REPORT Nº 20744

TRAFFIC IMPACT ASSESSMENT

PROPOSED MIXED USE DEVELOPMENT
ON REMAINDER OF PORTION 12 OF
THE FARM WEMMERHUIS 379-JT
AND REMAINDER OF THE FARM
BERGENDAL 981-JT,
BELFAST

SEPTEMBER 2016

TRAFFIC IMPACT ASSESSMENT

PROPOSED MIXED USE
DEVELOPMENT ON REMAINDER OF
PORTION 12 OF THE FARM
WEMMERHUIS 379-JT AND
REMAINDER OF THE FARM
BERGENDAL 981-JT, BELFAST

Issue 1 (Revision 1)

Project no: 20744 Date: September 2016

WSP | Parsons Brinckerhoff

314 Glenwood Road, Lynnwood Park, Pretoria, South Africa 0081 Postnet Suite 287, Private Bag X025, Lynnwood Ridge, 0040

Tel: +27 (0) 12 762 1200 Fax: +27 (0) 12 762 1301 www.wspgroup.com www.pbworld.com

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks				
Date	November 2015	September 2016		
Prepared by	Catherine Bilankulu	Catherine Bilankulu		
	Technical Assistant	Technical Assistant		
Signature	Bekel	CESILL.		
Checked by	Eben Kotze	Eben Kotze		
	PR Tech Eng	PR Tech Eng		
Signature	2006	E COSE J.		
Authorised by	Eben Kotze	Eben Kotze		
	PR Tech Eng	PR Tech Eng		
Signature	200Gs	r baly		
Project number	20744	20744		
File reference	Z:\20000\20744 Belfa:	st Mall\11 - Reports\11.1	Traffic Reports\Traffic	Impact Study

Certification

It is herewith certified that this Traffic Impact Assessment has been prepared according to requirements of the South African Traffic Impact and Site Traffic Assessment Manual.

Signatory : ______ Date : <u>21 September 2016</u> ECSA no : <u>2003 701 33</u>

WSP Contact Person

Name: Eben Kotze

Address: Postnet Suite 287, Private Bag

X025, Lynnwood Ridge, 0040

<u>Telephone</u>: 012 762 1200 <u>Cellphone</u>: 083 564 1563

Email: Eben.kotze@wspgroup.co.za

Quality checklist

Items	Initial
Project Quality	,
form	7
Report & Figures	,
reviewed	V
Authorisation for	,
distribution	V

PRODUCTION TEAM

WSP | PARSONS BRINCKERHOFF

Function Name

Technical Assistant Catherine Bilankulu

Function Name

Regional Director Pr. Tech Eng Eben Kotze

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	EXTENT OF THE DEVELOPMENT	1
1.3	APPROVAL OF SUBMISSION	1
	SANRAL	2
	MPUMALANGA DEPARTMENT OF PUBLIC WORKS, ROAD AND TRANSPORT	2
3	SURROUNDING ROAD NETWORK & STUDY AREA	3
3.1	SURROUNDING ROAD NETWORK	3
3.2	DETERMINATION OF THE STUDY AREA	3
4	SITE ACCESS & PARKING	4
4.1	SITE ACCESS	4
4.2	PARKING	4
5	EXISTING TRAFFIC VOLUMES	5
5.1	GENERAL	5
5.2	ROAD D1477 / N4 OFFRAMP	5
5.3	ROAD D1477 / N4 OFFRAMP / BELFAST 1STOP ACCESS	5
5.4	ROAD D1477 / R33 / SITE ACCESS	5
5.5	ROAD D1477 / SITE ACCESS 2	5
6	DEVELOPMENT TRIP GENERATION AND TRAFFIC	
	VOLUMES SCENARIOS	6
6.1	TRIP GENERATION	6
	INDUSTRIAL	
	SINGLE DWELLING UNITSAPARTMENTS AND FLATS	_
	PRE-SCHOOL	
	SHOPPING CENTRE	6
	BUSINESS CENTRE	7

6.2	ADJUSTMENT FACTORS	7
	MIXED USE DEVELOPMENT (MUD)	7
	LOW VEHICLE OWNERSHIP (LVO) & VERY LOW VEHICLE	7
	OWNERSHIP (VLVO)TRANSIT NODE OR CORRIDORS	/ 7
6.3	TRIP SUMMARY	8
6.4	GROWTH RATE	9
6.5	TRAFFIC VOLUME SCENARIOS	10
6.6	TRIP DISTRIBUTION AND ASSIGNMENT	10
7	TRAFFIC IMPACT AND CAPACITY ANALYSIS	11
7.1	GENERAL	11
7.2	ANALYSED SCENARIOS	11
7.3	CAPACITY ANALYSIS	11
7.4	ROADS UPGRADES REQUIRED	20
8	NON-MOTORISED AND PUBLIC TRANSPORT	21
8.1	BACKGROUND	21
8.2	EXISTING PUBLIC TRANSPORT SERVICES AND FACILITIES	21
	MINIBUS TAXIS	21
8.3	PROPOSED / NEW FACILITIES	
	MINIBUS TAXI LAYBYS	
	PEDESTRIAN FACILITIES	21
9	CONCLUSIONS	22
10	REFERENCES	23

LIST OF ABBREVIATIONS

COTO Committee of Transport Officials ELM Emakhazeni Local Municipality

GLA Gross Leasable Area
LOS Level of Service

LVO Low Vehicle Ownership

MDoPWR&T Mpumalanga Department of Public Works, Roads & Transport

MUD Mixed Use Development
NLTA National Land Transport Act

SANRAL South African National Roads Agency Limited

SATGR South African Trip Generation Rates

SEC Seconds

SIDRA Micro-analytical traffic evaluation
TMH Technical Methods for Highways

V/C Volume/Capacity ratio

VLVO Very Low Vehicle Ownership

vph Vehicle per hour

LIST OF TABLES

TABLE 1: EXTENT OF THE DEVELOPMENT	1
TABLE 2: PARKING REQUIREMENTS	4
TABLE 3: ADJUSTMENT FACTORS APPLIED FOR TRIP REDUCTIONS	7
TABLE 4: PHASE 1 – DEVELOPMENT GENERATED TRIPS	8
TABLE 5: PHASE 2 – DEVELOPMENT GENERATED TRIPS	8
TABLE 6: PHASE 3 – DEVELOPMENT GENERATED TRIPS	8
TABLE 7: PHASE 4 – DEVELOPMENT GENERATED TRIPS	9
TABLE 8: TOTAL DEVELOPMENT GENERATED TRIPS (ALL PHASES)	9
TABLE 9: TYPICAL TRAFFIC GROWTH RATES	
TABLE 4: TRAFFIC SCENARIOS CONSIDERED	11
TABLE 10: ROAD D1477 AND N4 OFF-RAMP	12
TABLE 11: ROAD D1477 AND N4 OFF-RAMP/BELFAST ONE STOP ACCESS	14
TABLE 12: ROAD D1477 AND R33/SITE ACCESS 1	16
TABLE 13: ROAD D1477 AND SITE ACCESS 2	18
TABLE 14: PROPOSED ROAD UPGRADES	20

LIST OF FIGURES

FIGURE 1: LOCALITY PLAN

FIGURE 2: 2015 EXISTING TRAFFIC VOLUMES

FIGURE 3: 2020 BACKGROUND TRAFFIC VOLUMES

FIGURE 4A: PHASE 1 PEAK HOUR DEVELOPMENT TRIPS

FIGURE 4B: PHASE 2 PEAK HOUR DEVELOPMENT TRIPS

FIGURE 4C: PHASE 3 PEAK HOUR DEVELOPMENT TRIPS

FIGURE 4D: PHASE 4 PEAK HOUR DEVELOPMENT TRIPS

FIGURE 5A: 2020 BACKGROUND PLUS PHASE 1 DEVELOPMENT TRAFFIC

FIGURE 5B: 2020 BACKGROUND PLUS PHASE 1 & 2 DEVELOPMENT TRAFFIC

FIGURE 5C: 2020 BACKGROUND PLUS PHASE 1, 2 & 3 DEVELOPMENT TRAFFIC

FIGURE 5D: 2020 BACKGROUND PLUS PHASE 1, 2, 3 & 4 DEVELOPMENT TRAFFIC

LIST OF DRAWINGS

DRAWING SKC001 REV A: D1477/N4 OFFRAMP INTERSECTION LAYOUT PLAN DRAWING SKC002 REV A: D1477/N4/BELFAST 1 STOP INTERSECTION LAYOUT PLAN DRAWING SKC003 REV B: D1477/R33/SITE ACCESS 1 INTERSECTION LAYOUT PLAN DRAWING SKC004 REV A: D1477/SITE ACCESS 2 INTERSECTION LAYOUT PLAN

LIST OF APPENDICES

APPENDIX A-1 SITE DEVELOPMENT PLAN

APPENDIX A-2 RECORD OF SITE VISIT

APPENDIX A-3 LIMITED ROAD MASTER PLAN

APPENDIX A-4 TRIP GENERATION CALCULATIONS

APPENDIX A-5 INTERSECTION GEOMETRIC LAYOUT

APPENDIX A-6 DETAILED SIDRA RESULTS

1 INTRODUCTION

1.1 BACKGROUND

WSP Group Africa (Pty) Ltd. (WSP) has been appointed to undertake a Traffic Impact Assessment for the proposed mixed use development situated on Remainder of Portion 12 of the Farm Wemmershuis 379-JT and the Remainder of the Farm Bergendal 981-JT, Belfast located in Mpumalanga Province. The proposed site is located approximately 510m south of the N4/R33 interchange. The site locality is illustrated on **Figure 1**.

A TIA was previously submitted in November 2015 for the proposed mixed-use development. This study revises the previously submitted study as the development will now be implemented in phases.

The purpose of this traffic impact assessment is to illustrate the proposed development's traffic impact on the surrounding road network and possible mitigation of the anticipated traffic impact. This report also comments on the proposed site accesses and non-motorised and public transport aspects.

1.2 EXTENT OF THE DEVELOPMENT

The extent of the proposed development as well as the land-uses are indicated in Table 1 below:

Table 1: Extent of the development

LAND USE	PHASE 1	PHASE 2	PHASE 3	PHASE 4	TOTAL
Single Residential	31 Stands	-	97 Stands	33 Stands	161 Stands
High Residential	-	-	-	387 Units	387 Units
Agricultural	-	-	-	522 357 m ²	
Institutional - Crèche	-	-	^200 Pupils	-	200 Pupils
– Church	-	-	-	*12 796 m ²	*12 796 m ²
Retail (Shops)	31 830 m ² GLA	-	1 460 m ² GLA	-	33 290 m ² GLA
Business Park	-	-	8 554 m ² GLA	33 790m ² GLA	42 344 m ² GLA
Industrial	-	14 252 m ² GLA	-	-	14 252 m ² GLA
Open Space	-	7 529 m ²	-	105 068 m ²	112 597 m ²
Utilities	1 915 m ²	-	-	-	1 915m ²

The following assumptions were made:

The township layout and phasing plan are contained in **Appendix A-1**.

1.3 APPROVAL OF SUBMISSION

This traffic impact assessment report will be subject to approval from the relevant roads authorities listed below:

- Emakhazeni Local Municipality (ELM)
- → Mpumalanga Department of Public Works, Roads and Transport (MDoPWR&T)
- → South African National Roads Agency Limited (SANRAL)

^{^ 200} Pupils for Institutional (Phase 3)

^{*} Assumed to be internal trips

2

DATA COLLECTION AND LIAISONS

2.1 SITE VISIT

On 29 October 2015 a site visit was undertaken for the development and the following was confirmed:

- Layouts of intersections considered in the study
- → Appropriateness of recommended site access
- > Intersection control for relevant intersections
- > Presence of existing public transport and non-motorised facilities

A set of photos is included in **Appendix A-2** depicting the intersections observed during the site visit.

2.2 LIAISON WITH THE AUTHORITIES

SANRAL

A meeting was held with SANRAL Messr. Mr. Izak van der Linde and it was requested that the Applicant should consider providing an additional access to the north of the application site to alleviate the impact of the proposed development on the N4 interchange. A limited road master plan was undertaken by WSP and is included in **Appendix A-3**.

MPUMALANGA DEPARTMENT OF PUBLIC WORKS, ROAD AND TRANSPORT

A discussion was held with MDoPW&R, Messr. Ben Viljoen and it was indicated that the proposed traffic circle at the access on Road D1477 is not supported therefore an alternative access layout was investigated in this study.

3 SURROUNDING ROAD NETWORK & STUDY AREA

3.1 SURROUNDING ROAD NETWORK

The following roads in the vicinity of the proposed development are regarded as relevant to this study and are discussed in detailed below:

- → N4 Freeway: This is a Class 1 road located to the north of the site; this road follows an east-west alignment and it abuts the application site to the north.
- → Road D1477: This is a Class 2/3 road located to the west of the site; this road follows a north-south alignment with one lane per direction. The proposed development will gain access directly from this road
- → R33: This is a Class 3 road located to the west of the site; this road follows an east-west alignment with one lane per direction.
- → New Link Road: As requested by SANRAL a limited road master plan was undertaken to provide an additional access to the north of the proposed development link road with Road D1477. The proposed road link (over/under the N4) will be a Class 3 road with one lane per direction. The link road is required to prevent congestion of the N4/Road D1477 interchange.

3.2 DETERMINATION OF THE STUDY AREA

In determining the site area TMH 16 volume 1 recommends the following:

- → "Class 4 and 5 roads in the vicinity of the development up to the first Class 1 to 3 roads that can be reached by the Class 4 and 5 road network from the development, up to and including the first connection(s) on the Class 1 to 3 roads.
- → The elements shall be restricted to those within a maximum distance of 1.5km from the accesses to the site, measured along the shortest routes to the accesses, provided that there is at least one intersection within this distance. Where there is no such intersection, the distance will be extended to include at least one intersection."

TMH 16 also states that judgement should be used in selecting the intersections considered and therefore specific elements like extent of the development were also considered. A larger development will by its nature require a wider study area to be considered while for a smaller development the opposite will be true. It was decided that the following key intersections as mentioned below (refer to **Figure 1**) would be sufficient for analyses:

- Road D1477 and N4 Off-ramp;
- → Road D1477 and N4 Off-ramp/Belfast 1Stop Access and
- → Road D1477 and R33/Site access

4 SITE ACCESS & PARKING

4.1 SITE ACCESS

The following accesses are proposed for the development:

- → Access 1 : A full access is proposed on Road D1477 directly opposite the existing R33 Road. The access is situated approximately 350m north of the southern terminal of the N4/Road D1477 interchange. This access will be implemented in Phase 1 of the proposed development.
- → Access 2 : A secondary full access is proposed on Road D1477. The access is situated approximately 290m south of the proposed Access 1. This access will be implemented in Phase 2 of the proposed development.
- Access 3: A full access is proposed on the proposed link road to the north of the proposed development. This access will be implemented in Phase 3 and 4 of the proposed development.

The proposed accesses are shown conceptually on **Drawings SKC 003 Rev B** and **SKC 004 Rev A**.

The secondary access position was discussed and approved in principle by MDoPWR&T Messr. Ben Viljoen.

4.2 PARKING

The South African Parking Standards was considered for the parking requirement. **Table 2** shows the required parking.

Table 2: Parking requirements

LAND USE	EXTENT	PARKING REQUIRED	REQUIREMENTS FOR LOADING	NO. BAYS REQUIRED
Industry	14 252m ² GLA	1 bay / 100m ² & 3 bays / 100m ² office floor area	1 bay / first 1000m² floor area or part thereof & 1 bay / every 1000m² floor area thereafter	during SDP
Dwelling House	161 Stands	1 bay / on-site unit	Not Applicable	161
Dwelling Units	387 Units	1 covered bay / Dwelling unit & 1 uncovered bay / 2 dwelling units		622
Crèche	200 Pupils	1 bay / 4 children	1 bay / first 2000m² floor area or part thereof & 1 bay / every 2000m² floor area thereafter	during SDP
Shopping Centre	33 290m ² GLA	6 bays / 100m ²	1 bay / first 2000m ² floor area or part thereof & 1 bay / every 2000m ² floor area thereafter	during SDP
Business Centre	Parking ratio to	be agreed with ELM during	SDP submission stage	

Since the site development plan (SDP) was not yet finalized during the writing of this report, it is recommended that a parking study (Site Traffic Assessment) be undertaken during the SDP submission stage.

5 EXISTING TRAFFIC VOLUMES

5.1 GENERAL

Traffic counts were used to estimate the traffic demand and traffic volume for the development. A traffic count was commissioned on Friday 11 September 2015 at the following intersections:

- → Road D1477 and N4 Off-ramp;
- → Road D1477 and N4 Off-ramp/Belfast 1Stop Access and
- → Road D1477 and R33/Site access

The counted intersections are indicated on Figure 1.

From the traffic count a common peak hour was determined (the busiest hour) for each counted period and was found to be:

→ Friday AM peak hour 08:00 – 09:00
 → Friday PM peak hour 16:00 – 17:00

The existing 2015 Peak Hour Traffic Volumes are shown on **Figure 2**. The following subheadings provide a brief overview of the existing intersections.

5.2 ROAD D1477 / N4 OFF-RAMP

This intersection is currently a priority side stop with the Road D1477 being the major road. Traffic counts have revealed that Road D1477 has in the order of 590vph and 970vph during the AM and PM peak hours respectively (in both directions). The intersection currently operates at LOS A or B for the southern approach, LOS A for the northern approach and LOS A and LOS C for the western approach.

5.3 ROAD D1477 / N4 OFF-RAMP / BELFAST 1STOP ACCESS

This intersection is currently a priority side stop with Road D1477 being the major road. Traffic counts have revealed that the N4 Off-ramp has in the order of 240vph and 285vph during the AM and PM peak hours respectively (in both directions). The intersection currently operates at LOS A for the north and south approaches during both the AM and PM peak hours. The east approach operates at LOS C and the west approach at LOS B during the AM and PM peak hours.

5.4 ROAD D1477 / R33 / SITE ACCESS

This intersection is currently an all-way stop. Traffic counts have revealed that R33 has in the order of 140vph and 125vph during the AM and PM peak hours respectively (in both directions). The intersection currently operates at LOS C for the north, south and east approaches during both the AM and PM peak hours. However the west approach operates at LOS D during the AM and PM peak hours.

5.5 ROAD D1477 / SITE ACCESS 2

This is a new intersection and it will be all-way stop controlled. Traffic counts have revealed that currently 10vph and 13vph pass the site during the AM and PM peak hours respectively.

6 DEVELOPMENT TRIP GENERATION AND TRAFFIC VOLUMES SCENARIOS

6.1 TRIP GENERATION

The South African Trip Data Manual – COTO – (TMH17) was used to estimate the trip generation for the proposed development. Trip rates for the various land-uses are summarized below:

INDUSTRIAL

The recommended trip generation according to the COTO document for Industrial is:

→ Weekday AM Peak period
 → Weekday PM Peak period
 0.80 trips per 100m² GLA
 → 0.80 trips per 100m² GLA

SINGLE DWELLING UNITS

The recommended trip generation according to the COTO document for Single Dwelling Units is:

→ Weekday AM Peak period
 → Weekday PM Peak period
 1.00 trip per Dwelling Unit
 1.00 trip per Dwelling Unit

APARTMENTS AND FLATS

The recommended trip generation according to the COTO document for Apartments and Flats is:

→ Weekday AM Peak period
 → Weekday PM Peak period
 0.65 trips per Dwelling Unit
 → 0.65 trips per Dwelling Unit

PRE-SCHOOL

The recommended trip generation according to the COTO document for Pre-school is:

→ Weekday AM Peak period
 → Weekday PM Peak period
 0.80 trips per Pupil

SHOPPING CENTRE

The recommended trip generation according to the COTO document for Shopping Centre is:

→ Weekday AM Peak period 0.60 trips per 100m² GLA
 → Friday PM Peak period 3.40 trips per 100m² GLA
 → Saturday Peak period 4.50 trips per 100m² GLA

The size adjustment factor for Shopping Centre as per COTO TMH17 has been applied. The trips for the shopping centre were calculated by first adjusting the Gross Leasable Area (GLA) of the site, i.e. the size adjustment factor (S) = 1+ A/(1+sqm size/B). Factor A and B are parameters provided in the trip rate table.

BUSINESS CENTRE

The proposed development will also consist of small pockets of business/commercial related uses. Therefore a trip rate for Business Centre which includes a range of mixed land-uses, such as offices, banking facilities, light industrial and warehousing was considered realistic. The recommended trip generation according to the COTO document for Business Centre is:

→ Weekday AM Peak period
 → Weekday PM Peak period
 1.50 trips per 100m² GLA
 → trips per 100m² GLA

6.2 ADJUSTMENT FACTORS

Various trip adjustment factors have been introduced into the COTO document to allow for trip reductions. These adjustment factors are discussed briefly below.

MIXED USE DEVELOPMENT (MUD)

According to the COTO manual "mixed use development is defined as development in an area that consist of two or more single-use development between which trips can be made by means of non-motorised modes of transport (such as walking). This has the net effect of reducing the vehicle trip generation in the area."

This study considered mixed use development reduction factor. The reduction factor which has been applied is listed in **Table 3** below. Note P_M = Reduction factor for mixed use development.

LOW VEHICLE OWNERSHIP (LVO) & VERY LOW VEHICLE OWNERSHIP (VLVO)

According to COTO "the vehicle ownership in areas with high levels of vehicle ownership varies between one or two per household. In areas with a low level of vehicle ownership, the majority of households (more than 50%) does not own a vehicle and relies on public transport for transportation. In areas with very low level of vehicle ownership, nearly all households (more than 90%) do not own a vehicle and rely on public transportation."

This study considered low vehicle ownership and the reduction factor which have been applied is listed in Table 3 below. Note P_V = Reduction factor for vehicle ownership.

TRANSIT NODE OR CORRIDORS

According to COTO "the transit reduction factors are applicable to developments that are located within a reasonable walking distance from a major transit node or stops on a major transit corridor."

The reduction factors recommended for transit node or corridors in the manual were not applied.

Table 3: Adjustment Factors Applied for Trip Reductions

LAND USE	Рм	Pv	
Industrial	5%	20%	
Single Dwelling Units	10%	40%	
Apartments & Flats	15%	30%	
Pre-School	5%	50%	
Business Centre	15%	20%	
Shopping Centre	10%	30%	•

6.3 TRIP SUMMARY

The detailed trip generation calculations are included in **Appendix A-4**. Using the COTO document the expected peak hour development trips generation was calculated and indicated in **Tables 4** to **8** for the different Phases.

Table 4: Phase 1 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			FRII	FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total	
Single Dwelling Units	31 Units	4	13	17	12	5	17	
Shopping Centre		PRIMARY TRIPS						
		125	67	192	315	315	630	
				PASS-	BY TRIPS			
		-	-	-	96	96	193	
				DIVER'	TED TRIPS	6		
		-	-	-	99	99	198	
Total (Shopping Centre)	31 830m ² GLA	125	67	192	510	510	1021	
Total Phase 1 Trips		129	80	209	522	515	1038	

From **Table 4** it can be seen that Phase 1 of the proposed development will generate a maximum of **209** peak hour trips in the AM peak hour and a maximum of **1038** peak hour trips in the PM peak hour.

Table 5: Phase 2 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			FRIDAY PM PEAK		
		In	Out	Total	In	Out	Total
Industrial Area (Park)	14 252m ² GLA	65	26	91	22	65	87
Total Phase 2 Trips		65	26	91	22	65	87

From **Table 5** it can be seen that Phase 2 of the proposed development will generate a maximum of **91** peak hour trips in the AM peak hour and a maximum of **87** peak hour trips in the PM peak hour.

Table 6: Phase 3 – Development Generated Trips

LAND USE	EXTENT	EXTENT AM PEAK			FRII	DAY PM P	EAK
		In	Out	Total	In	Out	Total
Single Dwelling Units	97 Units	13	39	52	37	16	52
Pre-school (Day Care Centre)	200 Students	48	48	95	38	38	76
Business Centre (Park)	8 554m ² GLA	74	13	87	17	70	87
Shopping Centre				PRIMA	RY TRIPS		
		19	10	29	47	47	95
		PASS-BY TRIPS					
		-	-	-	6	6	12
				DIVER'	TED TRIPS	3	
		-	-	-	5	5	9
Total (Shopping Centre)	1 460m ² GLA	19	10	29	58	58	116
Total Phase 3 Trips		154	110	264	150	182	332

From **Table 6** it can be seen that Phase 3 of the proposed development will generate a maximum of **264** peak hour trips in the AM peak hour and a maximum of **332** peak hour trips in the PM peak hour.

The trips for Institutional (Church) in Phase 3 and 4 was not considered in the calculations of the trip generation as it was assumed that these will be internal trips serving the community within the proposed development and will not affect the external road network.

Table 7: Phase 4 - Development Generated Trips

LAND USE	EXTENT	AM PEAK			AM PEAK FR			FRII	DAY PM PI	EAK
		In	Out	Total	In	Out	Total			
Single Dwelling Units	33 Units	4	13	18	12	5	18			
Apartments and Flats	387 Units	37	112	150	105	45	150			
Business Centre (Park)	33 790m ² GLA	293	52	345	69	276	345			
Total Phase 4 Trips		335	177	512	186	326	512			

From **Table 7** it can be seen that Phase 4 of the proposed development will generate a maximum of **512** peak hour trips in the AM peak hour and the PM peak hour.

Table 8: Total Development Generated Trips (All Phases)

LAND USE	TYPE OF TRIPS		AM PEA	K	FRIDAY PM PEAK			
			Out	Total	In	Out	Total	
Industrial	Primary Trips	65	26	91	22	65	87	
Single Dwelling Units	Primary Trips	22	65	87	61	26	87	
Apartments & Flats	Primary Trips	37	112	150	105	45	150	
Crèche	Primary Trips	48	48	95	38	38	76	
	Primary Trips	144	77	221	362	362	724	
Shopping Centre	Pass-by Trips	0	0	0	102	102	204	
	Diverted Trips	0	0	0	104	104	208	
Business Centre	Primary Trips	367	65	432	86	345	432	
Total (All Phases)		683	393	1076	880	1087	1968	

From **Table 8** it can be seen that the proposed development (All Phases) will generate a maximum of **1076** trips in the Friday AM peak hour and a maximum of **1968** trips during the Friday PM peak hour.

The TMH 16 Volume 1 requires that a traffic impact assessment be done for development which generates more than 50 peak hour trips.

6.4 GROWTH RATE

TMH 16 Volume 1 requires that a five year horizon be considered for development that generates more than 50 trips. TMH 17 recommends growth rates for development as shown in **Table 9**.

Table 9: Typical Traffic Growth Rates

DEVELOPMENT AREA	GROWTH RATES
Low growth areas	0 – 3%
Average growth areas	3 – 4%
Above average growth areas	4 – 6%
Fast growing areas	6 – 8%
Exceptionally high growth areas	>8%

Source: City Council of Pretoria (1998)

A growth rate of 3% was considered appropriate for this study.

6.5 TRAFFIC VOLUME SCENARIOS

The existing 2015 peak hour traffic volumes (see **Figure 2**) were thus subjected to a 3% growth rate over five years; this is in line with an average growth rate as given in **Table 9**. The 2020 background peak hour traffic volumes are shown on **Figure 3**.

6.6 TRIP DISTRIBUTION AND ASSIGNMENT

Assumptions with respect to the expected trip distribution were based on the location of the site access in relation to the surrounding road network; the existing traffic volumes, travel patterns as well as the land use nature of the proposed development.

The total development trips for Phase 1, 2, 3 and 4 are shown on **Figures 4A, 4B, 4C** and **4D** respectively. Ultimately the expected 2020 peak hour traffic volumes plus the total development trips for Phase 1, 2, 3 and 4 are shown on **Figures 5A, 5B, 5C** and **5D** respectively.

7 TRAFFIC IMPACT AND CAPACITY ANALYSIS

7.1 GENERAL

In order to determine the traffic impact the proposed development will have on the surrounding road network, SIDRA traffic engineering software was used. A capacity analysis was done for the key intersections identified in **Section 3.2**.

The AM and PM peak hour trip generation of the development was analysed.

7.2 ANALYSED SCENARIOS

The different traffic scenarios considered for analysis are tabulated in Table 4.

Table 10: Traffic Scenarios Considered

TRAFFIC SCENARIO	DESCRIPTION						
Scenario 1	2020 Peak Hour Background Traffic Volumes (Figure 3) With Existing Intersection Layouts						
Scenario 2	2020 Peak Hour Background Traffic Plus Phase 1 Development Traffic (Figure 5A) With Development Upgrades if Applicable						
Scenario 3	2020 Peak Hour Background Traffic Plus Phase 1 & 2 Development Traffic (Figure 5B) With Development Upgrades if Applicable						
Scenario 4	2020 Peak Hour Background Traffic Plus Phase 1, 2 & 3 Development Traffic (Figure 5C) <i>With Development Upgrades if Applicable</i>						
Scenario 5	2020 Peak Hour Background Traffic Plus Phase 1, 2, 3 & 4 Development Traffic (Figure 5D) <i>With Development Upgrades if Applicable</i>						

7.3 CAPACITY ANALYSIS

The existing and proposed geometric layout and traffic control of each key intersection is indicated in **Appendix A-5**.

The results of the SIDRA capacity analysis for the key intersections are summarised and discussed in **Tables 10** to **13**. Detailed SIDRA outputs are enclosed as **Appendix A-6**.

Table 11: Road D1477 and N4 Off-ramp

_	TRAFFIC SCENARIO & LAYOUT					OVERALL INTERSECTION OPE	RATING C	ONDITION	NS			
FFIC		ų,	AM PEAK HOUR					PM PEAK HOUR				
TRAFFIC		Approach	LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS		
1	2020 Peak Hour	South	NA	0.10	1.0	Acceptable operating conditions expected.	NA	0.13	1.7	Acceptable operating conditions		
	Background Traffic (With existing	East	NA	0.00	0.0		NA	0.00	0.0	expected.		
	intersection layout)	North	NA	0.17	1.4	T	NA	0.18	2.1			
		West	В	0.12	10.7	T	В	0.29	10.1			
		OVERALL	NA	0.17	3.7		NA	0.29	5.6			
2	2020 Peak Hour Background Traffic + Phase 1 Development Traffic (With development upgrades)	South	Α	0.19	4.4	Acceptable operating conditions expected. Proposed upgrades are summarized in <i>Chapter 7.4.</i>	Α	0.45	7.3	Acceptable operating conditions		
		East	NA	0.00	0.0		NA	0.00	0.0	 expected. Proposed upgrades are summarized in Chapter 7.4. 		
		North	Α	0.32	4.7		А	0.54	6.6			
		West	В	0.32	15.7		В	0.53	13.5			
		OVERALL	Α	0.32	7.1		Α	0.54	8.9	4		
3	2020 Peak Hour	South	Α	0.21	5.0	Acceptable operating conditions	Α	0.49	7.5	Acceptable operating conditions		
	Background Traffic + Phase 1 & 2	East	NA	0.00	0.0	expected.	NA	0.00	0.0	expected.		
	Development Traffic	North	Α	0.37	5.2		А	0.55	6.7			
		West	В	0.32	16.3		В	0.55	13.7			
		OVERALL	Α	0.37	7.5		Α	0.55	9.0			
4	2020 Peak Hour	South	Α	0.25	5.2	Acceptable operating conditions	Α	0.56	8.1	Acceptable operating conditions		
	Background Traffic +	East	NA	0.00	0.0	expected.	NA	0.00	0.0	expected.		
	Phase 1, 2 & 3 Development Traffic	North	Α	0.42	5.3		A	0.61	6.9			
		West	В	0.38	17.4		В	0.59	14.2	2		
		OVERALL	Α	0.30	7.7		A	0.59	9.3			

5	2020 Peak Hour Background Traffic +	South	Α	0.32	5.7	Acceptable operating conditions	А	0.69	9.4	Acceptable operating conditions
	Phase 1, 2, 3 & 4	East	NA	0.00	0.0	expected.	NA	0.00	0.0	expected.
	Development Traffic	North	Α	0.55	5.7		Α	0.68	7.3	
		West	В	0.52	19.7		В	0.66	14.9	
		OVERALL	Α	0.55	8.3		Α	0.69	10.0	

The conceptual intersection geometric layout for the above intersection is shown on **Drawing SKC 001 Rev A**.

Table 12: Road D1477 and N4 Off-ramp/Belfast One Stop Access

O	TRAFFIC SCENARIO & LAYOUT					OVERALL INTERSECTION OPE	RATING C	ONDITION	NS		
FFIC		сp			AM PE	EAK HOUR	PM PEAK HOUR				
TRAFFIC		Approach	LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS	
1	2020 Peak Hour	South	NA	0.05	2.1	Acceptable operating conditions	NA	0.06	2.3	Acceptable operating conditions	
	Background Traffic (With existing	East	С	0.29	20.5	expected.	NA	0.47	24.6	expected.	
	intersection layout)	North	NA	0.17	6.5		NA	0.18	7.2	T	
		West	В	0.08	12.5		В	0.11	12.8		
		OVERALL	NA	0.29	9.2		NA	0.47	11.5		
2	2020 Peak Hour Background Traffic + Phase 1 Development Traffic (With development upgrades)	South	Α	0.16	7.3	Acceptable operating conditions	В	0.49	10.1	Acceptable operating conditions	
		East	С	0.37	27.5	expected. Proposed upgrades are summarized in <i>Chapter 7.4.</i>	С	0.54	27.4	expected. Proposed upgrades are summarized in Chapter 7.4.	
		North	В	0.38	11.6	B 0.56 13.7 C 0.45 30.3 B 0.56 15.6	В	0.56	13.7		
		West	С	0.26	30.7		С	0.45	30.3		
		OVERALL	В	0.38	14.9						
3	2020 Peak Hour	South	Α	0.18	7.4	Acceptable operating conditions	А	0.53	9.8	Acceptable operating conditions	
	Background Traffic + Phase 1&2	East	С	0.37	27.5	expected.	С	0.58	28.7	expected.	
	Development Traffic	North	В	0.39	11.1		В	0.60	13.5		
		West	С	0.29	30.9		С	0.50	31.5		
		OVERALL	В	0.39	14.4		В	0.60	15.4		
4	2020 Peak Hour	South	Α	0.23	7.1	Acceptable operating conditions	Α	0.61	9.7	Acceptable operating conditions	
	Background Traffic + Phase 1, 2 & 3	East	С	0.41	28.6	expected.	С	0.63	30.5	expected.	
	Development Traffic	North	В	0.40	10.4		В	0.70	13.9		
		West	С	0.36	32.3		С	0.59	33.4		
		OVERALL	В	0.41	13.6		В	0.70	15.6		

5	2020 Peak Hour Background Traffic +	South	Α	0.31	6.9	Acceptable operating conditions	Α	0.72	9.0	Acceptable operating conditions
	Phase 1, 2, 3 & 4	East	С	0.45	29.8	expected. Proposed upgrades are summarized in <i>Chapter 7.4.</i>	D	0.90	45.4	expected. Proposed upgrades are summarized in <i>Chapter 7.4.</i>
	Development Traffic (With development	North	А	0.48	9.9		В	0.86	15.3	
	upgrades)	West	С	0.49	34.2		D	0.90	50.1	
		OVERALL	В	0.49	12.9		В	0.90	18.0	

The conceptual intersection geometric layout for the above intersection is shown on Drawing SKC 002 Rev A.

Table 13: Road D1477 and R33/Site Access 1

					ROAD	D1477 & R33/SITE Access 1					
٥,0	TRAFFIC SCENARIO & LAYOUT					OVERALL INTERSECTION OPE	RATING C	ONDITION	NS		
FFIC		-G			AM PE	EAK HOUR	PM PEAK HOUR				
TRAFFIC		Approach	LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS	
1	2020 Peak Hour	South	Α	0.01	8.6	Acceptable operating conditions	Α	0.00	9.1	Acceptable operating conditions	
	Background Traffic (With existing	East	Α	0.02	9.5	expected.	А	0.02	9.7	expected.	
	intersection layout)	North	В	0.16	10.1		Α	0.12	10.0		
	-	West	Α	0.05	8.3		Α	0.05	8.2		
		OVERALL	NA	0.16	9.4		NA	0.12	9.2		
2	2020 Peak Hour	South	Α	0.01	9.2	Acceptable operating conditions	В	0.04	13.7	Acceptable operating conditions	
	Background Traffic + Phase 1 Development	East	Α	0.10	8.7	expected. Proposed upgrades are summarized in <i>Chapter 7.4.</i>	D	0.88	26.8	expected. Proposed upgrades are summarized in Chapter 7.4.	
	Traffic (With development upgrades)	North	Α	0.14	8.3		А	0.24	7.7	Canimaniza in Chapter 1111	
		West	Α	0.04	7.9		Α	0.05	7.6		
		OVERALL	Α	0.14	8.4		NA 0.88 16.8				
3	2020 Peak Hour	South	Α	0.03	9.6	Acceptable operating conditions	В	0.08	14.1	Acceptable operating conditions	
	Background Traffic + Phase 1 & 2	East	Α	0.10	8.7	expected.	D	0.88	26.8	expected.	
	Development Traffic	North	Α	0.14	8.3		А	0.24	7.7		
		West	Α	0.04	7.9		Α	0.05	7.6		
		OVERALL	NA	0.14	8.4		NA	0.88	16.5		
4	2020 Peak Hour	South	В	0.04	10.8	Acceptable operating conditions	С	0.10	16.2	Intersection will operate at a v/c	
	Background Traffic + Phase 1, 2 & 3	East	Α	0.18	9.3	expected.	Е	1.00	35.2	ratio of 1.00 but with acceptable overall LOS and delays.	
	Development Traffic	North	Α	0.14	8.1	8.1	Α	0.28	7.7	overall LOS and delays.	
		West	Α	0.04	7.9		А	0.05	7.8		
		OVERALL	NA	0.18	8.6		NA	1.00	20.8		

5		South	В	0.07	14.2	Acceptable operating conditions	С	0.13	19.6	Intersection will operate at a v/c
	Background Traffic + Phase 1, 2, 3 & 4	East	В	0.38	11.3	expected.	D	1.00	30.4	ratio of 1.00 but with acceptable overall LOS and delays.
	Development Traffic (With development	North	Α	0.22	7.9		Α	0.34	7.7	
	upgrades)	West	Α	0.04	7.9		Α	0.05	8.0	
		OVERALL	NA	0.38	9.2		NA	1.00	19.4	

The conceptual intersection geometric layout for the above intersection is shown on **Drawing SKC 003 Rev B**.

Table 14: Road D1477 and Site Access 2

					Roa	D D1477 & SITE ACCESS 2					
., 0	TRAFFIC SCENARIO & LAYOUT					OVERALL INTERSECTION OPE	ERATING C	ONDITION	NS		
ARI		c _p			AM PE	EAK HOUR	PM PEAK HOUR				
SCENARIO		Approach	LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS	
1	2020 Peak Hour	South				Not Applicable				Not Applicable	
	Background Traffic (With existing layout)	East									
	(With existing layout)	North									
		West									
		OVERALL									
2	2020 Peak Hour	South				Not Applicable				Not Applicable	
	Background Traffic + Phase 1 Development	East									
	Traffic	North									
		West									
		OVERALL									
3	2020 Peak Hour	South	NA	0.01	1.9	Acceptable operating conditions	NA	0.01	0.7	Acceptable operating conditions	
	Background Traffic + Phase 1&2	East	В	0.04	12.3	expected.	В	0.10	12.4	expected.	
	Development Traffic	North	NA	0.04	7.9		NA	0.03	3.9		
	(With development upgrades)	West	-	-	-		-	-	-		
	apg. acco	OVERALL	NA	0.04	7.9		NA	0.10	7.5		
4	2020 Peak Hour	South	NA	0.01	1.6	Acceptable operating conditions	NA	0.02	0.7	Acceptable operating conditions	
E	Background Traffic +	East	В	0.04	12.4	expected.	В	0.10	12.5	expected.	
	Phase 1, 2 & 3 Development Traffic	North	NA	0.05	7.4		NA	0.03	3.5		
	•	West	-	-	-		-	-	-	_	
	OVERALL	NA	0.05	7.4		NA	0.10	7.1			

5	2020 Peak Hour Background Traffic +	South	NA	0.02	1.3	Acceptable operating conditions	NA	0.02	0.6	Acceptable operating conditions
	Phase 1, 2, 3 & 4	East	В	0.04	6.9	expected.	В	0.10	12.8	expected.
	Development Traffic	North	NA	0.05	7.4		NA	0.04	3.0	
		West	-	-	-		-	-	-	
		OVERALL	NA	0.05	6.7		NA	0.10	6.5	

The conceptual intersection geometric layout for the above intersection is shown on Drawing SKC 004 Rev A.

7.4 ROADS UPGRADES REQUIRED

Based on the capacity analyses the following road upgrades are required as summarized in Table 14.

Table 14: Proposed Road Upgrades

1	O. INTERSECTION	Phase 1	Phase 2	Phase 3	Phase 4
1	. Road D1477 and N4 ramp	- Signalize intersection. Refer Drawing SKC 002 Rev A.	No further road upgrades required.	No further road upgrades required.	No further road upgrades required.
2	Road D1477 and N4 ramp/Belfast 1 Stop Access	- Signalize intersection Peter	No further road upgrades required.	No further road upgrades required.	Optimize signal settings.
(3)	Road D1477 R33/Si Access 1	 Provide an exclusive left turn lane (60m) and an exclusive slip lane (60m) on the northern approach. Provide an exclusive right turn 	No further road upgrades required.	No further road upgrades required, although a traffic circle/signal can be considered in this phase.	No further road upgrades required, although a traffic circle/signal can be considered in this phase.
		lane (60m) and a shared through and left turn lane on the eastern approach.Refer Drawing SKC003 Rev B.			
Z	Road D1477 R33/Si Access 2	te Not Applicable	New intersection. Provide eastern leg as shown on Drawing SKC 004 Rev A.	No further road upgrades required.	No further road upgrades required.
5	Proposed link road	Not Applicable	Not Applicable	Link road required to prevent congestion of the N4/Road D1477 interchange	Link road required to prevent congestion of the N4/Road D1477 interchange

8 NON-MOTORISED AND PUBLIC TRANSPORT

8.1 BACKGROUND

In terms of the National Land Transport Act 5 of 2009, section 38, it is a requirement that an assessment of the public transport be included in a traffic impact assessment.

8.2 EXISTING PUBLIC TRANSPORT SERVICES AND FACILITIES

The proposed development is in close proximity to the following public transport services:

MINIBUS TAXIS

There is an existing formalised taxi rank facility located at the corner of Fitzgerald Street and Vermooten Street in Belfast (approximately 3.3km north-west of the proposed site). The trips that are made by these minibus taxis are to surrounding towns such as Middelburg and Nelspruit.

8.3 PROPOSED / NEW FACILITIES

MINIBUS TAXI LAYBYS

There are no taxi laybys available within the proximity of the proposed site. Therefore it is recommended that a pair of laybys be positioned along Road D1477 at the main access. The proposed laybys are illustrated on **Drawing SKC003**.

PEDESTRIAN FACILITIES

It is proposed that surfaced pedestrian sidewalks should be provided along the site frontage to facilitate pedestrian movements to and from the site.

9 CONCLUSIONS

Based on the assessment of the existing road network, traffic counts, a traffic and capacity analysis of road links in the study area, the following concluding remarks are relevant:

- → The proposed development is situated on Remainder of Portion 12 of the Farm Wemmerhuis 379-JT and Remainder of the Farm Bergendal 981-JR in Belfast, Mpumalanga Province (see **Figure 1**). The proposed development will be implemented in phases.
- This study considered the following land-uses:

•	Industrial	14 252m ²
	Single Dwelling Units	161 Stands
•	Apartments and Flats	387 Units
	Pre-school	200 Pupils
•	Shopping Centre	33 290m ²
	Business Centre	42 344m ²

- → Detailed traffic surveys were carried at the following intersections (see Figure 1):
 - Road D1477 and N4 Offramp;
 - Road D1477 and N4 Offramp/Belfast 1Stop Access and
 - Road D1477 and R33
- The proposed development will generate approximately 1052 and 1887 trips during the AM and PM peak hour respectively.
- → It is proposed that the development be served by two full accesses off Road D1477 plus and additional access to the north of the proposed development (over/under the N4) to serve Phase 3 and 4. The main access will be via the eastern leg of the intersection of Road D1477 and R33.
- The site development plans have not yet been finalized. It is proposed that a parking assessment be undertaken during the site development submission stage.
- → Roads upgrades required are stated in Chapter 7.4 and as shown on Drawings SKC001 to SKC004.
- → There are public transport services provided within the vicinity of site. There are no taxi laybys available within the proximity of the proposed site. Therefore it is recommended that a pair of laybys be positioned along Road D1477 at the main access. The proposed laybys are illustrated on **Drawing SKC003**.

From a traffic engineering perspective; the proposed development is supported.

10 REFERENCES

- → TMH 16 Volume 2, South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual, Version 1.0, Committee of Transport Officials (COTO) August 2012
- → TMH 17 Volume 1, South African Trip Data Manual, Version 1.0, Committee of Transport Officials (COTO) September 2012.
- → Highway Capacity Manual, Transportation Research Board, National Research Council Washington D.C., 2010.
- → Manual for Traffic Impact Studies, Department of Transport, October 1995
- → South African Trip Generation Rates, 2nd edition, Department of Transport, June 1995
- → South African Parking Standards, 2nd edition, Department of Transport, November 1985

FIGURES

FIGURES

FIGURE 1: LOCALITY PLAN

FIGURE 2: 2015 EXISTING TRAFFIC VOLUMES

FIGURE 3: 2020 BACKGROUND TRAFFIC VOLUMES

FIGURE 4A: PHASE 1 PEAK HOUR DEVELOPMENT TRIPS FIGURE 4B: PHASE 2 PEAK HOUR DEVELOPMENT TRIPS FIGURE 4C: PHASE 3 PEAK HOUR DEVELOPMENT TRIPS FIGURE 4D: PHASE 4 PEAK HOUR DEVELOPMENT TRIPS

FIGURE 5A: 2020 BACKGROUND PLUS PHASE 1 DEVELOPMENT TRAFFIC FIGURE 5B: 2020 BACKGROUND PLUS PHASE 1 & 2 DEVELOPMENT TRAFFIC FIGURE 5C: 2020 BACKGROUND PLUS PHASE 1, 2 & 3 DEVELOPMENT TRAFFIC FIGURE 5D: 2020 BACKGROUND PLUS PHASE 1, 2, 3 & 4 DEVELOPMENT TRAFFIC

20744.R_Belfast Development_Locality Plan_1

Project:
PROPOSED BELFAST MIXED USE DEVELOPMENT

Figure Description:

LOCALITY PLAN

1

No.

PROPOSED BELFAST MIXED USE DEVELOPMENT

2015 EXISTING TRAFFIC VOLUMES

2

2020 BACKGOUND TRAFFIC VOLUMES

PHASE 1 PEAK HOUR DEVELOPMENT TRIPS

PHASE 2 PEAK HOUR DEVELOPMENT TRIPS

4B

PHASE 3 PEAK HOUR DEVELOPMENT TRIPS

4C

PHASE 4 PEAK HOUR DEVELOPMENT TRIPS

4D

2020 PEAK HOUR BACKGROUND PLUS PHASE 1 DEVELOPMENT TRAFFIC

5A

2020 PEAK HOUR BACKGROUND PLUS **PHASE 1&2 DEVELOPMENT TRAFFIC**

5B

Project:

PROPOSED BELFAST MIXED USE DEVELOPMENT

Figure:

2020 BACKGROUND PLUS PHASE 1, 2 & 3 **DEVELOPMENT TRAFFIC VOLUMES**

No:

5C

Figure:

2020 BACKGROUND PLUS PHASE 1, 2, 3 & 4 **DEVELOPMENT TRAFFIC VOLUMES**

No:

5D

DRAWINGS

DRAWINGS

Drawing SKC001 Rev A: D1477/N4 Offramp Intersection Layout Plan

Drawing SKC002 Rev A: D1477/N4 Offramp/Belfast 1Stop Intersection Layout Plan

Drawing SKC003 Rev B: D1477/R33/Site Access Intersection Layout Plan

Drawing SKC004 Rev A: D1477/Site Access 2 Intersection Layout Plan

APPENDICES

APPENDIX A-1 TOWNSHIP LAYOUT PLAN

N4 Highway

APPENDIX A-2 RECORD OF SITE VISIT

Road D1477 & N4 Offramp (facing north)

Access to Belfast 1Stop (facing east)

Road D1477 and Site Access 1 (facing east)

R33 (facing west)

APPENDIX A-3 LIMITED ROAD MASTER PLAN

APPENDIX A-4 TRIP GENERATION CALCULATIONS

COTO - TMH 17 - SA Trip Data Manual Trip Generation Calculations Project name : 20744 Project number : Belfast Mixed Use Development (Phase 1)

Adjustment Factor	Yes / No
Mixed-use-Development (MUD) =	Yes
Low Vehicle Ownership (LVO) =	Yes
Very Low Vehicle Ownership (VLVO) =	No
Transit Nodes or Corridors (TNoC) =	No

																									in / Ou	t Split							4		
_	odo	Land Use	Vehicle Occupancy	Extent	Unit	Daily Rate		Adjı	ustment Fa	ctors				Trip	Generation	Rates			AM	Peak	PM	Peak	Frida	y PM	Mid	day	Eve	ning	Satu	rday	Sun	iday	T	rip Categorie	es
C	Jue	Land Ose	Occupancy	(Input)	OTHE	Daily Rate	MUD	LVO	VLVO	TNoC	Comb	AM Peak	PM Peak	Friday PM	l Midday	Evening	Saturday	Sunday	ln	Out	In	Out	In	Out	ln	Out	In	Out	In	Out	ln	Out	Primary	Pass-By	Diverted Diverted
20	10	Residential																																	
2:	.0	Single Dwelling Units		31	1 Dwelling Unit	4.00	10%	40%	0%	0%	46%	1.00	1.00				0.50	0.50	25%	75%	70%	30%							50%	50%	50%	50%	100%	0%	0%
80	10	Retail																																	
82	0	Shopping Centre		31830	100m2 GLA	35.00	10%	30%	0%	0%	37%	0.60		3.40			4.50		65%	35%			50%	50%					50%	50%			See tab	ole at bottom	of page

													₩.	
		AM Peak			Friday PM			Saturday				Pass-By	Ш	Tables below includes
Trip Type for retail developments	Primary	Pass-By	Diverted	Primary	Pass-By	Diverted	Primary	Pass-By	Diverted	developments	factor	factor	Tables above excludes	adjustment factor
	100%	0%	0%	5.8%	13%	29%	50%	12%	38%	uevelopilielits	1 59	2 17	adjustment factor	П

												Total Tr	rips																					rimary Tr	ps									
Code	e Land Use	Doily		AM Peak			PM Peak			Friday PM			Midday			Evening			Saturday			Sunday			AM Peak			PM Peak			Friday PM			Midday			Evening			Saturday			Sunday	
Coul	e Land Ose	Daily	In	Out	Total	ln	Out	Total	In	Out	Total	In	Out	Total	ln	Out	Total	ln	Out	Total	ln	Out	Total	In	Out	Total	ln	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	ln	Out	Total	ln	Out	Total
200	Residential																																											
210	Single Dwelling Units	67	4	13	17	12	5	17										4	4	8	4	4	8	4	13	17	12	5	17										4	4	8	4	4	8
800	Retail																																											
820	Shopping Centre	7019	125	67	192				510	510	1021							649	649	1298				125	67	192				315	315	630						4	360	360	719			
	TOTAL	7085	129	80	209	12	5	17	510	510	1021							653	653	1306	4	4	8	129	80	209	12	5	17	315	315	630							364	364	728	4	4	8

											Pa	ssBy Trips																				D	iverted Tri	ps								
Code	Londillon		AM Pea	k		PM Peak			Friday PM			Midday			Evening			Saturday			Sunday			AM Peak			PM Peak			Friday PM			Midday			Evening			Saturday		Sund	nday
Code	Land Use	In	Out	Total	ln	Out	Total	In	Out	Total	In	Out	Total	ln	Out	Total	ln .	Out	Total	In	Out	Total	ln	Out	Total	In	Out	Total	ln .	Out	Total	In	Out	Total	ln	Out	Total	In	Out	Total I	Ou	ut Total
200	Residential																																									
210	Single Dwelling Units																																									
800	Retail																																									
820	Shopping Centre							96	96	193							118	118	235										99	99	198							171	171	343		
	TOTAL							96	96	193							118	118	235										99	99	198							171	171	343		

COTO - TMH 17 - SA Trip Data Manual Trip Generation Calculations Project name : 20744 Project number : Belfast Mixed Use Development (Phase 2)

Adjustment Factor	Yes / No
Mixed-use-Development (MUD) =	Yes
Low Vehicle Ownership (LVO) =	Yes
Very Low Vehicle Ownership (VLVO) =	No
Transit Nodes or Corridors (TNoC) =	No

																								In / O	ut Split							4		
Codo	Land Use	Vehicle	Extent	Unit	Daily Bata			ustment Fac							Rates														urday				rip Categori	
Code	Land Ose	Occupancy	(Input)	Offic	Daily Nate	MUD	LVO	VLVO	TNoC	Comb	AM Peak	PM Peak	Friday PM	Midday	Evening	Saturday	Sunday	ln	Out	In	Out	ln .	Out	ln	Out	In	Out	ln	Out	ln	Out	Primary	Pass-By	Diverted
100	Industrial																																	
130	Industrial Area (Park)	1.8	14252	100m2 GLA	6.00	5%	20%	0%	0%	24%	0.80	0.80				0.40		75%	30%	25%	75%							30%	70%			100%	0%	0%

																				₹																								
												Total T	rips																				F	Primary Trip	IS									
Co	ode Land Use	Doile		AM Peak			PM Peak			Friday PN	1		Midday			Evening			Saturday			Sunday			AM Peak		1	PM Peak			Friday PM			Midday			Evening		S	aturday		\$	Sunday	
CC	Land Ose	Daily	In	Out	Total	ln	Out	Total	ln	Out	Total	ln	Out	Total	ln	Out	Total	In	Out	Total	ln .	Out	Total	In	Out	Total	ln	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	ln .	Out	Total	In /	Out	Total
10	0 Industrial																																											
121	D. Industrial Area (Dark)	CEO.	CE.	36	01	22	CE.	07										12	20	42				CE.	26	01	22	CE.	97										12	20	42			-

COTO - TMH 17 - SA Trip Data Manual Trip Generation Calculations Project name : 20744 Project number : Belfast Mixed Use Development (Phase 3)

Adjustment Factor	Yes / No
Mixed-use-Development (MUD) =	Yes
Low Vehicle Ownership (LVO) =	Yes
Very Low Vehicle Ownership (VLVO) =	No
Transit Nodes or Corridors (TNoC) =	No

																									ut Opiit									
ode	Land Use	Vehicle	Extent	11-14	Daily Rate		Adj	ustment Fa	ctors				Trip	Generation	Rates			AM	Peak	PM	Peak	Frid	ay PM	Mi	dday	Ev	ening	Sati	urday	Sun	iday	T	ip Catego	ies
oae	Land Use	Occupancy	(Input)	Unit	Daily Rate	MUD	LVO	VLVO	TNoC	Comb	AM Peak	PM Peak	Friday PN	1 Midday	Evening	Saturday	Sunday	In	Out	ln	Out	In	Out	ln	Out	In	Out	In	Out	ln .	Out	Primary	Pass-By	Diverted
0	Residential																																	
0	Single Dwelling Units		97	1 Dwelling Unit	4.00	10%	40%	0%	0%	46%	1.00	1.00				0.50	0.50	25%	75%	70%	30%							50%	50%	50%	50%	100%	0%	0%
0	Institutional																																	
55	Pre-School (Day Care Centre)		200	1 Student	3.00	5%	50%	0%	0%	53%	1.00	0.80		0.30				50%	50%	50%	50%			50%	50%							100%	0%	0%
00	Office																																	
70	Business Centre (Park)		8554	100m2 GLA	10.00	15%	20%	0%	0%	32%	1.50	1.50						85%	15%	20%	80%											100%	0%	0%
00	Retail																																	
20	Shopping Centre		1460	100m2 GLA	35.00	10%	30%	0%	0%	37%	0.60		3.40			4.50		65%	35%			50%	50%					50%	50%			See tal	le at botton	of page
																	₹																	
			AM Pea	k		Friday PM			Saturday		Size adiu	stment fact	or for rotal	Primary	Pass-By		Ш		Table	es below in	cludes	l												
	Trip Type for retail developments	Primary	Pass-By	Diverted	Primary	Pass-By	Diverted	Primary	Pass-By	Diverted		levelopmer		factor	factor	Table	es above ex	cludes	ad	justment fa	ictor													
		100%	0%	0%	58%	13%	29%	50%	12%	38%	,	ievelopiller	ıs	5.23	2.89	ad	justment fa	ctor		П		•												
				•		•	•	•	•										-	マケ														

																				~																								
												Total Tr	ips																					Primary Trip	S									
Cod	le Land Use	Daily		AM Peak			PM Peak			Friday PM			Midday			Evening			Saturday			Sunday			AM Peak			PM Peak			Friday PM			Midday			Evening			Saturday			Sunday	
COL	Land Ose	Daily	ln	Out	Total	ln	Out	Total	ln	Out	Total	In	Out	Total	ln .	Out	Total	In	Out	Total	ln .	Out	Total	In	Out	Total	ln	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	ln /	Out	Total
200	Residential																																								/ 7			
210	Single Dwelling Units	210	13	39	52	37	16	52										13	13	26	13	13	26	13	39	52	37	16	52									4	13	13	26	13	13	26
500	Institutional																																											
565	Pre-School (Day Care Centre)	285	48	48	95	38	38	76				14	14	29										48	48	95	38	38	76				14	14	29			4			/ 7	/	/	
700	Office																																								/ 7			
770	Business Centre (Park)	582	74	13	87	17	70	87																74	13	87	17	70	87									4			/ 7			
800	Retail																																											
820	Shopping Centre	322	19	10	29				58	58	116							69	69	138				19	10	29				47	47	95						4	54	54	108	/	/	
	TOTAL	1398	154	110	264	92	124	216	58	58	116	14	14	79				87	82	165	13	13	26	154	110	264	92	124	216	47	47	95	14	14	29				67	67	135	13	13	26

											Pas	ssBy Trips																			Di	iverted Trip)S									
Code	Lead Hea		AM Peal			PM Peak			Friday PM			Midday		E۱	rening		Saturd	ау		Sunday			AM Peak			PM Peak			Friday PM			Midday			Evening		\$	Saturday		:	Sunday	
Code	Land Use	In	Out	Total	ln	Out	Total	ln	Out	Total	ln	Out	Total	In	Out To	tal In	Out	Total	In	Out	Total	ln	Out	Total	ln .	Out	Total	ln	Out	Total	ln .	Out	Total	ln	Out	Total	ln .	Out	Total	In	Out T	otal
200	Residential																																									
210	Single Dwelling Units																																									
500	Institutional																																									
565	Pre-School (Day Care Centre)																																									
700	Office																																									
770	Business Centre (Park)																																									
800	Retail																																									
820	Shopping Centre							6	6	12						7	7	14										5	5	9							8	8	16			
	TOTAL							6	6	12						7		14										5	5	9							8	8	16			

COTO - TMH 17 - SA Trip Data Manual Trip Generation Calculations Project name : 20744 Project number : Belfast Mixed Use Development (Phase 4)

Adjustment Factor	Yes / No
Mixed-use-Development (MUD) =	Yes
Low Vehicle Ownership (LVO) =	Yes
Very Low Vehicle Ownership (VLVO) =	No
Transit Nadas or Carridars (TNaC) -	81-

																								in/O								4		
Code	Land Use	Vehicle	Extent	Unit	Daily Rate		Adjı	ıstment Fa	ctors				Trip (Generation					Peak	PM	Peak	Frida	ay PM	Mic	dday	Eve	ening	Satu	irday	Sur	nday	T	rip Categor	ries
Code	Land Ose	Occupancy	(Input)	OIII	Daily Nate	MUD	LVO	VLVO	TNoC	Comb	AM Peak	PM Peak	Friday PM	Midday	Evening	Saturday	Sunday	In	Out	In	Out	In	Out	ln	Out	ln	Out	In	Out	In	Out	Primary	Pass-By	Diverted
200	Residential																																	
210	Single Dwelling Units		33	1 Dwelling Unit	4.00	10%	40%	0%	0%	46%	1.00	1.00				0.50	0.50	25%	75%	70%	30%							50%	50%	50%	50%	100%	0%	0%
220	Apartments and Flats		387	1 Dwelling Unit	2.75	15%	30%	0%	0%	41%	0.65	0.65				0.35	0.35	25%	75%	70%	30%							50%	50%	50%	50%	100%	0%	0%
700	Office																																	
770	Business Centre (Park)		33790	100m2 GLA	10.00	15%	20%	0%	0%	32%	1.50	1.50						85%	15%	20%	80%											100%	0%	0%
																	\sim																	

				•	•		•			•											₹,																								
												Tota	Il Trips																					P	rimary Tri	ps									
Code	a Landlica	Daily		AM Peak			PM Peak	k		Friday	PM		Midda	ay		Eve	ning		Sat	urday			Sunday			AM Peak			PM Peak			Friday PN			Midday			Evening			Saturday			Sunday	
Code	E Land Ose	Daily	In	Out	Total	ln	Out	Tota	al In	Ou	t Tota	ıl İn	Out	T	otal	In O	ut To	otal Ir	1 (Out	Total	ln	Out	Total	In	Out	Total	ln	Out	Total	In	Out	Total	In	Out	Total	ln /	Out	Total	In	Out	Total	ln /	Out	Total
200	Residential																																												
210	Single Dwelling Units	71	4	13	18	12	5	18										4		4	9	4	4	9	4	13	18	12	5	18							4			4	4	9	4	4	9
220	Apartments and Flats	633	37	112	150	105	45	150										41	0	40	81	40	40	81	37	112	150	105	45	150							4			40	40	81	40	40	81
700	Office																																												
770	Business Centre (Park)	2298	293	52	345	69	276	345																	293	52	345	69	276	345							/	4	4			/ /			

APPENDIX A-5 INTERSECTION GEOMETRIC LAYOUTS

Appendix A-5: Existing vs. Proposed Intersection Layout and Control

Appendix A-5 (continue): Existing vs. Proposed Intersection Layout and Control

Appendix A-5 (continue): Existing vs. Proposed Intersection Layout and Control

Appendix A-5 (continue): Existing vs. Proposed Intersection Layout and Control

INTERSECTION	EXISTING LAYOUT & TRAFFIC CONTROL	PROPOSED LAYOUT & TRAFFIC CONTROL
	TRAFFIC CONTROL:	TRAFFIC CONTROL: SIDE STOP
4 – Road D1477 and Site Access 2	NOT APPLICABLE	Road D1477 NB

APPENDIX A-6 **DETAILED SIDRA RESULTS**

MOVEMENT SUMMARY

Site: 01_Road D1477 & N4
Offramp_2020 AM Peak Hour
Horizon Year Traffic

2020 AM Horizon Year Traffic Stop (Two-Way)

Movem	ent Per	formance - \	Vehicles	- 700		The same of	-	By made			
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: R	load D14										
2	T	174	20.0	0.101	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
3	R	17	20.0	0.021	11.7	LOS B	0.1	0.7	0.45	0.71	45.9
Approac	h	191	20.0	0.101	1.0	NA	0.1	0.7	0.04	0.06	58.4
North: R	oad D14	77 SB									
7	L	54	20.0	0.033	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	Т	288	20.0	0.167	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	h	342	20.0	0.167	1.4	NA	0.0	0.0	0.00	0.10	58.0
West: N4	4 Offramp										
10	L	152	20.0	0.093	8.0	X	×	X	X	0.59	49.8
11	Т	3	20.0	0.123	22.3	LOSC	0.4	3.6	0.66	0.99	38.6
12	R	33	20.0	0.123	22.0	LOSC	0.4	3.6	0.66	1.00	38.8
Approacl	h	187	20.0	0.123	10.7	LOS B	0.4	3.6	0.13	0.67	47.3
All Vehic	les	720	20.0	0.167	3.7	NA	0.4	3.6	0.04	0.24	54.8

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:29:00 PM

SIDRA INTERSECTION 5.1.2.1953

www.sidrasolutions.com

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

MOVEMENT SUMMARY

Site: 01 Road D1477 & N4 Offramp 2020 PM Peak Hour Horizon Year Traffic

2020 PM Horizon Year Traffic Stop (Two-Way)

Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
MOVID	Turn	Flow veh/h	%	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South: F	Road D14		70	V/.C	300		Vell			per veri	NITE
2	Т	216	20.0	0.125	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
3	R	34	20.0	0.047	12.5	LOS B	0.2	1.5	0.50	0.76	45.2
Approac	ch	249	20.0	0.125	1.7	NA	0.2	1.5	0.07	0.10	57.5
North: F	Road D14	77 SB									
7	L	101	20.0	0.062	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	Т	314	20.0	0.182	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	415	20.0	0.182	2.1	NA	0.0	0.0	0.00	0.16	56.9
West: N	4 Offram	0									
10	L	473	20.0	0.291	8.0	X	×	X	X	0.59	49.7
11	T	14	20.0	0.246	27.6	LOS D	0.9	7.8	0.76	1.02	35.4
12	R	44	20.0	0.246	27.3	LOS D	0.9	7.8	0.76	1.03	35.6
Approac	ch	531	20.0	0.291	10.1	LOS B	0.9	7.8	0.08	0.64	47.7
All Vehic	cles	1195	20.0	0.291	5.6	NA	0.9	7.8	0.05	0.36	52.5

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:31:13 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953

Www.sidrasolutions.com

Project: Z:\times200093, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 01_Road D1477 & N4 Offramp 2020 AM Peak Hour Background+Phase 1 **Development Traffic**

2020 AM Background + Phase 1 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

Moven	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Road D14										
2	T	233	20.0	0.193	3.3	LOSA	2.4	19.3	0.37	0.31	53.2
3	R	25	20.0	0.068	14.5	LOS B	0.3	2.5	0.41	0.74	43.3
Approac	ch	258	20.0	0.193	4.4	LOSA	2.4	19.3	0.37	0.35	52.0
North: F	Road D14	77 SB									
7	L	54	20.0	0.111	11.7	LOS B	0.5	4.0	0.32	0.70	45.9
8	Т	383	20.0	0.317	3.7	LOSA	4.3	35.5	0.41	0.36	52.5
Approac	ch	437	20.0	0.317	4.7	LOSA	4.3	35.5	0.40	0.40	51.6
West: N	4 Offram	0									
10	L	152	20.0	0.093	8.0	X	X	X	X	0.59	49.8
11	T	3	20.0	0.323	29.4	LOS C	1.6	12.8	0.97	0.72	29.7
12	R	49	20.0	0.323	38.5	LOS D	1.6	12.8	0.97	0.75	29.4
Approac	ch	204	20.0	0.323	15.7	LOS B	1.6	12.8	0.25	0.63	42.3
All Vehic	cles	899	20.0	0.323	7.1	LOSA	4.3	35.5	0.36	0.44	49.2

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:34:31 PM

Copyright @ 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953

Www.sidrasolutions.com

Project: Z:\times20000\times-Witbanki\times20744.R_Belfast Mall\17 - Sidras\times-Nasing TiA\times20744_Belfast_Sidra.sip
8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 01_Road D1477 & N4 Offramp_2020 PM Peak Hour Background+Phase 1 **Development Traffic**

2020 PM Background + Phase 1 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

		Demand		Deg	Average	Level of	95% Back	of Outside	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	00.7100	veh	m	-	per veh	km/h
South: F	Road D14	77 NB									Marin
2	Т	518	20.0	0.450	5.1	LOSA	7.3	59.5	0.51	0.45	50.4
3	R	84	20.0	0.288	20.2	LOSC	1.6	13.0	0.63	0.79	38.9
Approac	ch	602	20.0	0.450	7.3	LOSA	7.3	59.5	0.53	0.50	48.4
North: F	Road D14	77 SB									
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	Т	621	20.0	0.540	5.6	LOSA	9.5	78.1	0.56	0.50	49.6
Approac	ch	722	20.0	0.540	6.6	LOSA	9.5	78.1	0.53	0.53	48.9
West: N	4 Offram	0									
10	L	473	20.0	0.291	8.0	X	×	×	X	0.59	49.7
11	T	14	20.0	0.531	28.2	LOSC	3.4	28.0	0.98	0.77	30.2
12	R	102	20.0	0.531	37.2	LOS D	3.4	28.0	0.98	0.79	30.0
Approac	ch	588	20.0	0.531	13.5	LOS B	3.4	28.0	0.19	0.63	44.1
All Vehic	cles	1913	20.0	0.540	8.9	LOSA	9.5	78.1	0.43	0.55	47.2

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:32:48 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 01 Road D1477 & N4 Offramp_2020 AM Peak Hour Background+Phase 1&2 **Development Traffic**

2020 AM Background + Phase 1&2 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

woven	nent Per	formance - \	venicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Road D14	INCHESTAL STATE				2000					11000000
2	T	252	20.0	0.213	3.8	LOSA	2.7	22.3	0.39	0.34	52.5
3	R	28	20.0	0.082	15.5	LOS B	0.4	3.0	0.45	0.74	42.5
Approa	ch	280	20.0	0.213	5.0	LOSA	2.7	22.3	0.40	0.38	51.3
North: F	Road D14	77 SB									
7	L	54	20.0	0.116	12.1	LOS B	0.5	4.2	0.34	0.70	45.6
8	Т	431	20.0	0.365	4.3	LOSA	5.3	43.7	0.45	0.40	51.6
Approac	ch	484	20.0	0.365	5.2	LOSA	5.3	43.7	0.44	0.43	50.8
West: N	4 Offram	0									
10	L	152	20.0	0.093	8.0	X	×	X	X	0.59	49.8
11	T	3	20.0	0.321	28.3	LOSC	1.8	14.5	0.96	0.72	30.2
12	R	58	20.0	0.321	37.3	LOS D	1.8	14.5	0.96	0.75	29.8
Approac	ch	213	20.0	0.321	16.3	LOS B	1.8	14.5	0.27	0.64	41.9
All Vehic	cles	977	20.0	0.365	7.5	LOSA	5.3	43.7	0.39	0.46	48.7

Copyright @ 2000-2011 Akcelik and Associates Pty Ltd

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:37:31 PM

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

SIDRA INTERSECTION

Site: 01_Road D1477 & N4 Offramp_2020 PM Peak Hour Background+Phase 1&2 Development Traffic

2020 PM Background + Phase 1&2 Development Traffic
Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Per	formance - 1	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Road D14	77 NB				CATO AND		16. N. S.		-	1000000
2	T	566	20.0	0.492	5.4	LOSA	8.3	67.8	0.53	0.48	50.0
3	R	92	20.0	0.323	20.5	LOSC	1.8	14.4	0.65	0.79	38.7
Approac	ch	658	20.0	0.492	7.5	LOSA	8.3	67.8	0.55	0.52	48.1
North: F	Road D14	77 SB									
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	Т	637	20.0	0.554	5.7	LOSA	9.9	81.2	0.57	0.51	49.5
Approac	ch	738	20.0	0.554	6.7	LOSA	9.9	81.2	0.54	0.54	48.8
West: N	4 Offram	0									
10	L	473	20.0	0.291	8.0	X	×	×	X	0.59	49.7
11	T	14	20.0	0.545	28.3	LOSC	3.5	28.9	0.98	0.78	30.2
12	R	105	20.0	0.545	37.4	LOS D	3.5	28.9	0.98	0.80	29.9
Approac	ch	592	20.0	0.545	13.7	LOS B	3.5	28.9	0.20	0.63	44.0
All Vehic	cles	1987	20.0	0.554	9.0	LOSA	9.9	81.2	0.44	0.56	47.0

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:35:51 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Wtbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 01 Road D1477 & N4 Offramp_2020 AM Peak Hour Background+Phase 1, 2 & 3 **Development Traffic**

2020 AM Background + Phase 1, 2 & 3 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Road D14	A SALES OF THE PARTY OF THE PAR								No. of Contract of	- Indoor
2	T	300	20.0	0.254	3.9	LOSA	3.4	27.6	0.41	0.35	52.3
3	R	35	20.0	0.107	16.1	LOS B	0.5	3.9	0.48	0.75	42.0
Approa	ch	335	20.0	0.254	5.2	LOSA	3.4	27.6	0.42	0.39	51.0
North: F	Road D14	77 SB									
7	L	54	20.0	0.116	12.1	LOS B	0.5	4.2	0.34	0.70	45.6
8	Т	499	20.0	0.423	4.6	LOSA	6.5	53.5	0.48	0.42	51.2
Approac	ch	553	20.0	0.423	5.3	LOSA	6.5	53.5	0.47	0.45	50.6
West: N	4 Offram	0									
10	L	152	20.0	0.093	8.0	X	×	X	X	0.59	49.8
11	Т	3	20.0	0.382	28.5	LOSC	2.1	17.4	0.96	0.74	30.0
12	R	69	20.0	0.382	37.6	LOS D	2.1	17.4	0.96	0.76	29.7
Approac	ch	224	20.0	0.382	17.4	LOS B	2.1	17.4	0.31	0.65	41.0
All Vehi	cles	1112	20.0	0.423	7.7	LOSA	6.5	53.5	0.42	0.47	48.4

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:40:03 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 01_Road D1477 & N4 Offramp_2020 PM Peak Hour Background+Phase 1, 2 & 3 Development Traffic

2020 PM Background + Phase 1, 2, 3 & 4 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

		Demand		Deg	Average	Level of	95% Back	of Outside	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m	40000	per veh	km/h
South: I	Road D14	77 NB									
2	T	644	20.0	0.560	5.8	LOSA	10.1	82.7	0.57	0.52	49.4
3	R	103	20.0	0.407	22.5	LOSC	2.2	18.0	0.71	0.80	37.4
Approac	ch	747	20.0	0.560	8.1	LOSA	10.1	82.7	0.59	0.56	47.3
North: F	Road D14	77 SB									
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	Т	700	20.0	0.608	6.1	LOSA	11.6	94.9	0.60	0.55	48.9
Approac	ch	801	20.0	0.608	6.9	LOSA	11.6	94.9	0.58	0.57	48.4
West: N	4 Offram	0									
10	L	473	20.0	0.291	8.0	X	×	×	X	0.59	49.7
11	T	14	20.0	0.594	28.8	LOSC	3.9	32.0	0.99	0.81	29.9
12	R	116	20.0	0.594	37.9	LOS D	3.9	32.0	0.99	0.82	29.7
Approac	ch	602	20.0	0.594	14.2	LOS B	3.9	32.0	0.21	0.64	43.5
All Vehic	cles	2151	20.0	0.608	9.3	LOSA	11.6	94.9	0.48	0.58	46.6

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:38:53 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 01_Road D1477 & N4 Offramp_2020 AM Peak Hour Background+Phase 1, 2, 3 & 4 Development Traffic

2020 AM Background + Phase 1, 2, 3 & 4 Development Traffic
Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

		Demand		Deg	Average	Level of	95% Back	of Oueure	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	CCIVICE	veh	m	Gucucu	per veh	km/h
South: I	Road D14	77 NB							March a		
2	T	378	20.0	0.320	4.2	LOSA	4.5	36.8	0.43	0.38	51.9
3	R	46	20.0	0.166	18.7	LOS B	0.8	6.4	0.57	0.77	40.0
Approac	ch	424	20.0	0.320	5.7	LOSA	4.5	36.8	0.45	0.42	50.3
North: F	Road D14	77 SB									
7	L	54	20.0	0.116	12.1	LOS B	0.5	4.2	0.34	0.70	45.6
8	Т	646	20.0	0.548	5.2	LOSA	9.6	79.0	0.55	0.49	50.2
Approac	ch	700	20.0	0.548	5.7	LOSA	9.6	79.0	0.53	0.51	49.8
West: N	4 Offramp										
10	L	152	20.0	0.093	8.0	X	×	X	X	0.59	49.8
11	Т	3	20.0	0.515	29.2	LOS C	2.9	24.0	0.98	0.77	29.7
12	R	95	20.0	0.515	38.2	LOS D	2.9	24.0	0.98	0.78	29.4
Approac	ch	249	20.0	0.515	19.7	LOS B	2.9	24.0	0.39	0.67	39.3
All Vehic	cles	1374	20.0	0.548	8.3	LOSA	9.6	79.0	0.48	0.51	47.6

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:42:36 PM

SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 01 Road D1477 & N4 Offramp 2020 PM Peak Hour Background+Phase 1, 2, 3 & 4 **Development Traffic**

2020 PM Background + Phase 1, 2, 3 & 4 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Movem	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	Road D14	77 NB									
2	T	788	20.0	0.685	6.7	LOSA	14.3	117.0	0.66	0.60	48.1
3	R	123	20.0	0.567	26.6	LOSC	3.1	25.8	0.82	0.84	34.9
Approac	ch	912	20.0	0.685	9.4	LOSA	14.3	117.0	0.68	0.64	45.8
North: F	Road D14	77 SB									
7	L	101	20.0	0.227	12.6	LOS B	1.0	8.6	0.37	0.71	45.1
8	T	783	20.0	0.681	6.6	LOSA	14.1	115.6	0.66	0.60	48.1
Approac	ch	884	20.0	0.681	7.3	LOSA	14.1	115.6	0.63	0.61	47.8
West: N	4 Offramp										
10	L	473	20.0	0.291	8.0	X	×	X	X	0.59	49.7
11	T	14	20.0	0.657	29.6	LOSC	4.4	36.2	1.00	0.85	29.5
12	R	129	20.0	0.657	38.7	LOS D	4.4	36.2	1.00	0.85	29.4
Approac	ch	616	20.0	0.657	14.9	LOS B	4.4	36.2	0.23	0.65	42.9
All Vehic	cles	2412	20.0	0.685	10.0	LOS B	14.3	117.0	0.55	0.63	45.7

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:41:23 PM

Copyright @ 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953

Www.sidrasolutions.com

Project: Z'.200001-Witbank'20744_Belfast Mall\(^17\) - Sidras\(^17\) Draw in TiAl\(^17\) Tidras\(^17\) Phasing TiAl\(^17\) Tidras\(^17\) Tidras\(^17\) Absidras\(^17\) Draw Sidras\(^17\) Sidras\(^17\) Tidras\(^17\)

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access 2020 AM Peak Hour Horizon Year Traffic

2020 AM Horizon Year Traffic Stop (Two-Way)

wovem	ient Per	formance -	vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/l
South: F	Road D14		10000	7.0	300		Veill			per veri	KIII/
1	L	6	20.0	0.004	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
2	T	78	20.0	0.051	0.9	LOSA	0.3	2.7	0.34	0.00	53.7
3	R	6	20.0	0.051	9.8	LOSA	0.3	2.7	0.34	0.92	49.
Approac	:h	91	20.0	0.051	2.1	NA	0.3	2.7	0.32	0.11	53.0
East: Be	Ifast One	Stop Access									
4	L	13	20.0	0.288	20.3	LOSC	1.3	10.6	0.60	0.83	40.1
5	T	52	20.0	0.288	20.7	LOSC	1.3	10.6	0.60	1.03	39.8
6	R	47	20.0	0.288	20.3	LOSC	1.3	10.6	0.60	1.02	40.1
Approac	h	112	20.0	0.288	20.5	LOSC	1.3	10.6	0.60	1.00	40.0
North: R	oad D14	77 SB									
7	L	64	20.0	0.040	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	T	95	20.0	0.055	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
9	R	169	20.0	0.173	9.4	LOSA	0.7	5.4	0.23	0.63	47.9
Approac	h	328	20.0	0.173	6.5	NA	0.7	5.4	0.12	0.45	51.1
West: N4	4 Offramp)									
10	L	66	20.0	0.077	12.5	LOS B	0.3	2.3	0.22	0.89	46.0
11	T	1	20.0	0.077	12.9	LOS B	0.3	2.3	0.22	0.99	45.6
12	R	1	20.0	0.077	12.5	LOS B	0.3	2.3	0.22	1.00	46.1
Approacl	h	68	20.0	0.077	12.5	LOS B	0.3	2.3	0.22	0.89	46.0
All Vehic	les	599	20.0	0.288	9.2	NA	1.3	10.6	0.25	0.55	48.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:51:14 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 02_Road D1477 & N4
Offramp/Belfast One Stop
Access_2020 PM Peak Hour
Horizon Year Traffic

2020 PM Horizon Year Traffic Stop (Two-Way)

		formance - 1 Demand	· cilicics	Don	ASSESSMENT	Level of	DEW Death				
Mov ID	Turn	Flow veh/h	HV %	Deg. Satn v/c	Average Delay	Service	95% Back (Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: F	Road D14		70	VIC	sec		veh	m		per veh	km/
1	L	6	20.0	0.004	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
2	T	85	20.0	0.059	1.0	LOSA	0.4	3.1	0.34	0.00	53.
3	R	9	20.0	0.059	9.8	LOSA	0.4	3.1	0.34	0.91	49.0
Approac	:h	101	20.0	0.059	2.3	NA	0.4	3.1	0.32	0.13	52.9
East: Be	Ifast One	Stop Access									
4	L	20	20.0	0.474	24.4	LOSC	2.8	22.8	0.66	0.92	37.4
5	T	71	20.0	0.474	24.8	LOSC	2.8	22.8	0.66	1.12	37.2
6	R	82	20.0	0.474	24.4	LOSC	2.8	22.8	0.66	1.10	37.4
Approac	h	173	20.0	0.474	24.6	LOS C	2.8	22.8	0.66	1.09	37.3
North: R	oad D14	77 SB									
7	L	83	20.0	0.051	8.8	LOSA	0.0	0.0	0.00	0.66	49.0
8	T	75	20.0	0.043	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
9	R	179	20.0	0.183	9.4	LOSA	0.7	5.8	0.25	0.63	47.8
Approac	h	337	20.0	0.183	7.2	NA	0.7	5.8	0.13	0.50	50.4
West: N	4 Offramp										
10	L	85	20.0	0.107	12.8	LOS B	0.4	3.3	0.24	0.88	45.7
11	T	2	20.0	0.107	13.3	LOS B	0.4	3.3	0.24	0.99	45.3
12	R	3	20.0	0.107	12.8	LOS B	0.4	3.3	0.24	1.01	45.8
Approac	h	91	20.0	0.107	12.8	LOS B	0.4	3.3	0.24	0.89	45.7
All Vehic	les	701	20.0	0.474	11.5	NA	2.8	22.8	0.30	0.64	46.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 19 September 2016 03:53:07 PM SIDRA INTERSECTION 5.1.2.1953 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

SIDRA INTERSECTION

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access_2020 AM Peak Background+Phase 1 **Development Traff**

2020 AM Background+Phase 1 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed
South: F	Road D14		-	V/C	300		Veil	m		per veh	km/r
1	L	16	20.0	0.034	14.4	LOS B	0.2	1.6	0.44	0.68	43.5
2	Т	145	20.0	0.157	6.2	LOSA	2.0	16.7	0.48	0.40	49.2
3	R	6	20.0	0.157	15.0	LOS B	2.0	16.7	0.48	0.98	44.7
Approac	h	167	20.0	0.157	7.3	LOSA	2.0	16.7	0.48	0.45	48.4
East: Be	Ifast One	Stop Access									
4	L	13	20.0	0.373	31.6	LOSC	2.9	24.2	0.89	0.80	33.2
5	T	52	20.0	0.373	22.8	LOSC	2.9	24.2	0.89	0.71	33.8
6	R	47	20.0	0.373	31.5	LOSC	2.9	24.2	0.89	0.80	33.2
Approac	h	112	20.0	0.373	27.5	LOSC	2.9	24.2	0.89	0.76	33.5
North: R	oad D14	77 SB									
7	L	64	20.0	0.118	14.6	LOS B	0.8	6.7	0.45	0.71	43.3
8	T	206	20.0	0.205	6.4	LOSA	2.9	23.5	0.50	0.42	49.0
9	R	169	20.0	0.385	16.8	LOS B	2.7	22.2	0.56	0.77	41.5
Approach	h	440	20.0	0.385	11.6	LOS B	2.9	23.5	0.52	0.60	45.0
West: N4	Offramp										
10	L	66	20.0	0.256	30.8	LOSC	2.1	17.2	0.87	0.77	32.7
11	T	1	20.0	0.256	22.0	LOSC	2.1	17.2	0.87	0.68	33.4
12	R	15	20.0	0.256	30.8	LOSC	2.1	17.2	0.87	0.77	32.7
Approach	h	82	20.0	0.256	30.7	LOSC	2.1	17.2	0.87	0.77	32.8
All Vehicl	les	801	20.0	0.385	14.9	LOSB	2.9	24.2	0.60	0.61	42.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:17:17 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access_2020 PM Peak Background+Phase 1 **Development Traff**

2020 PM Background+Phase 1 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

		Demand		Deg	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South- B	Road D14	veh/h	%	v/c	sec		veh	m		per veh	km/r
1	1	67	20.0	0.153	15.6	LOS B	0.9	7.6	0.49	0.70	40.
2	T	438	20.0	0.491	9.1	LOSA		67.1		0.72	42.4
3	R	9	20.0	0.491	17.9		8.2	170.00	0.66	0.58	45.6
					- 91147	LOS B	8.2	67.1	0.66	0.97	42.9
Approac	n	515	20.0	0.491	10.1	LOS B	8.2	67.1	0.64	0.61	45.1
East: Be	Ifast One	Stop Access									
4	L	20	20.0	0.537	31.0	LOSC	4.6	38.1	0.91	0.82	33.4
5	T	71	20.0	0.537	22.3	LOSC	4.6	38.1	0.91	0.75	33.9
6	R	82	20.0	0.537	30.9	LOSC	4.6	38.1	0.91	0.82	33.4
Approac	h	173	20.0	0.537	27.4	LOSC	4.6	38.1	0.91	0.79	33.6
North: Re	oad D14	77 SB									
7	L	83	20.0	0.161	15.7	LOS B	1.2	9.5	0.50	0.72	42.4
8	T	440	20.0	0.464	8.9	LOSA	7.9	64.5	0.65	0.57	45.9
9	R	179	20.0	0.558	24.8	LOSC	4.3	35.4	0.82	0.82	36.0
Approach	h	702	20.0	0.558	13.7	LOS B	7.9	64.5	0.67	0.65	42.5
Nest: N4	Offramp										
10	L	85	20.0	0.455	30.4	LOS C	3.8	31.5	0.89	0.80	32.9
11	T	2	20.0	0.455	21.7	LOSC	3.8	31.5	0.89	0.73	33.5
12	R	59	20.0	0.455	30.5	LOSC	3.8	31.5	0.89	0.80	32.9
Approach	n	146	20.0	0.455	30.3	LOSC	3.8	31.5	0.89	0.80	32.9
All Vehicl	les	1536	20.0	0.558	15.6	LOS B	8.2	67.1	0.71	0.67	40.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:17:25 AM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access_2020 AM Peak Background+Phase 1&2 **Development Tra**

2020 AM Background+Phase 1&2 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

	618	Demand	2000	Deg.	Average	Level of	95% Back (of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/r
South: F	Road D14									35184510	TANKA A
1	L	20	20.0	0.043	14.4	LOS B	0.2	2.0	0.44	0.69	43.5
2	T	167	20.0	0.180	6.3	LOSA	2.4	19.5	0.49	0.41	49.0
3	R	6	20.0	0.180	15.1	LOS B	2.4	19.5	0.49	0.99	44.7
Approac	h	194	20.0	0.180	7.4	LOSA	2.4	19.5	0.49	0.46	48.3
East: Be	Ifast One	Stop Access									
4	L	13	20.0	0.374	31.6	LOSC	2.9	24.2	0.89	0.80	33.2
5	T	52	20.0	0.374	22.8	LOSC	2.9	24.2	0.89	0.72	33.8
6	R	47	20.0	0.374	31.5	LOSC	2.9	24.2	0.89	0.80	33.2
Approac	h	112	20.0	0.374	27.5	LOSC	2.9	24.2	0.89	0.76	33.5
North: R	oad D14	77 SB									
7	L	64	20.0	0.118	14.6	LOS B	0.8	6.7	0.45	0.71	43.3
8	T	263	20.0	0.261	6.6	LOSA	3.8	31.2	0.52	0.44	48.6
9	R	169	20.0	0.392	16.8	LOS B	2.7	22.4	0.57	0.77	41.4
Approac	h	497	20.0	0.392	11.1	LOS B	3.8	31.2	0.53	0.59	45.2
Nest: N	4 Offramp)									
10	L	66	20.0	0.288	31.0	LOSC	2.3	18.9	0.87	0.77	32.6
11	T	1	20.0	0.288	22.2	LOSC	2.3	18.9	0.87	0.69	33.3
12	R	22	20.0	0.288	31.1	LOSC	2.3	18.9	0.87	0.77	32.6
Approac	h	89	20.0	0.288	30.9	LOSC	2.3	18.9	0.87	0.77	32.6
All Vehic	les	892	20.0	0.392	14.4	LOSB	3.8	31.2	0.60	0.60	42.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:18:36 AM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access 2020 PM Peak Background+Phase 1&2 **Development Tra**

2020 PM Background+Phase 1&2 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

		Demand		Deg	Average	Level of	95% Back	of Queue	Prop	Effective	Average
Mov ID	Turn	Flow veh/h	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: R	load D14		%	v/c	sec		veh	m		per veh	km/h
1	L	76	20.0	0.167	15.1	LOS B	1.0	8.3	0.48	0.72	42.8
2	T	493	20.0	0.533	8.8	LOSA	9.2	75.8	0.40	0.59	45.9
3	R	9	20.0	0.533	17.6	LOSB	9.2	75.8	0.67	0.97	43.2
Approac	h	578	20.0	0.533	9.8	LOSA	9.2	75.8	0.64	0.61	45.4
East: Be	Ifast One	Stop Access									
4	L	20	20.0	0.581	32.4	LOSC	4.8	39.5	0.94	0.84	32.7
5	T	71	20.0	0.581	23.6	LOSC	4.8	39.5	0.94	0.78	33.2
6	R	82	20.0	0.581	32.3	LOSC	4.8	39.5	0.94	0.83	32.8
Approac	h	173	20.0	0.581	28.7	LOSC	4.8	39.5	0.94	0.81	32.9
North: Re	oad D14	77 SB									
7	L	83	20.0	0.157	15.1	LOS B	1.1	9.1	0.48	0.72	42.8
8	T	459	20.0	0.469	8.3	LOSA	8.0	65.7	0.63	0.56	46.5
9	R	179	20.0	0.600	25.9	LOSC	4.6	37.3	0.84	0.84	35.3
Approach	h	721	20.0	0.600	13.5	LOS B	8.0	65.7	0.67	0.65	42.7
West: N4	Offramp										
10	L	85	20.0	0.500	31.6	LOSC	4.0	32.9	0.91	0.80	32.3
11	T	2	20.0	0.500	22.9	LOSC	4.0	32.9	0.91	0.75	32.8
12	R	61	20.0	0.500	31.7	LOSC	4.0	32.9	0.91	0.81	32.3
Approach	1	148	20.0	0.500	31.5	LOSC	4.0	32.9	0.91	0.80	32.3
All Vehicl	es	1620	20.0	0.600	15.4	LOS B	9.2	75.8	0.71	0.67	41.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:10:32 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access_2020 AM Peak Background+Phase 1,2&3 Development

2020 AM Background+Phase 1, 2 & 3 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Movem	ent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/l
South: F	Road D14	THE RESIDENCE OF THE PARTY OF T						-		por ven	THE REAL PROPERTY.
1	L	27	20.0	0.057	14.0	LOS B	0.3	2.6	0.42	0.69	43.
2	T	223	20.0	0.231	6.0	LOSA	3.1	25.7	0.49	0.42	49.
3	R	6	20.0	0.231	14.8	LOS B	3.1	25.7	0.49	1.00	45.
Approac	h	257	20.0	0.231	7.1	LOSA	3.1	25.7	0.49	0.46	48.
East: Be	Ifast One	Stop Acces	S								
4	L	13	20.0	0.408	32.7	LOSC	3.0	24.8	0.91	0.80	32.7
5	T	52	20.0	0.408	24.0	LOSC	3.0	24.8	0.91	0.73	33.
6	R	47	20.0	0.408	32.6	LOSC	3.0	24.8	0.91	0.80	32.
Approac	h	112	20.0	0.408	28.6	LOS C	3.0	24.8	0.91	0.77	32.
North: R	oad D14	77 SB									
7	L	64	20.0	0.115	14.1	LOS B	0.8	6.4	0.44	0.71	43.
8	T	342	20.0	0.330	6.5	LOSA	5.0	41.2	0.53	0.46	48.8
9	R	169	20.0	0.403	17.0	LOS B	2.8	22.8	0.58	0.77	41.3
Approac	h	576	20.0	0.403	10.4	LOS B	5.0	41.2	0.53	0.58	45.8
West: N4	4 Offramp										
10	L	66	20.0	0.356	32.4	LOS C	2.6	21.7	0.90	0.78	32.0
11	Т	1	20.0	0.356	23.6	LOSC	2.6	21.7	0.90	0.71	32.5
12	R	32	20.0	0.356	32.5	LOSC	2.6	21.7	0.90	0.78	32.0
Approaci	h	99	20.0	0.356	32.3	LOSC	2.6	21.7	0.90	0.78	32.0
All Vehic	les	1043	20.0	0.408	13.6	LOS B	5.0	41.2	0.60	0.59	42.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Processed: 20 September 2016 09:22:25 AM Copyright © 2000-2011 Akcelik and Association SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 02_Road D1477 & N4 Offramp/Belfast One Stop Access_2020 PM Peak Background+Phase 1,2&3 Development

2020 PM Background+Phase 1, 2 & 3 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	Road D14		-	77.5	360		Veil		-	per veri	KIII/I
1	L	89	20.0	0.192	14.7	LOS B	1.2	9.5	0.46	0.72	43.2
2	T	582	20.0	0.610	8.8	LOSA	11.3	93.0	0.70	0.62	45.7
3	R	9	20.0	0.610	17.6	LOS B	11.3	93.0	0.70	0.97	43.3
Approac	h	681	20.0	0.610	9.7	LOSA	11.3	93.0	0.67	0.64	45.4
East: Be	Ifast One	Stop Access									
4	L	20	20.0	0.634	34.2	LOSC	5.0	41.3	0.96	0.86	31.9
5	T	71	20.0	0.634	25.4	LOSC	5.0	41.3	0.96	0.83	32.2
6	R	82	20.0	0.634	34.1	LOSC	5.0	41.3	0.96	0.86	31.9
Approac	h	173	20.0	0.634	30.5	LOS C	5.0	41.3	0.96	0.85	32.0
North: R	oad D147	77 SB									
7	L	83	20.0	0.153	14.7	LOS B	1.1	8.8	0.46	0.72	43.2
8	T	533	20.0	0.529	8.2	LOSA	9.5	77.8	0.65	0.57	46.6
9	R	179	20.0	0.695	30.7	LOSC	5.3	43.2	0.90	0.91	32.8
Approac	h	795	20.0	0.695	13.9	LOS B	9.5	77.8	0.69	0.66	42.2
Vest: N4	4 Offramp	1									
10	L	85	20.0	0.589	33.5	LOSC	4.5	36.9	0.95	0.83	31.5
11	T	2	20.0	0.589	24.7	LOSC	4.5	36.9	0.95	0.79	31.8
12	R	71	20.0	0.589	33.5	LOSC	4.5	36.9	0.95	0.83	31.5
Approact	h	158	20.0	0.589	33.4	LOS C	4.5	36.9	0.95	0.83	31.5
All Vehic	les	1806	20.0	0.695	15.6	LOS B	11.3	93.0	0.73	0.69	40.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:26:07 AM SIDRA INTERSECTION 5.1.2.1953

Copyright @ 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access 2020 AM Peak Background+Phase 1,2,3&4 Development

2020 AM Background+Phase 1, 2, 3 & 4 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Movem	ient Peri	ormance - '	venicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	Road D14						-			DATABLE STATE	The state of the s
1	L	41	20.0	0.083	13.6	LOS B	0.5	3.8	0.41	0.70	44.2
2	T	313	20.0	0.313	5.9	LOSA	4.5	36.6	0.51	0.44	49.
3	R	6	20.0	0.313	14.7	LOS B	4.5	36.6	0.51	1.00	45.
Approac	ch	360	20.0	0.313	6.9	LOSA	4.5	36.6	0.50	0.48	48.
East: Be	elfast One	Stop Access									
4	L	13	20.0	0.451	33.9	LOSC	3.1	25.6	0.93	0.80	32.1
5	T	52	20.0	0.451	25.2	LOSC	3.1	25.6	0.93	0.74	32.5
6	R	47	20.0	0.451	33.8	LOSC	3.1	25.6	0.93	0.80	32.
Approac	:h	112	20.0	0.451	29.8	LOS C	3.1	25.6	0.93	0.77	32.3
North: R	oad D147	7 SB									
7	L	64	20.0	0.112	13.7	LOS B	0.7	6.1	0.42	0.71	44.1
8	T	516	20.0	0.485	6.8	LOSA	8.3	68.2	0.59	0.52	48.2
9	R	169	20.0	0.431	17.9	LOS B	3.0	24.4	0.61	0.78	40.6
Approac	h	749	20.0	0.485	9.9	LOSA	8.3	68.2	0.58	0.59	45.9
West: N	4 Offramp										
10	L	66	20.0	0.494	34.2	LOSC	3.4	27.8	0.94	0.79	31.1
11	T	1	20.0	0.494	25.4	LOSC	3.4	27.8	0.94	0.76	31.5
12	R	53	20.0	0.494	34.3	LOSC	3.4	27.8	0.94	0.79	31.1
Approac	h	120	20.0	0.494	34.2	LOSC	3.4	27.8	0.94	0.79	31.1
All Vehic	les	1341	20.0	0.494	12.9	LOS B	8.3	68.2	0.62	0.60	43.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:36:35 AM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744,R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 02 Road D1477 & N4 Offramp/Belfast One Stop Access_2020 PM Peak Background+Phase 1,2,3&4 Development

2020 PM Background+Phase 1, 2, 3 & 4 Development Traffic Signals - Fixed Time Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

	-	Demand	101	Deg	Average	Level of	95% Back	and the second second	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: R	load D14	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN T	70	V/G	sec	-	veh	m	-	per veh	km/i
1	L	114	20.0	0.223	13.4	LOS B	1.3	10.7	0.42	0.72	44.3
2	т	747	20.0	0.717	8.2	LOSA	15.2	124.5	0.73	0.66	46.
3	R	9	20.0	0.717	17.1	LOS B	15.2	124.5	0.73	0.98	43.9
Approac	h	871	20.0	0.717	9.0	LOSA	15.2	124.5	0.68	0.67	45.9
East: Be	Ifast One	Stop Access									
4	L	20	20.0	0.897	49.0	LOS D	6.6	54.0	1.00	1.08	26.2
5	T	71	20.0	0.897	40.3	LOS D	6.6	54.0	1.00	1.08	26.3
6	R	82	20.0	0.897	48.9	LOS D	6.6	54.0	1.00	1.08	26.2
Approac	h	173	20.0	0.897	45.4	LOS D	6.6	54.0	1.00	1.08	26.3
North: R	oad D14	77 SB									
7	L	83	20.0	0.140	13.3	LOS B	0.9	7.7	0.41	0.71	44.4
8	T	629	20.0	0.576	6.9	LOSA	10.7	87.9	0.62	0.56	48.0
9	R	179	20.0	0.864	45.6	LOS D	7.1	57.9	0.99	1.09	26.7
Approacl	h	892	20.0	0.864	15.3	LOS B	10.7	87.9	0.68	0.68	41.1
West: N4	Offram	0									
10	L	85	20.0	0.905	50.2	LOS D	6.6	53.9	1.00	1.09	25.3
11	T	2	20.0	0.905	41.5	LOS D	6.6	53.9	1.00	1.09	25.4
12	R	82	20.0	0.905	50.3	LOS D	6.6	53.9	1.00	1.09	25.3
Approach	h	169	20.0	0.905	50.1	LOS D	6.6	53.9	1.00	1.09	25.3
All Vehic	les	2104	20.0	0.905	18.0	LOS B	15.2	124.5	0.73	0.74	39.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 09:32:09 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

SIDRA INTERSECTION

Site: 03 Road D1477 & R33/Site Access 1 2020 AM Horizon Year Traffic

2020 AM Horizon Year Traffic Giveway / Yield (Two-Way)

TO LOUIS ASS	24000	Demand	1,425	Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: F	Road D14	THE WAR WAS A	70	v/c	sec		veh	m		per veh	km/r
1	L	2	35.0	0.007	9.4	LOSA	0.1	0.5	0.15	0.59	48.4
2	Т	6	35.0	0.007	8.2	LOSA	0.1	0.5	0.15	0.48	49.5
3	R	1	35.0	0.007	9.9	LOSA	0.1	0.5	0.15	0.69	48.2
Approac	h	9	35.0	0.007	8.6	LOSA	0.1	0.5	0.15	0.53	49.1
East: Sit	e Access	1									
4	L	1	35.0	0.024	9.3	LOSA	0.1	0.9	0.07	0.60	48.6
5	Т	2	35.0	0.024	8.1	LOSA	0.1	0.9	0.07	0.49	49.9
6	R	15	35.0	0.024	9.7	LOSA	0.1	0.9	0.07	0.68	48.4
Approac	h	18	35.0	0.024	9.5	LOSA	0.1	0.9	0.07	0.65	48.5
North: R	oad D14	77									
7	L	11	35.0	0.156	10.2	LOS B	0.7	6.7	0.25	0.50	47.9
8	T	3	35.0	0.156	8.9	LOSA	0.7	6.7	0.25	0.41	48.8
9	R	92	35.0	0.156	10.2	LOS B	0.7	6.7	0.25	0.62	47.9
Approac	h	105	35.0	0.156	10.1	LOS B	0.7	6.7	0.25	0.60	47.9
West: R3	33 EB										
10	L	69	35.0	0.047	8.2	X	×	X	X	0.58	49.8
11	T	1	35.0	0.002	8.0	LOSA	0.0	0.1	0.05	0.52	50.0
12	R	1	35.0	0.002	9.7	LOSA	0.0	0.1	0.05	0.71	48.4
Approac	h	72	35.0	0.047	8.3	LOSA	0.0	0.1	0.00	0.59	49.8
All Vehic	les	204	35.0	0.156	9.4	NA	0.7	6.7	0.14	0.60	48.7

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:28:36 PM

Copyright @ 2000-2011 Akcelik and Associates Pty Ltd

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 03 Road D1477 & R33/Site Access 1 2020 PM Horizon Year Traffic

2020 PM Horizon Year Traffic Giveway / Yield (Two-Way)

WALL THE	100	Demand	1000	Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: E	Road D14	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	l l	1	35.0	0.004	9.7	LOSA	0.0	0.3	0.22	0.54	48.1
2	T	3	35.0	0.004	8.5	LOSA	0.0	0.3	0.22	0.44	49.1
3	R	1	35.0	0.004	10.2	LOS B	0.0	0.3	0.22	0.67	48.0
Approac		5	35.0	0.004	9.1	LOSA	0.0	0.3	0.22	0.50	48.6
			00.0	0.001		20071	0.0	0.0	V.111	0.00	
East: Sit	te Access	3 1									
4	L	1	35.0	0.024	9.5	LOSA	0.1	0.9	0.13	0.56	48.3
5	Т	2	35.0	0.024	8.3	LOSA	0.1	0.9	0.13	0.46	49.5
6	R	15	35.0	0.024	10.0	LOSA	0.1	0.9	0.13	0.66	48.1
Арргоас	:h	18	35.0	0.024	9.7	LOSA	0.1	0.9	0.13	0.63	48.3
North: R	oad D14	77									
7	L	21	35.0	0.120	10.1	LOS B	0.6	5.8	0.25	0.50	47.9
8	T	11	35.0	0.120	8.9	LOSA	0.6	5.8	0.25	0.41	48.8
9	R	62	35.0	0.120	10.1	LOS B	0.6	5.8	0.25	0.62	47.9
Approac	:h	94	35.0	0.120	10.0	LOSA	0.6	5.8	0.25	0.57	48.0
West: R	33 EB										
10	L	76	35.0	0.051	8.2	X	×	X	X	0.58	49.8
11	T	8	35.0	0.007	8.0	LOSA	0.1	0.5	0.06	0.54	50.0
12	R	1	35.0	0.007	9.7	LOSA	0.1	0.5	0.06	0.75	48.4
Approac	h	85	35.0	0.051	8.2	LOSA	0.1	0.5	0.01	0.58	49.8
All Vehic	des	202	35.0	0.120	9.2	NA	0.6	5.8	0.14	0.58	48.8

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:31:24 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 03_Road D1477 & R33/Site Access 1_2020 AM Background +Phase 1 Development Traffic

2020 AM Background+Phase 1 Development Traffic Giveway / Yield (Two-Way)

Movem	ent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: R	oad D14									per veri	KIIDI
1	L	2	20.0	0.013	9.9	LOSA	0.1	0.6	0.32	0.47	47.7
2	T	6	20.0	0.013	8.6	LOSA	0.1	0.6	0.32	0.38	48.5
3	R	6	0.0	0.013	9.4	LOSA	0.1	0.6	0.32	0.64	47.7
Approacl	h	15	11.4	0.013	9.2	LOSA	0.1	0.6	0.32	0.50	48.0
East: Site	e Access	1									
4	L	4	0.0	0.003	8.2	LOSA	0.0	0.0	0.00	0.68	49.0
5	T	2	0.0	0.003	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	78	0.0	0.103	8.8	LOSA	0.4	2.7	0.21	0.62	48.1
Approach	h	84 0.0 0.103 8.7 LOSA 0.4 2.7 0.19 0.62		48.1							
North: Ro	oad D14	77									
7	L	125	0.0	0.067	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	3	20.0	0.002	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.143	9.4	LOSA	0.5	4.3	0.20	0.62	48.1
Approach	1	220	8.6	0.143	8.3	LOSA	0.5	4.3	0.08	0.61	49.1
West: R3	3 EB										
10	L	69	20.0	0.043	8.0	X	×	X	X	0.59	49.8
11	T	4	0.0	0.004	7.1	LOSA	0.0	0.2	0.07	0.54	49.8
12	R	1	20.0	0.004	9.2	LOSA	0.0	0.2	0.07	0.73	48.4
Approach	1	75	18.9	0.043	7.9	LOSA	0.0	0.2	0.00	0.59	49.8
All Vehicl	es	394	8.8	0.143	8.4	NA	0.5	4.3	0.10	0.61	49.0

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:09:46 PM

SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 03_Road D1477 & R33/Site Access 1 2020 PM Background +Phase 1 Development Traffic

2020 PM Background+Phase 1 Development Traffic Giveway / Yield (Two-Way)

STATE VALUE		Demand		Deg	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South: R	load D14				500		VC11	1115	-	per veri	Alle
1	L	1	20.0	0.040	14.2	LOS B	0.2	1.2	0.54	0.31	43.6
2	T	3	20.0	0.040	13.0	LOS B	0.2	1.2	0.54	0.25	44.3
3	R	17	0.0	0.040	13.8	LOS B	0.2	1.2	0.54	0.78	43.5
Approac	h	21	4.0	0.040	13.7	LOS B	0.2	1.2	0.54	0.67	43.6
East: Site	e Access	1									
4	L	17	0.0	0.025	8.2	LOSA	0.0	0.0	0.00	0.70	49.0
5	T	31	0.0	0.025	7.1	LOSA	0.0	0.0	0.00	0.58	50.2
6	R	495	0.0	0.884	28.7	LOS D	16.3	114.0	0.94	1.54	33.5
Approach	h	542	0.0	0.884	26.8	LOS D	16.3	114.0	0.86	1.46	34.5
North: Ro	oad D147	77									
7	L	441	0.0	0.237	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	11	20.0	0.006	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	42	20.0	0.065	8.8	LOSA	0.2	1.7	0.05	0.64	48.7
Approach	h	494	2.1	0.237	7.7	LOSA	0.2	1.7	0.00	0.61	49.7
West: R3	3 EB										
10	L	1	20.0	0.001	8.0	X	×	×	X	0.59	49.8
11	T	92	0.0	0.048	7.6	LOSA	0.5	3.5	0.26	0.44	48.8
12	R	1	20.0	0.048	9.7	LOSA	0.5	3.5	0.26	0.69	48.0
Approach	1	94	0.4	0.048	7.6	LOSA	0.5	3.5	0.25	0.45	48.8
All Vehicl	es	1151	1.0	0.884	16.8	NA	16.3	114.0	0.44	1.00	41.1

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:12:19 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 03_Road D1477 & R33/Site Access 1_2020 AM Background +Phase 1, & 2 Development Traffic

2020 AM Background+Phase 1 & 2 Development Traffic Giveway / Yield (Two-Way)

Movem	ent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: R	load D14	THE PARTY OF THE P				100000				per veri	KISUI
1	L	3	20.0	0.030	10.6	LOS B	0.2	1.8	0.43	0.40	47.2
2	Т	32	20.0	0.030	9.4	LOSA	0.2	1.8	0.43	0.33	47.9
3	R	6	0.0	0.030	10.2	LOS B	0.2	1.8	0.43	0.68	47.2
Approac	h	41	16.9	0.030	9.6	LOSA	0.2	1.8	0.43	0.39	47.8
East: Site	e Access	1									
4	L	4	0.0	0.003	8.2	LOSA	0.0	0.0	0.00	0.68	49.0
5	T	2	0.0	0.003	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	78	0.0	0.103	8.8	LOSA	0.4	2.7	0.21	0.62	48.1
Approacl	h	84	0.0	0.103	8.7	LOSA	0.4	2.7	0.19	0.62	48.1
North: Re	oad D147	77									
7	L	125	0.0	0.067	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	66	20.0	0.038	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.144	9.8	LOSA	0.6	4.6	0.26	0.63	47.8
Approach	h	283	11.2	0.144	8.3	LOSA	0.6	4.6	0.08	0.61	49.3
West: R3	33 EB										
10	L	69	20.0	0.043	8.0	X	X	X	X	0.59	49.8
11	T	4	0.0	0.005	7.1	LOSA	0.0	0.2	0.07	0.53	49.8
12	R	2	20.0	0.005	9.2	LOSA	0.0	0.2	0.07	0.72	48.4
Approach	n	76	18.9	0.043	7.9	LOSA	0.0	0.2	0.01	0.59	49.7
All Vehicl	es	484	10.9	0.144	8.4	NA	0.6	4.6	0.12	0.59	49.0

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:14:25 PM SIDRA INTERSECTION 5.1.2.1953 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

INTERSECTION

Site: 03_Road D1477 & R33/Site Access 1_2020 PM Background +Phase 1 & 2 Development Traffic

2020 PM Background+Phase 1 & 2 Development Traffic Giveway / Yield (Two-Way)

Vision III	25000	Demand	TIGAS /	Deg.	Average	Level of	95% Back (of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/r
South: R	load D14									per veri	KIIDI
1	L	3	20.0	0.080	15.2	LOSC	0.8	6.1	0.63	0.26	43.1
2	T	66	20.0	0.080	13.9	LOS B	0.8	6.1	0.63	0.21	43.7
3	R	17	0.0	0.080	14.7	LOS B	0.8	6.1	0.63	0.85	43.1
Approac	h	86	16.1	0.080	14.1	LOS B	0.8	6.1	0.63	0.34	43.6
East: Site	e Access	1									
4	L	17	0.0	0.025	8.2	LOSA	0.0	0.0	0.00	0.70	49.0
5	T	31	0.0	0.025	7.1	LOSA	0.0	0.0	0.00	0.58	50.2
6	R	495	0.0	0.884	28.7	LOS D	16.3	114.0	0.94	1.54	33.5
Approacl	h	542	0.0	0.884	26.8	LOS D	16.3	114.0	0.86	1.46	34.5
North: Re	oad D147	7									
7	L	441	0.0	0.237	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	33	20.0	0.019	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	42	20.0	0.066	9.7	LOSA	0.2	2.0	0.25	0.62	47.9
Approach	n	516	2.9	0.237	7.7	LOSA	0.2	2.0	0.02	0.60	49.7
Vest: R3	3 EB										
10	L	1	20.0	0.001	8.0	X	×	X	×	0.59	49.8
11	T	92	0.0	0.048	7.6	LOSA	0.5	3.5	0.26	0.44	48.8
12	R	1	20.0	0.048	9.7	LOSA	0.5	3.5	0.26	0.69	48.0
pproach	1	94	0.4	0.048	7.6	LOSA	0.5	3.5	0.26	0.44	48.8
II Vehicl	es	1238	2.4	0.884	16.5	NA	16.3	114.0	0.45	0.95	41.3

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:15:54 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z.\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 03_Road D1477 & R33/Site Access 1_2020 AM Background +Phase 1,2 & 3 Development Traffic

2020 AM Background+Phase 1,2 & 3 Development Traffic Giveway / Yield (Two-Way)

Mov ID	Turn	Demand	LINE	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
IVIOV ID	Tum	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed
South: F	Road D14	THE RESERVE THE PARTY OF THE PA	70	VIC	300		ven	m		per veh	km/r
1	L	3	20.0	0.040	11.7	LOS B	0.3	2.4	0.49	0.35	46.1
2	T	32	20.0	0.040	10.5	LOS B	0.3	2.4	0.49	0.29	46.9
3	R	12	0.0	0.040	11.3	LOS B	0.3	2.4	0.49	0.72	46.1
Approac	h	46	15.0	0.040	10.8	LOS B	0.3	2.4	0.49	0.40	46.7
East: Sit	e Access	1									
4	L	7	0.0	0.006	8.2	LOSA	0.0	0.0	0.00	0.69	49.0
5	T	4	0.0	0.006	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	141	0.0	0.185	9.4	LOSA	0.8	5.6	0.31	0.64	47.6
Approac	h	153	0.0	0.185	9.3	LOSA	0.8	5.6	0.29	0.64	47.8
North: R	oad D14	77									
7	L	216	0.0	0.116	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	66	20.0	0.038	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.144	9.8	LOSA	0.6	4.6	0.26	0.63	47.8
Approacl	h	374	8.5	0.144	8.1	LOSA	0.6	4.6	0.06	0.61	49.4
West: R3	33 EB										
10	L	69	20.0	0.043	8.0	X	X	X	X	0.59	49.8
11	T	7	0.0	0.007	7.2	LOSA	0.0	0.3	0.10	0.52	49.7
12	R	2	20.0	0.007	9.3	LOSA	0.0	0.3	0.10	0.72	48.3
Approach	h	79	18.1	0.043	7.9	LOSA	0.0	0.3	0.01	0.59	49.7
All Vehicl	les	652	8.1	0.185	8.6	NA	0.8	5.6	0.14	0.60	48.8

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:19:04 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 03_Road D1477 & R33/Site Access 1_2020 PM Background +Phase 1,2, & 3 Development Traffic

2020 PM Background+Phase 1,2 & 3 Development Traffic Giveway / Yield (Two-Way)

	10E	Demand		Deg	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: F	Road D14		70	V/G	sec	-	veh	m	-	per veh	km/h
1	L	3	20.0	0.100	17.2	LOSC	1.0	7.5	0.66	0.24	41.4
2	т	66	20.0	0.100	16.0	LOSC	1.0	7.5	0.66	0.20	42.0
3	R	22	0.0	0.100	16.7	LOSC	1.0	7.5	0.66	0.91	41.4
Approac	:h	92	15.2	0.100	16.2	LOSC	1.0	7.5	0.66	0.37	41.8
East: Sit	te Access	1									
4	L	22	0.0	0.077	8.2	LOSA	0.0	0.0	0.00	0.68	49.0
5	T	123	0.0	0.077	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	515	0.0	1.000	43.1	LOSE	21.3	149.1	1.00	1.76	27.4
Approac	h	660	0.0	1.000	35.2	LOS E	21.3	149.1	0.78	1.50	30.5
North: R	oad D14	77									
7	L	525	0.0	0.283	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	33	20.0	0.019	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	41	20.0	0.065	9.7	LOSA	0.2	1.9	0.25	0.62	47.9
Approac	h	599	2.5	0.283	7.7	LOSA	0.2	1.9	0.02	0.60	49.7
West: R3	33 EB										
10	L	1	20.0	0.001	8.0	X	X	×	X	0.59	49.8
11	T	99	0.0	0.052	7.7	LOSA	0.5	3.8	0.29	0.42	48.7
12	R	1	20.0	0.052	9.8	LOSA	0.5	3.8	0.29	0.69	47.9
Approact	h	101	0.4	0.052	7.8	LOSA	0.5	3.8	0.29	0.43	48.7
All Vehic	les	1452	2.0	1.000	20.8	NA	21.3	149.1	0.42	0.98	38.3

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Processed: 26 September 2016 03:20:28 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 03_Road D1477 & R33/Site Access 1_2020 AM Background +Phase 1,2,3&4 Development Traffic

2020 AM Background+Phase 1,2,3&4 Development Traffic Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South: F	Road D14								1000	Ser ven	
1	L	3	20.0	0.072	15.1	LOSC	0.5	3.9	0.58	0.29	43.0
2	Т	32	20.0	0.072	13.8	LOS B	0.5	3.9	0.58	0.24	43.7
3	R	22	0.0	0.072	14.6	LOS B	0.5	3.9	0.58	0.83	43.0
Approac	ch	57	12.2	0.072	14.2	LOS B	0.5	3.9	0.58	0.47	43.4
East: Sit	te Access	1									
4	L	14	0.0	0.012	8.2	LOSA	0.0	0.0	0.00	0.69	49.0
5	T	8	0.0	0.012	7.1	LOSA	0.0	0.0	0.00	0.57	50.2
6	R	244	0.0	0.375	11.6	LOS B	2.1	14.6	0.50	0.77	45.5
Approac	h	266	0.0	0.375	11.3	LOS B	2.1	14.6	0.46	0.76	45.8
North: R	oad D147	77									
7	L	411	0.0	0.221	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	66	20.0	0.038	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	92	20.0	0.144	9.8	LOSA	0.6	4.6	0.26	0.63	47.8
Approac	h	568	5.6	0.221	7.9	LOSA	0.6	4.6	0.04	0.61	49.5
West: R	33 EB										
10	L	69	20.0	0.043	8.0	X	X	×	X	0.59	49.8
11	T	14	0.0	0.010	7.3	LOSA	0.1	0.6	0.15	0.50	49.4
12	R	2	20.0	0.010	9.4	LOSA	0.1	0.6	0.15	0.71	48.2
Approac	h	85	16.8	0.043	7.9	LOSA	0.1	0.6	0.03	0.58	49.7
All Vehic	les	977	5.4	0.375	9.2	NA	2.1	14.6	0.19	0.64	48.1

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 26 September 2016 03:21:51 PM SIDRA INTERSECTION 5.1.2.1953 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 03_Road D1477 & R33/Site Access 1_2020 PM Background +Phase 1,2,3&4 Development Traffic

2020 PM Background+Phase 1,2,3&4 Development Traffic Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South: R	Road D14									-	
1	L	1	20.0	0.130	20.6	LOSC	1.2	9.5	0.76	0.17	38.9
2	T	66	20.0	0.130	19.3	LOSC	1.2	9.5	0.76	0.14	39.4
3	R	27	0.0	0.130	20.1	LOSC	1.2	9.5	0.76	0.93	38.9
Approac	h	95	14.2	0.130	19.6	LOSC	1.2	9.5	0.76	0.37	39.2
East: Sit	e Access	1									
4	L	33	0.0	0.215	8.2	LOSA	0.0	0.0	0.00	0.68	49.0
5	T	369	0.0	0.215	7.1	LOSA	0.0	0.0	0.00	0.56	50.2
6	R	464	0.0	1.000	50.5	LOSF	21.3	149.1	1.00	1.91	25.1
Approac	h	866	0.0	1.000	30.4	LOS D	21.3	149.1	0.54	1.29	32.7
North: R	oad D14	77									
7	L	635	0.0	0.342	7.6	LOSA	0.0	0.0	0.00	0.60	49.8
8	T	33	20.0	0.019	7.5	LOSA	0.0	0.0	0.00	0.59	50.4
9	R	41	20.0	0.065	9.7	LOSA	0.2	1.9	0.24	0.62	47.9
Approac	h	708	2.1	0.342	7.7	LOSA	0.2	1.9	0.01	0.60	49.7
West: R3	33 EB										
10	L	1	20.0	0.001	8.0	X	X	X	X	0.59	49.8
11	T	103	0.0	0.054	7.9	LOSA	0.6	4.1	0.33	0.40	48.4
12	R	1	20.0	0.054	10.0	LOS B	0.6	4.1	0.33	0.69	47.8
Approact	h	105	0.4	0.054	8.0	LOSA	0.6	4.1	0.33	0.40	48.5
All Vehic	les	1775	1.6	1.000	19.4	NA	21.3	149.1	0.33	0.91	39.2

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Processed: 26 September 2016 03:24:05 PM SIDRA INTERSECTION 5.1.2.1953 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 04_Road D1477 & Site Access 2_2020 AM Background +Phase 2 Development Traffic

2020 AM Background+Phase 2 Development Stop (Two-Way)

Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay	Level of Service	95% Back of Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: R	load D14		70	VIC	sec	No.	veh	m		per veh	km/h
2	Т	16	20.0	0.012	0.4	LOSA	0.1	0.5	0.21	0.00	55.9
3	R	3	20.0	0.012	9.5	LOSA	0.1	0.5	0.21	0.96	48.7
Approac	h	19	20.0	0.012	1.9	NA	0.1	0.5	0.21	0.16	54.6
East: Site	e Access	2									
4	L	1	20.0	0.039	12.4	LOS B	0.1	1.2	0.21	0.82	46.0
6	R	26	20.0	0.039	12.3	LOS B	0.1	1.2	0.21	0.88	46.2
Approact	h	27	20.0	0.039	12.3	LOS B	0.1	1.2	0.21	0.88	46.2
North: Re	oad D147	77 SB									
7	L	64	20.0	0.044	8.8	LOSA	0.0	0.0	0.00	0.69	49.0
8	Т	7	20.0	0.044	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approact	n	72	20.0	0.044	7.9	NA	0.0	0.0	0.00	0.62	49.9
All Vehic	es	118	20.0	0.044	7.9	NA	0.1	1.2	0.08	0.61	49.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 03:25:28 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 04 Road D1477 & Site Access 2 2020 PM Background +Phase 2 Development Traffic

2020 PM Background+Phase 2 Development Stop (Two-Way)

Moven	nent Per	formance - '	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Road D14									per ven	Milion
2	Т	22	20.0	0.014	0.3	LOSA	0.1	0.6	0.17	0.00	56.7
3	R	1	20.0	0.014	9.4	LOSA	0.1	0.6	0.17	1.08	48.8
Approac	ch	23	20.0	0.014	0.7	NA	0.1	0.6	0.17	0.05	56.3
East: Si	te Access	2									
4	L	3	20.0	0.097	12.5	LOS B	0.4	3.2	0.23	0.82	45.9
6	R	65	20.0	0.097	12.4	LOS B	0.4	3.2	0.23	0.89	46.1
Approac	ch	68	20.0	0.097	12.4	LOS B	0.4	3.2	0.23	0.88	46.1
North: R	Road D14	77 SB									
7	L	22	20.0	0.029	8.8	LOSA	0.0	0.0	0.00	0.86	49.0
8	Т	27	20.0	0.029	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	49	20.0	0.029	3.9	NA	0.0	0.0	0.00	0.38	54.5
All Vehic	cles	141	20.0	0.097	7.5	NA	0.4	3.2	0.14	0.57	50.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: 20 September 2016 03:29:33 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA IN LERSECTION 5.1.2.1953

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 04_Road D1477 & Site Access 2_2020 AM Background +Phase 2 & 3 Development Traffic

2020 AM Background+Phase 2 & 3 Development Stop (Two-Way)

Moven	nent Per	formance - '	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg Satn v/c	Average Delay	Level of Service	95% Back of Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: F	Road D14	TO A STATE OF THE PARTY OF THE	79	VIC	sec		veh	m		per veh	km/h
2	Т	20	20.0	0.014	0.4	LOSA	0.1	0.6	0.22	0.00	55.8
3	R	3	20.0	0.014	9.5	LOSA	0.1	0.6	0.22	0.98	48.8
Approac	ch	23	20.0	0.014	1.6	NA	0.1	0.6	0.22	0.13	54.7
East: Si	te Access	2									
4	L	1	20.0	0.039	12.6	LOS B	0.2	1.2	0.23	0.81	45.9
6	R	26	20.0	0.039	12.4	LOS B	0.2	1.2	0.23	0.88	46.1
Approac	ch	27	20.0	0.039	12.4	LOS B	0.2	1.2	0.23	0.88	46.1
North: R	load D14	77 SB									
7	L	64	20.0	0.046	8.8	LOSA	0.0	0.0	0.00	0.71	49.0
8	Т	12	20.0	0.046	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	76	20.0	0.046	7.4	NA	0.0	0.0	0.00	0.60	50.4
All Vehic	cles	126	20.0	0.046	7.4	NA	0.2	1.2	0.09	0.57	50.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 03:48:10 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 04_Road D1477 & Site Access 2_2020 PM Background +Phase 2 & 3 Development Traffic

2020 PM Background+Phase 2 & 3 Development Stop (Two-Way)

		Demand	1000	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cauth	Dani Dia	veh/h	%	v/c	sec		veh	m	- Section 1	per veh	km/h
	Road D14										
2	Т	25	20.0	0.016	0.3	LOSA	0.1	0.7	0.19	0.00	56.5
3	R	1	20.0	0.016	9.4	LOSA	0.1	0.7	0.19	1.08	48.9
Approa	ch	26	20.0	0.016	0.7	NA	0.1	0.7	0.19	0.04	56.1
East: Si	ite Access	2									
4	L	3	20.0	0.099	12.7	LOS B	0.4	3.3	0.25	0.81	45.8
6	R	65	20.0	0.099	12.5	LOS B	0.4	3.3	0.25	0.88	46.0
Approac	ch	68	20.0	0.099	12.5	LOS B	0.4	3.3	0.25	0.88	46.0
North: F	Road D147	77 SB									
7	L	22	20.0	0.033	8.8	LOSA	0.0	0.0	0.00	0.88	49.0
8	T	34	20.0	0.033	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	56	20.0	0.033	3.5	NA	0.0	0.0	0.00	0.35	55.1
All Vehic	cles	151	20.0	0.099	7.1	NA	0.4	3.3	0.15	0.54	50.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 03:50:44 PM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip

Site: 04_Road D1477 & Site Access 2_2020 AM Background +Phase 2, 3 & 4 Development Traffic

2020 AM Background+Phase 2, 3 & 4 Development Stop (Two-Way)

Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delav	Level of Service	95% Back (Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	V/c	sec		veh	m	State of the State	per veh	km/h
South:	Road D14	77 NB							W- W		-
2	T	31	20.0	0.020	0.4	LOSA	0.1	1.0	0.23	0.00	55.6
3	R	3	20.0	0.020	9.6	LOSA	0.1	1.0	0.23	1.01	48.8
Approa	ch	34	20.0	0.020	1.3	NA	0.1	1.0	0.23	0.09	54.9
East: S	ite Access	2									
4	L	1	20.0	0.040	12.8	LOS B	0.2	1.3	0.26	0.80	45.7
6	R	26	20.0	0.040	12.6	LOS B	0.2	1.3	0.26	0.87	45.9
Approa	ch	27	20.0	0.040	12.6	LOS B	0.2	1.3	0.26	0.87	45.9
North: F	Road D14	77 SB									
7	L	64	20.0	0.049	8.8	LOSA	0.0	0.0	0.00	0.72	49.0
8	Т	17	20.0	0.049	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	81	20.0	0.049	6.9	NA	0.0	0.0	0.00	0.57	50.9
All Vehi	cles	142	20.0	0.049	6.7	NA	0.2	1.3	0.10	0.52	50.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 03:56:02 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

Site: 04_Road D1477 & Site Access 2_2020 PM Background +Phase 2, 3 & 4 Development Traffic

2020 PM Background+Phase 2, 3 & 4 Development Stop (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Ourses	Draw	Effect (1)	
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m	Queucu	per veh	km/h
South: I	Road D14	77 NB	700							55111511	10710
2	Т	32	20.0	0.019	0.3	LOSA	0.1	0.9	0.20	0.00	56.1
3	R	1	20.0	0.019	9.5	LOSA	0.1	0.9	0.20	1.07	48.9
Approac	ch	33	20.0	0.019	0.6	NA	0.1	0.9	0.20	0.03	55.9
East: Si	te Access	2									
4	L	3	20.0	0.102	12.9	LOS B	0.4	3.4	0.28	0.80	45.6
6	R	65	20.0	0.102	12.8	LOS B	0.4	3.4	0.28	0.88	45.8
Approac	ch	68	20.0	0.102	12.8	LOS B	0.4	3.4	0.28	0.88	45.8
North: R	Road D14	77 SB									
7	L	22	20.0	0.039	8.8	LOSA	0.0	0.0	0.00	0.91	49.0
8	T	43	20.0	0.039	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	65	20.0	0.039	3.0	NA	0.0	0.0	0.00	0.31	55.7
All Vehic	cles	166	20.0	0.102	6.5	NA	0.4	3.4	0.16	0.49	51.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 20 September 2016 03:56:50 PM SIDRA INTERSECTION 5.1.2.1953 Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.2.1953

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\17 - Sidras\Phasing TIA\20744_Belfast_Sidra.sip 8000993, WSP SA CIVIL & STRUCTURAL ENGINEERS (PTY) LTD, LIMITED

