Palaeontological Impact Assessment for the proposed pipeline for Modder East Operations to the Cowles Dam wetland, Gauteng Province

Desktop Study

For

Prime Resources (Pty) Ltd

25 July 2018

Prof Marion Bamford
Palaeobotanist
P Bag 652, WITS 2050
Johannesburg, South Africa

Marion.bamford@wits.ac.za

Expertise of Specialist

The Palaeontologist Consultant is: Prof Marion Bamford Qualifications: PhD (Wits Univ, 1990); FRSSAf, ASSAf Experience: 30 years research; 22 years PIA studies

Declaration of Independence

This report has been compiled by Professor Marion Bamford, of the University of the Witwatersrand, sub-contracted by Prime Resources (Pty) Ltd, South Africa. The views expressed in this report are entirely those of the author and no other interest was displayed during the decision making process for the Project.

Specialist: Prof Marion Bamford

Signature:

Executive Summary

A palaeontological Impact Assessment was requested for the proposed construction of a pipeline for Modder East Operations, New Kleinfontein Gold Mine (Pty) Ltd, Gauteng Province. To comply with the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a desktop Palaeontological Impact Assessment (PIA) was completed for the proposed construction of a pipeline to a wetland associated with Cowles Dam.

The proposed route for the pipeline lies along a wetland that is situated on the shales and mudstones of the Vryheid Formation, Ecca Group, early Permian that could potentially contain impressions of fossil leaves of the *Glossopteris* flora. Wetlands are densely vegetated and experience wet and dry conditions. It is extremely unlikely that any fossil plants would be preserved. Nonetheless, a Chance Find Protocol should be added to the EMPr in case fossil plants are discovered when excavations commence. Based on this information it is recommended that no palaeontological site visit is required and the excavations be monitored by a designated responsible person.

Table of Contents

	Expertise of Specialist	1
	Declaration of Independence	1
1.	Background	4
2.	Methods and Terms of Reference	5
3 i.	. Project location and geological context	6
3 i	i. Palaeontological context	7
4.	Impact assessment	8
5.	Assumptions and uncertainties	10
6.	Recommendation	10
7.	References	10
8.	Chance Find Protocol	11
Δnr	nendix A - CV of Specialist	13

1. Background

New Kleinfontein Goldmine (NKGM) is considering the construction of a pipeline for the discharge of treated water to a wetland associated with the Cowles Dam in Springs, Gauteng. Prime Resources (Pty) Ltd has been appointed to conduct the environmental authorisation and WULA processes associated with the pipeline. Please see Figure 1 for the location of the mine and the proposed route of the discharge pipeline.

To comply with the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a desktop Palaeontological Impact Assessment (PIA) was completed for the proposed construction of the pipeline.

Table 1: Specialist report requirements in terms of Appendix 6 of the EIA Regulations (2014)

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 must contain:	Relevant section in report
Details of the specialist who prepared the report	Appendix A
The expertise of that person to compile a specialist report including a curriculum vitae	Appendix A
A declaration that the person is independent in a form as may be specified by the competent authority	Page 1
An indication of the scope of, and the purpose for which, the report was prepared	Section 1
The date and season of the site investigation and the relevance of the season to the outcome of the assessment	N/A
A description of the methodology adopted in preparing the report or carrying out the specialised process	Section 2
The specific identified sensitivity of the site related to the activity and its associated structures and infrastructure	Section ii Error! Reference source not found.
An identification of any areas to be avoided, including buffers	N/A
A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	N/A
A description of any assumptions made and any uncertainties or gaps in knowledge;	Section 5
A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives, on the environment	Section 4
Any mitigation measures for inclusion in the EMPr	N/A
Any conditions for inclusion in the environmental authorisation	Section 8
Any monitoring requirements for inclusion in the EMPr or environmental	Section 8

authorisation	
A reasoned opinion as to whether the proposed activity or portions thereof should be authorised	N/A
If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	N/A
A description of any consultation process that was undertaken during the course of carrying out the study	N/A
A summary and copies if any comments that were received during any consultation process	N/A
Any other information requested by the competent authority.	N/A

Figure 1: Google Earth map of the proposed route for the pipeline on Modder East, New Kleinfontein Gold Mine, near Springs, Gauteng. Map supplied by Prime Resources (Pty) Ltd

2. Methods and Terms of Reference

The Terms of Reference (ToR) for this study were to undertake a PIA and provide feasible management measures to comply with the requirements of SAHRA.

The methods employed to address the ToR included:

- Consultation of geological maps, literature, palaeontological databases, published and unpublished records to determine the likelihood of fossils occurring in the affected areas. Sources included records housed at the Evolutionary Studies Institute at the University of the Witwatersrand and SAHRA databases;
- 2. Where necessary, site visits by a qualified palaeontologist to locate any fossils and assess their importance (not applicable to this assessment);
- Where appropriate, collection of unique or rare fossils with the necessary permits for storage and curation at an appropriate facility (not applicable to this assessment); and
- 4. Determination of fossils' representivity or scientific importance to decide if the fossils can be destroyed or a representative sample collected (*not applicable to this assessment*).

3. Geology and Palaeontology

i. Project location and geological context

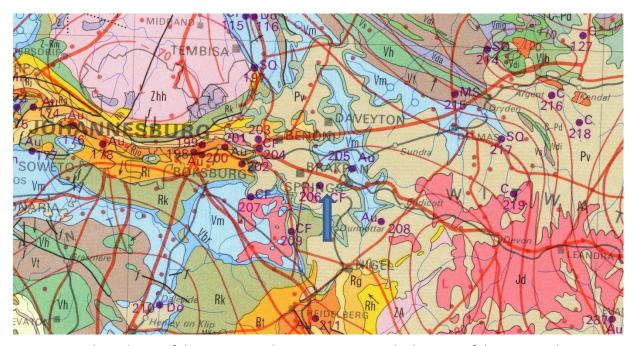


Figure 2: Geological map of the area around Springs, Gauteng. The location of the proposed project is indicated with the arrow. Abbreviations of the rock types are explained in Table 2. Map enlarged from the Geological Survey 1: 1 000 000 map 1984.

Table 2: Explanation of symbols for the geological map and approximate ages (Johnson et al., 2006; McCarthy et al., 2006; Robb et al., 2006; van der Westhuizen et al., 2006). SG = Supergroup; Fm = Formation.

Symbol	Group/Formation	Lithology	Approximate Age
Jd	Jurassic dykes	Dolerite dykes, intrusive	Jurassic, approx. 180 Ma
Pv	Vryheid Fm	Shales, sandstone, coal	Lower Permian, Middle Ecca
Vt	Timeball Hill Fm and Rooihoogte Fm, Pretoria Group, Ventersdorp SG	Quartzite	< 2420 Ma
Vbr	Black Reef Fm,	Quartzite, conglomerate, shale, basalt	Ca 2650 – 2640 Ma
Vm	Malmani Subgroup, Chuniespoort Group, Transvaal SG	Dolomite, chert	Ca 2750 – 2650 Ma
Rk	Klipriviersberg Group, Ventersdorp SG	Andesite, tuff	Ca 2714 Ma
Rt	Turfontein Subgroup, Central Rand Group, Witwatersrand SG	Conglomerate, quartzite	Ca 2750 Ma
Rjo	Johannesburg Subgroup, Central Rand Group, Witwatersrand SG	Quartzite, conglomerate, shale	
Rj	Jeppestown Subgroup, West Rand Group, Witwatersrand SG	Shale, quartzite, lava	
Rg	Government Subgroup, West Rand Group, Witwatersrand SG	Quartzite, shale	
Rh	Hospital Hill Subgroup, West Rand Group, Witwatersrand SG	Shale quartzite	Ca 2950 Ma
ZA	Granite, gneiss, Vredefort Dome	Granite, gneiss	Ca 3100 Ma

The oldest rocks in the area are the granites and gneisses of the Vredefort Dome, and then various subgroups of the Witwatersrand Supergroup that comprise shales, quartzites and conglomerates. Slightly younger rocks of the Pretoria Group and Ventersdorp Group also outcrop in this region. The Cowles Dam and site for the proposed pipeline are on considerably younger sediments, the shales and mudrocks of the Vryheid Formation, Ecca Group, of early Permian age.

ii. Palaeontological context

The palaeontological sensitivity of the area under consideration is presented in Figure 3. The site for development is in the Vryheid Formation. Although the Vryheid Formation is known for the coal seams that are economically important, Springs is at the extreme margin of the Karoo sediments. No fossils have been reported in this area. From the main Vryheid Formation to the east, impressions of fossil leaves, stems, roots and fructifications have

been found and these are part of the *Glossopteris* flora and include ferns, sphenophytes and lycopods. Invertebrates might occur with the fossil plants but no vertebrate fossils have been reported from the Vryheid Formation and not in association with plants (Plumstead, 1969; Anderson and Anderson, 1985).

In most cases the Vryheid shales and mudrocks are friable and weather rapidly, especially under conditions of fluctuating water (wet/dry) cycles that typically occur in wetlands and dams. Although the rocks in this area could potentially preserve fossil, it is extremely unlikely that they would be of any scientific value along a watercourse and wetland that is densely vegetated with reeds.

Figure 3: SAHRIS palaeosensitivity map for the route of the proposed pipeline shown within the yellow rectangle. Colours indicate the following degrees of sensitivity: red = very highly sensitive; orange/yellow = high; green = moderate; blue = low; grey = insignificant/zero.

From the SAHRIS map above the area is indicated as palaeontologically highly sensitive (red) but the route for the pipeline is within a wetland and the fluctuating wet/dry conditions would have destroyed any potential fossils, so a desktop study is presented here.

4. Impact assessment

An assessment of the potential impacts to possible palaeontological resources considers the criteria encapsulated in Table 3A:

TABLE 3A: CRITERIA FOR ASSESSING IMPACTS

PART A: DEFINITION AND CRITERIA				
	Н	Substantial deterioration (death, illness or injury). Recommended level will often be violated. Vigorous community action.		
	M	Moderate/ measurable deterioration (discomfort). Recommended level will occasionally be violated. Widespread complaints.		
Criteria for ranking of the SEVERITY/NATURE of environmental	L	Minor deterioration (nuisance or minor deterioration). Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints.		
impacts	L+	Minor improvement. Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints.		
	M+	Moderate improvement. Will be within or better than the recommended level. No observed reaction.		
	H+	Substantial improvement. Will be within or better than the recommended level. Favourable publicity.		
0.16 - 15 - 6 11 41	L	Quickly reversible. Less than the project life. Short term		
Criteria for ranking the DURATION of impacts	М	Reversible over time. Life of the project. Medium term		
DOMATION OF Impacto	Н	Permanent. Beyond closure. Long term.		
Criteria for ranking the	L	Localised - Within the site boundary.		
SPATIAL SCALE of	М	Fairly widespread – Beyond the site boundary. Local		
impacts	Н	Widespread – Far beyond site boundary. Regional/ national		
PROBABILITY		Definite/ Continuous		
(of exposure to	М	Possible/ frequent		
impacts)	L	Unlikely/ seldom		

TABLE 3B: IMPACT ASSESSMENT

PART B: ASSESSMENT			
	Н	-	
	M	-	
SEVERITY/NATURE	L	Although the rocks are potentially fossiliferous the prevailing local conditions (wetland) would have destroyed fossils. So far there are no records from the Vryheid formation of plant or animal fossils in this region so it is very unlikely that fossils occur on the site. The impact would be very unlikely.	
	L+	-	
	M+	-	
	H+	-	
	L	-	
DURATION	M	-	
	Н	Where manifest, the impact will be permanent.	
SPATIAL SCALE	L	Since only the possible fossils within the area would be fossil plants from the <i>Glossopteris</i> flora in the shales, the spatial scale will be localised within the site boundary.	
	M	-	
	Н	-	
	Н	-	
	M	-	
PROBABILITY	L	It is extremely unlikely that any fossils would be found in the muds of the vegetated wetland. Nonetheless a chance find protocol should be added to the eventual EMPr.	

Based on the nature of the project, surface activities may impact upon the fossil heritage if preserved in the development footprint. The geological structures suggest that the rocks could potentially contain leaf impressions of fossil plants but the local environmental

conditions are not conducive to preserving fossils. Since there is an extremely small chance that fossils from the Vryheid Formation may be disturbed a Chance Find Protocol has been added to this report. Taking account of the defined criteria, the potential impact to fossil heritage resources is extremely low.

5. Assumptions and uncertainties

Based on the geology of the area and the palaeontological record as we know it, it can be assumed that the formation and layout of the dolomites, sandstones, shales and sands are typical for the country and do contain fossil plant, insect, invertebrate and vertebrate material. The wetland, however, is unlikely to preserve fossils. To date no fossils have been recorded from this area.

6. Recommendation

Based on experience and the lack of any previously recorded fossils from the area, it is extremely unlikely that any fossils would be preserved in the vegetated muds of the wetland. Nonetheless there is a very small chance that fossils may occur in the adjacent shales of the early Permian Vryheid Formation so a Chance Find Protocol should be added to the EMPr: if fossils are found once excavations for the pipeline have commenced then they should be rescued and a palaeontologist called to assess and collect a representative sample.

7. References

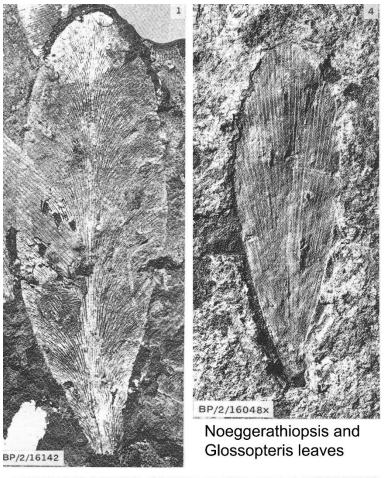
Anderson, J.M., Anderson, H.M., 1985. Palaeoflora of Southern Africa: Prodromus of South African megafloras, Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam. 423 pp.

Johnson, M.R., van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.deV., Christie, A.D.M., Roberts, D.L., Brandl, G., 2006. Sedimentary rocks of the Karoo Supergroup. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 461 – 499.

McCarthy, T.S., 2006. The Witwatersrand Supergroup. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 155-186.

Plumstead, E.P., 1969. Three thousand million years of plant life in Africa. Geological Society of southern Africa, Annexure to Volume LXXII. 72pp + 25 plates.

Robb, L.J., Brandl, G., Anhaeusser, C.R., Poujol, M., 2006. Archaean Granitoid Intrusions. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa.


Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 57-94.

Van der Westhuizen, W.A., de Bruiyn, H., Meintjes, P.G., 2006. The Ventersdorp Supergroup. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. pp 187-208.

8. Chance Find Protocol

Monitoring Programme for Palaeontology – to commence once the construction begins.

- 1. The following procedure is only required if fossils are seen on the surface and when excavations commences.
- 2. When excavations begin the rocks and must be given a cursory inspection by the environmental officer or designated person. Any fossiliferous material (plants, insects, bone, coal) should be put aside in a suitably protected place. This way the construction activities will not be interrupted.
- 3. Photographs of similar fossil plants must be provided to the developer to assist in recognizing the fossil plants in the shales and mudstones (for example see Figure 4). This information should be built into the EMPr's training and awareness plan and procedures.
- 4. Photographs of the putative fossils can be sent to the palaeontologist for a preliminary assessment.
- 5. If there is any possible fossil material found by the developer/environmental officer/miners then the qualified palaeontologist sub-contracted for this project, should visit the site to inspect the selected material and check the dumps where feasible.
- 6. Fossil plants or vertebrates that are considered to be of good quality or scientific interest by the palaeontologist must be removed, catalogued and housed in a suitable institution where they can be made available for further study. Before the fossils are removed from the site a SAHRA permit must be obtained. Annual reports must be submitted to SAHRA as required by the relevant permits.
- 7. If no good fossil material is recovered then the site inspections by the palaeontologist will not be necessary. Annual reports by the palaeontologist must be sent to SAHRA.
- 8. If no fossils are found and the excavations have finished then no further monitoring is required.

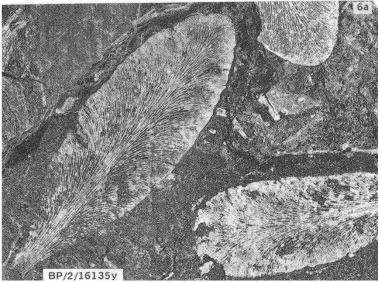


Figure 4: Examples of leaf imprints of the Glossopteris flora

Appendix A – Details of specialist

Curriculum vitae (short) - Marion Bamford PhD June 2018

I) Personal details

Surname : Bamford

First names : Marion Kathleen

Present employment: Professor; Director of the Evolutionary Studies Institute.

Member Management Committee of the NRF/DST Centre of Excellence Palaeosciences, University of the Witwatersrand,

Johannesburg, South Africa-

Telephone : +27 11 717 6690 Fax : +27 11 717 6694 Cell : 082 555 6937

E-mail : marion.bamford@wits.ac.za; marionbamford12@gmail.com

ii) Academic qualifications

Tertiary Education: All at the University of the Witwatersrand:

1980-1982: BSc, majors in Botany and Microbiology. Graduated April 1983.

1983: BSc Honours, Botany and Palaeobotany. Graduated April 1984.

1984-1986: MSc in Palaeobotany. Graduated with Distinction, November 1986.

1986-1989: PhD in Palaeobotany. Graduated in June 1990.

iii) Professional qualifications

Wood Anatomy Training (overseas as nothing was available in South Africa):

1994 - Service d'Anatomie des Bois, Musée Royal de l'Afrique Centrale, Tervuren, Belgium, by Roger Dechamps

1997 - Université Pierre et Marie Curie, Paris, France, by Dr Jean-Claude Koeniguer

1997 - Université Claude Bernard, Lyon, France by Prof Georges Barale, Dr Jean-Pierre Gros, and Dr Marc Philippe

iv) Membership of professional bodies/associations

Palaeontological Society of Southern Africa

Royal Society of Southern Africa - Fellow: 2006 onwards

Academy of Sciences of South Africa - Member: Oct 2014 onwards

International Association of Wood Anatomists - First enrolled: January 1991

International Organization of Palaeobotany - 1993+

Botanical Society of South Africa

South African Committee on Stratigraphy - Biostratigraphy - 1997 - 2016

SASQUA (South African Society for Quaternary Research) - 1997+

PAGES - 2008 – onwards: South African representative

ROCEEH / WAVE – 2008+
INQUA – PALCOMM – 2011+onwards

vii) Supervision of Higher Degrees

All at Wits University

Degree	Graduated/completed	Current
Honours	6	1
Masters	8	1
PhD	10	2
Postdoctoral fellows	9	3

viii) Undergraduate teaching

Geology II – Palaeobotany GEOL2008 – average 65 students per year Biology III – Palaeobotany APES3029 – average 25 students per year Honours – Evolution of Terrestrial Ecosystems; African Plio-Pleistocene Palaeoecology; Micropalaeontology – average 2-8 students per year.

ix) Editing and reviewing

Editor: Palaeontologia africana: 2003 to 2013; 2014 – Assistant editor

Guest Editor: Quaternary International: 2005 volume

Member of Board of Review: Review of Palaeobotany and Palynology: 2010 –

Cretaceous Research: 2014 -

Review of manuscripts for ISI-listed journals: 25 local and international journals

x) Palaeontological Impact Assessments

Selected – list not complete:

- Thukela Biosphere Conservancy 1996; 2002 for DWAF
- Vioolsdrift 2007 for Xibula Exploration
- Rietfontein 2009 for Zitholele Consulting
- Bloeddrift-Baken 2010 for TransHex
- New Kleinfontein Gold Mine 2012 for Prime Resources (Pty) Ltd.
- Thabazimbi Iron Cave 2012 for Professional Grave Solutions (Pty) Ltd
- Delmas 2013 for Jones and Wagener
- Klipfontein 2013 for Jones and Wagener
- Platinum mine 2013 for Lonmin
- Syferfontein 2014 for Digby Wells
- Canyon Springs 2014 for Prime Resources
- Kimberley Eskom 2014 for Landscape Dynamics
- Yzermyne 2014 for Digby Wells
- Matimba 2015 for Royal HaskoningDV
- Commissiekraal 2015 for SLR
- Harmony PV 2015 for Savannah Environmental
- Glencore-Tweefontein 2015 for Digby Wells
- Umkomazi 2015 for JLB Consulting

- Ixia coal 2016 for Digby Wells
- Lambda Eskom for Digby Wells
- Alexander Scoping for SLR
- Perseus-Kronos-Aries Eskom 2016 for NGT
- Mala Mala 2017 for Henwood
- Modimolle 2017 for Green Vision
- Klipoortjie and Finaalspan 2017 for Delta BEC
- Ledjadja borrow pits 2018 for Digby Wells
- Lungile poultry farm 2018 for CTS
- Olienhout Dam 2018 for JP Celliers
- Isondlo and Kwasobabili 2018 for GCS
- Kanakies Gypsum 2018 for Cabanga
- Nababeep Copper mine 2018
- Glencore-Mbali pipeline 2018 for Digby Wells

xi) Research Output

Publications by M K Bamford up to June 2018 peer-reviewed journals or scholarly books: over 120 articles published; 5 submitted/in press; 8 book chapters.

Scopus h index = 26; Google scholar h index = 28;

Conferences: numerous presentations at local and international conferences.

xii) NRF Rating

NRF Rating: B-2 (2016-2020) NRF Rating: B-3 (2010-2015) NRF Rating: B-3 (2005-2009) NRF Rating: C-2 (1999-2004)