
11:00	1			10			
11:15	1			12			
11:30	1			8			
11:45	2			15			
12:00	2			13,5			
12:15	1			26			
12:30	1			11			
12:45	1			23,5			
13:00	1			13			
13:15	2			29,5			
13:30	1			9			
13:45	2			16			
14:00	2			30,5			
14:15	2			14,5			
14:30	2			18			
14:45	2			14			
15:00	4			18			
15:15	4			13			
15:30	2			9			
15:45	3			14			
16:00	3,5			26,5			
16:15	4,5			18			
16:30	1			9			
16:45	3			18			
17:00	2			8			
17:15	2			13			
17:30	1			19			
17:45	3			3			
18:00	5						

ANNEXURE C – SIDRA ANALYSIS

MOVEMENT SUMMARY

Site: Molapo Drive & Unkown Road 1AM PEAK

Molapo Drive & Unkown Road 1 Stop (Two-Way)

Movem	ent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Jnkown F	load 1									
1	L	23	0.0	0.065	11.1	LOS B	0.3	2.2	0.04	0.93	46.0
3	R	37	0.0	0.065	10.9	LOS B	0.3	2.2	0.04	0.99	46.2
Approac	h	60	0.0	0.065	11.0	LOS B	0.3	2.2	0.04	0.97	46.1
East: Mo	olapo Driv	/e									
4	L	1	0.0	0.003	8.2	LOSA	0.0	0.0	0.00	0.98	49.0
5	Т	5	0.0	0.003	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	h	6	0.0	0.003	1.4	LOS A	0.0	0.0	0.00	0.16	57.8
West: M	olapo Dri	ve									
11	т	68	0.0	0.039	0.0	LOSA	0.3	1.8	0.04	0.00	59.1
12	R	5	0.0	0.039	8.5	LOSA	0.3	1.8	0.04	1.10	48.7
Approac	h	74	0.0	0.039	0.6	LOS A	0.3	1.8	0.04	0.08	58.2
All Vehic	cles	140	0.0	0.065	5.1	NA	0.3	2.2	0.04	0.46	52.3

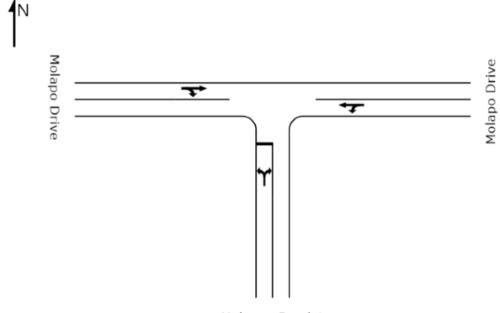
LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

MOVEMENT SUMMARY

Site: Molapo Dr & Unkown Rd 1 FUTURE AM PEAK


Molapo Dr & Unkwon Rd 1 Future AM PEAK Stop (Two-Way)

Mover	ent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: u	inkown R	d Southbound									
1 3	L R	79 79	5.0 5.0	0.238 0.238	14.0 13.8	LOS B LOS B	1.2 1.2	8.9 8.9	0.43 0.43	0.84 1.00	44.2 44.4
Approac	bh	158	5.0	0.238	13.9	LOS B	1.2	8.9	0.43	0.92	44.3
East: M	olapo Eas	stbound									
4	L	26	5.0	0.095	8.3	LOSA	0.0	0.0	0.00	1.00	49.0
5	Т	153	5.0	0.096	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	179	5.0	0.095	1.2	LOSA	0.0	0.0	0.00	0.15	58.1
West: M	lolapo We	estbound									
11	т	151	5.0	0.132	0.8	LOSA	1.0	7.0	0.32	0.00	53.5
12	R	63	5.0	0.132	9.4	LOSA	1.0	7.0	0.32	0.86	48.6
Approac	ch	214	5.0	0.132	3.4	LOSA	1.0	7.0	0.32	0.25	52.0
All Vehic	cles	551	5.0	0.238	5.7	NA	1.2	8.9	0.25	0.41	51.2

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Unkown Road 1

MOVEMENT SUMMARY

Site: Molapo Dr & Unkown Rd 1 FUTURE PM PEAK

Molap Drive & Unkown Rd 1 FUTURE PM PEAK Stop (Two-Way)

Movem	nent Per	formance - Ve	ehicles								
Mov ID	Tum	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Jnkown	Rd 1Southboun	nd								
1 3	L R	63 95	5.0 5.0	0.204 0.204	12.7 12.5	LOS B LOS B	1.1 1.1	7.9 7.9	0.23 0.23	0.84 0.97	45.1 45.3
Approac	ch	158	5.0	0.204	12.5	LOS B	1.1	7.9	0.23	0.92	45.2
East: Me	olapo Dr	Eastbound									
4	L	21	5.0	0.032	8.3	LOSA	0.0	0.0	0.00	0.89	49.0
5	Т	38	5.0	0.032	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	59	5.0	0.032	3.0	LOSA	0.0	0.0	0.00	0.32	55.5
West: M	Iolapo W	estbound									
11	Т	100	5.0	0.111	0.2	LOSA	0.7	5.2	0.16	0.00	56.4
12	R	79	5.0	0.111	8.9	LOS A	0.7	5.2	0.16	0.82	48.4
Approac	sh	179	5.0	0.111	4.0	LOSA	0.7	5.2	0.16	0.36	52.6
All Vehic	cles	396	5.0	0.204	7.3	NA	1.1	7.9	0.16	0.58	49.7

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

MOVEMENT SUMMARY

Site: Molapo Drive & Unkwon Rd 2 AM PEAK

Molapo Drive & Unkown Rd 2 AM Peak Stop (Two-Way)

Mover	nent Per	formance - V	ehicles								
Mov ID	Tum	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Jnkown F	Rd 2									
1	L	6	0.0	0.010	10.8	LOS B	0.0	0.3	0.09	0.91	46.3
3	R	4	0.0	0.010	10.6	LOS B	0.0	0.3	0.09	0.96	46.5
Approac	ch	11	0.0	0.010	10.7	LOS B	0.0	0.3	0.09	0.93	46.4
East: M	olapo Driv	ve									
4	L	4	0.0	0.013	8.2	LOSA	0.0	0.0	0.00	0.98	49.0
5	Т	20	0.0	0.013	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	24	0.0	0.013	1.4	LOSA	0.0	0.0	0.00	0.17	57.7
West: N	lolapo Dri	ive									
11	т	5	0.0	0.004	0.1	LOSA	0.0	0.2	0.09	0.00	58.1
12	R	2	0.0	0.004	8.5	LOSA	0.0	0.2	0.09	0.92	48.6
Approac	ch	7	0.0	0.004	2.5	LOSA	0.0	0.2	0.09	0.26	55.0
All Vehi	cles	42	0.0	0.013	3.9	NA	0.0	0.3	0.04	0.38	54.0

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

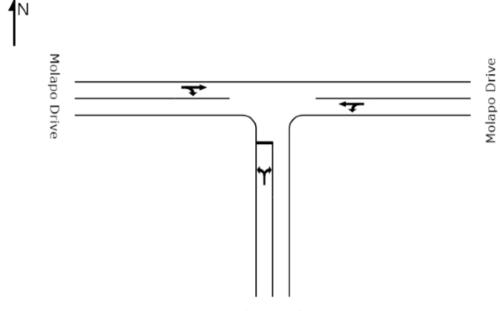
Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

MOVEMENT SUMMARY

Site: Molapo Drive & Unkown Road 1 PM PEAK 4

Molapo Drive & Unkown Rd 1 PM PEAK Stop (Two-Way)

Mover	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	H∨ %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Unkown R	load 1									
1	L	20	0.0	0.062	11.1	LOS B	0.3	2.1	0.17	0.86	46.2
3	R	37	0.0	0.062	10.9	LOS B	0.3	2.1	0.17	0.91	46.4
Approac	ch	57	0.0	0.062	11.0	LOS B	0.3	2.1	0.17	0.90	46.4
East: M	olapo Dr										
4	L	6	0.0	0.028	8.2	LOS A	0.0	0.0	0.00	1.01	49.0
5	Т	47	0.0	0.028	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	54	0.0	0.028	1.0	LOS A	0.0	0.0	0.00	0.12	58.5
West: N	lolapo Dri	ve									
11	т	7	0.0	0.006	0.2	LOSA	0.0	0.3	0.14	0.00	56.9
12	R	3	0.0	0.006	8.6	LOS A	0.0	0.3	0.14	0.88	48.6
Approac	ch	11	0.0	0.006	2.7	LOSA	0.0	0.3	0.14	0.26	54.2
All Vehi	cles	121	0.0	0.062	5.8	NA	0.3	2.1	0.09	0.50	51.8


LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

Popo Molefe Informal Settlement – Traffic Impact Assesment

Page 35 of 47

Unkown Rd 2

MOVEMENT SUMMARY

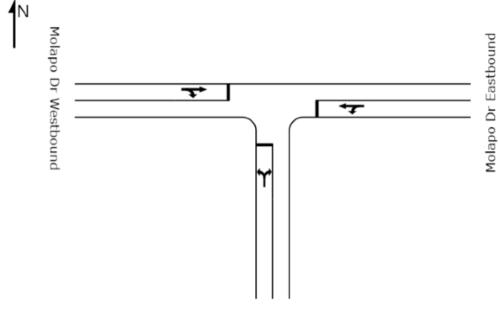
Site: Molapo Drive & Unkown Rd 2 PM PEAK

Molapo and Unkwon 2 PM PEAK Stop (Two-Way)

Mover	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: L	Jnkown S										
1 3	L R	7	0.0	0.011	10.8	LOS B LOS B	0.1	0.4	0.09	0.91	46.4
Approad		4	0.0	0.011 0.011	10.6 10.7	LOS B	0.1	0.4	0.09	0.96	46.5 46.4
East: M	olapo E										
4	L	4	0.0	0.013	8.2	LOS A	0.0	0.0	0.00	0.98	49.0
5	Т	20	0.0	0.013	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	24	0.0	0.013	1.4	LOS A	0.0	0.0	0.00	0.17	57.7
West: M	lolapo W										
11	т	5	0.0	0.003	0.1	LOSA	0.0	0.2	0.09	0.00	58.1
12	R	1	0.0	0.003	8.5	LOSA	0.0	0.2	0.09	0.99	48.7
Approac	ch	6	0.0	0.003	1.5	LOS A	0.0	0.2	0.09	0.16	56.3
All Vehic	cles	42	0.0	0.013	4.0	NA	0.1	0.4	0.04	0.38	53.9

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.


MOVEMENT SUMMARY

Site: Molapo Dr & Unkown Rd 2 FUTURE PM PEAK

Molapo Drive & Unkown Rd 2 future pm peak Stop (Two-Way)

Movem	ent Peri	formance - Ve	hicles								
Mov ID	Tum	Demand Flow veh/h	H∨ %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: U	Jnkwon R	d 2 southbound		10	000		Volt			per terr	KIIVII
1	L	36	0.0	0.058	11.1	LOS B	0.3	1.9	0.17	0.88	46.2
3	R	21	0.0	0.058	10.9	LOS B	0.3	1.9	0.17	0.94	46.4
Approac	h	57	0.0	0.058	11.1	LOS B	0.3	1.9	0.17	0.90	46.3
East: Mo	olapo Driv	e Eastbound									
4	L	13	0.0	0.031	8.2	LOSA	0.0	0.0	0.00	0.96	49.0
5	Т	47	0.0	0.031	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	h	60	0.0	0.031	1.7	LOS A	0.0	0.0	0.00	0.20	57.3
West: M	olapo Dri	ve Westbound									
11	Т	26	0.0	0.027	0.2	LOSA	0.2	1.1	0.15	0.00	56.6
12	R	18	0.0	0.027	8.7	LOSA	0.2	1.1	0.15	0.83	48.5
Approac	h	44	0.0	0.027	3.6	LOS A	0.2	1.1	0.15	0.34	53.0
All Vehic	les	161	0.0	0.058	5.5	NA	0.3	1.9	0.10	0.48	51.8

Unkown Rd 1 Southbound

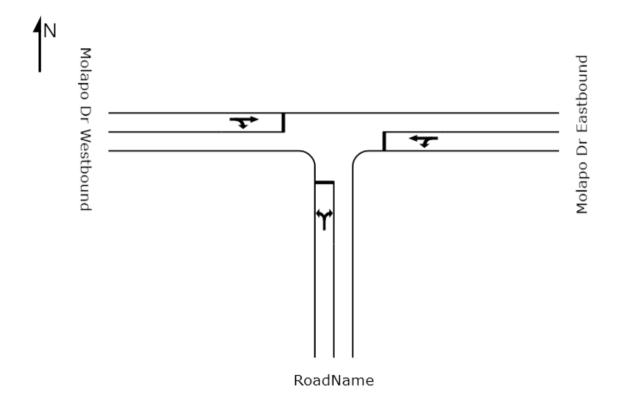
MOVEMENT SUMMARY

Site: Molapo Dr & Unkwon Rd 1 Option 1 AM PEAK

Molapo & Unkown Rd 1 AM PEAK Stop (All-Way)

Movem	nent Per	formance - V	ehicles/								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: U	Jnkown R	d 1 Southbour		10	000		Von				KIIVII
1	L	163	0.0	0.362	17.9	LOS C	1.4	9.9	0.80	1.21	41.4
3	R	79	0.0	0.362	17.7	LOS C	1.4	9.9	0.80	1.22	41.6
Approac	ch	242	0.0	0.362	17.8	LOS C	1.4	9.9	0.80	1.21	41.4
East: M	olapo Dr I	Eastbound									
4	L	26	0.0	0.134	17.8	LOS C	0.5	3.2	0.79	1.16	41.5
5	Т	47	0.0	0.133	17.3	LOS C	0.5	3.2	0.79	1.16	41.8
Approac	ch	74	0.0	0.133	17.5	LOS C	0.5	3.2	0.79	1.16	41.7
West: M	lolapo Dr	Westbound									
11	т	151	0.0	0.250	16.0	LOS C	0.9	6.0	0.72	1.18	42.7
12	R	37	0.0	0.249	16.2	LOS C	0.9	6.0	0.72	1.19	42.7
Approac	ch	187	0.0	0.250	16.0	LOS C	0.9	6.0	0.72	1.18	42.7
All Vehic	cles	503	0.0	0.362	17.1	LOS C	1.4	9.9	0.77	1.19	42.0

MOVEMENT SUMMARY


Site: Molapo Dr & Unkown Rd 1 Option PM PEAK

Molapo & Unkown 1 Opt 1 PM PEAK Stop (All-Way)

Mover	ent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	RoadNam	ne									
1 3	L R	63 95	5.0 5.0	0.367 0.367	22.2 22.0	LOS C LOS C	1.5 1.5	11.2 11.2	0.92 0.92	1.22 1.22	38.5 38.7
Approac	ch	158	5.0	0.368	22.1	LOS C	1.5	11.2	0.92	1.22	38.6
East: M	olapo Dr	Eastbound									
4	L	21	0.0	0.163	21.8	LOS C	0.6	4.2	0.91	1.16	38.8
5	Т	38	0.0	0.163	21.3	LOS C	0.6	4.2	0.91	1.16	39.0
Approac	ch	59	0.0	0.163	21.5	LOS C	0.6	4.2	0.91	1.16	38.9
West: M	lolapo Dr	Westbound									
11	т	100	5.0	0.328	16.9	LOS C	1.2	8.9	0.76	1.20	42.1
12	R	137	5.0	0.327	17.2	LOS C	1.2	8.9	0.76	1.21	42.1
Approac	ch	237	5.0	0.328	17.1	LOS C	1.2	8.9	0.76	1.21	42.1
All Vehi	cles	454	4.4	0.368	19.4	LOS C	1.5	11.2	0.83	1.20	40.4

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on the worst delay for any vehicle movement.

MOVEMENT SUMMARY

Site: R510 & Molapo DR- AM PEAK 1

R510 & Molap Dr AM Peak

Signals - Fixed Time Cycle Time = 40 seconds (Practical Cycle Time)

Movem	ient Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	нv %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	R510										
2	т	321	5.0	0.592	9.9	LOSA	8.2	60.1	0.82	0.71	43.4
3	R	97	5.0	0.592	18.6	LOS B	8.2	60.1	0.82	0.89	42.0
Approac	ch	418	5.0	0.593	11.9	LOS B	8.2	60.1	0.82	0.75	43.1
East: M	olapo Dri	ve									
4	L	72	0.0	0.150	20.5	LOS C	1.8	12.6	0.79	0.75	38.3
6	R	5	0.0	0.151	20.8	LOS C	1.8	12.6	0.79	0.76	38.3
Approad	ch	77	0.0	0.150	20.5	LOS C	1.8	12.6	0.79	0.75	38.3
North: F	8510										
7	L	75	5.0	0.414	17.3	LOS B	6.2	45.0	0.74	0.87	42.7
8	т	254	5.0	0.414	8.9	LOSA	6.2	45.0	0.74	0.63	44.8
Approac	ch	328	5.0	0.414	10.8	LOS B	6.2	45.0	0.74	0.68	44.3
All Vehic	cles	823	4.5	0.593	12.3	LOS B	8.2	60.1	0.78	0.72	43.1

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

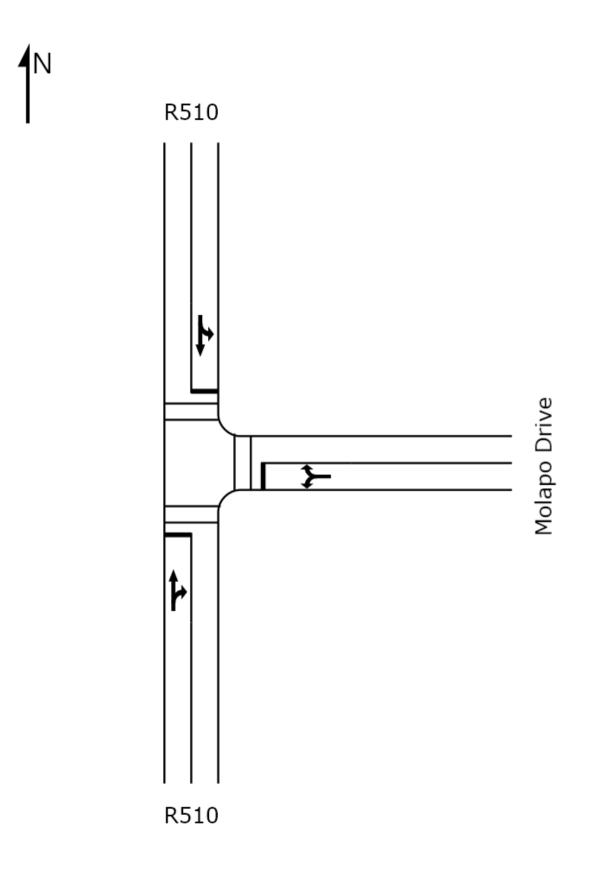
Movem	ent Performance -	Pedestrian	5					
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	Across S approach	53	14.5	LOS B	0.1	0.1	0.85	0.85
P3	Across E approach	53	9.8	LOS A	0.0	0.0	0.70	0.70
P5	Across N approach	53	14.5	LOS B	0.1	0.1	0.85	0.85
All Pede	strians	159	12.9				0.80	0.80

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual pedestrian movements: Delay (HCM).

MOVEMENT SUMMARY

Site: 510 & MOLAPO DRIVE FUTURE AM PEAK

R510 & Molapo Dr Future AM PEAk Signals - Fixed Time Cycle Time = 50 seconds (Practical Cycle Time)


		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	н∨ %	Satn v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate per veh	Speed km/l
South: F	R510										
2	т	417	5.0	0.780	15.0	LOS B	15.5	113.4	0.88	0.88	39.0
3	R	183	5.0	0.780	23.6	LOS C	15.5	113.4	0.88	1.00	38.1
Approac	ch	600	5.0	0.780	17.7	LOS B	15.5	113.4	0.88	0.92	38.7
East: M	OLAPO (DR									
4	L	215	5.0	0.719	29.8	LOS C	9.4	68.9	0.97	0.89	33.0
6	R	95	5.0	0.719	30.0	LOS C	9.4	68.9	0.97	0.89	33.0
Approad	ch	309	5.0	0.719	29.8	LOS C	9.4	68.9	0.97	0.89	33.
North: F	2510										
7	L	142	5.0	0.297	15.8	LOS B	5.4	39.6	0.60	0.84	43.0
8	т	142	5.0	0.297	7.4	LOSA	5.4	39.6	0.60	0.51	46.
Approac	ch	284	5.0	0.297	11.6	LOS B	5.4	39.6	0.60	0.67	44.
All Vehic	cles	1194	5.0	0.780	19.4	LOS B	15.5	113.4	0.84	0.85	38

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

		Pedestrian						
Mov ID	Description	Demand Flow	Average Delay		Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	Sec		ped	m		per ped
P1	Across S approach	53	18.5	LOS B	0.1	0.1	0.86	0.86
P3	Across E approach	53	8.4	LOS A	0.0	0.0	0.58	0.58
P5	Across N approach	53	18.5	LOS B	0.1	0.1	0.86	0.86
All Pede	estrians	159	15.1				0.77	0.77

Level of Service (Aver. Int. Delay); LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement); LOS B. LOS Method for individual pedestrian movements: Delay (HCM).

MOVEMENT SUMMARY

Site: R510 & Molapo Drive PM Peak

R510 & Molapo Drive PM PEAK

Signals - Fixed Time Cycle Time = 40 seconds (Practical Cycle Time)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Tum	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	SOC		veh	m		per veh	km/h
South: F	3510										
2	т	392	5.0	0.705	12.0	LOS B	10.5	76.5	0.88	0.82	41.6
3	R	97	5.0	0.704	20.6	LOS C	10.5	76.5	0.88	0.95	40.6
Approac	sh	488	5.0	0.705	13.7	LOS B	10.5	76.5	0.88	0.85	41.4
East: Mo	olapo Driv	ve									
4	L	2	0.0	0.105	20.3	LOS C	1.3	8.8	0.78	0.73	38.2
6	R	52	0.0	0.105	20.5	LOS C	1.3	8.8	0.78	0.74	38.2
Approac	:h	54	0.0	0.105	20.5	LOS C	1.3	8.8	0.78	0.74	38.2
North: R	1510										
7	L	57	5.0	0.299	16.7	LOS B	4.4	32.1	0.70	0.87	43.0
8	т	180	5.0	0.299	8.4	LOSA	4.4	32.1	0.70	0.58	45.4
Approac	ch	237	5.0	0.299	10.4	LOS B	4.4	32.1	0.70	0.65	44.8
All Vehic	cles	779	4.7	0.705	13.2	LOS B	10.5	76.5	0.81	0.78	42.1

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P1	Across S approach	53	14.5	LOS B	0.1	0.1	0.85	0.85			
P3	Across E approach	53	9.8	LOS A	0.0	0.0	0.70	0.70			
P5	Across N approach	53	14.5	LOS B	0.1	0.1	0.85	0.85			
All Pede	estrians	159	12.9				0.80	0.80			

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual pedestrian movements: Delay (HCM).

MOVEMENT SUMMARY

Site: R510 & MOLAPO DRIVE FUTURE PM PEAK

R510 & MOLAPO DR FUTURE PM PEAK

Signals - Fixed Time Cycle Time = 60 seconds (Practical Cycle Time)

Mover	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	н∨ %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	R510										
2	т	509	5.0	0.816	17.2	LOS B	20.8	151.6	0.87	0.89	37.7
3	R	183	5.0	0.816	25.8	LOS C	20.8	151.6	0.87	1.03	36.9
Approac	ch	693	5.0	0.816	19.4	LOS B	20.8	151.6	0.87	0.93	37.5
East: MOLAPO DR		DR									
4	L	155	5.0	0.791	38.4	LOS D	10.1	73.4	1.00	0.93	29.1
6	R	105	5.0	0.791	38.7	LOS D	10.1	73.4	1.00	0.93	29.1
Approac	ch	260	5.0	0.791	38.5	LOS D	10.1	73.4	1.00	0.93	29.1
North: F	8510										
7	L	108	5.0	0.390	14.6	LOS B	8.3	60.8	0.54	0.91	44.4
8	т	340	5.0	0.390	6.3	LOSA	8.3	60.8	0.54	0.47	48.3
Approac	ch	448	5.0	0.390	8.3	LOSA	8.3	60.8	0.54	0.58	47.3
All Vehi	cles	1401	5.0	0.816	19.4	LOS B	20.8	151.6	0.79	0.82	38.0

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (HCM). Approach LOS values are based on average delay for all vehicle movements.

Movement Performance - Pedestrians												
Mov ID Description		Demand Flow ped/h	Average Delay sec		Average Back of Queue Pedestrian Distance ped m		Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	53	24.3	LOS C	0.1	0.1	0.90	0.90				
P3	Across E approach	53	6.5	LOS A	0.0	0.0	0.47	0.47				
P5	Across N approach	53	24.3	LOS C	0.1	0.1	0.90	0.90				
All Pede	estrians	159	18.4				0.76	0.76				

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual pedestrian movements: Delay (HCM).