

Locality of Study Area According to GPEMF

MAP LEGEND:

ENVIRONMENTAL MANAGEMENT ZONES

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5
Special Control Zones
Zone for Conservation, Recreation and Tourism

Gauteng Provincial Boundary

Roads

National Road

Arterial Road

Special Control Zones: (e) Dinokeng (b) CoHWHS (c) Vasidam (d) Jhb South (e) Jhb North

Annexure M Flora and Fauna Reports

FLORA ASSESSMENT OF THE REMAINING EXTENT OF PORTION 1 OF THE FARM WATERFALL 5-IR

May 2016

Landscape Architects &

Environmental Consultants: Specialist Division

T: (+27)12 346 3810 | F: (+27) 86 570 5659 | E: <u>corne@bokamoso.net</u> | <u>www.bokamoso.net</u> 36 Lebombo Street, Ashlea Gardens, Pretoria | P.O. Box 11375 Maroelana 0161

Report Author: Corné Niemandt

Reviewed by: J.V. van Greuning (Pri. Sci. Nat. reg. no. 400168/08)

Specialist

Specialist investigator: Mr. C. Niemandt (*M.Sc. Plant Science*)

Declaration of independence:

I, the above mentioned specialist investigator responsible for conducting this particular specialist flora study, declare that:

• I consider myself bound to the rules and ethics of the South African Council for Natural Scientific Professions (SACNASP);

• At the time of conducting the study and compiling this report I did not have any interest, hidden or otherwise, in the proposed development, except for financial compensation for work done in a professional capacity;

• Work performed for this study was done in an objective manner. Even if this study results in views and findings that are not favourable to the client/applicant, I will not be affected in any manner by the outcome of any environmental process of which this report may form a part;

• I declare that there are no circumstances that may compromise my objectivity in performing this specialist investigation. I do not necessarily object to or endorse the proposed development, but aim to present facts, findings and recommendations based on relevant professional experience, guidance from professional experts and scientific data;

• I do not have any influence over decisions made by the governing authorities;

• I have the necessary qualifications and guidance from professional experts (registered Pr. Nat. Sci.) in conducting specialist reports relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;

• This document and all information contained herein are and will remain the intellectual property of Bokamoso Environmental: Specialist Division. This document, in its entirety or any portion thereof, may not be altered in any manner or form, for any purpose without the specific and written consent of the specialist investigator.

VERIFICATION STATEMENT

This communication serves to verify that the flora report compiled by Corné Niemandt has been prepared under my supervision, and I have verified the contents thereof.

Declaration of independence: I, Dr. J.V. van Greuning (Pr. Sci. Nat. reg. no. 400168/08) declare that I:

- am committed to biodiversity conservation but concomitantly recognise the need for economic development. Whereas I appreciate the opportunity to also learn through the processes of constructive criticism and debate, I reserve the right to form and hold my own opinions and therefore will not willingly submit to the interests of other parties or change my statements to appease them;
- abide by the Code of Ethics of the S.A. Council of Natural Scientific Professions;
- act as an independent specialist consultant in the field of Botany;
- am subcontracted as specialist consultant by Bokamoso Environmental Consultants for the proposed Mixed Use development of the remaining extent of portion 1 of the farm Waterfall 5-IR described in this report;
- have no financial interest in the proposed development other than remuneration for work performed;
- have or will not have any vested or conflicting interests in the proposed development;
- undertake to disclose to Bokamoso Environmental Consultants and its client as well
 as the competent authority any material information that have or may have the
 potential to influence the decision of the competent authority required in terms of the
 Environmental Impact Assessment Regulations, 2014.

Dr. J. V. van Greuning

TABLE OF CONTENTS

1.		INT	RODUCTION	6
2.		OB	JECTIVES OF THE STUDY	6
3.		SC	OPE OF STUDY	6
4.		STU	JDY AREA	7
	4.	1	Regional vegetation	7
	4.	2	The study site	7
5.		ME	THODS	8
6.		RES	SULTS	8
	6.	1	Study units	8
	6.	2	Alien plants	. 10
	6.	3	Medicinal plant species	. 11
	6.	4	Red and Orange List species	. 11
	6.	5	Drainage line vegetation	. 11
		6.5.	1 Composition and Connectivity	. 11
		6.5.	2 Red and Orange List species	. 12
		6.5.	3 Medicinal and Alien species	. 12
		6.5.	4 Sensitivity	. 12
	6.	6	Grassland vegetation	. 15
		6.6.	1 Composition and Connectivity	. 15
		6.6.	2 Red and Orange List species	. 15
		6.6.	3 Medicinal and Alien species	. 15
		6.6.	4 Sensitivity	. 15
	6.	7	Rocky ridge vegetation	. 18
		6.7.	1 Composition & Connectivity	. 18
		6.7.	2 Red & Orange List species	. 18
		6.7.	3 Medicinal & Alien plant species	. 18
		6.7.	4 Sensitivity	. 18
	6.	8	Riverine vegetation	. 21
		6.8.	1 Composition & Connectivity	. 21
		6.8.	2 Red & Orange List species	. 21
		6.8.	3 Medicinal & Alien species	. 21
		6.8.	4 Sensitivity	. 21
	6.	9	Mixed alien and indigenous vegetation	. 24

	6.9.1 Composition & Connectivity	24
	6.9.2 Red & Orange List species	24
	6.9.3 Medicinal & Alien species	24
	6.9.4 Sensitivity	24
7.	FINDINGS AND POTENTIAL IMPLICATIONS	26
8.	DISCUSSION, RECOMMENDATIONS AND MITIGATION IMPLICATIONS	27
9. (CONCLUSIONS	29
10.	LITERATURE SOURCES	29
Anr	nexure A: Red Data Flora (confidential)	32

1. INTRODUCTION

Bokamoso Environmental: Specialist Division was commissioned to conduct a flora assessment for the proposed mixed used development on the remaining extent of portion 1 of the farm Waterfall 5-IR. The objective was to conduct plant species survey to determine which species occur in the site of the proposed mixed used development. Special attention was given to possible habitats for the recording of Red and Orange List plant species that may occur in the area. Furthermore, the ecological status and sensitive habitats of the site were investigated.

2. OBJECTIVES OF THE STUDY

- To assess the habitat component and current ecological status of the area;
- To identify and list the plant species occurring on the site and indicate whether they are Red and Orange List species;
- Make recommendations if any Red and Orange List species are found;
- To indicate the sensitive habitats of the area;
- To highlight the current impacts on the flora of the site; and
- Provide recommendations to mitigate negative impacts and enhance positive impacts on the current flora should the proposed development be approved.

3. SCOPE OF STUDY

This report:

- Lists all plant species, including alien species, recorded during the flora survey;
- Provide recommendations on Red and Orange List plant species;
- Indicate medicinal plant species recorded;
- Comments on ecological sensitive areas;
- Comments on current impacts affecting the flora of the site;
- Evaluates the conservation importance and significance of the area in and adjacent to the proposed development, with special emphasis on the current status of threatened species; and
- Provides recommendations to mitigate or reduce negative impacts, should the proposed development be approved.

4. STUDY AREA

4.1 Regional vegetation

The study site lies in the quarter degree square (QDS) 2628AA. The site falls in the Egoli Granite Grassland vegetation unit (Mucina and Rutherford, 2006). This vegetation unit is considered Endangered according to the National list of threatened terrestrial ecosystems for South Africa, 2011 (National Gazette no. 34809, 2011). 38% is still in a natural state with only 3% protected in Diepsloot and Melville Koppies Nature Reserves (National Gazette no. 34809, 2011; Mucina and Rutherford, 2006). The landscape is described as moderately undulating plains and low hills supporting tall, *Hyparrhenia hirta*-dominated grassland, with some woody species on rocky outcrops or rock sheets (National Gazette no. 34809, 2011). The rocky habitats show a high diversity of woody species, which occur in the form of scattered shrub groups or solitary small trees (National Gazette no. 34809, 2011). No serious alien infestation occurs within this vegetation unit, although *Eucalyptus* species are common (Mucina and Rutherford, 2006).

4.2 The study site

The proposed mixed used development is situated in Midrand, Gauteng, on the remaining extent of portion 1 of the farm Waterfall 5-IR. The extent of the study site is approximately 108.8 ha. This site is located west of the N1 highway, east of The Mall of Africa and south of Allendale road (Figure 1). Towards the south of the study site flows the Jukskeiriver.

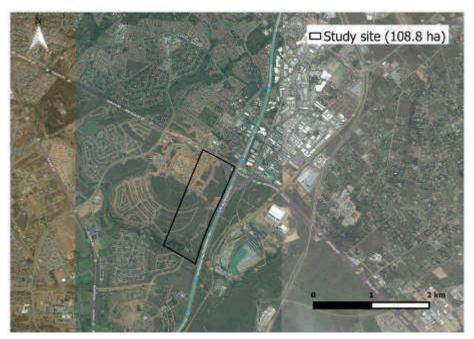


Figure 1 Aerial map to indicate the locality.

5. METHODS

The study site was visited on the 7th of April 2016. A species list was compiled for all plants recorded within each study unit by means of a 100 x 100 m rectangular plot. The drainage line vegetation was sampled by recording species within a 100 x 50 m rectangular plot. Field guides such as those by Germishuizen & Meyer (2003), Koekemoer *et al.* (2014), Pooley (1998), van Ginkel *et al.* (2011), van Oudtshoorn *et al.* (2014), van Wyk & Malan (1998) and van Wyk & van Wyk (2013) were used to identify the species. Species which could not be identified in the field were taken for identification to the H.G.W.J. Schweickerdt Herbarium (PRU), University of Pretoria. Each study unit was further assessed for the occurrence of alien plant species (Bromilow, 2010; Henderson 2001, 2007).

The survey also included information about the occurrence of Red and Orange List plant species obtained from GDARD (Pfab, 2002; Pfab and Victor, 2002; Annexure A). The Red List Plant Species Guidelines and Requirements for Biodiversity Assessments v3 issued by GDARD (2014) were consulted. A desktop study was done, indicating suitable habitats for the Red and Orange List plant species known to occur in the QDS 2628AA (Annexure A). The plant species list for this QDS obtained from SANBI (Plants of Southern Africa: an online checklist) was consulted to verify the record of occurrence at the proposed township development site. In addition to identifying Red and Orange List species in the defined study units (Figure 2), a 200 m zone outside the boundary of the study site was also scrutinised where possible, therefore excluding residential and recreational areas. The Gauteng Conservation Plan v3.3 (GDARD, 2014) was used to evaluate Critical Biodiversity Areas which is based on numerous criteria, such as Red List species.

For each plant species, the medicinal properties were assessed (van Wyk *et al.*, 2013). Medicinal plants are marked with an asterisk (*) in the respective tables (Tables 3 - 7). Harvesting of medicinal plants causes a decline of the particular species and, therefore, threatens the conservation of these species.

6. RESULTS

6.1 Study units

Five study units were identified (Figure 2):

- 1. Drainage line vegetation
- 2. Grassland vegetation
- 3. Rocky ridge vegetation
- 4. Riverine vegetation
- 5. Mixed alien and indigenous vegetation

The total numbers of plant species per study unit are listed in Table 1.

Table 1 The number of plant species recorded per study unit, including the total number of medicinal and alien plant species.

Study unit	Total number of		
	species per unit		
Drainage line vegetation	21		
Grassland vegetation	39		
Rocky ridge vegetation	60		
Riverine vegetation	30		
Mix alien and indigenous vegetation	50		

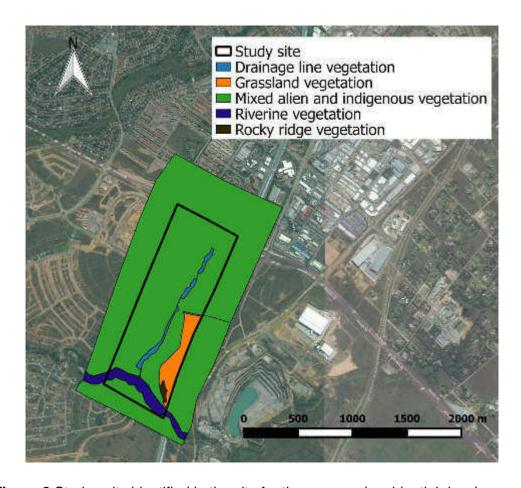


Figure 2 Study units identified in the site for the proposed residential development.

6.2 Alien plants

The total number of alien plants per Category is indicated in Table 2. For each alien species the Category is indicated according to the Alien and Invasive species lists (2014) amended in NEMBA (National Environmental Management: Biodiversity Act (ACT NO, 10 OF 2004).

For Category 1a declared weeds removal is compulsory in terms of the regulations formulated under "The Conservation of Agricultural Resources Act" (Act No. 43 of 1983), as amended. Alien invasive species in this Category may not be owned, imported into South Africa, grown, moved, sold, given as a gift or dumped in a waterway.

Category 1b alien species are major invaders that may need government assistance to remove (Act No. 43 of 1983), as amended. These alien species must be contained, and in many cases they already fall under a government sponsored management programme such as Working for Water. Alien invasive species in this Category may not be owned, imported into South Africa, grown, moved, sold, given as a gift or dumped in a waterway.

All Category 2 declared weeds should likewise be removed (Act No. 43 of 1983), as amended, unless a permit is obtained to control it in a demarcated area or a biological control reserve.

Category 3 declared weeds may not occur on any land or inland water surface other than in a biological control reserve. However, these provisions shall not apply if plants listed in Category 3 are already in existence at the time of the commencement of said regulations. In such cases, a land user must take all reasonable steps to restrict the spreading of propagating material of Category 3 plants.

Alien plants within the species lists are indicated in bold (Tables 4-6) as they suggest the particular state of each vegetation community. The respective Category is also indicated (Tables 4-6).

Table 2 Number of alien plant species per study unit

Study unit	Total species	CAT 1a	CAT 1b	CAT 2	CAT 3	Not declared
Drainage line vegetation	8	0	4	0	0	4
Grassland vegetation	8	0	3	0	0	5
Rocky ridge vegetation	9	0	7	0	0	2
Riverine vegetation	22	0	8	6	2	6
Mixed alien and indigenous vegetation	22	0	6	1	1	14

6.3 Medicinal plant species

Medicinal plant species (Table 3) are marked with an asterisk * in Tables 4 to 7. For the entire study site, eight plant species with medicinal properties were recorded, mainly in the rocky ridge vegetation. Of these, *Hypoxis hemerocallidea* is the most threatened species (Annexure A).

Table 3 Number of medicinal plant species per study unit

Study unit	Total number of	No. of medicinal
	species per unit	species per unit
Drainage line vegetation	21	2
Grassland vegetation	39	2
Rocky ridge vegetation	60	5
Riverine vegetation	30	5
Mix alien and indigenous vegetation	50	3

6.4 Red and Orange List species

Red and Orange List species occur within the QDS 2628AA (Annexure A). The Orange List species *Hypoxis hemerocallidea* was recorded in this study site. Although not recorded in any study unit, *Boophone disticha* and *Crinum* cf. *bulbispermum* were found in plastic containers between the trees at the rocky ridge. These species, amongst others, were probably collected to be sold and/or used for their medicinal properties.

6.5 Drainage line vegetation

6.5.1 Composition and Connectivity

This study unit has been rehabilitated by means of gabion structures and culverts (Figure 3 and 4), and is therefore not natural. The species recorded are typically found in drainage lines, with some alien encroaching plant species (Figure 4). Dominant species recorded include *Cyperus* sp., *Fuirena* sp., *Imperata cylindrica*, *Schoenoplectus* sp., and *Typha capensis* (Figure 5). Indigenous trees such as *Celtis africana*, *Combretum erythrophyllum*, *Olea europaea* subsp. *africana*, *Searsia lancea* and *Vachellia karroo* were planted on the embankments of the drainage line (Figure 5). A wetland specialist should be consulted to delineate and determine the extent of the buffer zone for this drainage line. Connectivity

between the constructed drainage line and the Jukskeiriver needs to be maintained in order to ensure sustainability of all biota relying on the drainage line.

6.5.2 Red and Orange List species

No Red or Orange List species have been recorded in the Drainage Line vegetation study unit. The probability of finding a Red or Orange List species in this study unit is low, but as this constructed drainage line matures in age, Red or Orange List plant species might establish in the Drainage Line vegetation study unit.

6.5.3 Medicinal and Alien species

Four of the alien species are Category 1b invaders and needs to be eradicated. Two medicinal species (Table 4) are listed for this study unit.

6.5.4 Sensitivity

The Drainage line vegetation study unit is highly sensitive (Figure 15), but requires no buffers prior to construction, as this study unit is man-made and transformed.

Table 4 Species list for the drainage line vegetation.

Growth form

Invasive Category

SHRUBS

Gomphocarpus fruticosus subsp. fruticosus*

SEDGES

Cyperus esculentus var. esculentus Cyperus obtusiflorus var. obtusiflorus Fuirena cf. pubescens Juncus sp. Schoenoplectus sp.

GRASSES

Cynodon hirsutus Imperata cylindrica Melinis repens Panicum sp. Paspalum dilatatum Paspalum urvillei

FORBS

Ipomoea purpurea
Persicaria lapathifolia
Persicaria limbata
Ranunculus multifidus
Tagetes minuta
Typha capensis*

1b

Verbena bonariensis	1b
Verbena brasiliensis	1b
Xanthium spinosum	1b

Alien species are indicated in **bold**; medicinal species are indicated with *.

Figure 3 Gabion and culverts used to rehabilitate the drainage line.

Figure 4 The drainage line with indigenous and alien species.

Figure 5 The drainage line vegetation with indigenous trees planted on the embankments.

6.6 Grassland vegetation

6.6.1 Composition and Connectivity

Although this grassland (Figure 6) is still in a natural state, it is isolated by the N1 freeway towards the southeast, Allendale road towards the north, the Kliprivier towards the south and development towards the west. Dominant grass species include *Aristida congesta, Cynodon dactylon, Digitaria eriantha, Eragrostis* spp., and *Paspalum* spp. Forbs dominating the study unit include *Commelina africana, Gerbera ambigua, Helichrysum rugulosum, Hypoxis* spp., *Polygala hottentotta, Tagetes minuta* and *Verbena* spp. (Table 5).

6.6.2 Red and Orange List species

The Orange List species *Hypoxis hemerocallidea* was recorded in this study unit. Although not recorded in the field, *Boophone disticha* was found in a plastic container close to the study unit (Figure 7). This plant was probably harvested from the study unit, but as it was not recorded there and was omitted from the species list.

6.6.3 Medicinal and Alien species

Two medicinal and nine alien plant species have been listed for this study unit (Table 5). *Verbena* spp. and *Cortaderia selloana* are 1b invades and needs to be eradicated in order to protect the indigenous vegetation.

6.6.4 Sensitivity

This study unit has a medium sensitivity status, due to its natural condition (Figure 15). It is already isolated from other similar study units and will ultimately be transformed as no movement of species to other grasslands is possible.

Table 5 Species list for the grassland vegetation.

Growth form Invasive Category

Trees and shrubs

Searsia lancea Seriphium plumosum Vachellia karroo*

Grasses

Aristida congesta subsp. barbicollis Cortaderia selloana
Cymbopogon sp.
Cynodon dactylon
Dactyloctenium giganteum
Digitaria eriantha

1b

Eragrostis curvula Eragrostis gummiflua Hyparrhenia hirta **Paspalum dilatatum Paspalum urvillei** Setaria sphacelata var. torta Sporobolus africanus

Forbs

Commelina africana Cucumis zeyheri Eriosema cf. salignum Gerbera ambigua Gladiolus crassifolius **Gomphrena celosioides**

Helichrysum rugulosum

Hibiscus trionum

Hilliardiella hirsuta

Hypoxis hemerocallidea*

Hypoxis iridifolia

Hypoxis rigidula

Ledebouria revoluta

Macledium zeyheri

Nidorella podocephala

Oxalis obliquifolia

Polygala hottentotta

Richardia brasiliensis

Selago densiflora

Tagetes minuta

Tephrosia capensis

Verbena aristigera 1b Verbena bonariensis 1b

Alien species are indicated in **bold**; medicinal species are indicated with *.

Figure 6 The grassland vegetation.

Figure 7 Boophone disticha found in a plastic container on site.

6.7 Rocky ridge vegetation

6.7.1 Composition and Connectivity

Numerous trees occur in this unit, and herbaceous species not found elsewhere in the study site (Table 6; Figure 8). Species dominant in the unit include *Aloe greatheadii* var.*davyana*, *Andropogon schirensis*, *Celtis africana*, *Diheteropogon amplectens*, *Diospyros lycioides*, *Kalanchoe rotundifolia*, *Ledebouria revoluta*, *Pygmaeothamnus zeyheri*, *Searsia pyroides*, *Themeda triandra* and *Ziziphus mucronata*. The Orange List species *Hypoxis hemerocallidea* was recorded in this study unit. Between the trees, plastic containers were found of species presumably harvested from the surrounding study site (Figure 9).

6.7.2 Red and Orange List species

The Orange List species *Hypoxis hemerocallidea* was recorded in this study unit (Annexure A).

6.7.3 Medicinal and Alien plant species

Five medicinal and nine alien species were recorded for this study unit (Table 6).

6.7.4 Sensitivity

Growth form

This study unit has a medium sensitivity status, due to its natural condition (Figure 15). It is already small and isolated from other similar study units and will ultimately be transformed as no movement of species to other grasslands is possible.

Invacive Category

Table 6 Species recorded in the rocky ridge vegetation.

Growth form	invasive Category
Trees and shrubs	
Asparigus larisinus	
Asparagus suaveolens	
Canthium cf. inerme	
Celtis africana	
Combretum erythrophyllum*	
Diospyros lycioides subsp. guerkei	
Elephantorrhiza elephantina*	
Euclea crispa	
Lantana camara	1b
Olea europaea subsp. africana*	
Pygmaeothamnus zeyheri	
Pyracantha coccinea	1b
Searsia pyroides	
Ziziphus mucronata*	
•	
Ziziphus zeyheriana	

Grasses

Andropogon schirensis

Brachiaria cf. serrata

Cymbopogon caesius

Cynodon dactylon

Diheteropogon amplectens var. amplectens

Eragrostis chloromelas

Hyparrhenia hirta

Melinis repens

Panicum sp.

Schizachyrium sanguineum

Themeda triandra

Trichoneura grandiglumis

Urochloa panicoides

Forbs/Succulents

Aloe greatheadii var.davyana

Bidens bipinnata

Cephalaria zeyheriana

Cleome maculata

Commelina africana

Commelina benghalensis

Crabbea angustifolia

Cyanotis speciosa

Datura ferox 1b

Delospermum sp.

Dicoma zeyheri

Eucomis sp.

Gladiolus crassifolius

Hilliardiella hirsuta

Hypoxis hemerocallidea*

Hypoxis rigidula

Ipomoea purpurea 1b

Kalanchoe rotundifolia

Ledebouria inquinata

Ledebouria ovatifolia

Ledebouria revoluta

Macledium anamala

Opuntia cf. stricta 1b

Pentanisia angustifolia

Solanum panduriforme

Stachys hyssopoides

Tephrosia elongata var. elongata

Trachyandra sp. Tritonia nelsonii

Verbena bonariensis 1b Verbena brassiliensis 1b

Ferns

Cheilanthes sp.

Alien species are indicated in **bold**; medicinal species are indicated with *.

Figure 8 The rocky ridge vegetation.

Figure 9 Containers with plant species found between the trees in the rocky ridge vegetation.

6.8 Riverine vegetation

6.8.1 Composition and Connectivity

This site is highly disturbed due rubbish flushed down the river (Figure 10), storm water outflow into the river (Figure 11) and the presence of 22 alien plant species dominating in abundance (Table 7; Figure 12). Indigenous trees that occur in this unit include *Celtis africana, Combretum erytrophyllum, Gymnosporia buxifolia* and *Vachellia karroo*. Connectivity of this study unit is very important as biota depends on the water movement for seed dispersal and migration (Table 7).

6.8.2 Red and Orange List species

No Red List species were recorded for this site.

6.8.3 Medicinal and Alien species

Of the 22 alien species, eight are listed as Category 1b invaders, six species as Category 2 invaders and two species as Category 3 invaders. Five medicinal species were listed for this study unit.

6.8.4 Sensitivity

Although this area of the Jukskeiriver is disturbed and polluted, the status still remains sensitive. Rehabilitation of this study unit is critically important to ensure sustainability of the riverine system.

Table 7 Species recorded for the riverine vegetation.

Growth form	Invasive Category
TREES and SHRUBS	
Acacia mearnsii	2
Acacia dealbata	2
Celtis africana	
Celtis australis	3
Combretum erytrophyllum*	
Gomphocarpus fruticosus subsp. fruticosus*	
Gymnosporia buxifolia	
Morus alba	3
Platanus wrightii	
Populus alba	2
Populus x canescens	2
Ricinus communis var. communis*	2
Salix babylonica	2
Solanum mauritianum	1b
Vachellia karroo*	

\sim 1	~ A	SC	`	$\overline{}$
	2 /\		_	_

Arundo donax 1b Cymbopogon nardus Cynodon dactylon

Eragrostis curvula

Paspalum dilatatum

Pennisetum clandestinum

FORBS

Amaranthus hybridus subsp. hybridus var.

hybridus

Datura stramonium*1bFlaveria bidentis1bIpomoea pupurea1bMirabilis jalapa1b

Persicaria lapathifolia

Tagetes minuta

Verbena bonariensis 1b Xanthium spinosum 1b

Alien species are indicated in **bold**; medicinal species are indicated with *.

Figure 10 Rubbish dumping in the riverine vegetation.

Figure 11 Possible polluted outflow into the Jukskeiriver.

Figure 12 Alien species such as *Populus* sp. and *Salix babylonica* dominanting the riverine vegetation.

6.9 Mixed alien and indigenous vegetation

6.9.1 Composition and Connectivity

This study unit covers the largest part of the study site (Figure 2, 13). Dominant species include *Datura stramonium*, *Digitaria eriantha*, *Gerbera ambigua*, *Ledebouria revoluta*, *Seriphium plumosum*, *Setaria sphacelata*, *Tagetes minuta*, *Verbena* spp., *and Zinnia peruviana* (Table 8).

6.9.2 Red and Orange List species

The Orange List species Hypoxis hemerocallidea was recorded in this study unit.

6.9.3 Medicinal and Alien species

21 of the 50 species recorded are alien species. Only three medicinal plant species have been recorded in this study unit.

6.9.4 Sensitivity

This study unit is not considered ecologically sensitive due to the high number of alien species found and their extensive coverage across the site.

Table 8 Species recorded for the mixed alien and indigenous vegetation.

Growth form	Invasive Category
TREES and SHRUBS	
Acacia mearnsii	2
Gomphocarpus fruticosus subsp. fruticosus*	
Melia azedarach	3
Pinus sp.	
Seriphium plumosum	
GRASSES	
Aristida congesta subsp. barbicollis	
Cortaderia selloana	1b
Cymbopogon sp.	
Cynodon dactylon	
Dactyloctenium giganteum	
Digitaria eriantha	
Eragrostis curvula	
Eragrostis gummiflua	
Hyparrhenia hirta	
Paspalum dilatatum	
Paspalum urvillei	
Setaria sphacelata var. torta	
Sporobolus africanus	

FORBS

Alternanthera pungens

Amaranthus hybridus subsp. hybridus var.

hybridus

Bidens bipinnata

Bidens pilosa

Campuloclinium macrocephalum 1b

Commelina africana Conyza bonariensis Conyza podocephala Cucumis zeyheri

Datura stramonium * 1b

Eriosema cf. salignum Gerbera ambigua

Gomphrena celosioides

Helichrysum rugulosum

Hibiscus trionum Hilliardiella hirsuta

Hypoxis hemerocallidea*

Hypoxis iridifolia Hypoxis rigidula

Ipomoea purpurea 1b

Ledebouria revoluta
Oxalis obliquifolia
Pachycarpus schinzianus
Polygala hottentotta

Polygala nottentotta **Richardia brasiliensis**

Selago densiflora

Tagetes minuta

Tephrosia capensis

Verbena aristigera Verbena bonariensis

Xanthium spinosum Zinnia peruviana

Alien species indicated in **bold**; Medicinal species indicated with *.

1b

1b

Figure 13 Mixed alien and indigenous vegetation.

7. FINDINGS AND POTENTIAL IMPLICATIONS

The drainage line vegetation and the riverine vegetation are considered ecologically sensitive. The drainage line has been altered and is not considered natural. Dumping occurs in the riverine vegetation and there is a high presence of alien species in the riverine vegetation, which needs to be rehabilitated. An alien species clearance management plan should be implemented throughout the study site. The Jukskeiriver is in need of a clean-up and possible rehabilitation. The grassland and rocky ridge are considered medium to low ecologically sensitive (Figure 15) as they are in good ecological states, but are highly fragmented with minimal connectivity to similar vegetation units.

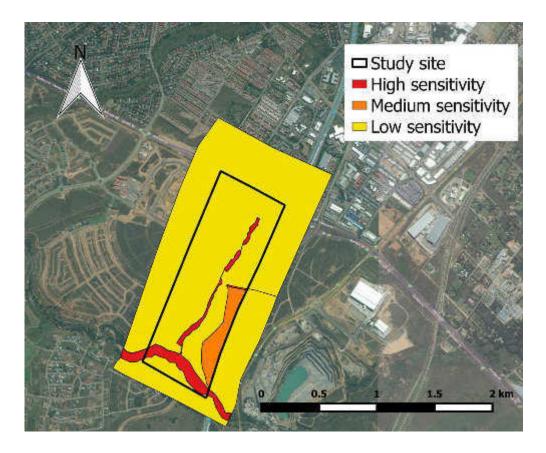


Figure 14 Map indicating the sensitive areas of the study site.

8. DISCUSSION, RECOMMENDATIONS AND MITIGATION IMPLICATIONS

Competent and appropriate management authority should be appointed to implement the Ecological Management Plan (EMP) and Environmental Impact Assessment (EIA) conditions throughout all phases of development, including the operational phase. The EMP should comply with the *Minimum Requirements for Ecological Management Plans* according to GDARD. The EMP and EIA should take into account all recommendations and mitigation measures as outlined by all vegetation assessments conducted for the EIA process. The following recommendations and mitigation measures are proposed:

- The attached sensitivity map should be used as a decision tool to guide the layout design.
- All areas designated as sensitive in the attached sensitivity map should be incorporated into an open space system. Development should be located on the areas of lowest sensitivity.

- The open space system should be managed in accordance with the EMP that complies with the *Minimum Requirements for Ecological Management Plans* and forms part of the EMP.
- Before construction is initiated, the open space system should be fenced-off from ecologically sensitive areas, and all construction-related impacts must be contained within the fenced-off development areas. These areas should be demarcated on site layout plans. All construction-related impacts (including service roads, temporary housing, temporary ablution, disturbance of natural habitat, storing of equipment/building materials/vehicles or any other activity) should be excluded from the open space system. An overspill of construction activities into areas outside of the study area is permitted within designated non-sensitive areas. No personnel or vehicles may be permitted in ecologically sensitive areas except for those authorised to do so.
- A pre- and post-construction alien and invasive control, monitoring, and eradication programme must be implemented along with an ongoing programme to ensure persistence of indigenous species, especially in the drainage line vegetation and the surrounding areas. A qualified botanist/ecologist should compile and supervise the implementation of this programme.
- Rehabilitation of natural vegetation should proceed in accordance with a rehabilitation plan compiled by a specialist registered in terms of the Natural Scientific Professions Act (No. 27 of 2003) in the field of Ecological Science.
- Where active rehabilitation or restoration is mandatory for terrestrial systems, it should make use of indigenous plant species native to the study area, but would otherwise be destroyed during clearing for development purposes, for example Celtis africana, Vachellia karroo, and Hypoxis hemerocallidea. The species selected should strive to represent habitat types typical of the ecological landscape prior to construction. Forage and host plants required by pollinators should also be planted in landscaped areas.
- It is strongly prohibited for Red List species to be relocated, but should be protected *in situ*. This means that if any Red List species is recorded on site, all development activity should be stopped, a qualified botanist should be consulted and the relevant buffers should be applied. No construction may take place within a buffered area of a Red List species.

9. CONCLUSIONS

It is recommended that sensitive areas (Figure 14) be excluded from construction, including the drainage line and riverine vegetation. The above mitigation measures and recommendations should be included in the EMP for this study site. Dumping of builders' rubble and other waste must be prevented in ecologically sensitive areas. All alien species, especially in Category 1 and 2 must be eradicated as a matter of urgency to preclude their spreading during the construction phase.

10. LITERATURE SOURCES

Bromilow, C. 2010. Problem plants of South Africa. Briza Publications, Pretoria.

GDARD. 2012. Red List Plant Species Guidelines. Compiled 26 June 2006 with minor edits in January 2012. Obtained from Lorraine Mills (<u>Lorraine.Mills@gauteng.gov.za</u>).

GDARD. 2014. Requirements for Biodiversity Assessments version 3. Gauteng Department of Agriculture and Rural Development: Biodiversity Management Directorate. 24 pages.

GDARD. 2014. Technical report for the Gauteng Conservation Plan (Gauteng C-Plan v3.3). Gauteng Department of Agriculture and Rural Development: Nature Conservation Directorate. 60 pages.

Germishuizen, G. and Meyer, N.L. 2003. Plants of southern Africa: an annotated checklist. Strelitzia 14, National Botanical Institute, Pretoria.

Henderson, L. 2001. *Alien weeds and invasive plants*. Plant Protection Research Institute, Agricultural Research Council, Pretoria.

Henderson, L. 2007. Invasive, naturalized and casual alien plants in southern Africa: a summary based on the Southern African Plant Invaders Atlas (SAPIA). *Bothalia*, **37**(2): 215–248.

IUCN. 2015. IUCN Red List Categories. Prepared by the IUCN Species Survival Commission. Gland, Switzerland.

Koekemoer, M., Steyn, H.M. and Bester, S.P. 2014. Guide to Plant Families of southern Africa. Strelitzia 31. South African National Biodiversity Institute, Pretoria.

Mucina, L. and Rutherford, M.C. 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.

National Gazette no. 34809. 9 December 2011. 1002 National Environmental Management: Biodiversity Act (1 0/2004): National list of ecosystems that are threatened and in need of protection. http://biodiversityadvisor.sanbi.org/wp-content/uploads/2012/10/20111209-National-Gazette-No-34809-of-09-December-2011-Volume-558.pdf.

National Gazette no. 37885. 1 August 2014. R. 598 National Environmental Management: Biodiversity Act (10/2004): Alien and Invasive Species Regulations. www.gpwonline.co.za.

Pfab, M.F. 2002. Priority ranking scheme for Red Data plants in Gauteng, South Africa. *South African Journal of Botany* **68**: 299-303.

Pfab, M.F. and Victor, J.E. 2002. Threatened plants of Gauteng, South Africa. *South African Journal of Botany* **68**: 370-375.

Pfab, M.F. 2014. *GDARD Requirements for Biodiversity Assessments*. Version 3. Gauteng Department of Agriculture and Rural Development: Nature Conservation Directorate.

Pooley, E. 1998. *A field to the wild flowers of Kwazulu-Natal and the eastern region*. Natal Flora Publications Trust, Durban.

Raimondo, D., Van Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D.A. and Manyama, P.A. 2009. *Red Data List of South African Plants*. Strelitzia 25, South African National Biodiversity Institute, Pretoria.

van Ginkel, C.E., Glen, R.P., Gordon-Gray, K.D., Cilliers, C.J., Muasya, M., and van Deventer, P.P. 2011. Easy identification of some South African Wetland Plants (Grasses, Restios, Sedges, Rushes, Bulrushes, Eriocaulons and Yellow-eyed grasses). WRC Report No TT 479/10. ISBN: 978-1-4312-0066-5.

van Oudtshoorn, F. 2014. Guide to grasses of southern Africa. Briza Publications, Pretoria.

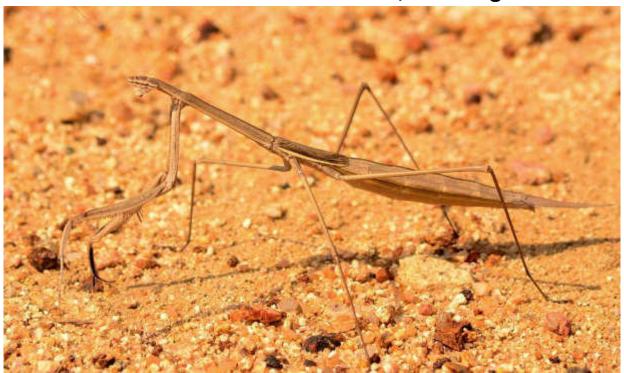
van Wyk, B. and Malan, S. 1998. Field guide to the wildflowers of the Highveld. Struik Publishers, Cape Town.

van Wyk, B. and van Wyk, P. 2013. *Field guide to trees of southern Africa*. Struik Publishers, Cape Town.

van Wyk, B-E., Van Oudtshoorn, B., and Gericke, N. 2013. *Medicinal plants of South Africa*. Briza Publications, Pretoria.

The following information is to remain confidential and is not meant for the general public. Please do not distribute under any circumstances without the permission from GDARD.

Annexure A: Red List Species (confidential)


The following Red and Orange List species are listed for the quarter degree square 2628AA. An indication is also provided if the species was recorded on site and whether suitable habitat occurs in the study site.

SPECIES	FLOWERING SEASON	SUITABLE HABITAT	CONSERVATION STATUS (¹global; ²national)	RESIDENT AT THE SITE
Adromischus umbraticola subsp. umbraticola	September- January	Rocky crevices on rocky ridges, usually south-facing, or in shallow gravel on top of rocks, but often in shade of other vegetation.	Near Threatened ¹	Not found – Suitable habitat
Bowiea volubilis subsp. volubilis	September-April	Shady places, steep rocky slopes and in open woodland, under large boulders in bush or low forest.	Vulnerable ²	Not found - Suitable habitat
Callilepis leptophylla	August-January & May	Grassland or open woodland, often on rocky outcrops or rocky hillslopes.	Declining ²	Not found – Suitable habitat
Cineraria austrotransvaa lensis	March - June	Amongst rocks on steep slopes of hills and ridges, as well as at the edge of thick bush or under trees; on all aspects and on a range of	Near Threatened ¹	Not found

		rock types: quartzite,		
		dolomite and shale;		
		1400 – 1700 m		
		Grassland, on		
		koppies, amongst		
		rocks and along		
Cineraria	March - May	seepage lines,	Vulnerable ¹	Not found
longipes		exclusively on basalt		
		on south-facing		
		slopes		
		South facing slopes		
		grows in shallow		
		soils among		
		quartzitic rocks of		
Delosperma		crystalline or	.1	
purpureum	November-April	conglomerate type,	Endangered ¹	Not found
parpaream		in open or in broken		
		shade, rarely in		
		shade, in grassland		
		with some trees.		
		Damp, open		Not found –
Eucomis	November-April	grassland and	Declining ²	Suitable
autumnalis		sheltered places		habitat
		In cold or cool,		
		continually moist		
Gunnera	October-March	localities, mainly	Declining ²	Not found
perpensa	Cotober Maron	along upland	Booming	Not lound
		streambanks.		
Habenaria		Well-drained		
bicolor	January - April	grasslands at	Near Threatened ²	Not found
DICOIOI		around 1600m.		
Habenaria	March-April	Open grassland on	Endangered ¹	Not found
mossii	i ivicii Ci I-77UIII	1		i i vol i oui i u

		sandy soil.		
Holothrix micrantha	October	Terrestrial on grassy cliffs, recorded from 1500 to 1800m.	Endangered ¹	Not found
Holothrix randii	September- October	Grassy slopes and rock ledges, usually southern aspects.	Near Threatened ²	Not found
Hypoxis hemerocallide a	September- March	Occurs in a wide range of habitats, from sandy hills on the margins of dune forests to open rocky grassland; also grows on dry, stony, grassy slopes, mountain slopes and plateaux; appears to be drought and fire tolerant.	Declining ²	Found on site
Khadia beswickii	July-April	Open areas on shallow surfaces over rocks in grassland.	Vulnerable ¹	Not found
Stenostelma umbelluliferum	September- March	Deep black turf in open woodland mainly in the vicinity of drainage lines.	Near Threatened ¹	Not found

Fauna Habitat Assessment for the remaining extent of Portion 1 of the Farm Waterfall 5-IR, Gauteng Province

Landscape Architects &

Environmental Consultants: Specialist Division

T: (+27)12 346 3810 | F: (+27) 86 570 5659 | E: <u>sampie@bokamoso.net</u>; <u>mark@bokamoso.net</u>; cw@bokamoso.net | <u>www.bokamoso.biz</u>.

36 Lebombo Street, Ashlea Gardens, Pretoria I P.O. Box 11375 Maroelana 0161

Report Authors: CW Vermeulen (Mammals)

SE van Rooyen (Herpetofauna)

Mark Cooper (Invertebrates)

Reviewed by: Reinier F. Terblanche

Review of

Fauna Habitat Assessment for the remaining extent of Portion 1 of the Farm Waterfall 5-IR, Gauteng Province of March 2016

Review: May 2016

Reviewer: Reinier F. Terblanche

(M.Sc, Cum Laude; Pr.Sci.Nat, Reg. No. 400244/05)

APPROACH OF REVIEWER TO ECOLOGICAL REVIEWS

Ecological studies and applied ecology comprise the consideration of a diversity of factors, even more so in South Africa with its exceptional high floral and faunal diversities, various soil types, geological formations and diversity of habitats in all its biomes. Therefore it would be easy to add onto or show gaps in any ecological impact assessment, rehabilitation actions or management plans stemming from ecological assessments. The approach followed here is to review the ecological study in a reasonable context and focus on the successful fulfillment of the aims of the study within the limits of cost and time.

ECOLOGICAL REVIEW: FAUNA HABITAT ASSESSMENT FOR THE REMAINING EXTENT OF PORTION 1 OF THE FARM WATERFALL 5-IR, GAUTENG PROVINCE OF MARCH 2016

Findings of the review

- The report contains details of the expertise of the persons who prepared the report and a declaration that the person who prepared the report is acting independently.
- The aims of the report are clear.
- The report provides references and descriptions of the principles and guidelines to be taken into account for fauna habitat assessment.
- Acceptable methods and limitations have been given in detail to reach the goal of the assessment.
- Relevant laws and guidelines have been mentioned and integrated.
- The report gives a clear assessment of the status fauna at the site and also added an extensive literature survey and existing knowledge survey.
- The recommendations and the conclusion are consistent with the aims of the report.
- It is to be commended that the report is economical and practical so that it adds value to the team effort of addressing the management and future of the habitats at the site, in this case in particular noting the drainage line sensitivity in a mostly disturbed and modified area.

Overall the report appears to be relevant, detailed enough for the purposes of this study and complete and finally addressing the key issues at stake.

Reinier F. Terblanche M.Sc. Ecology; Pr.Sci.Nat, Reg. No. 400244/05

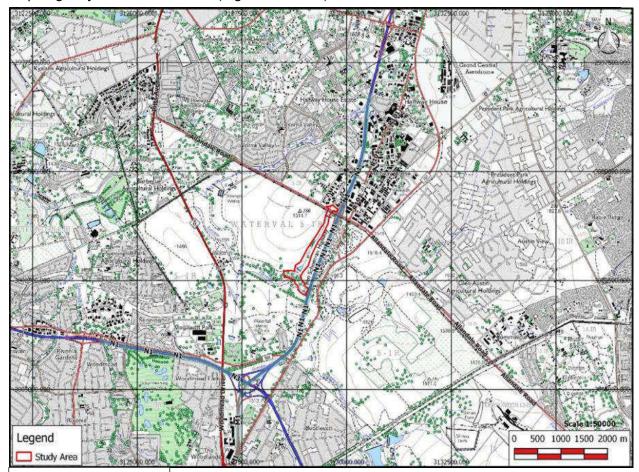
Table of Contents

1.	INTRODUCTION	. 5
2.	SCOPE AND OBJECTIVE OF ASSESSMENT	. 6
3.	STUDY AREA	. 7
4.	METHODS	. 8
5.	RESULTS	8
5.1	Drainage Line	. 9
5.2	Disturbed Area	.10
5.3	Grassland	.11
5.4	Riverine Area	12
5.5	Rocky Outcrop	.14
6.	MAMMAL HABITAT ASSESSMENT	15
6.1	Methods	15
6.2	Specific Requirements	16
6.3	Results	17
6.3.1	Mammal habitats identified	17
6.3.2	Expected and observed Mammal species	18
6. 3.3	3 Threatened and Red Listed Mammal species	19
6.4	Findings	20
7.	HERPETOFAUNA HABITAT ASESSMENT	20
7.1	Methods	20
7.2	Specific Requirements	21
7.3	Results	21
7.3.1	Herpetofauna habitats identified	21
7.3.2	Expected and observed Herpetofauna species	22
7.3.3	Threatened and Red Listed Herpetofauna species	23
7.4	Findings	23
8.	INVERTEBRATE HABITAT ASSESSMENT	24
8.1	Methods	24
8.2	Specific Requirements	24
8.3	Results	24
8.3.1	Invertebrate habitats identified	24

8.3.2	Expected and observed Invertebrate species	25
8.3.3	Threatened and Red Listed Invertebrate species	29
8.4	Findings	29
9.	OVERALL FINDINGS AND IMPLICATIONS	29
10.	LIMITATIONS	30
11.	RECOMMENDATIONS	30
12.	CONCLUSION	
13.	LITERATURE SOURCES	33
FIG	GURES:	
Figur	re 1: Locality Map	5
Figur	re 2: Arial photo of study area	6
Figur	re 3: Habitats Identified	7
Figur	re 4: Drainage Line	8
Figur	re 5: Distured Area	9
Figur	re 6: Grassland	10
Figur	re 7: Riverine Area	11
Figur	re 8: Highly polluted section of the Jukskei River	.11
Figur	re 9: Rocky Outcrop	12
Figur	re 10: Sensitivity Map	30

1. INTRODUCTION

Bokamoso Environmental Consultants CC; Specialist Division was appointed to conduct a Basic Faunal Assessment for the proposed mixed used development on the remaining extent of Portion 1 of the Farm Waterfall 5-IR, Gauteng Province, also known as Land Parcel 10 (hereafter referred to as the study area).


This report is based on the faunal species present on the study area as well as species that could potentially occur. The report acts as an overview of the probable and/or known occurrence for following faunal groups; Mammals, Reptiles, Amphibians and Invertebrates. Avifauna is not included in this report, as a separate avifaunal assessment was conducted for the study area. The primary focus of this report falls on Red Data species and other species with conservation importance occurring on or near the study area to ensure that, should any such species exists, the appropriate actions are taken to guarantee the well-being of these species.

2. SCOPE AND OBJECTIVE OF ASSESSMENT

- To qualitatively and quantitatively assess the significance of the mammal habitat components and current general conservation status of the property
- Comment on ecological sensitive areas within the study area
- Comment on connectivity with natural vegetation and habitats on adjacent site
- To provide a list of mammals which occur or might occur, and to identify species of conservation importance
- To highlight potential impacts of the proposed development on the mammals of the study site, and
- To provide management recommendations to mitigate negative and enhance positive impacts should the proposed development be approved.

3. STUDY AREA

The study area is situated on the remaining extent of Portion 1 of the farm Waterfall 5-IR, Gauteng Province and also known as Land Parcel 10. The size of the property is approximately 103 ha and is located within the 2628AA quarter degree square (QDS) (26°01'24.74"S; 28°06'35.73"E). The study area is located within the Soweto Highveld Grassland vegetation unit (Mucina and Rutherford, 2006) and the Klipriver Highveld Grassland (GP5; SANBI, 2011). The study area is located north of the N1 highway and west of Allandale road. The study area largely consists of open grassland with small scattered trees and a drainage line cutting through the center, flowing from the north to the south. A small rocky outcrop is situated on the Southeastern part of the study area. The Jukskei River directly borders the study area on the most Southerly border. The property is located approximately 1468 meters above sea level and slopes gently to the South-west (Figures 1 and 2).

Bokamoso Environmental Consultants: Specialist Division

Figure 1: Locality Map

Figure 2: Arial photo of study area

4. METHODS

Before conducting a field survey on the study area a desktop assessment was conducted to note the prevalent faunal species occurring on or near the site. A list of expected species was compiled and used as a reference during the field survey to ensure that species that should theoretically occur were not overlooked. All distinct faunal habitats were identified on site, after which each habitat was assessed to record the associated faunal species for each of the respective faunal group (Herpetofauna, Invertebrates and Mammals) present in that specific habitat.

5. RESULTS

During the habitat assessment five distinct habitats were identified within the study area. These habitats include: Disturbed Area, Drainage Line, Grassland, Rocky Outcrop, and Riverine Area (Figure 3).

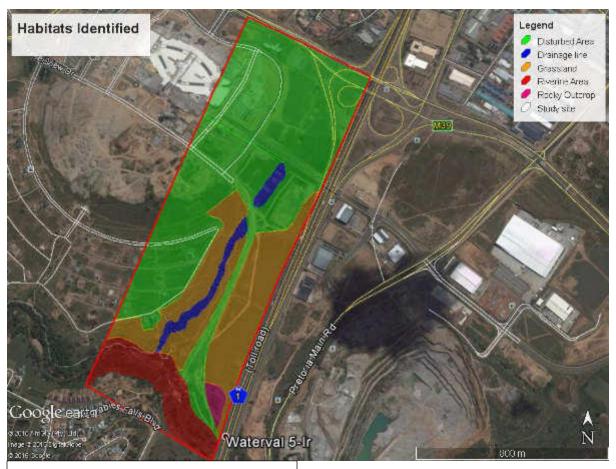


Figure 3: Different habitats in the study area

5.1 Drainage Line

A drainage line cuts through the center of the study area from the North to the South. The Drainage Line area encompasses the ideal habitat for wetland-associated fauna (**Figure 4**). The largest part of this area has been transformed as a result of bank stabilization and erosion protection through the use of gabions, berms and stilling basins in order to control and channel the flow of water. It is evident that rehabilitation of the drainage line is still an ongoing process and that this habitat will gradually improve over time. Although the current state of this area as a sensitive faunal habitat can be debated owing to its fairly recent completion, the evidence of a potentially ideal wetland/drainage line habitat is apparent when attention is paid to the wetland vegetation and faunal species currently present. Over time this area should provide the preferred habitat for various fauna species once the currant vegetation proliferates and connectivity to the natural drainage network is restored.

Figure 4: Drainage Line

5.2 Disturbed Area

This area contains various disturbances in the form of roads, degraded grassland and general disturbances as a result of trampling and degradation as result of heavy vehicle activity. Large parts of this area have been transformed by means of trampling, to such an extent that only bare ground remains (**Figure 5**). Further disturbance in the form of alien vegetation encroachment is also evident. The area contains a limited amount of natural vegetation; instead a large number of invasive plants including herbaceous plants (*Verbena bonariensis*) and alien trees (*Acacia mearnsii*). The reason for the inclusion of this area as a habitat in its own right is due to the large number of faunal species that have adapted to this unique environment.

Figure 5: Disturbed Area

5.3 Grassland

The Grassland habitat contains two distinct floristic compositions (**Figure 6**). The Eastern grassland contains a well establish population of various grass species and grassland vegetation communities, whereas the Western grassland contains large numbers of alien vegetation and other disturbances such as trampling and evidence of heavy vehicle activity. The Eastern grassland is thought to supports a few widespread fauna species. As a result of the current near natural state of the Eastern part of the grassland habitat, this section of the grassland was deemed moderately sensitive from a faunal perspective as it is likely to support a number of widespread species. The rest of the grassland habitat (Western part of grassland) is already degraded and was deemed to have a low faunal sensitivity.

Figure 6: Grassland

5.4 Riverine Area

The southernmost part of the study area boarders the Jukskei River (Figure 7). Due to large number of faunal species preferring this unique habitat type, the riverine area was expected to produce the highest species richness in comparison with the other habitats within the study area. The state of the riverine habitat was however very poor on account of the high amount of alien vegetation encroachment as well as the highly polluted river water (both chemical and solid waste) (Figure 8). The low species richness of this habitat is a direct result of the polluted river. While the riverine area provides the optimal habitat for a few Red-Data faunal species, the polluted state of the river compromises the probable occurrence of these species. If this section of the river is to be properly rehabilitated it could potentially be a highly diverse habitat and would most probably support a number of sensitive fauna. Due to the afore mentioned reasons this habitat is deemed highly sensitive, not on account of faunal species present within the habitat, but rather as a result of its connectivity functions and the potential that this area holds if proper rehabilitation thereof is implemented.

Figure 7: Riverine Area

Figure 8: Highly polluted section of the Jukskei River.

5.5 Rocky Outcrop

This habitat is situated on the South-eastern side of the study area and is directly adjacent the Eastern grassland habitat (**Figure 9**). Although it encompasses a fairly small part of the larger study area, it is expected to support a large number of faunal species. The reason for the expected high species richness in this small area is a direct result of the occurrence of a number of large indigenous trees (mainly *Vachellia karroo* and *Celtis africana*), which provides foraging and roosting habitat for a variety of arboreal, grassland and savanna species. The rocky outcrop itself also provides all the desirable nooks and crannies which will favor rupicolous faunal species.

Figure 9: Rocky Outcrop.

6. MAMMAL HABITAT ASSESSMENT

This part of the report focuses on the probable and/or known occurrence of Threatened mammal species as well as mammal species with conservation concern based on the habitats present on the study area.

Special attention was paid to the evaluation of the quantitative and qualitative habitat conditions of Red Data species judged to have a probable occurrence on the site. Mitigation measures to lesser the impacts and effects of the proposed development were suggested where applicable. The secondary objective of this investigation was to gauge which mammals might still reside in the study area and to compile a complete list of mammal diversity.

6.1 Methods

A three and a half hour field survey was conducted on the 23rd of April 2016 during which all observed mammal species as well as all the potential mammal habitats on the study site were identified. Following the field survey a desktop assessment was conducted to add additional mammal species expected to occur on the study site on account of their individual habitat preferences in accordance with the habitats identified on the study area. Mammal occurrence probability can be attributed to the well recorded and known distributions of South African mammals as well as the quantitative and qualitative nature of the habitats present on site. Moreover the 500 meters surrounding the study area were scanned for any additional faunal habitats.

Field Survey

Before the commencement of the field survey a list of expected mammal species was compiled to use as a reference in the field. All the threatened and sensitive mammals with distribution ranges overlapping the study area were included in the afore mentioned reference list. These species were prioritized and special attention was paid in terms of identifying their associated habitat preferences and noting signs of their occurrence. The field survey was conducted by means of random transect walks within each habitat. During the field survey mammal species were identified in accordance with individual habitat preferences as well as actual observations and signs such as; spoor, droppings, burrows and roosting sites indicating their presents (Chris & Tilde Stuart, 2011).

Desktop Survey

Due to the fact that the majority of mammals are either nocturnal, hibernators, secretive and/or seasonal it is increasingly difficult to confirm their presence or absence by means of actual observations alone. Therefor a number of authoritative tomes such as field guides, databases and scientific literature were utilized to deduce the probable occurrence of mammal species. The Animal Demography Unit: Virtual Museum (http://vmus.adu.org.za/) was consulted to verify the records and occurrence of recorded mammal species within the QDS 2628AA. The Gauteng Conservation Plan (C-plan v3.3) was consulted to evaluate ecologically sensitive areas associated with mammals. A comprehensive list of probable mammalian occurrence with reference to the study area was compiled on account of the well-known and documented distributions of mammals in South Africa, especially in the Gauteng province.

The occurrence probability of mammal species was deduced in accordance with a species' distribution and habitat preferences. Where a species' distribution range was found to overlap with the study area and its preferred habitat was present, the applicable species was deemed to have a high occurrence probability on or near the study area.

In the case were the preferred habitat of a species' were found to be suboptimal on the study area however its distribution range still overlapped the study area, the applicable species' occurrence probability was deemed to be medium.

When the habitat preferences of a species were absent from the site, the applicable species was deemed to have a low occurrence probability regardless of its distribution range.

6.2 Specific Requirements

During the field survey attention was paid to note any signs of potential occurrence of threatened and sensitive species as well as species associated with wetlands and ridges.

These species include:

Vlei rat (*Otomys irroratus*), Angoni vlei rat (*Otomys angoniensis*), African march rat (*Dasymys incomtus*), Water mongoose (*Atilax paludinosus*), African clawless otter (*Aonyx capensis*), Spotted-necked otter (*Lutra maculicollis*), Juliana's golden mole (*Neamblysomus julianae*), Rough-haired golden mole (*Chrysospalax villosus*), Highveld golden mole (*Amblysomus septentrionalis*), Rock dormouse (*Graphiurus murinus*), Forest shrew (*Myosorex varius*), other

shrew species, White-tailed rat (*Mystromys albicaudatus*), Short-eared trident bat (*Cloeotis percivali*) and other cave-dwelling bats.

6.3 Results

6.3.1 Mammal habitats identified

During the habitat assessment four distinct mammalian habitats were identified within the study area. These habitats include: Drainage Line, Grassland, Rocky Outcrop, and Riverine Area (**Figure 4**).

The majority of the drainage line is artificial and was constructed during 2014 to control and channel the flow of storm water through the use of berms, stilling basins and gabion walls. As a result of the relatively recent construction that took place within the drainage line no mammal species with conservation concerns are expected to occur due to their reliance on permanent wetland conditions. Due to the ongoing rehabilitation of the drainage line, it contains clusters of dense vegetation stands in the form of *Typha capensis* beds and other palustrine vegetation such as sedges and rushes. These dense vegetation stands (**Figure 4**) provide excellent refuge and nourishment for a number of robust small mammals such as Marsh Mongoose, marsh rats and cane rats. Small interconnected man-made pools (stilling basins) within the drainage line provide an excellent source of food for wetland bound mammals in the form of nutritious vegetation, various aquatic invertebrates and amphibians. Although no sensitive mammal species are currently thought to occur in this habitat, the ongoing rehabilitation could provide the optimal habitat for sensitive species such as Vlei Rats in the near future.

The Rocky Outcrop on the study area could potentially provide the preferred habitat for a number of small mammals such as elephant shrews and rock mice as it contains large boulders with suitable crevices as well as being situated next to undisturbed grassland (Stuart *et al.*, 2015). No pockets of deep sand were found to be present on the study area; as such the occurrence of golden moles is highly unlikely. Due to the isolated nature and small surface area of the rocky outcrop it was not deemed to be an area of high ecological sensitivity.

The grassland habitat provides excellent habitat for smaller rodents and insectivorous mammals such as shrews. No robust terrestrial mammals are expected to occur in the grassland habitat due to the fact that it is highly isolated with very little to no connectivity to similar grasslands.

The aforementioned, together with the small surface area of the grassland, drastically lowers the occurrence probability of nomadic mammal species such as the African Hedgehog. None of the small mammals expected to occur in the grassland habitat were observed during the field survey. Species such as Slender and Yellow Mongoose, which could potentially prey on these smaller mammals, were however observed.

The riverine area was found to be highly polluted with both solid and chemical waste (**Figure 9**). The entire riverbank was scoured for signs of otter presence but no such signs were observed. This could be as a result of the lack of their primary food source (fish and crabs) on account of the polluted state of the Jukskei River (Sibali *et al.*, 2008). The associated riparian vegetation mainly consists of large alien tries with a dense undergrowth of invasive weeds. No threatened mammals can be expected to occur within this habitat. The riverine area was deemed to be highly sensitive in terms of a mammalian habitat due to its potential to provide the preferred habitat for threatened mammals, one of which is the Spotted-necked Otter. Although no Red Data species were found to be present in this habitat, the river still provides the necessary connectivity for species such as otters to move from one stretch of the river to another. As a result of the important connectivity function, the entire riverine habitat was deemed to be highly sensitive despite its polluted state.

6.3.2 Expected and observed Mammal species

Table 1: Mammals observed or expected to occur.

	Scientific Name	Common Name	Red List Catagory	Occurrence Probability
1.	Cryptomys hottentotus	Common African Mole-rat	Least Concern	5
2.	Sylvicapra grimmia	Common Duiker	Least Concern	1
3.	Galago moholi	Southern Lesser Bushbaby	Least Concern	2
4.	Atilax paludinosus	Marsh Mongoose	Least Concern	5
5.	Galerella sanguineus	Slender Mongoose	Least Concern	5
6.	Cynictis penicillata	Yellow Mongoose	Least Concern	5
7.	Hystrix africaeaustralis	Cape Porcupine	Least Concern	3
8.	Lepus saxatilis	Scrub Hare	Least Concern	5
9.	Neoromicia capensis	Cape serotine bat	Least Concern	4
10.	Crocidura cyanea	Reddish-grey musk shrew	Data Deficient	3
11.	Crocidura hirta	Lesser musk shrew	Data Deficient	3
12.	Scotophilus dinganii	African Yellow house bat	Least Concern	4
13.	Scotophilus viridis	Greenish yellow house bat	Least Concern	3
14.	Dendromus melanotis	Grey pygmy climbing mouse	Least Concern	3
15.	Dendromus mystacalis	Chestnut climbing mouse	Least Concern	3
16.	Aethomys ineptus	Tete Veld Rat	Least Concern	2
17.	Gerbilliscus brantsii	Highveld Gerbil	Least Concern	3

18.	Rhabdomys pumilio	Four-striped grass mouse	Least Concern	4
19.	Mastomys coucha	Southern Multimammate Mouse	Least Concern	3
20.	Mus minutoides	Pygmy mouse	Least Concern	3
21.	Mastomys natalensis	Natal multimammate mouse	Least Concern	3
22.	Aethomys namaquensis	Namaqua rock mouse	Least Concern	3
23.	Elephantulus myurus	Eastern Rock Sengi	Least Concern	2
24.	Otomys angoniensis	Angoni vlei rat	Least Concern	3
25.	Otomys irroratus	Southern African Vlei Rat	Least Concern	3
26.	Steatomys pratensis	Common African Fat Mouse	Least Concern	3
27.	Procavia capensis	Rock Hyrax	Least Concern	1
28.	Epomophorus wahlbergi	Wahlberg's Epauletted Fruit-bat	Least Concern	2
29.	Thryonomys swinderianus	Greater Cane Rat	Least Concern	4
30.	Neoromicia capensis	Cape Serotine	Least Concern	2
31.	Pipistrellus rusticus	Rusty Pipistrelle	Least Concern	2
32.	Civettictis civetta	African Civet	Least Concern	1
33.	Genetta genetta	Common Genet	Least Concern	3
34.	Genetta tigrina	Cape Genet	Least Concern	2

^{*}The occurrence probability of the mammal species listed above is indicated as follows:

6. 3.3 Threatened and Red Listed Mammal species

The listed shrews (**Table 1**) are not necessarily threatened; they are listed as a precautionary measure as a result of their unknown status. Musk shrews are widespread and commonly found in residential gardens throughout Gauteng, as such they are generally assumed to be abundant. The conservation status of musk shrews are however still to be determined and as such they are listed as Data Deficient. Vlei Rats are considered to be sensitive due to their intolerance to drought and their association with wetlands. Their reliance on wetlands serves as the main reason for their sensitive status.

Suitable habitat for otters were found on the study area at the southernmost boundary where the Jukskei River boarders the property. Although the preferred habitat for otters are present within the study area, this specific stretch of the Jukskei River was found to be highly polluted with both solid and chemical waste. During the field survey no sign of otter activity was observed. As a result of the polluted state of the river, the otter's food source are thought to be scars or possibly absent, thus its occurrence within this section of the river was deemed to be highly unlikely. Although the probable occurrence of otters are very low, the river still provides a

Not likely to occur - 1, Low occurrence probability - 2, Medium occurrence probability - 3, High occurrence probability - 4. Confirmed occurrence - 5.

Red Data species ranked as defined in Friedmann and Daly's S.A. Red Data Book of the mammals of South Africa (2004).

connectivity function and as such otters might move through this stretch of the river from time to time.

No suitable bat roosts were observed on the study site, thus it is not expected that any of the threatened bat species are resident, although the area might still be utilized by bats for foraging purposes.

No other threatened or sensitive mammal species are thought to be present within the study area due to various factors such as man-made disturbances, transformed habitats, suboptimal habitat and restricted distribution ranges.

6.4 Findings

The majority of the terrestrial habitats present on the study area have been transformed and degraded to such an extent that it can no longer be regarded as Klipriver Highveld Grassland nor Soweto Highveld Grassland vegetation. The current terrestrial habitats do however provide good habitat for the small mammals deducted to be present. On account of the assemblage of mammals as well as the present terrestrial habitats, no evidence exists to consider the study area to be an area of high mammalian sensitivity.

The drainage line and riverine area have the potential to support sensitive species with conservation concerns (Vlei Rats and Otters). On the other hand, -none of these species are thought to occur at present on account of the fairly recent construction activities within with the drainage line as well as the polluted and degraded state of the riverine habitat. The drainage line is largely artificial resulting in low mammal diversity as a result of structures such as high gabion walls. Both the drainage line and riverine area provides important ecological functions in terms of connectivity, as such both are considered to be highly sensitive from a mammalian point of view regardless of their current state.

7. HERPETOFAUNA HABITAT ASESSMENT

7.1 Methods

The study site was visited on 7/04/2016. Habitat types identified within the study site was recorded, and a combined species list was compiled of the possible presence of herpetofauna species, considering the knowledge of their preferred habitats. Field guides such as those of du

Preez & Carruthers (2009), Marais (2004), and (Alexander & Marais 2007 were used for identification and habitat description of herpetofauna species.

A desktop study was done to identify suitable habitats for the Red List fauna species known to occur in the QDS 2628AA. The Animal Demography Unit: Virtual Museum (http://vmus.adu.org.za/) was consulted to verify the record of occurrence of herpetofauna species recorded within the QDS 2628AA. The Gauteng Conservation Plan (C-plan v3.3) was consulted to evaluate ecologically sensitive areas.

The majority of herpetofauna species are nocturnal, poikilothermic secretive and seasonal, which makes it difficult to observe them during field surveys. In this case the presence of herpetofauna species was examined on habitat preferred by selected species and respective documented ranges.

7.2 Specific Requirements

Adequate amount of random transect walks in the study site was attempted to identify herpetofauna and invertebrate species. Emphasis on specific Red List species that might occur on the study site:

- Striped Harlequin Snake (Homoroselaps dorsalis)
- Southern African Python (*Python natalensis*)

7.3 Results

7.3.1 Herpetofauna habitats identified

The open grassland, with no conspicuous standing or flowing water bodies in the study site, forms part of the terrestrial systems with ecological niche for both amphibians and reptiles (Du preez & Carruthers). The Riverine systems provide a permanent flow of water in a natural channel, which forms a micro-habitat for various amphibians (**Table 2**).

The grassland is a suitable habitat for the Striped Harlequin Snake (*Homoroselaps dorsalis*). It can be found in old termite mounds and under rocks (Marais 2004), both of which occur in the grassland. Most records of this snake are subterranean (Marais 2004).

7.3.2 Expected and observed Herpetofauna species

No amphibians or reptiles were observed during the survey. Eleven amphibian species and 26 reptile species are expected to occur in the QDS 2628AA (**Tables 2 & 3**).

Table 2: Amphibian species observed and/or deducted to occur in QDS 2628AA.

Family name	Species name	Common name	Conservation	Occurrence
			status	
BUFONIDAE	Schismaderma carens	Red Toad	Least Concern	4
BUFONIDAE	Sclerophrys capensis	Raucous Toad	Least Concern	3
BUFONIDAE	Sclerophrys gutturalis	Guttural Toad	Least Concern	4
HYPEROLIIDAE	Kassina senegalensis	Bubbling Kassina	Least Concern	4
PIPIDAE	Xenopus laevis	Common Platanna	Least Concern	5
PYXICEPHALIDAE	Amietia fuscigula	Cape River Frog	Least Concern	3
PYXICEPHALIDAE	Amietia quecketti	Queckett's River Frog	Least Concern	3
PYXICEPHALIDAE	Cacosternum boettgeri	Common Caco	Least Concern	4
PYXICEPHALIDAE	Pyxicephalus adspersus	Giant Bull Frog	Least Concern	3
PYXICEPHALIDAE	Tomopterna cryptotis	Tremelo Sand Frog	Least Concern	2
PYXICEPHALIDAE	Tomopterna natalensis	Natal Sand Frog	Least Concern	2

^{*}The occurrence probability of the amphibian species listed above is indicated as follows:

Not likely to occur - 1, Low occurrence probability - 2, Medium occurrence probability - 3, High occurrence probability

Table 3: Reptile species observed and/or deducted to occur in QDS 2628AA.

Family name	Species name	Common name	Conservation status	Occurrence
AGAMIDAE	Agama aculeata subsp. distanti	Distant's Ground Agama	Least Concern	2
AGAMIDAE	Agama atra	Southern Rock Agama	Least Concern	3
CHAMAELEONIDAE	Bradypodion ventrale	Eastern Cape Dwarf Chameleon	Least Concern	1
COLUBRIDAE	Crotaphopeltis hotamboeia	Red-lipped Snake	Least Concern	4
COLUBRIDAE	Dasypeltis scabra	Rhombic Egg-eater	Least Concern	2
CORDYLIDAE	Cordylus vittifer	Common Girdled Lizard	Least Concern	3
ELAPIDAE	Hemachatus haemachatus	Rinkhals	Least Concern	3
GEKKONIDAE	Hemidactylus mabouia	Common Tropical House Gecko	Least Concern	3
GEKKONIDAE	Lygodactylus capensis	Common Dwarf Gecko	Least Concern	4
GEKKONIDAE	Pachydactylus affinis	Transvaal Gecko	Least Concern	3
GEKKONIDAE	Pachydactylus capensis	Cape Gecko	Least Concern	3

^{- 4,} Confirmed occurrence – 5. The IUCN (2015) Red List of threatened species was used for conservation status of each species.

GERRHOSAURIDAE	Gerrhosaurus flavigularis	Yellow-throated Plated	Least Concern	3
		Lizard		
LAMPROPHIIDAE	Aparallactus capensis	Black-headed Centipede-	Least Concern	3
		eater		
LAMPROPHIIDAE	Atractaspis bibronii	Bibron's Stiletto Snake	Least Concern	3
LAMPROPHIIDAE	Boaedon capensis	Brown House Snake	Least Concern	4
LAMPROPHIIDAE	Lamprophis aurora	Aurora House Snake	Least Concern	3
LAMPROPHIIDAE	Lycodonomorphus	Olive House Snake	Least Concern	3
	inornatus			
LAMPROPHIIDAE	Lycodonomorphus rufulus	Brown Water Snake	Least Concern	3
LAMPROPHIIDAE	Lycophidion capense	Cape Wolf Snake	Least Concern	3
LAMPROPHIIDAE	Psammophis subtaeniatus	Western Yellow-bellied	Least Concern	3
		Sand Snake		
PELOMEDUSIDAE	Pelomedusa subrufa	Central Marsh Terrapin	Least Concern	3
SCINCIDAE	Trachylepis capensis	Cape Skink	Least Concern	3
SCINCIDAE	Trachylepis punctatissima	Speckled Rock Skink	Least Concern	5
SCINCIDAE	Trachylepis varia	Variable Skink	Least Concern	3
TESTUDINIDAE	Stigmochelys pardalis	Leopard Tortoise	Least Concern	3
TYPHLOPIDAE	Afrotyphlops bibronii	Bibron's Blind Snake	Least Concern	2

^{*}The occurrence probability of the reptile species listed above is indicated as follows:

7.3.3 Threatened and Red Listed Herpetofauna species

The Striped Harlequin Snake (*Homoroselaps dorsalis*) is the only IUCN Red Listed Species which may occur at this site although it was not observed during the site visit.

7.4 Findings

Suitable habitat for the Striped Harlequin Snake (*Homoroselaps dorsalis*) was identified. The occurrence probability of the Spotted Harlequin Snake was deemed highly unlikely on account of the small surface area of the habitat, along with the fact that the grassland is totally isolated from other similar grasslands. Five species of amphibians and three species of reptiles were given a high probability of being found in the riverine area present on the study site.

Not likely to occur - 1, Low occurrence probability - 2, Medium occurrence probability - 3, High occurrence probability - 4, Confirmed occurrence - 5. Bates et al. (2014) was used for the conservation status of each species.

8. INVERTEBRATE HABITAT ASSESSMENT

8.1 Methods

Surveys were conducted on 7/4/2016, which consisted of two random walked transects (10h18-11h08; 11h08-11h43). The dominant invertebrate species and possible suitable habitats for Red List invertebrate species were noted and sampled if necessary. Habitat characteristics for species present were derived from a survey and descriptions given in the field guide by Picker *et al.* (2004). The IUCN Red Listed Species were consulted online for conservation status of Red List species (IUCN 2015). All insects were identified *sensu*. Picker *et al.* (2004). IUCN Red Listed Butterflies were identified *sensu*. Henning *et al.* (2009) and Mecenero *et al.* (2013).

A desktop study was done to identify suitable habitats for the Red List invertebrate species known to occur in the QDS 2628AA. The Animal Demography Unit: Virtual Museum (http://vmus.adu.org.za/) was consulted to verify the record of occurrence of invertebrate species recorded within the QDS 2628AA.

The majority of invertebrate species are nocturnal, polkilothermic secretive and seasonal, which makes it difficult to observe them during field surveys. In this case the presence of invertebrate species was examined on habitat preferred by selected species and respective documented ranges.

8.2 Specific Requirements

The survey took place during the end of the wet season, thus the probability of detecting identifiable life history stages was highest based on their biology.

8.3 Results

8.3.1 Invertebrate habitats identified

The major habitats of concern in this area were grassland and wetland habitats. The reason for this is because biodiversity in grasslands is only second to the Fynbos (WWF 2016). Wetlands are protected under the RAMSAR convention (http://www.ramsar.org/) and provide the habitat for many hemimetabolous insects to complete their life-cycles as they are amphibious and rely on water for breeding.

8.3.2 Expected Invertebrate species

Table 4: Invertebrate species deducted to occur within QDS 2628AA.

Family name	Species name	Common name	Conservation status	occurrence
AGANAIDAE	Asota speciosa subsp. speciosa	Specious Tiger Moth	Not Evaluated	3
ARCTIIDAE	Utetheisa pulchella subsp.	Crimson-speckled	Not Evaluated	4
	pulchella	Footman	NI IP I	
BUTHIDAE	Parabuthus transvaalicus		Not listed	4
BUTHIDAE	Pseudolychas ochraceus		Not listed	2
CHRYSOPIDAE	Chrysemosa jeanneli		Not listed	3
CHRYSOPIDAE	Chrysoperla sp.	Green Lacewings	Not listed	3
CHRYSOPIDAE	Dysochrysa furcata		Not listed	3
COENAGRIONIDAE	Africallagma glaucum	Swamp Bluet	Not listed	4
COENAGRIONIDAE	Pseudagrion		Not listed	3
COENAGRIONIDAE	Pseudagrion salisburyense	Slate Sprite	Not listed	3
COENAGRIONIDAE	Pseudagrion spernatum	Upland Sprite	Not listed	3
CRAMBIDAE	Spoladea recurvalis recurvalis		Not Evaluated	3
CULICIDAE	Culex sp.	Mosquito	Not listed	4
CYDNIDAE	Geocnethus plagiata	Burrowing Bug	Not listed	4
GEOMETRIDAE	Acanthovalva inconspicuaria subsp. inconspicuaria		Not Threatened	2
GEOMETRIDAE	Pingasa abyssinaria subsp. abyssinaria		Not Threatened	2
GEOMETRIDAE	Rhodometra sacraria subsp. sacraria	Vestal	Not Threatened	4
GERRIDAE	Gerris sp.	Waterskater	Not listed	4
HESPERIIDAE	Coeliades forestan subsp. forestan	Striped policeman	Least Concern	1
HESPERIIDAE	Coeliades pisistratus	Two-pip policeman	Least Concern	1
HESPERIIDAE	Gegenes niso subsp. Niso	Common hottentot	Least Concern	3
HESPERIIDAE	Gegenes pumilio subsp.	Dark hottentot	Least Concern	3
HESPERIIDAE	Kedestes lepenula	Chequered ranger	Least Concern	3
HESPERIIDAE	Kedestes nerva subsp. nerva	Scarce ranger	Least Concern	3
HESPERIIDAE	Kedestes wallengrenii subsp. wallengrenii	Wallengren's ranger	Least Concern	3
HESPERIIDAE	Metisella malgacha subsp. malgacha	Grassveld sylph	Least Concern	4
HESPERIIDAE	Metisella willemi	Netted sylph	Least Concern	3
HESPERIIDAE	Tsitana tsita	Dismal sylph	Least Concern	3
HESPERIIDAE	Spialia diomus	Common Sandman	Least Concern	4
HODOTERMITIDAE	Hodotermes mossambicus	Harvester termite	Not listed	4

LIBELLULIDAE	Brachythemis leucosticta	Southern Banded	Not listed	3
LIDELLILIDAE	Crossthomia arythropa	Groundling Broad Scarlet	Not listed	
LIBELLULIDAE	Crocothemis erythraea Crocothemis sanguinolenta	Small Scarlet	Not listed Least Concern	<u>4</u> 4
	Diplacodes lefebvrii		Not listed	3
LIBELLULIDAE	•	Black Percher		<u> </u>
LIBELLULIDAE	Orthetrum Orthetrum	True atrice and Obsiderance	Not listed	
LIBELLULIDAE	Orthetrum caffrum	Two-striped Skimmer	Not listed	3
LIBELLULIDAE	Orthetrum chrysostigma	Epaulet Skimmer	Not listed	3
LIBELLULIDAE	Orthetrum julia	Julia Skimmer	Not listed	3
LIBELLULIDAE	Orthetrum trinacria	Long Skimmer	Not listed	3
LIBELLULIDAE	Pantala flavescens	Wandering Glider	Not listed	3
LIBELLULIDAE	Tramea basilaris	Keyhole Glider	Not listed	3
LIBELLULIDAE	Trithemis		Not listed	3
LIBELLULIDAE	Trithemis dorsalis	Highland Dropwing	Not listed	3
LIBELLULIDAE	Trithemis kirbyi	Orange-winged	Not listed	3
		Dropwing		
LIBELLULIDAE	Trithemis stictica	Jaunty Dropwing	Not listed	3
LYCAENIDAE	Actizera lucida	Rayed blue	Least Concern	3
LYCAENIDAE	Aloeides henningi	Henning's copper	Least Concern	2
LYCAENIDAE	Aloeides molomo subsp.	Molomo copper	Least Concern	2
LYCAENIDAE	Aloeides taikosama	Dusky copper	Least Concern	2
LYCAENIDAE	Anthene amarah subsp. amarah	Black striped hairtail	Least Concern	3
LYCAENIDAE	Anthene definita subsp. definita	Common hairtail	Least Concern	4
LYCAENIDAE	Axiocerses tjoane subsp. tjoane	Eastern scarlet	Least Concern	2
LYCAENIDAE	Cacyreus fracta subsp. fracta	Water geranium bronze	Least Concern	3
LYCAENIDAE	Cacyreus marshalli	Common geranium bronze	Least Concern	4
LYCAENIDAE	Cacyreus virilis	Mocker bronze	Least Concern	3
LYCAENIDAE	Capys disjunctus	Russet protea	Least Concern	3
LYCAENIDAE	Chilades trochylus	Grass jewel	Least Concern	2
LYCAENIDAE	Cigaritis ella	Ella's bar	Least Concern	2
LYCAENIDAE	Cigaritis mozambica	Mozambique bar	Least Concern	2
LYCAENIDAE	Cigaritis natalensis	Natal bar	Least Concern	2
LYCAENIDAE	Cupidopsis cissus subsp. cissus	Common meadow blue	Least Concern	3
LYCAENIDAE	Euchrysops dolorosa	Sabie smoky blue	Least Concern	2
LYCAENIDAE	Euchrysops subpallida	Ashen smoky blue	Least Concern	3
LYCAENIDAE	Iolaus trimeni	Trimen's sapphire	Least Concern	1
LYCAENIDAE	Lachnocnema durbani	D'Urban's woolly legs	Least Concern	2
LYCAENIDAE	Lampides boeticus	Pea blue	Least Concern	2
LYCAENIDAE	Leptomyrina henningi subsp.	Henning's black-eye	Least Concern	2
LYCAENIDAE	Leptotes species		Not listed	2
LYCAENIDAE	Myrina silenus subsp. ficedula	Common fig tree blue	Least Concern	2

LYCAENIDAE	Oraidium barberae	Dwarf blue	Least Concern	2
LYCAENIDAE	Tarucus sybaris subsp. sybaris	Dotted blue	Least Concern	1
LYCAENIDAE	Tuxentius melaena subsp. melaena	Black pie	Least Concern	2
LYCAENIDAE	Uranothauma nubifer subsp. nubifer	Black heart	Least Concern	2
LYCAENIDAE	Zizeeria knysna subsp. knysna	African grass blue	Least Concern	2
LYCAENIDAE	Zizina otis subsp. antanossa	Dark grass blue	Least Concern	2
LYCAENIDAE	Zizula hylax	Tiny grass blue	Least Concern	2
LYCOSIDAE		Wolf Spider	Not listed	4
LYNIPHIDAE	Lyniphia sp.	Sheet Orb Web Spider	Not listed	4
MYRMELEONTIDAE	Creoleon mortifer	Large Grassland Antlion	Not listed	3
MYRMELEONTIDAE	Hagenomyia tristis	Gregarious Antlion	Not listed	3
MYRMELEONTIDAE	Macroleon quinquemaculatus		Not listed	3
MYRMELEONTIDAE	Palpares caffer	Dotted Veld Antlion	Not listed	3
NOCTUIDAE	Callopistria yerburii subsp. yerburii		Not Evaluated	2
NOCTUIDAE	Sphingomorpha chlorea subsp. chlorea		Not Evaluated	2
NYMPHALIDAE	Acraea horta	Garden acraea	Least Concern	4
NYMPHALIDAE	Acraea neobule subsp. neobule	Wandering donkey acraea	Least Concern	3
NYMPHALIDAE	Byblia ilithyia	Spotted joker	Least Concern	4
NYMPHALIDAE	Charaxes jasius subsp. saturnus	Foxy charaxes	Least Concern	3
NYMPHALIDAE	Danaus chrysippus subsp. orientis	African monarch, Plain tiger	Least Concern	4
NYMPHALIDAE	Hypolimnas misippus	Common diadem	Least Concern	4
NYMPHALIDAE	Junonia hierta subsp. cebrene	Yellow pansy	Least Concern	4
NYMPHALIDAE	Junonia oenone subsp. oenone	Blue pansy	Least Concern	4
NYMPHALIDAE	Junonia orithya subsp. madagascariensis	Eyed pansy	Least Concern	3
NYMPHALIDAE	Melanitis leda	Twilight Brown	Least Concern	2
NYMPHALIDAE	Precis archesia subsp. archesia	Garden commodore	Least Concern	3
NYMPHALIDAE	Stygionympha wichgrafi subsp. wichgrafi	Wichgraf's hillside brown	Least Concern	2
NYMPHALIDAE	Telchinia rahira subsp. rahira	Marsh acraea	Least Concern	2
NYMPHALIDAE	Vanessa cardui	Painted lady	Least Concern	4
PAPILIONIDAE	Papilio demodocus subsp. demodocus	Citrus swallowtail	Least Concern	4
PAPILIONIDAE	Papilio nireus subsp. lyaeus	Green-banded swallowtail	Least Concern	3
PIERIDAE	Belenois aurota	Brown-veined white	Least Concern	4
PIERIDAE	Belenois creona subsp. severina	African common	Least Concern	4

		white		
PIERIDAE	Belenois zochalia subsp. zochalia	Forest white	Least Concern	2
PIERIDAE	Catopsilia florella	African migrant	Least Concern	4
PIERIDAE	Colias electo subsp. electo	African clouded yellow	Least Concern	3
PIERIDAE	Colotis annae subsp. annae	Scarlet tip	Least Concern	2
PIERIDAE	Colotis evenina subsp. evenina	Orange tip	Least Concern	
PIERIDAE	Eurema brigitta subsp. brigitta	Broad-bordered grass yellow	Least Concern	4
PIERIDAE	Mylothris agathina subsp. agathina	Common dotted border	Least Concern	1
PIERIDAE	Pontia helice subsp. helice	Common meadow white	Least Concern	4
PILLBUG	Armadillidium vulgare		Not listed	4
POTOMONAUTIDAE	Potomonautes warreni	Warren's	Not listed	4
PYRGOMORPHIDAE	Phymateus viridipes	Green Milkweed Locust	Not listed	4
SALTICIDAE		Jumping Spider	Not listed	4
SCARABAEIDAE	Catharsius sesostris	Three-horned Dung Beetle	Not listed	4
SCARABAEIDAE	Liatongus militaris		Not listed	3
SCARABAEIDAE	Onitis caffer	Bronze Dung Beetle	Not listed	4
SCARABAEIDAE	Onthophagus ebenus		Not listed	3
SCARABAEIDAE	Onthophagus pugionatus		Not listed	3
SPARASSIDAE	Palystes superciliosus	Rain spiders	Not listed	4
SPHINGIDAE	Basiothia		Not Evaluated	2
SPIROSTREPTIDAE	Doratogonus sp.	Spirostreptidan Millipede	Not listed	4
THERAPHOSIDAE	Harpactira hamiltoni		Not listed	4

^{*}The occurrence probability of the invertebrate species listed above is indicated as follows:

Not likely to occur - 1, Low occurrence probability - 2, Medium occurrence probability - 3, High occurrence probability - 4,

8.3.3 Threatened and Red Listed Invertebrate species

No Red Data invertebrate species were recorded or deducted to occur on or near the study area.

8.4 Findings

The presence of three wetland species alone provides immediate evidence for the existence of the wetland and its necessary preservation. These are all hemimetabolous species which are tied to the habitat for breeding and territorial reasons. Any developmental changes to this habitat would be detrimental to their existence. These are important as putatative flagship or indicator species. The small scarlet (*Crocothemis sanguinolenta*) is easily confused with *Crocothemis erythraea* and until the possible breeding differences (alluded to by abdominal differences) between the two have been established, development of these systems should be carefully monitored. No sensitive invertebrate species were recorded or are expected to occur within the study area. Species such as *Crocothemis* which are dependent on wetland habitats are conservation priority.

9. OVERALL FINDINGS AND IMPLICATIONS

The majority of the terrestrial habitats present on the study area have been transformed and degraded. The current terrestrial habitats do however provide good habitat for a number of small mammals deducted to be present. Suitable habitat for the Striped Harlequin Snake (Homoroselaps dorsalis) was identified in the grassland habitat. The occurrence probability of the Striped Harlequin Snake was deemed highly unlikely on account of the small surface area of the habitat, along with the fact that the grassland is totally isolated from other similar grasslands. The aforementioned isolated nature of the grassland restricts the movement of fauna to and from similar habitats, as such the grassland habitat was deemed moderately sensitive from a faunal perspective. On account of the assemblage of fauna as well as the present terrestrial habitats, no evidence exists to consider the terrestrial habitats present within the study area to be of high ecological sensitivity.

The drainage line and riverine habitat have the potential to support sensitive species and/or species with conservation concerns (Vlei Rats and Otters). None of these species are believed

to occur at present on account of the fairly recent construction activities within with the drainage line as well as the polluted and degraded state of the riverine habitat. Five species of amphibians and three species of reptiles were given a high probability of occurring in the riverine area (**Tables 2 & 3**). The presence of three wetland invertebrate species provides immediate evidence for the existence of the wetland and its necessary preservation. Both the drainage line and the riverine habitat provide important ecological functions in terms of connectivity and as such both are considered to be highly sensitive from a faunal perspective regardless of their current state.

10. LIMITATIONS

The bulk of the data used to conclude the distribution of Red Data species were sourced by making use of the Animal Demography Unit: Virtual Museum data basis. Any limitations in the above mentioned data basis will in effect have implications on the findings and conclusion of this assessment. Furthermore this faunal assessment was conducted during April; hence the survey was done outside the main reproductive period of the local faunal species. Moreover, a lot of the hibernating fauna began with their hibernation period.

Limited time to conduct the survey could potentially result in not recording all species within the study area. Three and a half hours were spent on site while conducting this faunal assessment. As a result of the small size of the study area as well as the amount of disturbance on the study area, three hours was deemed sufficient time to record all the resident faunal habitats on and around the study area.

11. RECOMMENDATIONS

- An appropriate management authority that must be contractually bound to implement the EMP and ROD during the constructional and operational phase of the development should be identified and informed of their responsibilities in terms of the EMP and ROD.
- Prior to any activities commencing on site, all construction staff should be briefed in an
 environmental induction regarding the environmental status and requirements of the site.
 This should include providing general guidelines for minimizing environmental damage
 during construction, as well as education with regards to basic environmental ethics, such
 as the prevention of littering, lighting of fires, etc.

- Induction should be done for all civil contractors and for each building contractor prior to them commencing on site.
- Construction should be restricted to areas deemed to have a low to medium ecological sensitivity (Please refer to Figure 10).
- Areas where construction is to take place should be clearly demarcated and fenced off, all areas outside that of the defined works should be deemed no-go areas.
- All construction activities must be restricted to the demarcated areas to ensure that no further disturbance into the surrounding vegetation or habitat takes place.
- It is recommended that prior to the commencement of construction activities' initial clearing of all alien vegetation should take place.
- No vehicles should be allowed to move in or through the drainage line. This will cause destruction of faunal habitat and will leave notable scares on site.
- The contractor must ensure that no faunal species are trapped, killed or in any way disturbed during the constructional phase.
- It is recommended that all concrete and cement works be restricted to areas of low ecological sensitivity and defined on site and clearly demarcated. Cement powder has a high alkalinity pH rating, which can contaminate and affect both soil and water pH dramatically. A shift in the pH can have serious consequences on the functioning of soil, vegetation and fauna.
- To ensure minimal disturbance of faunal habitat it is recommended that construction should take place during winter, outside the reproductive season of the species present on site.
- Construction, vegetation clearing and top soil clearing should commence from a
 predetermined location and gradually commence to ensure that fauna present on the site
 have enough time to relocate.
- When construction is completed, disturbed areas should be rehabilitated using vegetation cleared prior to construction to ensure that the habitat stays intact and that faunal species present on the site before construction took place, return to the area.
- It is recommended that the section of the Jukskei River bordering the study area on the Southern boundary should be rehabilitated and pollution prevention methods should be put in place to prevent further habitat degradation.
- It is recommended that no construction takes place within 32 meters of the Jukskei River.
- As a result of the artificial nature of the drainage line it was concluded that no additional buffers with respect to the upper section of the drainage line are necessary.

12. CONCLUSION

Due to the sensitive nature of the drainage line and riverine areas induction with all the partaking contractors, workers, road engineers and landowners is necessary, in order to make them aware of the areas deemed to be sensitive according to this report and act accordingly. Development should be restricted to areas deemed to have a low to medium ecological sensitivity (**Figure 10**).

Given the acceptance of the recommendations, the proposed development will not result in the destruction and/or loss of important or ecologically sensitive habitat units from a faunal perspective.

Figure 10: Faunal Sensitivity Map

13. LITERATURE SOURCES

- ALEXANDER, G. J., MARAIS, J. A. 2007. *Guide to the Reptiles of Southern Africa*. Random House Struik, Cape Town. ISBN-13: 9781770073869.
- Animal Demography Unit. 2016. Virtual Museum. Accessed at http://vmus.adu.org.za/?vm.
- BATES, M.F., BRANCH, W.R., BAUER, A.M., BURGER, M., MARAIS, J., ALEXANDER, G.J. & DE VILLIERS, M.S. (eds.). 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. *Suricata 1*. South African National Biodiversity Institute, Pretoria.
- DU PREEZ, L., CARRUTHERS, V. A. 2009. *Complete Guide to the Frogs of Southern Africa*. Struik Nature, Cape Town.
- FRIEDMAN, Y. & DALY, B. 2004. Red data book of the mammals of South Africa: A conservation assessment. Johannesburg, CBSG-EWT
- GDARD. 2014. Technical Report for the Gauteng Conservation Plan (Gauten C-Plan v3.3). Gauteng Department of Agriculture and Rural Development: Nature Conservation Directorate. 60 pages.
- HENNING, G.A., TERBLANCHE, R.F. & BALL, J.B. 2009. South African Red Data Book: butterflies. South African National Biodiversity Institute Biodiversity Series 13: 63-64.
- IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015-4. http://www.iucnredlist.org. Downloaded on 19 November 2015.
- MammalMAP.2016. Virtual Museum of African Mammals. Accessed at http://mammalmap.adu.org.za/
- MARAIS, J. 2004. 'n Volledige Gids tot die Slange van Suider-Afrika. Struik Uitgewers, Kaapstad.
- MECENERO, S., BALL, J. B., EDGE, D. A., HAMER, M. L. HENNING, G.A., KRÜGER, M., PRINGLE, E. L., TERBLANCHE, R. F., WILLIAMS, M. C. 2013. Conservation Assessment of Butterflies of South Africa, Lesotho and Swaziland: Red List and Atlas. Safronics, Animal Demography Unit, Cape Town.
- MUCINA, L., AND RUTHERFORD, M.C. 2006. *The Vegetation of South Africa, Lesotho and Swaziland.* Strelitzia 19. South African National Biodiversity Institute, Pretoria.

- PICKER, M. D., GRIFFITHS, C., WEAVING, A. 2004. Field Guide to Insects of South Africa. Struik Publishers, South Africa.
- SKINNER, J.D. AND CHIMIMBA, T.C. 2005. *The Mammals of the Southern African Subregion*. 3rd edition. Cambridge University Press.
- SIBALI, L.L., OKWONKWO, J.O. AND MCCRINDLE, R.I., 2008. Determination of selected organochlorine pesticide (OCP) compounds from the Jukskei River catchment area in Gauteng, South Africa. Water SA, 34(5), pp.611-621.
- South African National Biodiversity Institute (SANBI). Threatened terrestrial ecosystems for South Africa (2011): Soweto Highveld Grassland. Available from Biodiversity GIS website (http://bgis.sanbi.org/ecosystems/showecosystem.asp?CODE=Gm%2010), accessed on 16 March 2016.
- STUART, C., AND STUART, M. 2015. Stuart's *Field Guide to Mammals of Southern Africa*. Struik Nature, South Africa
- STUART, C., STUART, T. 2000. *A Field Guide to the Tracks & Signs of Southern and East African Wildlife*. 3rd edition. Struik Publishers, Cape Town.
- TAYLOR, P.J. 2000. *Bats of Southern Africa*. University of Natal Press: Pietermaritzburg.
- TERBLANCHE, R. F., EDGE, D. A. 2007. The first record of an Orachrysops in Gauteng. Metamorphosis 18(4): 131-141.

AVIFAUNAL ASSESSMENT OF

THE REMAINING EXTENT OF PORTION 1 OF THE FARM WATERFALL 5-IR ALSO KNOWN AS LAND PARCEL 10

Landscape Architects &

Environmental Consultants: Specialist Division

T: (+27)12 346 3810 | F: (+27) 86 570 5659 | E: cw@bokamoso.net; | www.bokamoso.net.

36 Lebombo Street, Ashlea Gardens, Pretoria I P.O. Box 11375 Maroelana 0161

Report author: Mr C.W. Vermeulen (BSc)

Report Reviewed by:

88 Rubida Street Murrayfield X1 Pretoria

P.O. Box 72847 Lynwood Ridge Pretoria 0040

Tel: 012 365 2546 Cell: 083 978 0817 Fax: 012 365 3217

E-mail: <u>lukas@pachnoda.co.za</u>

CK 2007/043724/23 VAT No. 4690249976

07 May 2016

To whom it may concern,

REVIEW OF SPECIALIST AVIFAUNAL ASSESSMENT:

THE REMAINING EXTENT OF PORTION 1 OF THE FARM WATERFALL 5-IR ALSO KNOWN AS LAND PARCEL 10

I, Lukas Jurie Niemand, member and principal consultant of Pachnoda Consulting and registered professional scientist in the fields of Zoological and Ecological sciences, evaluated the avifaunal (bird) component of the abovementioned specialist assessment compiled by Mr CW Vermeulen of Bokamoso. The report was evaluated in accordance with the Gauteng Directorate of Nature Conservation (GDARD) Requirements for Biodiversity Assessments Version 3 and in terms of general content and avifaunal conservation.

In general, criticism lodged against avifaunal/ecological studies include: poor use of relevant scientific literature, lack of, or poor field surveys and associated data collection, poor use of regional information datasets, general poor knowledge of subject, failure to describe limitations or constraints on survey methodology, insufficient or inadequate data, vague generalisations with no indication of the relative importance of a particular component. With regards to the above criticism, none of it is relevant to the avifaunal assessment of the aforementioned report.

It is concluded that the report comply with the provincial requirements, and the content as discussed in the report is relevant and concise.

88 Rubida Street Murrayfield X1 Pretoria

P.O. Box 72847 Lynwood Ridge Pretoria 0040

Tel: 012 365 2546 Cell: 083 978 0817 Fax: 012 365 3217

E-mail: <u>lukas@pachnoda.co.za</u>

CK 2007/043724/23 VAT No. 4690249976

Regards

Lukas Niemand MSc Zoology - UP; Pr. Sci. Nat. Reg. no. 400095/06) Pachnoda Consulting

Table of Contents

1.	INTRODUCT	ION	4				
2.	SCOPE OF S	TUDY	4				
3.	STUDY AREA						
4.	. METHODS						
	4.1 Fie	d Survey	6				
		ing all the possible species occurring on site	7				
		d Data bird species	7				
		ecific Requirements in terms of Red Data Avifaunal species	8				
5.	RESULTS		9				
		faunal Habitat Assessment	9				
	5.1.1	Disturbed Area	10				
	5.1.2	Drainage Line	10				
	5.1.3	Grassland	11				
	5.1.4	Rocky Outcrop	12				
_	5.1.5	Riverine Area	13				
6. 7	FINDINGS	c	25 26				
7. 8.	LIMITATIONS						
o. 9.	RECOMMENDATIONS						
_	CONCLUSION LITERATURE SOURCES						
10.	LITERATORE	SOURCES	29				
		Figures					
Figu	gure 1: Locality Map						
Figu	ıre 2: Arial p	hoto	6				
Figu	ire 3: GPS co	-ordinates for each bird species recorded	7				
Figu	ire 4: Bird H	abitats Identified	9				
Figu	ıre 5: Disturl	ped Area	10				
Figu	ıre 6: Draina	ge Line	11				
Figu	ire 7: Grassla	and	12				
Figu	ire 8: Rocky	Outcrop	12				
Figu	ure 9: Riverine Area						
Figu	ure 10: Highly polluted section of the Jukskei River						
Figu	ıre 9: Avifau	nal Sensitivity Map	23				
		Tables					
Tab	le 1: Bird spe	ecies observed within the study area during the field survey, as well as bird					
	specie	es potentially occurring on the study area as a result of habitat preferences	14				
Tab	le 2: Red Da	ta bird species recorded for the 2527DD QDS. to date	24				

1. Introduction

Bokamoso Environmental Consultants CC; Specialist Division was appointed to conduct a Basic Faunal Assessment for the proposed mixed used development on the remaining extent of Portion 1 of the Farm Waterfall 5-IR, Gauteng Province, also known as Land Parcel 10 (hereafter referred to as the study area).

This report is based on the avifaunal species present on the study area as well as species that could potentially be present. The report primarily focuses on species with conservation concerns (NT = Near Threatened, VU = Vulnerable, EN = Endangered, CR = Critically Endangered) and other species with conservation importance occurring on or near the study area to ensure that, should any such species exists, the appropriate actions are taken to guarantee the well-being of these species.

2. Scope of the study

- To identify as many species as possible present on the study area.
- To identify all the distinct habitats on the study area.
- To compare the species occurring in and around the study area with all the species that has been recorded in that area in recent history.
- To identify ecologically sensitive areas in terms of species occurrence and/ or habitat.
- To provide lists of all the species occurring on the study area as well as species possibly occurring in the area as a result of habitat preferences and previous records.
- To provide a list of species with conservation importance.
- To provide recommendations in the form of mitigation of negative impacts, should the development be approved.

3. Study Area

The study area is situated on the remaining extent of Portion 1 of the farm Waterfall 5-IR, Gauteng Province and also known as Land Parcel 10. The size of the property is approximately 103 ha and is located within the 2628AA quarter degree square (QDS) (26°01′24.74″S; 28°06′35.73″E) and within the 2600_2805 pentad (A pentad is a 5 minute x 5 minute coordinate grid super-imposed over the continent for spatial reference, one QDGC comprises of 9 pentads) (SABP2). The study area is located within the Egoli Granite Grassland vegetation unit (Mucina and Rutherford, 2006). The study area is located north of the N1 highway and west of Allendale road. The property largely consists of open grassland with small scattered trees and a drainage line cutting through the center from the north to the south. Moreover, the drainage line is completely transformed as a result of the use of gabions as a form of stabilizing the steep banks and protection against erosion. A small rocky outcrop is situated on the South-eastern part of the study area. The Jukskei River directly boarders the study area on the most Southerly boarder. The property is located approximately 1468 meters above sea level and slopes gently to the South-west (Figures 1 and 2).

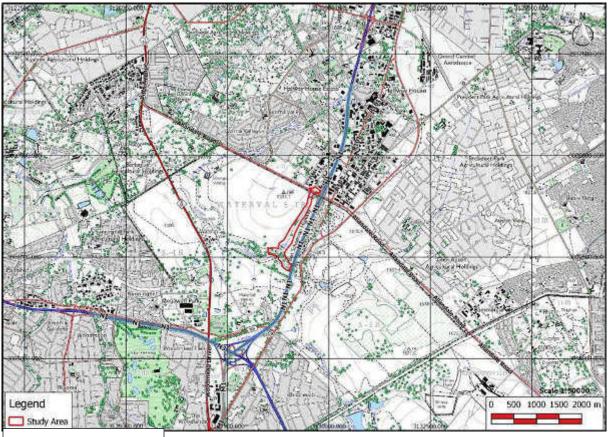


Figure 1: Locality Map

An overhead map showing all the surrounding roads and open space as well as the location of the study area within the larger Midrand area.

An aerial photo showing the location of the study area. The Jukskei River, Mall of Africa as well as the Afrisam Aggregate Quarry are clearly visible.

4. Methods

4.1 Field Survey

A three and a half hour field survey was conducted on the 7th of April 2016, starting at 10:17 and ending at 12:50. Before conducting a field survey on the study area a desktop assessment was conducted to note the prevalent faunal species occurring on or near the site. A list of expected species was compiled and used as a reference during the field survey to ensure that species that should theoretically occur were not overlooked. All distinct avifaunal habitats were identified on site, after which each habitat was assessed to record the associated faunal species present in that specific habitat. Some species were identified by call as well as signs of presence in the form of eggshells, nests, droppings and feathers (Chris & Tilde Stuart., 2000). Where necessary, species were verified using Sasol Birds of Southern Africa (Sinclair *et al.*, 2011).

Each GPS waypoint accounts for a bird species recorded within the study area. These observed species are color coded and listed in Table 1 (Recorded on site – 5)

4.2 Listing all the possible species occurring on site

By using Southern Africa Bird Atlas Project 1 and 2 (SABAP2) a comprehensive species list could be compiled for the 2628AA QDS / 2600_2805 pentad. SABAP2 is the follow-up project to the Southern African Bird Atlas Project (for which the acronym was SABAP, and which is now referred to as SABAP1). This first bird atlas project took place from 1987-1991. The second bird atlas project started on 1 July 2007 and plans to run indefinitely. The project aims to map the distribution and relative abundance of birds in southern Africa. The field work for this project is done by more than one thousand nine hundred volunteers, known as citizen scientists. The unit of data collection is the pentad, five minutes of latitude by five minutes of longitude, squares with sides of roughly 9 km.

The initial list compiled for the species occurring in the QDS can however not be used as an accurate list in terms of the species occurring within the study area since it covers a larger area as well as a wider variety of habitats. In order to compile an accurate species list for the study area, all the species previously recorded in the 2628AA QDS were considered and added or eliminated on account of the

habitat present on the study area as well as the habitat preferences of each of the species previously recorded within the larger QDS.

4.3 Red Data bird species

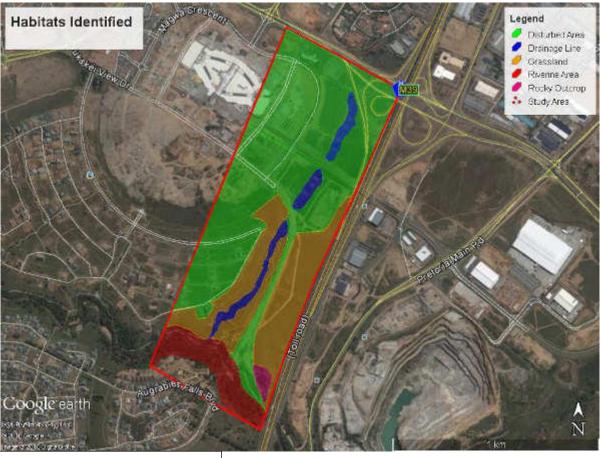
All the Red Data bird species occurring in or around the study area were reviewed (Roberts VII, Hockey *et al.* 2005; Taylor *et al.*, 2015) before conducting the field survey. During the field survey special attention was paid to identify any signs such as; actual sightings, suitable habitat, nest sites, suitable hunting/ foraging habitat or roosting spots pointing to the presence of these species.

A list was compiled to indicate the presence and/ or occurrence probability of Red Data bird species based on the above mentioned indicators.

4.4 Specific Requirements in terms of Red Data Avifaunal species

According to the Gauteng Department of Agriculture and Rural Development's (GDARD) requirements for Biodiversity Assessments, Version 3.3 (March 2014), as well as for any other Red Data species: Eleven threatened bird species were prioritized for inclusion into the Gauteng C-Plan based on:

- 1. Threat status (2 Endangered (EN), 5 Vulnerable (VU) and 4 Near Threatened (NT)).
- Whether the species was actually present, on a frequent basis, in the province. Vagrants, erratic
 visitors or erratic migrants to the province (Tarboton et al., 1987) have been excluded from the
 conservation plan.
- 3. Whether the threat was due to issues related to land use planning. Species which are impacted on mostly by threats such as poisoning were excluded.


Threatened Bird species regional conservation status (Taylor et al., 2015):

- Half-Collared Kingfisher (Alcedo semitorquata) NT
- Blue Crane (Anthropoides paradiseus) NT
- African Marsh-Harrier (Circus ranivorus) EN
- Blue Korhaan (Eupodotis caerulescens) NT
- White-bellied Korhaan (Eupodotis senegalensis) VU
- White-backed Night-Heron (Gorsachius leuconotus) VU
- Cape Vulture (Gyps coprotheres) EN
- Melodious Lark (Mirafra cheniana) NT
- African Finfoot (Podica senegalensis) VU
- Secretarybird (Sagittarius serpentarius) VU
- African Grass-Owl (Tyto capensis) VU

5. Results

5.1 Avifaunal Habitat Assessment:

During the habitat assessment five distinct bird habitats were identified within the study area. These habitats are: Disturbed Areas, Drainage Line, Grassland, Rocky Outcrop, and Riverine Area (**Figure 4**). All the habitats identified on the study area are individually discussed hereafter.

Figure 4: Habitats Identified

5.1.1 Disturbed Area:

This area contains various disturbances in the form of roads, degraded grassland and general disturbances as a result of trampling and degradation as result of heavy vehicle activity. Large parts of this area have been transformed by means of trampling, to such an extent that only bare ground remains (**Figure 5**). Further disturbance in the form of alien vegetation encroachment is also evident. The area contains a limited amount of natural vegetation; instead a large number of invasive plants including herbaceous plants (*Verbena bonariensis*) and alien trees (*Acacia mearensii*). The reason for the inclusion of this area as a habitat in its own right, is due to the large number of bird species that have adapted to this unique environment. Species such as Sparrows,

Lapwings, Doves, Pigeons and Indian Mynas were present in large numbers in this habitat. Many of these species are non-specialised and transient.

Figure 5: Disturbed Area

5.1.2 Drainage Line:

A drainage line cuts through the center of the study area from the North to the South. The Drainage Line area encompasses the ideal habitat for Ralids, Plovers, Lapwings, Warblers, Bishops and Widowbirds. The largest part of this area has been transformed as a result of bank stabilization and erosion protection through the use of gabions to control and channel the flow of water. It is evident that rehabilitation of the drainage line is still an ongoing process and that this habitat will gradually improve in the near future. Although the current state of this area as an important avifaunal habitat can be debated owing to its fairly recent completion, the evidence of a potentially ideal wetland/drainage line habitat is apparent when attention is paid to the wetland vegetation and bird species currently present. Over time this area should provide the preferred habitat for various bird species once the currant vegetation proliferates and connectivity to the natural drainage network is restored. Thus it is expected that this area will provide a favorable wetland habitat in the near future and as such can be earmarked as an area with high ecological sensitivity, please refer to sensitivity map.

Figure 6: Drainage Line

5.1.3 Grassland

The Grassland habitat contains two distinct floristic compositions (**Figure 7**). The Eastern grassland contains a well establish population of various grass species and grassland vegetation communities, whereas the Western grassland contains large numbers of alien vegetation and other disturbances such as trampling and evidence of heavy vehicle activity. The Eastern grassland supports a large number of widespread bird species and could potentially provide the preferred habitat for three Red Data bird species namely; Blue Crane, White-bellied Korhaan and Secretarybird. Although the Eastern grassland is the preferred habitat of the afore mentioned species, their occurrence is highly unlikely due to the small size of the grassland as well as the disturbances caused by the adjacent road. As a result of the current near natural state of the Eastern part of the grassland habitat, this section of the grassland was deemed moderately sensitive from an avifaunal perspective as it is likely to support a number of more common species, like Spotted Thick-knee, Lapwings, Quails, Francolins and Spurfowl. The rest of the grassland habitat is already degraded and was deemed to have a low ecological and avifaunal sensitivity.

Figure 7: Grassland

5.1.4 Rocky Outcrop:

This habitat is situated on the South-eastern side of the study area and is directly adjacent to the Eastern grassland habitat (**Figure 8**). Although it makes out a fairly small part of the larger study area, the largest number of bird species for the study area was recorded here. The reason for the large amount of species present in this small area is a direct result of the occurrence of a number of large indigenous trees (mainly *Vachelia karoo* and *Celtis africanus*), along with a healthy community of shrubs and other vegetation, which provides the perfect nesting, foraging and roosting habitat for a variety of grassland and savanna bird species. As a result, this area was deemed moderately sensitive from an avifaunal perspective.

Figure 8: Rocky Outcrop

5.1.5 Riverine Area:

The southernmost part of the study area boarders the Jukskei River (Figure 9). Due to large number of bird species preferring this habitat type, the riverine area was expected to produce the highest species richness in comparison with the other habitats within the study area,. The state of the river was however very poor on account of the high amount of alien vegetation encroachment as well as the highly polluted river water (both chemical and solid waste) (Sibali et al., 2008) (Figure 10). The low species count for this habitat is a direct result of the polluted river. The riverine area provides the optimal habitat for the Half-collared Kingfisher, with all the habitat preferences for this bird species present along this stretch of the river. These habitat preferences include clear, fast flowing perennial streams and/or rivers with dense marginal vegetation often near rapids (Roberts VII, Hockey et al., 2005). All of these habitat preferences are present on the study area. If this section of the river is to be properly rehabilitated it could potentially be a highly diverse habitat and would most probably support the Red-listed Half-collared Kingfisher and also potentially the African Finfoot, although the chances of the latter occurring would be highly unlikely as a result of the polluted water. Due to the afore mentioned reasons this habitat is deemed highly sensitive, not on account of species currently present within the habitat, but rather as a result of the potential that this area holds if proper rehabilitation thereof is implemented.

Figure 9: Riverine Area

Figure 10: Highly polluted section of the Jukskei River.

Table 1: Bird species observed within the study area during the field survey, as well as bird species potentially occurring on the study area as a result of habitat preferences and previous records.

The biodiversity index indicates the probability of a species breeding (BR) within the study area and/or occurring within the study area according to the habitat preferences (HP) of that specific species. Very Low -1, Low -2, Medium -3, High -4, Recorded on site -5, Not likely to occur/breed -0, Red Data Species

	Species name	Afrikaans	Taxonomic name	Rep Rate (%)	НР	BR
1.	Apalis, Bar-throated	Bandkeelkleinjantjie	Apalis thoracica	2.515	3	3
2.	Avocet, Pied	Bontelsie	Recurvirostra avosetta	8.515	2	1
3.	Babbler, Arrow- marked	Pylvlekkatlagter	Turdoides jardineii	0.22	3	3
4.	Barbet, Acacia Pied	Bonthoutkapper	Tricholaema leucomelas	2.07	3	3
5.	Barbet, Black- collared	Rooikophoutkapper	Lybius torquatus	56.435	4	4
6.	Barbet, Crested	Kuifkophoutkapper	Trachyphonus vaillantii	75.28	5	4
7.	Batis, Chinspot	Witliesbosbontrokkie	Batis molitor	0.24	2	2
8.	Bee-eater, European	Europese Byvreter	Merops apiaster	27.92	4	1
9.	Bee-eater, Little	Kleinbyvreter	Merops pusillus	0.045	2	1

10.	Bee-eater, White- fronted	Rooikeelbyvreter	Merops bullockoides	5.95	3	3
11.	Bishop, Southern Red	Rooivink	Euplectes orix	71.62	5	5
12.	Bishop, Yellow- crowned	Goudgeelvink	Euplectes afer	10.385	4	4
13.	Bittern, Little	Kleinrietreier (Woudapie)	Ixobrychus minutus	3.865	3	3
14.	Bokmakierie, Bokmakierie	Bokmakierie	Telophorus zeylonus	30.86	3	3
15.	Boubou, Southern	Suidelike Waterfiskaal	Laniarius ferrugineus	8.595	4	4
16.	Brubru, Brubru	Bontroklaksman	Nilaus afer	0.13	2	1
17.	Bulbul, African Red- eyed	Rooioogtiptol	Pycnonotus nigricans	0.675	2	2
18.	Bulbul, Dark-capped	Swartoogtiptol	Pycnonotus tricolor	90.83	5	4
19.	breasted		Emberiza tahapisi	2.125	2	2
20.	Buttonquail, Kurrichane	urrichane		0.37	2	2
21.	Buzzard, Jackal	Rooiborsjakkalsvoel	Buteo rufofuscus	0.27	2	2
22.	Buzzard, Lizard	Akkedisvalk	Kaupifalco monogrammicus	1.33	1	1
23.	Buzzard, Steppe	Bruinjakkalsvoel	Buteo vulpinus	16.015	4	0
24.	Canary, Black- throated	Bergkanarie	Crithagra atrogularis	48.705	5	4
25.	Canary, Yellow	Geelkanarie	Crithagra flaviventris	0.885	2	2
26.	Canary, Yellow- fronted	Geeloogkanarie	Crithagra mozambicus	25.83	3	3
27.	Chat, Familiar	Gewone Spekvreter	Cercomela familiaris	14.05	3	3
28.	•	Gevlekte Klopkloppie	Cisticola textrix	4.16	2	2
29.	Cisticola, Desert	Woestynklopkloppie	Cisticola aridulus	2.605	2	2
30.	Cisticola, Lazy	Luitinktinkie	Cisticola aberrans	0.22	1	1
31.	Cisticola, Levaillant's	Vleitinktinkie	Cisticola tinniens	38.985	5	4
32.	Cisticola, Wailing	Huiltinktinkie	Cisticola lais	2.09	2	2
33.	Cliff swallow South	Landeryklopkloppie	Cisticola juncidis	23.565	3	3
34.	Cliff-swallow, South African	Familieswael	Hirundo spilodera	3.505	4	3
35.	Coot, Red-knobbed	Bleshoender	Fulica cristata	63.255	3	3
36.	Cormorant, Reed	Rietduiker	Phalacrocorax africanus	69.015	4	2
37.	Cormorant, White- breasted	Witborsduiker	Phalacrocorax carbo	37.85	2	1
38.	Coucal, Burchell's	Gewone Vleiloerie	Centropus burchellii	21.39	4	3
39.	Crake, Black	Swartriethaan	Amaurornis	5.22	4	4

40			flavirostris			
40.	Crane, Blue	Bloukraanvoel	Anthropoides	0.5	0	0
			paradiseus			
41.	Crombec, Long-billed	Bosveldstompstert	Sylvietta rufescens	0.14	1	1
42.	Crow, Cape	Swartkraai	Corvus capensis	2.915	1	1
43.	Crow, Pied	Witborskraai	Corvus albus	78.735	4	4
44.	Cuckoo, Black	Swartkoekoek	Cuculus clamosus	0.13	3	3
45.	45. Cuckoo, Diderick Diederikkie		Chrysococcyx	28.15	4	4
			caprius			
46.	Cuckoo, Klaas's	Meitjie	Chrysococcyx klaas	0.11	2	2
47.	Cuckoo, Red-chested	Piet-my-vrou	Cuculus solitarius	13.455	4	4
48.	Cuckoo-shrike, Black	Swartkatakoeroe	Campephaga flava	0.185	2	2
49.	Darter, African	Slanghalsvoel	Anhinga rufa	41.665	4	1
50.	Dove, Laughing	Rooiborsduifie	Streptopelia	94.175	5	4
	51. Dove, Namaqua Namakwaduifie		senegalensis			
51.	Dove, Namaqua	Namakwaduifie	Oena capensis	1.025	1	1
52.	Dove, Red-eyed	Grootringduif	Streptopelia	59.505	5	4
			semitorquata			
53.	Dove, Rock	Tuinduif	Columba livia	60.46	4	4
54.	Drongo, Fork-tailed	Mikstertbyvanger	Dicrurus adsimilis	6.905	3	3
55.	Duck, African Black	Swarteend	Anas sparsa	53.715	5	4
56.	Duck, Fulvous	Fluiteend	Dendrocygna	1.11	1	1
			bicolor			
57.	Duck, Maccoa	Bloubekeend	Oxyura maccoa	1.08	1	1
58.	Duck, White-backed	Witrugeend	Thalassornis	0.96	1	1
			leuconotus			
59.	Duck, White-faced	Nonnetjie-eend	Dendrocygna	22.515	4	4
		- " '	viduata		_	_
60.	Duck, Yellow-billed	Geelbekeend	Anas undulata	57.665	5	5
61.	Eagle, Long-crested	Langkuifarend	Lophaetus	16.445	3	3
60	F 1 24 11 1	_	occipitalis			
				0.00	_	_
62.	Eagle, Martial	Breekoparend	Polemaetus	0.02	0	0
		·	bellicosus			
63.	Eagle, Verreaux's	Witkruisarend	bellicosus Aquila verreauxii	0.02	0	0
63. 64.	Eagle, Verreaux's Eagle-owl, Spotted	Witkruisarend Gevlekte Ooruil	bellicosus Aquila verreauxii Bubo africanus	0.02 13.46	0	0 3
63. 64. 65.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle	Witkruisarend Gevlekte Ooruil Veereier	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis	0.02 13.46 65.34	0 3 4	0 3 0
63. 64. 65. 66.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba	0.02 13.46 65.34 1.36	0 3 4 1	0 3 0 0
63. 64. 65. 66.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta	0.02 13.46 65.34 1.36 29.4	0 3 4 1	0 3 0 0
63. 64. 65. 66. 67. 68.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little Egret, Yellow-billed	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier Geelbekwitreier	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta Egretta intermedia	0.02 13.46 65.34 1.36 29.4 4.955	0 3 4 1 4 2	0 3 0 0 0
63. 64. 65. 66. 67. 68.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little Egret, Yellow-billed Falcon, Amur	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier Geelbekwitreier Oostelike Rooipootvalk	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta Egretta intermedia Falco amurensis	0.02 13.46 65.34 1.36 29.4 4.955 2.66	0 3 4 1 4 2 3	0 3 0 0 0 0
63. 64. 65. 66. 67. 68. 69.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little Egret, Yellow-billed Falcon, Amur Falcon, Lanner	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier Geelbekwitreier Oostelike Rooipootvalk Edelvalk	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta Egretta intermedia Falco amurensis Falco biarmicus	0.02 13.46 65.34 1.36 29.4 4.955 2.66 0.62	0 3 4 1 4 2 3	0 3 0 0 0 0 0
63. 64. 65. 66. 67. 68. 69. 70.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little Egret, Yellow-billed Falcon, Amur Falcon, Lanner Falcon, Peregrine	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier Geelbekwitreier Oostelike Rooipootvalk Edelvalk Swerfvalk	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta Egretta intermedia Falco amurensis Falco peregrinus	0.02 13.46 65.34 1.36 29.4 4.955 2.66 0.62 0.6	0 3 4 1 4 2 3 1	0 3 0 0 0 0 0 0
63. 64. 65. 66. 67. 68. 69.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little Egret, Yellow-billed Falcon, Amur Falcon, Lanner	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier Geelbekwitreier Oostelike Rooipootvalk Edelvalk Swerfvalk Westelike	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta Egretta intermedia Falco amurensis Falco biarmicus	0.02 13.46 65.34 1.36 29.4 4.955 2.66 0.62	0 3 4 1 4 2 3	0 3 0 0 0 0 0
63. 64. 65. 66. 67. 68. 69. 70. 71.	Eagle, Verreaux's Eagle-owl, Spotted Egret, Cattle Egret, Great Egret, Little Egret, Yellow-billed Falcon, Amur Falcon, Lanner Falcon, Peregrine	Witkruisarend Gevlekte Ooruil Veereier Grootwitreier Kleinwitreier Geelbekwitreier Oostelike Rooipootvalk Edelvalk Swerfvalk	bellicosus Aquila verreauxii Bubo africanus Bubulcus ibis Egretta alba Egretta garzetta Egretta intermedia Falco amurensis Falco peregrinus	0.02 13.46 65.34 1.36 29.4 4.955 2.66 0.62 0.6	0 3 4 1 4 2 3 1	0 3 0 0 0 0 0 0

74.	Finch, Red-headed	Rooikopvink	Amadina erythrocephala	14.15	4	4
75.	Firefinch, Jameson's	Jamesonse Vuurvinkie	Lagonosticta rhodopareia	7.72	5	4
76.	Firefinch, Red-billed	Rooibekvuurvinkie	Lagonosticta senegala	0.185	3	3
77.	Fiscal, Common (Southern)	Fiskaallaksman	Lanius collaris	87.725	5	4
78.	Fish-eagle, African	Visarend	Haliaeetus vocifer	17.785	3	3
79.	Flamingo, Greater	Grootflamink	Phoenicopterus ruber	1.96	1	0
80.	Flamingo, Lesser	Kleinflamink	Phoenicopterus minor	0.065	0	0
81.	Flufftail, Red-chested	Rooiborsvleikuiken	Sarothrura rufa	0.49	3	3
82.	Flycatcher, Fairy	Feevlieievanger	Stenostira scita	1.99	2	1
83.	Flycatcher, Fiscal	Fiskaalvlieivanger	Sigelus silens	45.735	5	4
84.	Flycatcher, Southern Black	Swartvlieevanger	Melaenornis pammelaina	6.64	2	2
85.	Flycatcher, Spotted	Europese Vlieievanger	Muscicapa striata	13.905	4	0
86.			Peliperdix coqui	0.37	1	1
87.	Francolin, Orange River			15.15	3	3
88.	Go-away-bird, Grey	Kwêvoel	Corythaixoides concolor	58.455	4	4
89.	Goose, Egyptian	Kolgans	Alopochen aegyptiacus	79.175	5	4
90.	Goose, Spur-winged	Wildemakou	Plectropterus gambensis	13.375	3	3
91.	Goshawk, Gabar	Kleinsingvalk	Melierax gabar	0.14	1	1
92.	Grass-owl, African	Grasuil	Tyto capensis	0.38	0	0
93.	Grassbird, Cape	Grasvoel	Sphenoeacus afer	0.405	1	1
94.	Grebe, Great Crested	Kuifkopdobbertjie	Podiceps cristatus	10.925	1	1
95.	Grebe, Little	Kleindobbertjie	Tachybaptus ruficollis	45.92	4	4
96.	Green-pigeon, African	Papegaaiduif	Treron calvus	0.36	3	3
97.	Greenshank, Common	Groenpootruiter	Tringa nebularia	4.215	3	0
98.	Guineafowl, Helmeted	Gewone Tarentaal	Numida meleagris	61.68	5	5
99.	Gull, Grey-headed	Gryskopmeeu	Larus cirrocephalus	42.99	5	0
100	Hamerkop, Hamerkop	Hamerkop	Scopus umbretta	21.615	4	4
101	•	Kaalwangvalk	Polyboroides typus	0.48	2	1
102		Swartreier	Egretta ardesiaca	3.195	2	2
				1		

			melanocephala			
104	Heron, Goliath	Reusereier	Ardea goliath	3.9	3	1
105	Heron, Green- backed	Groenrugreier	Butorides striata	8.435	4	3
106	Heron, Grey	Bloureier	Ardea cinerea	35.05	4	1
107	Heron, Purple	Rooireier	Ardea purpurea	15.425	3	1
108	Heron, Squacco	Ralreier	Ardeola ralloides	6.905	3	1
109	Hobby, Eurasian	Europese Boomvalk	Falco subbuteo	3.685	1	0
110	Honey-buzzard, European	Wespedief	Pernis apivorus	1.2	1	0
111.	backed	Skerpbekheuningvoel	Prodotiscus regulus	4.765	3	3
112	Honeyguide, Greater	Grootheuningwyser	Indicator indicator	7.485	3	3
113	Honeyguide, Lesser	Kleinheuningwyser	Indicator minor	15.25	4	4
114	Hoopoe, African	Hoephoep	Upupa africana	35.835	4	4
115	Hornbill, African Grey	Grysneushoringvoel	Tockus nasutus	7.685	3	3
116	House-martin, Common	Huisswael	Delichon urbicum	5.84	4	0
117	Ibis, African Sacred	Skoorsteenveer	Threskiornis aethiopicus	72.865	5	0
118	Ibis, Glossy	Glansibis	Plegadis falcinellus	28.055	4	1
119	Ibis, Hadeda	Hadeda	Bostrychia hagedash	91.07	5	4
120	Indigobird, Purple	Witpootblouvinkie	Vidua purpurascens	1.2	1	1
121	Indigobird, Village	Staalblouvinkie	Vidua chalybeata	0.045	1	1
122	Jacana, African	Grootlangtoon	Actophilornis africanus	1.535	1	1
123	Kestrel, Greater	Grootrooivalk	Falco rupicoloides	2.005	1	1
124	Kestrel, Lesser	Kleinrooivalk	Falco naumanni	0.195	1	0
125	Kingfisher, Brown- hooded	Bruinkopvisvanger	Halcyon albiventris	8.755	4	4
126	Kingfisher, Giant	Reusevisvanger	Megaceryle maximus	18.855	4	4
127	Kingfisher, Half- collared	Blouvisvanger	Alcedo semitorquata	0.405	2	2
128	Kingfisher, Malachite	Kuifkopvisvanger	Alcedo cristata	17.275	4	4
129	Kingfisher, Pied	Bontvisvanger	Ceryle rudis	23.27	4	4
130	Kingfisher, Woodland	Bosveldvisvanger	Halcyon senegalensis	6.505	3	3
131	Kite, Black	Swartwou	Milvus migrans	1.635	1	0
132.	Kite, Black- shouldered	Blouvalk	Elanus caeruleus	56.655	5	4
133	Kite, Yellow-billed	Geelbekwou	Milvus aegyptius	9.93	2	0
134.	Korhaan, Northern Black	Witvlerkkorhaan	Afrotis afraoides	17.37	2	2

135	Korhaan, White- bellied	Witpenskorhaan	Eupodotis senegalensis	1.195	0	0
136	Lapwing, African Wattled	Lelkiewiet	Vanellus senegallus	50.85	5	4
137	Lapwing, Blacksmith	Bontkiewiet	Vanellus armatus	72.99	5	4
138	Lapwing, Crowned	Kroonkiewiet	Vanellus coronatus	72.885	4	4
139	Lark, Eastern Clapper	Hoeveldklappertjie	Mirafra fasciolata	0.64	1	1
140	Lark, Melodious	Spotlewerik	Mirafra cheniana	0.15	1	1
141	Lark, Red-capped	Rooikoplewerik	Calandrella cinerea	1.915	1	1
142	Lark, Rufous-naped	Rooineklewerik	Mirafra africana	21.6	3	3
143	Lark, Spike-heeled	Vlaktelewerik	Chersomanes albofasciata	2.6	2	2
144	Longclaw, Cape	Oranjekeelkalkoentjie	Macronyx capensis	33.1	4	4
145	Mannikin, Bronze	Gewone Fret	Spermestes cucullatus	22.075	5	4
146	Marsh-harrier, African	Afrikaanse Vleivalk	Circus ranivorus	0.11	0	0
147	Martin, Banded	Gebande Oewerswael	Riparia cincta	1.1	1	1
148	Martin, Brown- throated	Afrikaanse Oewerswael	Riparia paludicola	33.825	5	4
149	Martin, Rock	Kransswael	Hirundo fuligula	19.415	3	3
150	Masked-weaver, Southern	Swartkeelgeelvink	Ploceus velatus	94.83	5	5
151	Moorhen, Common	Grootwaterhoender	Gallinula chloropus	55.98	5	4
152	Mousebird, Red- faced	Rooiwangmuisvoel	Urocolius indicus	44.42	4	4
153	Mousebird, Speckled	Gevlekte Muisvoel	Colius striatus	67.185	4	4
154	Mousebird, White- backed	Witkruismuisvoel	Colius colius	2.22	1	1
155	Myna, Common	Indiese Spreeu	Acridotheres tristis	92.975	5	4
156	Neddicky, Neddicky	Neddikkie	Cisticola fulvicapilla	34.185	4	4
157	Night-Heron, Black- crowned	Gewone Nagreier	Nycticorax nycticorax	6.06	3	1
158	Nightjar, European	Europese Naguil	Caprimulgus europaeus	0.415	1	0
159	Nightjar, Rufous- cheeked	Rooiwangnaguil	Caprimulgus rufigena	0.39	1	1
160	Olive-pigeon, African	Geelbekbosduif	Columba arquatrix	17.425	4	4
161	Oriole, Black-headed	Swartkopwielewaal	Oriolus larvatus	4.75	3	3
162	Owl, Barn	Nonnetjie-uil	Tyto alba	4.735	3	3
	Owl, Marsh	Vlei-uil	Asio capensis	16.895	2	2
164	Painted-snipe, Greater	Goudsnip	Rostratula benghalensis	0.045	0	0
165	Palm-swift, African	Palmwindswael	Cypsiurus parvus	47.525	5	0
166	Paradise-flycatcher, African	Paradysvlieevanger	Terpsiphone viridis	17.15	4	4

167	Parakeet, Rose- ringed	Ringnekparkiet	Psittacula krameri	2.41	4	4
168	Pigeon, Speckled	Kransduif	Columba guinea	50.815	5	4
169	Pipit, African	Gewone Koester	Anthus cinnamomeus	30.78	4	4
170	Pipit, Buffy	Vaalkoester	Anthus vaalensis	0.34	1	1
171	Pipit, Long-billed	Nicholsonse Koester	Anthus similis	0.47	1	1
172	Pipit, Plain-backed	Donkerkoester	Anthus leucophrys	0.87	1	1
173	Plover, Common Ringed	Ringnekstrandkiewiet	Charadrius hiaticula	0.11	2	0
174	Plover, Three- banded	Driebandstrandkiewiet	Charadrius tricollaris	35.41	5	4
175	Pochard, Southern	Bruineend	Netta erythrophthalma	20.62	2	2
176	Pratincole, Black-	Swartvlerksprinkaanvo	Glareola nordmanni	0.02	0	0
	winged el					
177	Prinia, Black-chested	Swartbandlangstertjie	Prinia flavicans	36.425	5	4
178	Prinia, Tawny- flanked	rinia, Tawny- Bruinsylangstertjie <i>Pi</i>		57.425	5	4
179	Puffback, Black- backed	Sneeubal	Dryoscopus cubla	4.93	3	3
180	Pytilia, Green- winged	Gewone Melba	Pytilia melba	0.12	1	1
181	Quail, Common	Afrikaanse Kwartel	Coturnix coturnix	0.39	2	2
182	Quailfinch, African	Gewone Kwartelvinkie	Ortygospiza atricollis	3.715	3	3
183	Quelea, Red-billed	Rooibekkwelea	Quelea quelea	10.585	3	3
184	Rail, African	Grootriethaan	Rallus caerulescens	0.455	3	3
185	Reed-warbler, African	Kleinrietsanger	Acrocephalus baeticatus	11.815	4	4
186	Reed-warbler, Great	Grootrietsanger	Acrocephalus arundinaceus	4.355	2	0
187	Robin-chat, Cape	Gewone Janfrederik	Cossypha caffra	76.125	4	4
188	Roller, European	Europese Troupant	Coracias garrulus	0.15	0	0
	Roller, Lilac-breasted	Gewone Troupant	Coracias caudatus	0.23	1	1
190	Ruff, Ruff	Kemphaan	Philomachus pugnax	2.975	3	0
191	Rush-warbler, Little	Kaapse Vleisanger	Bradypterus baboecala	9.405	4	3
192	Sandpiper, Common	Gewone Ruiter	Actitis hypoleucos	11.965	4	0
193	Sandpiper, Green	Witgatruiter	Tringa ochropus	1.2	1	0
194	Sandpiper, Marsh	Moerasruiter	Tringa stagnatilis	1.785	1	0
195	Sandpiper, Wood	Bosruiter	Tringa glareola	11.27	3	0
196	Scimitarbill, Common	Swartbekkakelaar	Rhinopomastus cyanomelas	0.13	1	1
197	Secretarybird	Sekretarisvoel	Sagittarius serpentarius	0.37	0	0

198	Seedeater, Streaky-	Streepkopkanarie	Crithagra gularis	10.81	3	3
100	headed Shelduck, South	Kopereend	Tadorna cana	0.195	3	3
133	African	Корегеена	radorna cana	0.133	3	3
200	Shoveler, Cape	Kaapse Slopeend	Anas smithii	5.25	3	3
201	Shrike, Lesser Grey	Gryslaksman	Lanius minor	1.43	1	0
202	Shrike, Red-backed	Rooiruglaksman	Lanius collurio	4.345	2	0
203	Snipe, African	Afrikaanse Snip	Gallinago	7.78	4	3
			nigripennis	00 =0	_	-
	Sparrow, Cape	Gewone Mossie	Passer melanurus	82.79	5	4
	Sparrow, House	Huismossie	Passer domesticus	59.125	4	4
206.	Sparrow, Southern Grey-headed	Gryskopmossie	Passer diffusus	34.565	4	4
207	Sparrowhawk, Black	Swartsperwer	Accipiter	2.26	3	3
	200 6		melanoleucus		_	_
			Accipiter minullus	1.59	3	3
209	Sparrowhawk,	Ovambosperwer	Accipiter	8.805	4	4
210	Ovambo African	Longlage	ovampensis Platalea alba	11.07	3	0
	Spoonbill, African	Lepelaar Bosveldfisant		11.07		
	Spurfowl, Swainson's		Pternistis swainsonii	41.945	4	4
212	<u> </u>	Kleinglansspreeu	Lamprotornis nitens	62.56 25.365	3	2
213	Starling, Pied Starling, Red-winged	Witgatspreeu Rooivlerkspreeu	Spreo bicolor	15.315	4	1
214	Staring, Red-winged	Rooivierkspreeu	Onychognathus morio	15.315	4	1
215	Starling, Wattled	Lelspreeu	Creatophora	1.495	2	1
216	Stilt, Black-winged	Dagingatalsia	Cinerea	10.995	3	2
210	Still, black-willged	Rooipootelsie	Himantopus himantopus	10.995	3	2
217	Stint, Little	Kleinstrandloper	Calidris minuta	2.77	3	0
218	Stonechat, African	Gewone Bontrokkie	Saxicola torquatus	50.925	4	4
219	Stork, Abdim's	Kleinswartooievaar	Ciconia abdimii	0.435	0	0
220	Stork, Black	Grootswartooievaar	Ciconia nigra	0.11	0	0
221	Stork, Marabou	Maraboe	Leptoptilos crumeniferus	0.14	0	0
222	Stork, Saddle-billed	Saalbekooievaar	Ephippiorhynchus senegalensis	0.02	0	0
223	Stork, White	Witooievaar	Ciconia ciconia	4.87	1	0
	Stork, Yellow-billed	Nimmersat	Mycteria ibis	0.02	0	0
	Sunbird, Amethyst	Swartsuikerbekkie	Chalcomitra amethystina	31.435	5	4
226	Sunbird, Malachite	Jangroentjie	Nectarinia famosa	0.98	1	1
227	Sunbird, White- bellied	Witpenssuikerbekkie	Cinnyris talatala	14.68	4	4
228	Swallow, Barn	Europese Swael	Hirundo rustica	38.705	5	0
229	Swallow, Greater	Grootstreepswael	Hirundo cucullata	42.695	5	4
	Striped					

230	Swallow, Lesser	Kleinstreepswael	Hirundo abyssinica	24.11	4	4
	Striped	- Memotreepswaer	im and abysomica		·	
231	•	Rooiborsswael	Hirundo semirufa	1.71	2	1
	breasted		,			
232	Swallow, White-	Witkeelswael	Hirundo albigularis	41.715	5	4
	throated					
233	Swamp-warbler,	Kaapse Rietsanger	Acrocephalus	36.545	4	4
	Lesser		gracilirostris			
234	Swamphen, African	Grootkoningriethaan	Porphyrio	10.385	2	2
	Purple		madagascariensis			
	· · · · · · · · · · · · · · · · · · ·	Swartwindswael	Apus barbatus	1.97	2	0
	Swift, Common	Europese Windswael	Apus apus	2.235	2	0
237	Swift, Horus	Horuswindswael	Apus horus	4.355	2	2
238		Kleinwindswael	Apus affinis	38.185	4	4
-	Swift, White-rumped	Witkruiswindswael	Apus caffer	41.54	5	4
240	Tchagra, Black- crowned	Swartkroontjagra	Tchagra senegalus	2.265	2	2
241		Rooivlerktjagra	Tchagra australis	0.795	1	1
241	crowned	Mooivierkijagra	renagra austrans	0.733	•	•
242			Anas capensis	1.405	1	1
	<u> </u>	·		1.25	1	1
244	•	Rooibekeend	Anas	5.87	3	3
	real, near sinear	- Noone Reema	erythrorhyncha	3.07		ŭ
245	Tern, Whiskered	Witbaardsterretjie	Chlidonias hybrida	4.01	2	0
H	Tern, White-winged	Witvlerksterretjie	Chlidonias	1.94	1	0
	_		leucopterus			
247	Thick-knee, Spotted	Gewone Dikkop	Burhinus capensis	38.085	4	4
248	Thrush, Karoo	Geelbeklyster	Turdus smithi	72.53	4	4
249	Thrush, Kurrichane	Rooibeklyster	Turdus libonyanus	9.765	3	3
250	•	Geelblestinker	Pogoniulus	0.045	3	3
	fronted		chrysoconus			
251	Tit-babbler,	Bosveldtjeriktik	Parisoma	13.99	2	2
	Chestnut-vented	C	subcaeruleum	00.0		4
252	Turtle-dove, Cape	Gewone Tortelduif	Streptopelia	89.2	5	4
252	Vultura Cana	Vrancaacyce!	capicola	0.03	0	0
253 254	, ,	Kransaasvoel Bontkwikkie	Gyps coprotheres Motacilla aguimp	0.02	0 1	0
255		Gewone Kwikkie	Motacilla aguimp	71.68	5	4
256		Tuinsanger	Sylvia borin	2.485	1	0
257	Warbler, Marsh	Europese Rietsanger	Acrocephalus	4.435	2	1
237	vvaibici, iviaisii	Laropese Metsanger	palustris	7.733	_	•
258	Warbler, River	Sprinkaansanger	Locustella fluviatilis	0.6	1	0
259	•	Europese Vleisanger	Acrocephalus	0.905	1	0
	, J-		schoenobaenus			
260	Warbler, Willow	Hofsanger	Phylloscopus	19.83	4	0
			trochilus			
261	Waxbill, Blue	Gewone Blousysie	Uraeginthus	0.22	2	2

			angolensis			
262	Waxbill, Common	Rooibeksysie	Estrilda astrild	25.825	5	4
263	· · · · · · · · · · · · · · · · · · ·	Rooiassie	Amandava subflava	6.285	4	4
264	Weaver, Cape	Kaapse Wewer	Ploceus capensis	17.575	4	4
265	•	Dikbekwewer	Amblyospiza albifrons	26.125	4	4
266	Wheatear, Capped	Hoeveldskaapwagter	Oenanthe pileata	4.4	2	2
267	Wheatear, Mountain	Bergwagter	Oenanthe monticola	16.625	2	2
268	White-eye, Cape	Kaapse Glasogie	Zosterops virens	78.16	5	4
269	White-eye, Orange River	Gariepglasogie	Zosterops pallidus	39.31	4	4
270	Whydah, Pin-tailed	Koningrooibekkie	Vidua macroura	28.25	5	4
271	Widowbird, Long- tailed	Langstertflap	Euplectes progne	26.705	4	4
272	Widowbird, Red- collared	Rooikeelflap	Euplectes ardens	12.365	4	4
273	Widowbird, White- winged	Witvlerkflap	Euplectes albonotatus	2.695	4	4
274	Wood-hoopoe, Green	Rooibekkakelaar	Phoeniculus purpureus	48.34	4	4
275	Woodpecker, Cardinal	Kardinaalspeg	Dendropicos fuscescens	9.875	4	4
276	Woodpecker, Golden-tailed	Goudstertspeg	Campethera abingoni	1.525	2	2
277	Wryneck, Red- throated	Draaihals	Jynx ruficollis	16.355	3	3
				0	17 Species (6.2%)	60 Species (22.7%)
				1	52 Species (18.7%)	53 Species (19.2%)
Totals	S			2	44 Species (15.9%)	29 Species (9.4%)
				3	53 Species (19.2%)	46 Species (16.6%)
				4	70 Species (25.2%)	85 Species (30.7%)
				5	41 Species (14.8%)	4 Species (1.4%)
Total Re	ed Data Species Recorde	ed for 2628AA QDS	23			

Habitat Preference – HP, Breeding –Br. Reporting Rate – Rep Rate %

The reporting rate is calculated as follows: Total number of cards on which a species was reported (SABAP1) \times 100 \div total number of cards submitted for the particular grid cell + the total number of cards on which a species was reported (SABAP2) \times 100 \div total number of cards submitted for the particular pentad \div 2.

Red Data Bird Species

Red Data bird species previously recorded within the 2628AA QDS according to Harrison et al (1997), Tarboton et al (1987) (Table2).

Table 2: Red Data bird species recorded for the 2628AA QDS to date.

	Species name	Latest Date Record (Year)	Red Data: (Regional; Global)	Taxonomic name	Rep Rate (%)	HP	Br
1.	Crane, Blue	2016	NT, VU	Anthropoides paradiseus	0.5	0	0
2.	Duck, Maccoa	2015	NT, NT	Oxyura maccoa	1.08	1	1
3.	Eagle, Martial	Prior to 2007	EN, VU	Polemaetus bellicosus	0.02	0	0
4.	Eagle, Verreauxs'	Prior to 2007	VU, LC	Aquila verreauxii	0.02	0	0
5.	Falcon, Lanner	2016	VU, LC	Falco biarmicus	0.62	1	0
6.	Falcon, Red-footed	2016	NT, NT	Falco vespertinus	0.14	1	0
7.	Flamingo, Greater	2015	NT, LC	Phoenicopterus ruber	1.96	1	0
8.	Flamingo, Lesser	Prior to 2007	NT, NT	Phoenicopterus minor	0.065	0	0
9.	Grass-owl, African	2012	VU, LC	Tyto capensis	0.38	0	0
10.	Kingfisher, Half-collared	2016	NT, LC	Alcedo semitorquata	0.405	2	2
11.	Korhaan, White-bellied	Prior to 2007	VU, LC	Eupodotis senegalensis	1.195	0	0
12.	Lark, Melodious	Prior to 2007	LC, NT	Mirafra cheniana	0.15	1	1
13.	Marsh-harrier, African	Prior to 2007	EN, LC	Circus ranivorus	0.11	0	0
14.	Painted-snipe, Greater	Prior to 2007	NT, LC	Rostratula benghalensis	0.45	1	0
15.	Pratincole, Black-winged	Prior to 2007	NT, NT	Glareola nordmanni	0.02	0	0
16.	Roller, European	Prior to 2007	NT, LC	Coracias garrulus	0.15	0	0
17.	Secretarybird,	Prior to 2007	VU, VU	Sagittarius serpentarius	0.37	0	0
18.	Stork, Abdim's	Prior to 2007	VU, VU	Ciconia abdimii	0.435	0	0
19.	Stork, Black	Prior to 2007	VU, LC	Ciconia nigra	0.11	0	0
20.	Stork, Marabou	2015	NT, LC	Leptoptilos crumeniferus	0.14	0	0
21.	Stork, Saddle-billed	Prior to 2007	EN, LC	Ephippiorhynchus senegalensis	0.02	0	0
22.	Stork, Yellow-billed	Prior to 2007	EN, LC	Mycteria ibis	0.02	0	0
23.	Vulture, Cape	2013	EN, EN	Gyps coprotheres	0.02	0	0

Red data species Categories for the Birds of Southern Africa (Birdlife South Africa 2015)

LC = Least Concern, NT = Near Threatened, VU = Vulnerable, EN = Endangered, CR = Critically Endangered.

A total of 23 Red Data species have previously been recorded within the 2628AA QDS (**Table 2**). Fourteen of which have not yet been recorded within the 2600_2805 pentad since the commencement of the South African Bird Atlas Project 2 in 2007; therefore these species are highly unlikely to recur as they have not been recorded in the pentad within the past 9 years. This could be as a result of various factors such as, habitat loss, degradation or fragmentation. Nine of the 23 species have been recorded during the past five years, however, the reporting rates of these species are extremely low and they are unlikely to occur on the study area. Of the above named Red Data species, only the Half-collared Kingfisher could potentially be resident on the study area. The southern boundary of the study area boarders the Jukskei River which could be considered the preferred habitat for the Half-collared Kingfisher. The stretch of the Jukskei River bordering the study area is however highly polluted, thus the probability of this species occurring is unlikely, however it's occurrence cannot be ruled out entirely. The water quality itself does not affect this species directly but rather its food source which in turn has a negative effect, forcing it move. The unlikely occurrence of this species can also be as a result of the variability of water levels and un-deterministic flooding of the river due to inappropriate storm water management. This will invariably affect the breeding habitat which could deter this species from utilising the area.

6. Findings

The distinct habitats identified on the study area contain a large variety of bird species, approximately 135, with habitats ranging from grassland, savanna, riverine, wetland associated species as well as species adapted to a disturbed and/ or transformed environments. Although some parts of the study area can be deemed as the preferred habitat for certain Red Data species previously recorded within the QDS, the surrounding land use and disturbance in the form of roads, urbanization, pollution and habitat transformation through alien vegetation infestation and man-made barriers, significantly reduces the probable occurrence of these mostly specialized and localized species. Only the Half-collared Kingfisher can be expected to occur on the study area provided that proper rehabilitation of the stretch of the Jukskei River bordering the Southern part of the study area is carried out.

7. Limitations

The bulk of the data used to conclude the distribution of Red Data species were sourced by making use of the SABAP 1 and 2 data basis. Any limitations in the above mentioned studies will in effect have implications on the findings and conclusion of this assessment. Furthermore this avifaunal assessment was conducted during April; hence the survey was done outside the main breeding period of the local bird species. Moreover, most of the Palearctic and intra-Africa migratory bird species have started their migration to the North by this time. With respect to this assessment the implications of not being able to record migratory bird species will be minimal, seeing as most are threatened in their Northern hemisphere distributions.

Limited time to conduct the survey could potentially result in not recording all species within the study area. Three and a half hours were spent on site while conducting this avifaunal assessment. As a result of the small size of the study area as well as the amount of disturbance on the study area, three hours was deemed sufficient time to record all the resident bird species on and around the study area.

8. Recommendations

 Prior to any activities commencing on site, all construction staff should be briefed in an environmental induction regarding the environmental status and requirements of the site. This should include providing general guidelines for minimizing environmental damage during construction, as well as education with regards to basic environmental ethics, such as the prevention of littering, lighting of fires, etc.

- Induction should be done for all civil contractors and for each building contractor prior to them commencing on site.
- Areas where construction is to take place should be clearly demarcated and fenced off, all areas outside that of the defined works should be deemed no-go areas.
- All construction activities must be restricted to the demarcated areas to ensure that no further disturbance into the surrounding vegetation or habitat takes place.
- It is recommended that prior to the commencement of construction activities' initial clearing of all alien vegetation should take place.
- No vehicles should be allowed to move in or through the drainage line. This will cause destruction of faunal habitat and will leave notable scares on site.
- The contractor must ensure that no faunal species are trapped, killed or in any way disturbed during construction. Collecting of eggs such as Guineafowl and duck eggs present on site should not be tolerated.
- It is recommended that all concrete and cement works be restricted to areas of low ecological sensitivity and defined on site and clearly demarcated. Cement powder has a high alkalinity pH rating, which can contaminate and affect both soil and water pH dramatically. A shift in the pH can have serious consequences on the functioning of soil, vegetation and fauna.
- To ensure minimal disturbance of avifaunal species it is recommended that construction should take place during winter, outside the breeding season of the species present on site.
- Construction, vegetation clearing and top soil clearing should commence from a predetermined location
 and gradually commence to ensure that birds and other fauna present on the site have enough time to
 relocate.
- When construction is completed, disturbed areas should be rehabilitated using vegetation cleared prior to construction to ensure that the habitat stays intact and that faunal species present on the site before construction took place, return to the area.
- The section of the Jukskei River bordering the study area on the South should be rehabilitated and pollution prevention method must be put in place to prevent further degradation of the habitat.
- It is recommended that no construction takes place within 32 meters of the Jukskei River as well as within 32 meters of the western edge of the drainage line, as this area contains signs of a seasonal wetland. The Eastern side of the drainage line does not require a buffer.

9. Conclusion

The largest part of the study area supports a number of widespread grassland bird species such as Widowbirds, Bishops, Lapwings and Weaver with other species like African Stonechat, Pipits and Cape Longclaw scattered throughout the study area at a lower frequency. Other species such as Dark-capped Bulbul, Karoo Thrush, Barbets, Southern Boubou, Flycatchers, Honeyguides, etcetera occurring on the study area are mostly confined to the Rocky outcrop and the Riverine area where large indigenous and alien trees are present. These species include; Cisticolas, Prinias, Bulbuls, Dove's, Ducks, Ibis etc. None of the bird species recorded or considered to have a high occurrence probability is of conservation concern.

The Riverine area and the Drainage Line do however provide the optimal habitat for a number of widespread species and the Riverine area could potentially support the Red-listed Half-collared Kingfisher. For these reasons the Riverine area and Drainage line are considered to be of high ecological sensitivity.

Due to the near natural state of the habitat, the Eastern Grassland and the Rocky outcrop was deemed to have moderate sensitivity in terms of avifauna richness, the rest of the study area was judged to have a low ecological and avifaunal sensitivity level (Figure 9). Should development take place, it is suggested that no disturbance occurs within the Riverine and Drainage line areas. None of the 23 Red Data avifaunal species recorded for the 2628AA QDS are likely to occur on the study area, with the exception of the Half-collared Kingfisher, provided that proper rehabilitation of the Riverine area is implemented. Most of the Red Data species recorded for the 2628AA QDS were recorded before 2007 of which many of these species were probably not recorded on the study area. Although the Riverine habitat is the preferred habitat for the Half-collared Kingfisher, this bird is unlikely to occur as a result of the highly polluted state of the river. In conclusion, apart from the Half-collared Kingfisher, no evidence in the form of suitable breeding, roosting and foraging habitat was found on the study area to support the presence or probable occurrence of any Red Data avifaunal species.

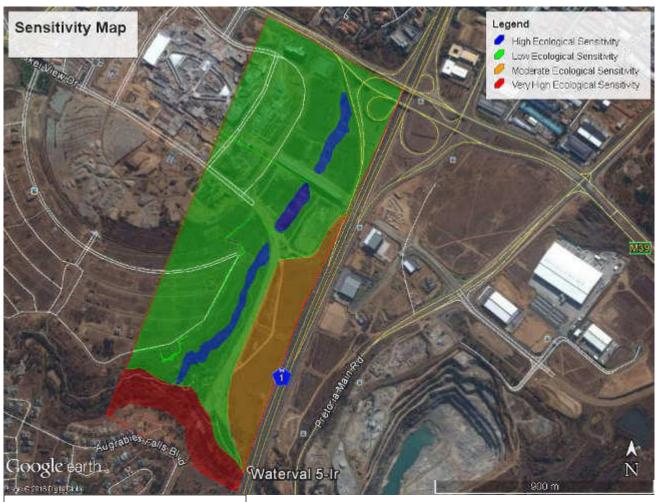


Figure 9: Avifaunal Sensitivity Map

10. Literature Sources

Barnes, K.N., (ed.) 2000. *The Eskom Red Data Book of Birds of South Africa, Lesotho and Swasiland*. BirdLife South Africa, Johannesburg.

- BirdLife South Africa. 2016. BirdLife South Africa official Checklist of Birds in South Africa 2016. http://www.birdlife.org.za/publications/checklists
- GDARD. 2014. Technical report for the Gauteng Conservation Plan (Gauteng C-Plan v3.3). Gauteng Department of Agriculture and Rural Development: Nature Conservation Directorate. 60 pages.
- GDARD. 2014. Requirements for Biodiversity Assessments version 3. Gauteng Department of Agriculture and Rural Development: Biodiversity Management Directorate. 24 pages.
- Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J. Parker, V. & Brown, C.J. (eds.). 1997. *The Atlas of Southern African Birds*. Vol. 1 & 2. BirdLife South Africa, Johannesburg.
- Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. 2005. *Roberts Birds of Southern Africa VIIth Edition,* The Trustees of the John Voelcker Bird Book Fund, Cape Town
- Marais, M & Peacock, F., 2008. *The Chamberlain guide to Birding Gauteng,* Mirafra Publishing, CTP Book Printers, Cape Town.
- Mucina, L. & Rutherford, M.C. (eds.) 2006. The vegetation of South Arica, Lesotho and Swasiland. Strelitzia 19. South Africa National Biodiversity Institute, Pretoria.
- Sibali, L.L., Okwonkwo, J.O. and McCrindle, R.I., 2008. Determination of selected organochlorine pesticide (OCP) compounds from the Jukskei River catchment area in Gauteng, South Africa. Water SA, 34(5), pp.611-621.
- Sinclair I., & Hockey P & Tarboton, W. 2011. Sasol Birds of Southern Africa. Struik, Cape Town.
- Southern African Bird Atlas Project 2. South Africa, Lesotho, Botswana, Namibia, Mozambique, Swaziland, Zimbabwe, Zambia. 2016. Animal Demography Unit. University of Cape Town. www.sabap2.adu.org.za. accessed on 28 March 2016.
- Tarboton, W., Kemp, M.I., & Kemp, A.C. 1987. Birds of the Transvaal. Transvaal Museum, Pretoria.
- Taylor, M.R., Peacock, F. & Wanless, R.M. 2015. The 2015 Eskom Red Data Book of BIRDS of South Africa, Lesotho and Swaziland. BirdLife South Africa. Gauteng.

Environmental Management Plan

Final Environmental Management Programme (EMPr) For Portions of the Remainder of Portion 1 of the Farm Waterval 5IR

BOKAMOSO

LANDSCAPE ARCHITECTS &

ENVIRONMENTAL CONSULTANTS

P.O. BOX 11375 MAROELANA 0161

TEL: (012) 346 3810 Fax: 086 570 5659

Email: Lizelleg@mweb.co.za

August 2016

Ref No: 006/16-17/E0010

Table of Contents

1.	Pre	oject	Outline	4
*	1.1	Bac	kground	4
	1.2	Pro	ject description	4
	1.3	Rec	eiving Environment	6
2.	EM	1Pr C	bjectives and context	8
3.	Mo	onito	ring	8
	3.1	Rol	es and responsibilities	9
	3.2	Lin	es of Communication1	1
	3.3	Rep	orting Procedures to the Developer1	1
	3.4	Site	Instruction Entries1	1
	3.5	ESA	A/ESO (Environmental Site Officer) Diary Entries1	1
	3.6	Me	thods Statements1	1
	3.7	Rec	ord Keeping1	.2
10	3.8	Act	s1	2
	3.8	3.1	The National Water Act, 1998 (Act No: 36 of 1998)	12
	3.8	8.2	Atmospheric Pollution Prevention Act (Act 45 of 1965)	2
	3.8	8.3	National Environmental Management Act (Act 107 of 1998)1	13
	188	8.4 008)	The National Environmental Management: Waste Act (Act 59 o 14	f
	3.	8.5	The Municipal Systems Act (Act 32 of 2000)	L5
	3.	8.6	National Veld and Forest Fire Act, 1998 (Act No. 101, 1998)	15
	3.	8.7	Conservation of Agricultural Resources Act (Act No. 43 of 1983)
	3.	8.8	National Environmental Management Act: Biodiversity Act (Ac	t
	N	0.10	of 2004)	16
	3.	8.9	National Spatial Biodiversity assessment	16
	3.	8.10	Protected Species - Provincial Ordinances	17
			National Environmental Management: Protected Areas Act, Act No. 57 of 2003)	17

3.8	8.12 Heritage Act	17
3.8	8.13 Gauteng Province Environmental Management Framework	
(G	PEMF)	18
3.8	8.14 Gauteng Conservation Plan (C-Plan)	18
4. Pr	oject activities	19
4.1	Construction Phase	19
4.2	Operational Phase	42
5. Pr	ocedures for environmental incidents	46
5.1	Leakages and spills	46
5.2	Failure of erosion/sediment control devices	46
5.3	Bank/slope failure	46
5.4	Discovery of rare or endangered species	46
6. EN	MPr review	47

1. Project Outline

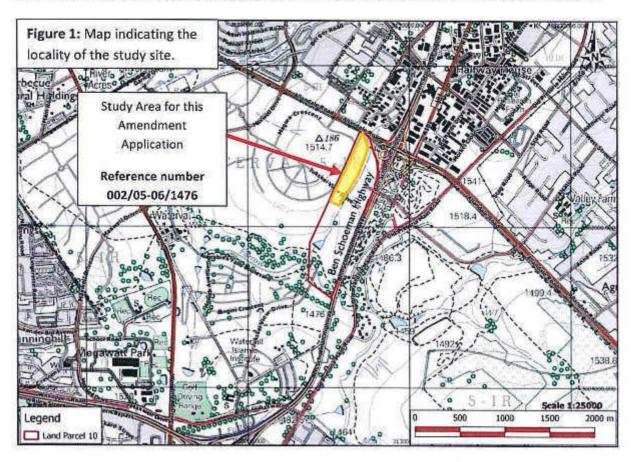
1.1 Background

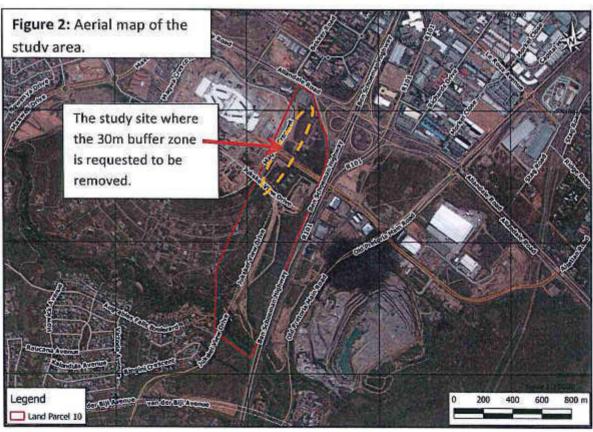
Bokamoso Landscape Architects and Environmental Consultants CC were appointed by Atterbury Waterfall Investment Company (PTY) LTD to conduct an Amendment Environmental Authorisation for the Proposed Mixed-use Development for which Environmental Authorisation was granted under Reference Number GAUT 002/05-06/1476.

This is a Draft Environmental Management Programme (EMPr), as part of the Amendment Application, and it will be finalised when the Impact Assessment has been completed and more detail on associated impacts are available.

1.2 Project description

The Proposed Mixed-use Development is situated on portions of the Remainder of Portion 1 of the Farm Waterval 5IR in Midrand, Gauteng, just south of Allandale Road and west of the N1 freeway. The study site falls in the jurisdiction of the City of Johannesburg Metropolitan Municipality. (Refer to Figure 1 for the Locality Map and Figure 2 for the Aerial Map).


Timeframe for construction:


The construction timeframe for the development that will encroach onto the 30m wetland buffer will be determined by the potential tenants/ new occupants of the structures to be erected. The applicant already negotiated with several big tenants that are interested to occupy the proposed new structures, but the construction and occupation timeframes of the various tenants/ occupants can only be finalized once delegated authority agreed to the relaxation of the 30m buffer,

At this stage the applicant is planning to develop the area within the next 5-10 years and the storm water management and rehabilitation measures will be implemented per phase to be developed. It is also important to note that the some of the maintenance and rehabilitation measures will be applied from the outset and will be implemented in an on-going basis. The measures to be implemented in an on-going basis are highlighted in green in the EMPr to follow. This EMPr will be a binding document for purposes of compliance.

Take note: There is already an approved Rehabilitation Plan and EMPr for the study area and no amendments to these plans will be required. However, a new Rehabilitation Plan and EMPr which will specifically be applicable to the relaxation of the 30m buffer area, potential impacts associated with the proposed development activities within the 30m buffer and to additional rehabilitation works and proposed mitigation measures required within the watercourse to accommodate the hydrological changes. This will be submitted as part of the amendment environmental authorisation, Bokamoso therefore request that

GDARD regard this as supplementary documentation to the existing Rehabilitation Plan and EMPr which have already been approved and implemented in the former authorisations.

1.3 Receiving Environment

Hydrology:

- A perennial river and man-made/ artificial wetland occurs within the study area.
- The perennial river is situated downstream (south of the study area) of the wetland.
 Dr. Johan van der Waals wrote a 2-pager as requested by the GDARD for the impacts of the proposed development on the downstream watercourse and suggested mitigation measures.

Wetland:

- The Hydropedology based Wetland Buffer Assessment and Management Report done by TerraSoil Science indicate that the wetland area has been transformed significantly through historical anthropological activities in the form of urban infrastructure development and storm water modifications
- The water course/wetland area towards the north of the study area has been rehabilitated to accommodate more water and attenuate water energy and flow.
- The site requires very significant and focussed storm water planning and intervention for the stabilisation of the watercourse as well as prevention of sediment generation.
- Further downstream rehabilitation will be needed to compensate for the additional storm water runoff created by the removal of the wetland buffer. The Civil engineer included a bio-swale downstream for the additional storm water run-off as well as gabion structures to prevent erosion and ensure stability of the system downstream.

Geology and Soils:

- The Halfway House Granite Dome Catena is a well-studied example of a quartz dominated Bb catena.
- The soils in the drainage feature are predominantly high clay content swelling soils with vertic properties.
- Vertic soils are highly erodible once disturbed which could cause rapid degradation
 of the watercourse once storm water volumes increase following surface sealing in
 the wetland buffer zone and its surrounding areas.

Flora:

The Proposed Development falls in the Egoli Granite Grassland vegetation unit which is regarded as Endangered (Mucina and Rutherford, 2006). According to **Bokamoso Environmental Specialist Division** the rehabilitated wetland area is dominated by Cyperus sp., Fuirena sp., Imperata cylindrical, Schoenoplectus sp., and Typha capensis. Some alien species such as Ipomoea purpurea, Tagetes minuta, Verbena spp. and

planted on the embankments of the wetland to stabilise the soil.

Xanthium spinosum also occur. Indigenous trees such as Celtis africana, Combretum erythrophyllum, Olea europaea subsp. africana, Searsia lancea and Vachellia karroo were

Fauna:

All the fauna studies were conducted by **Bokamoso Environmental: Specialist Division.** Both the drainage line and the riverine habitat provide important ecological functions in terms of connectivity and as such both are considered to be highly sensitive from a faunal perspective regardless of their current state.

Birds

Birds species that can possibly occur in and around the study area include Widowbirds, Bishops, Lapwings, Weaver, African Stonechat, Pipits Dark-capped Bulbul, Karoo Thrush, Barbets, Southern Boubou, Flycatchers, Honeyguides and Cape Longclaw. None of the bird species recorded or considered to have a high occurrence probability is of conservation concern; however the Jukskeiriver could potentially support the Red-listed Half-collared Kingfisher. None of the 23 Red Data avifaunal species recorded for the 2628AA QDS are likely to occur on the study area, with the exception of the Half-collared Kingfisher, provided that proper rehabilitation of the riverine area is implemented. In addition, the wetland area provides the optimal habitat for a number of widespread species. Both the riverine and wetland area is considered to be of high importance for the protection of avifauna species.

Mammals

The drainage line and riverine habitat have the potential to support sensitive species and/or species with conservation concerns (Vlei Rats and Otters). None of these species are believed to occur at present on account of the fairly recent construction activities within with the drainage line as well as the polluted and degraded state of the riverine habitat. No Red-listed mammal species was recorded for this site, however both the riverine and wetland area is considered to be of high importance for the protection of mammal species.

Amphibians and Reptiles

Five species of amphibians and three species of reptiles were given a high probability of occurring in the riverine area. No threatened species is known to occur in the area.

Invertebrates:

The presence of aquatic invertebrate species provides immediate evidence for the existence of a watercourse. Species such as *Crocothemis* which are dependent on wetland habitats makes it necessary to preserve the wetland. No sensitive invertebrate species were recorded or are expected to occur within the study area.

Visual:

The Proposed Development will consist of numerous prominent building structures which will be highly visible to the surrounding area, including the Ben Schoeman N1 highway. However, the proposed development is situated on probably one of the busiest areas in the country (between Pretoria and Johannesburg in the highest economic province in the country) will improve the aesthetic value of the area and may even contribute to the 'sense of place' if adequate measures as described later in this document are taken into consideration.

2. EMPr Objectives and context

Objectives

The objectives of this plan are to:

- Identify the possible environmental impacts of the proposed activity;
- Develop measures to minimise, mitigate and manage these impacts;
- Meet the requirements of the Environmental Authorisation of GDARD and requirements of other Authorities; and
- Monitor the project.

EMPr context

This EMPr fits into the overall planning process of the project by carrying out the conditions of consent set out by the Gauteng Department of Agriculture and Rural Development. In addition, all mitigation measures recommended in the Amended Environmental Authorisation report should also be adhered to.

This EMPr addresses the following two phases of the development:

- Construction phase; and
- Operational phase.

3. Monitoring

In order for the EMPr to be successfully implemented all the role players involved must have a clear understanding of their roles and responsibilities in the project.

These role players may include the Authorities (A), other Authorities (OA), Developer/ Proponent (D), Environmental Control Officer (ECO), Project Manager (PM), Contractors (C),

Ref No: 006/16-17/E0010

Ref No: 006/16-17/E0010

Environmental Assessment Practitioner (EAP) and Environmental Site Officer (ESO). Landowners, Interested and Affected Parties (I&APs) and the relevant environmental and project specialists are also important role players.

3.1 Roles and responsibilities

Developer (D)

The developer is ultimately accountable for ensuring compliance with the EMP and conditions contained in the Environmental Authorisation. The developer must appoint an independent Environmental Control Officer (ECO), for the duration of the pre-construction and construction phases, to ensure compliance with the requirements of this EMPr. The developer must ensure that the ECO is integrated as part of the project team.

Project Manager (PM)

The Project Manager is responsible for the coordination of various activities and ensures compliance with this EMPr through delegation of the EMPr to the contractors and monitoring of performance as per the Environmental Control Officer's monthly reports.

Environmental Control Officer (ECO)

An independent Environmental Control Officer (ECO) shall be appointed, for the duration of the pre-construction and construction phases of the development, by the developer to ensure compliance with the requirements of this EMPr.

- The Environmental Control Officer shall ensure that the contractor is aware of all the specifications pertaining to the project.
- Any damage to the environment must be repaired as soon as possible after consultation between the Environmental Control Officer, Consulting Engineer and Contractor.
- The Environmental Control Officer shall ensure that the developer staff and/or contractor are adhering to all stipulations of the EMPr.
- The Environmental Control Officer shall be responsible for monitoring the EMP throughout the project by means of site visits and meetings. This should be documented as part of the site meeting minutes.
- The Environmental Control Officer shall be responsible for the environmental training program.

- The Environmental Control Officer shall ensure that all clean up and rehabilitation or any remedial action required, are completed prior to transfer of properties.
- · A post construction environmental audit is to be conducted to ensure that all conditions in the EMPr have been adhered to.

Contractor (C):

The contractors shall be responsible for ensuring that all activities on site are undertaken in accordance with the environmental provisions detailed in this document and that the subcontractors and laborers are duly informed of their roles and responsibilities in this regard.

The contractor will be required, where specified to provide Method Statements setting out in detail how the management actions contained in the EMPr will be implemented.

The contractors will be responsible for the cost of rehabilitation of any environmental damage that may result from non-compliance with the environmental regulations.

Environmental Site Officer (ESO):

The ESO is appointed by the developer and then finally the home owner as his/her environmental representative to monitor, review and verify compliance with the EMPr by the contractor. The ESO is not an independent appointment but must be a member of the contractor's management team. The ESO must ensure that he/she is involved at all phases of the construction (from site clearance to rehabilitation).

Authority (A):

The authorities are the relevant environmental department that has issued the Environmental Authorization. The authorities are responsible for ensuring that the monitoring of the EMPr and other authorization documentation is carried out by means of reviewing audit reports submitted by the ECO and conducting regular site visits.

Other Authorities (OA):

Other authorities are those that may be involved in the approval process of the EMPr.

Environmental Assessment Practitioner (EAP):

According to Section 1 of NEMA the definition of an Environmental Assessment Practitioner is "the individual responsible for the planning, management and coordination of Environmental Impact Assessments, Strategic Environmental Assessments, Environmental Management Programmes or any other appropriate environmental instruments through regulations".

3.2 Lines of Communication

The Environmental Control Officer in writing should immediately report any breach of the EMPr to the Project Manager. The Project Manager should then be responsible for rectifying the problem on-site after discussion with the contractor. Should this require additional cost, then the developer should be notified immediately before any additional steps are taken.

3.3 Reporting Procedures to the Developer

Any pollution incidents must be reported to the Environmental Control Officer immediately (within 12 hours). The Environmental Control Officer shall report to the Developer on a regular basis (site meetings).

3.4 Site Instruction Entries

The site instruction book entries will be used for the recording of general site instructions as they relate to the works on site. There should be issuing of stop work order for the purposes of immediately halting any activities of the contractor that may pose environmental risk.

3.5 ESA/ESO (Environmental Site Officer) Diary Entries

Each of these books must be available in duplicate, with copies for the Engineer and Environmental Site Officer. These books should be available to the authorities for inspection or on request. All spills are to be recorded in the ESA/Environmental Site Officer's dairy.

3.6 Methods Statements

Methods statements from the contractor will be required for specific sensitive actions on request of the authorities or ESA/ESO (Environmental Site Officer). All method statements will form part of the EMPr documentation and are subject to all terms and conditions contained within the EMPr document. For each instance wherein it is requested that the contractor submit a method statement to the satisfaction of ESA/ESO, the format should clearly indicate the following:

- What a brief description of the work to be undertaken
- How a detailed description of the process of work, methods and materials
- Where a description / sketch map of the locality of work; and
- When the sequencing of actions with due commencement dates and completion date estimate.

The contractor must submit the method statement before any particular construction activity is due to start. Work may not commence until the method statement has been approved by the ESA/ESO.

3.7 Record Keeping

All records related to the implementation of this Management Programme (e.g. site instruction book, ESA/ESO dairy, methods statements etc.) must be kept together in an office where it is safe and can be retrieved easily. These records should be kept for two years at any time be available for scrutiny by any relevant authorities.

3.8 Acts

3.8.1 The National Water Act, 1998 (Act No: 36 of 1998)

The purpose of this Act is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled in ways that take into account, amongst other factors, the following:

- Meeting the basic human needs of present and future generations;
- Promoting equitable access to water;
- Promoting the efficient, sustainable and beneficial use of water in the public interest;
- Reducing and preventing pollution and degradation of water resources;
- Facilitating social and economic development; and
- · Providing for the growing demand for water use.

Impact on proposed Development:

This impact is not considered significant. The site borders a perennial river system and a rehabilitated wetland occurs on site. It will be necessary to apply for an amendment of the existing Section 21 (c) and (i) water-use licenses issued for the study area.

3.8.2 Atmospheric Pollution Prevention Act (Act 45 of 1965)

The NEM: AQA serves to repeal the Atmospheric Pollution Prevention Act (45 of 1965) and various other laws dealing with air pollution and it provides a more comprehensive framework within which the critical question of air quality can be addressed.

The purpose of the Act is to set norms and standards that relate to:

- · Institutional frameworks, roles and responsibilities
- · Air quality management planning
- · Air quality monitoring and information management
- · Air quality management measures
- General compliance and enforcement

Amongst other things, it is intended that the setting of norms and standards will achieve the following:

- · The protection, restoration and enhancement of air quality in South Africa
- · Increased public participation in the protection of air quality and improved public access to relevant and meaningful information about air quality
- The reduction of risks to human health and the prevention of the degradation of air quality.

The Act describes various regulatory tools that should be developed to ensure the implementation and enforcement of air quality management plans. These include:

- Priority Areas, which are air pollution 'hot spots'
- · Listed Activities, which are 'problem' processes that require an Atmospheric Emission License
- · Controlled Emitters, which includes the setting of emission standards for 'classes' of emitters, such as motor vehicles, incinerators, etc.
- Control of Noise
- Control of Odours.

Impact on proposed Development:

Not significant - The Act has relevance to the proposed development during the construction phase. Dust pollution could be a concern primarily during the construction phase of the proposed project. Dust control would be adequately minimised during this phase by way of water spraying and possible dust-nets, when working close to existing residential dwellings or roads/highways. It is not foreseen that the proposed development would contribute significantly to pollution in terms of emissions and noise during its operational phase.

3.8.3 National Environmental Management Act (Act 107 of 1998)

The NEMA is primarily an enabling Act in that it provides for the development of environmental implementation plans and environmental management plans. The principles listed in the act serve as a general framework within which environmental management and implementation plans must be formulated.

The principles in essence state that environmental management must place people and their needs at the forefront of its concern and that development must be socially, environmentally and economically sustainable.

Impact on proposed Development:

Significant - Section 28 (1) of NEMA stated that every person who causes, has caused or may cause significant pollution or degradation of the environment must take reasonable measures to prevent such pollution or degradation from occurring, continuing or recurring, or, in so far as such harm to the environment is authorised by law or cannot reasonably be avoided or stopped, to minimise and rectify such pollution or degradation of the environment.

The EMPr is compiled in terms of Section 28 of NEMA.

3.8.4 The National Environmental Management: Waste Act (Act 59 of 2008)

This Act came into effect on 11 June 2009. It aims to consolidate waste management in South Africa, and contains a number of commendable provisions, including:

- The establishment of a national waste management strategy, and national and provincial norms and standards for, amongst others, the classification of waste, waste service delivery, and tariffs for such waste services;
- Addressing reduction, reuse, recycling and recovery of waste;
- The requirement for industry and local government to prepare integrated waste management plans;
- The establishment of control over contaminated land;
- Identifying waste management activities that requires a licence, which currently include facilities for the storage, transfer, recycling, recovery, treatment and disposal of waste on land;
- Co-operative governance in issuing licenses for waste management facilities, by means of which a licensing authority can issue an integrated or consolidated license jointly with other organs of state that has legislative control over the activity; and
- The establishment of a national waste information system.

On 3 July 2009 the Minister of Environmental Affairs and Tourism promulgated a list of waste management activities that might have a detrimental effect on the environment. These listed activities provide the activities that require a Waste Management License. Two

Categories is specified: Category A and Category B. As part of Category A Waste Management License application a Basic Assessment in terms of Section 24(5) of the National Environmental Management Act (Act 107 of 1998) must be submitted to the relevant Authority. As part of a Category B Waste Management License a Scoping and EIA process in terms of Section 24(5) of the National Environmental Management Act (Act 107 of 1998) must be followed and submitted to the relevant Authority. On 29 November 2013 the Minister of Environmental Affairs and Tourism amended the list of waste activities that might be detrimental to the environment.

Impact on proposed Development:

This impact is not considered significant. No Waste Management License is expected to be required during the construction or operational phase of the proposed development.

3.8.5 The Municipal Systems Act (Act 32 of 2000)

This Act was introduced to provide for the core principles, mechanisms and processes that are necessary to enable municipalities to move progressively towards the social and economic upliftment of local communities, and ensure universal access to essential services that are affordable to all.

The proposed development will support the local authority in complying with the principles of the Municipal Systems Act, by assisting in providing the community with essential services, such as water and sewage infrastructure.

Impact on proposed Development:

Significant - The proposed development will contribute to the municipal services in the area.

3.8.6 National Veld and Forest Fire Act, 1998 (Act No. 101, 1998)

The purpose of this Act is to prevent and combat veld, forest and mountain fires throughout the Republic. Furthermore, the Act provides for a variety of institutions, methods and practices for achieving the prevention of fires.

Impact on proposed Development:

Significant - Fires of construction workers may only be lit in the designated site camp as indicated in assistance with the ECO. It is important that a site development camp be located on a part of the application site that is already disturbed.

3.8.7 Conservation of Agricultural Resources Act (Act No. 43 of 1983)

This Act provides for control over the utilization of the natural agricultural resources of the Republic in order to promote the conservation of the soil, the water sources and the vegetation and the combating of weeds and invader plants; and for matters connected therewith.

Impact on proposed Development:

This impact is not considered significant. According to the Gauteng Agriculture Potential Atlas (GAPA 3) the study area has a very low agricultural potential.

3.8.8 National Environmental Management Act: Biodiversity Act (Act No. 10 of 2004)

The purpose of the Biodiversity Act is to provide for the management of South Africa's biodiversity within the Framework of the NEMA and the protection of species and ecosystems that warrant National protection. As part of the implementation strategy, the National Spatial Biodiversity Assessment was developed.

Impact on proposed Development:

This impact is not considered significant. Majority of the study area is regarded as degraded with some illegal dumping taking place in the Jukskeiriver. Some areas along the N4 highway is regarded as sensitive such as rocky outcrops and in addition to this area, the drainage line/watercourse should be regarded as sensitive.

3.8.9 National Spatial Biodiversity assessment

The National Spatial Biodiversity Assessment (NSBA) classifies areas as worthy of protection based on its biophysical characteristics, which are ranked according to priority levels.

Impact on proposed Development:

Not Significant – Even though the proposed development is situated within the Endangered Egoli Granite Grassland vegetation type according to Mucina and Rutherford (2006) the natural vegetation of the study area is almost completely transformed.

3.8.10 Protected Species - Provincial Ordinances

Provincial ordinances were developed to protect particular plant species within specific provinces. The protection of these species is enforced through permitting requirements associated with provincial lists of protected species. Permits are administered by the Provincial Departments of Environmental Affairs.

Impact on proposed Development:

Not significant - No Red List species were recorded on the study site. However, the wetland/watercourse and the perennial river towards the south of the study area should be regarded as sensitive.

3.8.11 National Environmental Management: Protected Areas Act, 2003 (Act No. 57 of 2003)

The purpose of this Act is to provide for the protection, conservation and management of ecologically viable areas representative of South Africa's biological biodiversity and its natural landscapes.

Impact on proposed Development:

Not significant - The Application site is not located within any conservancy or protected area.

3.8.12 Heritage Act

The National Heritage Resources Act legislates the necessity and heritage impact assessment in areas earmarked for development, which exceed 0.5ha. The Act makes provision for the potential destruction to existing sites, pending the archaeologist's recommendations through permitting procedures. Permits are administered by the South African Heritage Resources Agency (SAHRA).

Impact on proposed Development:

Not significant- No cultural/historical significant areas were identified with in the application site and thus no areas of historical or cultural value will be affected.

3.8.13 Gauteng Province Environmental Management Framework (GPEMF)

The newly enacted GPEMF replaces all other Environmental Management Frameworks in the Gauteng Province, in terms of Regulation 5(4) of the Environmental Management Framework Regulations, 2010, published under Government Notice R547 in *Gazette* 33306 on 18 June 2010.

Impact on proposed Development:

From an institutional point of view, this site is also regarded as strategically located for urban development. The newly enacted Gauteng Provincial Environmental Management Framework (GPEMF) placed the study area in Zone 1, which is an area in which development infill, densification and the concentration of urban development within the urban development zones will be supported and promoted. In this zone applicants are exempted from certain EIA Related listed activities, but the listed activities associated with a watercourse/ wetland will however still remain applicable.

3.8.14 Gauteng Conservation Plan (C-Plan)

A systematic conservation plan for the Gauteng Province was undertaken by Gauteng Nature Conservation, a division within the Gauteng department of Agriculture and Rural Development (GDARD). The Gauteng Conservation Plan version 3.3 (Gauteng C-Plan v3.3) was released in February 2012, and a technical report was made available in March 2014.

Impact on proposed Development:

Not significant – In the C-Plan, the study site is located in an important area. This is based on suitable habitat for Red and Orange List plant species and is considered as primary vegetation. However, only one Orange List species (*Hypoxis hemerocallidea*) was recorded during the plant species survey.

Project activities 4.

Construction Phase 4.1

Frequency of Action	As and when required	As and when required
Responsib ility	Contractor	Contractor; ESO
Performance indicator	Minimal vegetation removed/damaged during site activities.	Effluents managed effectively. No pollution of water resources from site. Workforce use toilets provided.
Mitigation measure	Site to be established under supervision of ECO. Clearing and relocation of plants to be undertaken in accordance with site specific requirements.	1) Sufficient and temporary facilities including ablution facilities must be provided for construction workers operating on the site. 2) A minimum of one chemical toilet shall be provided per 10 persons. The contractor shall keep the toilets in a clean, neat and hygienic condition. Toilets provided by the contractor must be easily accessible and a maximum of 50m from the works area to ensure they are
Objective or requirement	To minimize damage to and loss of vegetation and retain quality of topsoil	To minimize pollution of surface and Groundwater resources.
Environment al risk or issue	Vegetation and topsoil	Surface and ground water pollution
TYPE	Camp	

TYPE	Environment al risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsib Illty	Frequency of Action
			utilized. The contractor (who must use reputable toilet-servicing company) shall be responsible for the cleaning, maintenance			
			and servicing of the toilets. The contractor (using reputable toilet-servicing company)			
			shall ensure that all toilets are cleaned and emptied before the builders' or other public holidays.			
			3) No person is allowed to use any other area than chemical toilets.			
			4) No French drain systems may be installed.			
			5) No chemical or waste water must be allowed to contaminate the run-off on site.			
			6) Avoid the clearing of the site camp (of specific phase) or paved surfaces with soap.			
		To minimize	1) Drip trays and/ or lined earth bunds must	No pollution of the	Contractor;	Dailty
		surface and	to contain spills of hazardous materials such			
		Groundwater	as fuel, oil and cement.			
		resources due to spilling of	2) Repair and storage of vehicles only within			

Frequency of Action		Daily
Responsib Ility		Contractor;
Performance indicator		No evidence of
Mitigation measure	the demarcated site area. 3) Spill kits must be available on site. 4) Oils and chemicals must be confined to specific secured areas within the site camp. These areas must be bunded with adequate containment (at least 1.5 times the volume of the fuel) for potential spills or leaks. 5) All spilled hazardous substances must be contained in impermeable containers for removal to a licensed hazardous waste site. 6) No leaking vehicle shall be allowed on site. The mechanic/ the mechanic of the appointed contractor must supply the environmental officer with a letter of confirmation that the vehicles and equipment are leak proof. 7) No bins containing organic solvents such as paints and thinners shall be cleaned on site, unless containers for liquid waste disposal are placed for this purpose on site.	The mixing of concrete shall only be done at
Objective or requirement	materials.	To minimize
Environment al risk or issue		
TYPE		

Frequency of Action		Daily	Daily Weekly
Responsib Ility	ESO	Contractor; ESO	Contractor; ESO
Performance indicator	contaminated soil on the construction site.	No evidence of contaminated water resources.	No waste bins overflowing No litter or building waste lying in or around the site
Mitigation measure	specifically selected sites, as close as possible to the entrance, on mortar boards or similar structures to prevent run-off into drainage lines, streams and natural vegetation.	No effluent (including effluent from any storage areas) may be discharged into any water surface or ground water resource.	Weather proof waste bins must be provided and emptied regularly. The contractor shall appoint labourers to clean up the contractor's camp and construction site on a daily basis. Temporary waste storage points on the site should be determined. THESE AREAS SHALL BE PREDETERMINED AND LOCATED IN AREAS THAT IS ALREADY DISTURBED. These storage points should be accessible by waste removal trucks and these points should be located in already disturbed areas
Objective or requirement	pollution of surface and groundwater resources by cement	To minimize pollution of surface and Groundwater resources due to effluent.	To prevent unhygienic usage on the site and pollution of the natural assets.
Environment al risk or issue			Pollution of the environment
TYPE			

TYPE	Environment al risk or issue	Objective or requirement	Mitigation measure	Pertormance indicator	Responsib ility	rrequency of Action
			/areas not highly visible from the properties of the surrounding land-owners/ in areas			
			where the wind direction will not carry bad			
	÷		odours across the properties of adjacent			
			landowners. This site should comply with			
			the following:			
			 Skips for the containment and 			
			disposal of waste that could cause			
			lubricants, etc.;			
			 Small lightweight waste items 			
			should be contained in skips with lids to prevent wind littering;			
			 Bunded areas for containment and 			
			holding of dry building waste. 4) No solid waste may be disnoved of on the			
			site.			
			5) No waste materials shall at any stage be			
			disposed of in the open veld of adjacent			
			properties.			
			6) The storage of solid waste on the site,			
			until such time as it may be disposed of,			
			must be in a manner acceptable to the local			
			authority and DWS.			

Frequency of Action		Daily Weekly
Responsib ility		EsO EsO
Performance indicator		Sufficient containers available on site No visible signs of pollution
Mitigation measure	7) Cover any wastes that are likely to wash away or contaminate storm water.	 Waste shall be separated into recyclable and non-recyclable waste, and shall be separated as follows: General waste: including (but not limited to) construction rubble, Reusable construction material. Recyclable waste shall preferably be deposited in separate bins. All solid waste including excess spoil (soil, rock, rubble etc.) must be removed to a permitted waste disposal site on a weekly basis. No bins containing organic solvents such as paints and thinners shall be cleaned on site, unless containers for liquid waste disposal are placed for this purpose on site. Keep records of waste reuse, recycling and disposal for future reference. Provide information to ECO.
Objective or requirement		Recycle material where possible and correctly dispose of unusable wastes
Environment al risk or issue		
TYPE		

25

Frequency of Action	daily
Responsib Ility	Contractor
Performance indicator	
Mitigation measure	 Rubble must be removed from the construction site frequently and be disposed of at an approved dumping site. Sufficient and covered containers must be available on the construction site. Sufficient and covered containers must be available on the construction site. Material to be used as backfill during a later stage of the building construction must be covered with a layer of soil to prevent litter from being blown over the site and to prevent unhygienic conditions. Chemical containers and packaging brought onto the site must be removed for disposal at a suitable site. The burning of waste is prohibited. Where possible, waste must be separated into clearly marked containers and subsequent recycling thereof must be a
Objective or requirement	To keep the site clean and tidy. To ensure waste appropriate waste stream in order to optimize recycling opportunities.
Environment al risk or issue	Waste
TYPE	

	priority.
are ect be be www.	specifically designated areas and under controlled circumstances. 2) Food vendors shall be allowed within specified areas. 3) No wood may be collected from the site for fires. 4) Fire extinguishers to be provided in all vehicles and fire beaters must be available on site. 5) Emergency numbers/ contact details must be available on site.
	Underground services should b appropriately prior to installation.
m v2	1) The top layer of all areas to be excavated for the purposes of construction shall be stripped and stockpiled in areas where this

Frequency of Action			Monitor			
Responsib Ility			Contractor of the Individual Developer			
Performance indicator	stockpiled	No signs of erosion	Excavated materials correctly stockpiled	No visible signs of erosion and sedimentation	Minimal invasive weed growth	Vegetation only
Mitigation measure	material will not be damaged, removed or compacted.	2) All surfaces that are susceptible to erosion, shall be protected either by cladding with biodegradable material or with the top layer of soil being seeded with grass seed/planted with a suitable groundcover.	Stockpiling will only be done in designated places where it will not interfere with the natural drainage paths of the environment.	2) In order to minimize erosion and siltation and disturbance to existing vegetation, it is recommended that stockpiling be done/ equipment is stored in already disturbed/ exposed areas.	3) Cover stockpiles and surround downhill sides with a sediment fence to stop materials washing away.	4) Remove vegetation only in areas
Objective or requirement	geology.		To prevent the loss of topsoil	To prevent siltation & water pollution.		
Environment al risk or issue)6	
TYPE						

Frequency of Action	*1					
Responsib Ility						
Performance indicator	removed in designated areas					
Mitigation measure	designated during the planning stage. 5) Rehabilitation/ landscaping are to be done immediately after the involved works are completed. (Refer to rehabilitation plan for more details).	6) All compacted areas should be ripped prior to them being rehabilitated/landscaped by the contractor as appointed by the developer/individual erfowner.	7) The top layer of all areas to be excavated must be stripped and stockpiled in areas where this material will not be damaged, removed or compacted. This stockpiled	material should be used for the rehabilitation of the site and for landscaping purposes.	8) Strip topsoil at start of works and store in stockpiles no more than 1,5 m high in designated materials storage area.	 During the laying of any cables, pipelines or infrastructure (on or adjacent to the site) topsoil shall be kept aside to cover the
Objective or requirement						
Environment al risk or issue						
TYPE						

Performance Responsib Frequency indicator ility of Action	such	ated that The Gamaged areas the successfully rege to ould rage will but in in it.
Mitigation measure	disturbed areas immediately after such activities are completed.	1) It is recommended that the construction of the development be done in phases. 2) Each phase should be rehabilitated immediately after the construction for that phase has been completed. The rehabilitated areas should be maintained by the appointed rehabilitation contractor until a vegetative coverage of at least 80% has been achieved as appointed by the developer/ individual erf owner. 3) Mark out the areas to be excavated. 4) Large exposed areas during the construction phases should be limited. Where possible areas earmarked for construction during later phases should remain covered with vegetation coverage until the actual construction phase. This will prevent unnecessary erosion and siltation in these areas. 5) Unnecessary clearing of vegetation resulting in exposed soil prone to erosive conditions should be avoided.
Objective or requirement		To prevent erosion and siltation (Refer to rehabilitation plan for more details)
Environment al risk or issue		Erosion and siltation
TYPE		

TYPE	Environment al risk or issue	Objective or requirement	Mitigation measure	Performance indicator	Responsib ility	Frequency of Action
			compacted and planted with indigenous			
		20	grass and trees to stop any excessive soils			
			erosion and scouring of the landscape if			
			required.			
			7) The eradication of alien vegetation			
			should be followed up as soon as possible			
			by replacement with indigenous vegetation			
			to ensure quick and sufficient coverage of			
			exposed areas by the individual erf owner.			
			8) Storm water outlets shall be correctly			
			designed to prevent any possible soil			
			erosion. This includes implementation of			
			stilling basins and planting indigenous			
			vegetation for silt trapping.			
			9) All surface run-offs shall be managed in			
			such a way so as to ensure erosion of soil			
			does not occur.			
			10) Implementation of temporary storm			
			water management measures that will help			
			to reduce the speed of surface water by the			
			individual erfowner / developer.			
			11) All surfaces that are susceptible to			
			erosion shall be covered with a suitable			
			vegetative cover as soon as construction is			
			completed by the individual erf owner /			

August 2016

Frequency of Action		When	Monitor daily	As required
Responsib ility		Engineers; Contractor; Individual Developer	Contractor	Engineer; Contractor
Performance indicator				Built structures show no sign of cracks
Mitigation measure	developer.	Preventative foundation designs shall be done, such as erecting gabion structures, using sand bags or hay bales etc. (Refer to rehabilitation plan for more details). Detailed foundation inspections should be carried out at the time of construction to identify any variances and adjust foundation designs accordingly if need be. The foundation recommendations from the geotechnical engineers must be adhered to.	Provision should be made for the removal of groundwater from excavations.	1)The floors of foundation excavations should be compacted by a hand-operated vibratory roller or else by a machine equivalent to a Wacker Rammer (a mechanised tamping device); a test section should firstly be compacted under supervision of the Engineer in order to determine the number of roller passes. The structures may then be constructed by
Objective or requirement		To ensure stability of structures	To ensure that excavations do not become flooded	To ensure that built structures do not crack due to collapsible soils and settlement
Environment al risk or issue		Stability of structures due to geology	Seepage of groundwater into excavations	Cracking of structures
TYPE				18

rrequency of Action										Monitor	daily							
Kesponsib ility										Contractor								Contractor
Performance										No visible signs of	erosion.			No visible signs of	pollution			No visible signs of
Mitigation measure	conventional means.	Additional precautionary measures that can be employed are:	2) The provision of expansion joints in the walls of structures;	3) A concrete walkway of 1,0m in width	around the perimeter of each structure; and	4) The snaping of the walkway and the ground surface in the vicinity of the	structures so as to drain water away from	each structure so that no ponding of surface	water can take place in the vicinity of the	1) Increased run off Auring construction	_	suitable structures as required to ensure	flow velocities are reduced. (Refer to	rehabilitation plan for more details).	2) he contractor shall ensure that	excessive quantities of sailu, siit ailu siited	water do not enter the storm water system.	1) The rehabilitated wetland area should be
Objective or requirement										To an incitation	pollution of soil,	surface and	groundwater					Preserving River
Environment al risk or issue											nyarology							Wetland
TYPE																		

August 2016

TYPE Environment al risk or issue	nent Objective or or requirement a	Mitigation measure clearly marked prior to construction. This	Performance indicator pollution	Responsib ility	
	areas.	_			
		and should remain open space during the			
		proposed development activities.			
		2) Construction of water control structures			
		to prevent and control any erosion on the			
		site.			
		3) Prevent contamination of wetland areas			
		from polluted runoff/ seepage/ drainage			
		water by utilizing relevant control		,	
		measures.			
		4) During the construction phase, no			
		dumping and no stockpiling of materials			
		within the wetland areas and associated			
		buffers should take place.			
		5) No construction or dumping of activities			
		should take place within the 1:50 year or			
		1:100 year floodline or a horizontal distance			
		of 100m from a water resource unless			
		authorized by DWA.			
		6) No vehicles should be allowed to			
		indiscriminately drive through the wetland			
		areas. Fence-off sensitive areas prior to			
		construction and apply temporary storm			
		water management measures outside the			

ce Responsib Frequency ility of Action																								
Performance indicator																								
Mitigation measure	study area are strictly prohibited and the	Council shall prosecute offenders.	3) All mitigation measures for impacts on	the indigenous flora of the area should be	implemented in order to limit habitat loss	as far as possible and maintain and improve	available habitat, in order to maintain and	possibly increase numbers and species of	indigenous fauna.	4) Wood harvesting of any trees or shrubs	on the study area or adjacent areas shall be	prohibited.	5) Where possible, work should be	restricted to one area at a time.	6) Noise should be kept to a minimum and	the development should be done in phases	to allow faunal species to temporarily	migrate into the conservation areas in the	vicinity.	7) The integrity of remaining wildlife should	be upheld, and no trapping or hunting by	construction personnel should be allowed.	Caught animals should be relocated to the	
Objective or requirement																								
Environment al risk or issue																								
TYPE																								

Responsib Frequency ility of Action		actor As and when required	actor Monitored daily	actor Monitored daily
Respon		Contractor ESO	Contractor	Contractor
Performance indicator		No measurable signs of habitat destruction	No complaints from surrounding residents and I & APs	No visible signs of dust pollution
Mitigation measure	cars and bakkies, off-road bicycles and quad bikes and construction staff into the application site should be prohibited, both during the construction phase and during the lifespan of the project.	Retain natural habitat elements such as tree stumps, termite mounds, etc. where possible. Preserve, maintain and construct biological corridors where possible, as well	as retaining green belts interconnected with these corridors. 1) Site workers must comply with the Provincial noise requirements as outlined in Provincial Notice No. 5479 of 1999: Gauteng Noise Control Regulations. 2) Noise activities shall only take place during working hours.	1) Dust pollution could occur during the construction works, especially during the dry months. Regular and effective damping down of working areas (especially during the dry and windy periods) must be carried
Objective or requirement		To protect the existing fauna and flora.	To maintain noise levels below "disturbing" as defined in the national Noise Regulations.	Minimise dust from the site
Environment al risk or issue			Noise impact	Dust impact
TYPE			Social	

Frequency of Action		Monitored
Responsib Ility		ESO ESO
Performance indicator	No complaints from surrounding residents and I & APs	No incidences reported
Mitigation measure	out to avoid dust pollution that will have a negative impact on the surrounding environment. 2) When necessary, these working areas should be damped down in the mornings and afternoons.	 Although regarded as a normal practice, it is important to erect proper signs indicating the operations of heavy vehicles in the vicinity of dangerous crossings and access roads or even in the development site if necessary. With the exception of the appointed security personnel, no other workers, friend or relatives will be allowed to sleep on the construction site (weekends included) Construction vehicles and activities to avoid peak hour traffic times Presence of law enforcement officials at strategic places must be ensured Following actions would assist in management of safety along the road Adequate road marking Adequate road side recovery areas
Objective or requirement		To ensure the safety and security of the public.
Environment al risk or issue		Safety and security
TYPE		

Frequency of Action		When	Monitor	When
Responsib Ility		Contractor	Contractor; ESO	Landscape
Performance indicator		No complaints from I & AP	Visual impacts minimized	Landscaping done according to
Mitigation measure	 Allowance for pedestrians and cyclists where necessary Although regarded as a normal practice, it is important to erect proper signs indicating the danger of the excavation in and around the development site. Putting temporary fencing around excavations where possible. 	Determine areas where services will be upgraded and relocated well in advance. Discuss possible disruptions with affected parties to determine most convenient times for service disruptions and warn affected parties well in advance of dates that service disruptions will take place	The disturbed areas shall be rehabilitated immediately after the involved construction works are completed. Shade cloth must be used to conceal and minimise the visual impact of the site camps and storage areas	1) When planting trees, care should be taken to avoid the incorrect positioning of
Objective or requirement		Installation of services	In order to minimise the visual impact.	Landscaping
Environment al risk or issue		Infrastructure and services	Visual impact	Vegetation
TYPE				

ib Frequency of Action	or al	e When required al
Responsib Ility	architect Contractor / Individual Developer	Landscape architect Contractor / Individual Developer
Performance indicator	landscape development plan	Landscaping done according to landscape development plan
Mitigation measure	trees and other plants, to prevent the roots of trees planted in close proximity to the line of water-bearing services from causing leaking in, or malfunctioning of the services. 2) The proposed planting materials for the areas to be landscaped should preferably be endemic and indigenous. 3) All new trees and shrubs to be planted on the study area shall be inspected for pests and diseases prior to them being planted. 4) The inspection shall be carried out by the maintenance contractor at the property of the supplier and not on the study area.	1) Aerate compacted soil and check and correct pH for soils affected by construction activities. 2) Make sure plant material will be matured enough and hardened off ready for planting. Water in plants immediately as planting proceeds. 3) Apply mulch to conserve moisture. Plant according to the layout and planting techniques specified by the Landscape Architect in the Landscape Development plans for the site.
Objective or requirement		Loss of plants
Environment al risk or issue		
TYPE		

Frequency of Action	When	Once a day Then every 4 days	Immediatel y after
Responsib Ility	Landscape architect Contractor	Landscape architect Contractor	Landscape
Performance indicator	Weed growth controlled	Grass have	No erosion surrounding new
Mitigation measure	Ensure that materials used for mulching and topsoil/ fertilisers are certified weed free. Collect certifications where available. Control weeds growth that appears during construction.	1) Compacted soils shall be ripped at least 200mm. 2) All clumps and rocks larger than 30mm diameter shall be removed from the soil to be rehabilitated. 3) The soil shall be leveled before seeding 4) Hydroseed the soil with Potch mixture 5) Watering shall take place at least once per day for the first 14 days untill germination of seeds have taken place 6) Thereafter watering should take place at least for 20 minutes every 4 days until grass have hardened off.	Vehicles and workers associated with construction should not have free access to
Objective or requirement	Spread of weeds	To ensure rehabilitation of the site	Rehabilitation of area directly
Environment al risk or issue			
TYPE			

r Mitigation measure Performance Responsib Frequency indicator ility of Action	the stream and unnecessary disturbance to river area architect constructio	the stream should be avoided.	2) No vegetation may be removed from the	stream area or buffer zone unless stipulated	in a Water Use License granted to the	owner of the site.	3) Erosion control measures should be	implemented on all open soils and steep	slopes.	4) Upon completion of the construction in	the area, the area should be rehabilitated to	a level that will ensure that wetland	vegetation can become re-established. In	this regard special mention of the following	is made:	All areas of disturbed and	compacted soils need to be	compacted and reprofiled.	Ongoing removal of alien	C	place after the completion of the	structure to prevent the	
Objective or requirement	surrounding	stream																					
Environment al risk or issue																							
TYPE																							

Operational Phase 4.2

Frequency of Action			To be agreed	Once off
Responsibility	Contractor	Contractor	Contractor	Engineer; (
Mitigation measure	Remove erosion and sediment controls only if all bare soil is sealed, covered or re-vegetate. Sweep roadways clean and remove all debris from kerb and gutter areas. Do not wash into drains.	Decontaminate and collect waste in storage area ready for off-site recycling or disposal Arrange for final collection and removal of excess and waste materials.	Agreed schedule for regular follow-up watering, weed control, mulch supplements and amenity pruning, if needed. Replace all plant failures within three month period after planting.	Due to loose topsoil, the soil must be covered by means of re-seeding and vegetation with suitable ground covering.
Objective or requirement	Do not allow any materials to wash into the storm water system.	Minimise waste	To ensure revegetation to	Prevent topsoil erosion
Environmen tal risk or issue	Storm water pollution	0	Revegetation to stabilise soil, loss or degradation of habitat	Erosion of topsoil
TYPE	Site clean-up and preparation for use		Establishing plants	Geology

TYPE	Environmen tal risk or issue	Objective or requirement	Mitigation measure	Responsibility	Frequency of Action
		To ensure effective stormwater management	1) Stormwater throughout the site should be managed to accommodate the higher quantities of run off; 2) Sheet flow should be encouraged as far as possible, and channels should be designed to sufficiently address the problem of erosion; and 3) Bio-swale system could be implemented to filter water from paved areas and especially from roads and parking areas to sufficiently clean water of heavy metals and other hazardous materials in stormwater in a natural manner. This will further provide an opportunity for water to infiltrate the soil, break the energy of stormwater and keep the water on site for longer.	Section 21 Company; HOA	
Materials failure	Structural damage. Loss of site materials.	(4)	Inspect all structures monthly to detect any cracking or structural problems. Confirm with designer if there are design problems. Rectify with materials to match, or other agreed solution.	Contractor	
Water management and Wetland	Work being done in Wetland Areas &		1) Continued implementation of an approved Stormwater Management Plan must take place. Siltation, prevention of obstruction at culverts and prevention of erosion must take place on	Developer	Storm water management as agreed upon

TYPE	Environmen tal risk or issue	Objective or requirement	Mitigation measure	Responsibility	Frequency of Action
features	Storm Water Managemen t		an ongoing basis. Continuous monitoring of storm water system should take place. 2) Success of rehabilitation works is to be monitored on a continuous basis. 3) Ecological integrity and functioning should be maintained and monitored to ensure stability of system. The success of the rehabilitated wetland habitats will only be evident after a couple of years.		Rehabilitated watercourse monitored annually (adjusted if needed)
Drainage failure	On-site and downstream drainage pollution or flooding	Storm water management plan	Inspect all site drainage works and repair any failures. Confer with design engineer and to correct site problems.	Contractor	•8
Site audit	Eventual project failure	Successful project establishment	Routinely audit the works and adjust maintenance schedule accordingly.	Contractor	,
General	Mismanage ment	Maintenance team in place	A maintenance team as well as a landscaping team is needed to ensure that the development is well maintained.	Developer	5/1

Environmental Management Programme: Waterval 5 IR, Gauteng Ref No: 006/16-17/E0010

TYPE	Environmen tal risk or issue	Objective or requirement	Mitigation measure	Responsibility	Frequency of Action
			Open fires and smoking during maintenance works are strictly prohibited.	Contractor	

Procedures for environmental incidents 5.

5.1 Leakages and spills

- Identify source of problem.
- Stop goods leaking, if safe to do so.
- Contain spilt material, using spills kit or sand.
- Notify Environmental Control Officer
- Remove spilt material and place in sealed container for disposal (if possible).
- Environmental Control Officer to follow Incident Management Plan.

5.2 Failure of erosion/sediment control devices

- Prevent further escape of sediment.
- Contain escaped material using silt fence, hay bales, pipes, etc.
- Notify ECO.
- Repair or replace failed device as appropriate.
- Dig/scrape up escaped material; take care not to damage vegetation.
- Remove escaped material from site.
- ECO to follow Incident Management plan.
- Monitor for effectiveness until re-establishment.

5.3 Bank/slope failure

- Stabilize toe of slope to prevent sediment escape using aggregate bags, silt fence, logs, hay bales, pipes, etc.
- Notify ECO.
- ECO to follow Incident Management plan.
- Divert water upslope from failed fence.
- Protect area from further collapse as appropriate.
- Restore as advised by ECO.
- Monitor for effectiveness until stabilized.

Discovery of rare or threatened species during construction phase 5.4

- Stop work.
- Notify ECO.
- If a plant is found, mark location of plants with GPS and demarcate the area. A botany specialist should be consulted immediately.
- If an animal is found, mark location where sighted. Do not capture the animal or disturb it. Contact an appropriate fauna specialist immediately.
- ECO to identify or arrange for identification of species and or the relocation of the species if possible.

- Ref No: 006/16-17/E0010
- If confirmed significant, ECO to liaise with Endangered Wildlife Trust.
- Recommence work when cleared by ECO.

6. EMPr review

- The Site Supervisor is responsible for ensuring the work crew is complying with procedures, and for informing the work crew of any changes. The site supervisor is responsible for ensuring the work crew is aware of changes that may have been implemented by GDARD before starting any works.
- 2. If the contractor cannot comply with any of the activities as described above, they should inform the ECO with reasons within 7 working days.

Rehabilitation and Wetland Management Plan

Final Amended Rehabilitation and Wetland Management Plan For Portions of the Remainder of Portion 1 of the Farm Waterval 5IR

BOKAMOSO

LANDSCAPE ARCHITECTS &

ENVIRONMENTAL CONSULTANTS

P.O. BOX 11375 MAROELANA 0161

TEL: (012) 346 3810 Fax: 086 570 5659

Email: Lizelleg@mweb.co.za

August 2016

Ref No: 006/16-17/E0010

Table of Contents

1. Int	roduction	5
2. Rat	tionale and Objectives	7
3. Do	cumentation consulted	7
3.1.	The National Water Act, 1998 (Act No: 36 of 1998)	8
4. Lin	nitations and Potential Problems	9
5. Po	tential Impacts and Threats	9
6. We	etland Rehabilitation Measures2	3
6.1.	Storm Water Management Plan (SWMP)2	3
6.2.	Erosion, Siltation and Sedimentation2	5
6.3.	Surface and groundwater pollution2	6
6.4.	Fauna and flora2	7
6.5.	Wetland Management Plan2	7
7. Ali	en Invasive Programme3	2
8. Mo	onitoring3	3
8.1.	Construction Phase3	3
8.2.	Operational Phase3	4
9. Co	nclusion3	5
	dum A: Alien plant species occurring in the study area which should be ated. (Species list extracted from Flora assessment and used with	
	ssion from specialist)3	6

Figures

Figure 1: Map indicating the locality of the study site.

Figure 2: Aerial map of the study area.

Tables

Table 1: Measures for determining the extent of the impacts on the Water Resources and Water Users.

Table 2: Adverse Impacts and Mitigation Measures.

Table 3: Wetland Rehabilitation Measures.

Table 4: Control methods for alien invasive species.

List of Abbreviations

DWA: Department of Water Affairs

EMPr: Environmental Management Programme

GDARD: Gauteng Department of Agriculture and Rural Development

NEMA: National Environmental Management Act

SWMP: Storm Water Management Plan

Glossary of Terms

Alien species: A plant or animal species introduced from elsewhere; neither endemic nor indigenous.

Biodiversity: The variability among living organisms from all sources including, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are apart.

Contractor: The contractors shall be responsible for ensuring that all activities on site are undertaken in accordance with the environmental provisions detailed in the Environmental Management Programme and that the sub-contractors and laborers are duly informed of their roles and responsibilities in this regard. The contractors will be responsible for the cost of rehabilitation of any environmental damage that may result from non-compliance with the environmental regulations.

Developer: ATTACQ WATERFALL INVESTMENT COMPANY (Pty) Ltd (AWIC)

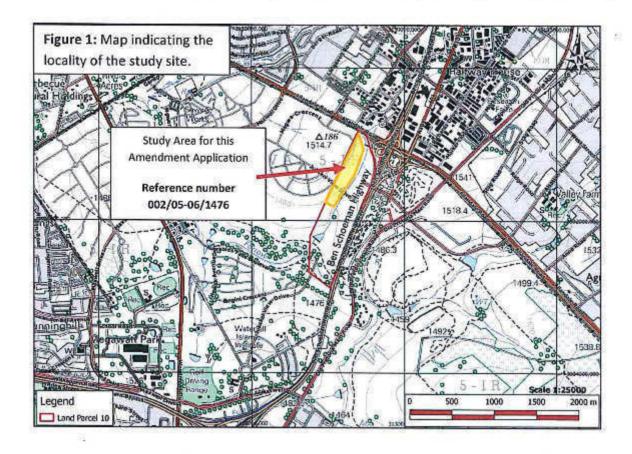
Ecology: The study of the inter relationships between organisms and their environments.

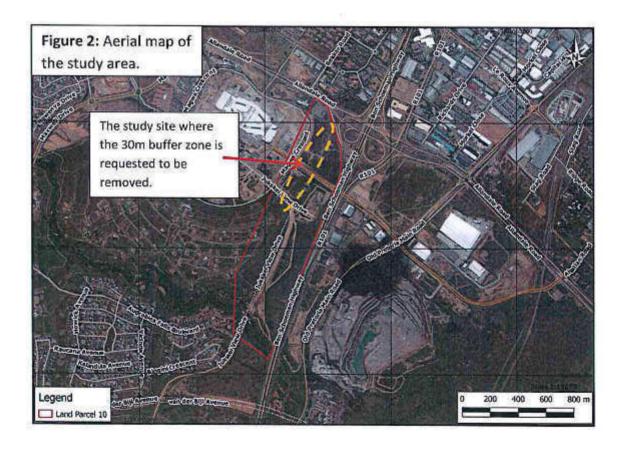
Environment: All physical, chemical and biological factors and conditions that influence an object and/or organism. Also defined as the surroundings within which humans exist and are made up of the land, water, atmosphere, plant and animal life (micro and macro), interrelationship between the factors and the physical or chemical conditions that influence human health and well-being.

Environmental Management Plan: A legally binding working document, which stipulates environmental and socio-economic mitigation measures that must be implemented by several responsible parties throughout the duration of the proposed project.

Home Owners Association:

Study Area: Refers to the entire study area compassing the total area of the land parcels as indicated on the study area map.


1. Introduction


Bokamoso Landscape Architects & Environmental Consultants has been appointed by Atterbury Waterfall Investment Company (PTY) LTD as independent Environmental Consultants/ Environmental Assessment Practitioner (EAP) to compile a Wetland Rehabilitation Plan for the Proposed Mixed-use Development, known as Northern Residential Estate. A RoD (Environmental Authorisation) was granted under Reference Number GAUT 002/05-06/1476. The application site is situated on portions of the Remainder of Portion 1 of the Farm Waterval 5IR in Midrand, Gauteng, just south of Allendale Road and west of the N1 freeway (Figure 1 and 2). The study site falls in the jurisdiction of the City of Johannesburg Metropolitan Municipality. An updated Rehabilitation Plan is required as the additional stormwater from the Proposed Development will be directed towards the wetland area which will have additional impacts on the system.

An updated "Open Space and Wetland Management Plan" was prepared by Dr. Gwen Theron in August 2012 in response to the ROD from the GDARD.

The purpose of the Amended Rehabilitation and Wetland Management Plan is to guide the additional rehabilitation work downstream of the existing rehabilitated wetland upstream to compensate for the additional stormwater run-off from the proposed development. This plan is flexible to be adapted where necessary and to address issues that may arise during the construction phase.

Take note: There is already an approved Rehabilitation Plan and EMPr for the study area and no amendments to these plans will be required. However, a new Rehabilitation Plan and EMPr which will specifically be applicable to the relaxation of the 30m buffer area and proposed mitigation measures will be submitted as part of this application and must be regarded as supplementary documentation to the existing Rehabilitation Plan and EMPr which have already been approved and implemented in the former authorisations.

2. Rationale and Objectives

The purpose of this document is to:

- Provide suitable rehabilitation measures in order to facilitate the ongoing ecological functioning of the wetland and associated areas;
- Incorporate the storm water management plan obtained from the engineer to reduce erosion and siltation;
- Provide recommendations and mitigation measures for adverse impacts caused during the construction phase;
- · Guide the management of the ecological attributes of the wetland;
- · Provide guidance as to the strategic decision making by the DWA and GDARD; and
- Inform the relevant stakeholders/role players, such as the Contractor, Developer and Home Owners Association of their responsibilities during and after the construction process.

The intention to rehabilitate the wetland area and riparian zone include:

- · The stabilisation and rehabilitation of the wetland habitat area;
- The stabilisation and rehabilitation of the riverine zone;
- Rehabilitation of construction activities adjacent to the wetland area;
- Biodiversity conservation to maintain habitat for flora and fauna species associated with wetland areas;
- Reduction and management of soil erosion and siltation from storm water run-off;
- Maximise the service provision from the wetland and surrounding affected areas;
- · Maximise the ecological functioning of the wetland and surrounding affected areas;
- Minimise impacts on the receiving environment; and
- Monitor the impact of the proposed development on the receiving environment.

3. Documentation consulted

The following reference material was consulted during the Amended Rehabilitation and Wetland Management Plan:

- Hydropedology Based Wetland Buffer Assessment and Management Report dated 3
 September 2015 compiled by Dr. Johan H. van der Waals from TerraSoil Science (Refer to Annexure H).
- STORM WATER IMPACTS, MITIGATION AND WETLAND REHABILITATION: LAND PARCEL 10 dated 7 July 2016 compiled by Dr. Johan H. van der Waals from TerraSoil Science (Refer to Annexure H(i)).

- Waterfall Open Space and Wetland Management Plan dated August 2012 compiled by Dr. Gwen Theron (Refer to Annexure G of EA).
- ROD for Northern Residential Estate GAUT 002/05-06/1476
- A Preliminary Wetland Delineation and Functional Assessment dated March 2006 compiled by Strategic Environmental Focus (PTY) LTD
- Wetland Buffer Zone Reduction Report dated September 2010 compiled by Antoinette Bootsma (Wetland Ecologist Specialist)
- The ecological assessments undertaken by Bokamoso Environmental: Specialist
 Division as part of the Amened Environmental Authorization Report dated May 2016.
- · National Environmental Management Act (1998), including amendments to the Act;
- National Water Act (Act 36 of 1998);
- National Environmental Management: Biodiversity Act (2004);
- Conservation of Agricultural Resources Act (CARA; Act 43 of 1983)

3.1. The National Water Act, 1998 (Act No: 36 of 1998)

CHAPTER 6 Section 65

Expropriation for rehabilitation and other remedial work

- (1) If a person who is required under this Act to undertake rehabilitation or other remedial work on the land of another, reasonably requires access to that land in order to effect the rehabilitation or remedial work, but is unable to acquire access on reasonable terms, the Minister may -
 - (a) expropriate the necessary rights in respect of that land for the benefit of the person undertaking the rehabilitation or remedial work, who will then be vested with the expropriated rights; and
 - (b) recover all costs incurred in connection with the expropriation, including any compensation payable, from the person for whose benefit the expropriation was effected.
- (2) Where a servitude of abutment, aqueduct or submersion is expropriated under this section, the Minister or water management institution responsible for the expropriation has the same rights as those vesting in the holder of a servitude under section 128.

CHAPTER 14 Section 137

(1) The Minister must establish national monitoring systems on water resources as soon as reasonably practicable.

- (2) The systems must provide for the collection of appropriate data and information necessary to assess, among other matters -
 - (a) the quantity of water in the various water resources;
 - (b) the quality of water resources;
 - (c) the use of water resources;
 - (d) the rehabilitation of water resources;
 - (e) compliance with resource quality objectives;
 - (f) the health of aquatic ecosystems; and
 - (g) atmospheric conditions which may influence water resources.

4. Limitations and Potential Problems

The success of the rehabilitation measures will only be evident after a certain time period has elapsed; therefore monitoring and record keeping is critical to ensure hydrological and ecological functioning. Vegetation used for the rehabilitation and stabilisation of the wetland habitat should be done according to this report based on the documentation consulted and the EMPr. If such measures are not implemented correctly the risk of storm water erosion and siltation in the wetland could cause water and soil pollution and further degradation of the entire system.

5. Potential Impacts and Threats

The significance of Adverse Environmental Impacts on the water resources and other water users were assessed according to the criteria of Table 1. The adverse impacts and mitigation measures are discussed in Table 2.

Table 1: Measures for determining the extent of the impacts on the Water Resources and Water Users

Improbable	- Low possibility of impact to occur either because of design or historic experience.
Probable	- Distinct possibility that impact will occur.
Highly probable	- Most likely that impact will occur.
Definite	- Impact will occur, in the case of adverse impacts regardless of any prevention measures.

Table 2: Adverse Impacts and Mitigation Measures

SIGNIFICANT RATING OF THE IMPACT AFTER MITIGATION	Probable							19.0				THE PARTY OF	
PROPOSED MITIGATION	Storm water run-off from the developed areas must be routed via the route channels and	proposed storm water pipe-and-culvert network;	 Spillways must be designed and implemented to 	assist with the flow of storm water;	 The drainage system must be gravity operated to 	ensure that the capacity of the system is not	affected;	 The storm water management plan (SWMP) 	should be designed as to ensure the post-	development run-off does not exceed pre-	development values in:	 Peak discharge for any given storm 	 Total volume of runoff for any given storm
SIGNIFICANT RATING OF THE IMPACT	Highly												
DESCRIPTION	The proposed	relatively large impervious	areas that will	substantially increase the	storm water runoff from	the site. These areas	should be mitigated, in	order to ensure that the	storm water be released	into the shallow valley	along the southern	boundary of the site.	
POTENTIAL	Altered Storm	OR DOTAIN	Surfaces and	Gradients	2077)	282	2000	50(25)		2000	ungh		

												Improbable							
cross or infringe on the main storm water	channel. All point source discharges and culverts	should be fitted with energy dissipating	structures at the outlets/outfall, which is where	the storm water is received into the rehabilitated	environment. Energy dissipaters are structures	designed to reduce runoff velocity below an	outfall;	 The use of permeable paving is advised for the 	parking lot to delay the speed of the water into	the storm water drains. This will serve a localised	flood attenuation function over a larger area.	 The manner and volume of discharge of storm- 	and treated water must be addressed in the	SWMP and accordingly be managed correctly and	effectively to prevent erosion and siltation from	occurring to ensure the sustainability of the	drainage system especially lower down in the	catchment;	 Mitigation measures to prevent erosion, siltation
	_	_										10.00							
													e						
												Highly	Probable						
												If not planned and Highly	managed correctly, Probable	construction and other	activities could cause soil	erosion. Mitigation	measures must be taken	into account to prevent	erosion and the possible

_
9
O
44
-
-
1
w
300
9
0
-
-
Ψ
0.0
93
44
-
T
(17)
-
~
liste.
LO
46
175

impact on the wetlands	and water pollution at the storm water discharge
and water quality.	points should be provided by the involved storm
	water engineer;
	The SWMP should be designed inherent to the
Erosion may occur due to	following principles;
surface runoff and the	Alter the natural flow regime of water course
water discharged at the	on site as little as possible
discharge points eroding	Retain inherent drainage systems in natural
the soil through occasional	areas
or permanent discharge	o Simulate natural runoff and convergence of
and runoff. This is also	storm water
dependant on the	Minimise unnatural drainage diversions
volumes of discharge.	Promote sheet flow of storm water runoff on
	open areas
	Conserve the in situ soil mantle as far as
	possible by ensuring that accelerated erosion
	caused by human activities are addressed and
	attended to
The state of the s	Make use of energy dissipation solutions to
	storm water systems where necessary

Ref No: 006/16-17/E0010

Minimise and avoid structures across drainage	channels	Protect and line open storm water drainage	channels as an aid and secondary assistance to	storm water management	Maintain quality or even improve quality of	water bodies	The SWMP plan should be signed and	implemented in a way that aims to ensure that	post development runoff does not exceed	predevelopment values in:	Peak discharge for any given storm	 Total volume of runoff for any given storm 	Frequency of runoff	o Pollutant and debris concentrations reaching	water courses	Exposed areas at runoff and discharge should be	covered with vegetation to prevent unnecessary	erosion and siltation in these areas.	Sufficient and temporary facilities including Probable
																			Highly
																			Seepage of waste water or
																			Contamination

Bokamoso Landscape Architects & Environmental Consultants August 2016

The second second								100			The state of								
ablution facilities must be provided for	construction workers operating on the site;	 A minimum of one chemical toilet shall be 	provided per 10 persons. The contractor shall	keep the toilets in a clean, neat and hygienic	condition. Toilets provided by the contractor	must be easily accessible and a maximum of 50m	from the works area to ensure they are utilized.	The contractor (who must use reputable toilet-	servicing company) shall be responsible for the	cleaning, maintenance and servicing of the	toilets. The contractor (using reputable toilet-	servicing company) shall ensure that all toilets are	cleaned and emptied before the builders or other	public holidays;	 The toilets must be placed outside the 1:100 year 	flood line and as far away as feasible from any	water courses;	 No person is allowed to use any other area than 	chemical toilets;
probable						311													
storm water combined	with process water can	seep through to	groundwater resources	and contaminate it.															
surface and	groundwater	resources																	

/ be installed; · must be allov		camp or		ls m	πei	-		.⊑		ase (s, etc.	and to	 ∓	sonne	shicle	leak	
tems may	-off on site;	of the site (lined earth bund	ehicles and equip	contain spills of hazardous materials such as fuel,		The repair and storage of vehicles only within the	a ;	Spill kits must be available on site. In case of	accidental spills of oil, petroleum products, etc.,	good oil absorbent materials must be on hand to	allow for the quick remediation of the spill. The	kit should also be well marked and all personnel	should be educated to deal with the spill. Vehicles	must be kept in good working order and leaks	
No French drain systems may be installed; No chemical or waste water must be allowed to	contaminate the run-off on site;	Avoid the clearing of the site camp or paved	surfaces with soap;	Drip trays and/ or lined earth bunds must be	provided under vehicles and equipment,	contain spills of haza	oil and cement;	The repair and stora	demarcated site area;	Spill kits must be	accidental spills of o	good oil absorbent r	allow for the quick	kit should also be w	should be educated	must be kept in go	
								•		•				hig	894 E-1		

Final Rehabilitation Plan and Wetland Management: Waterval 5IR, Gauteng

areas) may be discharged into any water surface No effluent (including effluent from any storage No bins containing organic solvents such as paints and thinners shall be cleaned on site, unless containers for liquid waste disposal are placed for environmental officer with a letter of confirmation that the vehicles and equipment are No leaking vehicle shall be allowed on site. The supply the All spilled hazardous substances must be contained in impermeable containers for removal least 1.5 times the volume of the fuel) for must be bunded with adequate containment (at Oils and chemicals must be confined to specific secured areas within the site camp. These areas must to a licensed hazardous waste site; appointed contractor potential spills or leaks; this purpose on site; leak proof; advised;

To ensure that the existing Probable

counter the additional runoff > Implementation of additional gabion			counter the additional runoff		the water resource;	S Control the activities directly impacting on	 changing the amount of water in the wetlands and riparian area The groundwater reserves must be protected; Monitor quality of water; Control the activities directly impacting on the water resource; Rehabilitation/restoration of indigenous vegetative cover; Management of onsite water use; Management of point discharges; Alien plant control activities; Storm water detention and treatment; Establishment of a swale downstream to 	protected prior and during the construction phase as well as being monitored and managed throughout its lifespan
				counter the additional runoff				
structures and other erosion measures to	structures and other erosion measures to	strictings and other prosion measures to						(hard
			counter the additional runoff					
							vegetative cover;	
						the water resource;		
							protected;	its lifespan
					AA	A	➤ The groundwater reserves must be	
A A A A A A A A A A A A A A A A A A A	a a a a a a a a a a a a a a a a a a a	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	a a a a a a a a a a a a a a a a a a a	yed throughout	ged throughout	and riparian area	well as being monitored
ged throughout year through year throughout year throughout year throughout year through year through	ged throughout year through year throughout year throughout year throughout year through year through	ged throughout year through year thr	ged throughout year through year throughout year through year	ged throughout Y Y Y Y Y Y Y Y Y Y Y Y Y	and monitored and ged throughout	and monitored and ged throughout		the construction phase as
E B A A A A A A A A A A A A A A A A A A							development activities.	protected prior and during
	the construction phase as well as being monitored and managed throughout its lifespan	the construction phase as well as being monitored and managed throughout its lifespan	the construction phase as well as being monitored and managed throughout its lifespan	the construction phase as well as being monitored and managed throughout its lifespan	the construction phase as well as being monitored and managed throughout its lifespan	the construction phase as well as being monitored and managed throughout its lifespan	open space during the	study area is adequately

gy and ing or	ing or			actices	also	The state of the s				g the	trate)	scilities	n area		water			allable Improbable	should	
	wetland which will result in altered hydrology and	associated change in turbidity (increasing or	decreasing the amount);	Implementation of best management practices	(Roads and associated drainage and	earthwork activities)	Source directed controls	Buffer zones to trap sediments	> Active rehabilitation;	Alteration of water quality - increasing the	amount of nutrients (phosphates, nitrite, nitrate)	Provision of adequate sanitation facilities	located outside of the wetland/riparian area	or its associated buffer zone	> Implementation of appropriate storm water	management	Utilize slow-release organic fertilizers.	A list of invader plant species is made available	(Addendum A) which occurs on site which should	
	-	Carlot I		•	Sin				1		lance.	Hal.	-111		100	186	٠			
																	To No. 18	Definite		
																		Alien plant species (not	indigenous to the area)	
																		Fauna and	Flora	

should be discouraged and		be eradicated and not be used for rehabilitation
restricted as far as		burposes;
possible. Alien species		Only indigenous plant species, preferably those
depletes surface and		that are endemic to the natural vegetation of the
ground water resources.		area are to be used for rehabilitation purposes;
They have a significant		As far as possible plants and trees growing
impact on ecological		naturally on the study area must be retained as
integrity of natural		part of the landscaping;
systems, flooding, erosion,		Measures must be developed to protect and
and also water quality and		conserve the water resources by removing
quantity.		existing alien plants and to discourage
		recruitment and recolonisation of the alien plants
		on the study area according to the measures
		indicated by a qualified wetland/botany
		specialist;
		Hypoxis hemerocallidea was identified during the
	The second second	flora assessment. H. hemerocallidea species
		should be clearly marked on site prior to
		construction, and should be relocated to areas
		with high sensitivity such as wetland boundaries,

 If during the construction phase any species of fauna is found, it is advised that the species be removed to a safe place to ensure the species is not damaged by the construction activities according to the measures indicated by a qualified fauna specialist; There must be ensured that no fauna species are unnecessarily disturbed, trapped, hunted or killed during the construction phase 		*	o o	S	s	е		a	ъ	
	before any site clearance takes place.	If during the construction phase any species o	fauna is found, it is advised that the species b	removed to a safe place to ensure the species	not damaged by the construction activitie	according to the measures indicated by	qualified fauna specialist;	There must be ensured that no fauna species ar	unnecessarily disturbed, trapped, hunted or kille	during the construction phase

6. Wetland Rehabilitation Measures

6.1. Storm Water Management Plan (SWMP)

Construction Phase

- · Energy dissipation structures and stilling basins must be installed at each storm water outlet structure. Stilling basins will help to reduce the amount of suspended solids in the storm water run-off and to act as sand traps.
- · The internal storm water system must consist of an underground gravity pipe and culvert network, roadside channels and inlet structures that will drain the roads and other impermeable and semi-impermeable surface areas. It must be designed to have sufficient capacity to convey a 1:5 and 1:25 year rainfall event. It must thus be aimed to concentrate storm water runoff in certain areas, for example at low points in the parking areas and in the roadside channels.
- Storm water runoff from the developed areas will be routed via the road side channels and storm water pipe and culvert network. It must eventually be released into the shallow valley along the southern boundary of the site.
- Should the 30m buffer zone be relaxed as proposed, an additional swale should be implemented downstream of the existing rehabilitated wetland to counter the additional storm water run-off. The swale is not fixed in its position and can move up or down the stream with ±35m to suit existing site conditions. The catchment area affected is 4.2 ha, thus the catchment area requires an attenuation pond of 1470m3 downstream.
- Frequent inspection of the wetland site must be done to ensure that no harmful practices/ detrimental impacts (erosion, siltation etc.) occur on site. In the event that such practices/impacts are noted, it must be rectified and remediated immediately.
- Another aim is that the roads, walkways, parking areas and channels can act as overland flow routes which will channel, attenuate and ultimately discharge the surface runoff via predetermined escape routes into the shallow valley along the southern boundary of the site. The design will have to allow for adequate management of the 1:50 year rainfall event.
- · Culvert outlet structures and overland chutes must be installed to convey storm water runoff from the development into the valley. Each outlet structure must have an energy dissipation structure and stilling basin to protect the river banks and riparian vegetation from erosion while also reducing the amount of suspended solids in the runoff released back into the river.
- The floor of each catch pit must have a sump 150mm lower than the invert of the outgoing pipe/culvert to act as sand traps all over the development.
- It is advised that for purposes of improved storm water quality, shallow overland storm water channels must be shaped from two major storm water outlets and stilling basins. The open channels must be planted with wetland vegetation such as reed beds to ensure that the levels of phosphorous in the storm water runoff are reduced.
- Other measures that are advised are:

- o Identification and protection of potential routes for major floods;
- Minimising the concentration of storm water runoff;
- Promotion of onsite filtration; and
- Adequate drainage of all temporary/artificial low points;
- Spillways must be implemented to assist with the flow of storm water.
- The drainage system must be gravity operated to ensure that the capacity of the system is not affected.
- · The storm water management must ensure that all culverts and storm water discharge outlets promote diffuse flow and should be fitted with energy dissipaters.
- · Flows should be dispersed before reaching the wetland and energy dissipating structures such as gabions or Armorflex lining should be installed to aerate the water.
- · The use of permeable paving is advised for the parking lots to delay the speed of the water into the storm water outlets.
- · Shaping of the parking areas to allow water to drain into separate field drains and not collect into a single high flow system.

Operational Phase

- Storm water runoff from the developed areas will be routed via the road side channels and storm water pipe and culvert network. It must eventually be released into the exiting rehabilitated wetland area.
- · Frequent inspection of the wetland site must be done to ensure that no harmful practices/detrimental impacts (erosion, siltation etc.) occur on site. In the event that such practices/impacts are noted, it must be rectified and remediated immediately.
- Regular inspection of dissipation and erosion devices is needed.
- Removal of debris and other obstructing materials from the site and erosion prevention structures must be done regularly to prevent damming of water and increasing flooding danger.
- It is of utmost importance that storm water must be managed in an effective manner to ensure the following, especially in terms of the water resources:
 - Preserve and protect aquatic resources Existing, relatively intact ecosystems are the keystone for conserving biodiversity and provide the biota and other natural materials needed for the recovery of impaired systems.
 - Maintain and/or improve ecological integrity The ecologic integrity of the natural systems must be maintained to ensure that the aquatic ecosystems don't degrade.
 - o Maintain and/or improve natural structure Stream channelization, ditching in wetlands, disconnection from adjacent ecosystems and other modifications are examples of structural arrangements which need to be avoided as far as possible.
 - o Maintain and/or improve natural function Structure and function are closely linked in river corridors, lakes, wetlands, estuaries and other aquatic resources.

 Maintain and/or improve the natural potential of the watershed – A watershed has the capacity to become only what its physical and biological setting – its Ecoregion, climate, geology, hydrology and biological characteristics will support.

Ref No: 006/16-17/E0010

- Prevent degradation When degradation is noted, restoration/rehabilitation must be implemented according to this rehabilitation plan.
- Develop clear, achievable and measurable goals for the resources Environmental degradation may occur without clear goals which direct implementation measures such as storm water management and provide the standards for measuring success.
- Focus on feasibility It is critical to focus on whether the activities related to the resources are feasible (taking into account scientific, financial, social and other considerations.
- To serve as a reference site Reference sites are areas that are comparable in structure and function of water resources
- Manage/anticipate the current/future changes The environment and our communities are both dynamic. Although it is impossible to plan for the future precisely or always effectively manage planned changes, many foreseeable ecological and societal changes can and should be factored into the changes/designs. It is important to take into account changes in runoff resulting from projected increases in upstream impervious surface areas due to development. In addition to impacts from changes in watershed land use, natural changes such as plant community succession can also play an important role.
- Involve skills and insights of a multi-disciplinary team Management of water resources and/or rehabilitation can be a complex under taking that integrates a wide range of disciplines including ecology, aquatic biology, hydrology and hydraulics, geomorphology, engineering, planning, communications and social science.

6.2. Erosion, Siltation and Sedimentation

Construction Phase

- Gabion structures and other erosion measures should be implemented downstream of the study area to protect the system from further erosion and provide stability.
- · Large exposed areas during the construction phase should be limited.
- Where possible, areas earmarked for construction during later phases should remain covered with vegetation coverage until the actual construction phase. This will prevent unnecessary erosion and siltation in these areas.
- Unnecessary clearing of vegetation resulting in exposed soil prone to erosive conditions should be avoided.
- All embankments must be adequately compacted and planted with indigenous grass (such as
 Eragrostis spp., Imperata cylindrica, Leersia hexandra and Sporobulus spp.) and tree species
 (such as Celtis africana, Combretum erythrophyllum, Olea europaea subsp. africana, Searsia
 lancea and Vachellia karroo) to stop any excessive soil erosion.

The removal of any alien plant species (Addendum A) should be followed up as soon as
possible by replacement with indigenous vegetation to ensure quick and sufficient coverage
of exposed areas.

Ref No: 006/16-17/E0010

- · Storm water outlets must be correctly designed to prevent any possible soil erosion.
- All surface runoff must be managed in such a way as to ensure erosion of soil does not occur.
- Temporary storm water management measures that will help to reduce the speed of surface water must be implemented.
- An area (away from the wetland and drainage line) must be allocated for stockpiling of topsoil. The area must be allocated before the construction takes place on the application site and must be situated away from any water source.

Operational Phase

- The groundwater reserves must be protected.
- · Monitoring of water quality must take place regularly.
- Replanting and rehabilitation of indigenous vegetative cover such as indigenous grasses (such
 as Eragrostis spp., Imperata cylindrica, Leersia hexandra and Sporobulus spp.) and tree
 species (such as Celtis africana, Combretum erythrophyllum, Olea europaea subsp. africana,
 Searsia lancea and Vachellia karroo).
- Management of onsite water use.
- Management of point discharges.
- Alien plant control activities (Addendum A).

6.3. Surface and groundwater pollution

Construction Phase

- Sufficient temporary facilities including ablution must be provided for construction workers.
- A minimum of one chemical toilet must be provided per 10 persons. The contactor must keep the toilets clean, neat and in a hygienic condition. Toilets provided by the contractor must be easily accessible and a maximum of 50m from the works area to ensure they are utilised. The contractor (who must use a reputable toilet servicing company) shall be responsible for the cleaning, maintenance and servicing of the toilets. The contractor is responsible for the cleaning, maintenance and servicing of the toilets. The contractor must insure that all toilets are cleaned and emptied before the builder's or other public holidays.
- No person is allowed to use any other area than the chemical toilets.
- No chemical or waste water must be allowed to contaminate the runoff on site.
- · Avoid the clearing of the site camp or paved surfaces with soap.
- Repair and storage vehicles only allowed within the demarcated site area.
- No bins containing organic solvents such as paints and thinners shall be cleaned on site, unless containers for liquid waste disposal are placed for this purpose on site.
- No effluent may be discharged into any water surface or ground water resource.

- · The contractor shall ensure that excessive quantities of sand, silt and silted water do not enter the storm water system.
- Ensure safe storage conditions so that there are no losses or leaks
- An area must be allocated for stockpiling of topsoil
- · The area must be allocated before the construction takes place on the application site and must be situated away from any water resource

Operational Phase

- No chemical or waste water must be allowed to contaminate the storm water runoff on site.
- No effluent may be discharged into any surface water or ground water resource.
- · No pollution of any sort may occur in or around the wetland area.

6.4. Fauna and flora

Construction Phase

- Propagation of plants should be encouraged. The growth of endangered and important indigenous plants must be encouraged
- If during the construction phase any species of fauna is found, it is advised that the species be removed to a safe place to ensure the species is not damaged by the construction activities
- . It must be ensured that no fauna species are unnecessarily disturbed, trapped, hunted or killed during the construction phase.

Operational Phase

- Replanting and rehabilitation of indigenous vegetative cover in wetland areas such as:
 - Sedges (Cyperus spp., Fuirena spp. and Schoenoplectus spp.)
 - o Rushes (Juncus spp.)
 - Bull rushes (Typha capensis)
 - Reeds (Phragmites australis)
 - Grasses (Imperata cylindrica)
 - o Bulbs (such as Crinum spp., Trachyandra spp., Kniphofia ensifolia) could also be used in non-permanent wetland zones.

Installation of the plants should reflect their natural position in a wetland area.

6.5. Wetland Management Plan

(Refer to Table 3 below).

Table 3: Wetland Rehabilitation Measures

<u>ac</u>	Rehabilitation action	Method	Responsible
H	Removing alien invasive	Section 7 describes a recommended alien invasive monitoring program. Next to the existing wetland areas any alien invasive species that are present should be removed. Locations where	Landscape
	n name de la constante de la c	large individuals/groups are removed it will later in the rehabilitation program be replaced by indigenous species. (Refer to Addendum A for list of known alien plant species on site).	
5.	Additional swale	 An additional swale is recommended by the civil engineer to counter the additional storm 	Engineer,
	downstream of existing	water runoff from the extended infrastructure development. The swale will include two	Contractor;
	rehabilitated wetland	attenuation ponds of approx. 750 m³.	Landscape
		 Soil erosion structures such as berms/water offshoots should be constructed at drainage 	contractor;
		outlets.	Hydro-seeding
		 Indigenous hydrophyte vegetation should be used, such as: 	contractor
		 Sedges (Cyperus spp., Fuirena spp. and Schoenoplectus spp.) Rushes (Juncus spp.) Bull rushes (Typha capensis) Reeds (Phragmites australis) Grasses (Imperata cylindrica) Bulbs (such as Crinum spp., Trachyandra spp., Kniphofia ensifolia) could also be 	
		 Siltation prevention measures such as hay bales and indigenous vegetation should be installed at the outflows from all storm water outlets to catch any sediment still in suspension. 	
		 Energy dissipation measures such as gabions, straw bales and other dissipation devices must be installed at storm water inlets and outlets to decrease the speed and energy of water and to minimise the potential for downstream erosion. 	

εń	Stabilization of	Levelling of the existing watercourses will be done where it has eroded to form gullies or deep	Contractor	tor
255	watercourse where	(steep) river banks. This will make the stream shallower by increasing the width of the stream,	Engineer	-
88	erosion occur	resulting in a decreased velocity of the stream and reducing the erosion ability. Hyson cells or Eco		
		mats can be considered if the stability of the sloped area is in question. Levelling of the		
		watercourse will be done in conjunction with action no. 5 (construction of small structures).		
		Downstream of the study area, gabion structures should be established and other measures to		
		ensure stability of the downstream system and prevent further erosion.		
4	Sloping	If the embankments of the wetland is too steep (this is unlikely), it will be sloped to an acceptable	Contractor	tor
		gradient (decided upon by engineers) and be vegetated to ensure stability.	Engineer	_
5,	Regulate flow through	Construct boulder weirs at allocated points (indicated on the rehabilitation plan), where storm	Engineer	
12/2	the construction of	water enter the wetland stream, in order to decrease the water flow. The weir will allow the water	Contractor	tor
29/5/	small structures	table to rise a little and break the energy flow which will decrease the risk of erosion. The weir will		
		include a Reno mattress which will assist with silt trapping and thus releasing cleaner water.		
		Effective levelling should be conducted before the implementation of any rehabilitation structure.		
		A geotextile lining may be incorporated between the boulders to act as a silt trap and ensure that		
		the soil do not move downwards through the boulders.		
		Below are illustrations of the recommended structures to be used for the rehabilitation of the		
		wetland where storm water outlets will be directed towards the stream.		
		The size and position of all weir structures need to be assigned by engineers after the necessary		
		calculations and analysis have been conducted. The contractor on site will be responsible to		