PROCUREMENT OF GEOTECHNICAL INVESTIGATION SERVICES FOR JOHANNESBURG WATER (SOC) Ltd

CONTRACT JW12055

File reference – WO#06

WORKS ORDER WO#06 LENASIA HIGH LEVEL RESERVOIR GEOTECHNICAL INVESTIGATION

Prepared for:

a world class African city

Johannesburg Water (SOC) PO Box 61542 Johannesburg 2107 Prepared by:

Knight Piésold (Pty) Ltd PO Box 92272 LYNNWOOD RIDGE 0040

June 2014

Geotechnical Report

KHH2133 / 3030013205 Rev.1

WORKS ORDER WO#06 LENASIA HIGH LEVEL RESERVOIR GEOTECHNICAL INVESTIGATION

TABLE OF CONTENTS

Page

1.		1
2.	SITE DESCRIPTION AND GEOLOGY	1
3.	METHOD OF INVESTIGATION	2
4.	SOIL PROFILE	3
4.1	Test Pits	3
4.2	DPSH Testing	3
5.	LABORATORY TEST RESULTS	4
5.1	Geotechnical Test Results	4
5.2	Chemical Test Results	4
6.	GEOTECHNICAL EVALUATION	5
6.1	General	5
6.2	Foundation Conditions	5
7.	CONCLUSIONS AND RECOMMENDATIONS	7
8.	REFERENCES	8

TABLES

TABLE 1	:	SUMMARY OF TEST PIT PROFILES
TABLE 2	:	SUMMARY OF DPSH TESTS
TABLE 3	:	SUMMARY OF LABORATORY TEST RESULTS

FIGURES

FIGURE 1	:	LOCALITY PLAN
FIGURE 2	:	GEOLOGY MAP

FIGURE 3 : SITE PLAN SHOWING TEST PIT AND DPSH POSITIONS

APPENDICES

APPENDIX A	:	SOIL PROFILE LOGS
APPENDIX B	:	DPSH TEST RESULTS
APPENDIX C	:	LABORATORY TEST RESULTS

WORKS ORDER WO#06

LENASIA HIGH LEVEL RESERVOIR GEOTECHNICAL INVESTIGATION

1. INTRODUCTION

Knight Piésold (KP) was appointed by Johannesburg Water as part of the Procurement of Geotechnical Investigation Services Contract JW12055 WO#06, to perform a geotechnical investigation for the proposed Lenasia High Level Reservoir, south of Johannesburg.

The site is located on municipal ground owned by the Lenasia South Municipality and is situated approximately 50m north-west of an existing reservoir. The site location is shown in Figure 1 at the back of the report.

The investigation was aimed at determining the geotechnical properties of the foundation materials, bedrock conditions and excavatability. Comments on site water management aspects, particularly pertaining to shallow groundwater or seepage were also required.

This report provides foundation recommendations for the proposed reservoir and contains all supporting documentation.

2. SITE DESCRIPTION AND GEOLOGY

The site is located on the side slope of a localised hill, with a gentle slope to the south-west. Drainage takes place by means of sheetwash towards the south-west.

An existing reservoir is located to the south-east of the site. The site is situated approximately 2km to the west of Road R553 and was entirely covered with grass. The proposed reservoir has a diameter of approximately 53m and a height of approximately 9m.

According to the published 1:250 000 scale Geological Series, Sheet 2626 (West Rand) of the area, the site is underlain by ferruginous quartzite, shale and hornfels of the Timeball Hill Formation, Pretoria Group, Transvaal Supergroup. Refer to Figure 2 for the relevant portion of the geological map.

According to the geological map the transition between the Timeball Hill Formation and the chert, dolomite and chert breccia of the Malmani Subgroup, Chuniespoort Group, Transvaal Supergroup is situated approximately 1,3km to the north of the site.

The Malmani Subgroup consists of chert-bearing, alternating with chert-free dolomite formations. These rocks have a notorious reputation for the development of karst subsurface landscape, associated with a highly irregular and voided bedrock profile, as well as heterogenic soil conditions. The Eccles Formation may be closest to the site and is known to be predominantly chert-bearing. The soil cover often comprises highly erodible soils, which can readily erode by downward percolating water to create leached or voided zones, which may result in the formation of sinkholes and subsidences [1]¹.

The Timeball Hill Formation is younger than the Malmani Subgroup and therefore occurs on top, which implies that dolomite and chert may be present with depth at the proposed reservoir site.

According to Weinert's climatic N-value the site falls in an area classified as N<5, indicating a relatively humid climate. The predominant weathering mode is chemical decomposition, opposed to mechanical disintegration that dominates in more arid regions [2].

3. METHOD OF INVESTIGATION

Six test pits (TP1 to TP6) were excavated by means of a New Holland Fiat Tractor Loader Backhoe (TLB) on 15 April 2014. The test pits were excavated to refusal depth outside the proposed reservoir foundation area (refer to Figure 3).

Twenty one DPSH tests (DPSH1 to DPSH21) were conducted by *Roelf Fourie Geotechnical Services* during the period of 14 to 15 April 2014. The DSPH tests were done in a grid pattern at the proposed foundation area of the reservoir.

The test pits were logged by an engineering geologist according to the recommended standard procedures [3]. The co-ordinates of the test pits were recorded with a handheld Global Positioning System (GPS) with an accuracy of approximately 5m. These coordinates are indicated

Soil samples were taken from representative soil horizons and delivered to *Geostrada* in Pretoria for laboratory tests to determine:

- Foundation indicator parameters (grading, hydrometer and Atterberg Limits)
- Modified AASHTO Compaction density and CBR
- Basson Corrosivity Index

Summaries of the test pit profiles and DPSH test results are provided in Tables 1 and 2, respectively, at the back of the report. The laboratory test results are summarised in Tables 3 and 4. The test pit profiles, DPSH test results and laboratory test results are contained in Appendices A, B and C respectively.

¹ References are indicated thus and are listed at the back of the report.

4. SOIL PROFILE

4.1 Test Pits

The site is characterised by relatively consistent shale bedrock depth conditions and with quartzite only occurring in TP6.

The typical soil profile encountered in TP1 to TP5 is summarised as follows:

- Brown hillwash, consisting of loose silty gravelly sand, with a thickness of between 0,2m and 1m. The average thickness of this surface layer is approximately 0,7m.
- Red brown mottled yellow brown soft to stiff, with depth, residual shale. This layer extends to depths of between 2,5m and 3,3m.
- TLB refusal occurred at depths of between 2,5m and 3,3m on highly weathered very soft to soft rock shale.

In TP6 the hillwash is underlain by grey brown medium dense to dense silty sandy gravel residual quartzite to 1,1m, which is underlain by red brown soft gravelly sandy silt residual shale to 1,8m, where refusal occurred on closely jointed soft rock quartzite.

No water seepage was encountered in any of the test pits, but seepage may be expected during the wet season.

4.2 DPSH Testing

DPSH tests were conducted in a grid pattern across the foundation area of the proposed reservoir.

The DPSH test results which are summarised in Table 2 and contained in Appendix B were interpreted as indicated in the table below.

Description	DPSH (blows per 300mm)									
Sandy Materials (Non-cohesive Materials)										
Very loose	<5									
Loose	5 – 10									
Medium dense	10 – 30									
Dense	30 – 50									
Very Dense	>50									
Clayey Materials	(Cohesive Materials)									
Very soft	<2									
Soft	2-4									
Firm	4 – 8									
Stiff	8 – 15									
Very stiff	15 – 30									

The presence of cobbles to depths of between 0,9m and 1,5m complicated the interpretation of the DPSH test results and also resulted in shallow (<1,5m) refusal at almost 50% of the test positions. Gravel may also cause a denser consistency to be reflected in the DPSH test and even refusal. In general the DPSH test results were interpreted as being non-cohesive to a depth of between 0,9m and 1,5m and cohesive below this depth.

The DPSH tests correlate reasonably with the test pit profile descriptions.

5. LABORATORY TEST RESULTS

5.1 Geotechnical Test Results

The residual shale soil, according to the test results, comprises sandy clayey silt with minor shale gravel. The clay content varies between 8% and 23%. The Plasticity Index (PI) value varies between 7% and 10%, while Liquid Limit (LL) is between 28% and 39%.

The compaction tests on the residual shale yielded a Modified AASHTO maximum dry density (MDD) of between 1713kg/m³ and 1752kg/m³ with an optimum moisture content of between 9,5% and 13,9%. The CBR test results indicate very low strengths of between 2% and 3% at 93% MDD and subsequently classifies the residual soil as poorer than G9 quality material.

The transported soil cover (hillwash) comprises sandy gravel with a low silt and clay content, both less than 9%. The PI value of this material is 7% while the LL is 24%. The residual quartzite soil contains gravelly sand with a low silt and clay content. The clay content was measured at 13%, while the PI value and LL is 6% and 22% respectively. All the materials available on site have a low potential for expansiveness.

5.2 Chemical Test Results

Chemical tests were conducted on three soil samples to determine the corrosivity towards metal and aggressiveness towards concrete. The tests were conducted on distilled water extracts from the soil samples.

Sample No.	Depth (m) – (m)	Stability pH (pHs)	Langelier Index	Ryznar Index	Aggressive- ness Index	Corrosivity Ratio
TP1/1	0,9 – 3,1	11,4	-7,3	18,6	5593	1,5
TP2/1	1,0 - 3,0	11,7	-6,4	18,2	4914	0,9
TP4/1	0,7 – 2,5	11,7	-6,0	17,7	4621	0,7

A summary of the essential test results is tabulated below.

The table below provides an interpretation for the above results.

Index	Aggressive	Neutral	Non-Aggressive
Stability pH, pHs	> pH	= pH	> pH
Langelier Index	Negative Value	Zero	Positive Value
Ryznar Index	>7,5	6 - 7	< 6
Corrosivity towards metals	>0,2	-	-

According to the above results, the following is apparent:

- The pHs value of all samples is above the pH value, i.e. all samples indicate aggressiveness towards concrete.
- The Langelier Index of all samples is below zero, i.e. all samples indicate aggressiveness towards concrete.
- The Ryznar Index of all samples is above 7,5, i.e. all samples indicate aggressiveness towards concrete.
- Leaching corrosion is the expected corrosion method.
- It is not anticipated that the soil will be corrosive towards metals.

Thus the conclusion is made that the transported and residual soils at the site are highly aggressive towards concrete and may be corrosive towards metals.

6. GEOTECHNICAL EVALUATION

6.1 General

Quartzite boulders and cobbles are present at surface in the northern and western portions of the proposed reservoir site and a gravel and cobble hillwash and residual quartzite layer occurs form the surface to between 0,7m and 1,1m. Soft rock shale was present from depths of between 2,5m and 3,3m in all the test pits, with the exception of TP6, where soft rock quartzite occurred from 1,8m depth. Definite indications of the presence of alternating shale and quartzite layers were found in TP2 and TP6.

6.2 Foundation Conditions

Although the materials occurring at the site are fairly consistent, the foundation conditions are variable. It is also apparent that the DPSH refusal depths of <1,5m are all in the west half of the reservoir site.

The required allowable bearing capacity for a reservoir perimeter wall less than 10m high normally does not exceed 150kPa, while the allowable bearing capacity below the floor does not exceed 100kPa.

Although the residual silty shale is mostly stiff to very stiff below 2,5m depth, there are frequently water spillages which migrate into the soil at a reservoir and may cause softening of such soil with resulting differential settlement.

The natural ground at the site has a cross fall over the reservoir footprint of approximately 1,5m from north-east (TP1, TP2, TP3) to south-west (TP4, TP5, TP6). The TLB refusal depths vary from between 2,8m and 3,3m (TP1 to TP3) to between 1,8m and 2,8m (TP4 to TP6).

It is thus recommended that the soils be excavated to the very soft to soft rock surface, i.e. to between 2,8m and 3,3m on the north-east side and 1,8m and 2,8m on the south-west side and to 2m wider than the reservoir footprint. The gravelly hillwash and the gravelly residual quartzite can be used for backfilling, but the silty residual shale must be spoiled.

Construct a founding platform (soil raft) to the required reservoir founding level with imported G5 type material. Backfill in 200mm thick layers, each layer compacted with a 10t or larger compactor to 98% of Modified AASHTO maximum dry density at optimum moisture content.

The reservoir may then be constructed directly on the soil raft and with an allowable bearing pressure of not more than 150kPa, the expected settlement should be less than 15mm.

The laboratory tests indicated that the residual shale soil contains relatively high clay content and subsequently classifies as worse than G9 quality material and is not suitable for backfilling or for the construction of engineered fill. The residual shale soil should be excavated and spoiled and may only be used for general fill or for rehabilitation purposes. However, the residual quartzite and transported soils covering the site has low clay contents with substantial amounts of gravel and sand and may be sufficient for backfilling or for the construction of engineered fill.

Temporary excavation slopes must be cut to slopes not steeper than 1:1 (V:H) above the groundwater table, with 1:1,5 (V:H) slopes in wet to saturated ground. These slopes are to be reviewed once the laboratory test results are available.

Slopes in rock may be steeper at approximately 1:0,5 (V:H), but where near vertical joints may be present, the slope should be cut back to such steeply dipping joint surface. A competent person should, however, inspect the foundation excavations to assess sidewall stability and to ensure that the floor conditions are suitable for placement of the foundation backfill.

For the reservoir hard excavation will be required for depths deeper than the TLB refusal depths. The excavations for the pipe trenches in the vicinity of the reservoir may also require hard excavation in places, depending upon the pipe trench depth.

The chemical test results indicate that the transported and residual soils can be expected to be aggressive towards concrete and slightly corrosive towards metals. It is recommended that the following measures be implemented:

- Either use site blend of portland cement mixture with 10% condensed silica fume or portland cement with 30% fly ash (SABS 1466) [5].
- Recommended minimum cover of 25mm over reinforcement (applicable only if reinforcing or pre-stressing steel is present).

7. CONCLUSIONS AND RECOMMENDATIONS

- According to the published 1:250 000 scale Geological Series, Sheet 2626 (West Rand) of the area, the site is underlain by ferruginous quartzite, shale and hornfels of the Timeball Hill Formation, Pretoria Group, Transvaal Supergroup.
- According to the geological map, chert, transition to dolomite and chert breccia of the Malmani Subgroup, Chuniespoort Group, Transvaal Supergroup is located approximately 1,3km to the north of the site. The Timeball Hill Formation is younger than the Malmani Subgroup and had been deposited on top of the dolomite, which may therefore be present with depth at the reservoir site.
- The site is covered with a layer of gravelly hillwash and residual quartzite to depths of between 0,7m and 1,1m, which is underlain by silty residual shale to depths of between 1,8m and 3,3m.
- TLB refusal occurred in very soft to soft rock shale at depths of between 2,5m and 3,3m and at 1,8m on soft rock quartzite in one test pit only.
- No water seepage was encountered in any of the test pits, but seepage may be expected in the wet season. If water seepage is encountered during excavation of foundations, measures will have to be taken for dewatering during construction.
- It is recommended that all the material to the refusal depths of the TLB be excavated and that a compacted soil raft be constructed with imported G5 material. The clayey silty residual shale is not suitable and must be spoiled. Backfill in 200mm thick layers compacted to 98% of Modified AASHTO maximum dry density at optimum moisture content and construct the reservoir on the soil raft.
- Where the soil cover exceeds 1m and in wet conditions, soil slopes should be cut back to 1:1,5 (V:H). Slopes in rock may be subvertical, 1:0,5 (V:H), but should be assessed by a competent person.
- The concrete and reinforcing steel requires protection from the aggressiveness and corrosiveness properties of the in situ soils.

8. **REFERENCES**

- [1] Brink, A.B.A. (1979). *Engineering Geology of Southern Africa, Volume 1*. Building Publications, Pretoria.
- [2] Weinert, H. (1965). A climatic index of weathering. *Geotechnique*, Vol. 24, No. 4, pp. 475-488.
- [3] The South African Institute of Engineering Geologists (1996). *Guidelines for Soil and Rock Logging.*
- [4] Franki Africa (2008). A guideline to practical geotechnical engineering in Southern Africa. 4th Edition.
- [5] J.J. Basson. *Deterioration of concrete in aggressive waters measuring aggressiveness and taking countermeasures*. Portland Cement Institute.

TABLE 1 : SUMMARY	OF TEST PIT PROFILES
-------------------	-----------------------------

	TOTAL DEPTH	THICKNESS OF LAYERS (m) – (m)										
PIT No.	(m) R: REFUSAL	TRANSPORTED SOILS	BEDROCK									
		Hillwash	Shale	Quartzite	Shale	Quartzite						
TP1	3,1R	0 - 0,9	0,9 - 3,1	-	3,1+	-						
TP2	3,3R	0 - 1,0	1,0 - 3,3	-	3,3+	-						
TP3	2,8R	0 - 0,7	0,7 - 2,8	-	2,8+	-						
TP4	2,5R	0 - 0,7	0,7 - 2,5	-	2,5+	-						
TP5	2,8R	0 - 0,8	0,8 - 2,8	-	2,8+	-						
TP6	1,8R	0 - 0,2	1,1 - 1,8	0,2 - 1,1	-	1,8+						

Note: No water was encountered in any of the test pits R: Denotes refusal of the TLB.

TABLE 2 : SUMMARY OF DPSH RESULTS

Teet	Refusal	Depth	Consistency						
Test	Depth (m)	(m - m)	Non - cohesive	Cohesive					
DPSH1	0,3R	0 - 0,3	Very dense	-					
		0 - 0,6	Medium dense	-					
		0,6 - 0,9	Dense	-					
DDCU2	4.50	0,9 - 1,5	Very dense	-					
DPSHZ	4,5K	1,5 - 2,1	-	Firm					
		2,1 - 2,4	-	Stiff					
		2,4 - 4,5	-	Very stiff					
		0 - 0,3	Medium dense	-					
DFSH3	0,9K	0,3 - 0,9	Very dense	-					
		0 - 0,6	Medium dense	-					
прени	210	0,6 - 1,2	Loose to Medium dense	-					
DFSH4	2,11	1,2 - 1,8	-	Firm to Stiff					
		1,8 - 2,1	-	Very stiff					
DPSH5	0.68	0 - 0,3	Loose	-					
DFSH5	0,01	0,3 - 0,6	Very dense	-					
		0 - 0,6	Medium dense	-					
DPSH6	1,2R	0,6 - 0,9	Loose	-					
		0,9 - 1,2	Very dense	-					
		0 - 0,6	Medium dense	-					
		0,6 - 1,2	Loose to Medium dense	-					
DPSH7	3,3R	1,2 - 1,5	-	Firm					
		1,5 - 2,7	-	Stiff					
		2,7 - 3,3	-	Very stiff					
		0 - 0,3	Dense	-					
		0,3 - 1,2	Loose to Medium dense	-					
DPSH8	2,7R	1,2 - 1,5	-	Stiff					
		1,5 - 2,1	-	Firm					
		2,1 - 2,7	-	Very stiff					
DPSH9	1 5R	0 - 0,9	Medium dense	-					
	1,010	0,9 - 1,5	Very dense	-					
DPSH10	0,6R	0 - 0,6	Very dense	-					
		0 - 0,3	Medium dense	-					
		0,3 - 0,6	Dense	-					
	2 2 0	0,6 - 1,2	Medium dense	-					
DFSHIT	3,3K	1,2 - 1,8	-	Firm					
		1,8 - 2,4	-	Stiff					
		2,4 - 3,3	-	Very stiff					
		0 - 1,5	Medium dense	-					
		1,5 - 2,4	-	Soft					
	1 20	2,4 - 2,7	-	Firm					
	4,21	2,7 - 3,3	-	Soft					
		3,3 - 3,9	-	Stiff					
		3,9 - 4,2	-	Very stiff					

Test	Refusal	Depth	Consistency					
Test	Depth (m)	(m - m)	Non - cohesive	Cohesive				
	1 5 D	0 - 1,2	Loose to Medium dense	-				
DESHIS	1,5K	1,2 - 1,5	-	Very stiff				
	1 20	0 - 0,9	Medium dense	-				
DFSH14	1,2R	0,9 - 1,2	Very dense	-				
		0 - 0,3	Medium dense	-				
		0,3 - 0,6	Very dense	-				
		0,6 - 1,2	Medium dense	-				
DPSH15	2,7R	1,2 - 1,8	-	Firm				
		1,8 - 2,1	-	Very stiff				
		2,1 - 2,4	-	Stiff				
		2,4 - 2,7	-	Very stiff				
		0 - 0,6	Dense to Very dense	-				
	3R	0,6 - 1,2	Medium dense	-				
DPSH16		1,2 - 2,4	-	Firm				
		2,4 - 2,7	-	Stiff				
		2,7 - 3,0	-	Very stiff				
		0 - 0,3	Dense	-				
		0,3 - 0,6	Medium dense	-				
DPSH17	1,8R	0,6 - 0,9	Loose / Firm	-				
		0,9 - 1,5	-	Soft to Firm				
		1,5 - 1,8	-	Very stiff				
	0.6P	0 - 0,3	Medium dense	-				
DESITIO	0,01	0,3 - 0,6	Very dense	-				
		0 - 0,9	Medium dense	-				
		0,9 - 1,2	-	Stiff				
DPSH19	3R	1,2 - 1,5	-	Very stiff				
		1,5 - 1,8	-	Soft				
		1,8 - 3,0	-	Very stiff				
		0 - 0,3	Medium dense	-				
		0,3 - 0,6	Dense	-				
	210	0,6 - 0,9	Very dense	-				
DF 3H20	2,15	0,9 - 1,2	-	Stiff				
		1,2 - 1,8	-	Firm				
		1,8 - 2,1	-	Very stiff				
DPSH21	0,3R	0 - 0,3	Very dense	-				

TABLE 3 : SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS

SAMPLE		GRADING (%)			ATTERBERG LIMITS (%)		GM	GM PE		Mod. AASHTO COMPACTION		CBR AT % COMPACTION			COLTO	MATERIAL DESCRIPTION		
No.	DEPTH (m)	Gravel	Sand	Silt	Clay	LL	PI	LS				MDD (kg/m³)	OMC (%)	98	95	93	CLASS	
TP1/1	0,9 – 3,1	22	34	36	8	28	7	2.0	0,86	Low	CL/ML	1713	9,7	6	5	3	<g9< td=""><td>Residual Shale</td></g9<>	Residual Shale
TP2/1	1,0 - 3,3	16	9	56	19	38	10	3,5	0,58	Low	ML	1752	13,9	3	2	2	<g9< td=""><td>Residual Shale</td></g9<>	Residual Shale
TP3/1	0,1 - 0,7	71	15	7	7	24	7	4,0	2,29	Low	GC-GM	-	-	-	-	-	-	Hillwash (transported soil)
TP4/1	0,7 – 2,5	12	22	49	17	39	8	2,5	0,54	Low	ML	1722	9,5	6	4	2	<g9< td=""><td>Residual Shale</td></g9<>	Residual Shale
TP5/1	0,1 – 0,8	53	29	9	9	24	7	2,5	1,88	Low	GC-GM	-	-	-	-	-	-	Hillwash (transported soil)
TP5/2	0,8 – 2,8	5	16	56	23	39	9	3,0	0,28	Low	ML	-	-	-	-	-	-	Residual Shale
TP6/2	1,1 – 1,8	29	46	12	13	22	6	2,5	1,39	Low	SC	-	-	-	-	-	-	Residual Quartzite

LL : Liquid Limit

PI : Plasticity Index

LS : Linear Shrinkage

GM : Grading Modulus

PE : Potential Expansiveness

USC : Unified Soil Classification

OMC : Optimum Moisture Content

MDD : Maximum Dry Density

SC : Clayey Sands, Sand-Clay Mixtures

GM : Silty Gravels

GC

ML

: Clayey Gravels

: Clayey Silt with minor sand

APPENDIX A

TEST PIT PROFILES

MAW-HH/KHH2133/3030013205/Rev.1

D079 E Mouton

D079 E Mouton

D079 E Mouton

APPENDIX B

DPSH TEST RESULTS

SITE NAME: Job Number: Date of Tests:

Lenasia High Level Reservoir 3030013205 WO#6 14/04/2014 to 15/04/2014

DPSH1

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
150	300	150/ REF	Very Dense

DPSH2

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
15	300	15	Medium Dense
25	600	25	Medium Dense
36	900	36	Dense
54	1200	54	Very Dense
21	1500	21	Medium Dense
8	1800	8	Firm
6	2100	6	Firm
13	2400	13	Stiff
17	2700	17	Very stiff
19	3000	19	Very stiff
23	3300	23	Very stiff
26	3600	26	Very stiff
21	3900	21	Very stiff
50	4200	50	Very stiff
100	4500	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
14	300	14	Medium Dense
51	600	51	Very Dense
100	900	100/ REF	Very Dense

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
18	300	18	Medium Dense
17	600	17	Medium Dense
7	900	7	Loose
12	1200	12	Medium Dense
9	1500	9	Firm
6	1800	6	Firm
100	2100	100/ REF	Very stiff

DPSH5

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
10	300	10	Loose
100	600	100/ REF	Very Dense

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
22	300	22	Medium Dense
17	600	17	Medium Dense
10	900	10	Loose
100	1200	100/ REF	Very Dense

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
16	300	16	Medium Dense
12	600	12	Medium Dense
8	900	8	Loose
10	1200	10	Loose / Medium Dense
7	1500	7	Firm
11	1800	11	Stiff
13	2100	13	Stiff
13	2400	13	Stiff
14	2700	14	Stiff
30	3000	30	Very stiff
100	3300	100/ REF	Very stiff

DPSH8

Number of Blows Depth (mm) No. of blows/ 300mm Consistency 0 0 0 - 41 300 41 Dense 22 600 22 Medium Dense 7 900 7 Loose 9 1200 9 Loose / Medium Dense 10 1500 10 Stiff 6 2100 6 Firm 44 2400 44 Very stiff				
0 0 - 41 300 41 Dense 22 600 22 Medium Dense 7 900 7 Loose 9 1200 9 Loose / Medium Dense 10 1500 10 Stiff 6 1800 6 Firm 44 2400 44 Very stiff	Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
41 300 41 Dense 22 600 22 Medium Dense 7 900 7 Loose 9 1200 9 Loose / Medium Dense 10 1500 10 Stiff 6 1800 6 Firm 44 2400 44 Very stiff	0	0	0	-
22 600 22 Medium Dense 7 900 7 Loose 9 1200 9 Loose / Medium Dense 10 1500 10 Stiff 6 1800 6 Firm 6 2100 6 Firm 44 2400 44 Very stiff	41	300	41	Dense
7 900 7 Loose 9 1200 9 Loose / Medium Dense 10 1500 10 Stiff 6 1800 6 Firm 6 2100 6 Firm 44 2400 44 Very stiff	22	600	22	Medium Dense
9 1200 9 Loose / Medium Dense 10 1500 10 Stiff 6 1800 6 Firm 6 2100 6 Firm 44 2400 44 Very stiff	7	900	7	Loose
10 1500 10 Stiff 6 1800 6 Firm 6 2100 6 Firm 44 2400 44 Very stiff	9	1200	9	Loose / Medium Dense
6 1800 6 Firm 6 2100 6 Firm 44 2400 44 Very stiff	10	1500	10	Stiff
6 2100 6 Firm 44 2400 44 Very stiff	6	1800	6	Firm
44 2400 44 Very stiff	6	2100	6	Firm
	44	2400	44	Very stiff
100 2700 100/ REF Very stiff	100	2700	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
12	300	12	Medium Dense
24	600	24	Medium Dense
28	900	28	Medium Dense
44	1200	44	Very Dense
100	1500	100/ REF	Very Dense

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
75	300	75	Very Dense
100	600	100/ REF	Very Dense

DPSH11

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
24	300	24	Medium Dense
35	600	35	Dense
19	900	19	Medium Dense
10	1200	10	Medium Dense
8	1500	8	Firm
7	1800	7	Firm
12	2100	12	Stiff
10	2400	10	Stiff
17	2700	17	Very stiff
21	3000	21	Very stiff
100	3300	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
20	300	20	Medium Dense
21	600	21	Medium Dense
22	900	22	Medium Dense
10	1200	10	Medium Dense
14	1500	14	Medium Dense
2	1800	2	Soft
2	2100	2	Soft
3	2400	3	Soft
5	2700	5	Firm
4	3000	4	Soft
4	3300	4	Soft
10	3600	10	Stiff
15	3900	15	Stiff
100	4200	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
12	300	12	Medium Dense
10	600	10	Loose / Medium Dense
7	900	7	Loose
10	1200	10	Loose / Medium Dense
100	1500	100/ REF	Very Dense

DPSH14

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
12	300	12	Medium Dense
21	600	21	Medium Dense
12	900	12	Medium Dense
100	1200	100/ REF	Very Dense
100	1200	100/1121	Tery Bened

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
20	300	20	Medium Dense
69	600	69	Very Dense
18	900	18	Medium Dense
11	1200	11	Medium Dense
5	1500	5	Firm
7	1800	7	Firm
21	2100	21	Very stiff
15	2400	15	Stiff / Very Stiff
100	2700	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
45	300	45	Dense
60	600	60	Very Dense
17	900	17	Medium Dense
10	1200	10	Loose / Medium Dense
7	1500	7	Firm
5	1800	5	Firm
6	2100	6	Firm
7	2400	7	Firm
14	2700	14	Stiff
100	3000	100/REF	Very stiff

DPSH17

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
50	300	50	Dense
16	600	16	Medium Dense
8	900	8	Loose / Firm
4	1200	4	Soft
6	1500	6	Firm
100	1800	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
11	300	11	Medium Dense
100	600	100/ REF	Very Dense

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
28	300	28	Medium Dense
24	600	24	Medium Dense
17	900	17	Medium Dense
14	1200	14	Stiff
20	1500	20	Very stiff
3	1800	3	Soft
17	2100	17	Very stiff
30	2400	30	Very stiff
50	2700	50	Very stiff
100	3000	100/ REF	Very stiff

DPSH20

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
16	300	16	Medium Dense
44	600	44	Dense
70	900	70	Very Dense
12	1200	12	Stiff
7	1500	7	Firm
8	1800	8	Firm
100	2100	100/ REF	Very stiff

Number of Blows	Depth (mm)	No. of blows/ 300mm	Consistency
0	0	0	-
100	300	100/ REF	Very Dense
100	000	100/11	Very Dense

APPENDIX C

LABORATORY TEST RESULTS

		Testing Lo	Dourdory TO023		GEOSTRADA engineering materials laboratory SUMMARY OF TEST RESULTS ON SOILS - REP COM 2																																
Cli	ent:	Knight F	eiesold Project:	Lenas	sia Hi	ia High Level Resevoir Job No: 2014-C-574									Date: 28/05/2014																						
Sample	Hole No /	Depth (m)	Description						1	Percenta	age Pass	ing Sie	ve (mm	n) - TMH /sis	H1 A1, A	A5, MT1						Sravel	Sand 0,060 mm	Silt 0,002 mm	Clay 02mm	Atte (TN < 1	rberg Li /H1 A2 0.425 m	mits A4) Im	MDD (kg/ OMC (m³) & '%)	97	CBR	(Modified	AASHT	O) TMH	1 A8	
No	TP No			53.0	37.5	26.5	19.0	13.2	9.5	4.75	2.00	0.425	0.250	0.150	0.075	0.060	0.050	0.020	0.005	0.002	GM	% G ^ 2,(% 5 2'00 - 0	0'090'0 %	- % 0'0 >	LL	PI	LS	(TMH1	A7)	% Swell	90%	93%	95%	97%	98%	100%
4/4153	TP 1/1	0.9 - 3.1					100	97	93	85	78	73	71	68	63	44	40	28	13	8	0.86	22	34	36	8	28	7	2.0	1713	9.7	0.24	2.0	3.3	4.5	5.4	5.9	7.1
4/4154	TP 2/1	1.0 - 3.3			100	97	95	93	91	88	84	80	80	79	78	75	71	56	35	19	0.58	16	9	56	19	38	10	3.5	1752	13.9	0.50	1.1	1.7	2.3	2.9	3.2	3.9
4/4155	TP 3/1	0.1 - 0.7		100	97	91	81	66	53	38	29	26	24	20	16	14	13	9	8	7	2.29	71	15	7	7	24	7	4.0									
4/4156	TP 4/1	0.7 - 2.5					100	99	98	94	88	81	81	80	77	66	63	54	30	17	0.54	12	22	49	17	39	8	2.5	1722	9.5	0.19	0.9	2.0	3.5	5.7	6.3	7.6
4/4157	TP 5/1	0.1 - 0.8		100	91	89	84	76	70	57	47	40	39	33	25	18	17	15	10	9	1.88	53	29	9	9	24	7	2.5									
4/4158	TP 5/2	0.8 - 2.8							100	99	95	91	91	89	86	79	76	67	41	23	0.28	5	16	56	23	39	9	3.0					⊢				
4/4159	TP 6/2	1.1 - 1.8			100	94	85	83	81	77	71	61	58	43	29	25	23	19	14	13	1.39	29	46	12	13	22	6	2.5					⊢				
																																	<u> </u>				
																																	 				
																																	—				
																																	ł				
																																	ł				
																																	_				
																																	_				
						-													-	+					-								 				
						+														+					+								\rightarrow				
						-														1														\rightarrow			
																				1		1															
																				1																	
																				1																	
Remarks:																						•			•												
	Everything possible is done to ensure that tests are representative and are performed accurately, and that reports and conclusions are quoted correctly. Geostrada or its officials can in no way be held liable for consequential damage or loss due to any error in carrying out the tests, nor for any erroneous statement or opinion contained in a report based on such tests. If a test reports published or reproduced by the client, it will be done in full, without any omittance.												vay be held	liable for co	insequential	damage or l	loss due to	any error in (carrying out	t the tests, no	or for any e	rroneous sta	ement or op	inion contair	ort based on :	such tests. I	t a test repor	rt is published or re	the client, it v	tull, without a	ny omittance						

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

Client:	Knight Piesold Consulting	Source/Location:	Job No:	2014-C-470
Project Name:	Lenasia High Level Reservoir	Layer:	Sample No:	4/4153
Project No:			Date:	28/05/2014
Hole/TP No:	TP 1/1	Stabilizing Agent:	Test Method:	TMH1 A1, A5 & MT1
Depth (m):	0.9 - 3.1	Section:	Client Ref No:	
Description:		Chainage:	GPS X:	
Additional Info:		Offset:	GPS Y:	

	SIEVE A	ANALYSIS		ATTERRE		9	SOIL CLASSIFICATION			
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDE		0	OOIL OLAGO	INCATION		
75.0	100	0.425	73	Liquid Limit (%)		28	% Gravel	22		
63.0	100	0.250	71	Plastic Limit	(%)	21	% Sand	34		
53.0	100	0.150	68	Plasticity Index	(%)	7	% Silt	36		
37.5	100	0.075	63	Weighted PI	(%)	5	% Clay	8		
26.5	100	0.060	44	Linear Shrinkage	(%)		Activity	0.9		
19.0	100	0.050	40	Grading Modulus		0.86	Unified Classification	CL-ML		
13.2	97	0.020	28	Uniformity coefficient		23	TRB Classification	A - 4		
9.5	93	0.005	13	Coefficient of curvature		3.1				
4.75	85	0.002	8	Remarks:						
2.00	78									

PARTICLE SIZE (mm)

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

Client:	Knight Piesold Consulting	Source/Location:	Job No:	2014-C-470
Project Name:	Lenasia High Level Reservoir	Layer:	Sample No:	4/4154
Project No:			Date:	28/05/2014
Hole/TP No:	TP 2/1	Stabilizing Agent:	Test Method:	TMH1 A1, A5 & MT1
Depth (m):	1.0 - 3.3	Section:	Client Ref No:	
Description:		Chainage:	GPS X:	
Additional Info:		Offset:	GPS Y:	

	SIEVE A	ANALYSIS						
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDE		3	SOIL CLASS	IFICATION
75.0	100	0.425	80	Liquid Limit	(%)	38	% Gravel	16
63.0	100	0.250	80	Plastic Limit	(%)	28	% Sand	9
53.0	100	0.150	79	Plasticity Index	(%)	10	% Silt	56
37.5	100	0.075	78	Weighted PI	(%)	8	% Clay	19
26.5	97	0.060	75	Linear Shrinkage	(%)	3.5	Activity	0.5
19.0	95	0.050	71	Grading Modulus		0.58	Unified Classification	ML
13.2	93	0.020	56	Uniformity coefficient		14	TRB Classification	A - 4
9.5	91	0.005	35	Coefficient of curvature		0.3		
4.75	88	0.002	19	Remarks:				
2.00	84							

PARTICLE SIZE (mm)

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

Client:	Knight Piesold Consulting	Source/Location:	Job No:	2014-C-470
Project Name:	Lenasia High Level Reservoir	Layer:	Sample No:	4/4155
Project No:			Date:	28/05/2014
Hole/TP No:	TP 3/1	Stabilizing Agent:	Test Method:	TMH1 A1, A5 & MT1
Depth (m):	0.1 - 0.7	Section:	Client Ref No:	
Description:		Chainage:	GPS X:	
Additional Info:		Offset:	GPS Y:	

	SIEVE A	ANALYSIS						
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDE		0	OOIL OLAGO	INCATION
75.0	100	0.425	26	Liquid Limit	(%)	24	% Gravel	71
63.0	100	0.250	24	Plastic Limit	(%)	17	% Sand	15
53.0	100	0.150	20	Plasticity Index	(%)	7	% Silt	7
37.5	97	0.075	16	Weighted PI	(%)	2	% Clay	7
26.5	91	0.060	14	Linear Shrinkage	(%)	4.0	Activity	1.0
19.0	81	0.050	13	Grading Modulus		2.29	Unified Classification	GC-GM
13.2	66	0.020	9	Uniformity coefficient		390	TRB Classification	A - 2 - 4
9.5	53	0.005	8	Coefficient of curvature		15.7		
4.75	38	0.002	7	Remarks:				
2.00	29							

CH or OH

MI or OH

70 80 90

T0023

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

Client:	Knight Piesold Consulting	Source/Location:	Job No:	2014-C-470
Project Name:	Lenasia High Level Reservoir	Layer:	Sample No:	4/4156
Project No:			Date:	28/05/2014
Hole/TP No:	TP 4/1	Stabilizing Agent:	Test Method:	TMH1 A1, A5 & MT1
Depth (m):	0.7 - 2.5	Section:	Client Ref No:	
Description:		Chainage:	GPS X:	
Additional Info:		Offset:	GPS Y:	

	SIEVE A	ANALYSIS						
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDE		3	SOIL CLASS	IFICATION
75.0	100	0.425	81	Liquid Limit	(%)	39	% Gravel	12
63.0	100	0.250	81	Plastic Limit	(%)	31	% Sand	22
53.0	100	0.150	80	Plasticity Index	(%)	8	% Silt	49
37.5	100	0.075	77	Weighted PI	(%)	6	% Clay	17
26.5	100	0.060	66	Linear Shrinkage	(%)	2.5	Activity	0.5
19.0	100	0.050	63	Grading Modulus		0.54	Unified Classification	ML
13.2	99	0.020	54	Uniformity coefficient		20	TRB Classification	A - 4
9.5	98	0.005	30	Coefficient of curvature		0.6		
4.75	94	0.002	17	Remarks:				
2.00	88							

PARTICLE SIZE (mm)

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

	SIEVE A	ANALYSIS						
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTENDE		0	SOIL CLASS	INCATION
75.0	100	0.425	40	Liquid Limit	(%)	24	% Gravel	53
63.0	100	0.250	39	Plastic Limit	(%)	17	% Sand	29
53.0	100	0.150	33	Plasticity Index	(%)	7	% Silt	9
37.5	91	0.075	25	Weighted PI	(%)	3	% Clay	9
26.5	89	0.060	18	Linear Shrinkage	(%)	2.5	Activity	0.8
19.0	84	0.050	17	Grading Modulus		1.88	Unified Classification	GC-GM
13.2	76	0.020	15	Uniformity coefficient		835	TRB Classification	A - 2 - 4
9.5	70	0.005	10	Coefficient of curvature		0.4		
4.75	57	0.002	9	Remarks:				
2.00	47							

Everything possible is done to ensure that tests are representative and are performed accurately, and that reports and conclusions are quoted correctly. Geostrada or its officials can in no way be held liable for consequential damage or loss due to any error made in carrying out the tests, for any erroneous statement or opinion contained in a report based on such tests. If a test report is published or reproduced by the client, it will be done in full, without any omittance.

CH or OH

MI or OH

..... 70 80 90

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

	SIEVE A	ANALYSIS						
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDE		3	SOIL CLASS	IFICATION
75.0	100	0.425	91	Liquid Limit	(%)	39	% Gravel	5
63.0	100	0.250	91	Plastic Limit	(%)	30	% Sand	16
53.0	100	0.150	89	Plasticity Index	(%)	9	% Silt	56
37.5	100	0.075	86	Weighted PI	(%)	8	% Clay	23
26.5	100	0.060	79	Linear Shrinkage	(%)	3.0	Activity	0.4
19.0	100	0.050	76	Grading Modulus		0.28	Unified Classification	ML
13.2	100	0.020	67	Uniformity coefficient		8	TRB Classification	A - 4
9.5	100	0.005	41	Coefficient of curvature		0.3		
4.75	99	0.002	23	Remarks:				
2.00	95							

FOUNDATION INDICATOR TEST RESULTS - REP COM 7

Knight Piesold Consulting	Source/Location:	Job No:	2014-C-470
Lenasia High Level Reservoir	Layer:	Sample No:	4/4159
		Date:	28/05/2014
TP 6/2	Stabilizing Agent:	Test Method:	TMH1 A1, A5 & MT1
1.1 - 1.8	Section:	Client Ref No:	
	Chainage:	GPS X:	
	Offset:	GPS Y:	
	Knight Piesold Consulting Lenasia High Level Reservoir TP 6/2 1.1 - 1.8	Knight Piesold ConsultingSource/Location:Lenasia High Level ReservoirLayer:TP 6/2Stabilizing Agent:1.1 - 1.8Section:Chainage:Offset:	Knight Piesold Consulting Source/Location: Job No: Lenasia High Level Reservoir Layer: Sample No: TP 6/2 Stabilizing Agent: Date: 1.1 - 1.8 Section: Client Ref No: Chainage: Offset: GPS X: Offset: Section: GPS Y:

	SIEVE A	ANALYSIS						
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTENDE		5	SOIL CLASS	INCATION
75.0	100	0.425	61	Liquid Limit	(%)	22	% Gravel	29
63.0	100	0.250	58	Plastic Limit	(%)	16	% Sand	46
53.0	100	0.150	43	Plasticity Index	(%)	6	% Silt	12
37.5	100	0.075	29	Weighted PI	(%)	4	% Clay	13
26.5	94	0.060	25	Linear Shrinkage	(%)	2.5	Activity	0.5
19.0	85	0.050	23	Grading Modulus		1.39	Unified Classification	SC
13.2	83	0.020	19	Uniformity coefficient		183	TRB Classification	A - 2 - 4
9.5	81	0.005	14	Coefficient of curvature		9.2		
4.75	77	0.002	13	Remarks:				
2.00	71							

Everything possible is done to ensure that tests are representative and are performed accurately, and that reports and conclusions are quoted correctly. Geostrada or its officials can in no way be held liable for consequential damage or loss due to any error made in carrying out the tests, for any erroneous statement or opinion contained in a report based on such tests. If a test report is published or reproduced by the client, it will be done in full, without any omittance.

70 80 90

WATERLAB (PTY) LTD

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2014-04-25 Project number: 255

Report number: 45671

Date completed: 2014-05-19 Order number: 10437

Client name: Geostrada Address: P.O.Box 11126, Hatfield, 0028 Telephone: 012 432 0531 Contact person: Gerrie Jv Rensburg Email: gerriej@geostrada.co.za Cell: 082 309 4448

Analyses in mg/ℓ	S Lena	ample Identificatio sia High level Rese	n: ervior
(Unless specified otherwise)	TP 1/2 - 0.9-3.1 (4/4153)	TP 2/1 – 0.3-2.2 (4/4154)	TP 4/1 – 0.7-2.5 (4/4156)
Sample Number	4644	4645	4646
pH Value at 25°C	4.1	5.3	5.7
pHs Value at 20°C (calc)	11.4	11.7	11.7
Electrical Conductivity in mS/m at 25°C	1.1	0.9	1.3
Total Dissolved Solids* (calc)	<10	<10	<10
Total Alkalinity as CaCO₃	<5	<5	<5
Total Hardness as CaCO₃ (calc)	<5	<5	<5
Calcium Hardness as CaCO₃ (calc)	<5	<5	<5
Calcium as Ca	<2	<2	<2
Magnesium as Mg	<2	<2	<2
Free & Saline Ammonia	<0.2	<0.2	0.2
Ammonium as NH₄ (calc)	<0.3	<0.3	0.3
Sulphate as SO₄	<5	<5	<5
Chloride as Cl	<5	<5	<5
Langelier Index at 25°C (calc)	-7.3	-6.4	-6.0
Ryznar Index at 25°C (calc)	18.6	18.2	17.7
Corrosivity Ratio (calc)	1.5	0.9	0.7
Leaching Index [LCSI] (calc)	5593	4913	4620
Spalling Index [SCSI] (calc)	0	1	1
Aggressiveness Index [N _c] (calc)	5593	4914	4621

*TDS Calculated EC X 6.7

2:1 Distilled Water : Soil Extract

Important notes (see table for corrections on p. 3):

1. The above aggressiveness index is only applicable for conditions of laminar flow at a mean annual temperature of 20°C.

- 2. For stagnant/turbulent conditions the aggressiveness index must be corrected.
- 3. For wet/dry cycling conditions (for example in tidal zones) the aggressiveness index must be corrected.
- 4. For mean annual temperatures lower/higher than 20°C the aggressiveness index must be corrected.

E. Botha

Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd.** Any further use of the above information is not the responsibility or liability of **WATERLAB (Pty) Ltd.** Except for the full report, parts of this report may not be reproduced without written approval of **WATERLAB (Pty) Ltd.**

WATERLAB (PTY) LTD

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2014-04-25 Project number: 255

Report number: 45671

Date completed: 2014-05-19 Order number: 10437

Client name: Geostrada Address: P.O.Box 11126, Hatfield, 0028 Telephone: 012 432 0531 Contact person: Gerrie Jv Rensburg Email: <u>gerriej@geostrada.co.za</u> Cell: 082 309 4448

Guidelines for assessing overall aggressiveness (N_c):

N _c	Aggressiveness
Not greater than 300	None to mild
400-700	Mild to moderate
800-1000	High
= or > 1 100	Very high

Aggressiveness Towards Concrete and Fibre Cement Pipes				
Aggressive	Neutral	Non- Aggressive		
>pH	= pH	<ph< td=""></ph<>		
Neg. Value	Zero	Pos. Value		
>7.5	6-7	<6		
	iveness Towards <i>Concrete</i> Aggressive >pH Neg. Value >7.5	iveness Towards Concrete and Fibre Cement PAggressiveNeutral>pH= pHNeg. ValueZero>7.56-7		

Corrosiveness Towards metals		
Corrosivity	>0.2	

Sample Name	Sample Number	Corrosivity Indices	Basson Index
TP 1/2 - 0.9-3.1 (4/4153)	4644	Corrosive	Aggressive
TP 2/1 – 0.3-2.2 (4/4154)	4645	Corrosive	Aggressive
TP 4/1 – 0.7-2.5 (4/4156)	4646	Corrosive	Aggressive

E. Botha

Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

WATERLAB (PTY) LTD

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2014-04-25 Project number: 255

Report number: 45671

Date completed: 2014-05-19 Order number: 10437

Client name: Geostrada Address: P.O.Box 11126, Hatfield, 0028 Telephone: 012 432 0531 Contact person: Gerrie Jv Rensburg Email: <u>gerriej@geostrada.co.za</u> Cell: 082 309 4448

To correct for:	Multiply	By: (see Notes 2 to 5 below)
Turbulence	LCSI	1.75
Stagnance	LCSI	0.5
Temperature	LCSI, SCSI, N7 Where N7=0.2 x Cl in mg/l	(1+ [0.05 x (T-20)])
Wet-dry cycles	SCSI	0.23 x 10 ⁻⁶ x TDS x DTF x CPA Where: DTF = Dry Time Fraction CPA = wet-dry cycles per annum

Note 1: Only if the concrete contains embedded steel.

Note 2: To preserve the correct logical relationships when dealing with the negative sub-indices (ie LCSI or SCSI having minus values) they should be multiplied by the reciprocal of the relevant factor indicated in this column

Note 3: If more than one correction is required, multiply by the product of the individual correction factors **Note 4:** Use subscript c to indicate that the index has been corrected, eg for turbulent conditions $LCSI_c = LCSI \times 1.75$

Note 5: Round off corrected indices to the nearest 100.

E. Botha

Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd.** Any further use of the above information is not the responsibility or liability of **WATERLAB (Pty) Ltd.** Except for the full report, parts of this report may not be reproduced without written approval of **WATERLAB (Pty) Ltd.**