ECOLOGICAL, RED DATA AND BIODIVERSITY ASSESSMENT REPORT

ON FARM ZWARTBERG 72 MR (REMAINING EXTENT & PORTION 1),

WITHIN

BLOUBERG LOCAL MUNICIPALITY,

CAPRICORN DISTRICT,

LIMPOPO PROVINCE

TUA CONSERVA ENVIRONMENTAL & CONSERVATION SERVICES c.c

February 2022

TABLE OF CONTENTS

NOTAT	IONS AND TERMS	5
RED DA	ATA: Definitions of the national Red List categories	6
1.	ASSIGNMENT	9
2.	REGULATIONS GOVERNING THIS REPORT	9
3.	TERMS OF REFERENCE	12
3.1	Objectives	12
3.2	Scope	12
3.3	Limitations and assumptions	12
4.	METHODOLOGY	13
5.	STUDY AREA LOCATION	14
6.	PROJECT DESCRIPTION OF ACTIVITY	15
7.	DESCRIPTION OF THE AFFECTED ENVIRONMENT	16
7.1	Climate	16
7.2	Geology and soil types	17
7.3	Topography and drainage	
7.4	Sense of place and Land use	
8.	ECOLOGICAL ASSESSMENT	
8.1	Vegetation Description	
8.1.1	Biome: Savannah	
8.1.2	Veldtypes (Vegetation types)	
8.1.3	Vegetation Units (Communities)	
8.1.4	Protected Plants (DAFF & LEMA)	
8.1.5	Problem Plants	
8.2	Fauna Survey	
8.2.1	Mammals	
8.2.2	Red Data Species	
8.3	Wetland and Watercourses Assessment	
9	POTENTIAL IMPACTS	
9.1	Habitat Destruction	
9.2	Impacts on the vegetation	
9.3	Faunal Findings	
9.3.1	Habitat assessment	
9.3.2	Impact on species	
10	BIODIVERSITY INTEGRITY (BI)	
10.1	Critical Biodiversity-and Ecological Support Areas	
10.2	Protected Areas	
10.3	Protected Areas Buffer	
10.4	Priority Areas for Protected Areas Expansion	
10.5	Surface Strategic Water Source Areas: Terrestrial	
10.6	Surface Strategic Water Source Areas: Aquatic	
10.7	Indigenous Forests	
10.8	Important Birding Areas	
10.0	ECOLOGICAL EVALUATION	
11.1	Habitat Integrity (HI)	
11.2	Corridor's description	
11.2	Connectivity description	
11.4	Pollution	
±±.4		50

12	ECOLOGICAL SENSITIVITY ANALYSIS	.58
13	CONSERVATION VALUE	.61
14	IMPACTS ASSESSMENTS	.62
17.1	Impact on Vegetation assessment	.63
17.2	Impact on Fauna assessment	.64
17.3	Impact on habitat assessment	.65
17.4	Impacts on sensitive systems assessment	.66
17.5	Impact on biodiversity assessment	.68
15	MITIGATION MEASURES	.74
15.1	Impact on Vegetation	.74
15.2	Impact on Fauna	.75
15.3	Impact on Habitat	.75
16	Summary of Findings	.75
17	CONCLUSION	.76
18	RECOMMENDATIONS	.76
REFER	ENCES	.78

LIST OF MAPS

Map 1: Geographic location	15
Map 2: Contour and drainage	
Map 3: Quarterly Catchment Area (A50J)	19
Map 4: Vegetation units	21

LIST OF TABLES

Table 1: List of foreign problem plants	26
Table 2: List of mammals identified	
Table 3: Potential Red Data mammal's occurrence	30
Table 4: Important Birding Areas in Limpopo Province	32
Table 5: Potential Red Data birds identified	34
Table 6: Herpetofauna checklist	
Table 7: Herpetofauna Red Data Species	
Table 8: Amphibian list that can occur on project area	
Table 9: Interim Flora Red Data List for threatened species	46
Table 10: Botanical analysis and characteristics of Plant Community 2	49
Table 11: Biodiversity Sensitivity	53
Table 12: Ecological Sensitivity Rating	60
Table 13: Conservation Value	61
Table 14: Vegetation impact	63
Table 15: Faunal assessment	
Table 16: Habitat assessment	65
Table 17: Sensitive systems assessment	67
Table 18: Biodiversity at gene level	68
Table 19: Biodiversity at species level	72
Table 20: Biodiversity at ecosystem level	

LIST OF PHOTOS

Photo 1: Plant community 1(a)	22
Photo 2: Plant community 1b	25
Photo 3: Small steenbok next to rockpile removed from exiting croplands	
Photo 4: White-tailed mongoose (Ichneumia albicauda)	30
Photo 5: Mopane snake	
Photo 6: Giant Plated Lizard	
Photo 7: Aerial view from 85m	48

LIST OF FIGURES

Figure 1: Climatic Regions for South Africa	16
Figure 2: Four minimum climate zones for South Africa	17
Figure 3: Geology of area	18
Figure 4: Biomes of South Africa	20
Figure 5: Kori Bustard	33
Figure 6: Diagram illustrating position of various wetland types within the lan	idscape
	41
Figure 7: 1956 Monochrome aerial photo	43
Figure 8: Aerial monochrome dated 1983 for project-and surrounding area	43
Figure 9 : CBA for area	52

ACRONYMS

DFFE:	Department of Forestry, Fisheries and Environment
DM:	District Municipality
ECO:	Environmental Control Officer
EIA:	Environmental Impact Assessment
EMP:	Environmental Management Plan
LEDET:	Limpopo Department of Economic Development, Environmental and
	Tourism
LEMA	Limpopo Environmental Management Act
LIHRA:	Limpopo Heritage Resource Agency
NEMA:	National Environmental Management Act
NPAES	National Protected Areas Expansion Strategy (for South Africa)
ΡΑ	Protected Areas
WUL:	Water Use License
IBA	Important Bird and Biodiversity Area

Declaration

I, Johannes Claassens, declare that -

- I act as the independent specialist
- I will perform the work relating to the project in an objective manner, even if this results in views and findings that are not favourable to the project proponent
- I declare that there are no circumstances that may compromise my objectivity in performing such work
- I have expertise in conducting the specialist report relevant to this project, including knowledge of the National Environmental Management Act, 1998 (Act No. 107 of 1998; the Act), regulations and any guidelines that have relevance to the proposed activity
- I will comply with the Act, regulations, and all other applicable legislation.
- I will take into account, to the extent possible, the matters listed in Regulation 8
- I have no, and will not engage in, conflicting interests in the undertaking of the activity
- I undertake to disclose to the project proponent and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the project; and the objectivity of any report, plan, or document to be prepared by myself for submission to the competent authority or project proponent
- All the particulars furnished by me in this document are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of section 24F of the Act.

Johannes Claassens

NOTATIONS AND TERMS

In this Report, except where the context otherwise indicates or it is otherwise expressly stipulated, the following words and expressions have the respective meanings hereinafter assigned to them and any other word or expression to which a meaning has been assigned in any related legislation shall bear that meaning:

Agricultural Building:

A building designed for use in connection with, and which is ordinarily incidental to, or reasonably necessary in connection with the use of the land on which the building is situated as agricultural land and may include a dwelling house.

Agriculture:

Means land used or a building designed or used for the purposes such as, but not limited to ploughing, de-pasturing, horticulture, poultry farming, dairy farming, breeding and keeping of livestock, apiaries, forestry, mushroom and vegetable production, flower production, orchards and any other activity commonly connected with farming or associated therewith, and include the sale of own produced goods. It includes only one main dwelling unit and associated farm settlement.

Agriculture Infrastructure:

The development and/or erection of gates and fences, farm roads, pipelines and electricity lines for gates, security masts and cameras and for irrigation needs.

Cadastral Boundary

A cadastral boundary is any line displayed and wholly described on any Diagram or General Plan approved by the Surveyor General's Office depicting the extents of individual land parcels, servitude areas or lease areas. Cadastral boundaries displayed on diagrams and general plans represent fictitious lines on the ground connecting any set of consecutive beacons that were legally established by a Land Surveyor registered with the South African Council for Professional and Technical Surveyors. Cadastral boundaries can however also follow natural features like middle of rivers and valleys or edges of cliffs.

Catchment Area:

The catchment area shall mean the planar region or area enclosed by the watershed divide, draining into a river, river system or other water body.

Heritage Conservation:

In relation to heritage resources, includes protection, maintenance, preservation and sustainable use of places or objects to safeguard their cultural significance

Flood:

A flood shall mean an overflow of water that submerges land which is usually dry.

Floodplain:

Shall mean the area of land adjacent to a watercourse, subject to flooding and inundation up to the 1 in 100-year recurrence interval.

Property Boundary

A property boundary is a cadastral boundary depicting the extents on the ground within which full ownership rights can be exercised by the owner of that land parcel.

Protected Area:

Means land or an area described in terms of the National Environmental Management: Protected Areas Act (Act No. 57 of 2003) that will substantially promote the preservation of specific ecological processes, natural systems, natural beauty or species of indigenous wildlife or the preservation of biotic diversity in general with the nature primarily orientated to support sustained economic activities. Such area may comprise private, communal, or state land or any combination thereof which is contractually developed and managed with joint resources for conservation, education, recreation, and sustainable resource utilisation purposes.

RED DATA: Definitions of the national Red List categories

Extinct (EX) A species is Extinct when there is no reasonable doubt that the last individual has died. Species should be classified as Extinct only once exhaustive surveys throughout the species' known range have failed to record an individual.

Extinct in the Wild (EW) A species is Extinct in the Wild when it is known to survive only in cultivation or as a naturalized population (or populations) well outside the past range.

Regionally Extinct (RE) A species is Regionally Extinct when it is extinct within the region assessed (in this case South Africa), but wild populations can still be found in areas outside the region.

Critically Endangered, Possibly Extinct (CR PE) Possibly Extinct is a special tag associated with the category Critically Endangered, indicating species that are highly likely to be extinct, but the exhaustive surveys required for classifying the species as Extinct has not yet been completed. A small chance remains that such species may still be rediscovered.

Critically Endangered (CR) A species is Critically Endangered when the best available evidence indicates that it meets at least one of the five IUCN criteria for Critically Endangered, indicating that the species is facing an extremely high risk of extinction.

Endangered (EN) A species is Endangered when the best available evidence indicates that it meets at least one of the five IUCN criteria for Endangered, indicating that the species is facing a very high risk of extinction.

Vulnerable (VU) A species is Vulnerable when the best available evidence indicates that it meets at least one of the five IUCN criteria for Vulnerable, indicating that the species is facing a high risk of extinction.

Near Threatened (NT) A species is Near Threatened when available evidence indicates that it nearly meets any of the IUCN criteria for Vulnerable and is

therefore likely to become at risk of extinction in the near future.

Critically Rare A species is Critically Rare when it is known to occur at a single site but is not exposed to any direct or plausible potential threat and does not otherwise qualify for a category of threat according to one of the five IUCN criteria.

Rare A species is Rare when it meets at least one of four South African criteria for rarity but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to one of the five IUCN criteria. The four criteria are as follows:

- Restricted range: Extent of Occurrence (EOO) <500 km², OR
- Habitat specialist: Species is restricted to a specialized microhabitat so that it has a very small Area of Occupancy (AOO), typically smaller than 20 km², OR
- Low densities of individuals: Species always occurs as single individuals or very small subpopulations (typically fewer than 50 mature individuals) scattered over a wide area, OR
- Small global population: Less than 10 000 mature individuals.

Declining A species is Declining when it does not meet or nearly meet any of the five IUCN criteria and does not qualify for Critically Endangered, Endangered, Vulnerable or Near Threatened, but there are threatening processes causing a continuing decline of the species.

Least Concern A species is Least Concern when it has been evaluated against the IUCN criteria and does not qualify for any of the above categories. Species classified as Least Concern are considered at low risk of extinction. Widespread and abundant species are typically classified in this category.

Data Deficient - Insufficient Information (DDD) A species is DDD when there is inadequate information to assess its risk of extinction, but the species is well defined. Listing of species in this category indicates that more information is required, and that future research could show that a threatened classification is appropriate.

Data Deficient - Taxonomically Problematic (DDT) A species is DDT when taxonomic problems hinder the distribution range and habitat from being well defined, so that an assessment of risk of extinction is not possible.

Not Evaluated (NE) A species is Not Evaluated when it has not been evaluated against the criteria. The national Red List of South African plants is a comprehensive assessment of all South African indigenous plants, and therefore all species are assessed and given a national Red List status.

Storm Water system:

Means both the constructed and natural facilities, including roads, pipes, culverts,

watercourses and their associated floodplains, whether over or under public or privately owned land, used or required for the management, collection, conveyance, temporary storage, control, monitoring, treatment, use or disposal of storm water.

Aquifer dependant ecosystems- ecosystems which depend on groundwater in, or discharge from, an aquifer. They are distinctive because of their connection to the aquifer and would be fundamentally altered in terms of their structure and functions if groundwater was no longer available.

Baseflow- the volume of water in the stream when at its minimum or base level of flow; this is the level to which the stream flow returns between storms; in climates with seasonal rainfall, it is often treated as the dry season flow.

Geohydrology- the study of the properties, circulation and distribution of groundwater (McGraw-Hill, 1978); in practice used interchangeably with hydrogeology; but in theory hydrogeology is the study of geology from the perspective of its role and influence in hydrology while geohydrology is the study of hydrology from the perspective of the influence on geology.

Groundwater Dependent Ecosystems- an ecosystem which depends on groundwater discharging from or contained within an aquifer and is significantly altered by changes in the groundwater regime.

Groundwater recharge- (a) the volume of water added to the zone of saturation (McGraw-Hill, 1978) and (b) those processes leading to the addition of water to the zone of saturation. A recharge area refers to the portion of the catchment where the subsurface **water is recharged.**

Hydrology- the study of the occurrence, properties, circulation, and distribution of water on the earth and in the atmosphere.

Infiltration- the process through which water filters through the surface of the soil under the influence of gravity and hydraulic forces (Lincoln *et al.*, 1983). Having entered the soil, the further movement of water is properly termed percolation. The infiltrating water replenishes soil moisture deficiencies on its downwards path-care should be taken not to confuse and equate infiltration with groundwater recharge.

Quick flow- that portion of the increase in stream flow which occurs during or after a storm, synonymous with storm runoff or stormflow.

Runoff- the water in a stream after rain. In hydrology this refers to all the surface flow of water from a catchment in a stream or river; sometimes includes the sub-surface runoff. It is usually used to refer to the (volume of) surface water that leaves a catchment in a period of time.

Seasonal river- rivers which only flow reliable during specific periods of the year as determined by the seasonal distribution of rainfall; flow generally occurs between 20%-80% of the time; these rivers generally have a limited baseflow component with little or no groundwater discharge.

Stormflow- the increased runoff and water flow which is associated directly with a particular (intense) rainfall event or storm. It is the same as the quick flow or direct runoff.

Watercourse-a River or spring; a natural channel in which water flows regularly or intermittently; a wetland, lake or dam into which, or from which water flows; and any collection of water which the Minister may, by notice in the Gazette, declare to be a water course.

1. ASSIGNMENT

Zwartberg Projek's strategic plan is to develop croplands for rotational use of croplands for sustainable farming. Tua Conserva Environmental & Conservation Services cc undertook the Ecological Assessment, Red Data and Biodiversity surveys on the farm Zwartberg 72 MR as part of the requirements for an environmental assessment application.

The surveys were done in early summer (October, November 2021 and January 2022).

The project footprint for suitable areas was defined by terrain analysis which was refined by soil analysis. The surveys concentrated on the footprints and direct adjoining environment and was mainly dictated by the landscape forms and land-uses encountered.

The Swartwater area was settled on in the 1906 when farming commenced, mainly cattle and crops for own use and trading for commodities (personal comments from Mr. K. Janse van Vuuren, resident farmer, September 2021). The name Swartwater was derived from the high incidents of malaria in the area. Early explorers¹ provide an insight of the natural environment and conditions. Eugene Marais² a prominent South African scientist provides an insight of the Waterberg area (circa 1898-1930's).

More resent interpretation was done using monochrome aerial photographs dating back to 1956. The area was then settled on for farming purposes for 40 years and provides a specific reference of the spatial landscape. Later dated monochrome aerial photographs provides the change in landscape. More visual insight in recent changes is made possible by Google Earth.

Using the above historical sequence information, the project areas was visited for physical surveys and to compare the information from the Screening tool. The present biophysical information was assessed in the present setting to interpret the context of information gathered to provide an indication of the influence from the (historical, previous and current) and proposed development.

2. REGULATIONS GOVERNING THIS REPORT

2.1 National Environmental Management Act, 1998 (Act No. 107 of 1998) - Regulation No. R982

This report was prepared in terms of the National Environmental Management Act, 1998 (Act

No. 107 of 1998) Gazette No. 38282 Government Notice R. 982. Appendix 6 – Specialist reports include a list of requirements to be included in a specialist report:

- A specialist report or a report prepared in terms of these regulations must contain: Details of
 - i. The specialist who prepared the report; and

 ¹ F. C. Selous: Hunters Wanderings in Africa, 1881. Captain Sir William Cornwallis Harris: Wild Sports of Southern Africa, 1963. R. G. Cumming: Hunters Life in South Africa, 1850.
 ² E. N. Marais: Versamelde Werke, 1984.

- ii. The expertise of that specialist to compile a specialist report, including a curriculum vitae
- A declaration that the specialist is independent in a form as may be specified by the competent authority
- An indication of the scope of, and purpose for which, the report was prepared; the date and season of the site investigation and the relevance of the season to the outcome of the assessment
- A description of the methodology adopted in preparing the report or carrying out the specialized process
- The specific identified sensitivity of the site related to the activity and its associated structures and infrastructure
- An identification of any areas to be avoided, including buffers
- A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers
- A description of any assumptions made and any uncertainties or gaps in knowledge
- A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives, on the environment
- any mitigation measures for inclusion in the EMPr
- any conditions for inclusion in the environmental authorisation
- any monitoring requirements for inclusion in the EMPr or environmental authorisation
- a reasoned opinion
 - (i) As to whether the proposed activity or portions thereof should be authorised and
 - (ii) If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr and where applicable, the closure plan
 - (iii) A description of any consultation process that was undertaken during preparing the specialist report
- A summary and copies of any comments received during any consultation process and where applicable all responses thereto; and
- Any other information requested by the competent authority.
- This Act also embraces all three fields of environmental concern namely: resource conservation and exploitation; pollution control and waste management; and landuse planning and development. The environmental management principles include the duty of care for wetlands and special attention is given to management and planning procedures.

2.2 National Environmental Management Act, 1998 (Act No. 107 of 1998) - Regulation No. R984

The Environmental Impact Assessment (EIA) Process is a requirement of the National Environmental Management Act, (Act 107 of 1998). The following listed activity under

Regulation R984 of 4 December 2014 (as amended on 7 April 2017) requires a full environmental impact assessment to be conducted and authorization from the Limpopo Department of Economic Development, Environment and Tourism (LEDET).
Activity 15 - The clearance of an area of 20 hectares or more of indigenous vegetation.

"indigenous vegetation" refers to vegetation consisting of indigenous plant species occurring naturally in an area, regardless of the level of alien infestation and where the topsoil has not been lawfully disturbed during the preceding ten years.

2.3 Conservation of Agricultural Resources Act (Act No. 43 of 1983)

This Act regulates the utilization and protection of wetlands, soil conservation and all matters relating thereto; control and prevention of veld fires, control of weeds and invader plants, the prevention of water pollution resulting from farming practices and losses in biodiversity.

2.4 National Environmental Management Biodiversity Act (NEMBA: Act 10 of 2004)

The following aspects of the NEMBA (2004) are important to consider in the compilation of an ecological report. It must include:

- Listing of ecosystems that are threatened or in need of national protection
- Links to Integrated Environmental Management processes and
- Must be considered in EMF and IDPs
- The Minister may make regulations to reduce the threats to listed ecosystems.

2.5 The National Forest Act (Act No 84 of 1998)

The National Forest Act:

- Promotes the sustainable management and development of forests for the benefit of all
- Creates the conditions necessary to restructure forestry in State Forests
- Provide special measures for the protection of certain forests and protected trees
- Promotes the sustainable use of forests for environmental, economic, educational, recreational, cultural, health and spiritual purposes
- Promotes community forestry.

2.6 Preservation and Development of Agricultural Land Bill. (Gazette No 43723, 18 September 2020)

To provide for:

- Management of agricultural land.
- Evaluation of agricultural land and evaluation classification.
- Preparation purposes and content of Provincial Agriculture Sector Plans.
- Declaration of Protected Agricultural Aeas.

2.7 Limpopo Environmental Management Act (Act No 3 of 2004)

The Limpopo Environmental Management Act (2004) deals with the conservation of wild animals, freshwater fish and the conservation and protection of flora in the Limpopo Province. Animals and plants are both listed in the schedules with different degrees of protection afforded to each.

3. TERMS OF REFERENCE

3.1 Objectives

- To assess the project areas environmental attributes and identify the ecological functioning to make objective recommendation on the location of the project areas footprint.
- To make informed decisions on how to prevent impacts on the environment that could be harmful and/or to make recommendations to prevent and provide also mitigation measures where necessary.

3.2 Scope

- (i) Flora Survey
 - Vegetation surveys of project area to compile list of species based on information from aerial photos to identify sites
 - Identify Red Data species, protected species, encroacher species and exotic species' presence and extend
 - Veld Condition Assessment
- (ii) Plant Community delamination and description
 - Use aerial photos to identify communities, survey area to confirm structure and composition
 - Describe the vegetation and habitat it supports
 - Describe the vegetation condition for game
- (iii) Fauna Survey
 - List potential species that occur in the area and in specific, habitat.
 - Identify the presence of Red Data and protected species
 - Interview farmer(s) on presence of specific species of concern, e.g., African Wild dog (*Lycaon pictus*), Cheetah (*Acinonyx jubatus*) and Leopard (*Panthera pardus*)
 - Assess habitat integrity and functioning for species needs
- (iv) Identify wetlands

(v)

- Confirm presence of wetlands
- Indicate planning and mitigating measures
- Describe biodiversity and its:
 - Function on area
 - Influence of development
- (vi) Identify ecological sensitive areas
 - Describe sensitive ecological areas
 - Indicate planning and mitigating measures

3.3 Limitations and assumptions

- (i) Time constraints allowed vegetation surveys to be conducted only in early summer & in the beginning of main summer rainfall. Long-term surveys are not always feasible due to strategic planning of developers. In this case farming where crop planting is, depended on seasonal planning and crop rotation.
- (ii) The project area and in specific the development footprint represented vegetation on the study area was homogeneous and representative sample (6) areas were

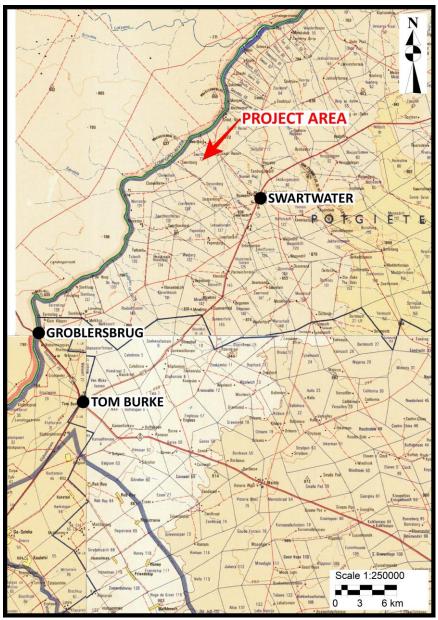
surveyed. Ecosystems are linked over distance and surveys were only conducted on the project area. Ecosystem identification outside the project boundaries was identified by aerial photos and data from SANBI.

- (iii) Change in vegetation over time was also studied by using monochrome aerial photographs which provided an indication in vegetation structure change.
- (iv) No wetland type was identified on the project footprint as functioning as part of a larger drainage system linked to the project area. However, watercourses in proximity were mapped and indicated in zoning plan.

4. METHODOLOGY

The area was assessed during site visits when surveys during day and night were conducted. The following methods was used during the assessment of the study site:

- Desktop study preceded field surveys to gather information of the receiving environment.
- The study sites were reached by vehicle (point-to-point movement) and surveys conducted on foot.
- Monochrome aerial photographs dated for 1956, 1964, 1970, 1983 and 1999 was used to compare the historical physical development area over time.
- A grid system was used for surveying each area.
- A Nikon D300 was used for site photographs.
- A drone was used for surveys and vertical-and panoramic photography.
- Trail cameras was used for nocturnal photography.
- Interviews with owners was conducted.
- Red Data fauna and flora information was obtained from available sources to identify the likely occurrence of any Red Data flora and fauna species in the area. This included previous surveys conducted by specialists conducting surveys for protected areas in the same veldtype.
- Limpopo Conservation Plan v2: Technical Report dated September 2013 was used for sourcing data.
- Protected flora species were recorded.
- The plant communities were assessed. Survey points was identified and surveyed using a 50x50 meter area. Structure (woody), species (trees, shrubs, grasses and forbes) and density was noted using a prepared checklist. Veld Condition Assessment was also done.
- Tracking and marking was done using a Garmin GPSMap 66s.
- A faunal potential occurrence list was compiled using references and checklist from surveys in the area. Data from the writer as well as personal observations was used. Data from trap cameras was also used. Owner(s) was also consulted. During the day and night surveys all sightings of species was noted. This included physical sightings, spoor, faeces, sound, and trail cameras.
- Identifiable floral and faunal species present were recorded within the proposed footprint(s). The levels of disturbance, species recorded, and species considered likely to occur within this study site were factors used to inform the current ecological status of the assessed area.


- The ecological sensitivity of the site envisaged impacts of the development and recommendations regarding mitigation measures have been provided.
- The CBA's presence was compared with field survey data and the Conservation Value calculated.

5. STUDY AREA LOCATION

The farm Zwartberg 72 MR (Portion 1 and Restant) is in Capricorn District. The farm is bordering onto the Limpopo River with existing farming development mainly along the river, outside the riparian zone. The new areas identified is terrestrial and inland on the farm and will be adjoining onto existing developed areas, with some areas being in-filling where undeveloped "gaps" were left due to infrastructure. Portion 1 and Restant is divided by an electrified game fence. The owner indicated that the fence will be removed. Spatially the project area is hemmed in by a District Road, Zwartberg mountain, adjoining farms (crop, cattle and game) and existing croplands. It is further isolated mainly by electrified game fences. In depth it is isolated by the various farming activities on adjoining farms (in depth) and the international border with Botswana.

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Map 1: Geographic location

6. PROJECT DESCRIPTION OF ACTIVITY

The proposed project is for new croplands and according to the strategic planning of Zwartberg Projek for rotational irrigation farming. The identified area of approximately 955 ha as initial footprint will be surveyed from which recommendations will be made. Soil analysis will also be used in the survey process. Water is from an existing legal water use. This report is to describe, assess and make recommendation for the environmental application and environmental impact report (EIA) which will be conducted for the following listed activity in terms of the National Environmental Management Act (Act No 107 of 1998):

• Regulation 983, 4 December 2014. Listing Notice 1:

- Activity no 13; The development of facilities for off-stream storage of water, including dams and reservoirs, with a combined capacity of 50 000 cubic meters or more.

- <u>Regulation 984, 4 December 2014. Listing Notice 2:</u>
 - Activity no 13: The physical alteration of virgin soil to agriculture.

- Activity no 15: The clearance of an area of 20 hectares or more of indigenous vegetation.
- Activity no 16: The development of a dam where the highest part of the dam wall, as measured from the outside toe of the wall to the highest part of the wall, is 5 meters or higher or where the high-water mark of the dam covers an area of 10 hectares or more.

7. DESCRIPTION OF THE AFFECTED ENVIRONMENT

7.1 Climate

The project area is situated in a semi-arid zone with a mean annual rainfall ranging from 300-500 mm. Rainfall is predominantly during summer. Below average rainfall occurs with flooding irregular events (figure 1).

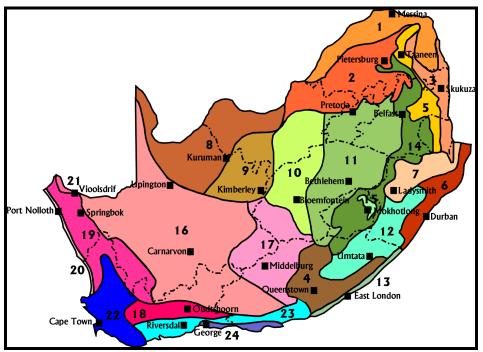


Figure 1: Climatic Regions for South Africa

Region	Climatic properties	Locality	Vegetation	Economic Uses
--------	---------------------	----------	------------	------------------

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

1. Northern Arid Bushveld	Lower than average (300 – 500 mm p.a.) and somewhat erratic precipitation for the Savanna type regions, with semi-arid and hot conditions in the Limpopo and Olifants River basins. Rainy season lasts from about Nov to Mar, with the peak falling in Jan. Winds are light to moderate and blow mostly from the north-eastern sector. Almost frost free.	Northern and north-western parts of Limpopo Province.	Dominated by stunted shrubby growth with mostly Acacia species (Vachellia) and Baobab Adansonia digitata, Shepherd's Tree Boscia albitrunca, Grasslayer includes Stipagrostis uniplumis (Silky Bushman's Grass), Common Nine- awn grass (Enneapogon cenchroides), Guinea Grass (Panicum maximum) and Tassel Three-awn (Aristida congesta).	Ecotourism, cattle and game farming, citrus and vegetables (mainly through irrigation).
---------------------------------	---	---	--	--

The area is suitable for various crops produced during the favourable winter dry climate zone for the markets. Frost occurs infrequent but can be catastrophic. Temperatures mean monthly maximum and minimum average for Lephalale are between 38.2° (December) and 2.1°C (June).

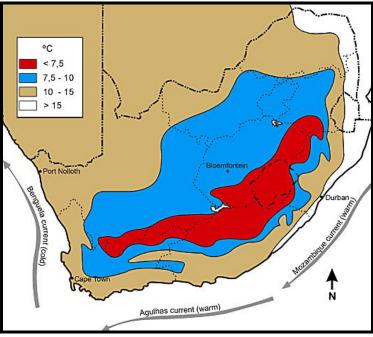


Figure 2: Four minimum climate zones for South Africa

7.2 Geology and soil types

The area is underlain by Sandstone and Shales of the Karoo Supergroup into which some diabase dykes, quarts and pegmatite veins have intruded. Geology is directly related to soil types and plant communities that may occur in a specific area (Van Rooyen & Theron, 1996). Soils in these areas vary from sandier in the north, east and west to shallow and calcareous in areas adjoining to east and west with loamy soils in the north nearer to the river.

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

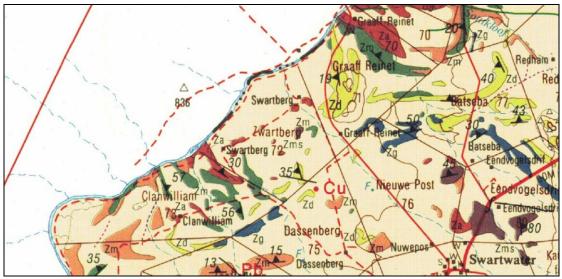


Figure 3: Geology of area

Soil types are mainly Covelley (63%), Coega (15%), Hutton (12%) and Glenrosa (9%) with a loamy-sand structure and a 5-10% clay content.

7.3 Topography and drainage

The project is situated in the Western Limpopo River Valley with associated inland plains with larger and lesser drainage lines. The project area ranges between the highest at 790 meters above sea level and lowest 770 meters above sea level. Drainage direction NW.

Map 2: Contour and drainage

The project areas drain through surface flow collecting into ephemeral watercourses towards the Limpopo River north of the site.

The Eco-region is Limpopo Plain.

It is in Quaternary Catchment Area: A50J of the Limpopo Water Management Area. Freshwater Ecosystem Priority Area is rated as Category A or B (Good condition).

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Map 3: Quarterly Catchment Area (A50J)

7.4 Sense of place and Land use

Deep rural and exclusively for agriculture (which includes game farming and eco-tourism).

8. ECOLOGICAL ASSESSMENT

The ecological assessment will focus on the vegetation environment, the faunal component and the habitat it provides together with the aquatic (if any) present. This will provide an understanding of the ecological functioning at macro-and micro level and the role in biodiversity support.

8.1 Vegetation Description

8.1.1 Biome: Savannah

A biome is a broad ecological unit that represents a major life zone extending over a large natural area (Rutherford & Westfall 1994), defined mainly by vegetation structure and climate. It is the largest land community unit recognised at a continental or sub continental level and map able at a scale no larger than about 1:10 million (Rutherford & Westfall 1994). The vegetation of the study area belongs to the broad vegetation group of the Savannah Biome (Low and Rebelo 1996). The Savannah Biome is the largest Biome in Southern Africa, occupying 46% of its area, and over one-third the area of South Africa. It is well developed over the northern-, eastern-and north-western part of the country. A grassy ground layer and a distinct upper layer of woody plants (trees and shrubs) are characteristic of the Savannah Biome. Where this upper layer is near the ground (low growing) the vegetation may be referred to as Shrubveld, where it is tall and dense, as Woodland, and the intermediate stages are locally known as Bushveld.

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

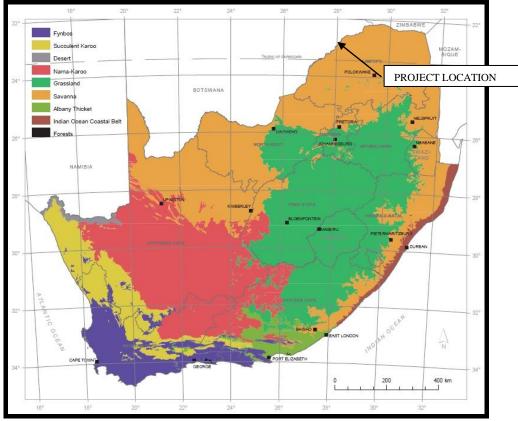
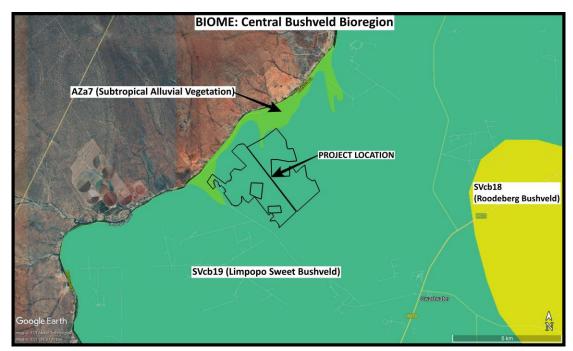


Figure 4: Biomes of South Africa


The environmental factors delimiting the biome are complex and include (Low and Rebelo 1996); altitude ranges from sea level to 2 000m; rainfall varies from 235 to 1 000 mm per year; frost may occur from 0 to 120 days per year; and almost every major geological and soil type occurs within the biome. Representation of the Savannah Biome in conservation areas in South Africa, Limpopo Province is good in general, mainly due to the presence of the Kruger-, Marekele- and Mapungubwe National Parks as well as the provincial nature reserves e.g., Blouberg-, Langjan-, Musina-, Nwanedi-, Makuya-, Manyeleti-, Letaba Ranch and Hans Merensky Provincial Nature Reserves within the biome in Limpopo province. Most of the area from the Soutpansberg and Blouberg towards the Limpopo River is used for game farming and can thus be considered moderately preserved, provided that sustainable stocking rates and sound environmental practices are maintained, which unfortunately is not always true. The importance of tourism and game hunting in the conservation land use of the area must also not be underestimated especially in the Limpopo province. The irrigation farming nodes are located along the Limpopo River. Geographically the same type of savannah is found in Botswana directly to the north and will have a role in the spatial functioning of connectivity and corridors.

8.1.2 Veldtypes (Vegetation types)

According to Acock's (1975) classification of the vegetation of South Africa, the study area falls within Veld Type 14, (Arid Sweet Bushveld). According to the classification of Low and Rebelo (1996), there is one veld type present, namely Veld Type 17, (Sweet Bushveld). According to Mucina & Rutherford (2006), the study area is situated in the Central Bushveld Bioregion with veldtypes Limpopo Sweet Bushveld (SVcb 19). It has an Ecosystem Status of Least Concern with an extent of 1, 200, 516 hectares (Limpopo Conservation Plan V2, 2013).

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Map 4: Vegetation units

The project area is situated south of the Limpopo River in a terrestrial landscape. The veldtype is well conserved in the Provincial Nature Reserves, as well as private nature reserves and game farms. Effectiveness of conservation of veld in the private conservation areas is however determined by the level of ecologically sound management that is applied. Very high summer temperatures occur, and temperatures range from 1.5°C 0 42.5°C, with an average of 22°C. Therefore, evaporation rates are very high. Frost occurs very seldom and is, for all practical consideration, regarded as absent with no influence on the vegetation, although when it occurs it is catastrophic. The tree layer is characterized by sparse to dense growth of Acacia³ species of which Acacia nigrescens (Knobthorn) and Acacia burkei (Black Monkey Thorn), Adansonia diaitata (Baobab), Terminalia prunoides (Lowveld cluster-leaf), Commiphora spp. (Corkwood spp.), Boscia albitrunca (Shepherd's Tree), B. foetida (Stink Shepherd's Tree), Kirkia acuminate (White Seringa), and Acacia tortilis (Umbrella Thorn) is most prominent. The shrub layer is moderately developed and individuals of *Grewia* spp. (Raisin bush spp), Ochna inermis (Stunted Plane), and Dichrostachys cineria (Sickle Bush) occur. The grass layer is poorly developed, with grasses such as Enneapogon cenchroides (Nine-awned Grass), Cenhrus ciliaris (Blue Buffalo Grass), Stipagrostis uniplumis (Silky Bushman Grass), Aristida congesta (Tassel Three-awn) and Schmidtia pappophoroides (Sand Quick). A. congesta, E. cenchroides and herbs are common in overgrazed and degraded areas. Rainfall and especially fire resulting in grazing pressure have always been important driving forces in this vegetation type, and certain changes in the vegetation composition and structure can be expected (and was found) if these driving forces change. The position in the landscape (crest, scarp, mid slope, valley floor) generally strongly influences the qualities of the soil and therefore the characteristics of the vegetation as well as the species composition

³ Name change of the African Genus Acacia. Refer to Field Guide to the Acacia of South Africa, by Nico Smit, 2008. Pages 5-6: "...ICBN does not prescribe what classification system to use, hence the end-users of plant names now have a choice as to whether they want to use the name Acacia in a strict or wide sense. The consensus in South Africa is overwhelmingly for the continued use of the name Acacia for the African species of the genus".

thereof. The position of the project is on flat plains. Currently the most common economic uses for this veld type are a combination of game- and cattle farming as well as ecotourism with agriculture irrigation activities localized on the inland terrestrial plains. In the study site, especially along the Limpopo River situated in the valley floor, agriculture (vegetables, citrus, cotton etc.) is the most important land use.

8.1.3 Vegetation Units (Communities)

Different plant communities develop because of differences in geology, topography, rockiness, drainage, soil texture, soil depth, slope, and historic management. Each plant community usually represents a different habitat, has its own inherent grazing and browsing capacity and represents a specific habitat for certain types of fauna species. The study area is dominated by tree and shrub forms of *Acacia burkei, A. nigrescens, Boscia albitrunca, Adansonia digitata, Combretum imberbe, Terminalia prunoides, Commiphora* species, *Grewia* species and the grasses *Aristida. Congesta* and *Enneapogon cenchroides.* A comprehensive species list of forbs, climbers, bulbous plants, succulents, dwarf shrubs, parasites and epiphytes, was not deemed necessary to be compiled. The publication by Me. R van der Walt the author of *Wildflowers of the Limpopo Valley* (2009) was used as reference. 'Forbs'', is the riches component of the flora biodiversity in this arid area. It is also an important food source for game, especially in the dry season and in drought periods when the grass layer is depleted. Many of these plants are annuals and do not appear every season. Two plant communities were identified on the footprint area:

Plant community 1: Acacia nigrescens-Boscia albitrunca-Terminalia prunioides-Commiphora and Grewia species woodland.

Plant community 2: Acacia burkei, Boscia albitrunca, Commiphora gladulosa, and Sesamothamnus lugardii woodland.

Photo 1: Plant community 1(a)

Vegetation Type: Limpopo Sweet Bushveld No 17 (SVcb19) and Acocks (Arid Sweet Bushveld: A 14)				
No Plant community	Botanical name	Common name		
Sweet Bushveld on deep sandy-loam soils:	Acacia burkei	Black Monkey Thorn		
Acacia/Sclerocarya/Grewia	Acacia caffra	Common hook-thorn		
Woody Structure	Acacia erubescens	Blue thorn		
<u>Highest trees:</u> 11 m	Acacia mellifera	Black Thorn		
<u>Average height trees:</u> 6.5 m	Acacia nigrescens	Knob Thorn		
Density trees: 10 - 15 %	Acacia nilotica	Scented-pod Thorn		
Average height shrubs: 3.5	Acacia senegal var.	Slender Three-hook		
m	leiorhachis	Thorn		
<u>Density shrubs</u> : 15- 25 %				
Herbaceous Structure:	Acacia tortilis supsp. heteracantha	Umbrella Thorn		
• <u>Grasses:</u>	Adansonia digitata	Baobab		
<u>Average height:</u> 1 m	Burkea africana	Wild seringa		
<u>Ground cover: 60</u> - 80 %	Albizia anthelmintica	Worm-bark False-		
• <u>Forbes:</u>		thorn		
<u>Average height:</u> 0.4 m	Terminalia prunioides	Lowveld cluster-leaf		
<u>Ground cover:</u> 1 %	Boscia albitrunca	Shepherd's Tree		
	Boscia foetida subs. rehmanniana	Stink shepherd's tree		
	Catophractes alexandri	Trumpet thorn		
	Commiphora africana	Hairy corkwood		
	Commiphora edulis	Rough-leaved		
		corkwood		
	Commiphora neglecta	Green-stemmed		
		corkwood		
	Commiphora schimperi	Glossy-leaved		
		corkwood		
	Commiphora glandulosa	Tall common		
		corkwood		
	Commiphora	Common corkwood		
	pyracanthoides			
	Commiphora mollis	Velvet Corkwood		
	Dichrostachys cinerea	Sickle Bush		
	Sclerocarya birrea subsp. caffra	Marula		
	Ficus abutilifolia	Large-leaved rock fig		
	Grewia bicolour	White Raisin		
	Grewia monticola	Silver Raisin		

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Grewia tenax	Small-leaved cross-
	berry
Grewia flavescens	Sandpaper Raisin
Catophractes alexandri	Trumpet thorn
Grasses	
Aristida congesta subsp.	Spreading Three-awn
barbicolis	
Aristida adscensionis	Annual Three-awn
Brachiaria deflexa	False Signal Grass
Digitaria eriantha	Finger Grass
Digitaria velutina	Flaccid Finger Grass
Enneapogon cenchroides	Nine-awned Grass
Eragrostis biflora	Shade Eragrostis
Eragrostis lehmanniana	Lehmann's Love
	Grass
Eragrostis pallens	Broom Love Grass
Eragrosti rigidior	Broad -leaved Curly
	Leaf
Melinis repens	Natal Red Top
Stipagrostis uniplumis	Silky Bushman Grass
Panicum maximum	Guinea Grass
Pogonarthria squarrosa	Herringbone Grass
Cenchrus ciliaris	Blue Buffalo Grass
Schmidtia pappophoroides	Sand Quick
Solanum gigantium	Goat bitter apple
Tragus berteronianus	Common Carrot-seed
	Grass
Urochloa mosambicensis	Bushveld Signal
	Grass

Photo 2: Plant community 1b

No	Plant community	Botanical name	Common name
1b	<u>Sweet Bushveld on</u>	Acacia mellifera	Black Thorn
	<u>shallower sandy soils</u>	Acacia nigrescens	Knob Thorn
	with calcrete intrusions:	Acacia nilotica	Scented-pod Thorn
	Mostly Acacia burkei-	Acacia tortilis supsp.	Umbrella Thorn
	Terminalia prunioides-	heteracantha	
	Boscia albitrunca-	Albezia harveyi	Bushveld False-thorn
	Sesamothamnus	Albezia anthelmintica	Worm-bark False-
	lugardii woodland		thorn
	Woody Structure	Terminalia prunoides	Lowveld cluster-leaf
	<u>Highest trees:</u> 8 m	Boscia albitrunca	Shepherd's Tree
	<u>Average height: </u> 5.3 m	Boscia foetida subs.	Stink Shepherd's Tree
	Density trees: 10 - 15 %	rehmanniana	
	Average height shrubs:	Commiphora edulis	Rough-leaved
	3.5 m		corkwood
	Density shrubs:	Commiphora marlothii	Paper-bared
	15-20 %		corkwood
		Commiphora africana	Hairy corkwood
	Herbaceous Structure:	Commiphora glandulosa	Tall common
	• <u>Grasses:</u>		corkwood
	Average height: 0.5m	Commiphora pyracanthoides	Common corkwood
	<u>Ground cover:</u> 60 - 85 %	Dichrostachys cinerea	Sickle Bush
	• <u>Forbes:</u>	Sclerocarya birrea subsp. caffra	Marula
	Average height: 0.5 m	Grewia bicolour	White Raisin
	<u>Ground cover:</u> 1 %	Grewia monticola	Silver Raisin

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

-		
Grewia flavescens	Sandpaper Raisin	
Sesamnotamnus lugardii	Transvaal Sesame	
	Bush	
Aristida congesta subsp.	Spreading Three-awn	
barbicolis		
Enneapogon cenchroides	Nine-awned Grass	
Brachiaria deflexa	False Signal Grass	
Stipagrostis uniplumis	Silky Bushman Grass	
Panicum maximum	Guinea Grass	
Cenchrus ciliaris	Blue Buffalo Grass	
Aristida adscensionis	Annual Three-awn	
Solanum gigantium	Goat bitter apple	
Tragus berteronianus	Common Carrot-seed	
	Grass	
Eragrostis lehmanniana	Lehman's Love Grass	
Microchloa caffra	Pinchushion Grass	

8.1.4 Protected Plants (DAFF & LEMA)

Protected trees and plants were identified, e.g. Baobab, Shepherd's Tree, Leadwood, Apple Leaf and Marula on the farm and in surrounding areas of the proposed development areas. The Shepherd's Tree had an abundant distribution throughout the landscape, they were not individually recorded.

The baobab and marula trees have a prominent role in the environment and serve as specific nish habitat for species. Only the smaller baobab can be potentially replanted. Larger trees should be incorporated in the lay-out as done elsewhere on the farms. Both species are not in abundance with only one baobab found.

8.1.5 Problem Plants

The problem plants include alien (exotic) invaders and weed species that have been classified as alien weeds or invasive plants by NEMBA regulations. Refer to table below for the list of plants with potential to be present.

Vernacular (English) Present Species Priority Burweed Achyranthes aspera Low No Agave sisalana Sisal Medium Yes Argemone ochroleuca White flowered Mexican poppy Very low No subsp. ochroleuca Dutchman's pipe / calico flower Aristolochia elegans No Arundo donax Giant reed, Spanish reed Medium No Azolla filiculoides Red water fern Very low No Cardiospermum grandiflorum Balloon vine, heart pea vine Medium No Catharanthus roseaus Graveyard flower, Madagascar Very low No periwinkle Cereus jamacaru Queen of the night Medium No

Table 1: List of foreign problem plants

Zwartberg 72 MR
(Ecological, Red Data Report & Biodiversity Report)

Cinnamomum camphora	Camphor tree	Low	No
Cuscuta campestris	Common dodder	Low	No
Cylindropuntia fulgida	Rosea cactus		No
var. mamillata			
Datura ferox	Large thorn apple	Low	No
Datura inoxia	Downy thorn apple	Low	No
Datura stramonium	Common thorn apple	Low	No
Flaveria bidentis	Smelter's bush	Low	No
Hedychium spp.	Ginger lily	Low	No
Macfadyena unguiscati	Cat's claw creeper	High	No
Nicotiana glauca	Brazilian tree tobacco, wild tobacco	Low	No
Ricinus communis	Castor oil plant	Low	No
Xanthium spinosum	Spiny cocklebur, burweed	Low	No
Xanthium strumarium	Large cocklebur	Low	No

The level of infestation by foreign problem plants can be described as non-existent to low. The same situation prevails on the remaining areas of the farm. Species (indigenous) that can have an effect due to their ability to encroach is also listed according to the Conservation of Agriculture Resources, 1983 (Act No 43 of 1983). These species are:

- Acacia erubescens
- Acacia tortillis
- Acacia mellifera
- Dichrostachys cinerea
- Grewia bicolour
- Grewia flavescens

8.2 Fauna Survey

8.2.1 Mammals

Signs were present for various large, medium, and small mammal species including rodents, hare and small antelope. The study area border onto various land uses, e.g. crop-, cattle and game farming as the most prominent.

Photo 3: Small steenbok next to rockpile removed from exiting croplands

Active movement of smaller wildlife between properties is active, although the fences are electrified. Movement is also possible from the Limpopo River inland and vice versa. Table 2 below provides a list of animals positively identified by the writer as well as species that were confirmed in their occurrence with the farming personnel on the project area, the remainder of the farm and adjoining farms. Where no positive information was obtained the writers' knowledge based on 44 years' experience of the area as well as checklist on species for (5) provincial reserves in the area was used as control. In Table 4 under column PRESENT the presence or occurrence of species is indicated by:

- Y= positive identification by writer either by a sighting* (which include trap cameras), spoor** or scats***.
- N= no possibility of occurrence, due to management or financial constrains as well as isolation of the area.
- P= strong possibility of occurrence.
- H= historically present.
- New= New distribution

Many of the smaller mammals, e.g., mongooses etc. we're not listed although mentioned where necessary in discussions.

Table 2: List of mammals identified

SCIENTIFIC NAME	COMMON NAME	PRESENT
Pappio ursinus	Baboon	Y*
Tragelaphus scriptus	Bushbuck	Р
Cencerus caffra	Buffalo	Н
Potamochoerus larvatus	Bushpig	Y*
Sylvicapra grimmia	Common Duiker	Y*
Acinonyx jubatis	Cheetah	N
Tragelaphus oryx	Eland	Y*
livingstonii		
Loxodonta africana	Elephant	Н

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

africana		
Oryx gazella	Gemsbok	Y*
Camelopardus giraffe	Giraffe	Y*
Crocodillus niloticus	Crocodile	Y*
Hippopotamus amphibius	Hippopotamus	Y*
Aepyceros melampus	Impala	Y*
Oreotragus oreotragus	Klipspringer	N
Tragelaphus strepsiceros	Kudu	Y*
Panthera pardalus	Leopard	Р
Panthera leo	Lion Free roaming	H/N
Cercopithecus aethiops	Monkey Vervet	Y*
Tragelaphus angasi	Nyala	N
Struthio camelus	Ostrich	N
Alcelaphus bucelaphus	Red Hartebeest	Y*
Redunca arundinum	Reedbuck Common	Р
Redunca fulvorufula	Reedbuck Mountain	N
Raphicerus sharpie	Sharp's Grysbok	N
Hippotragus equinus	Roan	N
Ceratotherium simum	Rhinoceros White	H/N
Hippotragus niger	Sable	Р
Raphicerus campestris	Steenbok	Y*
Damaliscus lunatus	Tsessebe	Р
Phacochoerus africanus	Warthog	Y*
Kobus ellipsiprymnus	Waterbuck	Y*
Connochaetus taurinus	Wildebeest Blue	Y*
Equus burchellii	Zebra	Y*
Manis temminckii	Pangolin	Р
Orycteropus afer	Aardvark	Р
Mellivora capensis	Badger	Р
Canis mesomelas	Black-backed Jackal	Y**
Otocyon megalotis	Bat-eared Fox	Р
Lycaon pictus	African Wild dog	H/P
Crocuta crocuta	Spotted hyena	H/P
Crocuta brunnea	Brown hyena	Y***
Felis serval	Serval	Y***
Felis caracal	Caracal	P***
Proteles cristalus	Aardwolf	Y*
Felis lybica	African Wild Cat	Р
Genetta genetta	Small-spotted Genet	Р
Genetta tigrina	Large-spotted Genet	P*
Mungos mongo	Banded mongoose	Y*
Ichneumia albicauda	White-tailed mongoose	New
Galago senegalensis	Bushbaby	Р
Otolemur crassicaudatus	Thick-tailed Galago	Ν

Ichneumia albicauda was observed by neighbouring farmer Mr. J. Du Preez (personal comment to writer). This is a new distribution record. The Regional Red Data Status is Least Concerned.

Photo 4: White-tailed mongoose (Ichneumia albicauda)

8.2.2 Red Data Species

<u>Mammals</u>

In Table 5 below a list of mammals is supplied as identified in the surveys on using available literature and references. Potential Red Data mammals of the study area are listed below. SARDB / IUCN (World Conservation Union): CR = Critically Endangered, E = Endangered, VU = Vulnerable, NT = Lower Risk near threatened, LC= Least Concerned, DD = Data Deficient Table 3: Potential Red Data mammal's occurrence

SCIENTIFIC NAMES	COMMON NAMES	SARDB	ENDEM	Does suitable habitat occur on Site?	Probability of the species occurring on site. (High/Medium/Low)
OI	RDER ARTIODACTYLA/	PERISSOD	ACTYLA/I	PROBOSCIDE	
Raphicerus sharpie	Sharp's Grysbok	NT	No	Yes	Low
	ORDEI	R VIVERRI	DAE		
Ichneumia albicauda	White-tailed	LC	No	Yes	High (Positive)
	mongoose				
	ORDEI	R CARNIVO	ORA		
Hyaena brunnea	Brown hyena	NT	No	Yes	Low
Crocuta crocuta	Spotted hyena	NT	No	Yes	Medium (migrant
					from Botswana)
Leptailurus serval	Serval	NT	No	No	Medium

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Mellivora capensis	Honey badger	NT	No	Yes	Medium	
Felis sylvestris	African wildcat	LC	No	Yes	Medium	
Lycaon pictus	Wild dog	E	No	Yes	Low	
Acinonyx jubatis	Cheetah	VU	No	Yes	Low	
Pantera leo	Lion	VU	No	Yes	Low	
Panthera pardus	Leopard	LC	No	Yes	Medium	
Proteles cristatus	Aardwolf	LC	No	Yes	High	
Otocyon mega lotis	Bat-eared fox	LC	No	Yes	High	
	ORDER	HYRACO	DEA			
Crocidura hirta	Lesser Red Musk Shrew	DD	No	No	Low	
	ORDER	INSECTIV	ORA	<u> </u>		
Atelerix frontalis	South African	NT	No	Grassland	Low	
	hedgehog			and open		
				thornveld		
ORDER LAGOMORPHA						
Pronolagus randensis	Jameson's Red	LC	No	No	Low	
	Rock Rabbit					
OF	RDER MACROSCELIDE	A/PHOLID	OTA/TUB	ULIDENTATA		
Manis temminckii	Pangolin	VU	No	Yes	Low	
Orycteropus afer	Aardvark	LC	No	Yes	Low	
	ORDI		ТА		-	
Cercopithecus aethiops	Vervet monkey	LC	No	Yes	High (Positive)	
pygerythrus						
Galaogo moholi	Southern Lesser	LC	No	Yes	High	
	Galago					
Otolemur crassicaudatus	Thick-tailed	LC	No	Yes	Low	
	Bushbaby					
Papio ursinus	Chacma baboon	LC	No	Yes	High (Positive)	
	ORDE		ΤΙΑ			
Dasymys incomtus	Water rat	NT	No	No	Low	

The possibility of the carnivore mammal species to use the area in their range movements (new ranges for younger animals or even drought conditions) is possible as there is still freeroaming species movement from Botswana (spotted hyena as an example as confirmed with farmer) in the north as well as from inland (south). Electrified fences however have an influence on their rangeland movement, which will mostly be from SSW and SSE. The high presence of human activity deters the specie to use the area for hunting, resting and rangeland due to surrounding activities in-depth. The likelihood of lion, cheetah and African Wild dog visiting the area is highly unlikely.

<u>Birds</u>

The types of habitats found on the project have big trees vegetation and deciduous wooded savanna. No nests were seen during surveys. This can also be ascribed to high human movement and farming activities. The main part of the project area can be described as

moderately suitable habitat for birds. While no detailed bird assessment was conducted for the site, notes were made during the various site visits (day and night) of birds seen. Important bird information for Limpopo Province

Southern African BIRDS Limpopo Southern African endemics Only Limpopo in SA SA RED DATA	 - 887 species - 587 species = 66% of SA birds - 149 species - 20 species - 125 species
Limpopo RED DATA	- 74 of the 125 species
SA <u>Critically endangered</u> Limpopo	- 5 species - 3 of the 5 species
Endangered in SA	- 11 species
Endangered in Limpopo	- 3 of 11 species
Vulnerable in SA	- 43 species
Endangered in Limpopo	- 22 of 43 species
Near threatened in SA	- 64 species
Endangered in Limpopo	- 39 of 64 species

NUMBER	NAME	SIZE = Ha	COORDINATE	COORDINATES	PROTECTION
			S SOUTH	EAST	STATUS
SA001	Mapungubwe NP	2500	22º13′	29º19'	Fully
SA002	Kruger Park NP &	2 142	22º23'-26º	30º50'- 32º 02'	Fully
	Adjacent areas	528			
SA003	Soutpansberg	260 000	22º 57'	29º 20' – 30º	Partially
				30'	
SA004	Blouberg	30 000	23º 07'	28º 52' – 29º	Partially
				03'	
SA005	Wolkberg	65 000	23º 38'	29º 50' – 30º	Partially
				15'	
SA006	Pietersburg Nat.	3 200	23º 56'	29º 30'	Fully
	Reserve				
SA007	Waterberg	375 000	24º 10' - 24º	27º 30' - 28º	Partially
	System		25'	40'	
SA008	Nylriver &	16 000	24º 39'	28º 42'	Partially
	Floodplain				
SA009	Northern Turf	50 000	24º 43' – 24º	27º 10' - 27º	Unprotected
	Thornveld		56'	30'	

Table 4: Important Birding Areas in Limpopo Province

Of the nine IBA's in Limpopo province, four areas, namely SA003, SA004 (at 93 km the nearest), SA007 and SA009 are not in near proximity to the project area. The Limpopo River can be considered as important on its own as well as the artificial habitat created by

irrigation dams inland from the river. The permanent open water which has been created by the weirs can be considered as important to the birdlife population and in specific species associated with permanent water. These impoundments supply the water needed by birds not being able to survive along the Limpopo River as it did not have permanently flowing water throughout the winter and early summer.

Species Status quo

Several common bird species were observed during those visits to the project area, such as Helmeted guineafowl (*Numida meleagris*), Lilac breasted Roller (*Coracias caudata*), European bee-eater (*Merops apiaster*), Diederick cuckoo (*Chrysococyx caprius*), Redchested Cuckoo, (*Cuculus solitarius*) Greyheaded bush shrike (*Malaconotus blanchoti*), Wattled Starling (*Creatophora cinerea*), Klaas's Cuckoo (*Chrysococyx klaas*), Spotted Sandgrouse (*Pterocles burchelli*) and Kori Bustard (*Ardeotis kori*).

The Lilac breasted Roller and Wattled Starlings were observed actively hunting in cropland areas which implicates presence of insects which in-turn implicates low chemical-and pesticide use. The Kori Bustard was also found in croplands. This observation of the specie was also found on surrounding farms in the area and further east near Beitbridge on the farm River 141 MS. What is important is that both sexes were observed together which implicates active breeding pairs.

Figure 5: Kori Bustard

Exotic species (mynah and mallard) most found in Limpopo province was not encountered in the area.

Red Data Species

Potential Red Data Birds of the study area are listed below.

SARDB / IUCN (World Conservation Union):

CR = Critically Endangered,

E = Endangered,

- VU = Vulnerable,
- NT = Lower Risk near threatened,
- DD = Data Deficient

The list of Red Data birds recorded in or around the project area. An indication is provided if suitable habitat occurs on the site. The possibility for their occurrence in the future should the project proceed is also mentioned.

Table 5: Potential Red Data birds identified

SCIENTIFIC NAMES	COMMON NAMES	ENDEM	Does suitable habitat occur on Site?	Probability of the species occurring on site? (High/Medium/Low
	1	NGERED		
Epphippiorhynchus	Saddlebilled Stork	N	N	Low
senegalensis				
Polemaetus belicosus	1	ERABLE N	N	Low/
	Martial Eagle		N	Low
Circus ranivorus	African marsh Harrier	N	N	Low
Polemaetus belicosus	Martial Eagle	N	N	Low
Aquila rapax	Tawny Eagle	N	N	Low
Gyps coprotheres	Cape Vulture	Ν	Ν	Low
Torgos tracheliotus	Lappetfaced vulture	N	N	Low
Trigonoceps occipitalis	Whiteheaded Vulture	N	N	Low
Polemaetus bellicosus	Martial Eagle	N	N	Low
Terathopius ecaudatus	Bateleur	N	N	Low
Ardeotis kori	Kori Bustard	N	Y	High (Positive)
Bucorvus leadbeateri	Ground Hornbill	N	N	Low
Buphagus africanus	Yellowbilled Oxpecker	N	N	Low
Gorsachius leuconotus	White-Backed Night Heron	N	N	Low
Circus ranivorus	African Marsh Harrier	N	N	Low
Schotopelia peli	Pel's Fishing Owl	N	N	Low
	NEAR TH	REATENED)	
Leptoptilos crumeniferus	Marabou Stork	N	N	Low
Hieraaetus ayresii	Ayre's Eagle	N	N	Low
Circus pygargus	Pallid Harrier	N	N	Low
Sagittarius serpentarius	Secretary Bird	N	Y	Medium
Buphagus	Redbilled	N	Y	Medium
erythrorhyncus	oxpecker			
Ciconia nigra	Black Stork	N	Y	Low
Dissoura episcopus	Woolly-necked Stork	N	Ν	Low

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Anastomus lamelligerus	Openbill	Ν	Ν	Low
Ibis ibis	Yellowbilled Stork	N	N	Low
Nettapus auritus	African Pygmy- Goose	N	N	Low
LEAST CONCERNED				
Ciconia cicona	WhiteStork	N	N	Low

The Kori Bustard was seen in cropland that is in a rotation "rest", its presence indicates that conservation farming practices and chemical use for pest control is within limits for food sources of the species.

Habitat description

One habitat is present:

Savannah Woodland

The type of habitat found include medium and big trees in arid wooded savannah. The main part of the area can be described as homogeneous terrestrial habitat. The Limpopo River and the Zwartberg mountain (NE) are near the project area and is a suitable habitat for various species associated with the area's habitat. Thus, species associated with the project area can find refuge there. What should also be considered is the "agriculture habitat" created, the Kori Bustard is an example for sightings made on re-grassed lands placed on "rest" phase.

Habitat assessment

The human interference and presence on the project area act as daily disturbance. The area, in which the project is situated, is not considered as an Important Birding Area (refer to Table 11). With nearby food sources, the Limpopo River and mountain vegetation contributes to the habitat and presence of representing species for this arid area (and providing more suitable nesting sites). The savannah is rated as third most important vegetation type for threatened species (Barnes, p11; 2000).

Habitat after construction

What can be expected is that the croplands (those in rotation phase and planted with grass) will serve as food reservoir in the late winter and early summer when trophic bottlenecks occur. Connectivity between the Limpopo River and terrestrial vegetation, via the croplands, will still be able to function for arboreal movement.

The cropland habitat, consisting of planted areas and areas in a rotation rest phase, can contribute to the presence and supporting birdlife. The project will contribute to maintaining birding potential of the area.

Herpetological survey

The terrestrial habitat including cover and a small isolated rocky outcrop available for reptiles. A number of common reptile species, can be expected to occur on the footprint, including Puff adders (*Bitis arietans*), Rhombic night adders (*Causus rhombeatus*), Brown house snake (*Lamprophis fuliginosus*), Ground agama (*Agama aculeate*), Leopard tortoise (*Geochelone pardalis*), Flap-neck chameleon (*Chamaeleo dilepis*) and Striped skinks (*Trachylepis striata*). An isolated population of Giant Plated Lizard (*Gerrhosaurus v. validus*) was found on the rocky outcrop, it is a common species and not threatened. A Mopane Snake (*Hemirhagerrhis nototaenia*) was also sighted, it is not a well-known snake and seldom seen.

Photo 5: Mopane snake

Species Status Quo

Reptile lists provided are for the species most likely to occur in the study site using alternative habitats as indicators for reptile fauna present on the site. As control the reptile list for the Messina-, Langjan Provincial nature Reserves and Mapungubwe National Park (formerly the Vhembe Provincial Nature Reserve) were used. Table 6: Herpetofauna checklist

Table 11: Herpetofaunal checklist compiled from control lists for three provincial			
reserves	reserves within 90 km radius (Messina Nature Reserve, Langjan Nature Reserve and		
Mapung	ubwe National Park.		
	TORTOISES A	ND TERRAPINS	
NO	SCIENTIFIC NAMES	COMMON NAMES	
1	Geochelone pardalis	Leopard Tortoise	
2	Kinixys spekii	Bell's Hinged Tortoise	
3	Pelomedusa subrufa	African Helmeted Terrappin	
	LIZ	ARDS	
1	Afroedura t. transvaalica	Transvaal Gecko	
2	Hemidactylus mabouia	Moreau's Tropical House Gecko	
3	Lygodactylus c. capensis	Cape Dwarf Gecko	
4	L. stevensoni	Stevenson's DwarF Gecko	
5	L. bradfieldi	Bradfield's Dwarf Gecko	
6	Ptenopus g. garrulus	Barking Gecko	

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

7	Pachydactylus punctatus	Speckled Gecko
8	Pachydactylus tigrinus	Tiger Gecko
9	P. c. capensis	Cape Gecko
10	P. bibronii	Bibron's Gecko
11	Agama atricollis	Tree Agama
12	A. armata	Not available
13	Chamaeleo d. dilepis	Flap-necked Chameleon
14	Scelotus limpopoensis albiventris	Limpopo Dwarf Burroughing Skink
15	Mabuya quinquetaeniata	Rainbow Skink
10	margaritifer	
16	Mabuya capensis	Cape Skink
17	Mabuya variegata punctulata	Speckled Skink
18	M. varia	Variable Skink
19	M.s. striata	Striped Skink
20	Lygosoma s. sundavallii	Sundevall's Writhing Skink
21	Panaspis wahlbergii	Wahlberg's Snake-eyed skink
22	Acontias percivalli occidentalis	Percival's Legless Skink
23	Nucras caesicaudata	Blue-Tailed Sandveld Lizard
24	Nucras taeniolata holubi	Ornate Longtailed Lizard
25	N. intertexta	Spotted Longtailed Lizard
26	Heliobolus lugubris	Bushveld Lizard
28	Ichnotropis squamulosa	Common Rough-scaled Lizard
29	Cordylus tropidosternum jonesi	Tropical Girdled Lizard
30	Platysaurus intermedius	Common Flat Lizard
	rhodesians	
31	Platysaurus i. Intermedius	Common Flat Lizard
32	Gerrhosaurus v. validus	Giant Plated Lizard
33	G. flavigularis	Yellow-throated Plated Lizard
34	G. nigrolineatus	Black-striped Plated Lizard
35	Varanus albigularis	Rock or white-throated Monitor
36	V.n. niloticus	Nile or Water Monitor
37	Monopeltis s. sphenorhynchus	Slender Spade-snouted Worm Lizard
	SN	AKES
NO	SCIENTIFIC NAMES	COMMON NAMES
1	T. s. schlegelii	Schlegels' Blind Snake
2	Leptotyphlops longicaudus	Long-tailed Thread Snake
3	Python sebae natalensis	African Rock Python
4	Lamprophis fuliginosus	Brown House Snake
5	Lycophidion c. capense	Cape Wolf snake
6	Mehelya capensis	Cape File Snake
7	M. nyassae	Black File Snake
8	Psammophylax tritaeniatus	Striped Skaapsteker
9	Rhamphiophis oxyrhynchus	Rufous Beaked Snake

Zwartberg 72 MR
(Ecological, Red Data Report & Biodiversity Report)

	rostratus	
11	Psammophis s. subtaeniatus	Stripe-bellied Sand Snake
12	P. angolensis	Dwarf Sand Snake
13	P. jallae	Jalla's Sand Snake
14	Aparallactus capensis	Cape Centipede Eater
15	Atractaspis bibronii	Southern or Bibron's Burrowing Asp
16	Philothamnus s. semivariegatus	Spotted Bush Snake
17	Crotaphopeltis hotamboeia	Herald or Red-lipped Snake
18	Telescopus s. semiannulatus	Eastern Tiger Snake
19	Dispholidus t. typus	Boomslang
20	Thelotornis c. capensis	Bird or Twigg Snake
21	Dasypeltis scabra	Commong or Rhombic Egg Eater
22	Elapsoidea sundevallii	Sundevall's Garter Snake
	longicauda	
23	Aspidelaps s. scutatus	Shield-nose Snake
24	Naja haje annulifera	Snouted Cobra
25	N. mossambica	Mozambique Spitting Cobra
26	Dendroaspis polylepsis	Black Mamba
27	Causus rhombeatus	Common Night Adder
28	Bitis caudalis	Horned Adder
29	Bitis a. arietans	Puff Adder

Red Data Reptile Species

Red Data Species as listed by McLachlan (1978) indicates that the following species occur. Table 7: Herpetofauna Red Data Species

SCIENTIFIC NAMES	COMMON NAMES	PRESENCE
VULNERABLE		
Python sebae	African Rock Python	Possible
Varanus exanthhematicus	Veld Monitor	Possible
Varanus niloticus	Water Monitor	Not found

None of the three vulnerable species were identified. The habitat is suitable for all three species due to the water habitat created by water drainage from croplands and storage dams.

Habitat description

Natural terrestrial habitat consisting mainly of semi-arid savannah is found outside the proposed development footprints. The Limpopo River and Zwartberg mountain is nearby as more specialised habitat reservoir for species.

<u>Habitat assessment</u>

The rocky outcrop on the project area provides suitable refuge and permanent habitat for species.

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Photo 6: Giant Plated Lizard

Habitat after construction

Influence by the development will be low as the areas is mostly semi-arid savannah. After completion it can be expected that the permanent water (seepage) will create new opportunities for reptiles.

Amphibian's survey

Breeding of African frogs is strongly dependant on rain, especially in the drier parts of the country where surface water only remains for a short period. The species which will occur will be mostly tropical savannah species. The combination of rainfall, temperature and humidity is particularly conducive to frog life. Most frog species in the drier regions of Limpopo province are classified as explosive breeders. Pans provide habitat for short periods when filled with water. No species were found during surveys (undertaken from October-, December 2021 and January 2022). Another important role that surveying of amphibians provide is the "health quality" of water sources and water seepage areas. Due to the sensitivity of amphibians to the quality of water they serve as an indicator of pollution which was used in this survey as an indicator of excessive pesticide and herbicide applications.

Species Status Quo

The list below provided are for the species most likely to occur on the study site using alternative habitats as indicators. As control the amphibian list for the Messina-, Langjan Provincial nature Reserves and Mapungubwe National Park (formerly the Vhembe Provincial Nature Reserve) were used.

Scientific name	Common name	Conservation Status
Family: Artholeptidea		
Genus: Bufo	Toads	
Bufo fenoulheti	Northern Pygmy Toad	Least Concern

Table 8: Amphibian list that can occur on project area

0

Bufo garmani	Eastern olive Toad	Least Concern
Bufo gutturalis	Guttural Toad	Least Concern
Bufo maculatus	Flat-backed Toad	Least Concern
Bufo poweri	Western Olive Toad	Least Concern
Family: Hemisotidea		
Genus: Hemisis		
Hemisis marmoratus	Mottled Shovel-nosed	Least Concern
	Frog	
Family: Hyperoliidae	1	1
Genus: Hyperolius		
Hyporelius marmoratus	Painted Reed Frog	Least Concern
Hyporelius pusillus	Water Lily Frog	Least Concern
Genus: Kassina		
Kassina maculata	Red-legged Kassina	Least Concern
Kassina senegalensis	Bubbling Kassina	Least Concern
Genus: Leptopelis		
Leptopelis mossambicus	Brown-backed Tree Frog	Least Concern
Family: Microhylidea		
Genus: Breviseps		
Breviseps aspersus	Bushveld Rain Frog	Least Concern
Genus: Phrynomantis		
Phyronomantis annectens	Banded Rubber Frog	Least Concern
Family: Petropedetidea		
Genus: Cacosternum		
Cacosternum boettgeri	Boettger's Caco	Least Concern
Genus: Phrynobatrachus		
Phrynobatrachus	Dwarf Puddle Frog	Least Concern
mababiensis		
Phrynobatrachus natalensis	Snoring Puddle Frog	Least Concern
Family: Ranidae		
Genus: Afrana		
Afrana angolensis	Common River Frog	Least Concern
Genus: Ptychadena		
Ptychadena mossambica	Broad-banded Grass Frog	Least Concern
Ptychadena porosissima	Striped Grass frog	Least Concern
Ptychadena uzungwensis	Udzungwa Grass frog	Least Concern
Genus: Pyxicephalus		
Pyxicephalus adspersus	Giant Bullfrog	Threatened
Pyxicephalus edulis	Edible Bullfrog	Least Concern
Genus: Tomopterna	5	
Tomopterna cryptonis	Tremelo Sand Frog	Least Concern
	Cape Sand Frog	Least Concern
i omopterna delandii		
Tomopterna delandii Tomopterna marmorata	Russet-backed Sand Frog	Least Concern
Tomopterna delandii Tomopterna marmorata Family: Ranidae	Russet-backed Sand Frog	Least Concern

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

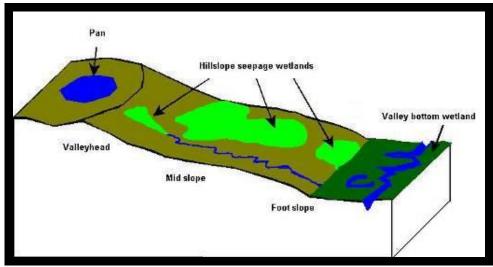
Genus: Chiromantis		
Chiromantis xerampelina	Foam Nest Frog	Least Concern

Red Data Species

No Red Data Species were identified that could possibly occur on the project area.

Habitat Description

Suitable habitat consists of the pans (outside footprint and adjoining farms) and terrestrial habitats (semi-arid). The rainy period plays an important role in species presence and is functional for short periods.


Habitat Assessment

The habitat potential for the project area at present is limited to the rainy period and is also influenced by the amount it rains and the subsequent follow-up rains to ensure that species complete their life cycle. The endorheic pans provide temporary habitat when filled, they will remain unchanged. Seepage from storage dams will provide year-round habitat for species that will colonise over time.

8.3 Wetland and Watercourses Assessment

AQUATIC SENSITIVE AREAS AND SYSTEMS

Consideration to the receiving environment and in specific aquatic sensitive areas and systems (wetlands and riparian vegetation) has indicated that none is found on the project area or influenced by the project.

Figure 6: Diagram illustrating position of various wetland types within the landscape

The National Water Act (Act No 36 of 1998) defines wetlands as those ecosystems where:

"Land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which land in normal circumstances supports or would support vegetation typically adapted to life in saturated soil."

No wetlands are found on the project area.

The National Water Act defines a riparian habitat as follows:

"Riparian habitat includes the physical structure and associated vegetation of the areas associated with a watercourse which are commonly characterized by alluvial soils, and which are inundated or flooded to an extent and with a frequency sufficient to support vegetation of species with a composition and physical structure distinct from those of adjacent land areas"

No riparian vegetation is found on the project area.

The project also is situated outside the flood line-and riparian zone of the Limpopo River.

The watercourse west and east the proposed croplands will not be affected and is located outside the footprint. The pans are located outside the footprints of the development areas and should be indicated for purposes of planning as no-go areas during development in a zoning plan.

9 POTENTIAL IMPACTS

9.1 Habitat Destruction

Historical perspective

Although the existing human activity on the project is clearly visible, the more recent presence of other human interference such as impacts (direct or in-directly) on vegetation and fauna by fencing and roads in the area was found in-situ on an intense scale. Mostly terrestrial medium-and large mammal species (which has a low presence currently) are already being impacted on by restricting their movement, arboreal species were not influenced as severely. On the other hand, the question of what impact the development will have on the current species, this can partly describe due to the experience and observations on developments in the area. Normally it is found that species will disperse to surrounding areas and adapt to new patterns. What was also evident was the presence of specific species inside the existing fenced croplands or directly adjoining. Species presence and/or signs found indicate that the remaining mammals, birds and reptiles are established and survive. The presence of migrating birds and other non-endemic species found supports the aforementioned. The habitat has been used over nearly 120 years (starting 1906 with settlement by trek-farmers) with the last 70 years for farming activities initially consisting mainly for cattle and dryland croplands with a shift to extensive irrigation croplands and game production.

The aerial (circa 28 September 1956) photography shows various croplands, not seen unless enlarged are the fencing for grazing camps.

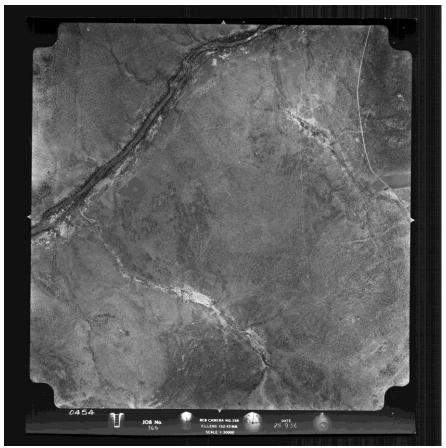


Figure 7: 1956 Monochrome aerial photo

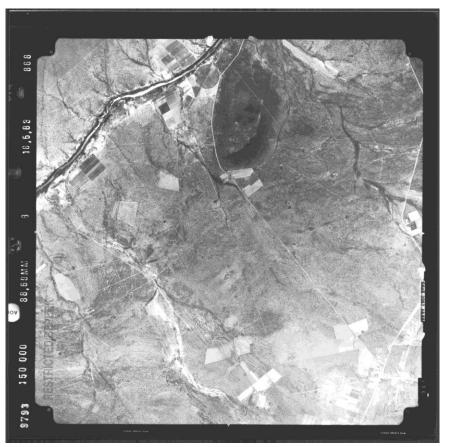


Figure 8: Aerial monochrome dated 1983 for project-and surrounding area

Since the mid-1980 the area has been placed increasingly under further farming development. The location is exclusively terrestrial. Foliage is sparse in general during wintertime necessitating larger game species to roam further afield (if they are overstocked). Terrestrial species is driven mostly by the need of water and large ranging areas for food in this arid landscape. The rangeland for larger mammals and large predators was further restricted by removing natural prey in earlier farming activities. Predation on cattle also resulted in extermination by farmers. This changed in the mid-1970's when game was recognised as a specific financial commodity for hunting and ecotourism. A change in legislation also allowed for ownership of game on farms adequately fenced and issued and exemption permit. Farm were game fenced and electrified. In 2010 a new trend in intensive breeding programs for colour and horn size developed and resulted in fences upgraded with mesh and even more intensely electrified. This resulted in a total barrier block of medium and larger mammal movement. Thus, <u>corridors were severed for landbound movement and migration disrupted</u> for large and medium mammal species.

Cumulatively the above <u>changed the habitat connectivity and migration</u> before the implementation of LEDET's guidelines on Critical Biodiversity Areas and Ecological Support Areas. The timeline of events described above was not fully assessed or taken into consideration for the CBA delineation. Observations during surveys revealed that cropland development in the past were not in proximity of drainage lines into which water collected from surface flow, aerial photographs confirm this issue. Common sense prevailed (by the farmers) and development mostly left watercourses intact.

Habitat destruction by development of croplands

Removing vegetation from an area effectively removes many forms of natural habitat occupied by various life forms of mammals, birds, reptiles, amphibians, and insects. Larger trees such as *Vachellia (Acacia) nigrescens* could be used for nesting by the larger birds of prey. Smaller less agile species is more prone to be affected by habitat loss. It can be expected that reptiles will be the component most affected due to their mobility. Mammals (those found to be currently present) and birds are more agile and can move quicker away from disturbances. Most species affected would be able to move as soon as disturbances occur by bush-clearing activities to surrounding areas.

Construction Phase

The largest portion of vegetation that will be removed is dominated by *Acacia species*. Two (un-named) Woodland Drainage Lines outside the footprint will not be directly affected. The remaining woodland will to a lesser extent function ecologically. It will be replaced by an agriculture ecosystem (croplands) which will function as minor ecosystem in the larger ecosystem context.

Various large trees, e.g., Black Monkey Thorn, Apple-Leaf, Knob-Thorn, Baobab (single specimen), Shepard's trees being the most prominent large trees with medium size trees consisting of *Acacia-, Commiphora-and Terminalia species* with *Grewia species* as shrub stratum. Existing large trees found outside the footprint can provide specific habitat for nesting-and roosting sites for birds. The project is situated outside of the 1:20-year flood line of the Limpopo River. Protected tree species included Leadwood, Apple leaf, Shepherd's Tree, Marula, and a Baobab.

Operational Phase

After construction no more trees will be removed outside of the footprint areas, the cropland areas will be fenced to prevent damage by wildlife and will create a physical barrier that will help in spill-over damage from farming activities. What can be expected is that the remaining vegetation will remain and will be maintained by seepage from the croplands as well as from stormwater outlet in dry periods. The vegetation will however mostly be dependent on annual rainfall.

Identified impacts

The following impacts have been identified:

- Removal of natural vegetation and in effect habitat.
- Removal of protected tree species.
- Destruction portions of one specific vegetation community.
- Altering carrying capacity for grazers and browser species habitat.

(i) Removal of natural vegetation

The removal of vegetation will be on \pm 955 hectares. The removal will add to the ever-increasing loss of vegetation and could also result in fragmentation thereof if corridors were not possible. Cropland farming could be the main culprits of destruction of sensitive vegetation at the farming nodes along the Limpopo River if incorrectly planned and executed.

The location of the new-and existing footprints will allow movement of wildlife species along natural vegetated corridor areas. The areas cleared of natural vegetation will be replaced by croplands. It can be expected that the carbon cycle of the natural vegetation will be partly compensated for by the croplands. The rotation croplands will be planted with grass which will also contribute to carbon cycle.

Past impacts consisted of infrastructure development for farming activities, mostly fences (with cut lines), roads, housing, packing warehouses and pipelines.

Past overgrazing and impacts by drought (and fire) have left the area with dense patches of encroached herbaceous cover. The woody component is well established.

The combined surface areas of the farm Zwartberg 75 MR (portion 1 and Restant) are 1954 hectares (area of influence). The two areas are divided by an electrified game fence, this fence will be removed (comment by applicant) and is supported and enhance connectivity and corridors. Areas not suitable for development surrounds the existing and proposed croplands and can function as natural habitat. The combined footprints of the areas are approximately 955 hectares and represents ±48% of terrestrial vegetation, no sensitive vegetated areas are directly affected.

(ii) Removal of protected species

Tree species that are considered protected in accordance with the National Forest Act 1998 (Act No 84 of 1998) were recorded. These species were:

- Leadwood (*Combretum imberbe*).
- Shepherd's tree (*Boscia albitrunca*).
- Apple leaf (*Philenoptera violacea*) previously (*Longocarpus capassa*).
- Marula (Sclerocarya birrea)
- Baobab (*Adansonia digitata*).

Species that can influence Red Data species, and other species, due to their ability to encroach is also listed according to the Conservation of Agriculture Resources, 1983 (Act No 43 of 1983). These species are:

- Acacia species
- Dichrostachys cinerea
- Grewia bicolour
- Grewia flavescens

Temperature and rainfall are important climatological parameters in sustaining the physical environment and plays a significant role in determining the biotic environment of a specific area. Temperature and precipitation data are included for a better understanding and interpretation of the natural environment as found in the general area.

Van der Walt (2009) is quite correct in her mentioning that information on the occurrence and distribution of threatened and endemic species in the Limpopo Valley region are limited.

The following species is listed in the Interim Red List, March 2006, as compiled by the Threatened Species Programme (Van der Walt, 2009).

No	Botanical name	Common name	
	ENDANGERED		
1	Plinthus rehmannii	Not available	
	RARE		
2	Otholobium polyphyllum	Not available	
3	Peristrophe cliffordi	Not available	
4	Peristrophe decorticans	Not available	
5	Peristrophe gillilandiorum	Not available	
	LEAST CONCERNED		
5	Barleria holubii	Small-leaved Barleria	
6	Hermbstaedtia capitata	Not available	
7	Hibiscus waterbergensis	Not available	
8	Hoodii currorii subsp. Tugardii	Ghaap	
9	Psoralea repens	Not available	

 Table 9: Interim Flora Red Data List for threatened species

The habitat requirements and distribution of these species were scrutinized during surveys to establish and confirm the presence on the site. None was found on footprints. Species protected under the Limpopo Environmental Management Act, 2003 (Act No.107 of 2003) such as *Orbea carnosa, O. rogersii* and *Tavaresia barklyi* was not found in the project area.

The drought (and subsequent heavy grazing and fire) could have a significant influence on presence of species.

(iii) Destruction portions of a specific vegetation units (community)

Woodland with its larger trees serves many purposes in the ecology of the area with the highest diversity of vegetation found along rivers, terrestrial drainage lines, mountains, and rocky ridges in the semi-arid landscape.

This area had a Poor conservation value with poor species richness and low presence of exotic species and human related disturbances.

(iv) Altering carrying capacity for grazers and browser species

The clearing of vegetation will effectively remove grazing and browsing from the carrying capacity of game. The impact of overgrazing can be managed by adapting game numbers. During surveys the field conditions was assessed by using a practical method for veld condition assessment.

9.2 Impacts on the vegetation

State of vegetation (plant communities found)

Vegetation type: Limpopo Sweet Bushveld No 17 (SVcb19) and Acocks (Arid Sweet Bushveld: A 14)

Two plant communities were identified and is discussed below.

Plant community 1: Acacia nigrescens-Boscia albitrunca-Terminalia prunioides-Commiphora and Grewia species woodland. (Photo 1)

This vegetation unit occurs over the largest portion of the project area. It is located between the Zwartberg mountain to the north-east and has two drainage lines located outside the footprint area which drains towards the Limpopo River. An isolated dolerite outcrop on a calcrete ridge is found on the southern side of the farm, it does not form part of the proposed cropland area. The area has been settled on since 1903 with early cropland farming visible on arial photographs dated 1956 and shows a progressive expansion from that period. Cattle farming was historically present and also present to date which resulted in overgrazing and subsequent bush encroachment consisting mainly of *Acacia species*, *Commiphora pyracanthoides* and *Grewia species*. *Acacia nigrescens* and *Boscia albitrunca* is the dominant tree species. Signs of human activities was found throughout the survey areas. The area has been mapped for soil characteristics and properties for croplands.

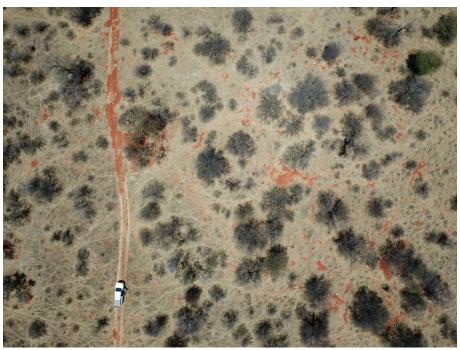


Photo 7: Aerial view from 85m

State of vegetation	Natural
Conservation priority	Medium
Characteristics description	Structure: This vegetation unit is characterized by a woody layer mostly dominated by medium-large sized trees and medium shrubs that form an open to medium dense structure. The woody species is dominated by Knob Torn, Marula, Shepherd's Tree, Lowveld cluster leaf, <i>Commiphora</i> and <i>Grewia</i> species throughout its distribution in the local context. Substrate is shallow calcareous soils derived from limestone. Drainage is by surface flow. Soils: Mostly deep sandy-loam soil which drains freely on flat landscape. Calcareous soils derived from limestone also found where topography change.
Trees	Highest height: 11m Average height: 6.5m Density: 10-15%
Shrubs	Average height: 3m Density: 20-30%
Herbaceous	Grasses average height: 0.8-1.2m Grasses basal cover: Moderate Forbes average height: 0.8m Forbes basal cover: Low
Sensitivity	Moderate – indigenous woodland with a widespread status

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Protected Trees	Sclerocarya birrea (Marula)	
	Boscia albitrunca (Shepherd's tree)	
Red Data species	None observed	
Current land use	Grazing: cattle and game.	
Veld condition	Fair	

The following specific recommendations for the vegetation unit regarding the proposed development should be adhered to:

- The vegetation unit is classified as least concerned and has a wide distribution.
- The layout should not infringe outside the recommended development footprint for croplands.
- Protected trees should be incorporated in the layout of croplands, where not possible destruction permits should be applied for from DFFE.
- The development of croplands is considered as highly suitable in this area.

Plant community 2: Boscia albitrunca, Commiphora gladulosa, Acacia mellifera and Sesamothamnus lugardii woodland. (Photo 2)

This vegetation unit occurs in the north-eastern part of the proposed croplands site. The substrate forms medium depth red, yellow apedal soils derived from limestone, isolated shallower areas where calcrete shows are present. The deeper sandy-loam soils are indicated by the presence of medium tree species such as black monkey thorn and corkwood while the shrub layer is characterized by the dominance of *Commiphora pyracanthoides* and *Grewia bicolor*. The woody structure is open woodland with a low-developed shrub layer. Photo 2 indicates the state of the woody and herbaceous layer. The area has been mapped for soil characteristics and properties for croplands.

State of vegetation	Natural	
Conservation priority	Medium	
Characteristics description	Structure: This vegetation unit is characterized by a woody layer	
	mostly dominated by medium sized trees and medium shrubs	
	that form an open structure. The woody species is dominated by	
	Black Monkey Thorn, Tall common corkwood, Shepherd's Tree,	
	Lowveld cluster leaf and the shrub layer by Commiphora, Grewia	
	species and the distinct Sesamnotamnus lugardii throughout its	
	distribution in the local context.	
	No drainage lines, drainage by surface flow.	
	Soils: Mostly medium-deep sandy-loam soil which drains freely	
	on flat landscape. Calcareous soils derived from limestone	
	intrusions also found.	
Trees	Highest height: 9m	
	Average height: 5.5m	
	Density: 5-10%	
Shrubs	Average height: 3m	
	Density: 15-20%	
Herbaceous	Grasses average height: 0.8-1m	

Table 10: Botanical analysis and characteristics of Plant Community 2

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

	Grasses basal cover: Moderate
	Forbes average height: 0.6m
	Forbes basal cover: Low
Sensitivity	Moderate – indigenous woodland with a widespread status
Protected Trees	Boscia albitrunca (Shepherd's tree)
Red Data species	None observed
Current land use	Grazing: cattle and game.
Veld condition	Fair

The following specific recommendations for the vegetation unit regarding the proposed development should be adhered to:

• The vegetation unit is classified as having a low sensitivity due its widespread occurrence in the Savanna Biome;

• The eradication of protected trees would need a permit from DFFE.

• The development of croplands is considered suitable in this area, provided that the soil depth is confirmed as suitable for crop cultivation under irrigation as per soil surveys conducted.

9.3 Faunal Findings

9.3.1 Habitat assessment

The habitat surrounding the project areas of the two farms is used for crop and game farming with ecotourism and has been altered moderately before this survey. Fauna species have various levels of mobility and presence is also dependent on seasonal change. Human interference and activities also have a marked influence.

Habitat after construction

In the literature studies it was evident that species associated with the typical terrestrial Limpopo Sweet Bushveld was historically distributed in the region, this can be confirmed by the author who has worked in the region and along the Limpopo River since 1975 as a nature conservator. Smithers (1983) provides distribution descriptions and maps for species mentioned in Table 3.

The habitat remaining after development will be able to support most of the species currently present. Corridors along terrestrial ephemeral watercourses is open from terrestrial landscape to Limpopo River. Corridors are also created by cropland layout, also channelling movement to the river or inland.

Habitat on adjoining areas

The habitat of the project areas should not be considered in isolation as it would be unwise if adjoining land uses to the adjoining land-uses are available for ecological processes. Movement of larger mammal game species will however be restricted by the game fences with movement possible for medium and smaller mammals. Connectivity between habitats is along corridors and has an influence on the survival of species and faunal communities. Taken into consideration the size of properties representing faunal species and

communities, they can still function albeit with supporting management input from farmers, and this they do as the game is an economic asset.

9.3.2 Impact on species

Direct impacts on survival of species indicated that the proposed extension configuration will moderately influence species' movement. The carrying capacity of the area will not be able to be sustainable for the existing numbers of game. The game numbers will have to be adapted downward. The prominent game species found were duiker, Steenbuck, impala, kudu, eland, warthog, gemsbok, waterbuck, and giraffe. The only predators were caracal. The landowners mentioned the presence of leopard, but no signs were found during surveys.

Indicator species were observed in the croplands and directly on proposed footprints. These species' importance is that they survive in the altered environment with the new ecotone created. Civet was found in the croplands and Steenbuck and Banded mongooses were found both in the croplands and in adjoining areas. The croplands created a new trophic area for omnivores such as the Civet and Mongooses. This is indicative that the use of chemicals and pesticides is at such levels that insects as food source are not toxic to these two species. The crops eaten by civets are pumpkin, watermelon and potatoes which do not seem to influence the species. Their presence indicate that farming practices is within prescribed chemical and pesticide specifications for toxic levels.

10 BIODIVERSITY INTEGRITY (BI)

The Convention on Biological Diversity (CBD) defines biodiversity as "the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems." It is the variety of life on earth at all levels, from genes to worldwide populations of the same species; from communities of species sharing the same small area of habitat to worldwide ecosystems.

Levels of biodiversity

- *Ecosystems* containing rich biodiversity, large numbers of threatened or endemic species, that are important for migrating species; have social, economic, cultural or scientific significance or support key processes.
- *Species* and communities of species that are threatened, related to domesticated or cultivated species, have medicinal, agricultural, or other economic, social, cultural, or scientific significance and indicator species.
- *Genotypes* with social, scientific or economic significance.

To provide an understanding of how biodiversity is likely to respond to a proposed activity; impacts at **<u>each level</u>** of diversity can be best assessed in terms of:

- *Composition:* what biological units are present and how abundant they are.
- *Structure* (or pattern): how biological units are organized in time and space.
- *Function:* the role different biological units play in maintaining natural processes and dynamics.

There are several planning guide documents produced by SANBI for South Africa as a whole, as well as the Conservation Plan for Limpopo (2013) by LEDET on provincial levels that allow

for conservation planning as well as meeting biodiversity targets for the country's variety of ecosystems. These guides are essential to source for desktop studies for proposed development projects. The information from said guides together with the onsite surveys and subsequent reports form an important part of the sensitivity analysis. In addition, sensitivity analysis during field surveys provides finer scale data to be used to ground truth the larger scale assessments and put it into a more localised context. The sensitivity for a proposed project area should be seen in context of the total surrounding area to be able to properly understand the sensitivity issues and to place them in context.

Biodiversity Important Areas

These are the areas that has a regional influence on the biodiversity and is entrenched in legislation and planning guidelines according to the NEMA: Biodiversity legislation. The proposed development is considered in relation to its influence on these areas.

- (i) CBA's and ESA's
- (ii) Protected Areas
- (iii) Protected Areas' Buffers
- (iv) Priority Areas for Protected Areas Expansion
- (v) Surface Strategic Water Source Areas: Terrestrial
- (vi) Indigenous Forests

10.1 Critical Biodiversity-and Ecological Support Areas

The purpose of the Limpopo Conservation Plan version 2 (LCPv2) is to develop the spatial component of a bioregional plan. The Limpopo Conservation Plan categories for the proposed croplands are presented in Figure 8.

When compared to the conditions on site it does not correlate.

The Screening Tool indicate the area as Very High Potential Agriculture area.

In the Waterberg Spatial Development Framework (9 July 2021) the area is indicated as Protected Agriculture Areas (DAFF, 2021, Figure 51 on page 136), although the project is in Capricorn District the zoning crosses the administrative boundary.

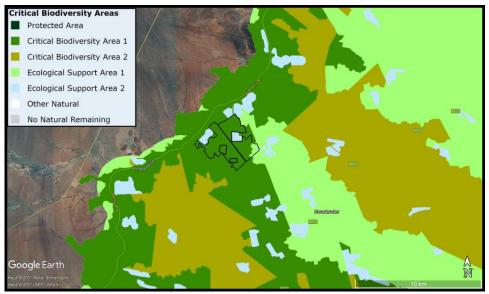


Figure 9 : CBA for area

10.2 Protected Areas

No areas in radius of 70 km.

10.3 Protected Areas Buffer

No areas in radius of 70 km.

10.4 Priority Areas for Protected Areas Expansion

None.

10.5 Surface Strategic Water Source Areas: Terrestrial

None.

10.6 Surface Strategic Water Source Areas: Aquatic

None

10.7 Indigenous Forests

None.

10.8 Important Birding Areas

None. Refer to Table 4.

Table 11: Biodiversity Sensitivity

Biodiversity Important Areas	Sensitivity Rating	Verification: describe
	(Very High/Low)	
CBA,s and ESA's	Low	ESA 2 verification recommended
		Area has been mostly transformed by
		agriculture
Protected Areas	Low	None in 70 km radius
Protected Areas Buffers	Low	None
Priority Areas for Protected	Low	None
Areas Expansion		
Surface Strategic Water	Low	No watercourse is affected by project.
Source Areas: Terrestrial		
Surface Strategic Water	Low	Limpopo river or Riparian Zone affected
Source Areas: Aquatic		
Indigenous Forests	Low	None
Important Birding Areas	Low	None

11 ECOLOGICAL EVALUATION

11.1 Habitat Integrity (HI)

A stable habitat provides a template for a certain level of biotic integrity to be realised. Habitat integrity is linked to Biodiversity Integrity; it is the supporting structure in nature. To determine the HI the elements of habitat must be in balance. They are:

Habitat: Vegetation

Vegetation forms the main component of habitat. It will have a specific characteristic for an area that supports the biotic life-forms. Vegetation is static and has specific characteristics and structure for specific areas called bioregions. It is also the primary food producer. The surveys indicated that the remaining vegetation will still support some ecological functions, although at a lower intensity. Over time these ecological functions will stabilise at new levels of functioning. The vegetation will benefit from irrigation seepage water from croplands in the drier seasonal periods.

Habitat: Water and food sources

Water is a primary part of any biotic life-form with availability as a driver in organisms (mainly plant-and wildlife) found in an area. Wildlife as secondary food source or producers needs water and forms part of the food cycle. The croplands not only produce a crop product, but it also creates a new agriculture ecosystem. Medium-and small mammals can enter through fences and forage for insects and worms, also can they have their "share" of the crop. It is not uncommon to use damaged crop products as food for wildlife to support them in the dry season. Two bird species noted (in time more species will be discovered) has also adapted to the agriculture ecosystem by foraging and static hunting in both planted lands and rotation lands planted with grass. The Kori Bustard also breeds in the grassland created and have a positive contribution to the population. This is due to the electrification of fences which prevent small predators to enter.

Habitat: Location and Space

Biotic life-forms need space and in some instances are space specific in the habitat. Depending on a species' needs and social needs the locations and space varies in size. As mentioned above the Kori Bustard uses the location of rotation croplands in rest which also creates space for the area and regional population to forage and breed in the agriculture ecosystem. The undeveloped vegetated areas surrounding the croplands are included in the forage and range use of the species.

Habitat: Availability

To survive seasonal change (droughts and/or floods) life-forms have specific needs to survive, mate, reproduce and interact in social behaviour with other life-forms in an area. The natural woodland ecosystem and the agriculture ecosystem have a distinct ecotone. It is artificial in the form of an electric fence. The needs of species adapted to the change, and they utilise the "opportunity" that was created. It can, however, not accommodate all the species. Species are opportunistic and due to their presence, the level of tolerance in croplands can be measured in the level of destructive feeding habits. A Civet does not waste food by unnecessary damage to watermelon whereas a porcupine will "test" a couple of fruit, the same is applicable to baboons and warthogs which have a "destructive" feeding behaviour.

Habitat loss

Loss of natural habitat occurs with most forms of development and is also the case with this proposed development. It is sometimes referred to as habitat transformation. Habitat loss (conversion) may be irreversible, meaning that biodiversity patterns and processes can never be restored e.g., such as human settlements and most forms of mining for the study areas. In other instances, habitat loss (degradation) is reversible, meaning that local

biodiversity features may be restored to some extent, e.g., croplands. For example, overgrazed veld in some ecosystems can recover if the grazers are reduced and managed. Habitat loss (fragmentation) through sub-dividing landscapes by international borders and/or disease control fences of larger areas (and between countries) affect areas on a large scale, whereas human development affect it on a smaller scale. Habitat loss in South Africa, as well as world-wide, is the single biggest cause of biodiversity loss. Halting biodiversity loss depends on avoiding habitat loss in areas that are important for achieving biodiversity targets and slowing the rate of loss in adjoining and supporting other areas. Habitat loss creates "islands" of remaining habitat supported by systems to maintain the "islands". The more interference on the systems and habitats the higher the impact on ecological integrity. One of the systems is a corridor. Corridors play an important role in the functioning of supporting of an area's vegetation, habitat and subsequent wildlife in an intricate pattern of seasonal movement. Two main physical landscape characteristics (secondary physical terrestrial landscapes serve as links between them) are found in nature that supports corridors. This includes mountain ranges and drainage lines (including perennial rivers and streams, non-perennial rivers and ephemeral rivers and large water courses). Drainage lines, watercourses and streams that cannot be described as rivers also play a role as corridors, especially those that drain directly into the Limpopo River. Man-made dams also fit into the natural pattern in nature, albeit over time. Any spatial component of an ecological process that may occur on site or location or in its vicinity (i.e., corridors such as watercourses, upland-lowland gradients, migration routes, and vegetation boundaries such as edaphic interfaces, upland-lowland interfaces, or biome boundaries) are considered.

11.2 Corridor's description

Types of corridors

Corridors are diverse with the two main corridors for the project being terrestrial and arboreal corridors. Ecosystems in the riparian zone depend on water, sediment and nutrients carried by the stream. The riparian zone can be found along the banks of a river and watercourses and can include some form of floodplain. Corridors for ecological processes include an endless list of natural cause-and-effect relationships. Examples include pollination, migration, soil erosion, water purification and climate regulation. Such processes are complex and often poorly understood. They are also difficult to measure (usually conducted over longer periods) or to manage and plan for. Few can be represented spatially on a map. But ecological processes are as important to the persistence of biodiversity as the biological feature i.e., species, itself.

The **protected area conservation system** seeks to protect a representative sample of species, communities and ecosystems. Although many ecological processes will be conserved along with the protected biota, there are some that are not. The most obvious are those involving species movement and connectivity, i.e., those that are thwarted by habitat fragmentation. These processes were spatially represented and are incorporated into LEDET as ecological corridors in their "Conservation Plan". To be effective they must provide relatively uninterrupted strips of natural habitat in perpetuity, ultimately with special measures provided to encourage biological movement along their full length. Unfortunately, the CBA's and ESA's maps were found not to be reliable and placed unrealistic "pressure" on landowners, most of them being farmers. Conflicting with this is

the Protection of Important Agricultural Areas in which the project area is located. This application is by a farmer whose primary activity is crop-and cattle farming with game farming as secondary, but not less important, farming activity. Species which were historically present such as sable and buffalo has been reintroduced.

Corridors found

The most prominent corridors found are firstly the terrestrial biota, secondly the arboreal biota and thirdly the aquatic biota; the latter two biota focuses around and along the terrestrial dry watercourses. The corridors function mostly laterally along watercourses or along fence lines and roads as well as cross-sectional outward to the terrestrial area. It must be understood that the mentioned corridors function in the Limpopo Valley Physiological Region either inland from both banks, thus from the South African and Botswana sides of the Limpopo River (to the terrestrial zones) and up-or downstream. Thus, the Limpopo River is the main corridor for supporting various ecosystems. The "depth" to which this support functions depends on the condition of the receiving environment and the human activities that restrict, hamper or direct a specific species movement.

The terrestrial corridors are used mostly by mammals and birds. Influence on animal movement is mostly by man-made activities, thus artificial influences. In this project the terrestrial movement is mostly influenced by game fencing (around farms and croplands) as well as the human development (roads) inland from the Limpopo River.

The same phenomena were found when the first game fences were erected and later electrified on inland game farms. What can be said is that aggressive small breachers of fences such as warthogs and porcupines breached fences randomly when no special measures were taken. The primates, birds and bats are the prominent species that are not adversely influenced. Fences have a minimum influence on the birds and bats' movement. It is when the large trees are removed along the length of the watercourses that flows into the Limpopo River that serious impact on the nish habitats for those species are influenced. The project serves as an ecological corridor and more specific as ecological connectivity zone on an extensive geographical scale due to its location along the Limpopo River and in line between Blouberg Mountain (80km) and Tswapong Hills/Palapye Mountain (38km) in Botswana.

Findings:

Terrestrial species

Most of the game farmers implemented their own fences (some with electrification) for complying with game laws and for security purposes. In time the species came to accept the "barrier" and do not continuously force the "barrier". This is in line with what has been experienced on fenced game farms to keep in game. Little impact is expected by larger types of game species as they adapted to on-site conditions. Some medium and smaller species still breach the fence by digging and crawling. This can be controlled by inspections.

Arboreal species

The arboreal species will be impacted on when vegetation, especially large trees, are removed. Trees will remain on undeveloped areas.

Cumulative impacts from the removal of large trees on destruction of habitat (nesting-and roosting sites) for bird species such as:

Species with vulnerable conservation status which is indicated in the distribution range:

Hooded vulture

- African white backed vulture
- Lappet faced vulture
- White-headed vulture
- Tawny Eagle
- Martial Eagle
- Bateleur

Near threatened conservation status:

- Secretary bird
- Bat hawk
- Ayre's eagle
- Crowned eagle.

The above list are species found in a larger range zone and includes other ecosystems. The consequences of removal of large trees should thus be placed in context in a larger range context (including Botswana which has a low human development influence). The project area and past-and-present farming activities would be a disturbance factor for species' nesting. Most of the species will prefer the undeveloped adjoining areas further inland or in Botswana.

Mitigating measures

- (i) By keeping to the footprints, the impacts on terrestrial species can be kept to a minimum.
- (ii) The areas between croplands and fencing of natural grass (considered as agricultural ecosystem) creates an ecotone from croplands to natural habitat.
- (iii) The ecotone must be strengthened horizontally, vertically, and linearly to accommodate various species. This can be achieved by planting more "ecotone" friendly trees (providing shade and food for different species) as well as planting poles for birds, hawks, and eagles to rest on while they hunt for food in the croplands; planting pol-nest boxes for owls and bats around and near the croplands and also to establish beehives to support bees as part of the pollination process.
- (iv) Not removing large trees on the remaining areas of the farm can still provide habitat for species.
- (v) Fencing the new crop areas will also help and prevent "spill-over" vegetation damage. Conclusion
- (i) Large-, medium and small mammal species can adapt to the situation.
- (ii) Game specie numbers will have to be adapted downwards.
- (iii) Habitat will be lost and have a low significance on movement of species.

11.3 Connectivity description

Connectivity refers to the ecological connectedness of the pattern of habitats and distribution of species within a particular area. High connectivity facilitates the free movement of individuals and species. Habitats that are fragmented by development, present obstacles to biological movement and reduced connectivity in proportion to the intensity and type of development. Connectivity is either by land, water or arboreal and can be vertical or horizontal. Both landscapes, terrain forms and vegetation play a role. Habitats in isolation can be seen as "biodiversity islands" and is referred to as the "Island Biographical

Theory"⁴. The linear movement of land-based species along existing corridors has already been partly severed; movement will still be possible using the remaining corridors mostly by smaller mammals and birds. Larger mammals are fenced "in".

11.4 Pollution

11.4.1Background

Pollution is a direct contributor to habitat loss and includes waste that is generated by farming, construction, human settlement, and crop farming by means of indiscrete use of fertilisers, chemical compounds, and pesticides. There are three forms of waste, firstly domestic waste (which includes damaged crop products), secondly general waste (which includes construction waste and can include rocks and stone removed form croplands) and thirdly hazardous waste (which includes fertilisers, pesticides, and chemicals). Other forms of pollution include noise, light and dust commonly found during construction and operational phases of development of new croplands, this will however be transient.

11.4.2Situation

The level of pollution is localised and will be mostly dust and noise during the construction phase. Fertilisers, chemical compounds, and pesticide's pollution can occur on the new (and existing) croplands. Surveys indicated that this is not at present occurring based on the presence of various biota. It is therefore prudent that a monitoring plan is compiled to source data over time. This monitoring should be directly linked to the water quality as required by DWS in the WUL and chemical soil analysis conducted yearly. In the operational phase no pollution is expected to occur and is based on the observation of indicator wildlife species on and around the croplands. The <u>"safety net" is a due-diligence monitoring plan</u>.

11.4.3Summary

- (i) No signs of pollution were found.
- (ii) There is remaining habitat surrounding the proposed development area.
- (iii) The existing terrestrial ecosystem will adapt to new development and will still function. With mitigation and can provide habitat for various biota.
- (iv) The level of pollution can be expected to be low.
- (v) The monitoring currently conducted can be adapted to include mitigation.
- (vi) There is a no probability of risk of infecting wildlife with illnesses.
- (vii) There is a low probability of endangering the life of wildlife.
- (viii) No Red Data species was identified, and none found during surveys.
- (ix) Protected trees will be destroyed, identified specimens will be included in the layout of final footprint and other can be transplanted.
- (x) There is a high risk of malaria with ponding stagnant open water.

12 ECOLOGICAL SENSITIVITY ANALYSIS

The Biodiversity Act provides for listing threatened and protected ecosystems as follows: 52 (1) (a) The Minister may . . . publish a national list of threatened ecosystems in need of protection.

(b) An MEC for environmental affairs may . . . similarly publish a provincial list of threatened ecosystems.

⁴ Implications of Island Biography for Ecosystem Conservation. South African National Scientific Programmes Report No 61. September 1982.

52 (2) The following categories of threatened ecosystems may be listed in terms of subsection (1):

- 'Critically endangered' ecosystems that have undergone severe ecological degradation and are at an extremely high risk of irreversible transformation.
- 'Endangered', or 'vulnerable' ecosystems being categories of reduced degradation and risk, each less than the previous category above.
- 'Protected' ecosystems being ecosystems that are not threatened but nevertheless, are worthy of special protection.

Note:

The project area has not been published as a threatened ecosystem.

Ecological Integrity (EI)

El consists of Habitat Integrity and Biodiversity Integrity and the combined result is El, any change in either HI or BI will influence El.

Therefore, HI and BI should be able to provide an indication of an area EI. Any change in either HI or BI will alter EI.

It is the sum-total of all the systems and processes that are found in the specific ecosystem that provides an EI. The "cause-and-effect" determine the EI.

For this project the features mentioned above is valued to provide an indication of **Ecological Sensitivity (ES)** which in turn provides the EI. ES is the identification of the drivers for an ecosystem that is prone to be influenced and result in impacts.

Terrestrial Ecological Sensitivity

The sensitivity is measured by listing the aspects found to be most prevalent on the study area and the surrounding areas. They were identified during surveys.

Aspects for consideration:

- Ecological drivers: unique
- Ecological processes: complex
- Ecological functioning complex and interlinked
- Ecological corridors for communities/individuals
- Distinct landscape features
 - Wetlands
 - Pans/springs
 - Alluvial areas
 - Erosion
 - Old lands
 - Current agricultural areas
 - Ridges/mountains
- Specific biodiversity features or threatened ecosystem on site
- Special vegetation features
- Limited distribution of species
- Important and/or fine-scale habitats present
- Ecological connectivity of importance
- Corridors for Species of Conservation Concern

Sensitivity Rating:

High Sensitivity = HS

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

- Medium Sensitivity = MS
- Low Sensitivity = LS

Table 12: Ecological Sensitivity Rating

Sensitivity	Sensitivity Aspect	Present (Yes)	Reason for sensitivity
Rating		Not present (No)	
L	Ecological drivers present	No	Homogenous arid
	(unique/specialist)		environment
L	Ecological processes: complex	No	Homogenous arid
			environment
L	Ecological functioning complex and	No	No specialised habitats or
	interlinked		ecotones present
L	Ecological corridors for	Yes	Two ephemeral watercourses
	communities/individuals		and one mountain found
			outside the footprint area.
			Fences and roads also created
			corridors
L	Distinct landscape features	Yes	Endorheic Pans distributed on
			landscape
			Protected trees found on site
L	Specific biodiversity features or	Yes	Endorheic Pans. Excluded
	threatened ecosystem on site		form development footprint.
			Can benefit from seepage and
			channelled water
L	Special vegetation features (Red	Yes	Protected trees, limited
	Data- and Protected species)		number on project area due
			to suitable conditions. Same
			species are commonly found
			in surrounding area.
			No red Data species
L	Limited distribution of species	No	Species found are common in
			area and Veld Type
L	Important and/or fine-scale	Yes	Rocky outcrop (quartzite).
	habitats present		Which is isolated by
			croplands, roads and fences.
			Area already developed as
			croplands.
L	Ecological connectivity of	Yes	Remaining habitat, in specific
	importance		the large trees and pans with
		N1 -	associated trees.
L	Corridors for Species of	No	Lycaon pictus and Acinonyx
	Conservation Concern		jubatus did not use area in
			last four decades. Indication
			by Screening Tool incorrect as

well as CBA map.	
------------------	--

Rating: Low sensitivity

Comments and interpretation

- The proposed new croplands will be located directly adjoining onto existing croplands.
- The two portions of the farm are currently divided by a fence. This fence will be removed. This will provide better access and flow in the area towards and along corridors.
- Corridors found in proximity of the footprints are two minor drainage lines which allows migration at a specific seasonal period towards the Limpopo River. Mostly used by medium to small mammal species. The Limpopo River is a Mega corridor that bisects various ecosystems up-and-downstream, and access is possible both outside the project area influence area.
- The EI of the area has undergone a change; this can be expected. To include it in CBA1 and ESA1 is however incorrect. The past developments created new agriculture ecosystems that co-exist with the remaining ecosystem on the farm. Fences and farming activities (game) that developed inhibited the free-roaming populations of cheetah and African Wild dogs. Leopards are the apex mammal predator in the area.
- Farming activities does have an influence on biodiversity. What was found on site during surveys on existing croplands indicated that a co-existence has developed between "*pure natura and pure agriculture*". The presence of indicator species is proof of the on-site situation.
- Pollution "hot-spots" by agriculture practices was not found on the farm.
- Mitigation can help to provide a healthy co-existence and maintaining natural processes.

13 CONSERVATION VALUE

The quality of the Conservation Value of the vegetation is described in Table 12 as very good, good, moderate, poor, and very poor according to the following criteria.

Conservation Va	alue criteria used for evaluation
Very good	High species richness as compared to other similar vegetation types and
	units, no exotic vegetation, no human related disturbances, no invasive
	weedy vegetation.
	A specific Red Data plant occurs here.
	A plant/eco-system occurs here, which plays an important role in the
	survival of any Red Data faunal species.
Good	High species richness as compared to other similar vegetation types and
	units, low number of exotic vegetation, low human related disturbances,
	low number of invasive weedy vegetation
Moderate	Average species richness as compared to other similar vegetation types
	and units, exotic vegetation evident, human related disturbances
	observe, invasive weedy vegetation obvious
Poor	Poor species richness as compared to other similar vegetation types and

Table 13: Conservation Value

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

	units, low presence of exotic vegetation evident, substantial human
	related disturbances observed, invasive weedy vegetation obvious
Very poor	Very poor species richness as compared to other similar vegetation types
	and units, extensive exotic vegetation evident, extensive human related
	disturbances observed, extensive invasive weedy vegetation obvious

Conservation Value:

- Before development: Poor
- After development: Poor

Conservation value is all inclusive of biodiversity, ecosystems, habitat, and sensitivity. It provides a site-specific assessment of the past, present, and future role in preservation and conservation of the biotic and abiotic elements. Change in conservation value is not only agricultural development and this should be understood. Medupi Power station, upper catchments, bordering country activities, human settlements, cultural aspects and much more have an influence on the conservation. The "art" of conservation is to understand the workings on ground level by on-site conditions and the exterior influences surrounding the development area at a larger scale.

Rational:

- (i) Human disturbance was found throughout the project area over a considerate period.
- (ii) The vegetation is spatially isolated by roads, electrified game fences and adjoining crop farming.
- (iii) The project area has two supporting vegetation types within 500-1000 meters from the farm. They are the Limpopo Riparian vegetation and Zwartberg mountain.

14 IMPACTS ASSESSMENTS

Methods

The methods and format of the impact tables used in this chapter are in accordance with the requirements of the 2014 Regulations.

- The nature, which shall include a description of what causes the effect, what will be affected and how it will be affected.
- The probability (P) of occurrence, which shall describe the likelihood of the impact actually occurring. Probability will be estimated on a scale of 1-5, where 1 is very improbable (probably will not happen), 2 is improbable (some possibility, but low likelihood), 3 is probable (distinct possibility), 4 is highly probable (most likely) and 5 is define (impact will occur regardless of any prevention measures).
- > The duration (D), wherein it will be indicated whether:
 - the lifetime of the impact will be of a very short duration (0-1 years) assigned a score of 1;
 - the lifetime of the impact will be of a short duration (2-5 years) assigned a score of 2;
 - medium-term (5-15 years) assigned a score of 3;
 - long term (>15 years) assigned a score of 4; or
 - permanent assigned a score of 5;

- The extent (E), wherein it will be indicated whether the impact will be local (limited to the immediate area or site of development) or regional, and a value between 1 and 5 will be assigned as appropriate (with 1 being low and 5 being high);
- The magnitude (M), quantified on a scale from 0-10, where 0 is small and will have no effect on the environment, 2 is minor and will not result in an impact on processes, 4 is low and will cause a slight impact on processes, 5 is moderate and will result in processes continuing but in a modified way, 8 is high (processes are altered to the extent that they temporarily cease), and 10 is very high and results in complete destruction of patterns and permanent cessation of processes.
- The significance (S), which shall be determined through a synthesis of the characteristic described above and can be assessed as low, medium or high;
 - The significance rating is calculated by the following formula:
 - S (significance) = (D + E + M) xx (P)
- > The **status**, which will be described as either positive, negative, or neutral.
- > The degree to which the impact can be reversed.
- > The degree to which the impact may cause irreplaceable loss of resources.
- > The degree to which the impact can be *mitigated*.

Impact should be identified for the construction and operational phases of the proposed development. Proposed mitigation measures should be practical and feasible such that they can be realistically implemented by the applicant.

17.1 Impact on Vegetation assessment

The footprint is in a flat homogenous terrestrial landscape.

In summary the impact of the project on the available habitat will be of Local extent, Permanent duration, Medium intensity and Medium probability. The significance of the loss of habitat will be Medium without mitigation and Low with mitigation during the construction phase. During the operational phase, impacts will be Low with or without mitigation.

Table 14: Vegetation impact

Loss of indigenous vegetation or indigenous plant species due to clearing of areas of the specific veldtype.

Nature: Total clearing will take place. Protected trees are found in footprint areas. Vegetation is the main component of habitat for fauna and flora species.

	Without Mitigation	า	With Mitigation	
CONSTRUCTION PHASE				
Probability	Definite	5	Definite	5
Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Moderate	6	Low	4
Significance	Medium	60	Medium	50
Status (positive or	Negative		Negative	
negative)				
OPERATIONAL PHASE				
Probability	Improbable	2	Improbable	1

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	20	Low	16
Status (positive or negative)	Negative		Negative	
Reversibility	Low		Medium	
Irreplaceable loss of	Low		Low	
resources?				
Can impacts be mitigated?	Yes			

Mitigation:

- (i) Areas to be cleared must be delineated before clearing commence.
- (ii) Large baobab trees will be left in-situ and should be incorporated in the lay-out.
- (iii) A minimum buffer zone of not less than 8 meters should be left around each tree. This area is a no-go zone for any form of development and/or agriculture activity.
- (iv) Destruction permits be sourced from DFFE.
- (v) No infringing on the buffer zones of 32 meters along the water courses as prescribed by legislation.
- (vi) Areas in "rest" (croplands in rotation program) is planted to provide cover, produce organic material for A-horizon of soil, which also benefit soil microorganisms, prevent erosion, provide grass-veld habitat, allow better water penetration and retention of water.

Cumulative impacts: Expected that very little accumulative effects will occur for vegetation. Similar habitat is available on farm and surrounding areas for fauna.

17.2 Impact on Fauna assessment

For the mammals no endangered species was identified with probability of occurring, three (3) vulnerable species with only the Pangolin a Medium probability of occurring, eight (8) near threatened species with the Honey Badger the only high probability with two (2) medium probability and three (3) low probability. For the least concerned species six (6) is rated as high probability and three (3) as low probability. One (1) species is listed as least concerned with a high probability of occurrence. Additionally, one (1) was positively identified. Three (3) Red Listed reptile species were likely to occur on the site, none of which was confirmed. Most of the species would be associated with natural woodlands while only a few would utilise the ridges that will provide habitat in the form of shelter, roosting sites for terrestrial and bird species.

Table 15: Faunal assessment

Mammal-, bird-, amphibian-, reptile and insects will be killed or prevented to survive the development.

Nature: Total clearing will take place and faunal live forms will be killed in the processes of development and operational phases. The areas have already been fenced to prevent conflict with wildlife.

Zwartberg 72 MR
(Ecological, Red Data Report & Biodiversity Report)

	Without Mitigat	ion	With Mitigation		
CONSTRUCTION PHASE			1		
Probability	Probable	3	Improbable	2	
Duration	Permanent	5	Permanent	5	
Extent	Local	1	Local	1	
Magnitude	Moderate	6	Low	4	
Significance	Medium	36	Low	20	
Status (positive or negative)	Negative	Negative		Negative	
OPERATIONAL PHASE					
Probability	Improbable	2	Improbable	1	
Duration	Permanent	5	Permanent	5	
Extent	Local	1	Local	1	
Magnitude	Low	4	Minor	2	
Significance	Low	20	Low	16	
Status (positive or negative)	Negative	Negative			
			•		
Reversibility	Low		Low		
Irreplaceable loss of resources?	Low		Low		
Can impacts be mitigated?	Yes				

Mitigation:

- 1. Movement for large mammal species should be restricted by fences. Problem causing species such as primates, warthog and porcupines are restricted by electric barriers. Most are mobile and move away from high impact farming areas.
- 2. Smaller mammal species was observed in abundance.
- 3. Less mobile species such as tortoises should be collected and released in the nodevelopment zone. Records should be kept.

Cumulative impacts: Expected that very little accumulative effects will occur as the existing wildlife is stable and adapted to conditions.

17.3 Impact on habitat assessment

Connectivity is not good for large animal species. The Limpopo River provides lateral connectivity up-or-down stream with limited movement along the various watercourses inland to the terrestrial zone which provides a sheltered corridor for smaller species into the terrestrial landscape.

The impact of the development on connectivity is likely to be of regional extent, long duration, medium intensity and medium probability. The significance of the loss in connectivity will be Medium without mitigation and Medium with mitigation during the construction phase. During the operation phase the significance will be Medium without mitigation and Low with mitigation. The significance of the impacts during the operation phase will be high (positive) with or without mitigation.

Table 16: Habitat assessment

Terrestrial habitat will be destroyed Nature: Total transformation of habitat on an area of 955 hectares of the combined

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

area of 1954 hectares on the remaining areas of the farm Zwartberg; thus, leaving remaining terrestrial habitat to function naturally.

The croplands that are "rested" in the rotation plan is planted with natural grass which provides habitat for various species. The planted croplands created an agriculture ecosystem. There is a transition from the agriculture ecosystem to the "rested" croplands that serve as ecotone to the remaining natural areas.

cropianas that serve as cebte		naturaru	Cu5:	
	Without Mitigation	า	With Mitigation	
CONSTRUCTION PHASE				
Probability	Definite	5	Definite	5
Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Moderate	6	Low	4
Significance	Medium	60	Low	25
Status (positive or negative)	Negative		Negative	
OPERATIONAL PHASE				
Probability	Improbable	2	Improbable	1
Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	20	Low	16
Status (positive or negative)	Negative		Negative	
Reversibility	Low		Low	
Irreplaceable loss of resources?	Low		Low	
Can impacts be mitigated?	Yes		•	

Mitigation:

- 1. The crop lands will create an agriculture ecosystem, with "rested" croplands serving as ecotone to the adjoining natural areas as habitat for species.
- 2. The croplands can still function as ecological support areas.
- 3. The four natural cycles of nitrogen, water, carbon and oxygen can function on the developed areas.

Cumulative impacts: Expected that positive accumulative effects for species will occur. Red Data species, especially birds, will benefit in the winter-and early summer period when food and water is low.

17.4 Impacts on sensitive systems assessment

Construction activities will affect present habitat and species compositions directly through the alteration and disturbance of habitat, the displacement and probable destruction of species through negligence. Secondary impacts, such as the generation of noise and dust, are likely to displace some faunal species temporarily (particularly common bird species). Mitigation measures to minimise the impact on species and

their habitats, as listed under Mitigation Measures, must be implemented during this phase.

Table 17: Sensitive systems assessment

	Without Mitigation		With Mitigation	
CONSTRUCTION PHASE				
Probability	Definite	5	Definite	5
Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Moderate	6	Low	4
Significance	Medium	60	Low	25
Status (positive or negative)	Negative		Negative	
OPERATIONAL PHASE				
Probability	Improbable	2	Improbable	1
Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	20	Low	16
Status (positive or negative)	Negative		Negative	
Reversibility	Low		Low	
Irreplaceable loss of	Low		Low	
resources?				
Can impacts be mitigated?	Yes			
 The four main ecolog Monitoring of soil ar The ecotone zone be 	int. boreholes should form croplands receigical cycles found in r d water quality shou etween rested cropla that will support and	be moni ving envir nature wil Id be con nds and r enhance	tored to assess the conment. I still function. ducted quarterly. natural veld can be	ne qualit supporte

17.5 Impact on biodiversity assessment

<u>Biodiversity supports</u> various lives and livelihoods. It does this by providing essential services.

Biodiversity is:

- A source of harvestable goods including food, medicines and building materials.
- Essential for regulation of natural processes and the earth's life support system, e.g., carbon sequestration, soil formation, and purification of water.
- Essential for pollination of commercially valuable crops and biological control of pests and diseases.
- A source of spiritual and religious enrichment and well-being.

Perhaps most important of all, biodiversity is the basis for evolution and adaption to changing environment, making it essential for survival of life. The following issues and aspects were considered:

At the gene level, to what extent will the proposal have significant effects on

- Genetic diversity of species, particularly rare and declining species and those with identified as priorities in NBSAPs and/or sub-national biodiversity plans?
- Opportunities for species populations to interact, e.g., by increasing habitat fragmentation and isolation?
- Risk of extinction?
- Persistence of locally adapted populations?

At the <u>species</u> level, to what extent will the proposal:

- Alter the species-richness or species-composition of habitats in the study area?
- Alter the species-composition of communities?
- Cause some species to be lost from the area?
- Affect species identified as priorities in NBSAPs and/or sub-national biodiversity plans?
- Increase the risk of invasion by alien species?

At the <u>ecosystem</u> level, to what extent will the proposal:

- Change the amount, quality, or spatial organization of habitat?
- Affect plans to enhance habitat availability or quality?
- Damage ecosystem processes and services, particularly those on which local communities rely?

Table 18: Biodiversity at gene level

Biodiversity: At gene level				
Genetic diversity of species, particularly rare and declining species, and those with				
identified as priorities in NBSAPs and/or sub-national biodiversity plans				
	Without Mitigation		With Mitigation	
CONSTRUCTION PHASE				
Probability	Definite	5	Probable	3
Duration	Permanent	5	Permanent	5
Extent	Local	1	Local	1
Magnitude	Moderate	6	Low	4

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Significance	Medium	60	Medium	30	
Status (positive or	-		+		
negative)					
OPERATIONAL PHASE					
Probability	Probable	2	Probable	2	
Duration	Permanent	5	Permanent	4	
Extent	Local	1	Local	1	
Magnitude	Low	4	Minor	2	
Significance	Low	20	Low	14	
Status (positive or	-		+		
negative)					
	·				
Reversibility	Low		Low		
Irreplaceable loss of	Low		Low		
resources?					
Can impacts be mitigated?	Yes				
Mitigation:					
1. No further damage	should be allowed to	the wate	ercourse (located ou	tside the	
footprint) and quart	zite rocky outcrops a	nd remain	ing terrestrial habita	t.	
2. Water quality for e	existing and new ag	riculture	developed areas sl	nould be	
monitored to assess			-		
receiving environme			C		
3. The buffer zones ald		nd fences	will also be able to	function	
as ecotone suitable l					
Cumulative impacts: Expecte	•		ffects for small man	nmal and	
bird species will occur. Red I	•				
early summer period. Oth		-			
croplands in rotation "rest" r				Ũ	
Biodiversity: At gene level					
Opportunities for species	populations to i	nteract,	e.g. by increasing	habitat	
fragmentation and isolation					
	Without Mitigation	า	With Mitigation		
CONSTRUCTION PHASE					
Probability	Definite	3	Probable	3	
Duration	Permanent	5	Permanent	5	
Extent	Local	1	Local	1	
Magnitude	Moderate	6	Low		
Significance	Moderate	36	Moderate	4	
Significance				4 30	
Status (positive or	Negative		Positive	-	
	Negative		Positive	-	
Status (positive or	Negative		Positive	-	
Status (positive or negative)	Negative Probable	3	Positive Probable	-	
Status (positive or negative) OPERATIONAL PHASE		3		30	
Status (positive or negative) OPERATIONAL PHASE Probability	Probable		Probable	30	

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

	Low	4	Minor	2
Significance	Moderate	30	Moderate	24
Status (positive or	Negative		Positive	
negative)				
	Γ		1	
Reversibility	Low		Low	
Irreplaceable loss of	Low		Low	
resources?				
Can impacts be mitigated?	Yes			
 Mitigation: Damage should not be allowed to the remaining landscape, quartzite rocky outcrops and remaining terrestrial habitat. The buffer zones along the cropland edges and fences will also be able to function as ecotone as suitable habitat for species survival. Watercourses outside the development footprint remain unchanged and can act as corridors for small mammal species. Cumulative impacts: Expected that positive accumulative effects for small mammal species will occur. Red Data species, especially birds, will benefit in the winter-and early summer period when area is dry and food and water availability low. Species such as Cori Bustard can breed in croplands in rotation rest phase which provide food, breeding location and safety from predators (the croplands is fenced and electrified that prevent predation). Biodiversity: At gene level 				
, -				
Risk of extinction				
Risk of extinction	Without Mitigation	۱	With Mitigation	
Risk of extinction CONSTRUCTION PHASE				2
Risk of extinction	Distinct	n 3	With Mitigation Probable	3
Risk of extinction CONSTRUCTION PHASE Probability	Distinct possibility	3	Probable	_
Risk of extinction CONSTRUCTION PHASE Probability Duration	Distinct possibility Medium-term	3	Probable Short duration	2
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent	Distinct possibility Medium-term Local	3	Probable Short duration Local	_
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent	Distinct possibility Medium-term	3 3 1	Probable Short duration	2
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent	Distinct possibility Medium-term Local	3 3 1	Probable Short duration Local	2
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude	Distinct possibility Medium-term Local Moderate	3 3 1 4	Probable Short duration Local Low	2 1 4
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance	Distinct possibility Medium-term Local Moderate	3 3 1 4	Probable Short duration Local Low Medium	2 1 4
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance Status (positive or	Distinct possibility Medium-term Local Moderate	3 3 1 4	Probable Short duration Local Low Medium	2 1 4
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance Status (positive or negative)	Distinct possibility Medium-term Local Moderate	3 3 1 4	Probable Short duration Local Low Medium	2 1 4
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance Status (positive or negative) OPERATIONAL PHASE	Distinct possibility Medium-term Local Moderate Medium -	3 3 1 4 24	Probable Short duration Local Low Medium +	2 1 4 21
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance Status (positive or negative) OPERATIONAL PHASE Probability	Distinct possibility Medium-term Local Moderate Medium - Probable	3 3 1 4 24 3	Probable Short duration Local Low Medium + Improbable	2 1 4 21 2
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance Status (positive or negative) OPERATIONAL PHASE Probability Duration	Distinct possibility Medium-term Local Moderate Medium - Probable Medium-term	3 3 1 4 24 3 3 3	Probable Short duration Local Low Medium + Improbable Short	2 1 4 21 2 2 2
Risk of extinction CONSTRUCTION PHASE Probability Duration Extent Magnitude Significance Status (positive or negative) OPERATIONAL PHASE Probability Duration Extent	Distinct possibility Medium-term Local Moderate Medium - Probable Medium-term Local	3 3 1 4 24 24 3 3 3 1	Probable Short duration Local Low Medium + Improbable Short Local Local	2 1 4 21 2 2 1

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Reversibility	Low		Low	
Irreplaceable loss of	Low		Low	
resources?				
Can impacts be mitigated?	Yes			
Mitigation:				
•	e should be allowed	to the	e remaining landso	ape the
-	rse, quartzite rocky		-	
habitat for species us	se and process function	ning.	-	
	ecies can move freely	-	out of fenced cropla	inds that
serve as feeding nish	areas.			
3. Birds and smaller r	nammals also use th	e cropla	ands rested in the	rotation
program for breeding	5.	-		
4. The surrounding wo	odland vegetation wi	ll receiv	e seepage water w	hich will
benefit the trees alo	ng the cropland edges	waterco	ourse and subsequer	nt supply
habitat for the speci	es. The trees will flour	ish ever	n in the winter temp	eratures
	epage water supply, pr			
5. Buffer zones will rest	ore and function of pro	oviding l	preeding and surviva	I.
Cumulative impacts: Expect	ed that positive accu	mulative	e effects for small	mammal
species will occur. Red Data	species, especially bird	s, will be	enefit in the winter-a	and early
summer period. Species alor	ng the drainage line w	voodland	l vegetation will also	b benefit
by the seepage water.			-	
Biodiversity: At gene level				
Persistence of locally adapted	d populations			
, ,	Without Mitigation With Mitigation			
CONSTRUCTION PHASE	l			
Probability	Probable	3	Definite	5
Duration	Short	2	Permanent	5
Extent	Local	1	Local	1
Magnitude	Moderate	6	Minor	2
Significance	Medium	27	Moderate	40
Status (positive or	-		+	
negative)				
OPERATIONAL PHASE	l 			
Probability	Distinct	3	Definite	5
	possibility			
Duration	Permanent	5	Permanent	5
Extent	Local	1	Surrounding Area	3
Magnitude	Low	4	Minor	2
Significance	Low	30	Low	50
Status (positive or	+		+	
negative)				
Reversibility	Reversibility Low Moderate			
Reversibility Low Moderate				

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Irreplaceable loss of	Low	Low	
resources?			
Can impacts be mitigated?	Can impacts be mitigated? Yes		
Mitigation:	Mitigation:		
1. Remaining terrestrial and watercourse habitats will be preserved.			
2. A Water quality monitoring plan to detect pollution can serve as early warning			
of possible build-up of pesticides.			
3. Proper control during construction.			
Cumulative impacts: Expected that positive accumulative effects for water small			
mammal species will continue. Red Data species, especially birds, will benefit in the			
winter and and, and a second second when the same has little to be suffered water. Consistent			

winter-and early summer period when the area has little to no surface water. Species along the woodland vegetation will also benefit by the seepage water. Browsing capacity, nesting sites and general habitat will benefit.

Table 19: Biodiversity at species level

Biodiversity: At species level, to what extent will the proposal:

- Alter the species-richness or species-composition of habitats in the study area?
- Alter the species-composition of communities? Conservation Value: Low
- Cause some species to be lost from the area? Low
- Affect species identified as priorities in NBSAPs and/or sub-national biodiversity plans? **Low**

	Without Mitigation		With Mitigation	
CONSTRUCTION PHASE				
Probability	Improbable	2	Very improbable	1
Duration	Very short	1	Very short	1
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	12	Low	4
Status (positive or	-		+	
negative)				
OPERATIONAL PHASE				
Probability	Improbable	2	Very improbable	1
Duration	Very short	1	Very short	1
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	12	Low	4
Status (positive or	-		+	
negative)				
Reversibility	Yes		Yes	

• Increase the risk of invasion by alien species? Low.

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Irreplaceable loss of	Low	Low			
resources?					
Can impacts be mitigated? Yes					
Mitigation:					
1. Identified protected	plants can be removed and r	e-planted; implement buffer			
zones be implemente	zones be implemented on larger baobab trees.				
2. Buffer zones must be left intact between croplands.					
3. ECO implement due	diligence training and auditing				
4. Lower game number	4. Lower game numbers to a number that reflect 50% of grazer capacity and 75%				
for browsers.					
Cumulative impacts:					
The area has a low number of large and medium size herbivores. The species richness is					
low and does not reflect the expected historical species richness due to continuous					
farming and human development activities. The species present will however be able to					
function naturally on the remaining farm area.					

Table 20: Biodiversity at ecosystem level

Biodiversity: At the ecosystem level, to what extent will the proposal:

- Change the amount, quality, or spatial organization of habitat?
- Affect plans to enhance habitat availability or quality?
- Damage ecosystem processes and services, particularly those on which local communities rely?

	Without Mitigation		With Mitigation	
CONSTRUCTION PHASE				
Probability	Improbable	2	Very improbable	1
Duration	Very short	1	Very short	1
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	12	Low	4
Status (positive or	-		+	
negative)				
OPERATIONAL PHASE				
Probability	Improbable	2	Very improbable	1
Duration	Very short	1	Very short	1
Extent	Local	1	Local	1
Magnitude	Low	4	Minor	2
Significance	Low	12	Low	4
Status (positive or	-		+	
negative)				
Reversibility	Yes		Yes	

Zwartberg 72 MR (Ecological, Red Data Report & Biodiversity Report)

Irreplaceable loss of	Low	Low			
resources?		LOW			
Can impacts be mitigated?	Yes				
-	Mitigation:				
1. The remaining habitat can function naturally, although at a lower intensity, due					
	to size on the farm. It can still function as a collectively whole with the adjoining areas for natural processes spatially. It should be managed by a management				
	cesses spatially. It should be	managed by a management			
plan.					
	ercourse-and rocky outcrops				
	d further and used as corridors				
	wed in remaining landscape of				
	 ECO implement due diligence training and auditing. Lower game numbers to a number that reflect 50% of grazer capacity and 75% 				
-	s to a number that reflect 50%	% of grazer capacity and 75%			
for browsers.					
- · ·	6. Monitoring plans must be compulsory for soil-water quality be conducted				
seasonally.	a dution for the owner to the stime				
	n driver for the area is the Lim				
	biodiversity. The terrestrial la				
	nt on the river. Without w	•			
	it will not be able to mainta				
	without water from yearly rainfall in the catchment. The changing climate conditions,				
droughts, human settlements (and associated erosion in those areas), water users along					
the upper reaches of the river's catchment and the local farming activities of the					
farming nodes all contribute to the "stress" placed on the ecosystems and the					
communities it supports. This is only the South African perspective. The same					
	considerations have also to be taken into consideration for Botswana. Adapting to				
conservation farming practices, better irrigation options and integrating croplands into					
being "utilised" by wildlife can support the survival of species and communities.					
Cumulative monitoring should be considered as an integrated planned option for					
farming and ecosystem stabi	lity.				

15 MITIGATION MEASURES

- 15.1 Impact on Vegetation
- 15.1.1Trees, shrubs, and forbs should be protected during construction and incorporated into the system. Such as:
 - (i) Large baobab tree(s) in new crop areas should not be removed but incorporated in the lay-out plans.
 - (ii) Smaller baobab trees should be replanted.
 - (iii) Buffer area around quartzite outcrop.
 - (iv) Watercourse outside development footprint should be maintained as corridor.
 - (v) No fires must be allowed in remaining areas of farm.
- 15.1.2The "island" zones must be left intact, they are:
 - (i) Pans and drainage lines outside development footprint.

- (ii) Quartzite rocky outcrop.
- 15.1.3 Trees must be planted on the inside of the fences that encloses the croplands. These are specific identified trees that will serve as ecotone transition barrier for species and will also serve as habitat for birds, reptiles, and insects. The trees will also serve as visual and climate (wind/shade) barriers. It will support connectivity and corridors for migration.
- 15.1.4Permits for destruction of protected trees must be applied for.
- 15.1.5Permit for cultivation of virgin soil must be applied for.
- 15.2 Impact on Fauna
- 15.2.1The number of large game species should be adapted downwards to prevent trophic stress and impact on vegetation and resultant erosion.
- 15.2.2The crop areas should be game fenced to prevent conflict with damage causing animals such as primates, warthog, and porcupines.
- 15.2.3Beehives should be incorporated in "created" ecotone areas.
- 15.2.4Bat-houses can also be erected to help with insect control.
- 15.2.5Poles of 6 meters and higher can be planted in the sterilized areas in the croplands which is not planted serving as perches for smaller falcons.
- 15.3 Impact on Habitat
- 15.3.1The connectivity and corridors for larger mammals has already been interrupted by previous development. For medium and small species, it will re-establish after completion of works and the corridors created.
- 15.3.2Numbers for larger game species should be adapted downwards.
- 15.3.3The crop lands "rested" should be used as habitat for small mammals and birds.
- 15.3.4An inclusive monitoring plan to maintain the ecological and conservation integrity of the area and to measure pollution is necessary. This must form part of the Global-Gap Program.

16 Summary of Findings

- 16.1 Zwartberg farm has been occupied for a century and two decades. This left the farm with a moderately changed environment. From open woodland savanna to closed savanna. Roads, fences, preventing fires and overgrazing resulted in the changed vegetation structure and presence of encroacher species.
- 16.2 Change in the receiving environment was historically linked to human presence, change in farming activities, change in farming technology, change in farming practices (conservation farming), changes in market needs for products. Each influenced the receiving environment.
- 16.3 The Veldtype is classified as Least Concerned and is the largest in the Limpopo Province.
- 16.4 No Red Data species are found permanently on the farm.
- 16.5 No protected species as listed in LEMA was found.
- 16.6 The biodiversity category is more correctly representing Supporting Ecosystem 2.
- 16.7 Corridors are present and will continue to develop and function during the operational phase.
- 16.8 Grassland habitat created by rotation crop farming favor various wildlife species. As example is Kori Bustard that breed and raise chicks. They are in a protected area inside a fenced area

where the main predators for the species black-backed jackal and primates can't impact on the nest or chicks.

- 16.9 The development will create an agriculture ecosystem linked by a changed natural area as an ecotone zone linking with the remaining natural habitat on the farm. This can be enhanced by the planting of an ecotone tree line as described in paragraph 15.1.3 above.
- 16.10 Soil analysis monitoring reports indicate a "healthy" soil structure.
- 16.11 No pollution was found.
- 16.12 Indicator wildlife species were found throughout the farm and on croplands and areas adjoining. The farm provides habitat for species which is not a complete list of species for the region but when listed collectively with the adjoining farms provides a "broader" list of species as indication of the functioning of populations.

17 CONCLUSION

The project area has been progressively altered by past human activities. The Conservation Value of the area is that of Low with average species richness as compared to other similar vegetation types and units, low presence of exotic vegetation was found but evidence of human related disturbances observed. Habitat was altered by overgrazing, fire, and croplands. It should be placed in context to the region (including Botswana) to interpret the level of change on the effect thereof on biodiversity. The remaining area of the farm can still function as part of the ecosystem.

The availability of similar habitats under conservation (private initiative) protection in the immediate surrounds was used in consideration of assessments in this report.

The biodiversity on the farm will not have an irreparable influence on the terrestrial ecosystem which can still function and support- and being supported by the agriculture ecosystem created as an Ecological Support Area 2.

The species richness will not be affected and/or specific communities adversely effectuated in such a manner that they will lead to their demise.

A habitat assessment and literature assessment allowed for the listing of no red data fauna and flora species that could potentially occur on the site, although none of the species were found it is still mandatory to ensure that a knowledgeable environmental-and conservation person with experience is used on the project as environmental control officer. This is during the construction phase as well as the operational phase.

18 **RECOMMENDATIONS**

It is recommended that the following is incorporated in the EIR:

- 14.1 That the mitigation measures in this report is incorporated in the environmental impact assessment report.
- 14.2 As safeguard it is recommended that monitoring for soil "health" and water quality is conducted every year for pollution detection and assessment.
- 14.3 That an independent environmental assessment practitioner is appointed as environmental control officer (ECO) to monitor the receiving environment during construction and to implement the EMP.
- 14.4 That all mitigated and other issues are incorporated and implemented through an environmental management plan.
- 14.5 That the recommendation in this and other specialist reports is implemented.

- 14.6 That the environmental management plan is implemented and updated with such information as deemed necessary during the operational phase.
- 14.7 That the ECO is appointed until such time as all the mitigating measures has been implemented and activated and the final ECO report has been submitted to LEDET: Compliance Monitoring and a completion certificate has been issued.
- 14.8 Planting of local indigenous trees to serve as windbreakers and shade but most importantly habitat for insects and birds can make a significant positive impact on the ecotone between croplands and remaining natural vegetation.
- 14.9 A Conservation and Farming Ecotone Monitoring Plan must be compiled by a conservation specialist and should be updated every year to incorporated new farming activities and techniques. This will serve as support document for the preservation and promotion of Biodiversity.

REFERENCES

Acock's, J.P.H. 1988. Veld Types of South Africa. Memoirs of the Botanical Survey of South Africa N. 57. Botanical Research Institute

Benhin, J. K. A. 2008. South African Farming and climate change: An economic assessment of impacts. Global Environmental Change Journal.

Barnes, K.N. (ed.) 2000. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. Bird Life South Africa, Johannesburg

Branch, W.R. 1998. Field Guide to Snakes and other reptiles of Southern Africa. Struik Publishers, Caper Town

Branch, W.R. 1988 (ed.) South African Red Data Book – Reptiles and Amphibians, S.A. National Scientific Programs Report No 151

Bromilow, C. 1995. Problem Plants of South Africa. Briza Publications, Pretoria

Carruthers, V. 2001. Frogs and Frogging in Southern Africa. Struik Publishers. ISBN 1-86872-607-X.

Colvin C, D le Maitre, I. Saayamn, S. Hughes. 2007. An Introduction to Aquifer Dependent Ecosystems in South Africa. Water Research Commission. Report TT 301/07.

Freeman N. M. and K. Rowntree. 2005. Our Changing Rivers. An introduction to the science and practice of Fluvial Geomorphology. Water Research Commission. Report No TT238/05.

Friedman, Y. and Daly B. (editors), 2004. Red Data Book of the Mammals of South Africa: A conservation Assessment: CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust South Africa.

GDACE 1995. Assignment of the Nature Conservation Ordinance, 1983, of the Former Province Transvaal, to Certain Provinces under Section 235 (8) of the Constitution of the Republic of South Africa 1993; No. 22.

Golding, J. Editor. 2002. Southern African Plant red Data List. Southern African Botanical Diversity Network Report No. 14. SABONET, Pretoria.

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.) 1997. The Atlas of Southern African Birds, Vol. 1 & 2. Bird Life South Africa, Johannesburg

Khwidzhili R. H. I; Worth S. H.II The sustainable agriculture imperative: implications for South African agricultural extension. South African Journal of Agriculture extension. 2016.

Maclean, G.L. 1993. Roberts' Birds of Southern Africa. John Voelcker Bird Book Fund, Cape Town

Mills, G. & Hes, L. 1997. The complete book of Southern African Mammals. Struik Winchester, Cape Town, RSA

McLachlan, G. R. 1978. South African Red Data Book: Reptiles and Amphibians. SANC Programmes Report No. 23.

Mucina, L. & Rutherford, M.C. (eds.) 2006. The Vegetation of South Africa, Lesotho and Swaziland, Strelitzia *19.* South African National Biodiversity Institute, Pretoria.

Onderstall, J. 1984. South African Wildflower Guide: Transvaal, Lowveld and Escarpment including the Kruger National Park, Botanical Society of South Africa, Cape Town

Passmore, N.I. & Carruthers, V.C. 1995. South African Frogs a Complete Guide. Southern Book Publishers, Witwatersand University Press, Johannesburg

Raimondo, D., L. von Staden, W. Foden, J. E. Victor, N. A. Helme, R. C. Turner, D. A. Kamundi, P. A. Manyama. 2009. Red List of south Africa Plants. SANBI.

Rutherford, M. C., and Westfall, R.H. 1994. Biomes of Southern Africa: an objective categorization. National Botanical Institute, Pretoria.

Schmidt, E., Lotter, M. & McCleland, W. 2002. Trees and Shrubs of Mpumalanga and Kruger National Park, Jacana, Johannesburg

Siegfried, W. R. and B. R. Davies. September 1982. Conservation of Ecosystems: Theory and Practice. South African National Scientific Programmes Report No. 61.

Skinner, J.D. & Smithers, R.H.N. 1990. The Mammals of the Southern African Subregion. University of Pretoria, Pretoria, RSA.

Smithers, R.H.N. 1986. South African Red Data Book – Terrestrial Mammals. S.A. National Scientific Programmes Report no 125. Pretoria

Snyman, D. D. 1991. Drakragnorme vir Wildplase in die Mopanieveld, Noord van die Soutpansberg. Navorsing Sentrum vir Weiding. Departement van Landbou-Ontwikkeling.

South African National Parks. 2006. Mapungubwe National Park: Park Management Plan. October 2006.

Transvaal Provincial Administration: Nature Conservation Division. 1985. Atlas of the Threatened Plant Species of the Transvaal.

Transvaal Provincial Administration: Nature Conservation Division. 1993. A Herpetological Survey of the Transvaal Provincial Reserves.

Treasure, A. 1996. A Stakeholder review of the Limpopo-Shashe Transfrontier Conservation area, Southern Africa, as a tool to promote and improve adaptive management. Dissertation submitted in partial fulfillment of MSc in Biodiversity, Conservation and Management. Oxford University.

Van der Walt (Editor). 2010. Bushveld Ecology and Management. Briza Publications.

Van der Walt, R. 2009. Wild Flowers of the Limpopo Valley. Retha van der walt, Ludwiglust Game Farms. ISBN 978-0-620-43949-7.

Van Oudtshoorn, F. 1999. Guide to Grasses of Southern Africa. Briza Publications, Pretoria Van Wyk, B., Van Oudtshoor, B. & Gericke, N. 1997. Medicinal Plants of South Africa. Briza. Pretoria

Van Wyk, B. and Malan, S. 1988. Field Guide to the Wild Flowers of the Witwatersrand and Pretoria Region. Struik Publishers, Cape Town

Van Wyk, B. and Van Wyk, P. 1998. Field Guide to the Trees of Southern Africa. Struik Publishers, Cape Town

