Palaeontological Impact Assessment for the proposed mining of limestone on Farms Witkraal 878 and Standard 1959, northeast of Petrusburg, Free State Province

23-2387-AUTH (Limestone 10679)

Desktop Study (Phase 1)

For

Eco-Elementum

21 October 2023

Prof Marion Bamford

Palaeobotanist P Bag 652, WITS 2050 Johannesburg, South Africa <u>Marion.bamford@wits.ac.za</u>

Expertise of Specialist

The Palaeontologist Consultant: Prof Marion Bamford Qualifications: PhD (Wits Univ, 1990); FRSSAf, mASSAf, PSSA Experience: 34 years research and lecturing in Palaeontology 23 years PIA studies and over 350 projects completed

Declaration of Independence

This report has been compiled by Professor Marion Bamford, of the University of the Witwatersrand, sub-contracted by Eco-Elementum, South Africa. The views expressed in this report are entirely those of the author and no other interest was displayed during the decision making process for the Project.

Specialist: Prof Marion Bamford

MKBamford

Signature:

Executive Summary

A Palaeontological Impact Assessment was requested for the proposed Prospecting Right (PR) application for the mining of dolomitic limestone and limestone on Portion 1 and 3 of the farm Witkraal 878 and the farm Standard Salt Pan 1959, Free State Province. The site is northeast of Petrusburg and the applicant is Limestone Mining (Pty) Ltd.

To comply with the regulations of the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a desktop Palaeontological Impact Assessment (PIA) was completed for the proposed development.

The proposed site lies on the non-fossiliferous Jurassic dolerite, moderately fossiliferous Tierberg Formation and Quaternary calcrete and the highly sensitive Quaternary sands. Therefore, a Fossil Chance Find Protocol should be added to the EMPr. Based on this information it is recommended that no further palaeontological impact assessment is required unless fossils are found by the contractor, environmental officer or other designated responsible person once excavations or drilling activities have commenced. Since the impact will be low, as far as the palaeontology is concerned, the project should be authorised.

ASPECT	SCREENING TOOL SENSITIVITY	VERIFIED SENSITIVITY	OUTCOME STATEMENT/ PLAN OF STUDY	RELEVANT SECTION MOTIVATING VERIFICATION
Palaeontology	Moderate	Very Low	Paleontological Impact Assessment	Section 7.2. SAHRA Requirements

Table of Contents

	Expertise of Specialist	
	Declaration of Independence	
1.	Background	4
2.	Methods and Terms of Reference	
3.	Geology and Palaeontology	
i.	. Project location and geological context	
ii.	i. Palaeontological context	
4.	Impact assessment	
5.	Assumptions and uncertainties	
6.	Recommendation	
7.	References	14
8.	Chance Find Protocol	
9.	Appendix A – Examples of fossils	
10.	. Appendix B – Details of specialist	

Figures 1-2: Google Earth maps of the general project area	6-7
Figure 3: Topographic Map of the project area	7
Figure 4: Geological map of the area around the project site	8
Figure 5: SAHRIS palaeosensitivity map for the site	11

1. Background

The applicant, Limestone Mining (Pty) Ltd (hereinafter Limestone Mining), applied for a Prospecting Right (PR) for dolomitic limestone and limestone to the Regional Department of Mineral Resources and Energy (DMRE Free State Region) in respect of Portion 1 and 3 of the farm Witkraal 878 and the farm Standard Salt Pan 1959, situated in the Xhariep District Municipality within the Letsemeng Local Municipality, Free State Province, South Africa. This PR application covers approximately 693 hectares (ha). The full extent of the drill site will also be demarcated, and no drilling will be done outside of the boundary. Petrusburg is located roughly 18 km to the southwest of the proposed prospecting area, while Boshof is located 57 km to the north-northwest and Bloemfontein approximately 16 km to the south, while the R64 primary road runs 40 km north of the site (Figures 1-3).

For the prospecting phase several sites will be selected for geotechnical drilling. These boreholes and their associated activities will impact a surface area of between 250 and 625 m². The full extent of the drill site will also be demarcated and no drilling will be done outside of the boundary.

The proposed project aims at determining if economically viable mineral deposits exist within the application area. In order to undertake prospecting activities Limestone Mining requires a PR in terms of the Mineral and Petroleum Resources Development Act (Act No.28 of 2002) (MPRDA). The Applicant is also required to obtain an Environmental Authorisation (EA) in terms of the National Environmental Management Act (Act No. 107 of 1998) (NEMA) which involves the submission of a Basic Assessment Report (BAR). Eco Elementum (Pty) Ltd (hereinafter EcoE) has been appointed by Limestone Mining to compile the BAR in support of the PR application.

A Palaeontological Impact Assessment was requested for the prospecting right for Limestone Mining (Pty) Ltd. To comply with the regulations of the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a desktop Palaeontological Impact Assessment (PIA) was completed for the proposed development and is reported herein.

Table 4: National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA) and Environmental Impact Assessment (EIA) Regulations, 2014 (as amended) - Requirements for Specialist Reports (Appendix 6).

	A specialist report prepared in terms of the Environmental Impact Regulations of 2017 must contain:	Relevant section in report
ai	Details of the specialist who prepared the report,	Appendix B
aii	The expertise of that person to compile a specialist report including a curriculum vitae	Appendix B

	A specialist report prepared in terms of the Environmental Impact Regulations of 2017 must contain:	Relevant section in report
b	A declaration that the person is independent in a form as may be specified by the competent authority	Page 1
С	An indication of the scope of, and the purpose for which, the report was prepared	Section 1
ci	An indication of the quality and age of the base data used for the specialist report: SAHRIS palaeosensitivity map accessed – date of this report	Yes
cii	A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change	Section 5
d	The date and season of the site investigation and the relevance of the season to the outcome of the assessment	N/A
e	A description of the methodology adopted in preparing the report or carrying out the specialised process	Section 2
f	The specific identified sensitivity of the site related to the activity and its associated structures and infrastructure	Section 4
g	An identification of any areas to be avoided, including buffers	N/A
h	A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	N/A
i	A description of any assumptions made and any uncertainties or gaps in knowledge;	Section 5
j	A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives, on the environment	Section 4
k	Any mitigation measures for inclusion in the EMPr	Section 8, Appendix A
l	Any conditions for inclusion in the environmental authorisation	N/A
m	Any monitoring requirements for inclusion in the EMPr or environmental authorisation	Section 8, Appendix A
ni	A reasoned opinion as to whether the proposed activity or portions thereof should be authorised	Section 6
nii	If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	Sections 6, 8
0	A description of any consultation process that was undertaken during the course of carrying out the study	N/A
р	A summary and copies of any comments that were received during any consultation process	N/A
q	Any other information requested by the competent authority.	N/A

	A specialist report prepared in terms of the Environmental Impact Regulations of 2017 must contain:	Relevant section in report
2	Where a government notice gazetted by the Minister provides for any protocol or minimum information requirement to be applied to a specialist report, the requirements as indicated in such notice will apply.	N/A

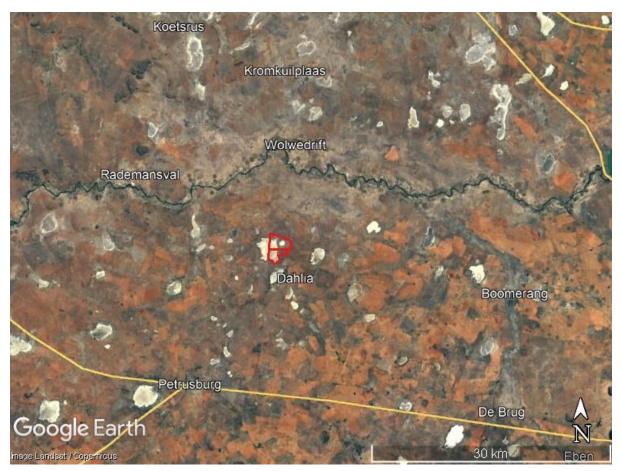
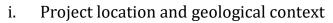


Figure 1: Google Earth map of the general area to show the PR area (red polygon).

Figure 2: Google Earth Map of the proposed PR area on Witkraal 878 and Standard 1959 in the red polygon.


Figure 3: Topographic map of the farm boundaries and PR area.

2. Methods and Terms of Reference

The Terms of Reference (ToR) for this study were to undertake a PIA and provide feasible management measures to comply with the requirements of SAHRA. The methods employed to address the ToR included:

- 1. Consultation of geological maps, literature, palaeontological databases, published and unpublished records to determine the likelihood of fossils occurring in the affected areas. Sources included records housed at the Evolutionary Studies Institute at the University of the Witwatersrand and SAHRA databases; eg. https://sahris.sahra.org.za/map/palaeo
- 2. Where necessary, site visits by a qualified palaeontologist to locate any fossils and assess their importance (*not applicable to this assessment because the area is only moderately to highly sensitive*);
- 3. Where appropriate, collection of unique or rare fossils with the necessary permits for storage and curation at an appropriate facility (*not applicable to this assessment*); and
- 4. Determination of fossils' representivity or scientific importance to decide if the fossils can be destroyed or a representative sample collected (*not applicable to this assessment*).

3. Geology and Palaeontology

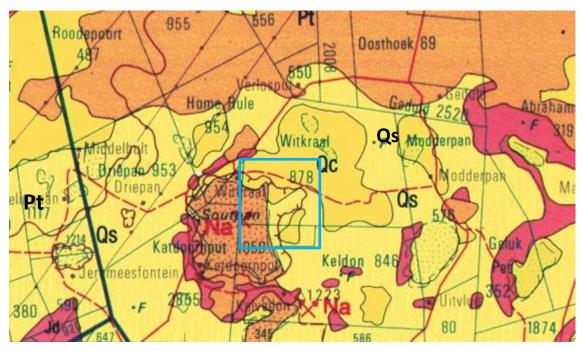


Figure 4: Geological map of the area around the Farms Witkraal and Standard with the PR area within the blue outline. Abbreviations of the rock types are explained in Table 2. Map enlarged from the Geological Survey 1: 250 000 map 2824 Kimberley.

Table 5: Explanation of symbols for the geological map and approximate ages (Johnson et al., 2006; Partridge et al., 2006). SG = Supergroup; Fm = Formation; Ma = million years; shading for the formations corresponds to the SAHRIS palaeosensitivity coding in Figure 5.

Symbol	Group Formation	Lithology	Approximate Age
Qs	Quaternary	Alluvium, sand,	Quaternary, ca 1.2 – 1.0 Ma
Qc	Kalahari sands	Calcrete. Calcified pan	Quaternary, ca 1.2 – 1.0 Ma
		dune	
Jd	Jurassic dykes	Dolerite dykes, intrusive	Jurassic, approx. 180 Ma
Pt	Tierberg Fm, Ecca	Shales, siltstones,	Early Permian, ca 290 Ma
	Group, Karoo SG	sandstone,	

The project is located in the north central part of the Karoo Basin where Karoo Supergroup rocks cover a very large proportion of South Africa and have preserved a diversity of fossil plants, insects, vertebrates and invertebrates.

During the Carboniferous Period South Africa was part of the huge continental landmass known as Gondwanaland and it was positioned over the South Pole. As a result, there were several ice sheets that formed and melted, and covered most of South Africa. Gradual melting of the ice as the continental mass moved northwards and the earth warmed, formed fine-grained sediments in the large inland sea. These are the oldest rocks in the system and are exposed around the outer part of the ancient Karoo Basin, and are known as the Dwyka Group. They comprise tillites, diamictites, mudstones, siltstones and sandstones that were deposited as the basin filled (Johnson et al., 2006).

Overlying the Dwyka Group rocks are rocks of the Ecca Group that are Early Permian in age. There are eleven formations recognised in this group but they do not all extend throughout the Karoo Basin. In the west and central part are the following formations, from base upwards: Prince Albert Formation, Whitehill Formation, Collingham Formation, Laingsburg / Ripon Formations, **Tierberg** / Fort Brown Formations, and Waterford Formation. In the eastern Free State and KwaZulu Natal, from the base upwards are the Pietermaritzburg Formation, Vryheid Formation and the Volksrust Formation. All of these sediments have varying proportions of sandstones, mudstones, shales and siltstones and represent shallow to deep water settings, deltas, rivers, streams and overbank depositional environments.

Overlying the Ecca Group are the rocks of the Beaufort Group that have been divided into the lower Adelaide Subgroup for the Upper Permian strata, and the Tarkastad Subgroup for the Early to Middle Triassic strata. As with the older Karoo sediments, the formations vary across the Karoo Basin.

Large exposures of **Jurassic dolerite** dykes occur throughout the area. These intruded through the Karoo sediments around 183 million years ago at about the same time as the Drakensberg basaltic eruption.

The **Quaternary Kalahari sands** form an extensive cover of much younger deposits over much of Botswana, the Northern Cape Province and the Free State Province. Haddon and McCarthy (2005) proposed that the Kalahari basin formed as a response to down-warp of the interior of the southern Africa, probably in the Late Cretaceous. This, along with possible uplift along epeirogenic axes, back-tilted rivers into the newly formed Kalahari basin and deposition of the Kalahari Group sediments began. Sediments included basal gravels in river channels, sand and finer sediments. A period of relative tectonic stability during the mid-Miocene saw the silcretisation and calcretisation of older Kalahari Group lithologies, and this was followed in the Late Miocene by relatively minor uplift of the eastern side of southern Africa and along certain epeirogenic axes in the interior. More uplift during the Pliocene caused erosion of the sand that was then reworked and redeposited by aeolian processes during drier periods, resulting in the extensive dune fields that are preserved today.

There are numerous pans in the Kalahari Group sediments, generally 3–4 km in diameter (Haddon and McCarthy, 2005). According to Goudie and Wells (1995) there are two conditions required for the formation of pans. Firstly, the fluvial processes must not be integrated, and second, there must be no accumulation of aeolian material that would fill the irregularities or depressions in the land surface. Favoured materials or substrates for the formation of pans in South Africa are Dwyka and Ecca shales and sandstones (ibid).

New cosmogenic burial ages obtained from a 55 m section of Kalahari Group sediments (Matmon et al., 2015) indicate that in the southern Kalahari, the majority of deposition occurred rapidly at 1.0-1.2 Ma. All earlier sediments in this region were eroded during previous sedimentary cycles. In summary, they showed that the stratigraphy, sedimentology, and cosmogenic nuclide data indicate:

1) the existence of a stable, shallow and low-energy water body over the southern Kalahari for at least 450 ka prior to 1-1.2 Ma;

2) rapid sediment accumulation that filled up the basin at 1–1.2 Ma; and

3) the establishment of the Kalahari sand cover shortly thereafter.

The authors acknowledge that this timeframe is far younger than expected from the conventional estimates for the Kalahari Group sediments (Haddon and McCarthy, 2005). The significant hiatus between the Pleistocene sequence and the underlying Archaean basement implies that evidence of earlier cycles of deposition and erosion are no longer preserved in the sedimentary record.

ii. Palaeontological context

The palaeontological sensitivity of the area under consideration is presented in Figure 5. The site for development is in the Tierberg Formation, Jurassic dolerite, Quaternary calcrete and Quaternary sands.

From the SAHRIS map above the area is indicated as highly sensitive (orange) for the Tierberg Formation and Quaternary sands, moderately sensitive (green) for the Quaternary calcrete and on no sensitivity (grey) for the Jurassic dolerite.

In the westernmost part of the basin the Tierberg Formation is predominantly argillaceous. In the northwest of its occurrence where it is in contact with the Collingham or Whitehill Formations, it grades up into the arenaceous overlying Waterford Formation (Johnson et al., 2006). Trace fossils of *Nereites, Planolites* and *Zoophycus* can be found in the fine mudstones (Johnson et al., 2006).

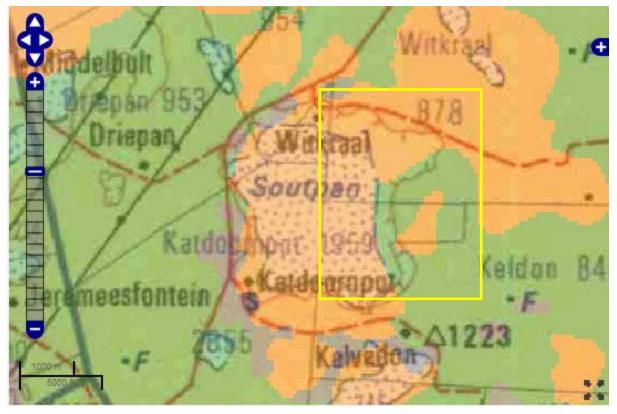


Figure 5: SAHRIS palaeosensitivity map for the site for the proposed PR application on Portion 1 and 3 of the farm Witkraal 878 and the farm Standard Salt Pan 1959 Background colours indicate the following degrees of sensitivity: red = very highly sensitive; orange/yellow = high; green = moderate; blue = low; grey = insignificant/zero.

The Tertiary calcretes can trap fossils and artefacts when associated with palaeo-pans and dunes or palaeo-springs (Partridge et al., 2006). Where deflation has occurred, for example along the west coast of South Africa, any trapped materials in the different levels can be concentrated in the depo-centre of the pan or dune and thus it can be challenging to interpret the deposit (Felix-Henningsen et al., 2003; Netterberg, 1969).

The aeolian sands of the Gordonia Formation do not preserve fossils because they have been transported and reworked, but in some regions these too may have covered pan or spring deposits and these can trap fossils, and more frequently archaeological artefacts. This pan has already been mined extensively.

4. Impact assessment

An assessment of the potential impacts to possible palaeontological resources considers the criteria encapsulated in Table 3:

PART A: DEFINITION AND CRITERIA			
	Н	Substantial deterioration (death, illness or injury). Recommended level will often be violated. Vigorous community action.	
	Μ	Moderate/ measurable deterioration (discomfort). Recommended level will occasionally be violated. Widespread complaints.	
Criteria for ranking of the SEVERITY/NATURE of environmental	L	Minor deterioration (nuisance or minor deterioration). Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints.	
impacts	L+	Minor improvement. Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints.	
	M+	Moderate improvement. Will be within or better than the recommended level. No observed reaction.	
	H+	Substantial improvement. Will be within or better than the recommended level. Favourable publicity.	
Criteria for ranking	L	Quickly reversible. Less than the project life. Short term	
the DURATION of	Μ	Reversible over time. Life of the project. Medium term	
impacts	Η	Permanent. Beyond closure. Long term.	
Criteria for ranking	L	Localised - Within the site boundary.	
the SPATIAL SCALE	Μ	Fairly widespread – Beyond the site boundary. Local	
of impacts	Н	Widespread – Far beyond site boundary. Regional/ national	
PROBABILITY	Н	Definite/ Continuous	
(of exposure to	Μ	Possible/ frequent	
impacts)	L	Unlikely/ seldom	

Table 3a: Criteria for assessing impacts

Table 3b: Impact Assessment

PART B: Assessment			
	Н	-	
	Μ	-	
SEVERITY/NATURE	L	Sands do not preserve fossils; so far there are no records from the Tierberg or Qauternary Fm of plant or animal fossils in this region so it is very unlikely that fossils occur on the site. The impact would be negligible	
	L+	-	
	M+	-	
	H+	-	
	L	-	
DURATION	М	-	
	Н	Where manifest, the impact will be permanent.	

PART B: Assessment		
SPATIAL SCALE	L	Since the only possible fossils within the area would be trace fossils in the shales the spatial scale will be localised within the site boundary.
	Μ	-
	H	-
	Н	-
	Μ	-
PROBABILITY	L	It is extremely unlikely that any fossils would be found in the loose soils and sands that cover the area or in the shles are below the sands that will be drilled through. Nonetheless, a Fossil Chance Find Protocol should be added to the eventual EMPr.

Based on the nature of the project, surface activities may impact upon the fossil heritage if preserved in the development footprint. The geological structures suggest that the rocks are either the wrong type to contain fossils (dolerite) or might only trap fossils in palaeo-pans, palaeo-dunes or palaeo-springs. Since there is an extremely small chance that fossils from the pans or the shales of the Tierberg Formation may be disturbed a Fossil Chance Find Protocol has been added to this report. Taking account of the defined criteria, the potential impact to fossil heritage resources is extremely low for the whole study site and there are no no-go areas.

5. Assumptions and uncertainties

Based on the geology of the area and the palaeontological record as we know it, it can be assumed that the formation and layout of the dolomites, sandstones, shales and sands are typical for the country and only some contain fossil plant, insect, invertebrate and vertebrate material. The sands of the Quaternary period would not preserve fossils.

6. Recommendation

Based on experience and the lack of any previously recorded fossils from the area, it is extremely unlikely that any fossils would be preserved in the Tierberg Formation or the sands and calcrete of the Quaternary. There is a very small chance that fossils may occur in the below ground shales of the early Permian Tierberg Formation or trapped in pans but the pans in the region are being avoided for other reasons. Nonetheless, a Fossil Chance Find Protocol should be added to the EMPr (contained in Section 8). If fossils are found by the environmental officer, or other responsible person once excavations or drilling have commenced then they should be rescued and a palaeontologist called to assess and collect a representative sample. The impact on the palaeontological heritage would be low, so as far as the palaeontology is concerned, the project should be authorised.

ASPECT	SCREENING TOOL SENSITIVITY	VERIFIED SENSITIVITY	OUTCOME STATEMENT/ PLAN OF STUDY	RELEVANT SECTION MOTIVATING VERIFICATION
Palaeontology	Moderate	Very Low	Paleontological Impact Assessment	Section 7.2. SAHRA Requirements

7. References

Anderson, J.M., Anderson, H.M., 1985. Palaeoflora of Southern Africa: Prodromus of South African megafloras, Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam. 423 pp.

Goudie, A.S., Wells, G.L., 1995. The nature, distribution and formation of pans in arid zones. Earth Science Reviews 38, 1–69.

Felix-Henningsen, P., Kandel, A.W., Conard, N.J., 2003. The significance of calcretes and paleosols on ancient dunes of the Western Cape, South Africa, as stratigraphic markers and paleoenvironments. In: G. Füleky (Ed.) Papers of the 1st International Conference on Archaeology and Soils. BAR International S1163, pp. 45-52.

Haddon. I.G., McCarthy, T.S., 2005. The Mesozoic–Cenozoic interior sag basins of Central Africa: The Late-Cretaceous–Cenozoic Kalahari and Okavango basins. Journal of African Earth Sciences 43, 316–333.

Johnson, M.R., van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.deV., Christie, A.D.M., Roberts, D.L., Brandl, G., 2006. Sedimentary rocks of the Karoo Supergroup. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 461 – 499.

Matmon, A., Hidy, A.J., Vainer, S., Crouvi, O., Fink, D., 2015. New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation. Quaternary Research. 84 (1), 118–132. <u>http://dx.doi.org/10.</u> <u>1016/j.yqres.2015.04.009</u>.

Netterberg, F., 1969. The interpretation of some basic calcrete types. South African Archaeology Bulletin 24, 117-122.

Partridge, T.C., Botha, G.A., Haddon, I.G., 2006. Cenozoic deposits of the interior. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 585-604.

Plumstead, E.P., 1969. Three thousand million years of plant life in Africa. Geological Society of southern Africa, Annexure to Volume LXXII. 72pp + 25 plates.

8. Chance Find Protocol

Monitoring Programme for Palaeontology – to commence once the excavations / drilling activities begin.

- 1. The following procedure is only required if fossils are seen on the surface and when excavation commence.
- 2. When excavations begin the rocks and must be given a cursory inspection by the environmental officer or designated person. Any fossiliferous material (trace fossils, plants, insects, bone or coal) should be put aside in a suitably protected place. This way the project activities will not be interrupted.
- 3. Photographs of similar fossils must be provided to the developer to assist in recognizing the fossil plants, vertebrates, invertebrates or trace fossils in the shales and mudstones (for example see Figure 6). This information will be built into the EMP's training and awareness plan and procedures.
- 4. Photographs of the putative fossils can be sent to the palaeontologist for a preliminary assessment.
- 5. If there is any possible fossil material found by the developer/environmental officer then the qualified palaeontologist sub-contracted for this project, should visit the site to inspect the selected material and check the dumps where feasible.
- 6. Fossil plants or vertebrates that are considered to be of good quality or scientific interest by the palaeontologist must be removed, catalogued and housed in a suitable institution where they can be made available for further study. Before the fossils are removed from the site a SAHRA permit must be obtained. Annual reports must be submitted to SAHRA as required by the relevant permits.
- 7. If no good fossil material is recovered then no site inspections by the palaeontologist will be necessary. A final report by the palaeontologist must be sent to SAHRA once the project has been completed and only if there are fossils.
- 8. If no fossils are found and the excavations have finished then no further monitoring is required.

9. Appendix A – Examples of fossils from the Tierberg Formation

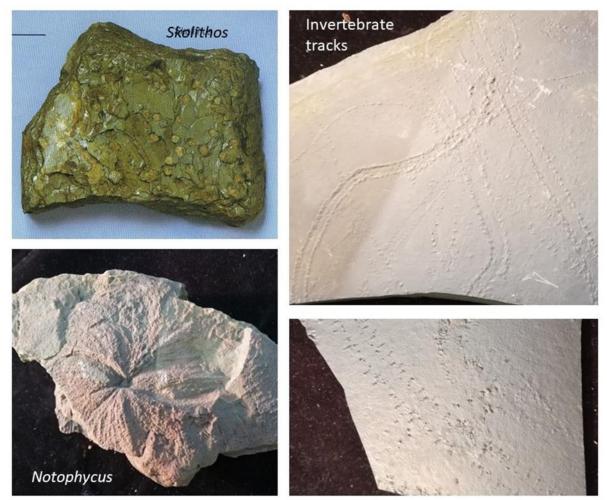


Figure 6: Photographs of trace fossils from the Ecca Group, Tierberg Formation as might be seen in the field.

10. Appendix B – Details of specialist

Curriculum vitae (short) - Marion Bamford PhD July 2023

I) Personal details

Surname	:	Bamford
First names	:	Marion Kathleen
Present employmen	it:	Professor; Director of the Evolutionary Studies Institute.
		Member Management Committee of the NRF/DST Centre of

		Excellence Palaeosciences, University of the Witwatersrand,
		Johannesburg, South Africa
Telephone	:	+27 11 717 6690
Fax	:	+27 11 717 6694
Cell	:	082 555 6937
E-mail	:	<u>marion.bamford@wits.ac.za ;</u>
		marionbamford12@gmail.com

11

ii) Academic qualifications

Tertiary Education: All at the University of the Witwatersrand: 1980-1982: BSc, majors in Botany and Microbiology. Graduated April 1983. 1983: BSc Honours, Botany and Palaeobotany. Graduated April 1984. 1984-1986: MSc in Palaeobotany. Graduated with Distinction, November 1986. 1986-1989: PhD in Palaeobotany. Graduated in June 1990. NRF Rating: C-2 (1999-2004); B-3 (2005-2015); B-2 (2016-2020); B-1 (2021-2026)

iii) Professional qualifications

Wood Anatomy Training (overseas as nothing was available in South Africa): 1994 - Service d'Anatomie des Bois, Musée Royal de l'Afrique Centrale, Tervuren, Belgium, by Roger Dechamps 1997 - Université Pierre et Marie Curie, Paris, France, by Dr Jean-Claude Koeniguer 1997 - Université Claude Bernard, Lyon, France by Prof Georges Barale, Dr Jean-Pierre

Gros, and Dr Marc Philippe

iv) Membership of professional bodies/associations

Palaeontological Society of Southern Africa Royal Society of Southern Africa - Fellow: 2006 onwards Academy of Sciences of South Africa - Member: Oct 2014 onwards International Association of Wood Anatomists - First enrolled: January 1991 International Organization of Palaeobotany – 1993+ Botanical Society of South Africa South African Committee on Stratigraphy – Biostratigraphy - 1997 - 2016 SASQUA (South African Society for Quaternary Research) – 1997+ PAGES - 2008 – onwards: South African representative ROCEEH / WAVE – 2008+ INQUA – PALCOMM – 2011+onwards

vii) Supervision of Higher Degrees

All at Wits University Degree Graduated/completed Current Honours 13 0 Masters 14 3 PhD 14 4 Postdoctoral fellows 15 4

viii) Undergraduate teaching

Geology II – Palaeobotany GEOL2008 – average 65 students per year Biology III – Palaeobotany APES3029 – average 45 students per year Honours – Evolution of Terrestrial Ecosystems; African Plio-Pleistocene Palaeoecology; Micropalaeontology – average 12-20 students per year.

ix) Editing and reviewing

Editor: Palaeontologia africana: 2003 to 2013; 2014 – Assistant editor Guest Editor: Ouaternary International: 2005 volume

Member of Board of Review: Review of Palaeobotany and Palynology: 2010 – Associate Editor Open Science UK: 2021 -

Review of manuscripts for ISI-listed journals: 30 local and international journals Reviewing of funding applications for NRF, PAST, NWO, SIDA, National Geographic, Leakey Foundation

x) Palaeontological Impact Assessments

Selected from the past five years only – list not complete:

- Skeerpoort Farm Mast 2020 for HCAC
- Vulindlela Eco village 2020 for 1World
- KwaZamakhule Township 2020 for Kudzala
- Sunset Copper 2020 for Digby Wells
- McCarthy-Salene 2020 for Prescali
- VLNR Lodge 2020 for HCAC
- Madadeni mixed use 2020 for EnviroPro
- Frankfort-Windfield Eskom Powerline 2020 for 1World
- Beaufort West PV Facility 2021 for ACO Associates
- Copper Sunset MR 2021 for Digby Wells
- Sannaspos PV facility 2021 for CTS Heritage
- Smithfield-Rouxville-Zastron PL 2021 for TheroServe
- Glosam Mine 2022 for AHSA
- Wolf-Skilpad-Grassridge OHPL 2022 for Zutari
- Iziduli and Msenge WEFs 2022 for CTS Heritage
- Hendrina North and South WEFs & SEFs 2022 for Cabanga
- Dealesville-Springhaas SEFs 2022 for GIBB Environmental
- Vhuvhili and Mukondelei SEFs 2022 for CSIR
- Chemwes & Stilfontein SEFs 2022 for CTS Heritage
- Equestria Exts housing 2022 for Beyond Heritage
- Zeerust Salene boreholes 2022 for Prescali
- Tsakane Sewer upgrade 2022 for Tsimba
- Transnet MPP inland and coastal 2022 for ENVASS
- Ruighoek PRA 2022 for SLR Consulting (Africa)
- Namli MRA Steinkopf 2022 for Beyond Heritage

xi) Research Output

Publications by M K Bamford up to July 2023 peer-reviewed journals or scholarly books: over 170 articles published; 5 submitted/in press; 10 book chapters. Scopus h-index = 31; Google scholar h-index = 39; -i10-index = 120. Conferences: numerous presentations at local and international conferences.