REPORT No 20744
TRAFFIC IMPACT ASSESSMENT

PROPOSED MIXED USE DEVELOPMENT
ON REMAINDER OF PORTION 12 OF
THE FARM WEMMERHUIS 379-JT
AND REMAINDER OF THE FARM
BERGENDAL 981-JT,
BELFAST

SEPTEMBER 2016

TRAFFIC IMPACT ASSESSMENT
 PROPOSED MIXED USE
 DEVELOPMENT ON REMAINDER OF PORTION 12 OF THE FARM WEMMERHUIS 379-JT AND REMAINDER OF THE FARM BERGENDAL 981-JT, BELFAST

Issue 1 (Revision 1)

Project no: 20744
Date: September 2016

```
WSP | Parsons Brinckerhoff
314 Glenwood Road, Lynnwood Park, Pretoria,
South Africa }008
Postnet Suite 287, Private Bag X025, Lynnwood Ridge, 0040
Tel: +27 (0) 127621200
Fax: +27 (0) 127621301
www.wspgroup.com
www.pbworld.com
```

PARSONS BRINCKERHOFF

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks				
Date	November 2015	September 2016		
Prepared by	Catherine Bilankulu Technical Assistant	Catherine Bilankulu Technical Assistant		
Signature	Extakule	Extan		
Checked by	Eben Kotze PR Tech Eng	Eben Kotze PR Tech Eng		
Signature	sterce	frese		
Authorised by	Eben Kotze PR Tech Eng	Eben Kotze PR Tech Eng		
Signature	seaty	Findes		
Project number	20744	20744		
File reference	Z:\20000\20744 Belfast Mall\|11-Reports\11.1 Traffic Reports\Traffic Impact Study			

Certification

It is herewith certified that this Traffic Impact Assessment has been prepared according to requirements of the South African Traffic Impact and Site Traffic Assessment Manual.

Signatory : \qquad Date : 21 September 2016 ECSA no :2003 70133

```
WSP Contact Person
    Name: Eben Kotze
    Address: Postnet Suite 287, Private Bag
        X025, Lynnwood Ridge, 0040
    Telephone: 0127621200
    Cellphone : 0835641563
    Email : Eben.kotze@wspgroup.co.za
```

Quality checklist	
Items Initial Project Quality form \boldsymbol{J} Report \& Figures reviewed \boldsymbol{J} Authorisation for distribution \boldsymbol{J}	

PRODUCTION TEAM
WSP | PARSONS BRINCKERHOFF

Function	Name
Technical Assistant	Catherine Bilankulu

Function Name
Regional Director Pr. Tech Eng Eben Kotze

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 BACKGROUND. 1
1.2 EXTENT OF THE DEVELOPMENT 1
1.3 APPROVAL OF SUBMISSION 1
SANRAL 2
MPUMALANGA DEPARTMENT OF PUBLIC WORKS, ROAD AND TRANSPORT 2
3 SURROUNDING ROAD NETWORK \& STUDY AREA 3
3.1 SURROUNDING ROAD NETWORK 3
3.2 DETERMINATION OF THE STUDY AREA 3
4 SITE ACCESS \& PARKING 4
4.1 SITE ACCESS 4
4.2 PARKING 4
5 EXISTING TRAFFIC VOLUMES 5
5.1 GENERAL 5
5.2 ROAD D1477 / N4 OFFRAMP 5
5.3 ROAD D1477 / N4 OFFRAMP / BELFAST 1STOP ACCESS 5
5.4 ROAD D1477 / R33 / SITE ACCESS 5
5.5 ROAD D1477 / SITE ACCESS 2. 5
6 DEVELOPMENT TRIP GENERATION AND TRAFFIC VOLUMES SCENARIOS 6
6.1 TRIP GENERATION 6
INDUSTRIAL 6
SINGLE DWELLING UNITS 6
APARTMENTS AND FLATS 6
PRE-SCHOOL 6
SHOPPING CENTRE 6
BUSINESS CENTRE 7
6.2 ADJUSTMENT FACTORS 7
MIXED USE DEVELOPMENT (MUD) 7
LOW VEHICLE OWNERSHIP (LVO) \& VERY LOW VEHICLE OWNERSHIP (VLVO) 7
TRANSIT NODE OR CORRIDORS 7
6.3 TRIP SUMMARY 8
6.4 GROWTH RATE 9
6.5 TRAFFIC VOLUME SCENARIOS 10
6.6 TRIP DISTRIBUTION AND ASSIGNMENT 10
7 TRAFFIC IMPACT AND CAPACITY ANALYSIS 11
7.1 GENERAL 11
7.2 ANALYSED SCENARIOS 11
7.3 CAPACITY ANALYSIS 11
7.4 ROADS UPGRADES REQUIRED 20
8 NON-MOTORISED AND PUBLIC TRANSPORT 21
8.1 BACKGROUND 21
8.2 EXISTING PUBLIC TRANSPORT SERVICES AND FACILITIES 21
MINIBUS TAXIS 21
8.3 PROPOSED / NEW FACILITIES 21
MINIBUS TAXI LAYBYS 21
PEDESTRIAN FACILITIES 21
9 CONCLUSIONS 22
10 REFERENCES 23

LIST OF ABBREVIATIONS

COTO	Committee of Transport Officials
ELM	Emakhazeni Local Municipality
GLA	Gross Leasable Area
LOS	Level of Service
LVO	Low Vehicle Ownership
MDoPWR\&T	Mpumalanga Department of Public Works, Roads \& Transport
MUD	Mixed Use Development
NLTA	National Land Transport Act
SANRAL	South African National Roads Agency Limited
SATGR	South African Trip Generation Rates
SEC	Seconds
SIDRA	Micro-analytical traffic evaluation
TMH	Technical Methods for Highways
V/C	Volume/Capacity ratio
VLVO	Very Low Vehicle Ownership
vph	Vehicle per hour

LIST OF TABLES

TABLE 1: EXTENT OF THE DEVELOPMENT 1
TABLE 2: PARKING REQUIREMENTS 4
TABLE 3: ADJUSTMENT FACTORS APPLIED FOR TRIP REDUCTIONS 7
TABLE 4: PHASE 1 - DEVELOPMENT GENERATED TRIPS 8
TABLE 5: PHASE 2 - DEVELOPMENT GENERATED TRIPS 8
TABLE 6: PHASE 3 - DEVELOPMENT GENERATED TRIPS 8
TABLE 7: PHASE 4 - DEVELOPMENT GENERATED TRIPS 9
TABLE 8: TOTAL DEVELOPMENT GENERATED TRIPS (ALL PHASES) 9
TABLE 9: TYPICAL TRAFFIC GROWTH RATES 9
TABLE 4: TRAFFIC SCENARIOS CONSIDERED 11
TABLE 10: ROAD D1477 AND N4 OFF-RAMP 12
TABLE 11: ROAD D1477 AND N4 OFF-RAMP/BELFAST ONE STOP ACCESS 14
TABLE 12: ROAD D1477 AND R33/SITE ACCESS 1 16
TABLE 13: ROAD D1477 AND SITE ACCESS 2 18
TABLE 14: PROPOSED ROAD UPGRADES 20

LIST OF FIGURES

FIGURE 1: LOCALITY PLAN
FIGURE 2: 2015 EXISTING TRAFFIC VOLUMES
FIGURE 3: 2020 BACKGROUND TRAFFIC VOLUMES
FIGURE 4A: PHASE 1 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 4B: PHASE 2 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 4C: PHASE 3 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 4D: PHASE 4 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 5A: 2020 BACKGROUND PLUS PHASE 1 DEVELOPMENT TRAFFIC
FIGURE 5B: 2020 BACKGROUND PLUS PHASE $1 \& 2$ DEVELOPMENT TRAFFIC
FIGURE 5C: 2020 BACKGROUND PLUS PHASE 1, 2 \& 3 DEVELOPMENT TRAFFIC
FIGURE 5D: 2020 BACKGROUND PLUS PHASE 1, 2, 3 \& 4 DEVELOPMENT TRAFFIC

LIST OF DRAWINGS

DRAWING SKC001 REV A: D1477/N4 OFFRAMP INTERSECTION LAYOUT PLAN DRAWING SKC002 REV A: D1477/N4/BELFAST 1 STOP INTERSECTION LAYOUT PLAN DRAWING SKC003 REV B: D1477/R33/SITE ACCESS 1 INTERSECTION LAYOUT PLAN DRAWING SKC004 REV A: D1477/SITE ACCESS 2 INTERSECTION LAYOUT PLAN

LIST OF APPENDICES

APPENDIX A-1 SITE DEVELOPMENT PLAN
APPENDIX A-2 RECORD OF SITE VISIT
APPENDIX A-3 LIMITED ROAD MASTER PLAN
APPENDIX A-4 TRIP GENERATION CALCULATIONS
APPENDIX A-5 INTERSECTION GEOMETRIC LAYOUT
APPENDIX A-6 DETAILED SIDRA RESULTS

INTRODUCTION

$1.1 \quad$ BACKGROUND

WSP Group Africa (Pty) Ltd. (WSP) has been appointed to undertake a Traffic Impact Assessment for the proposed mixed use development situated on Remainder of Portion 12 of the Farm Wemmershuis 379-JT and the Remainder of the Farm Bergendal 981-JT, Belfast located in Mpumalanga Province. The proposed site is located approximately 510 m south of the N4/R33 interchange. The site locality is illustrated on Figure 1.

A TIA was previously submitted in November 2015 for the proposed mixed-use development. This study revises the previously submitted study as the development will now be implemented in phases.

The purpose of this traffic impact assessment is to illustrate the proposed development's traffic impact on the surrounding road network and possible mitigation of the anticipated traffic impact. This report also comments on the proposed site accesses and non-motorised and public transport aspects.

1.2 EXTENT OF THE DEVELOPMENT

The extent of the proposed development as well as the land-uses are indicated in Table 1 below:
Table 1: Extent of the development

LAND USE	PHASE 1	PHASE 2	PHASE 3	PHASE 4	TOTAL
Single Residential	31 Stands	-	97 Stands	33 Stands	161 Stands
High Residential	-	-	-	387 Units	387 Units
Agricultural	-	-	-	$522357 \mathrm{~m}^{2}$	
Institutional - Crèche	-	-	$\wedge 200$ Pupils	-	200 Pupils
- Church	-	-	-	${ }^{*} 12796 \mathrm{~m}^{2}$	${ }^{*} 12796 \mathrm{~m}^{2}$
Retail (Shops)	$31830 \mathrm{~m}^{2}$ GLA	-	$1460 \mathrm{~m}^{2}$ GLA	-	$33290 \mathrm{~m}^{2} \mathrm{GLA}$
Business Park	-	-	$8554 \mathrm{~m}^{2} \mathrm{GLA}$	$33790 \mathrm{~m}^{2} \mathrm{GLA}$	$42344 \mathrm{~m}^{2} \mathrm{GLA}$
Industrial	-	$14252 \mathrm{~m}^{2} \mathrm{GLA}$	-	-	$14252 \mathrm{~m}^{2} \mathrm{GLA}$
Open Space	-	$7529 \mathrm{~m}^{2}$	-	$105068 \mathrm{~m}^{2}$	$112597 \mathrm{~m}^{2}$
Utilities	-	-	-	$1915 \mathrm{~m}^{2}$	

The following assumptions were made:
^ 200 Pupils for Institutional (Phase 3)

* Assumed to be internal trips

The township layout and phasing plan are contained in Appendix A-1.

1.3 APPROVAL OF SUBMISSION

This traffic impact assessment report will be subject to approval from the relevant roads authorities listed below:
\rightarrow Emakhazeni Local Municipality (ELM)
\rightarrow Mpumalanga Department of Public Works, Roads and Transport (MDoPWR\&T)
\rightarrow South African National Roads Agency Limited (SANRAL)

2

DATA COLLECTION AND LIAISONS

2.1 SITE VISIT

On 29 October 2015 a site visit was undertaken for the development and the following was confirmed:
\rightarrow Layouts of intersections considered in the study
\rightarrow Appropriateness of recommended site access
\rightarrow Intersection control for relevant intersections
\rightarrow Presence of existing public transport and non-motorised facilities
A set of photos is included in Appendix A-2 depicting the intersections observed during the site visit.

2.2 LIAISON WITH THE AUTHORITIES

SANRAL
A meeting was held with SANRAL Messr. Mr. Izak van der Linde and it was requested that the Applicant should consider providing an additional access to the north of the application site to alleviate the impact of the proposed development on the N4 interchange. A limited road master plan was undertaken by WSP and is included in Appendix A-3.

MPUMALANGA DEPARTMENT OF PUBLIC WORKS, ROAD AND TRANSPORT

A discussion was held with MDoPW\&R, Messr. Ben Viljoen and it was indicated that the proposed traffic circle at the access on Road D1477 is not supported therefore an alternative access layout was investigated in this study.

SURROUNDING ROAD NETWORK \&

 STUDY AREA
3.1 SURROUNDING ROAD NETWORK

The following roads in the vicinity of the proposed development are regarded as relevant to this study and are discussed in detailed below:
\rightarrow N4 Freeway: This is a Class 1 road located to the north of the site; this road follows an eastwest alignment and it abuts the application site to the north.
\rightarrow Road D1477: This is a Class 2/3 road located to the west of the site; this road follows a northsouth alignment with one lane per direction. The proposed development will gain access directly from this road
\rightarrow R33: This is a Class 3 road located to the west of the site; this road follows an east-west alignment with one lane per direction.
\rightarrow New Link Road: As requested by SANRAL a limited road master plan was undertaken to provide an additional access to the north of the proposed development link road with Road D1477. The proposed road link (over/under the N4) will be a Class 3 road with one lane per direction. The link road is required to prevent congestion of the N4/Road D1477 interchange.

3.2 DETERMINATION OF THE STUDY AREA

In determining the site area TMH 16 volume 1 recommends the following:
\rightarrow "Class 4 and 5 roads in the vicinity of the development up to the first Class 1 to 3 roads that can be reached by the Class 4 and 5 road network from the development, up to and including the first connection(s) on the Class 1 to 3 roads.
\rightarrow The elements shall be restricted to those within a maximum distance of 1.5 km from the accesses to the site, measured along the shortest routes to the accesses, provided that there is at least one intersection within this distance. Where there is no such intersection, the distance will be extended to include at least one intersection."

TMH 16 also states that judgement should be used in selecting the intersections considered and therefore specific elements like extent of the development were also considered. A larger development will by its nature require a wider study area to be considered while for a smaller development the opposite will be true. It was decided that the following key intersections as mentioned below (refer to Figure 1) would be sufficient for analyses:
\rightarrow Road D1477 and N4 Off-ramp;
\rightarrow Road D1477 and N4 Off-ramp/Belfast 1Stop Access and
\rightarrow Road D1477 and R33/Site access
$4.1 \quad$ SITE ACCESS
The following accesses are proposed for the development:
\rightarrow Access 1 : A full access is proposed on Road D1477 directly opposite the existing R33 Road. The access is situated approximately 350 m north of the southern terminal of the N4/Road D1477 interchange. This access will be implemented in Phase 1 of the proposed development.
\rightarrow Access 2 : A secondary full access is proposed on Road D1477. The access is situated approximately 290 m south of the proposed Access 1 . This access will be implemented in Phase 2 of the proposed development.
\rightarrow Access 3 : A full access is proposed on the proposed link road to the north of the proposed development. This access will be implemented in Phase 3 and 4 of the proposed development.

The proposed accesses are shown conceptually on Drawings SKC 003 Rev B and SKC 004 Rev A.

The secondary access position was discussed and approved in principle by MDoPWR\&T Messr. Ben Viljoen.

4.2 PARKING

The South African Parking Standards was considered for the parking requirement. Table 2 shows the required parking.

Table 2: Parking requirements

LAND USE	EXTENT	PARKING REQUIRED	REQUIREMENTS FOR LOADING	NO. BAYS REQUIRED
Industry	$14252 \mathrm{~m}^{2}$ GLA	1 bay / $100 \mathrm{~m}^{2} \& 3$ bays / $100 \mathrm{~m}^{2}$ office floor area	1 bay / first $1000 \mathrm{~m}^{2}$ floor area or part thereof \& 1 bay / every $1000 \mathrm{~m}^{2}$ floor area thereafter	To be confirmed during SDP submission stage
Dwelling House	161 Stands	1 bay / on-site unit	Not Applicable	161
Dwelling Units	387 Units	1 covered bay / Dwelling unit \& 1 uncovered bay / 2 dwelling units	1 bay / 10 dwelling units	622
Crèche	200 Pupils	1 bay / 4 children	1 bay / first $2000 \mathrm{~m}^{2}$ floor area or part thereof \& 1 bay / every $2000 \mathrm{~m}^{2}$ floor area thereafter	To be confirmed during SDP submission stage
Shopping Centre	33 290m² GLA	6 bays / 100m ${ }^{2}$	1 bay / first 2000m² floor area or part thereof \& 1 bay / every $2000 \mathrm{~m}^{2}$ floor area thereafter	To be confirmed during SDP submission stage
Business Centre	Parking ratio to	be agreed with ELM during	SDP submission stage	

Since the site development plan (SDP) was not yet finalized during the writing of this report, it is recommended that a parking study (Site Traffic Assessment) be undertaken during the SDP submission stage.

5 EXISTING TRAFFIC VOLUMES

5.1 GENERAL

Traffic counts were used to estimate the traffic demand and traffic volume for the development. A traffic count was commissioned on Friday 11 September 2015 at the following intersections:

```
-> Road D1477 and N4 Off-ramp;
Road D1477 and N4 Off-ramp/Belfast 1Stop Access and
-> Road D1477 and R33/Site access
```

The counted intersections are indicated on Figure 1.
From the traffic count a common peak hour was determined (the busiest hour) for each counted period and was found to be:

```
F Friday AM peak hour
08:00-09:00
-> Friday PM peak hour
16:00-17:00
```

The existing 2015 Peak Hour Traffic Volumes are shown on Figure 2. The following subheadings provide a brief overview of the existing intersections.

5.2 ROAD D1477 / N4 OFF-RAMP

This intersection is currently a priority side stop with the Road D1477 being the major road. Traffic counts have revealed that Road D1477 has in the order of 590vph and 970vph during the AM and PM peak hours respectively (in both directions). The intersection currently operates at LOS A or B for the southern approach, LOS A for the northern approach and LOS A and LOS C for the western approach.

5.3 ROAD D1477 / N4 OFF-RAMP / BELFAST 1STOP ACCESS

This intersection is currently a priority side stop with Road D1477 being the major road. Traffic counts have revealed that the N4 Off-ramp has in the order of 240 vph and 285 vph during the AM and PM peak hours respectively (in both directions). The intersection currently operates at LOS A for the north and south approaches during both the AM and PM peak hours. The east approach operates at LOS C and the west approach at LOS B during the AM and PM peak hours.

5.4 ROAD D1477 / R33 / SITE ACCESS

This intersection is currently an all-way stop. Traffic counts have revealed that R33 has in the order of 140 vph and 125 vph during the AM and PM peak hours respectively (in both directions). The intersection currently operates at LOS C for the north, south and east approaches during both the AM and PM peak hours. However the west approach operates at LOS D during the AM and PM peak hours.

5.5 ROAD D1477 / SITE ACCESS 2

This is a new intersection and it will be all-way stop controlled. Traffic counts have revealed that currently 10 vph and 13 vph pass the site during the AM and PM peak hours respectively.

DEVELOPMENT TRIP GENERATION AND TRAFFIC VOLUMES SCENARIOS

6.1 TRIP GENERATION

The South African Trip Data Manual - COTO - (TMH17) was used to estimate the trip generation for the proposed development. Trip rates for the various land-uses are summarized below:

INDUSTRIAL
The recommended trip generation according to the COTO document for Industrial is:

```
-> Weekday AM Peak period 0.80 trips per 100m2 GLA
-> Weekday PM Peak period 0.80 trips per 100m2 GLA
```


SINGLE DWELLING UNITS

The recommended trip generation according to the COTO document for Single Dwelling Units is:

```
-> Weekday AM Peak period }1.00\mathrm{ trip per Dwelling Unit
-> Weekday PM Peak period 1.00 trip per Dwelling Unit
```


APARTMENTS AND FLATS

The recommended trip generation according to the COTO document for Apartments and Flats is:

```
-> Weekday AM Peak period 0.65 trips per Dwelling Unit
-> Weekday PM Peak period 0.65 trips per Dwelling Unit
```

PRE-SCHOOL

The recommended trip generation according to the COTO document for Pre-school is:

```
-> Weekday AM Peak period 1.00 trip per Pupil
-> Weekday PM Peak period 0.80 trips per Pupil
```


SHOPPING CENTRE

The recommended trip generation according to the COTO document for Shopping Centre is:
\rightarrow Weekday AM Peak period $\quad 0.60$ trips per $100 \mathrm{~m}^{2}$ GLA
\rightarrow Friday PM Peak period $\quad 3.40$ trips per $100 \mathrm{~m}^{2}$ GLA
\rightarrow Saturday Peak period $\quad 4.50$ trips per $100 \mathrm{~m}^{2}$ GLA
The size adjustment factor for Shopping Centre as per COTO TMH17 has been applied. The trips for the shopping centre were calculated by first adjusting the Gross Leasable Area (GLA) of the site, i.e. the size adjustment factor $(S)=1+A /(1+s q m$ size/B). Factor A and B are parameters provided in the trip rate table.

BUSINESS CENTRE

The proposed development will also consist of small pockets of business/commercial related uses. Therefore a trip rate for Business Centre which includes a range of mixed land-uses, such as offices, banking facilities, light industrial and warehousing was considered realistic. The recommended trip generation according to the COTO document for Business Centre is:

```
-> Weekday AM Peak period
1.50 trips per 100m2 GLA
-> Weekday PM Peak period
1.50 trips per 100m2 GLA
```


6.2 ADJUSTMENT FACTORS

Various trip adjustment factors have been introduced into the COTO document to allow for trip reductions. These adjustment factors are discussed briefly below.

MIXED USE DEVELOPMENT (MUD)

According to the COTO manual "mixed use development is defined as development in an area that consist of two or more single-use development between which trips can be made by means of nonmotorised modes of transport (such as walking). This has the net effect of reducing the vehicle trip generation in the area."

This study considered mixed use development reduction factor. The reduction factor which has been applied is listed in Table $\mathbf{3}$ below. Note $\mathbf{P}_{\mathbf{M}}=$ Reduction factor for mixed use development.

LOW VEHICLE OWNERSHIP (LVO) \& VERY LOW VEHICLE OWNERSHIP (VLVO)

According to COTO "the vehicle ownership in areas with high levels of vehicle ownership varies between one or two per household. In areas with a low level of vehicle ownership, the majority of households (more than 50%) does not own a vehicle and relies on public transport for transportation. In areas with very low level of vehicle ownership, nearly all households (more than 90%) do not own a vehicle and rely on public transportation."

This study considered low vehicle ownership and the reduction factor which have been applied is listed in Table 3 below. Note $\mathbf{P}_{\mathbf{v}}=$ Reduction factor for vehicle ownership.

TRANSIT NODE OR CORRIDORS

According to COTO "the transit reduction factors are applicable to developments that are located within a reasonable walking distance from a major transit node or stops on a major transit corridor."

The reduction factors recommended for transit node or corridors in the manual were not applied.
Table 3: Adjustment Factors Applied for Trip Reductions

LAND USE	$\mathbf{P M}_{\mathbf{M}}$	$\mathbf{P v}_{\mathbf{v}}$
Industrial	5%	20%
Single Dwelling Units	10%	40%
Apartments \& Flats	15%	30%
Pre-School	5%	50%
Business Centre	15%	20%
Shopping Centre	10%	30%

6.3 TRIP SUMMARY

The detailed trip generation calculations are included in Appendix A-4. Using the COTO document the expected peak hour development trips generation was calculated and indicated in Tables 4 to 8 for the different Phases.

Table 4: Phase 1 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total
Single Dwelling Units	31 Units	4	13	17	12	5	17
Shopping Centre		PRIMARY TRIPS					
		125	67	192	315	315	630
		PASS-BY TRIPS					
		-	-	-	96	96	193
		DIVERTED TRIPS					
		-	-	-	99	99	198
Total (Shopping Centre)	$31830 \mathrm{~m}^{2} \mathrm{GLA}$	125	67	192	510	510	1021
Total Phase 1 Trips		129	80	209	522	515	1038

From Table 4 it can be seen that Phase 1 of the proposed development will generate a maximum of 209 peak hour trips in the AM peak hour and a maximum of 1038 peak hour trips in the PM peak hour.

Table 5: Phase 2 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total
Industrial Area (Park)	14 252m² GLA	65	26	91	22	65	87
Total Phase 2 Trips		65	26	91	22	65	87

From Table 5 it can be seen that Phase 2 of the proposed development will generate a maximum of 91 peak hour trips in the AM peak hour and a maximum of 87 peak hour trips in the PM peak hour.

Table 6: Phase 3 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total
Single Dwelling Units	97 Units	13	39	52	37	16	52
Pre-school (Day Care Centre)	200 Students	48	48	95	38	38	76
Business Centre (Park)	$8554 \mathrm{~m}^{2} \mathrm{GLA}$	74	13	87	17	70	87
Shopping Centre		PRIMARY TRIPS					
		19	10	29	47	47	95
		PASS-BY TRIPS					
		-	-	-	6	6	12
		DIVERTED TRIPS					
		-	-	-	5	5	9
Total (Shopping Centre)	$1460 \mathrm{~m}^{2} \mathrm{GLA}$	19	10	29	58	58	116
Total Phase 3 Trips		154	110	264	150	182	332

From Table 6 it can be seen that Phase 3 of the proposed development will generate a maximum of 264 peak hour trips in the AM peak hour and a maximum of 332 peak hour trips in the PM peak hour.

The trips for Institutional (Church) in Phase 3 and 4 was not considered in the calculations of the trip generation as it was assumed that these will be internal trips serving the community within the proposed development and will not affect the external road network.

Table 7: Phase 4 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total
Single Dwelling Units	33 Units	4	13	18	12	5	18
Apartments and Flats	387 Units	37	112	150	105	45	150
Business Centre (Park)	$33790 \mathrm{~m}^{2} \mathrm{GLA}$	293	52	345	69	276	345
Total Phase 4 Trips		335	177	512	186	326	512

From Table 7 it can be seen that Phase 4 of the proposed development will generate a maximum of 512 peak hour trips in the AM peak hour and the PM peak hour.

Table 8: Total Development Generated Trips (All Phases)

LAND USE	TYPE OF TRIPS	AM PEAK			FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total
Industrial	Primary Trips	65	26	91	22	65	87
Single Dwelling Units	Primary Trips	22	65	87	61	26	87
Apartments \& Flats	Primary Trips	37	112	150	105	45	150
Crèche	Primary Trips	48	48	95	38	38	76
Shopping Centre	Primary Trips	144	77	221	362	362	724
	Pass-by Trips	0	0	0	102	102	204
	Diverted Trips	0	0	0	104	104	208
Business Centre	Primary Trips	367	65	432	86	345	432
Total (All Phases)		683	393	1076	880	1087	1968

From Table 8 it can be seen that the proposed development (All Phases) will generate a maximum of 1076 trips in the Friday AM peak hour and a maximum of 1968 trips during the Friday PM peak hour.

The TMH 16 Volume 1 requires that a traffic impact assessment be done for development which generates more than 50 peak hour trips.

6.4 GROWTH RATE

TMH 16 Volume 1 requires that a five year horizon be considered for development that generates more than 50 trips. TMH 17 recommends growth rates for development as shown in Table 9.

Table 9: Typical Traffic Growth Rates

DEVELOPMENT AREA	GROWTH RATES
Low growth areas	$0-3 \%$
Average growth areas	$3-4 \%$
Above average growth areas	$4-6 \%$
Fast growing areas	$6-8 \%$
Exceptionally high growth areas	$>8 \%$
Source: City Council of Pretoria (1998)	

A growth rate of 3% was considered appropriate for this study.

6.5 TRAFFIC VOLUME SCENARIOS

The existing 2015 peak hour traffic volumes (see Figure 2) were thus subjected to a 3% growth rate over five years; this is in line with an average growth rate as given in Table 9. The 2020 background peak hour traffic volumes are shown on Figure 3.

$6.6 \quad$ TRIP DISTRIBUTION AND ASSIGNMENT

Assumptions with respect to the expected trip distribution were based on the location of the site access in relation to the surrounding road network; the existing traffic volumes, travel patterns as well as the land use nature of the proposed development.

The total development trips for Phase 1, 2, 3 and 4 are shown on Figures 4A, 4B, 4C and 4D respectively. Ultimately the expected 2020 peak hour traffic volumes plus the total development trips for Phase 1, 2, 3 and 4 are shown on Figures 5A, 5B, 5C and 5D respectively.

TRAFFIC IMPACT AND CAPACITY ANALYSIS

7.1 GENERAL

In order to determine the traffic impact the proposed development will have on the surrounding road network, SIDRA traffic engineering software was used. A capacity analysis was done for the key intersections identified in Section 3.2.

The AM and PM peak hour trip generation of the development was analysed.

7.2 ANALYSED SCENARIOS

The different traffic scenarios considered for analysis are tabulated in Table 4.
Table 10: Traffic Scenarios Considered

Traffic Scenario	Description
Scenario 1	2020 Peak Hour Background Traffic Volumes (Figure 3) With Existing Intersection Layouts
Scenario 2	2020 Peak Hour Background Traffic Plus Phase 1 Development Traffic (Figure 5A) With Development Upgrades if Applicable
Scenario 3	2020 Peak Hour Background Traffic Plus Phase 1 \& 2 Development Traffic (Figure 5B) With Development Upgrades if Applicable
Scenario 4	2020 Peak Hour Background Traffic Plus Phase 1, 2 \& 3 Development Traffic (Figure 5C) With Development Upgrades if Applicable
	2020 Peak Hour Background Traffic Plus Phase 1, 2, 3 \& 4 Development Traffic (Figure 5D) With Development Upgrades if Applicable

7.3 CAPACITY ANALYSIS

The existing and proposed geometric layout and traffic control of each key intersection is indicated in Appendix A-5.

The results of the SIDRA capacity analysis for the key intersections are summarised and discussed in Tables 10 to 13. Detailed SIDRA outputs are enclosed as Appendix A-6.

Table 11: Road D1477 and N4 Off-ramp

Road D1477 \& N4 OfF-Ramp										
	TRAFFIC SCENARIO \& LAYOUT	OVERALL INTERSECTION OPERATING CONDITIONS								
			AM PEAK HOUR				PM PEAK HOUR			
			LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS
1	2020 Peak Hour Background Traffic (With existing intersection layout)	South	NA	0.10	1.0	Acceptable operating conditions expected.	NA	0.13	1.7	Acceptable operating conditions expected.
		East	NA	0.00	0.0		NA	0.00	0.0	
		North	NA	0.17	1.4		NA	0.18	2.1	
		West	B	0.12	10.7		B	0.29	10.1	
		OVERALL	NA	0.17	3.7		NA	0.29	5.6	
2	2020 Peak Hour	South	A	0.19	4.4	Acceptable operating conditions	A	0.45	7.3	Acceptable operating conditions
	Background Traffic + Phase 1 Development	East	NA	0.00	0.0	expected. Proposed upgrades are summarized in Chapter 7.4.	NA	0.00	0.0	expected. Proposed upgrades are summarized in Chapter 7.4.
	Traffic	North	A	0.32	4.7		A	0.54	6.6	
	(With development upgrades)	West	B	0.32	15.7		B	0.53	13.5	
		OVERALL	A	0.32	7.1		A	0.54	8.9	
3	2020 Peak Hour	South	A	0.21	5.0	Acceptable operating conditions	A	0.49	7.5	Acceptable operating conditions
	Background Traffic + Phase $1 \& 2$	East	NA	0.00	0.0		NA	0.00	0.0	
	Development Traffic	North	A	0.37	5.2		A	0.55	6.7	
		West	B	0.32	16.3		B	0.55	13.7	
		OVERALL	A	0.37	7.5		A	0.55	9.0	
4	2020 Peak Hour	South	A	0.25	5.2	Acceptable operating conditions	A	0.56	8.1	Acceptable operating conditions
	Background Traffic + Phase 1, 2 \& 3	East	NA	0.00	0.0	expected.	NA	0.00	0.0	expected.
		North	A	0.42	5.3		A	0.61	6.9	
		West	B	0.38	17.4		B	0.59	14.2	
		OVERALL	A	0.42	7.7		A	0.61	9.3	

5	2020 Peak Hour Background Traffic + Phase 1, 2, 3 \& 4 Development Traffic	South	A	0.32	5.7	Acceptable operating conditions expected.	A	0.69	9.4	Acceptable operating conditions expected.
		East	NA	0.00	0.0		NA	0.00	0.0	
		North	A	0.55	5.7		A	0.68	7.3	
		West	B	0.52	19.7		B	0.66	14.9	
		OVERALL	A	0.55	8.3		A	0.69	10.0	

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements

The conceptual intersection geometric layout for the above intersection is shown on Drawing SKC 001 Rev A.

Table 12: Road D1477 and N4 Off-ramp/Belfast One Stop Access

Road D1477 \& N4 Off-Ramp/Belfast One Stop Access										
	TRAFFIC SCENARIO \& LAYOUT	OVERALL INTERSECTION OPERATING CONDITIONS								
		$\begin{aligned} & \frac{1}{0} \\ & \frac{\pi}{0} \\ & \frac{2}{4} \end{aligned}$	AM PEAK HOUR				PM PEAK HOUR			
			LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS
1	2020 Peak Hour Background Traffic (With existing intersection layout)	South	NA	0.05	2.1	Acceptable operating conditions expected.	NA	0.06	2.3	Acceptable operating conditions expected.
		East	C	0.29	20.5		NA	0.47	24.6	
		North	NA	0.17	6.5		NA	0.18	7.2	
		West	B	0.08	12.5		B	0.11	12.8	
		OVERALL	NA	0.29	9.2		NA	0.47	11.5	
2	2020 Peak Hour Background Traffic + Phase 1 Development Traffic (With development upgrades)	South	A	0.16	7.3	Acceptable operating conditions expected. Proposed upgrades are summarized in Chapter 7.4.	B	0.49	10.1	Acceptable operating conditions expected. Proposed upgrades are summarized in Chapter 7.4.
		East	C	0.37	27.5		C	0.54	27.4	
		North	B	0.38	11.6		B	0.56	13.7	
		West	C	0.26	30.7		C	0.45	30.3	
		OVERALL	B	0.38	14.9		B	0.56	15.6	
3	2020 Peak Hour Background Traffic + Phase 1\&2 Development Traffic	South	A	0.18	7.4	Acceptable operating conditions expected.	A	0.53	9.8	Acceptable operating conditions expected.
		East	C	0.37	27.5		C	0.58	28.7	
		North	B	0.39	11.1		B	0.60	13.5	
		West	C	0.29	30.9		C	0.50	31.5	
		OVERALL	B	0.39	14.4		B	0.60	15.4	
4	2020 Peak Hour Background Traffic + Phase 1, 2 \& 3 Development Traffic	South	A	0.23	7.1	Acceptable operating conditions expected.	A	0.61	9.7	Acceptable operating conditions expected.
		East	C	0.41	28.6		C	0.63	30.5	
		North	B	0.40	10.4		B	0.70	13.9	
		West	C	0.36	32.3		C	0.59	33.4	
		OVERALL	B	0.41	13.6		B	0.70	15.6	

South	A	0.31	6.9	Acceptable operating conditions expected. Proposed upgrades are summarized in Chapter 7.4.	A	0.72	9.0	Acceptable operating conditions expected. Proposed upgrades are summarized in Chapter 7.4.
East	C	0.45	29.8		D	0.90	45.4	
North	A	0.48	9.9		B	0.86	15.3	
West	C	0.49	34.2		D	0.90	50.1	
OVERALL	B	0.49	12.9		B	0.90	18.0	

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements

The conceptual intersection geometric layout for the above intersection is shown on Drawing SKC 002 Rev A.

Table 13: Road D1477 and R33/Site Access 1

Road D1477 \& R33/Site Access 1										
	TRAFFIC SCENARIO \& LAYOUT	OVERALL INTERSECTION OPERATING CONDITIONS								
		$\begin{aligned} & \frac{5}{0} \\ & \frac{\pi}{0} \\ & \frac{0}{2} \\ & \frac{1}{4} \end{aligned}$	AM PEAK HOUR				PM PEAK HOUR			
			LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS
1	2020 Peak Hour Background Traffic (With existing intersection layout)	South	A	0.01	8.6	Acceptable operating conditions expected.	A	0.00	9.1	Acceptable operating conditions expected.
		East	A	0.02	9.5		A	0.02	9.7	
		North	B	0.16	10.1		A	0.12	10.0	
		West	A	0.05	8.3		A	0.05	8.2	
		OVERALL	NA	0.16	9.4		NA	0.12	9.2	
2	2020 Peak Hour Background Traffic + Phase 1 Development Traffic (With development upgrades)	South	A	0.01	9.2	Acceptable operating conditions expected. Proposed upgrades are summarized in Chapter 7.4.	B	0.04	13.7	Acceptable operating conditions expected. Proposed upgrades are summarized in Chapter 7.4.
		East	A	0.10	8.7		D	0.88	26.8	
		North	A	0.14	8.3		A	0.24	7.7	
		West	A	0.04	7.9		A	0.05	7.6	
		OVERALL	A	0.14	8.4		NA	0.88	16.8	
3	2020 Peak Hour Background Traffic + Phase 1 \& 2 Development Traffic	South	A	0.03	9.6	Acceptable operating conditions expected.	B	0.08	14.1	Acceptable operating conditions expected.
		East	A	0.10	8.7		D	0.88	26.8	
		North	A	0.14	8.3		A	0.24	7.7	
		West	A	0.04	7.9		A	0.05	7.6	
		OVERALL	NA	0.14	8.4		NA	0.88	16.5	
4	2020 Peak Hour Background Traffic + Phase 1, 2 \& 3 Development Traffic	South	B	0.04	10.8	Acceptable operating conditions expected.	C	0.10	16.2	Intersection will operate at a v / c ratio of 1.00 but with acceptable overall LOS and delays.
		East	A	0.18	9.3		E	1.00	35.2	
		North	A	0.14	8.1		A	0.28	7.7	
		West	A	0.04	7.9		A	0.05	7.8	
		OVERALL	NA	0.18	8.6		NA	1.00	20.8	

South	B	0.07	14.2	Acceptable operating conditions expected.	C	0.13	19.6	Intersection will operate at a v / c ratio of 1.00 but with acceptable
East	B	0.38	11.3					
North	A	0.22	7.9					
overall LOS and delays.								

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements
The conceptual intersection geometric layout for the above intersection is shown on Drawing SKC 003 Rev B.

Table 14: Road D1477 and Site Access 2

5	2020 Peak Hour Background Traffic + Phase 1, 2, 3 \& 4 Development Traffic	South	NA	0.02	1.3	Acceptable operating conditions expected.	NA	0.02	0.6	Acceptable operating conditions expected.
		East	B	0.04	6.9		B	0.10	12.8	
		North	NA	0.05	7.4		NA	0.04	3.0	
		West	-	-	-		-	-	-	
		OVERALL	NA	0.05	6.7		NA	0.10	6.5	

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements

The conceptual intersection geometric layout for the above intersection is shown on Drawing SKC 004 Rev A

7.4 ROADS UPGRADES REQUIRED

Based on the capacity analyses the following road upgrades are required as summarized in Table 14.

Table 14: Proposed Road Upgrades

No.	Intersection	Phase 1	Phase 2	Phase 3	Phase 4
1.	Road D1477 and N4 Offramp	- Signalize intersection. Refer Drawing SKC 002 Rev A.	No further road upgrades required.	No further road upgrades required.	No further road upgrades required.
2.	Road D1477 and N4 Offramp/Belfast 1 Stop Access	- Signalize intersection. Refer Drawing SKC 002 Rev A.	No further road upgrades required.	No further road upgrades required.	Optimize signal settings.
3.	Road D1477 R33/Site Access 1	- Provide an exclusive left turn lane (60m) and an exclusive slip lane (60m) on the northern approach. - Provide an exclusive right turn lane (60 m) and a shared through and left turn lane on the eastern approach. - Refer Drawing SKC003 Rev B.	No further road upgrades required.	No further road upgrades required, although a traffic circle/signal can be considered in this phase.	No further road upgrades required, although a traffic circle/signal can be considered in this phase.
4.	Road D1477 R33/Site Access 2	Not Applicable	New intersection. Provide eastern leg as shown on Drawing SKC 004 Rev A.	No further road upgrades required.	No further road upgrades required.
5.	Proposed link road	Not Applicable	Not Applicable	Link road required to prevent congestion of the N4/Road D1477 interchange	Link road required to prevent congestion of the N4/Road D1477 interchange

8
 NON-MOTORISED AND PUBLIC TRANSPORT

8.1 BACKGROUND

In terms of the National Land Transport Act 5 of 2009, section 38, it is a requirement that an assessment of the public transport be included in a traffic impact assessment.

8.2 EXISTING PUBLIC TRANSPORT SERVICES AND FACILITIES

The proposed development is in close proximity to the following public transport services:

MINIBUS TAXIS

There is an existing formalised taxi rank facility located at the corner of Fitzgerald Street and Vermooten Street in Belfast (approximately 3.3km north-west of the proposed site). The trips that are made by these minibus taxis are to surrounding towns such as Middelburg and Nelspruit.

8.3 PROPOSED / NEW FACILITIES

MINIBUS TAXI LAYBYS

There are no taxi laybys available within the proximity of the proposed site. Therefore it is recommended that a pair of laybys be positioned along Road D1477 at the main access. The proposed laybys are illustrated on Drawing SKC003.

PEDESTRIAN FACILITIES

It is proposed that surfaced pedestrian sidewalks should be provided along the site frontage to facilitate pedestrian movements to and from the site.

9

CONCLUSIONS

Based on the assessment of the existing road network, traffic counts, a traffic and capacity analysis of road links in the study area, the following concluding remarks are relevant:
$\rightarrow \quad$ The proposed development is situated on Remainder of Portion 12 of the Farm Wemmerhuis 379-JT and Remainder of the Farm Bergendal 981-JR in Belfast, Mpumalanga Province (see Figure 1). The proposed development will be implemented in phases.
$\rightarrow \quad$ This study considered the following land-uses:

- Industrial $14252 \mathrm{~m}^{2}$
- Single Dwelling Units 161 Stands
- Apartments and Flats 387 Units
- Pre-school 200 Pupils
- Shopping Centre $33290 \mathrm{~m}^{2}$
- Business Centre $42344 \mathrm{~m}^{2}$
$\rightarrow \quad$ Detailed traffic surveys were carried at the following intersections (see Figure 1):
- Road D1477 and N4 Offramp;
- Road D1477 and N4 Offramp/Belfast 1Stop Access and
- Road D1477 and R33
$\rightarrow \quad$ The proposed development will generate approximately 1052 and 1887 trips during the AM and PM peak hour respectively.
$\rightarrow \quad$ It is proposed that the development be served by two full accesses off Road D1477 plus and additional access to the north of the proposed development (over/under the N4) to serve Phase 3 and 4. The main access will be via the eastern leg of the intersection of Road D1477 and R33.
$\rightarrow \quad$ The site development plans have not yet been finalized. It is proposed that a parking assessment be undertaken during the site development submission stage.
$\rightarrow \quad$ Roads upgrades required are stated in Chapter 7.4 and as shown on Drawings SKC001 to SKC004.
$\rightarrow \quad$ There are public transport services provided within the vicinity of site. There are no taxi laybys available within the proximity of the proposed site. Therefore it is recommended that a pair of laybys be positioned along Road D1477 at the main access. The proposed laybys are illustrated on Drawing SKC003.

From a traffic engineering perspective; the proposed development is supported.

10

REFERENCES

\rightarrow TMH 16 Volume 2, South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual, Version 1.0, Committee of Transport Officials (COTO) August 2012
\rightarrow TMH 17 Volume 1, South African Trip Data Manual, Version 1.0, Committee of Transport Officials (COTO) September 2012.
\rightarrow Highway Capacity Manual, Transportation Research Board, National Research Council Washington D.C., 2010.
\rightarrow Manual for Traffic Impact Studies, Department of Transport, October 1995
\rightarrow South African Trip Generation Rates, $2^{\text {nd }}$ edition, Department of Transport, June 1995
\rightarrow South African Parking Standards, 2 ${ }^{\text {nd }}$ edition, Department of Transport, November 1985

FIGURES

FIGURES

FIGURE 1: LOCALITY PLAN
FIGURE 2: 2015 EXISTING TRAFFIC VOLUMES
FIGURE 3: 2020 BACKGROUND TRAFFIC VOLUMES
FIGURE 4A: PHASE 1 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 4B: PHASE 2 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 4C: PHASE 3 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 4D: PHASE 4 PEAK HOUR DEVELOPMENT TRIPS
FIGURE 5A: 2020 BACKGROUND PLUS PHASE 1 DEVELOPMENT TRAFFIC
FIGURE 5B: 2020 BACKGROUND PLUS PHASE $1 \& 2$ DEVELOPMENT TRAFFIC FIGURE 5C: 2020 BACKGROUND PLUS PHASE 1,2 \& 3 DEVELOPMENT TRAFFIC FIGURE 5D: 2020 BACKGROUND PLUS PHASE 1, 2, 3 \& 4 DEVELOPMENT TRAFFIC

Project:
PROPOSED BELFAST MIXED USE DEVELOPMENT

Figure:

DRAWINGS

D R A W INGS

Drawing SKC001 Rev A: D1477/N4 Offramp Intersection Layout Plan
Drawing SKC002 Rev A: D1477/N4 Offramp/Belfast 1Stop Intersection Layout Plan
Drawing SKC003 Rev B: D1477/R33/Site Access Intersection Layout Plan
Drawing SKC004 Rev A: D1477/Site Access 2 Intersection Layout Plan

APPENDICES

N4 Highway

Annexure A-2 - Record of site visit Photo Sheet 1 of 2

Road D1477 \& N4 Offramp (facing north)

Access to Belfast 1Stop (facing east)

Annexure A-2 - Record of site visit Photo Sheet 2 of 2

APPENDIX A-4
TRIP GENERATION CALCULATIONS

Late Land Use Vencice

$\xrightarrow[\text { Vonce }]{2}$

	Lenc use	Daily	m	Mipak	Tosal	m	$\xrightarrow{\text { Pumpeak }}$	Tosal	m	Fridy pu	Toal	${ }_{\text {lol }}$	Mut	Toal	${ }^{\text {m }}$	${ }_{\text {Everine }}$	Toal	m	sumber	Tosal	m	sump	Total	m	$\xrightarrow{\text { anpeak }}$	Total	m	pupeak	Total	m	Fridy oum	Total	m	, in	Toal	m	Ewome	Total	m	sumay	Total	m	sumay	Total
		${ }_{6}^{63}$	${ }^{4}$	${ }_{13}^{12}$	${ }_{\text {c }}^{18}$	${ }_{10}^{12}$	${ }_{4}^{5}$	${ }_{18}^{18}$										40	${ }_{4}^{4}$	${ }_{81}$	40	${ }_{4}^{4}$	${ }_{81}$	${ }_{37}$	${ }^{13}$	${ }^{18}$	${ }_{10}^{12}$	${ }_{5}^{5}$	${ }_{\substack{18 \\ 150}}$										${ }_{4}$	${ }_{4}^{4}$	${ }_{81}$	${ }^{4}$	${ }_{4}^{4}$	$\stackrel{\square}{8}$
200	Oneme																																											

Appendix A-5: Existing vs. Proposed Intersection Layout and Control

Appendix A-5 (continue): Existing vs. Proposed Intersection Layout and Control

	EXISTING LAYOUT \& TRAFFIC CONTROL	PROPOSED LAYOUT \& TRAFFIC CONTROL
	TRAFFIC CONTROL: SIDE STOP	TRAFFIC CONTROL: SIGNALISED
	STOP	

Appendix A-5 (continue): Existing vs. Proposed Intersection Layout and Control

$\begin{aligned} & \text { z } \\ & \text { ㅇㅡㅡ } \\ & \text { W } \\ & \text { un } \\ & \text { w } \\ & \underline{z} \\ & \hline \end{aligned}$	EXISTING LAYOUT \& TRAFFIC CONTROL	PROPOSED LAYOUT \& TRAFFIC CONTROL
	TRAFFIC CONTROL: ALL-WAY STOP	TRAFFIC CONTROL: ALL-WAY STOP

Appendix A-5 (continue): Existing vs. Proposed Intersection Layout and Control


```
APPENDIX A-6 DETAILED SIDRA RESULTS
```

2020 AM Horizon Year Traffic Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID		Demand Flow vehih	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Sain v/C	Average Delay sec	Level of Service	95\% Back o Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	174	20.0	0.101	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
3	R	17	20.0	0.021	11.7	LOS B	0.1	0.7	0.45	0.71	45.9
Approac		191	20.0	0.101	1.0	NA	0.1	0.7	0.04	0.06	58.4
North: Road D1477 SB											
7	L	54	20.0	0.033	8.8	LOS A	0.0	0.0	0.00	0.66	49.0
8	T	288	20.0	0.167	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac		342	20.0	0.167	1.4	NA	0.0	0.0	0.00	0.10	58.0
West: N4 Offramp											
10	L	152	20.0	0.093	8.0	x	x	X	X	0.59	49.8
11	T	3	20.0	0.123	22.3	LOS C	0.4	3.6	0.66	0.99	38.6
12	R	33	20.0	0.123	22.0	LOS C	0.4	3.6	0.66	1.00	38.8
Approac		187	20.0	0.123	10.7	LOS B	0.4	3.6	0.13	0.67	47.3
All Vehic		720	20.0	0.167	3.7	NA	0.4	3.6	0.04	0.24	54.8

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Horizon Year Traffic
Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg, Satn vic	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queve Distance m	Prop. Queved	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	216	20.0	0.125	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
3	R	34	20.0	0.047	12.5	LOS B	0.2	1.5	0.50	0.76	45.2
Approa		249	20.0	0.125	1.7	NA	0.2	1.5	0.07	0.10	57.5
North: Road D1477 SB											
7	L	101	20.0	0.062	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	T	314	20.0	0.182	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac		415	20.0	0.182	2.1	NA	0.0	0.0	0.00	0.16	56.9
West: N4 Offramp											
10	L	473	20.0	0.291	8.0	X	X	X	x	0.59	49.7
11	T	14	20.0	0.246	27.6	LOS D	0.9	7.8	0.76	1.02	35.4
12	R	44	20.0	0.246	27.3	LOS D	0.9	7.8	0.76	1.03	35.6
Approach		531	20.0	0.291	10.1	LOS B	0.9	7.8	0.08	0.64	47.7
All Vehicles		1195	20.0	0.291	5.6	NA	0.9	7.8	0.05	0.36	52.5

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 AM Background + Phase 1 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow $\mathrm{veh} / \mathrm{h}$	$\begin{aligned} & \mathrm{HV} \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queve Distance m	Prop. Queued	Effective Stop Rate perveh	Average Speed km / h
South: Road D1477 NB											
2	T	233	20.0	0.193	3.3	LOSA	2.4	19.3	0.37	0.31	53.2
3	R	25	20.0	0.068	14.5	LOS B	0.3	2.5	0.41	0.74	43.3
Approac		258	20.0	0.193	4.4	LOS A	2.4	19.3	0.37	0.35	52.0
North: Road D1477 SB											
7	L	54	20.0	0.111	11.7	LOS B	0.5	4.0	0.32	0.70	45.9
8	T	383	20.0	0.317	3.7	LOSA	4.3	35.5	0.41	0.36	52.5
Approac		437	20.0	0.317	4.7	LOS A	4.3	35.5	0.40	0.40	51.6
West: N4 Offramp											
10	L	152	20.0	0.093	8.0	X	X	x	X	0.59	49.8
11	T	3	20.0	0.323	29.4	LOS C	1.6	12.8	0.97	0.72	29.7
12	R	49	20.0	0.323	38.5	LOS D	1.6	12.8	0.97	0.75	29.4
Approach		204	20.0	0.323	15.7	LOS B	1.6	12.8	0.25	0.63	42.3
All Vehicles		899	20.0	0.323	7.1	LOSA	4.3	35.5	0.36	0.44	49.2

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 PM Background + Phase 1 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID		Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	518	20.0	0.450	5.1	LOSA	7.3	59.5	0.51	0.45	50.4
3	R	84	20.0	0.288	20.2	LOS C	1.6	13.0	0.63	0.79	38.9
Approa		602	20.0	0.450	7.3	LOSA	7.3	59.5	0.53	0.50	48.4
North: Road D1477 SB											
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	T	621	20.0	0.540	5.6	LOSA	9.5	78.1	0.56	0.50	49.6
Approa		722	20.0	0.540	6.6	LOS A	9.5	78.1	0.53	0.53	48.9
West: N4 Offramp											
10	L	473	20.0	0.291	8.0	x	X	x	x	0.59	49.7
11	T	14	20.0	0.531	28.2	LOS C	3.4	28.0	0.98	0.77	30.2
12	R	102	20.0	0.531	37.2	LOS D	3.4	28.0	0.98	0.79	30.0
Approach		588	20.0	0.531	13.5	LOS B	3.4	28.0	0.19	0.63	44.1
All Vehi		1913	20.0	0.540	8.9	LOSA	9.5	78.1	0.43	0.55	47.2

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Background + Phase 1\&2 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn V/c	Average Delay sec	Level of Service	95\% Back o Vehicles veh	f Queve Distance m	Prop. Queved	Effective Stop Rate per veh	Average Speed km/h
South: Road D1477 NB											
2	T	252	20.0	0.213	3.8	LOS A	2.7	22.3	0.39	0.34	52.5
3	R	28	20.0	0.082	15.5	LOS B	0.4	3.0	0.45	0.74	42.5
Approa		280	20.0	0.213	5.0	LOSA	2.7	22.3	0.40	0.38	51.3
North: Road D1477 SB											
7	L	54	20.0	0.116	12.1	LOS B	0.5	4.2	0.34	0.70	45.6
8	T	431	20.0	0.365	4.3	LOSA	5.3	43.7	0.45	0.40	51.6
Approac		484	20.0	0.365	5.2	LOSA	5.3	43.7	0.44	0.43	50.8
West: N4 Offramp											
10	L	152	20.0	0.093	8.0	x	X	x	x	0.59	49.8
11	T	3	20.0	0.321	28.3	LOS C	1.8	14.5	0.96	0.72	30.2
12	R	58	20.0	0.321	37.3	LOS D	1.8	14.5	0.96	0.75	29.8
Approach		213	20.0	0.321	16.3	LOS B	1.8	14.5	0.27	0.64	41.9
All Vehic		977	20.0	0.365	7.5	LOSA	5.3	43.7	0.39	0.46	48.7

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 PM Background + Phase 1\&2 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow vehich	$\begin{aligned} & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg Satn vic	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop Queved	Effective Stop Rate perveh	Average Speed km / h
South: Road D1477 NB											
2	T	566	20.0	0.492	5.4	LOSA	8.3	67.8	0.53	0.48	50.0
3	R	92	20.0	0.323	20.5	LOS C	1.8	14.4	0.65	0.79	38.7
Approa		658	20.0	0.492	7.5	LOS A	8.3	67.8	0.55	0.52	48.1
North: Road D1477 SB											
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	T	637	20.0	0.554	5.7	LOSA	9.9	81.2	0.57	0.51	49.5
Approa		738	20.0	0.554	6.7	LOSA	9.9	81.2	0.54	0.54	48.8
West: N4 Offramp											
10	L	473	20.0	0.291	8.0	X	X	x	X	0.59	49.7
11	T	14	20.0	0.545	28.3	LOS C	3.5	28.9	0.98	0.78	30.2
12	R	105	20.0	0.545	37.4	LOS D	3.5	28.9	0.98	0.80	29.9
Approach		592	20.0	0.545	13.7	LOS B	3.5	28.9	0.20	0.63	44.0
All Vehicles		1987	20.0	0.554	9.0	LOSA	9.9	81.2	0.44	0.56	47.0

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Background + Phase 1, 2 \& 3 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
MovID	Turn	Demand Flow veh/h	$\begin{aligned} & \mathrm{HV} \\ & \% \end{aligned}$	Deg, Sath V/C	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Road D1477 NB											
2	T	300	20.0	0.254	3.9	LOS A	3.4	27.6	0.41	0.35	52.3
3	R	35	20.0	0.107	16.1	LOS B	0.5	3.9	0.48	0.75	42.0
Approac		335	20.0	0.254	5.2	LOS A	3.4	27.6	0.42	0.39	51.0
North: Road D1477 SB											
7	L	54	20.0	0.116	12.1	LOS B	0.5	4.2	0.34	0.70	45.6
8	T	499	20.0	0.423	4.6	LOSA	6.5	53.5	0.48	0.42	51.2
Approac		553	20.0	0.423	5.3	LOSA	6.5	53.5	0.47	0.45	50.6
West: N4 Offramp											
10	L	152	20.0	0.093	8.0	X	X	X	x	0.59	49.8
11	T	3	20.0	0.382	28.5	LOS C	2.1	17.4	0.96	0.74	30.0
12	R	69	20.0	0.382	37.6	LOS D	2.1	17.4	0.96	0.76	29.7
Approach		224	20.0	0.382	17.4	LOS B	2.1	17.4	0.31	0.65	41.0
All Vehicles		1112	20.0	0.423	7.7	LOSA	6.5	53.5	0.42	0.47	48.4

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements
SIDRA Standard Delay Model used.

2020 PM Background + Phase 1, 2, 3 \& 4 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Tuin	Demand Flow $\mathrm{veh} / \mathrm{h}$	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queve Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	644	20.0	0.560	5.8	LOSA	10.1	82.7	0.57	0.52	49.4
3	R	103	20.0	0.407	22.5	LOS C	2.2	18.0	0.71	0.80	37.4
Approac		747	20.0	0.560	8.1	LOSA	10.1	82.7	0.59	0.56	47.3
North: Road D1477 SB											
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	T	700	20.0	0.608	6.1	LOSA	11.6	94.9	0.60	0.55	48.9
Approac		801	20.0	0.608	6.9	LOSA	11.6	94.9	0.58	0.57	48.4
West: N4 Offramp											
10	L	473	20.0	0.291	8.0	x	X	x	x	0.59	49.7
11	T	14	20.0	0.594	28.8	LOS C	3.9	32.0	0.99	0.81	29.9
12	R	116	20.0	0.594	37.9	LOS D	3.9	32.0	0.99	0.82	29.7
Approach		602	20.0	0.594	14.2	LOS B	3.9	32.0	0.21	0.64	43.5
All Vehicles		2151	20.0	0.608	9.3	LOSA	11.6	94.9	0.48	0.58	46.6

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Background + Phase 1, 2, 3 \& 4 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid		Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back o Vehicles veh	Queve Distance m	Prop. Queued	Effective Stop Rate perveh	Average Speed km / h
South: Road D1477 NB											
2	T	378	20.0	0.320	4.2	LOS A	4.5	36.8	0.43	0.38	51.9
3	R	46	20.0	0.166	18.7	LOS B	0.8	6.4	0.57	0.77	40.0
Approac		424	20.0	0.320	5.7	LOS A	4.5	36.8	0.45	0.42	50.3
North: Road D1477 SB											
7	L	54	20.0	0.116	12.1	LOS B	0.5	4.2	0.34	0.70	45.6
8	T	646	20.0	0.548	5.2	LOSA	9.6	79.0	0.55	0.49	50.2
Approac		700	20.0	0.548	5.7	LOSA	9.6	79.0	0.53	0.51	49.8
West: N4 Offramp											
10	L	152	20.0	0.093	8.0	x	x	x	x	0.59	49.8
11	T	3	20.0	0.515	29.2	LOS C	2.9	24.0	0.98	0.77	29.7
12	R	95	20.0	0.515	38.2	LOS D	2.9	24.0	0.98	0.78	29.4
Approac		249	20.0	0.515	19.7	LOS B	2.9	24.0	0.39	0.67	39.3
All Vehic		1374	20.0	0.548	8.3	LOSA	9.6	79.0	0.48	0.51	47.6

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 PM Background + Phase 1, 2, 3 \& 4 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid	Tum	Demand Flow $\mathrm{Veh} / \mathrm{h}$	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn VIC	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	788	20.0	0.685	6.7	LOS A	14.3	117.0	0.66	0.60	48.1
3	R	123	20.0	0.567	26.6	LOS C	3.1	25.8	0.82	0.84	34.9
Approac		912	20.0	0.685	9.4	LOSA	14.3	117.0	0.68	0.64	45.8
North: Road D1477 SB											
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	T	783	20.0	0.681	6.6	LOSA	14.1	115.6	0.66	0.60	48.1
Approac		884	20.0	0.681	7.3	LOSA	14.1	115.6	0.63	0.61	47.8
West: N4 Offramp											
10	L	473	20.0	0.291	8.0	x	X	X	x	0.59	49.7
11	T	14	20.0	0.657	29.6	LOS C	4.4	36.2	1.00	0.85	29.5
12	R	129	20.0	0.657	38.7	LOS D	4.4	36.2	1.00	0.85	29.4
Approac		616	20.0	0.657	14.9	LOS B	4.4	36.2	0.23	0.65	42.9
All Vehic		2412	20.0	0.685	10.0	LOS B	14.3	117.0	0.55	0.63	45.7

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Horizon Year Traffic Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow $\mathrm{veh} / \mathrm{h}$	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back o Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB mee per men km/h											
1	L	6	20.0	0.004	8.8	LOS A	0.0	0.0	0.00	0.66	49.0
2	T	78	20.0	0.051	0.9	LOS A	0.3	2.7	0.34	0.00	53.7
3	R	6	20.0	0.051	9.8	LOSA	0.3	2.7	0.34	0.92	49.1
Approac		91	20.0	0.051	2.1	NA	0.3	2.7	0.32	0.11	53.0
East: Belfast One Stop Access											
4	L	13	20.0	0.288	20.3	LOS C	1.3	10.6	0.60	0.83	40.1
5	T	52	20.0	0.288	20.7	LOS C	1.3	10.6	0.60	1.03	39.8
6	R	47	20.0	0.288	20.3	LOS C	1.3	10.6	0.60	1.02	40.1
Approac		112	20.0	0.288	20.5	LOS C	1.3	10.6	0.60	1.00	40.0
North: Road D1477 SB											
7	L	64	20.0	0.040	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	T	95	20.0	0.055	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	169	20.0	0.173	9.4	LOSA	0.7	5.4	0.23	0.63	47.9
Approac		328	20.0	0.173	6.5	NA	0.7	5.4	0.12	0.45	51.1
West: N4 Offramp											
10	L	66	20.0	0.077	12.5	LOS B	0.3	2.3	0.22	0.89	46.0
11	T	1	20.0	0.077	12.9	LOS B	0.3	2.3	0.22	0.99	45.6
12	R	1	20.0	0.077	12.5	LOS B	0.3	2.3	0.22	1.00	46.1
Approach		68	20.0	0.077	12.5	LOS B	0.3	2.3	0.22	0.89	46.0
All Vehic		599	20.0	0.288	9.2	NA	1.3	10.6	0.25	0.55	48.2

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Horizon Year Traffic Stop (Two-Way)

Movement Performance - Vehicles											
Movid		Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
1	L	6	20.0	0.004	8.8	LOS A	0.0	0.0	0.00	0.66	49.0
2	T	85	20.0	0.059	1.0	LOSA	0.4	3.1	0.34	0.00	53.7
3	R	9	20.0	0.059	9.8	LOSA	0.4	3.1	0.34	0.91	49.0
Approac		101	20.0	0.059	2.3	NA	0.4	3.1	0.32	0.13	52.9
East. Belfast One Stop Access											
4	L	20	20.0	0.474	24.4	LOS C	2.8	22.8	0.66	0.92	37.4
5	T	71	20.0	0.474	24.8	LOS C	2.8	22.8	0.66	1.12	37.2
6	R	82	20.0	0.474	24.4	LOS C	2.8	22.8	0.66	1.10	37.4
Approac		173	20.0	0.474	24.6	LOS C	2.8	22.8	0.66	1.09	37.3
North: Road D1477 SB											
7	L	83	20.0	0.051	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	T	75	20.0	0.043	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
9	R	179	20.0	0.183	9.4	LOSA	0.7	5.8	0.25	0.63	47.8
Approac		337	20.0	0.183	7.2	NA	0.7	5.8	0.13	0.50	50.4
West: N4 Offramp											
10	L	85	20.0	0.107	12.8	LOS B	0.4	3.3	0.24	0.88	45.7
11	T	2	20.0	0.107	13.3	LOS B	0.4	3.3	0.24	0.99	45.3
12	R	3	20.0	0.107	12.8	LOS B	0.4	3.3	0.24	1.01	45.8
Approach		91	20.0	0.107	12.8	LOS B	0.4	3.3	0.24	0.89	45.7
All Vehicles		701	20.0	0.474	11.5	NA	2.8	22.8	0.30	0.64	46.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 1 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid	Turn	Demand Fiow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg, } \\ & \text { Sath } \\ & \text { vic } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB amen kern											
1	L	16	20.0	0.034	14.4	LOS B	0.2	1.6	0.44	0.68	43.5
2	T	145	20.0	0.157	6.2	LOSA	2.0	16.7	0.48	0.40	49.2
3	R	6	20.0	0.157	15.0	LOS B	2.0	16.7	0.48	0.98	44.7
Approac		167	20.0	0.157	7.3	LOS A	2.0	16.7	0.48	0.45	48.4
East: Belfast One Stop Access											
4	L	13	20.0	0.373	31.6	LOS C	2.9	24.2	0.89	0.80	33.2
5	T	52	20.0	0.373	22.8	LOS C	2.9	24.2	0.89	0.71	33.8
6	R	47	20.0	0.373	31.5	LOS C	2.9	24.2	0.89	0.80	33.2
Approac		112	20.0	0.373	27.5	LOS C	2.9	24.2	0.89	0.76	33.5
North: Road D1477 SB											
7	L	64	20.0	0.118	14.6	LOS B	0.8	6.7	0.45	0.71	43.3
8	T	206	20.0	0.205	6.4	LOS A	2.9	23.5	0.50	0.42	49.0
9	R	169	20.0	0.385	16.8	LOS B	2.7	22.2	0.56	0.77	41.5
Approac		440	20.0	0.385	11.6	LOS B	2.9	23.5	0.52	0.60	45.0
West: N4 Offramp											
10	L	66	20.0	0.256	30.8	LOS C	2.1	17.2	0.87	0.77	32.7
11	T	1	20.0	0.256	22.0	LOS C	2.1	17.2	0.87	0.68	33.4
12	R	15	20.0	0.256	30.8	LOS C	2.1	17.2	0.87	0.77	32.7
Approach		82	20.0	0.256	30.7	LOS C	2.1	17.2	0.87	0.77	32.8
All Vehic		801	20.0	0.385	14.9	LOS B	2.9	24.2	0.60	0.61	42.0

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 1 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Sath } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehiclas veh	Queve Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB Ser hen kiun											
1	L	67	20.0	0.153	15.6	LOS B	0.9	7.6	0.49	0.72	42.4
2	T	438	20.0	0.491	9.1	LOSA	8.2	67.1	0.66	0.58	45.6
3	R	9	20.0	0.491	17.9	LOS B	8.2	67.1	0.66	0.97	42.9
Approac		515	20.0	0.491	10.1	LOS B	8.2	67.1	0.64	0.61	45.1
East: Belfast One Stop Access											
4	L	20	20.0	0.537	31.0	LOS C	4.6	38.1	0.91	0.82	33.4
5	T	71	20.0	0.537	22.3	LOS C	4.6	38.1	0.91	0.75	33.9
6	R	82	20.0	0.537	30.9	LOS C	4.6	38.1	0.91	0.82	33.4
Approac		173	20.0	0.537	27.4	LOS C	4.6	38.1	0.91	0.79	33.6
North: Road D1477 SB											
7	L	83	20.0	0.161	15.7	LOS B	1.2	9.5	0.50	0.72	42.4
8	T	440	20.0	0.464	8.9	LOSA	7.9	64.5	0.65	0.57	45.9
9	R	179	20.0	0.558	24.8	LOS C	4.3	35.4	0.82	0.82	36.0
Approac		702	20.0	0.558	13.7	LOS B	7.9	64.5	0.67	0.65	42.5
West: N4 Offramp											
10	L	85	20.0	0.455	30.4	LOS C	3.8	31.5	0.89	0.80	32.9
11	T	2	20.0	0.455	21.7	LOS C	3.8	31.5	0.89	0.73	33.5
12	R	59	20.0	0.455	30.5	LOS C	3.8	31.5	0.89	0.80	32.9
Approach		146	20.0	0.455	30.3	LOS C	3.8	31.5	0.89	0.80	32.9
All Vehic		1536	20.0	0.558	15.6	LOS B	8.2	67.1	0.71	0.67	40.9

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 1\&2 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid	Turn	Demand Fiow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Sath v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queved	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
1	L	20	20.0	0.043	14.4	LOS B	0.2	2.0	0.44	0.69	43.5
2	T	167	20.0	0.180	6.3	LOS A	2.4	19.5	0.49	0.41	49.0
3	R	6	20.0	0.180	15.1	LOS B	2.4	19.5	0.49	0.99	44.7
Approac		194	20.0	0.180	7.4	LOS A	2.4	19.5	0.49	0.46	48.3
East Belfast One Stop Access											
4	L	13	20.0	0.374	31.6	LOS C	2.9	24.2	0.89	0.80	33.2
5	T	52	20.0	0.374	22.8	LOS C	2.9	24.2	0.89	0.72	33.8
6	R	47	20.0	0.374	31.5	LOS C	2.9	24.2	0.89	0.80	33.2
Approac		112	20.0	0.374	27.5	LOS C	2.9	24.2	0.89	0.76	33.5
North: Road D1477 SB											
7	L	64	20.0	0.118	14.6	LOS B	0.8	6.7	0.45	0.71	43.3
8	T	263	20.0	0.261	6.6	LOS A	3.8	31.2	0.52	0.44	48.6
9	R	169	20.0	0.392	16.8	LOS B	2.7	22.4	0.57	0.77	41.4
Approac		497	20.0	0.392	11.1	LOS B	3.8	31.2	0.53	0.59	45.2
West: N4 Offramp											
10	L	66	20.0	0.288	31.0	LOS C	2.3	18.9	0.87	0.77	32.6
11	T	1	20.0	0.288	22.2	LOS C	2.3	18.9	0.87	0.69	33.3
12	R	22	20.0	0.288	31.1	LOS C	2.3	18.9	0.87	0.77	32.6
Approac		89	20.0	0.288	30.9	LOS C	2.3	18.9	0.87	0.77	32.6
All Vehic		892	20.0	0.392	14.4	LOS B	3.8	31.2	0.60	0.60	42.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model used.

2020 PM Background+Phase 1\&2 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid	Turn	Demand fiow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
1	L	76	20.0	0.167	15.1	LOS B	1.0	8.3	0.48	0.72	42.8
2	T	493	20.0	0.533	8.8	LOSA	9.2	75.8	0.67	0.59	45.9
3	R	9	20.0	0.533	17.6	LOS B	9.2	75.8	0.67	0.97	43.2
Approac		578	20.0	0.533	9.8	LOSA	9.2	75.8	0.64	0.61	45.4
East: Belfast One Stop Access											
4	L	20	20.0	0.581	32.4	LOS C	4.8	39.5	0.94	0.84	32.7
5	T	71	20.0	0.581	23.6	LOS C	4.8	39.5	0.94	0.78	33.2
6	R	82	20.0	0.581	32.3	LOS C	4.8	39.5	0.94	0.83	32.8
Approac		173	20.0	0.581	28.7	LOS C	4.8	39.5	0.94	0.81	32.9
North: Road D1477 SB											
7	L	83	20.0	0.157	15.1	LOS B	1.1	9.1	0.48	0.72	42.8
8	T	459	20.0	0.469	8.3	LOSA	8.0	65.7	0.63	0.56	46.5
9	R	179	20.0	0.600	25.9	LOS C	4.6	37.3	0.84	0.84	35.3
Approac		721	20.0	0.600	13.5	LOS B	8.0	65.7	0.67	0.65	42.7
West: N4 Offramp											
10	L	85	20.0	0.500	31.6	LOS C	4.0	32.9	0.91	0.80	32.3
11	T	2	20.0	0.500	22.9	LOS C	4.0	32.9	0.91	0.75	32.8
12	R	61	20.0	0.500	31.7	LOS C	4.0	32.9	0.91	0.81	32.3
Approac		148	20.0	0.500	31.5	LOS C	4.0	32.9	0.91	0.80	32.3
All Vehic		1620	20.0	0.600	15.4	LOS B	9.2	75.8	0.71	0.67	41.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 1,2 \& 3 Development Traffic Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back c Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate perveh	Average Speed km/h
South: Road D1477 NB											
1	L	27	20.0	0.057	14.0	LOS B	0.3	2.6	0.42	0.69	43.8
2	T	223	20.0	0.231	6.0	LOS A	3.1	25.7	0.49	0.42	49.4
3	R	6	20.0	0.231	14.8	LOS B	3.1	25.7	0.49	1.00	45.0
Approac		257	20.0	0.231	7.1	LOSA	3.1	25.7	0.49	0.46	48.6
East: Belfast One Stop Access											
4	L	13	20.0	0.408	32.7	LOS C	3.0	24.8	0.91	0.80	32.7
5	T	52	20.0	0.408	24.0	LOS C	3.0	24.8	0.91	0.73	33.2
6	R	47	20.0	0.408	32.6	LOS C	3.0	24.8	0.91	0.80	32.7
Approac		112	20.0	0.408	28.6	LOS C	3.0	24.8	0.91	0.77	32.9
North: Road D1477 SB											
7	L	64	20.0	0.115	14.1	LOS B	0.8	6.4	0.44	0.71	43.7
8	T	342	20.0	0.330	6.5	LOSA	5.0	41.2	0.53	0.46	48.8
9	R	169	20.0	0.403	17.0	LOS B	2.8	22.8	0.58	0.77	41.3
Approac		576	20.0	0.403	10.4	LOS B	5.0	41.2	0.53	0.58	45.8
West: N4 Offramp											
10	L	66	20.0	0.356	32.4	LOS C	2.6	21.7	0.90	0.78	32.0
11	T	1	20.0	0.356	23.6	LOS C	2.6	21.7	0.90	0.71	32.5
12	R	32	20.0	0.356	32.5	LOS C	2.6	21.7	0.90	0.78	32.0
Approach		99	20.0	0.356	32.3	LOS C	2.6	21.7	0.90	0.78	32.0
All Vehic		1043	20.0	0.408	13.6	LOS B	5.0	41.2	0.60	0.59	42.8

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 1, 2 \& 3 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg }_{9} \\ \text { Satn } \\ \text { v/c } \\ \hline \end{gathered}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queve Distance m	Prop Queued	Effective Stop Rate perveh	Average Speed km / h
South: Road D1477 NB per perven kmm											
1	L	89	20.0	0.192	14.7	LOS B	1.2	9.5	0.46	0.72	43.2
2	T	582	20.0	0.610	8.8	LOS A	11.3	93.0	0.70	0.62	45.7
3	R	9	20.0	0.610	17.6	LOS B	11.3	93.0	0.70	0.97	43.3
Approac		681	20.0	0.610	9.7	LOS A	11.3	93.0	0.67	0.64	45.4
East: Belfast One Stop Access											
4	L	20	20.0	0.634	34.2	LOS C	5.0	41.3	0.96	0.86	31.9
5	T	71	20.0	0.634	25.4	LOS C	5.0	41.3	0.96	0.83	32.2
6	R	82	20.0	0.634	34.1	LOS C	5.0	41.3	0.96	0.86	31.9
Approac		173	20.0	0.634	30.5	LOS C	5.0	41.3	0.96	0.85	32.0
North: Road D1477 SB											
7	L	83	20.0	0.153	14.7	LOS B	1.1	8.8	0.46	0.72	43.2
8	T	533	20.0	0.529	8.2	LOS A	9.5	77.8	0.65	0.57	46.6
9	R	179	20.0	0.695	30.7	LOS C	5.3	43.2	0.90	0.91	32.8
Approac		795	20.0	0.695	13.9	LOS B	9.5	77.8	0.69	0.66	42.2
West: N4 Offramp											
10	L	85	20.0	0.589	33.5	LOS C	4.5	36.9	0.95	0.83	31.5
11	T	2	20.0	0.589	24.7	LOS C	4.5	36.9	0.95	0.79	31.8
12	R	71	20.0	0.589	33.5	LOS C	4.5	36.9	0.95	0.83	31.5
Approach		158	20.0	0.589	33.4	LOS C	4.5	36.9	0.95	0.83	31.5
All Vehic		1806	20.0	0.695	15.6	LOS B	11.3	93.0	0.73	0.69	40.8

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 1, 2, 3 \& 4 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Movid	Tum	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Satn } \\ & \text { V/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehicles \qquad veh	Queve Distance \qquad	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
1	L	41	20.0	0.083	13.6	LOS B	0.5	3.8	0.41	0.70	44.2
2	T	313	20.0	0.313	5.9	LOSA	4.5	36.6	0.51	0.44	49.5
3	R	6	20.0	0.313	14.7	LOS B	4.5	36.6	0.51	1.00	45.1
Approac		360	20.0	0.313	6.9	LOS A	4.5	36.6	0.50	0.48	48.7
East: Belfast One Stop Access											
4	L	13	20.0	0.451	33.9	LOS C	3.1	25.6	0.93	0.80	32.1
5	T	52	20.0	0.451	25.2	LOS C	3.1	25.6	0.93	0.74	32.5
6	R	47	20.0	0.451	33.8	LOS C	3.1	25.6	0.93	0.80	32.1
Approac		112	20.0	0.451	29.8	LOS C	3.1	25.6	0.93	0.77	32.3
North: Road D1477 SB											
7	L	64	20.0	0.112	13.7	LOS B	0.7	6.1	0.42	0.71	44.1
8	T	516	20.0	0.485	6.8	LOSA	8.3	68.2	0.59	0.52	48.2
9	R	169	20.0	0.431	17.9	LOS B	3.0	24.4	0.61	0.78	40.6
Approac		749	20.0	0.485	9.9	LOS A	8.3	68.2	0.58	0.59	45.9
West: N4 Offramp											
10	L	66	20.0	0.494	34.2	LOS C	3.4	27.8	0.94	0.79	31.1
11	T	1	20.0	0.494	25.4	LOS C	3.4	27.8	0.94	0.76	31.5
12	R	53	20.0	0.494	34.3	LOS C	3.4	27.8	0.94	0.79	31.1
Approac		120	20.0	0.494	34.2	LOS C	3.4	27.8	0.94	0.79	31.1
All Vehic		1341	20.0	0.494	12.9	LOS B	8.3	68.2	0.62	0.60	43.2

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 1, 2, 3 \& 4 Development Traffic
Signals - Fixed Time Cycle Time $=60$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Movid	Tum	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Sath } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehicles \qquad veh	Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
1	L	114	20.0	0.223	13.4	LOS B	1.3	10.7	0.42	0.72	44.3
2	T	747	20.0	0.717	8.2	LOS A	15.2	124.5	0.73	0.66	46.2
3	R	9	20.0	0.717	17.1	LOS B	15.2	124.5	0.73	0.98	43.9
Approac		871	20.0	0.717	9.0	LOS A	15.2	124.5	0.68	0.67	45.9
East: Belfast One Stop Access											
4	L	20	20.0	0.897	49.0	LOS D	6.6	54.0	1.00	1.08	26.2
5	T	71	20.0	0.897	40.3	LOS D	6.6	54.0	1.00	1.08	26.3
6	R	82	20.0	0.897	48.9	LOS D	6.6	54.0	1.00	1.08	26.2
Approac		173	20.0	0.897	45.4	LOS D	6.6	54.0	1.00	1.08	26.3
North: Road D1477 SB											
7	L	83	20.0	0.140	13.3	LOS B	0.9	7.7	0.41	0.71	44.4
8	T	629	20.0	0.576	6.9	LOS A	10.7	87.9	0.62	0.56	48.0
9	R	179	20.0	0.864	45.6	LOS D	7.1	57.9	0.99	1.09	26.7
Approac		892	20.0	0.864	15.3	LOS B	10.7	87.9	0.68	0.68	41.1
West: N4 Offramp											
10	L	85	20.0	0.905	50.2	LOS D	6.6	53.9	1.00	1.09	25.3
11	T	2	20.0	0.905	41.5	LOS D	6.6	53.9	1.00	1.09	25.4
12	R	82	20.0	0.905	50.3	LOS D	6.6	53.9	1.00	1.09	25.3
Approac		169	20.0	0.905	50.1	LOS D	6.6	53.9	1.00	1.09	25.3
All Vehic		2104	20.0	0.905	18.0	LOS B	15.2	124.5	0.73	0.74	39.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model used.

2020 AM Horizon Year Traffic
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID		Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Sath } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queve Distance m	Prop. Queved	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB $0.0{ }^{\text {d }}$											
1	L	2	35.0	0.007	9.4	LOS A	0.1	0.5	0.15	0.59	48.4
2	T	6	35.0	0.007	8.2	LOSA	0.1	0.5	0.15	0.48	49.5
3	R	1	35.0	0.007	9.9	LOSA	0.1	0.5	0.15	0.69	48.2
Approa		9	35.0	0.007	8.6	LOSA	0.1	0.5	0.15	0.53	49.1
East: Site Access 1											
4	L	1	35.0	0.024	9.3	LOSA	0.1	0.9	0.07	0.60	48.6
5	T	2	35.0	0.024	8.1	LOS A	0.1	0.9	0.07	0.49	49.9
6	R	15	35.0	0.024	9.7	LOSA	0.1	0.9	0.07	0.68	48.4
Approac		18	35.0	0.024	9.5	LOS A	0.1	0.9	0.07	0.65	48.5
North: Road D1477											
7	L	11	35.0	0.156	10.2	LOS B	0.7	6.7	0.25	0.50	47.9
8	T	3	35.0	0.156	8.9	LOSA	0.7	6.7	0.25	0.41	48.8
9	R	92	35.0	0.156	10.2	LOS B	0.7	6.7	0.25	0.62	47.9
Approac		105	35.0	0.156	10.1	LOS B	0.7	6.7	0.25	0.60	47.9
West: R33 EB											
10	L	69	35.0	0.047	8.2	x	x	x	X	0.58	49.8
11	T	1	35.0	0.002	8.0	LOSA	0.0	0.1	0.05	0.52	50.0
12	R	1	35.0	0.002	9.7	LOSA	0.0	0.1	0.05	0.71	48.4
Approach		72	35.0	0.047	8.3	LOS A	0.0	0.1	0.00	0.59	49.8
All Vehic		204	35.0	0.156	9.4	NA	0.7	6.7	0.14	0.60	48.7

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Horizon Year Traffic
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov-ID	Tum	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg, } \\ \text { Satn } \\ \text { v/c } \end{gathered}$	Average Delay Sec	Level of Service	95\% Back c Vehicles veh	Queve Distance \qquad	Prop. Queved	Effective Stop Rate perveh	Average Speed km / h
South: Road D1477 NB											
1	L	1	35.0	0.004	9.7	LOS A	0.0	0.3	0.22	0.54	48.1
2	T	3	35.0	0.004	8.5	LOS A	0.0	0.3	0.22	0.44	49.1
3	R	1	35.0	0.004	10.2	LOS B	0.0	0.3	0.22	0.67	48.0
Approac		5	35.0	0.004	9.1	LOSA	0.0	0.3	0.22	0.50	48.6
East: Site Access 1											
4	L	1	35.0	0.024	9.5	LOSA	0.1	0.9	0.13	0.56	48.3
5	T	2	35.0	0.024	8.3	LOS A	0.1	0.9	0.13	0.46	49.5
6	R	15	35.0	0.024	10.0	LOSA	0.1	0.9	0.13	0.66	48.1
Approac		18	35.0	0.024	9.7	LOS A	0.1	0.9	0.13	0.63	48.3
North: Road D1477											
7	L	21	35.0	0.120	10.1	LOS B	0.6	5.8	0.25	0.50	47.9
8	T	11	35.0	0.120	8.9	LOS A	0.6	5.8	0.25	0.41	48.8
9	R	62	35.0	0.120	10.1	LOS B	0.6	5.8	0.25	0.62	47.9
Approac		94	35.0	0.120	10.0	LOS A	0.6	5.8	0.25	0.57	48.0
West: R33 EB											
10	L	76	35.0	0.051	8.2	x	X	x	X	0.58	49.8
11	T	8	35.0	0.007	8.0	LOSA	0.1	0.5	0.06	0.54	50.0
12	R	1	35.0	0.007	9.7	LOSA	0.1	0.5	0.06	0.75	48.4
Approach		85	35.0	0.051	8.2	LOSA	0.1	0.5	0.01	0.58	49.8
All Vehicles		202	35.0	0.120	9.2	NA	0.6	5.8	0.14	0.58	48.8

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 1 Development Traffic Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
1	L	2	20.0	0.013	9.9	LOSA	0.1	0.6	0.32	0.47	47.7
2	T	6	20.0	0.013	8.6	LOSA	0.1	0.6	0.32	0.38	48.5
3	R	6	0.0	0.013	9.4	LOSA	0.1	0.6	0.32	0.64	47.7
Approa		15	11.4	0.013	9.2	LOS A	0.1	0.6	0.32	0.50	48.0
East: Site Access 1											
4	L	4	0.0	0.003	8.2	LOS A	0.0	0.0	0.00	0.68	49.0
5	T	2	0.0	0.003	7.1	LOS A	0.0	0.0	0.00	0.57	50.2
6	R	78	0.0	0.103	8.8	LOS A	0.4	2.7	0.21	0.62	48.1
Approac		84	0.0	0.103	8.7	LOS A	0.4	2.7	0.19	0.62	48.1
North: Road D1477											
7	L	125	0.0	0.067	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	3	20.0	0.002	7.5	LOS A	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.143	9.4	LOSA	0.5	4.3	0.20	0.62	48.1
Approac		220	8.6	0.143	8.3	LOSA	0.5	4.3	0.08	0.61	49.1
West: R33 EB											
10	L	69	20.0	0.043	8.0	x	x	x	x	0.59	49.8
11	T	4	0.0	0.004	7.1	LOSA	0.0	0.2	0.07	0.54	49.8
12	R	1	20.0	0.004	9.2	LOSA	0.0	0.2	0.07	0.73	48.4
Approach		75	18.9	0.043	7.9	LOS A	0.0	0.2	0.00	0.59	49.8
All Vehic		394	8.8	0.143	8.4	NA	0.5	4.3	0.10	0.61	49.0

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 1 Development Traffic
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg } \\ \text { Satn } \\ \text { v/c } \end{gathered}$	Average Delay sec	Level of Service	95\% Back of Vehicles \qquad veh	Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB perveh anma											
1	L	1	20.0	0.040	14.2	LOS B	0.2	1.2	0.54	0.31	43.6
2	T	3	20.0	0.040	13.0	LOS B	0.2	1.2	0.54	0.25	44.3
3	R	17	0.0	0.040	13.8	LOS B	0.2	1.2	0.54	0.78	43.5
Approac		21	4.0	0.040	13.7	LOS B	0.2	1.2	0.54	0.67	43.6
East Site Access 1											
4	L	17	0.0	0.025	8.2	LOS A	0.0	0.0	0.00	0.70	49.0
5	T	31	0.0	0.025	7.1	LOSA	0.0	0.0	0.00	0.58	50.2
6	R	495	0.0	0.884	28.7	LOS D	16.3	114.0	0.94	1.54	33.5
Approac		542	0.0	0.884	26.8	LOS D	16.3	114.0	0.86	1.46	34.5
North: Road D1477											
7	L	441	0.0	0.237	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	11	20.0	0.006	7.5	LOS A	0.0	0.0	0.00	0.59	50.4
9	R	42	20.0	0.065	8.8	LOSA	0.2	1.7	0.05	0.64	48.7
Approac		494	2.1	0.237	7.7	LOSA	0.2	1.7	0.00	0.61	49.7
West: R33 EB											
10	L	1	20.0	0.001	8.0	x	x	X	x	0.59	49.8
11	T	92	0.0	0.048	7.6	LOSA	0.5	3.5	0.26	0.44	48.8
Approach		1	20.0	0.048	9.7	LOSA	0.5	3.5	0.26	0.69	48.0
		94	0.4	0.048	7.6	LOSA	0.5	3.5	0.25	0.45	48.8
All Vehic		1151	1.0	0.884	16.8	NA	16.3	114.0	0.44	1.00	41.1

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 1 \& 2 Development Traffic Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Movid	Tufn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { Satn } \\ \text { v/C } \\ \hline \end{gathered}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB Sec perven km / m											
1	L	3	20.0	0.030	10.6	LOS B	0.2	1.8	0.43	0.40	47.2
2	T	32	20.0	0.030	9.4	LOSA	0.2	1.8	0.43	0.33	47.9
3	R	6	0.0	0.030	10.2	LOS B	0.2	1.8	0.43	0.68	47.2
Approa		41	16.9	0.030	9.6	LOSA	0.2	1.8	0.43	0.39	47.8
East: Site Access 1											
4	L	4	0.0	0.003	8.2	LOS A	0.0	0.0	0.00	0.68	49.0
5	T	2	0.0	0.003	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	78	0.0	0.103	8.8	LOSA	0.4	2.7	0.21	0.62	48.1
Approa		84	0.0	0.103	8.7	LOSA	0.4	2.7	0.19	0.62	48.1
North: Road D1477											
7	L	125	0.0	0.067	7.6	LOS A	0.0	0.0	0.00	0.60	49.8
8	T	66	20.0	0.038	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.144	9.8	LOSA	0.6	4.6	0.26	0.63	47.8
Approac		283	11.2	0.144	8.3	LOS A	0.6	4.6	0.08	0.61	49.3
West: R33 EB											
10	L	69	20.0	0.043	8.0	x	x	x	X	0.59	49.8
11	T	4	0.0	0.005	7.1	LOSA	0.0	0.2	0.07	0.53	49.8
12	R	2	20.0	0.005	9.2	LOSA	0.0	0.2	0.07	0.72	48.4
Approach		76	18.9	0.043	7.9	LOS A	0.0	0.2	0.01	0.59	49.7
All Vehic		484	10.9	0.144	8.4	NA	0.6	4.6	0.12	0.59	49.0

X: Not applicable for Continuous movement
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:14:25 PM SIDRA INTERSECTION 5.1.2.1953
Project: Z:L200001-Witbankl20744.R_Belfast Mall 17 - Sidras\Phasing TIAL20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL \& STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

2020 PM Background+Phase 1 \& 2 Development Traffic Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg, } \\ & \text { Sath } \\ & \text { V/C } \end{aligned}$	Average Delay sec	Level of Service	95\% Back o Vehicles veh	of Queue Distance m	Prop. Queved	Effective Stop Rate per veh	Averege Speed km / h
South: Road D1477 NB per men kmin											
1	L	3	20.0	0.080	15.2	LOS C	0.8	6.1	0.63	0.26	43.1
2	T	66	20.0	0.080	13.9	LOS B	0.8	6.1	0.63	0.21	43.7
3	R	17	0.0	0.080	14.7	LOS B	0.8	6.1	0.63	0.85	43.1
Approac		86	16.1	0.080	14.1	LOS B	0.8	6.1	0.63	0.34	43.6
East: Site Access 1											
4	L	17	0.0	0.025	8.2	LOSA	0.0	0.0	0.00	0.70	49.0
5	T	31	0.0	0.025	7.1	LOSA	0.0	0.0	0.00	0.58	50.2
6	R	495	0.0	0.884	28.7	LOS D	16.3	114.0	0.94	1.54	33.5
Approac		542	0.0	0.884	26.8	LOS D	16.3	114.0	0.86	1.46	34.5
North: Road D1477											
7	L	441	0.0	0.237	7.6	LOS A	0.0	0.0	0.00	0.60	49.8
8	T	33	20.0	0.019	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	42	20.0	0.066	9.7	LOSA	0.2	2.0	0.25	0.62	47.9
Approac		516	2.9	0.237	7.7	LOS A	0.2	2.0	0.02	0.60	49.7
West: R33 EB											
10	L	1	20.0	0.001	8.0	x	X	X	x	0.59	49.8
11	T	92	0.0	0.048	7.6	LOSA	0.5	3.5	0.26	0.44	48.8
12	R	1	20.0	0.048	9.7	LOS A	0.5	3.5	0.26	0.69	48.0
Approac		94	0.4	0.048	7.6	LOS A	0.5	3.5	0.26	0.44	48.8
All Vehic		1238	2.4	0.884	16.5	NA	16.3	114.0	0.45	0.95	41.3

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.
+Phase 1,2 \& 3 Development
Traffic
2020 AM Background+Phase 1,2 \& 3 Development Traffic Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg, } \\ \text { Satn } \\ \text { V/C } \end{gathered}$	Average Delay \qquad sec	Level of Service	95\% Back of Vehicles \qquad veh	f Queue Distance \qquad	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
1	L	3	20.0	0.040	11.7	LOS B	0.3	2.4	0.49	0.35	46.1
2	T	32	20.0	0.040	10.5	LOS B	0.3	2.4	0.49	0.29	46.9
3	R	12	0.0	0.040	11.3	LOS B	0.3	2.4	0.49	0.72	46.1
Approac		46	15.0	0.040	10.8	LOS B	0.3	2.4	0.49	0.40	46.7
East: Site Access 1											
4	L	7	0.0	0.006	8.2	LOSA	0.0	0.0	0.00	0.69	49.0
5	T	4	0.0	0.006	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	141	0.0	0.185	9.4	LOSA	0.8	5.6	0.31	0.64	47.6
Approac		153	0.0	0.185	9.3	LOSA	0.8	5.6	0.29	0.64	47.8
North: Road D1477											
7	L	216	0.0	0.116	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	66	20.0	0.038	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.144	9.8	LOSA	0.6	4.6	0.26	0.63	47.8
Approac		374	8.5	0.144	8.1	LOSA	0.6	4.6	0.06	0.61	49.4
West: R33 EB											
10	L	69	20.0	0.043	8.0	x	x	x	x	0.59	49.8
11	T	7	0.0	0.007	7.2	LOS A	0.0	0.3	0.10	0.52	49.7
12	R	2	20.0	0.007	9.3	LOSA	0.0	0.3	0.10	0.72	48.3
Approac		79	18.1	0.043	7.9	LOSA	0.0	0.3	0.01	0.59	49.7
All Vehic		652	8.1	0.185	8.6	NA	0.8	5.6	0.14	0.60	48.8

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 1,2 \& 3 Development Traffic
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Tuin	Demand Flow $\mathrm{veh} / \mathrm{h}$	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB sec mim ker men kmin											
1	L	3	20.0	0.100	17.2	LOS C	1.0	7.5	0.66	0.24	41.4
2	T	66	20.0	0.100	16.0	LOS C	1.0	7.5	0.66	0.20	42.0
3	R	22	0.0	0.100	16.7	LOS C	1.0	7.5	0.66	0.91	41.4
Approac		92	15.2	0.100	16.2	LOS C	1.0	7.5	0.66	0.37	41.8
East: Site Access 1											
4	L	22	0.0	0.077	8.2	LOSA	0.0	0.0	0.00	0.68	49.0
5	T	123	0.0	0.077	7.1	LOS A	0.0	0.0	0.00	0.57	50.2
6	R	515	0.0	$1.000{ }^{3}$	43.1	LOSE	21.3	149.1	1.00	1.76	27.4
Approac		660	0.0	1.000	35.2	LOSE	21.3	149.1	0.78	1.50	30.5
North: Road D1477											
7	L	525	0.0	0.283	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	33	20.0	0.019	7.5	LOS A	0.0	0.0	0.00	0.59	50.4
9	R	41	20.0	0.065	9.7	LOSA	0.2	1.9	0.25	0.62	47.9
Approac		599	2.5	0.283	7.7	LOS A	0.2	1.9	0.02	0.60	49.7
West: R33 EB											
10	L	1	20.0	0.001	8.0	X	x	X	x	0.59	49.8
11	T	99	0.0	0.052	7.7	LOSA	0.5	3.8	0.29	0.42	48.7
12	R	1	20.0	0.052	9.8	LOSA	0.5	3.8	0.29	0.69	47.9
Approac		101	0.4	0.052	7.8	LOSA	0.5	3.8	0.29	0.43	48.7
All Vehic		1452	2.0	1.000	20.8	NA	21.3	149.1	0.42	0.98	38.3

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.
$3 x=1.00$ due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions,

2020 AM Background+Phase 1,2,3\&4 Development Traffic Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Tum	Demand Fiow vehih	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{array}{r} \text { Deg, } \\ \text { Sath } \\ \text { V/c } \end{array}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	f Queue Distance \qquad	Prop. Queved	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB pee men kion											
1	L	3	20.0	0.072	15.1	LOS C	0.5	3.9	0.58	0.29	43.0
2	T	32	20.0	0.072	13.8	LOS B	0.5	3.9	0.58	0.24	43.7
3	R	22	0.0	0.072	14.6	LOS B	0.5	3.9	0.58	0.83	43.0
Approa		57	12.2	0.072	14.2	LOS B	0.5	3.9	0.58	0.47	43.4
East: Site Access 1											
4	L	14	0.0	0.012	8.2	LOS A	0.0	0.0	0.00	0.69	49.0
5	T	8	0.0	0.012	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	244	0.0	0.375	11.6	LOS B	2.1	14.6	0.50	0.77	45.5
Approa		266	0.0	0.375	11.3	LOS B	2.1	14.6	0.46	0.76	45.8
North: Road D1477											
7	L	411	0.0	0.221	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	66	20.0	0.038	7.5	LOS A	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.144	9.8	LOSA	0.6	4.6	0.26	0.63	47.8
Approac		568	5.6	0.221	7.9	LOSA	0.6	4.6	0.04	0.61	49.5
West: R33 EB											
10	L	69	20.0	0.043	8.0	X	x	X	x	0.59	49.8
11	T	14	0.0	0.010	7.3	LOSA	0.1	0.6	0.15	0.50	49.4
12	R	2	20.0	0.010	9.4	LOS A	0.1	0.6	0.15	0.71	48.2
Approac		85	16.8	0.043	7.9	LOS A	0.1	0.6	0.03	0.58	49.7
All Vehi		977	5.4	0.375	9.2	NA	2.1	14.6	0.19	0.64	48.1

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 1,2,3\&4 Development Traffic
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow vehih	$\begin{aligned} & \text { HV } \\ & \text { \% } \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
1	L	1	20.0	0.130	20.6	LOS C	1.2	9.5	0.76	0.17	38.9
2	T	66	20.0	0.130	19.3	LOS C	1.2	9.5	0.76	0.14	39.4
3	R	27	0.0	0.130	20.1	LOS C	1.2	9.5	0.76	0.93	38.9
Approac		95	14.2	0.130	19.6	LOS C	1.2	9.5	0.76	0.37	39.2
East: Site Access 1											
4	L	33	0.0	0.215	8.2	LOSA	0.0	0.0	0.00	0.68	49.0
5	T	369	0.0	0.215	7.1	LOSA	0.0	0.0	0.00	0.56	50.2
6	R	464	0.0	$1.000{ }^{3}$	50.5	LOS F	21.3	149.1	1.00	1.91	25.1
Approac		866	0.0	1.000	30.4	LOS D	21.3	149.1	0.54	1.29	32.7
North: Road D1477											
7	L	635	0.0	0.342	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	33	20.0	0.019	7.5	LOS A	0.0	0.0	0.00	0.59	50.4
9	R	41	20.0	0.065	9.7	LOS A	0.2	1.9	0.24	0.62	47.9
Approac		708	2.1	0.342	7.7	LOS A	0.2	1.9	0.01	0.60	49.7
West: R33 EB											
10	L	1	20.0	0.001	8.0	X	x	X	X	0.59	49.8
11	T	103	0.0	0.054	7.9	LOS A	0.6	4.1	0.33	0.40	48.4
12	R	1	20.0	0.054	10.0	LOS B	0.6	4.1	0.33	0.69	47.8
Approac		105	0.4	0.054	8.0	LOSA	0.6	4.1	0.33	0.40	48.5
All Vehic		1775	1.6	1.000	19.4	NA	21.3	149.1	0.33	0.91	39.2

X: Not applicable for Continuous movement.
Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.
$3 x=1.00$ due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

2020 AM Background+Phase 2 Development Stop (Two-Way)

Movement Performance - Vehicles										
Movid Tum	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { Sath } \\ \text { v/c } \end{gathered}$	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate perveh	Average Speed km / h
2 T	16	20.0	0.012	0.4	LOSA	0.1	0.5	0.21	0.00	55.9
3 R	3	20.0	0.012	9.5	LOSA	0.1	0.5	0.21	0.96	48.7
Approach	19	20.0	0.012	1.9	NA	0.1	0.5	0.21	0.16	54.6
East: Site Access 2										
4 L	1	20.0	0.039	12.4	LOS B	0.1	1.2	0.21	0.82	46.0
6 R	26	20.0	0.039	12.3	LOS B	0.1	1.2	0.21	0.88	46.2
Approach	27	20.0	0.039	12.3	LOS B	0.1	1.2	0.21	0.88	46.2
North: Road D1477 SB										
7 L	64	20.0	0.044	8.8	LOSA	0.0	0.0	0.00	0.69	49.0
8 T	7	20.0	0.044	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approach	72	20.0	0.044	7.9	NA	0.0	0.0	0.00	0.62	49.9
All Vehicles	118	20.0	0.044	7.9	NA	0.1	1.2	0.08	0.61	49.7

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 2 Development Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Sato v/c	Average Delay sec	Level of Service	95\% Back o Vehicles veh	Queue Distance - m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB sec veh marven km/n											
2	T	22	20.0	0.014	0.3	LOSA	0.1	0.6	0.17	0.00	56.7
3	R	1	20.0	0.014	9.4	LOSA	0.1	0.6	0.17	1.08	48.8
Approac		23	20.0	0.014	0.7	NA	0.1	0.6	0.17	0.05	56.3
East: Site Access 2											
4	L	3	20.0	0.097	12.5	LOS B	0.4	3.2	0.23	0.82	45.9
6	R	65	20.0	0.097	12.4	LOS B	0.4	3.2	0.23	0.89	46.1
Approac		68	20.0	0.097	12.4	LOS B	0.4	3.2	0.23	0.88	46.1
North: Road D1477 SB											
7	L	22	20.0	0.029	8.8	LOSA	0.0	0.0	0.00	0.86	49.0
8	T	27	20.0	0.029	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac		49	20.0	0.029	3.9	NA	0.0	0.0	0.00	0.38	54.5
All Vehic		141	20.0	0.097	7.5	NA	0.4	3.2	0.14	0.57	50.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 2 \& 3 Development Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow $\mathrm{veh} / \mathrm{h}$	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay \qquad sec	Level of Service	95\% Back Vehicles \qquad veh	f Queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	20	20.0	0.014	0.4	LOSA	0.1	0.6	0.22	0.00	55.8
3	R	3	20.0	0.014	9.5	LOSA	0.1	0.6	0.22	0.98	48.8
Approac		23	20.0	0.014	1.6	NA	0.1	0.6	0.22	0.13	54.7
East: Site Access 2											
4	L	1	20.0	0.039	12.6	LOS B	0.2	1.2	0.23	0.81	45.9
6	R	26	20.0	0.039	12.4	LOS B	0.2	1.2	0.23	0.88	46.1
Approac		27	20.0	0.039	12.4	LOS B	0.2	1.2	0.23	0.88	46.1
North: Road D1477 SB											
7	L	64	20.0	0.046	8.8	LOS A	0.0	0.0	0.00	0.71	49.0
8	T	12	20.0	0.046	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac		76	20.0	0.046	7.4	NA	0.0	0.0	0.00	0.60	50.4
All Vehic		126	20.0	0.046	7.4	NA	0.2	1.2	0.09	0.57	50.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 2 \& 3 Development Stop (Two-Way)

Movement Performance - Vehicles											
Mavid		Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg, } \\ & \text { Sath } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back c Vehicles veh	Queve Distance m	Prop. Queued	Effective Stop Rate perveh	Average Speed km / h
2	T	25	20.0	0.016	0.3	LOSA	0.1	0.7	0.19	0.00	56.5
3	R	1	20.0	0.016	9.4	LOSA	0.1	0.7	0.19	1.08	48.9
Approac		26	20.0	0.016	0.7	NA	0.1	0.7	0.19	0.04	56.1
East: Site Access 2											
4	L	3	20.0	0.099	12.7	LOS B	0.4	3.3	0.25	0.81	45.8
6	R	65	20.0	0.099	12.5	LOS B	0.4	3.3	0.25	0.88	46.0
Approac		68	20.0	0.099	12.5	LOS B	0.4	3.3	0.25	0.88	46.0
North: Road D1477 SB											
7	L	22	20.0	0.033	8.8	LOSA	0.0	0.0	0.00	0.88	49.0
8	T	34	20.0	0.033	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approach		56	20.0	0.033	3.5	NA	0.0	0.0	0.00	0.35	55.1
All Vehicles		151	20.0	0.099	7.1	NA	0.4	3.3	0.15	0.54	50.7

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 AM Background+Phase 2, 3 \& 4 Development Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn V/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB											
2	T	31	20.0	0.020	0.4	LOSA	0.1	1.0	0.23	0.00	55.6
3	R	3	20.0	0.020	9.6	LOSA	0.1	1.0	0.23	1.01	48.8
Approac		34	20.0	0.020	1.3	NA	0.1	1.0	0.23	0.09	54.9
East: Site Access 2											
4	L	1	20.0	0.040	12.8	LOS B	0.2	1.3	0.26	0.80	45.7
6	R	26	20.0	0.040	12.6	LOS B	0.2	1.3	0.26	0.87	45.9
Approac		27	20.0	0.040	12.6	LOS B	0.2	1.3	0.26	0.87	45.9
North: Road D1477 SB											
7	L	64	20.0	0.049	8.8	LOS A	0.0	0.0	0.00	0.72	49.0
8	T	17	20.0	0.049	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approach		81	20.0	0.049	6.9	NA	0.0	0.0	0.00	0.57	50.9
All Vehicles		142	20.0	0.049	6.7	NA	0.2	1.3	0.10	0.52	50.7

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

2020 PM Background+Phase 2, 3 \& 4 Development Stop (Two-Way)

Movement Performance - Vehicles											
Movid	Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg, } \\ \text { Sath } \\ \text { V/c } \end{gathered}$	Average Delay sec	Level of Service	95\% Back o Vehicles veh	queve Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Road D1477 NB ${ }^{\text {a }}$											
2	T	32	20.0	0.019	0.3	LOSA	0.1	0.9	0.20	0.00	56.1
3	R	1	20.0	0.019	9.5	LOSA	0.1	0.9	0.20	1.07	48.9
Approac		33	20.0	0.019	0.6	NA	0.1	0.9	0.20	0.03	55.9
East: Site Access 2											
4	L	3	20.0	0.102	12.9	LOS B	0.4	3.4	0.28	0.80	45.6
	R	65	20.0	0.102	12.8	LOS B	0.4	3.4	0.28	0.88	45.8
Approach		68	20.0	0.102	12.8	LOS B	0.4	3.4	0.28	0.88	45.8
North: Road D1477 SB											
7	L	22	20.0	0.039	8.8	LOSA	0.0	0.0	0.00	0.91	49.0
8	T	43	20.0	0.039	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac		65	20.0	0.039	3.0	NA	0.0	0.0	0.00	0.31	55.7
All Vehic		166	20.0	0.102	6.5	NA	0.4	3.4	0.16	0.49	51.2

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

