

Report on the Geotechnical Investigation for

HYPERAMA PIPELINE REIGER PARK

Gauteng Province, South Africa

Report no.: GWS18217/G00085-F0

OCTOBER 2018

Specialist Tunneling, Engineering Geological and Geotechnical Engineering Consultancy Emerging, BBBEE Level 2, Empowering Enterprise

Block B | Infinity Business Park | 4 Pieter Wenning Road | Fourways | Johannesburg +27 (0)10 823 1621 | geotech@gageconsutling.co.za | www.gageconsulting.co.za

Report to:	115		WSP Group Africa (Pty) Ltd Building C, Knightsbridge 33 Sloane Street Bryanston, 2191
Project name:	Hyperama Pipeline		
Report title:	Geotechnical Investigation	on at Hy	oerama Pipeline, Reiger Park
Report number:	GWS18217/G0084 revis	sion F0	

Revision	Date	Comment	Prepared by	Reviewed by				
P0. Preliminary	11/09/2018	Letter report issued to client for review	DS/BRJ	FPP				
F0. FINAL	08/10/2018	Issued to client for distribution	DS/BRJ	FPP				

Report by	Reviewed by:
Brendon Jones PrSciNat (400065/17)	Fernando Pequenino PrEng (SA) 20070109
BSc Hons, MSc PhD Cand. (Eng Geology), MSAIEG	BEng (Civil) BEng Hons (Geotech) MSAICE

This document is copyrighted and remains the property of GaGE Consulting (Pty) Ltd.

GaGE Consulting (Pty) Ltd Reg No 2016/465250/07 VAT No. 4820276287

Directors: KA Mogotsi NDip(Civil) FP Pequenino PrEng BEng(Hons)(Geotech) MSAICE Technical Directors: BR Jones PrSciNat MSc(Eng.Geology) MSAIEG FH van der Merwe PrEng MEng(Civil) MSAICE

Specialist Tunneling, Engineering Geological and Geotechnical Engineering Consultancy Emerging, BBBEE Level 2, Empowering Enterprise

Table of Contents

Table of C	Contents	iii					
Figures		iv					
Tables		iv					
1. Intr							
1.1.	I erms of Reference						
1.2.	Aims and Miethodology						
1.3.	Scope and Limitations of the Assessment						
1.4.	Codes of Practice						
1.5.	Information Sources	6					
2. Site	e Characterisation and Description	6					
2.1.	Site Location and Description	6					
2.2.	Topography and Drainage	6					
2.3.	Climate	7					
2.4.	Geology	7					
2.5.	Seismicity						
2.6.	Site History and Proposed Development						
3. Ge	otechnical Investigation						
3.1.	Overview						
3.2.	Trial Pits and Ground Conditions	9					
3.3.	Laboratory and In-Situ Testing						
3.3.1.	Foundation Indicator Testing and Electrical Conductivity						
3.3.2	pH and Electrical Conductivity						
3.3.3	CBR Testing	12					
4. Ge	otechnical Evaluation	12					
4.1. Ov	/erview						
4.2. Ge	eotechnical Constraints and Overall Site Assessment						
4.3. Str	4.3. Stream Crossing (Pipe Jacking)						
4.4. Groundwater Conditions							
4.5. Excavatability							
4.6. Sta	4.6. Stability of Trenches						
4.7. Ma	4.7. Material Utilisation						
4.8. Cc	onstruction Quality Assurance and Validation						
Reference	98	14					

AppendixATrial Pit ProfilesAppendixBLogging ParametersAppendixCLaboratory Test Results

Figures

Figure 2.1 Extract from Google Earth of the greater area of Reiger Park, showing the locality of the investigated site.6
Figure 2-2 Extract from 1:250 000 geological sheet 2628 East Rand (Geological Survey 1986), showing the local geology
Figure 3.1 Satellite image of site showing the locality of the excavated trial pits9
Figure 3.2 (a) Photograph of typical profile at test pit HRTP2 and (b) photograph of profile HRTP4
Figure 4.1 Geotechnical zoning map for proposed pipeline

Tables

Table 3.1 Summary of excavated trial pits and termination conditions	8
Table 3.2 Typical horizons observed during the geotechnical investigation	10
Table 3.3 Summary of foundation indicator test results	11
Table 3.4 Summary of pH and Electrical Conductivity	11
Table 3.5 CBR Test Results	12

1. Introduction

1.1. Terms of Reference

GaGE Consulting (Pty) Ltd was appointed by WSP Group Africa (Pty) Ltd to conduct a design-level geotechnical investigation for the development of a new pipeline in the Reiger Park area. The investigation is aimed at assessing the ground conditions and identifying geotechnical constraints that may limit the development or result in increased risk or costs for the development. This report sets out the methodology and findings of the investigation and provides recommendations for geotechnical and earthworks for the proposed development. The report is prepared in line with the requirements of relevant Codes of Practice as noted below.

1.2. Aims and Methodology

The objectives of the study were to:

- i. To analyse the geotechnical conditions prevalent on the site, with specific reference to the proposed area of the new pipeline;
- ii. To provide foundation and earthwork recommendations for the proposed new infrastructure and to comment on the geotechnical factors that would have an impact on the development of the site, so as to enable economic design and construction of proposed development; and
- iii. To identify relevant ground-related features and determine the variability of ground conditions and effects thereof on the new structures.

The following methodology was adopted in order to realise the aims of this study:

- i. A general site walk-over along with a review of available geological and geotechnical records;
- ii. Geotechnical investigation including the excavation of several trial pits; and
- iii. Laboratory testing of soils and rock to establish geotechnical and materials design parameters.

1.3. Scope and Limitations of the Assessment

This report presents the findings of the ground conditions at the location of the new proposed pipeline in the Reiger Park area from several discrete data points within close proximity of the proposed alignment. In particular, it sought to provide insight into the geotechnical properties of the founding strata and utilisation potential of the in-situ soils.

The nature of geotechnical engineering is such that variations in what is reported here may occur over the site. It is thus imperative that a Competent Person inspects all excavations to ensure that conditions at variance with those predicted do not occur and to undertake an interpretation of the facts supplied in this report. This report has been prepared for the exclusive use of the client, with specific application to the proposed project.

1.4. Codes of Practice

The services performed by GaGE Consulting (Pty) Ltd were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the geotechnical profession practising under similar conditions in the locality of the project. The investigation was carried out according to standard practice codes and guidelines, including:

- i. Inspecting the trial pits and recording the soil profiles using the standard procedures as recommended in the guidelines by, AEG/SAICE/SAIEG (2001) "Guidelines for Soil and Rock Logging in South Africa; and
- ii. The SAICE (2010) Geotechnical Division "Code of Practice for Site Investigations".
- iii. The SABS 1200 LB (1983) "South African Bureau of Standards Standardized Specification for Civil Engineering Construction, LB: bedding (pipes)".

****Sp

1.5. Information Sources

The following principal sources were consulted and/or made available:

- Topocadastral map of Johannesburg (sheet 2628AA) at a scale of 1:50 000, published in 2002;
- Topocadastral map of East Rand (sheet 2628) at a scale of 1:250 000, published in 2004;
- Geological map of East Rand (sheet 2628) at a scale of 1:250 000, published in 1986; and
- Google Earth satellite imagery.

2. Site Characterisation and Description

2.1. Site Location and Description

The site, the Hyperama Pipeline, is located approximately 2.5km north of the N17 and Rondebult Road (R21) interchange and to the immediate east of the Reiger Park township in Boksburg, in the Gauteng Province. Access to the site by car was gained via an unnamed road taken from the corner of Rondebult Road and Espri Laan that passes south of the Hyperama. The site location is shown on the satellite image in Figure 2.1.

The site is currently undeveloped with excavations and an active construction site on the eastern portion while the western limit of the site is covered by dump material. A stream, a tributary of the Elsburgspruit, runs north-south through the middle of the site with a bridge crossing that is only suitable for pedestrians. Overhead power lines are present with an unground water pipe, which utilises a bridge to cross the stream, just to the north of the proposed pipeline.

Figure 2.1 Extract from Google Earth of the greater area of Reiger Park, showing the locality of the investigated site.

2.2. Topography and Drainage

Regionally, the area is of gently undulating terrain and the site itself crosses through a depression with a perennial stream running through the middle of the site. This stream flows from Boksburgmeer dam, situated roughly 800m to

the north of the site, towards Cinderella Dam located some 1.2km south of the site. The slope on the eastern side of the river has an average gradient of 5% with a max of 11% whereas the western side has an average gradient of 2.8%.

2.3. Climate

The site under investigation lies within the Highvelds' semi-arid warm climatic zone with mean annual temperate of about 16.0°C. The average annual rainfall is approximately 400mm, most of which occurs in heavy isolated falls between October and March.

Climate determines the mode of weathering as well as the rate of weathering, with the effect of climate on the weathering process (i.e. soil formation) determined by the climatic N-value defined by Weinert (1964). The site, has an N-value of 3 to 4, which implies it has a slight water surplus and suggests that chemical decomposition will prevail; resulting in deep residual soil profiles.

2.4. Geology

Referring to Figure 2-2, according to sheet 2628 East Rand of the 1:250 000 geological map series, the regional geology of the site (denoted by white arrow and the green line) comprises of sedimentary rocks of the Vryheid Formation of the Ecca Group, of the Karoo Supergroup, and the Johannesburg Subgroup of the Central Rand Group of the Witwatersrand Supergroup. The Johannesburg Subgroup (denoted by Rjo) consists predominately of quartzite and bands of lesser conglomerates. The Vryheid Formation sandstones (denoted by Pv) weather to a sandy soil with the potential of developing a collapse fabric. The presence of the Dwyka Group is inferred on the geological chart (denoted by C-Pd) and consists primarily of diamictite and lesser mudrock.

Symbol	Age	Supergroup	Group	Formation/Subgroup	Rock Type
Pv	Permian		Ecca	Vryheid Formation	Sandstones with subordinate
		Karoo			siltstone
C-Pd	Permian		Dwyka	-	Diamictite and lesser mudrock
Rjo	Randian	Witwatersrand	Central Rand	Johannesburg	Quartzite with bands of lesser
				Subgroup	conglomerates

Figure 2-2 Extract from 1:250 000 geological sheet 2628 East Rand (Geological Survey 1986), showing the local geology.

\\Sp

2.5. Seismicity

According to the Seismic Hazard Map of South Africa contained in SANS 10160 the peak ground acceleration (g) with a 10% probability of being exceeded in a 50-year period in East Rand area is in the order of 0.2g, which would be considered a moderate hazard. This activity is attributed to deep mining.

2.6. Site History and Proposed Development

According to historical satellite imagery, the site has remained vacant with no additional development of permanent structures since ca-2002. The proposed new pipeline development will comprise of an underground UPVC pipe on either a concrete bedding cradle or a cradle of compacted selected granular material.

3. Geotechnical Investigation

3.1. Overview

The investigated site is approximately 1.2km linear in length and was investigated on 07 September 2018, comprising a site walkover, the machine-excavation of several trial pits using a Tractor Loader Backhoe (TLB) (Model: Volvo BL61 - 64kW). The trial pits were profiled according to the relevant soil profiling standards (AEG/SAICE/SAIEG, 2001) photographed, and representative soil samples retrieved from selected horizons within designated excavations for laboratory testing.

The location of the excavated trial pits is summarised in Table 3.1, and in conjunction with Figure 3.1, which shows the locality of the trial pits across the site. Soil samples were submitted to Specialised Testing Laboratory (Pty) Ltd for laboratory tests that included foundation indicator testing, which incorporated full grading (to 0.002 mm) and Atterberg limits.

All trial pits were excavated in accessible areas as to not damage existing infrastructure and these profiles are considered representative of the site conditions. The detailed trial pit profiles and accompanying photographs are provided in Appendix A, with the associated logging parameters in Appendix B, and the detailed laboratory results in Appendix C of this report.

	ID	Co-orc	dinates	Final Depth	Termination	Groundwater seepage
	U	Latitude	Longitude (m BGL)		conditions	(m BGL)
	HRTP1	26.229390	28.248040	1.98	AR	None
	HRTP2	26.228980	28.245460	1.20	R	None
	HRTP3	26.228790	28.242450	1.40	R	(wet conditions)
	HRTP4	26.229160	28.240950	2.30	Water strike	2.25 (slow)
	HRTP5	26.228910	28.240570	1.50	R	(wet conditions)
	HRTP6	26.228510	28.239480	0.95	R	None
ĺ	HRTP7	26.228090	28.237590	1.05	R	None

Table 3.1 Summary of excavated trial pits and termination conditions

AR - Approaching refusal; R - Refusal

Figure 3.1 Satellite image of site showing the locality of the excavated trial pits.

3.2. Trial Pits and Ground Conditions

The seven (7) trial pits were excavated until terminated due to water seepage or refusal at a shallow depth using a TLB. The generalised profiles observed in the trial pits excavated at the site are summarised in Table 3.2. No sidewall instability was encountered in any of the trial pits with slow water seepage to wet conditions experienced in three (3) holes in close proximity to the stream. Furthermore, presence of mottling and ferricrete in the soil profiles is indicative of seasonal moisture changes.

As shown in Figure 3.2(a) and Table 3.2, the ground profiles to the east (HRPT 1, 2 and 3) and to the west (HRPT 5, 6 and 7) of the stream typically comprised of:

- A surficial colluvial or uncontrolled fill layer of medium dense to loose, slightly clayey silty fine to coarse sand with traces of angular gravel and anthropogenic material to an average depth of 0.80 m below ground level (BGL); to a alluvial loose (soft), clayey sand with traces of sub-rounded gravel to an average depth of 1.00 m BGL; which was in turn underlain by
- An occasional pebble marker, found away from the stream, described as loose to medium dense, silty sand with abundant angular gravel and cobbles to an average depth of 1.10 m BGL; underlain by
- Completely weathered sandstone (to the east of the stream) and completely weathered quartzite (to the west of the stream) being described as dense, jointed, silty sand, with to abundant angular, highly to completely weathered, coarse gravel and cobbles to an average depth of 1.50 m BGL; and further graded into
- A jointed, highly to medium weathered, soft rock (sandstone and quartzite) with depth.

HRPT7 was the only excavation to refuse in hardpan ferricrete at a depth of 1.05m (BGL).

As shown in Figure 3.2(b) and Table 3.2, the ground profile (HRTP4) to the immediate east of the stream comprised of:

- A surficial colluvial, loose, slightly clayey silty sand to a depth of 0.40 m below ground level (BGL); which was in turn underlain by
- Alluvial layer being described as slightly moist to wet with depth, soft (loose), silty clayey sand, increasing clay with depth and traces of soft to hard gravel sized concretions to a depth of 2.30m (BGL).

Table 3.2 Typical horizons observed during the geotechnical investigation

Average depth	Ground	Unit	Description	
(m BGL)	Symbol	Туре		
	FILL	Uncontrolled fill	Dry, grey brown, loose, clayey silty sand	
0.00 - 1.00 (max 2.30*)	COL	Collvium	Slightly moist, light yellow brown, medium dense to loose, clayey silty sand	
	ALL*	Alluvium	Moist to wet, light grey brown, loose (soft) to medium dense, slightly clayey silty sand to silty clayey sand	
1.00 - 1.10	PM	Pebble marker	Slightly moist, light brown, loose to medium dense, silty sand with abundant coarse gravel and cobbles.	
1.10 - 1.50	CWR	Completely weathered rock	Slightly moist, light yellow/orange brown, dense to very dense, sand matrix with abundant angular cobbles	

Figure 3.2 (a) Photograph of typical profile at test pit HRTP2 and (b) photograph of profile HRTP4

3.3. Laboratory and In-Situ Testing

The representative soil samples where submitted to Specialised testing Laboratory (Pty) Ltd for testing, and the following laboratory tests where scheduled:

- i. 5 No. foundation indicator tests, with grading to 0.002 mm, Atterberg limits, and moisture contents;
- ii. 5 No. pH and Electrical Conductivity tests; and
- iii. 1 No. CBR test.

3.3.1. Foundation Indicator Testing and Electrical Conductivity

The foundation indicator results received from the laboratory are summarised in Table 3.2. According to these, the upper colluvium (COL) and upper alluvium (ALL) tested as a clayey silty SAND with low plasticity. The lower alluvium (ALL) unit, in close proximity to the stream, graded as a silty clayey SAND with moderate plasticity, and subsequently test results as having a medium expansive potential (according to the van der Merwe method).

Table 3.3 Summary of foundation indicator test results

		nit	Pa	irticle	Size (%)	Atte	rberg Li	mits				Class	ification
Pit ID	Depth (m)	Ground Un	Clay	Silt	Sand	Gravel	LL (%)	РІ (%)	LS (%)	MC (%)	PE	GM	USCS	ASSHTO
HRPT1	0.87 – 1.1	COL	15	17	65	3	23	11	5.0	7.7	Low	0.96	SC	A-2-6
HRPT2	0.6 – 1	COL	16	15	65	4	19	7	3.0	5.9	Low	0.96	SC-SM	A-4
HRPT3	0-0.72	ALL	7	10	82	1	0	SP	0.5	17.4	Low	1.09	SM	A-2-4
HRPT4	1.7 -2.3	ALL	21	13	64	2	35	22	9.5	14.9	Medium	0.99	SC	A-6
HRPT5	0.6 - 1.05	ALL	8	15	72	5	20	7	3.0	12.8	Low	1.10	SC-SM	A-2-4

LL - Liquid Limit; PI - Plasticity Index; LS - Linear Shrinkage; MC - Moisture Content; PE - Potential Expansiveness; GM - Grading Modulus

3.3.2 pH and Electrical Conductivity

Soils encountered on the site have slightly acidic pH and have relatively high conductivities (for a soil) and are corrosive to highly corrosive to buried steel.

Table 24	Cummony o	f n Ll au	nd Electrice	I Conductivity
lable 5.4	Summary c	л оп аг	iu Electrica	I CONQUCTIVITY

Pit ID	Depth (m BGL)	Ground Unit	рН	Electrcal Conductivity (S/m)
HRPT1	0.87 – 1.1	COL	4.7	0.048
HRPT2	0.6 – 1	COL	4.0	0.032
HRPT3	0 - 0.72	ALL	4.6	0.038
HRPT4	1.7 -2.3	ALL	5.3	0.034
HRPT5	0.6 - 1.05	ALL	5.4	0.033

3.3.3 CBR Testing

CBR tests to obtain material compaction characteristics were undertaken on a sample of the surficial colluvium clayey silty sand and gravelly sand pebble marker. The result is summarised in Table 3.4.:

Table 3.5 CBR Test Results

Depth	Unit			MOD AASHTO		CBR			Material classification	
Pit ID	Pit ID (m)	Ground	PI	GM	Optimum moisture content (%)	Maximum dry density (kg/m ³)	93%	95%	Swell (%)	COLTO
HRTP1	0.87-1.2	COL + PM	11	0.96	6.4	2150	14	16	0.0	G8

4. Geotechnical Evaluation

4.1. Overview

A geotechnical evaluation was conducted based on the site walk-over, desk-study, profiles observed in the excavated trial pits, and the subsequent laboratory tests from the representative samples that were collected. The geology and ground conditions are relativity consistent with a thin superficial uncontrolled fill layer above a clayey silty sand colluvial layer, with a basal pebble maker, on a shallow completely weathered sandstone or quartzite bedrock; with exception to ground conditions adjacent to the stream that comprises of superficial colluvial layer above a thick clayey sand alluvial horizon.

4.2. Geotechnical Constraints and Overall Site Assessment

Based on the observations during the investigation, the site can be classified as two zones with Zone I being adjacent to the stream being characterised by deep alluvial clayey soils and shallow (perched) water table and Zone II being characterised by generally shallow bedrock profile. The extent of these Zones is shown in Figure 4.1. The principal geotechnical constraints are summarised in the table below.

Table 4.1 Summary of geotechnical zoning

ZONE	Geotechnical constraint
1	Area subjected to flooding Seasonal perched watertable Moderate soil heave potential Materials unsuitable for reuse
II	Difficult excavation (shallow bedrock) Seasonal perched watertable Moderate slopes

Figure 4.1 Geotechnical zoning map for proposed pipeline

4.3. Stream Crossing (Pipe Jacking)

The pipe crossing is proposed as a horizontal directional drill of approximately 50m in length and 2m below the stream level. Investigations indicate a generally shallow bedrock profile along the entire project area, although locally some variation is encountered with deep alluvial deposits on the banks of the stream. Test pit HRTP4 terminated at 2.3m due to strong water seepage (corresponding to river level) but bedrock is expected at a shallow depth below this. Consequently it reasonable to assume the most of the pipe jacking/drilling will occur through the bedrock. Bedrock comprises quartzite on which refusal of the TLB occurred and logged as hard rock (UCS > 30MPa). The quartzite will grade rapidly with depth and in the absence of deeper investigative methods (eg. core drilling), it must be assumed that fresh competent bedrock may be intercepted. Quartzite is a competent metamorphosed rock and UCS exceeding 250MPa are typical (Brink ABA, 1976), furthermore the rock is highly abrasive. A relatively high cost for the jacking is thus anticipated given the challenging conditions. This cost should be evaluated against a conventional pipe bridge crossing utilising conventional shallow pad foundations.

4.4. Groundwater Conditions

Groundwater seepage was encountered in close proximity to the stream with wet soil conditions being prevalent a substantial distance from the stream. The water table was reached at a depth of roughly 2.25 m BGL in an excavation adjacent to the stream and subsequently terminated at a depth of 2.30 m. The presence of ferricrete is indicative of seasonal moisture changes.

4.5. Excavatability

Refusal on shallow bedrock and hardpan ferricrete was reached at a depth less than 1.50 m in five (5) of the excavations. Difficult excavation conditions are expected throughout most of the site, with expectation to the area adjacent to the stream where an excavation was terminated at a depth greater than 1.5 m BGL.

4.6. Stability of Trenches

No sidewall instabilities were observed during the geotechnical site investigation and this gives an indication that no problems should be encountered with regards to the stability of long trench excavations, however any excavation deeper than 1.5m must be shored as prescribed in the relevant act.

4.7. Material Utilisation

The usability of the on-site materials for construction purposes can be assessed according to the AASHTO, Unified Soil Classifications and the CBR test results.

The low grading modulus for the alluvium near the river stream is indicative of the significant amount of fines in these soils and is not suitable for engineered cradle bedding for pipes.

However, most soils encountered (over the bedrock) on site classify as SC to SM, according to the ASSHTO classification, and therefore are expected to have fair to good workability as a construction material and have fair to good compaction characteristics. The upper transported material in the site soil profile can be utilized as G8 fill material to be placed above the bedding cradle in accordance with SANS 1200 LB.

The materials encountered on the site are not suitable for pipe bedding and this would need be sourced commercially.

4.8. Construction Quality Assurance and Validation

Based on the above evaluation, ground conditions are favourable and consistent. No further investigations are recommended.

Notwithstanding, the nature of geotechnical engineering is such that variations in what is reported here may become evident during construction, once the site has been excavated and opened-up. It is thus imperative that a competent person inspect excavations and/or foundation platforms to sure the conditions at variance with those predicted, do not occur and to undertake an interpretation of the facts applied in this report so as to validate the design and recommendations made.

References

AEG/SAICE/SAIEG Association of Engineering Geologists – South African Section, South African Institution of Civil Engineering - Geotechnical Division, and South African Institute for Engineering and Environmental Geologists (2001) Guidelines for Soil and Rock Logging in South Africa, 2nd Impression, Brink, A.B.A. and Bruin, R.M.H. (eds.), Proceedings of the Geoterminology Workshop, 1990.

Partridge T.C., Wood C.K. and Brink A.B.A.. Priorities for urban expansion within the PWV metropolitan region. The primary of geotechnical constraints. South African Geographical Journal: Vol. 75, 1973.

South African Institution of Civil Engineering SAICE (1995) *Code of Practice: Foundations and superstructures for single storey residential buildings of masonry construction.* Joint Structural Division, Johannesburg. 1st edition.

South African Institution of Civil Engineering SAICE - Geotechnical Division (2010) *Site Investigation Code of Practice*, 1st Edition, January 2010.

SANS, South African National Standards (2009) SANS10160-5: Basis of Structural Design and Actions for Buildings and Industrial Structures — Part 5: Basis of Geotechnical Design and Actions, Pretoria, SANS.

SANS, South African National Standards (1983) SANS 1200 LB: bedding (pipes)

Appendix A. Trial Pit Logs

	PR PROJI	TRIAL PIT LOG CLIENT: WSP Group Africa (Pty) Ltd COJECT: HYPERAMA PIPELINE, REIGER PARK ECT NO: GWS18217 SITE:	HOLE X CC Y CO ELEVA	E NO: HRPT1 ORD: ORD: TION: PAGE 1 of 1
Depth		Description		Dynamic Probe Light Equivalent SPT-N 10 20 30 40
	0.00	Ground Surfa	ace	
	<u>0,34</u>	Medium dense, slightly clayey, silty fine SAND Dry, medium brown, mottled red and orange, medium dense, pinholed with open root channels, slightly claye silty fine sand with abundant mixed gravel and cobbles Fill. Roots.	ey s.	
		Loose, silty fine SAND Slightly moist, dark grey brown, loose, voided silty fine sand with abundant angular to sub rounded, coarse gravel and cobbles mixed fragments. Fill. Few roots.		
	0,86			
	<u>1,10</u> <u>1,20</u>	 Loose, clayey, silty SAND Slightly moist, brown orange, loose, intact, clayey silty sand with few subrounded gravel. Colluvium. Few Roots. Loose, clayey, silty SAND Slightly moist, brown orange, loose, intact, clayey silt sand with abundant subrounded slightly weathered coarse gravel and cobbles. Pebble marker. Few Roots Loose to medium dense, clayey, silty SAND Slightly moist, orange brown mottled red, yellow and orange and stained black loose to medium dense, jointed, slightly clayey silty sand matrix with abundant angular cobble sized completely to highly weathered sandstone. Completely to highly weathered sandstone Vryheid Formation. 	<u>3.</u>	
	1,98			
		Approaching refusal of soft rock, SANDSTONE End of I	Log	
	ample at 0.9	7 - 1 10 5.		
2: CBR 3: Stab	sample at 0.0 sample at (le sidewalls /ater seepaç	0.87 - 1.20 6: 7: ge 8:		
MACHINE: TLB:	Volvo BL61	(64kW) DATE PROFILED: 07/09/2018		ACOCE
DIAM: Test FILE REF:	Pit	PROFILED BY: D Swart Prof Reg: CHECKED BY: F. Pequenino Prof.Reg: 2007	70109	www.gageconsulting.co.za

	PR PROJI	TRIAL PIT LOG CLIENT: WSP Group Africa (Pty) Ltd ROJECT: HYPERAMA PIPELINE, REIGER PARK ECT NO: GWS18217 SITE:	HOLE NO X COORD Y COORD ELEVATION	HRPT2	
Depth		Description	Dyn Eq 10	amic Probe Light uivalent SPT-N 20 30 40	
	0,00	Ground Surfa	ace		
	<u>0,10</u>	 Loose, silty fine SAND Slightly moist, dark grey brown, loose, silty fine sand with abundant mixed rubble coarse gravel and boulde Fill. Roots. Medium dense, slightly clayey, silty, SAND Slightly moist, light grey brown, medium dense, intact, slightly clayey silty sand. Colluvium. Roots. 	rs.		
	<u>0,60</u>	Medium dense, slightly clayey, silty SAND Slightly moist, light, yellow grey, occasionally mottled orange and black, medium dense, pinholed, slightly clayey silty sand. Colluvium.			
1,0	1,00 1,20	Medium dense, slightly clayey, silty SAND Slightly moist, light yellow grey, occasionally mottled orange and black, medium dense, pinholed, slightly clayey silty sand with abundant subrounded coarse gravel. Pebble marker.			
-		Dry, orange yellow mottled grey orange and red, dens intact, silty sand. Completely to highly weathered sandstone. Vryheid Formation. Refusal on soft rock. SANDSTONE	e,		
-		End of I	_og		
2,0-					
NOTES 1: FI sa	ample at 0.6	50 - 1.00 5:	I		
2: Stabi 3: No w 4:	2: Stable sidewalls6:3: No water seepage7:4:8:				
MACHINE: TLB: DIAM: Test FILE REF:	: Volvo BL6′ Pit	I (64kW) DATE PROFILED: 07/09/2018 PROFILED BY: D Swart Prof Reg: CHECKED BY: F. Pequenino Prof.Reg: 200	70109	WW.gageconsulting.co.za	

	(PR PROJE	TRIAL PIT LOG CLIENT: WSP Group Africa (Pty) Ltd OJECT: HYPERAMA PIPELINE, REIGER PARK CCT NO: GWS18217 SITE:	HOL X C Y C ELEV	E NO: HRPT3 OORD: OORD: ATION: PAGE 1 of 1
Depth		Description		Dynamic Probe Light Equivalent SPT-N 10 20 30 40
	0.00	Ground Surf	ace	/
	0,86 <u>1,00</u> 1,40	 Loose, slightly clayey, silty fine to medium SAND Moist, light brown grey, loose, intact, slightly clayey sil fine to medium sand with abundant subrounded cobble and coarse gravel. Pebble marker. Roots. Loose, silty SAND Wet, grey mottled orange red and yellow, loose, intact silty sand, matrix with abundant completely to highly weathered subangular sandstone cobbles. Reworked residual sandstone. Vryheid Formation. Medium dense to dense, silty, SAND Wet, yellow red, mottled orange grey and black, medii dense to dense, jointed, silty sand, matrix with abundar slightly to highly weathered subangular to angular sandstone cobbles. Completely weathered sandstone Vryheid Formation. Refusal on soft rock, sandstone 	ty es ., _og	
NOTES 1: FI sa 2: Stable 3: No wa 4:	mple at 0.0 e sidewalls ater seepag	e 7: 8:	r	
MACHINE: TLB: V DIAM: Test F FILE REF:	Volvo BL61 Pit	(64kW) DATE PROFILED: 07/09/2018 PROFILED BY: D Swart Prof Reg: CHECKED BY: F. Pequenino Prof.Reg: 2007	70109	

		PR PROJE	TRIAL PIT LOG CLIENT: WSP Group Africa (Pty) Ltd OJECT: HYPERAMA PIPELINE, REIGER PARK ECT NO: GWS18217 SITE:	HOLE NO: X COORD Y COORD ELEVATION	HRPT4 PAGE 1 of 1
Depth			Description	Dyna Eq 10	amic Probe Light uivalent SPT-N 20 30 40
		0.00	Ground Surf	ace	
		0.40	Loose, slightly clayey, silty SAND Slightly moist, light grey brown, loose, pinholed with open root channels, slightly clayey, silty sand. Colluvit Roots.	ım.	
		0,97	Loose to medium dense, clayey, silty, SAND Slightly moist, dark purple, grey mottled orange, loose medium dense, intact, clayey, silty sand. Alluvium.	e to	
1,0 - - - - -		1 70	Soft (loose), silty, clayey SAND Wet, grey mottled orange, soft (loose), intact, silty, clayey sand. Alluvium.		
2,0-		2,30	Soft (loose), silty, clayey SAND Wet, grey mottled orange, soft (loose), intact, silty, clayey sand with orange hard to soft gravel-sized concretions. Alluvium.		
			✓ Hole stopped due to seepage		
-			End of	_og	
NOTE	NOTES 1: FI sample at 1.70 - 2.30 5: 2: Stable sidewalls 6:				
	3: Wa 4:	ater seepage a	at 2.25m 7: 8:		
MACH E FILE	MACHINE: TLB: Volvo BL61 (64kW) DATE PROFILED: 07/09/2018 DIAM: Test Pit PROFILED BY: D Swart Prof Reg: FILE REF: CHECKED BY: F. Pequenino Prof.Reg: 20070109				

	PR PROJE	TRIAL PIT LOG CLIENT: WSP Group Africa (Pty) Ltd OJECT: HYPERAMA PIPELINE, REIGER PARK ECT NO: GWS18217 SITE:	HOLE X CO Y CO ELEVA	NO: HRP Dord: Dord: Tion: PA	T5 .GE 1 of 1
Depth		Description		Dynamic Pr Equivaler 10 20	robe Light nt SPT-N 30 40
	0,00	Ground Surfa	ace		
	0,30	Loose, clayey, silty fine SAND Slightly moist, light grey brown, loose, clayey, silty fine sand, intact with plastic and mixed gravel. Fill. Roots. Medium dense, clayey, silty, SAND Moist, dark grey brown, medium dense, voided with	,		
	0,60	open root channels clayey, silty sand. Alluvium. Roots			
		Wet, yellow brown, mottled black, voided, slightly clay silty sand with occasional subrounded quartz coarse gravel. Alluvium.	ey,		
1,0-	1,05				
		Clayey, silty SAND Wet, yellow brown, mottled black, voided, slightly clay silty sand with abundant subrounded quartz coarse gravel and cobbles and completely weathered quartzin cobbles and boulders. Alluvium. Soft to firm, clayey, silty SAND	ey,		
	<u>1,50</u>	silty sand matrix with abundant subrounded to angular mixed coarse gravel and cobbles. Alluvium.	r		
	1,70	Highly weathered, hard rock quartzite. Johannesburg Subgroup.			
		Refusal in hard rock, QUARTZITE	_/		
2,0-		End of I	_og		
NOTES 1: FI Sa	ample at 0.6	50 - 1.05 5:	I		
2: Stabl 3: No w 4:	le sidewalls vater seepag	6: 7: 8:			
MACHINE: TLB: DIAM: Test FILE REF:	Volvo BL61 Pit	(64kW) DATE PROFILED: 07/09/2018 PROFILED BY: D Swart Prof Reg: CHECKED BY: F. Pequenino Prof.Reg: 2007	70109		sulting.co.za

TRIAL PIT LOG HOLE NO: HRPT6 CLIENT: WSP Group Africa (Pty) Ltd X COORD: PROJECT: HYPERAMA PIPELINE, REIGER PARK Y COORD: PROJECT NO: GWS18217 **ELEVATION:** SITE: PAGE 1 of 1 **Dynamic Probe Light Equivalent SPT-N** Depth Description 10 20 30 40 0,00 **Ground Surface** 0,0 Loose, slightly clayey silty fine SAND Slightly moist, light grey brown, loose, intact, slightly clayey silty fine sand. Colluvium. Roots. 0,50 Loose to medium dense, slightly clayey silty fine SAND Moist, yellow brown, loose to medium dense, occasional open root channels slightly clayey silty sand with occasional translucent rounded quartz coarse gravel and 0,85 rounded Fe & Mn nodules. Colluvium. Very dense, silty SAND 0,95 Slightly moist, yellow brown, mottled red orange and 1,0 purple, very dense, jointed, silty sand with abundant highly to completely weathered angular quartzite cobbles. Completely weathered quartzite. Johannesburg Subgroup. Refusal in hard rock, QUARTZITE End of Log 2,0 NOTES 1: No sample 5: 2: Stable sidewalls 6: 7: 3: No water seepage 4: 8: MACHINE: TLB: Volvo BL61 (64kW) DATE PROFILED: 07/09/2018 GaGE DIAM: Test Pit PROFILED BY: D Swart Prof Reg: FILE REF: CHECKED BY: F. Pequenino Prof.Reg: 20070109 www.gageconsulting.co.za

		PR PROJI	TRIAL PIT LOG CLIENT: WSP Group Africa (Pty) Ltd COJECT: HYPERAMA PIPELINE, REIGER PARK ECT NO: GWS18217 SITE:	HOL X C Y C ELEV	E NO: HRPT7 COORD: COORD: (ATION: PAGE 1 of 1
Depth			Description		Dynamic Probe Light Equivalent SPT-N 10 20 30 40
		0.00	Ground Surfa	асе	
		0.43	Medium dense to dense, slightly clayey silty fine SAND Slightly moist, brown grey, medium dense to dense, intact, clayey, silty sand. Alluvium/colluvium. Roots.		
		0,43 0,60 0,90 1,05	Medium dense to dense, slightly clayey silty fine SAND Slightly moist, yellow brown, mottled orange, medium dense to dense, intact, clayey, silty sand. Colluvium. Very dense, silty SAND Slightly moist, yellow brown, mottled orange, very den intact, clayey, silty sand matrix with abundant transluc rounded to angular slightly weathered quartz coarse gravel and Fe&Mn nodules. Honeycomb ferricrete. Cemented. Hardpan FERRCRETE Slightly moist, orange red, mottled orange, yellow and black, very dense. Hardpan ferricrete. Strongly cemented. Refusal on hardpan, FERRICRETE End of the second se	se, ent	
-					
NOTE	ES 1: No 2: Stal 3: No 4:	sample ble sidewalls water seepag	5: 6: 7: 8:		
MACH FILE	HINE: TLE DIAM: Tes REF:	3: Volvo BL61 ht Pit	(64kW) DATE PROFILED: 07/09/2018 PROFILED BY: D Swart Prof Reg: CHECKED BY: F. Pequenino Prof.Reg: 200	70109	WWW.gageconsulting.co.za

wsp

Appendix B. Profiling and Logging Parameters

SOIL DESCRIPTIVE TERMS

Reference: Brink, ABA and Bruin, RMH (2002) Guidelines for Soil and Rock Logging in South Africa, AEG/SAICE/SAIEG

DESCRIPTIVE ORDER: 1. Moisture condition; 2. Colour; 3. Consistency; 4. Soil structure; 5. Soil type; and 6. Origin

1a Consistency: Granular Soils				
SPT "N"	(Dry density (kg/m3)		
< 4	VERY LOOSE	Crumbles very easily when scraped with geological pick	< 1450	
4-10	LOOSE	Small resistance to penetration by sharp pick point	1450-1600	
10-30	MEDIUM DENSE	Considerable resistanche to penetration by sharp pick point	1600-1750	
30-50	DENSE	Very high resistance to penetration by sharp pick point. Requires many blows of pick for excavation	1750-1925	
> 50	VERY DENSE	High resistance to repeated blows of geological pick. Requires power tools for excavation	> 1925	

1b Consistency: Cohesive Soils				
SPT "N"	SI	LTS & CLAYS and combination with SANDS Generally slow draining soils	UCS (kPa)	
< 2	VERY SOFT	Pick point easily pushed in 100mm. Easily moulded by fingers	< 50	
2-4	SOFT	Pick point easily pushed in 30-40mm. Moulded by fingers with some pressure. Easily penetrated by thumb.	50-125	
4-8	FIRM	Pick point penetrates up to 10mm. Very difficult to mould with fingers. Indented by thumb with effort. Spade just penetrates.	125-500	
8-15	STIFF	Slight indentation by pushing in pick point. Cannot be moulded by fingers. Penetrated by thumbnail. Pick necessary to excavate.	250-500	
15-30	VERY STIFF	Slight indentation by blow of pick point. Requires power tools for excavation.	500-1000	

2 Soil Type					
SOIL TYPE"	PARTICLE SIZE (mm)				
CLAY	< 0,002				
SILT	0,002 - 0,06				
SAND	0,06 – 2				
GRAVEL	2 - 60*				
COBBLES	60 - 200*				
* Specify average and maximum sizes, hardness, shape as well as proportion					

4 Colour				
Described at natural moisture content, as seen in profile (unless otherwise specified) and using bedding thickness criteria. (e.g. thickly banded, thinly streaked, etc.)				
SPECKLED	Very small patches of colour < 2 mm			
MOTTLED	Irregular patches of colour 2 – 6 mm			
BLOTCHED	Large irregular patches 6 – 20 mm			
BANDED	Approximately parallel bands of varying colour			
STREAKED	Randomly orientated streaks of colour			
STAINED	Local colour variations: associated with discontinuity surfaces			

3 Moisture Condition		
DRY	No water detectable	
SLIGHTLY MOIST	Water just discernable	
MOIST	Water easily discernable	
VERY MOIST	Water can be squeezed out	
WET	Generally below the water table	

5 Soil Structure	
INTACT	No structure present
FISSURED	Presence of discontinuities, possibly cemented
SLICKENSIDED	Very smooth, glossy, often striated discontinuity planes
SHATTERED	Presence of open fissures. Soil breaks into gravel size blocks
MICRO- SHATTERED	Small scale shattering, very closely spaced open fissures. Soil breaks into sand size crumbs
RESIDUAL STRUCTURES	Relict bedding, lamination, foliation, etc.

5 Origin	
TRANSPORTED	Alluvium, hillwash, talus, etc.
RESIDUAL	Weathered from parent rock e.g. residual granite
PEDOCRETES	Ferricrete, laterite, silcrete, calcrete, etc.

Pedocretes		
	DEGREE OF CEMENTATION	UCS (MPa)
VERY WEAKLY CEMENTED	Some material can be crumbled between finger and thumb. Disintegrates under knife blade to a friable state.	0,1 - 0,5
WEAKLY CEMENTED	Cannot be crumbled between strong fingers. Some material can be crumbled by strong pressure between thumb and hard surface. Under light hammer blows disintegrates to friable state.	0,5 - 2
CEMENTED	Material crumbles under firm blows of sharp pick point. Grains can be dislodged with some difficulty by a knife blade.	2 – 5
STRONGLY CEMENTED	Firm blows of sharp pick point on hand-held specimen show 1-3mm indentations. Grains cannot be dislodged by knife blade.	5 – 10
VERY STRONGLY CEMENTED	Hand-held specimen can be broken by single firm blow of hammerhead. Similar appearance to concrete.	10 - 25

ROCK DESCRIPTIVE TERMS

Reference: Brink, ABA and Bruin, RMH (2002) Guidelines for Soil and Rock Logging in South Africa, AEG/SAICE/SAIEG

DESCRIPTIVE ORDER: 1. Colour; 2. Weathering; 3. Grain size; 4. Fabric spacing; 5. Discontinuity spacing; 5. Hardness; 6. Rock type; 7. Rock formation

1a Rock Hardness: <25 MPa		
HARDNESS	DESCRIPTION	UCS (MPa)
VERY SOFT	Material crumbles under firm blows of pick point. Can be peeled with a knife. SPT refusal. Too hard to cut triaxial sample by hand	1 – 3
SOFT ROCK	Firm blows with pick point: 2-4mm indents. Can just be scraped with a knife	3 - 10
MEDIUM HARD ROCK	Firm blows of pick head will break hand-held specimen. Cannot be scraped or peeled with a knife.	10 - 25

1b Rock Hardness: >25 MPa		
HARDNESS	DESCRIPTION	UCS (MPa)
HARD ROCK		25 - 70
VERY HARD ROCK	Breaks with difficulty, rings when struck Point load or laboratory test results necessary to distinguish between categories	70 – 200
EXTREMELY HARD ROCK		> 200

2 Rock Type

Quartzite, sandstone, granite, limestone, etc.

Colour

Described in the wet state unless otherwise indicated

3. Weathering					
DEGREE OF WEATHERING	EXTENT OF DISCOLOURATION	FRACTURE CONDITION	SURFACE CHARACTERISTICS	ORIGINAL FABRIC	GRAIN BOUNDARY CONDITION
UNWEATHERED	None	Closed or stained	Unchanged	Preserved	Tight
SLIGHTLY WEATHERED	< 20% of fracture spacing on both sides of fracture	Discoloured, may contain thin filling	Partial discolouration. Often unweathered rock colour	Preserved	Tight
MODERATELY WEATHERED	>20% of fracture spacing on both side of fracture	Discoloured, may contain thick filling	Partial to complete discolouration. Not friable except poorly cemented rocks	Preserved	Partial opening
HIGHLY WEATHERED	Throughout	-	Friable, possibly pitted	Mainly preserved	Partial separation. Not easily indented with knife. Does not slake
COMPLETELY WEATHERED	Throughout	-	Resembles a soil	Partially preserved	Complete separation. Easily indented with knife. Slakes

5 Fabric/Discontinuity Spacing		
SEPARATION (mm)	SPACING (foliation, cleavage, bedding, etc.)	SPACING (fractures, joints, etc.)
< 6	very intensely	von bight
6 – 20	intensely	very nigniy
20 - 60	very thinly	highly
60 - 200	thinly	riigriiy
200 - 600	medium	moderately
600 - 2000	thickly	slightly
> 2000	very thickly	very slightly

6a Discontinuity Surface Description: Joint Filling	
JOINT FILL TYPE	DEFINITION (wall separation specified in mm)
CLEAN	No fracture filling
STAINED	Colouration of rock only. No recognisable filling material
FILLED	Fracture filled with finite thickness filling material

6b Discontinuity Surface Description: Orientation

Discontinuity inclinations (i.e. of joints, bedding, faults)

C Discontinuity Surface Description: Roughness of Discontinuity Planes	
CLASSIFICATION	DESCRIPTION
SMOOTH	Appears smooth and is essentially smooth to the touch. May be slickensided *
SLIGHTLY ROUGH	Asperities on the fracture surface are visible and can be distinctly felt
MEDIUM ROUGH	Asperities are clearly visible and fracture surface feels abrasive
ROUGH	Large angular asperities can be seen. Some ridge and high side angle steps evident
VERY ROUGH	Near vertical steps and ridges occur on the fracture surface
Where slickensides occur the direction of the slickensides should be recorded	

7 Grain size		
CLASSIFICATION	SIZE (mm)	RECOGNITION
VERY FINE GRAINED	< 0.2	Individual grains cannot be seen with a hand lens
FINE GRAINED	0.2 - 0.6	Just visible as individual grains under hand lens
MEDIUM GRAINED	0.6 – 2	Grains clearly visible under hand lens, just visible to the naked eye
COARSE GRAINED	2 – 6	Grains clearly visible to the naked eye
VERY COARSE GRAINED	> 6	Grains measurable

BRock Formation

Pietermaritzburg Formation, Cape Granite Suite etc.

vsp

Appendix C. Laboratory Results

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186 Roelot | 072 674 6343 | roelot@stlab.co.za Gerrie | 082 309 4448 | gerrie@stlab.co.za www.stlab.co.za

Quality | Excellence | On Time

Client Name:	GaGE Consulting
Project Name:	Hyperama Pipeline
Job Number:	GGC-07
Date:	01-Oct-18
Method:	SANS 3001 GR1, GR3 GR10, GR12 GR20, GR30, GR31, GR40, GR50, GR53, GR54 & BS 1377 (where applicable)

SUMMARY OF TEST DATA

Grading & Hydrometer Analysis (% Passing)									
Sample	HRPT 1	HRPT 2	HRPT 3	HRPT 4	HRPT 5				
Depth (m)	0.87 - 1.1	0.6 - 1.0	0 - 0.72	1.7 - 2.3	0.6 - 1.05				
Lab No	GGC-07-28	GGC-07-29	GGC-07-30	GGC-07-31	GGC-07-32				
53.0	100	100	100	100	100				
37.5	100	100	100	100	100				
26.5	100	100	100	100	100				
19.0	100	100	100	100	100				
13.2	100	100	100	100	100				
9.5	100	99	100	100	99				
6.7	100	99	100	100	99				
4.75	99	98	100	99	98				
2.00	97	96	99	98	95				
1.00	91	91	96	91	88				
0.425	72	72	71	65	68				
0.250	62	59	48	52	53				
0.150	48	47	34	45	40				
0.075	35	36	21	38	27				
0.060	32	31	17	34	23				
0.050	30	30	16	33	21				
0.035	24	28	14	31	16				
0.020	21	25	11	28	14				
0.006	17	19	8	24	11				
0.002	15	16	7	21	8				
GM	0.96	0.96	1.09	0.99	1.10				
			A	terberg Limits		11			
LL (%)	23	19	0	35	20				
PI (%)	11	7	SP	22	7				
LS (%)	5.0	3.0	0.5	9.5	3.0				
	pH & Conductivity								
pН	4.7	4.0	4.6	5.3	5.4				
EC (S/m)	0.048	0.032	0.038	0.0340	0.033				
,				MDD / OMC		11			
MDD (kg/m ³)	2150			•					
OMC (%)	6.4								
				CBR					
100%	26								
98%	21								
97%	19								
95%	16								
93%	14								
90%	11								
Swell (%)	0.0								
0				UCS (MPa)		1			
100%				- 、 - /					
97%									
90%									
5676			COL	TO Classificatio	on in the second	1			
	G8								
Deverenteet					1	1			

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place.

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186 Roelof | 072 674 6343 | roelot@stlab.co.za Gerrie | 082 309 4448 | gerrie@stlab.co.za www.stlab.co.za

Quality | Excellence | On Time

Client Name:	GaGE Consulting
Project Name:	Hyperama Pipeline
Job Number:	GGC-07
Date:	2018-10-01
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

FOUNDATION INDICATOR								
Grading & Hydrometer Analysis			Atterberg Limits & Classification					
(Particle Size (mm) & % Passing)		· · · · · · · · · · · · · · · · · · ·						
Sample	HRPT 1	HRPT 2	HRPT 3	Sample	HRPT 1	HRPT 2	HRPT 3	
Depth (m)	0.87 - 1.1	0.6 - 1.0	0 - 0.72	Depth (m)	0.87 - 1.1	0.6 - 1.0	0 - 0.72	
Lab No	GGC-07-28	GGC-07-29	GGC-07-30	Lab No	GGC-07-28	GGC-07-29	GGC-07-30	
53.0	100	100	100	Liquid Limit (%)	23	19	0	
37.5	100	100	100	Plastic Limit (%)	12	12	0	
26.5	100	100	100	Plasticity Index (%)	11	7	SP	
19.0	100	100	100	Linear Shrinkage (%)	5.0	3.0	0.5	
13.2	100	100	100	PI of whole sample	8	5	0	
9.5	100	99	100					
6.7	100	99	100	% Gravel	3	4	1	
4.75	99	98	100	% Sand	65	65	82	
2.00	97	96	99	% Silt	17	15	10	
1.00	91	91	96	% Clay	15	16	7	
0.425	72	72	71	Activity 0.7 0.4		0.0		
0.250	62	59	48					
0.150	48	47	34	% Soil Mortar	97	96	99	
0.075	35	36	21					
0.060	32	31	17	Grading Modulus	0.96	0.96	1.09	
0.050	30	30	16	Moisture Content (%)	7.7	5.9	17.4	
0.035	24	28	14	Relative Density (SG)*	2.65	2.65	2.65	
0.020	21	21 25 11						
0.006	17	19	8	Unified (ASTM D2487)	SC	SC-SM	SM	
0.002	15	16	7	AASHTO (M145-91)	A - 2 - 6	A - 4	A - 2 - 4	
Remarks:	Remarks: *: Assumed							

N / T: Not Tested

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place.

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186 Roelof | 072 674 6343 | roelof@stlab.co.za Gerrie | 082 309 4448 | gerrie@stlab.co.za www.stlab.co.za

Quality Excellence On Time

Client Name:	GaGE Consulting
Project Name:	Hyperama Pipeline
Job Number:	GGC-07
Date:	2018-10-01
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186 Roelof | 072 674 6343 | roelot@stlab.co.za Gerrie | 082 309 4448 | gerrie@stlab.co.za www.stlab.co.za

Quality | Excellence | On Time

Client Name:	GaGE Consulting
Project Name:	Hyperama Pipeline
Job Number:	GGC-07
Date:	2018-10-01
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Grading & Hydrometer Analysis		Atterberg Limits & Classification					
(P	article Size (m	m) & % Passir	ng)		;		
Sample	HRPT 4	HRPT 5		Sample	HRPT 4	HRPT 5	
Depth (m)	1.7 - 2.3	0.6 - 1.05		Depth (m)	1.7 - 2.3	0.6 - 1.05	
Lab No	GGC-07-31	GGC-07-32		Lab No	GGC-07-31	GGC-07-32	
53.0	100	100		Liquid Limit (%)	35	20	
37.5	100	100		Plastic Limit (%)	13	13	
26.5	100	100		Plasticity Index (%)	22	7	
19.0	100	100		Linear Shrinkage (%)	9.5	3.0	
13.2	100	100		PI of whole sample	14	5	
9.5	100	99					
6.7	100	99		% Gravel	2	5	
4.75	99	98		% Sand	64	72	
2.00	98	95		% Silt	13	15	
1.00	91	88		% Clay	21	8	
0.425	65	68		Activity	1.1	0.9	
0.250	52	53					
0.150	45	40		% Soil Mortar	98	95	
0.075	38	27			-		
0.060	34	23		Grading Modulus	0.99	1.10	
0.050	33	21		Moisture Content (%)	14.9	12.8	
0.035	31	16		Relative Density (SG)*	2.65	2.65	
0.020	28	14					
0.006	24	11		Unified (ASTM D2487)	SC	SC-SM	
0.002	21	8		AASHTO (M145-91)	A - 6	A - 2 - 4	
Remarks:	*: Assumed						
	N / T: Not Te	sted					

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place.

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186 Roelof | 072 674 6343 | roelof@stlab.co.za Gerrle | 082 309 4448 | gerrle@stlab.co.za www.stlab.co.za

Quality Excellence On Time

Client Name:	GaGE Consulting
Project Name:	Hyperama Pipeline
Job Number:	GGC-07
Date:	2018-10-01
Method:	SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186 Roelof | 072 674 6343 | roelof@stlab.co.za Gerrle | 082 309 4448 | gerrle@stlab.co.za www.stlab.co.za

Quality | Excellence | On Time

Client Name: Project Name: Sample: Depth: (m) GaGe Consulting Hyperama Pipeline HRTP 1 0.87 - 1.1

GGC-07 GGC-07-28 SANS 3001 GR40 01-Oct-18

CALIFORNIA BEARING RATIO

5	Specia Testing Labora Asphal Aggregate	lised tory (Pty) Lid Bitumen Geotechnica			Unit 1, 13 Bio Roelof Gerrie	oubokkle Street, Koedoespo 072 674 6343 roelot@stk 082 309 4448 gerrte@stk www.stk	oort 0186 ab.co.za ab.co.za ab.co.za
<i>Quality</i> Client Name: Ga Project Name: Hy Sample: HF Depth: (m) 0.8	<i>Excellence</i> Ge Consulting perama Pipeline RPT 1 37 - 1.1	On Time		Job Num Lab Num Method Date:	nber: GGG nber: GGG : SAN 01-0	C-07 C-07-28 IS 3001 GR30 Oct-18	
Maximum Dry Density	MDD : 2150	& OMC DE1	C	ATION (M	ture Content:	6.4 %	
Moisture Content (%):	4.2	5.2	6.2	7.2	8.2		
Dry Density (kg/m³)	2040	2098	2145	2130	2085		
2160 2140 2140 2120 2120 2100 200 2							
2060							
2040							
4.0	4.5 5.0) 5.5	6.0 Moisture Cor	6.5 ntent (%)	7.0	7.5 8.0	8.5

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place.