HERITAGE IMPACT ASSESSMENT

In terms of Section 38(8) of the NHRA for the

Proposed development of the Korakobab Hydrogen facility and the Kei Korana Ammonia facility as part of the Taaibosch Puts Energy Cluster near Postmasburg in the Northern Cape

Prepared by CTS Heritage

For

JAWS

March 2022 Updated July 2023

EXECUTIVE SUMMARY

1. Site Name:

Korakobab Hydrogen facility and the Kei Korana Ammonia facility as part of the Taaibosch Puts Energy Cluster

2. Location:

RE of Farm 497 OR Portion 2 of Farm 500

3. Locality Plan:

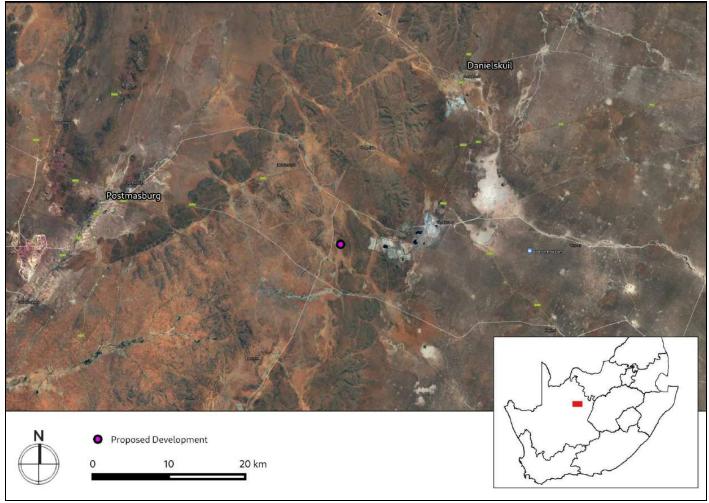


Figure 1: Location of the proposed development area

4. Description of Proposed Development:

The Korakobab Hydrogen facility and the Kei Korana Ammonia facility are to be established for the sole purpose of developing, owning and operating a proposed 300MW electrolyser hydrogen production facility and green ammonia production facility, respectively. The project aims to produce up to 120 000 tons per annum (tpa) of green ammonia (NH3) from the synthesised 'up to 30 000 tpa' of green hydrogen and 'up to 60 000 tpa' of green oxygen, which may then either be resold to private off-takers in various forms, or for further use by the Kei Korana Ammonia facility, which will utilise the hydrogen produced by the Korakobab Hydrogen facility for the synthesis of ammonia via the Haber-Bosch process.

5. Heritage Resources Identified:

Based on the nature of the project, surface activities may impact upon the fossil heritage if preserved in the powerline route or Energy Cluster footprint. The geological structures suggest that the rocks are the correct age and type to preserve fossils. The site visit and walk-through confirmed that there were NO FOSSILS in the project footprint. Furthermore, the material to be excavated for foundations is soils and sands and these do not preserve fossils. Since there is an extremely small chance that fossils from the Lime Acres Formation below ground may be disturbed a Fossil Chance Find Protocol has been added to this report. Taking account of the defined criteria, the potential impact to fossil heritage resources is extremely low.

The heritage field assessment identified a number of heritage resources located within the areas proposed for development. The majority of these heritage resources were determined to be not conservation-worthy and as such, no further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. It is important that the spatial relationship of these resources is not disrupted by the proposed development.

6. Anticipated Impacts on Heritage Resources:

As was anticipated, the archaeological field assessment revealed a great many heritage resources evident within the broader development area - 277 in total. The vast majority of these resources, consisting of individual

artefacts and low density artefact scatters ascribed to the Middle and Later Stone Age as well as rural infrastructure such as wind mills, have been determined to be not conservation-worthy. No further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. While no direct impact is anticipated, it is important that the spatial relationship of these resources is not disrupted by the proposed development. Various mitigation measures are proposed in Table 3 above and in the recommendations below in order to mitigate these impacts.

Based on the fossil record but confirmed by the site visit and walk through there are NO FOSSILS such as stromatolites in the Lime Acres Formation (Campbell Rand Group, Ghaap Plateau, Transvaal Supergroup even though fossils have been recorded from rocks of a similar age and type in South Africa. It is extremely unlikely that any fossils would be preserved in the overlying soils and sands of the Quaternary. There is a very small chance that fossils may occur in below the ground surface in the dolomites so a Fossil Chance Find Protocol should be added to the EMPr. If fossils are found by the environmental officer, or other responsible person once excavations and drilling have commenced, then they should be rescued and a palaeontologist called to assess and collect a representative sample.

7. Recommendations:

There is no objection to the proposed development from a heritage perspective on condition that the following mitigation measures are implemented:

- The grid alignment must remain along the existing road alignment as proposed to ensure no impact to Site 277 (Map 7.2)
- 2. Should any human remains, burials or burial grounds be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Burial Grounds and Graves Unit must be contacted regarding a way forward.

- 3. Should any archaeological resources be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Archaeology, Palaeontology and Meteorites Unit must be contacted regarding a way forward.
- 4. The attached Chance Fossil Finds Procedure must be implemented for the duration of excavation activities.

8. Author/s and Date: Jenna Lavin July 2023

Details of Specialist who prepared the HIA

Jenna Lavin, an archaeologist with an MSc in Archaeology and Palaeoenvironments, heads up the heritage division of the organisation, and has a wealth of experience in the heritage management sector. Jenna's previous position as the Assistant Director for Policy, Research and Planning at Heritage Western Cape has provided her with an in-depth understanding of national and international heritage legislation. Her 8 years of experience at various heritage authorities in South Africa means that she has dealt extensively with permitting, policy formulation, compliance and heritage management at national and provincial level and has also been heavily involved in rolling out training on SAHRIS to the Provincial Heritage Resources Authorities and local authorities.

Jenna is on the Executive Committee of the Association of Professional Heritage Practitioners (APHP), and is also an active member of the International Committee on Monuments and Sites (ICOMOS) as well as the International Committee on Archaeological Heritage Management (ICAHM). In addition, Jenna has been a member of the Association of Southern African Professional Archaeologists (ASAPA) since 2009.

Since 2016, Jenna has drafted over 90 Heritage Impact Assessments throughout South Africa.

CONTENTS

1. INTRODUCTION	6
1.1 Background Information on Project	6
1.2 Description of Property and Affected Environment	9
2. METHODOLOGY	10
2.1 Purpose of HIA	10
2.2 Summary of steps followed	10
2.3 Assumptions and uncertainties	13
2.4 Constraints & Limitations	13
2.5 JAWS Impact Assessment Methodology	13
2.5.1 Significance assessment	14
2.5.2 Spatial scale	15
2.5.3 Duration scale	16
2.5.4 Degree of probability	16
2.5.5 Degree of certainty	16
2.5.6 Quantitative description of impacts	17
3. HISTORY AND EVOLUTION OF THE SITE AND CONTEXT	18
3.1 Desktop Assessment	18
4. IDENTIFICATION OF HERITAGE RESOURCES	24
4.1 Archaeology Heritage Resources	24
4.4 Mapping and spatialisation of heritage resources	28
5. ASSESSMENT OF THE IMPACT OF THE DEVELOPMENT	28
5.1 Assessment of impact to Heritage Resources	28
5.2 Sustainable Social and Economic Benefit	34
5.3 Proposed development alternatives	35
5.4 Cumulative Impacts	35
6. RESULTS OF PUBLIC CONSULTATION	36
7. CONCLUSION	36
8. RECOMMENDATIONS	38

APPENDICES

- 1 Archaeological Impact Assessment 2021
- 2 Palaeontological Impact Assessment 2022
- 3 Visual Impact Assessment 2022
- 4 Heritage Screening Assessment
- 5 Chance Fossil Finds Procedure
- 6 Detailed Project Description

1. INTRODUCTION

1.1 Background Information on Project

The Korakobab Hydrogen facility and the Kei Korana Ammonia facility are to be established for the sole purpose of developing, owning and operating a proposed 300MW electrolyser hydrogen production facility and green ammonia production facility, respectively. The project aims to produce up to 120 000 tons per annum (tpa) of green ammonia (NH3) from the synthesised 'up to 30 000 tpa' of green hydrogen and 'up to 60 000 tpa' of green oxygen, which may then either be resold to private off-takers in various forms, or for further use by the Kei Korana Ammonia facility, which will utilise the hydrogen produced by the Korakobab Hydrogen facility for the synthesis of ammonia via the Haber-Bosch process.

"Green" hydrogen and ammonia production differs from traditional production technologies in that the process relies exclusively on renewable resources (renewable energy) and for input air and water (feedstock), to produce commercially usable green hydrogen. The only solid waste stream is the production of brine from the water treatment plant. A gaseous by-product produced is oxygen generated from the electrolyses process. Traditional hydrogen and ammonia are produced through the burning of fossil fuels (coal or natural gas) to provide the required energy needed for their production. This method of production results in 'brown' hydrogen as fossil fuels are used and therefore carbon forms an integral part of such traditional hydrogen production. Due to the use of Renewable Energy sourced, which do not include carbon sources, the proposed production of ammonia is of a 'green' (zero carbon) type.

Commercially, hydrogen is used as a fuel for transport and beneficiation in hydrogen fuel cells. Alternatively, hydrogen is used for welding and in the production of other chemicals such as methanol and hydrochloric acid and also has other commercial uses like the filling of balloons. It is also a primary input to the production of ammonia which in turn is primarily used in the production of ammonium nitrate (fertiliser), used as refrigerant gas and the manufacture of plastics, explosives, textiles, pesticides and other chemicals, amongst other uses. Ammonia can also be used as a stable 'carrier' of hydrogen, allowing hydrogen to be readily stored and transported, for further use as fuel and energy source.

The production, storage and transport of hydrogen and ammonia is undergoing industry-wide in-depth research and development. As a consequence, technological solutions are constantly improving and therefore changing. The infrastructure required for the Korakobab Hydrogen facility and the Kei Korana Ammonia facility include the following:

- Water treatment unit and water reservoir.
- Ammonia processing unit and liquid ammonia
- Storage tank.
- Electrolyser unit.
- Air separation unit.
- Ammonia Processing unit.
- Liquid air energy system (LAES) for nitrogen storage.
- Hydrogen and oxygen storage tank

Associated infrastructure further include:

- Electrical infrastructure required for power supply to the facility.
- Temporary and permanent laydown areas required for temporary storage and assembly of components and materials.
- Access road/s to the site and internal roads between project components, with a width of up to 12m and 10m wide respectively.
- A temporary concrete batching plant (if necessary).
- Temporary staff accommodation.
- Fencing and lighting (including lightning protection).
- Telecommunication infrastructure.
- Stormwater channels.
- Water pipelines.
- Offices, Operational control centre, operation and maintenance area / warehouse / workshop, ablution facilities, gate house and security building

Access to the site is possible primarily via an unnamed gravel road between Danielskuil and Griekwastad. Existing roads will be used where feasible and practical.

Please see Appendix 6 for a detailed project description.

1.2 Description of Property and Affected Environment

The study area is split roughly in two sections with the western side dedicated to the proposed solar farms while the eastern side consists of the proposed wind farm (WEF). Two powerline routes running for about 30km each along the southern and northern ends were also assessed that connect up the electrical generation facilities to the Olien Eskom substation east of Lime Acres. The Asbestos Mountains form a low series of hills running from the southwest to the northeast between Lime Acres and the eastern end of the proposed wind farm. Three gravel roads were used to access the main farms which included the Griquatown - Lime Acres, Postmasburg - Papkuil and Postmasburg - Lime Acres routes. An existing solar farm (Lesedi Solar Park) lies just to the north of the study area and is similar in scale to the Koraqua solar farm proposed at Springfield 470 farm and the Kora solar farm proposed at Farmersfield 572 farm. The WEF lies on the farms Sunnyside (469), Strathmore (500), Fairview and Klein Fairview (497) and Taaibosch Puts (499).

Taaibosch Puts was the only property which was predominantly flat, uniform and covered in grassland. The rest of the properties held various flat grassland areas in amongst low, gentle ridges and small koppies. The powerline routes traverse similar ground before linking up with an existing 765kV powerline route along nearly flat calcareous ground extending into the Ghaap Plateau Vaalbosveld. The Olifantshoek Plains Thornveld and Kuruman Mountain Bushveld dominate the majority of the study area with rocky, bushy vegetation and thorn trees on the ridges and grassland and low shrubbery vegetation found on the plains.

All of the farms are actively used for cattle and sheep farming as well as wild game areas used to breed various antelope species. Small-scale crop agriculture takes place closer to the homesteads and is mainly used to grow feed for the cattle and sheep. Mining has had a very significant impact on the economy of the area as many people are employed in the mining towns of Lime Acres, Kathu, Postmasburg and Danielskuil. The closest mines to the study area are the Finsch diamond mine and the PPC limestone mine at Lime Acres.

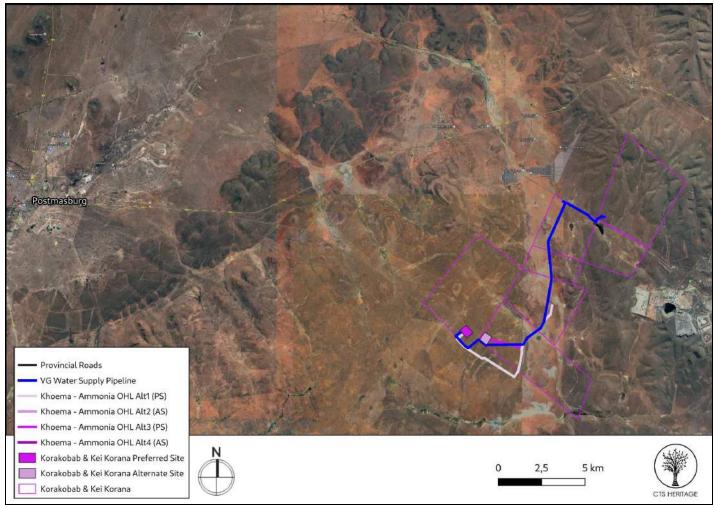


Figure 1.1: The proposed development area including all proposed PV Facilities as part of the Korakobab and Kei Korana Facilities

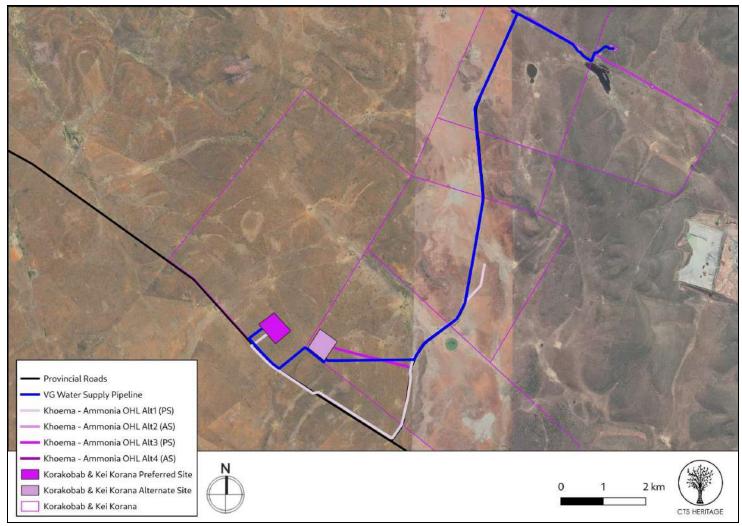


Figure 1.2: The proposed development area including all proposed PV Facilities as part of the Korakobab and Kei Korana Facilities

2. METHODOLOGY

2.1 Purpose of HIA

The purpose of this Heritage Impact Assessment (HIA) is to satisfy the requirements of section 38(8), and therefore section 38(3) of the National Heritage Resources Act (Act 25 of 1999).

2.2 Summary of steps followed

- A Desktop Study was conducted of relevant reports previously written (please see the reference list for the age and nature of the reports used) as part of the Scoping Phase of Assessment
- An archaeologist conducted an assessment of archaeological resources likely to be disturbed by the proposed development. The archaeologist conducted his site visit from 10 15 November 2021.
- A palaeontologist conducted an assessment of palaeontological resources likely to be disturbed by the proposed development. The palaeontologist conducted his site visit on 28 February 2022.
- The identified resources were assessed to evaluate their heritage significance
- Alternatives and mitigation options were discussed with the Environmental Assessment Practitioner

2.3 Assumptions and uncertainties

- The *significance* of the sites and artefacts is determined by means of their historical, social, aesthetic, technological and scientific value in relation to their uniqueness, condition of preservation and research potential. It must be kept in mind that the various aspects are not mutually exclusive, and that the evaluation of any site is done with reference to any number of these.
- It should be noted that archaeological and palaeontological deposits often occur below ground level. Should artefacts or skeletal material be revealed at the site during construction, such activities should be halted, and it would be required that the heritage consultants are notified for an investigation and evaluation of the find(s) to take place.

However, despite this, sufficient time and expertise was allocated to provide an accurate assessment of the heritage sensitivity of the area.

2.4 Constraints & Limitations

Grassland and shrubbery covered much of the study area at the time of the survey and recent good rains meant the vegetation was quite dense in places. However, small patches of exposed ground were regularly encountered and this meant that the observation of visible archaeological material was not significantly impeded overall. The ground was much rockier on the ridges but despite this archaeological material was still identified without too much trouble in these areas. The survey therefore obtained a good account of the archaeological sensitivity of the area.

The experience of the heritage practitioner, the archaeological specialists and the palaeontological specialist as well as observations made during the study, allow us to predict with some accuracy the heritage sensitivity of the receiving environment.

2.5 JAWS Impact Assessment Methodology

The proposed project is anticipated to impact on a range of biophysical and socioeconomic aspects of the environment. In order to ensure uniformity, a standard impact assessment methodology will be utilised so that a wide range of impacts can be compared. The impact assessment methodology makes provision for the assessment of impacts against the following criteria:

- Significance
- Spatial scale
- Temporal scale
- Probability and
- Degree of certainty.

A combined quantitative and qualitative methodology will be used to describe impacts for each of the aforementioned assessment criteria. A summary of each of the qualitative descriptors along with the equivalent quantitative rating scale for each of the aforementioned criteria is given in **Table 1 -1**.

Rating	Significance	Extent scale	Temporal scale	Probability
1	VERY LOW	Isolated area	Incidental	Practically impossible
2	LOW	Study area	Short-term	Unlikely

Table 1-1: Impact quantitative rating scale

3	MODERATE	Local	Medium-term	Could Happen
4	HIGH	Regional / Provincial	Long-term	Very Likely
5	VERY HIGH	Global / National	Permanent	It's going to happen / has occurred

A more detailed description of each of the assessment criteria is given in the following sections.

2.5.1 Significance assessment

Significance rating (importance) of the associated impacts embraces the notion of extent and magnitude but does not always clearly define these since their importance in the rating scale is very relative. For example, the magnitude (i.e. the size) of area affected by atmospheric pollution may be extremely large (1 000 km²) but the significance of this effect is dependent on the concentration or level of pollution. If the concentration is great, the significance of the impact would be HIGH or VERY HIGH, but if it is diluted it would be VERY LOW or LOW. Similarly, if 60 ha of a grassland type are destroyed the impact would be VERY HIGH if only 100 ha of that grassland type were known. The impact would be VERY LOW if the grassland type was common. A more detailed description of the impact significance rating scale is given in **Table 1 - 2** below.

Rating	- g	Description
5	VERY HIGH Of the highest order possible within the bounds of impacts which could occur. In the case of a impacts: there is no possible mitigation and/or remedial activity which could offset the impact case of beneficial impacts, there is no real alternative to achieving this benefit.	
4	HIGH	Impact is of substantial order within the bounds of impacts, which could occur. In the case of adverse impacts: mitigation and/or remedial activity is feasible but difficult, expensive, time-consuming or some combination of these. In the case of beneficial impacts, other means of achieving this benefit are feasible but they are more difficult, expensive, time-consuming or some combination of these.
3	MODERATE	Impact is real but not substantial in relation to other impacts, which might take effect within the bounds of those which could occur. In the case of adverse impacts: mitigation and/or remedial activity are both feasible and fairly easily possible. In the case of beneficial impacts: other means of achieving this benefit are about equal in time, cost, effort, etc.
2	LOW	Impact is of a low order and therefore likely to have little real effect. In the case of adverse impacts: mitigation and/or remedial activity is either easily achieved or little will be required, or both. In the case of beneficial impacts, alternative means for achieving this benefit are likely to be easier, cheaper, more effective, less time consuming, or some combination of these.

1	VERY LOW	Impact is negligible within the bounds of impacts which could occur. In the case of adverse impacts, almost no mitigation and/or remedial activity is needed, and any minor steps which might be needed are easy, cheap, and simple. In the case of beneficial impacts, alternative means are almost all likely to be better, in one or a number of ways, than this means of achieving the benefit. Three additional categories must also be used where relevant. They are in addition to the category represented on the scale, and if used, will replace the scale.
0	NO IMPACT	There is no impact at all - not even a very low impact on a party or system.

2.5.2 Spatial scale

The spatial scale refers to the extent of the impact i.e. will the impact be felt at the local, regional, or global scale. The spatial assessment scale is described in more detail in **Table 1 -3**.

Ratir	- Ig	Description		
5	Global/National	The maximum extent of any impact.		
4	Regional/Provincial	The spatial scale is moderate within the bounds of impacts possible and will be felt at a regional scale (District Municipality to Provincial Level). The impact will affect an area up to 50km from the proposed site.		
3	Local	The impact will affect an area up to 5km from the proposed site.		
2	Study Area	The impact will affect a route corridor not exceeding the boundary of the site.		
1	Isolated Sites / proposed site	The impact will affect an area no bigger than the site.		

Table 1-3: Description of the spatial rating scale

2.5.3 Duration scale

In order to accurately describe the impact, it is necessary to understand the duration and persistence of an impact in the environment. The temporal scale is rated according to criteria set out in **Table 1 -4**.

Rating		Description	
1	Incidental	The impact will be limited to isolated incidences that are expected to occur very sporadically.	
2	Short-term	The environmental impact identified will operate for the duration of the construction phase or a period of less than 5 years, whichever is the greater.	
3	Medium term	The environmental impact identified will operate for the duration of life of the project.	

Table 1-4: Description of the temporal rating scale

4	Long term	The environmental impact identified will operate beyond the life of operation.
5	Permanent	The environmental impact will be permanent.

2.5.4 Degree of probability

The probability or likelihood of an impact occurring will be described, as shown in Table 1 -5.

Table 1-5: Description of the degree of probability of an impact occurring.

Rating	Description
1	Practically impossible
2	Unlikely
3	Could happen
4	Very Likely
5	It's going to happen / has occurred

2.5.5 Degree of certainty

As with all studies it is not possible to be 100% certain of all facts, and for this reason a standard "degree of certainty" scale is used as discussed in **Table 1 -6**. The level of detail for specialist studies is determined according to the degree of certainty required for decision-making. The impacts are discussed in terms of affected parties or environmental components.

Table 1-6: Description of the degree of certainty rating scale.

RATING	DESCRIPTION	
Definite	More than 90% sure of a particular fact.	
Probable	Between 70 and 90% sure of a particular fact, or of the likelihood of that impact occurring.	
Possible	Between 40 and 70% sure of a particular fact, or of the likelihood of that impact occurring.	
Unsure	Less than 40% sure of a particular fact or the likelihood of an impact occurring.	
Can't know	The consultant believes an assessment is not possible even with additional research.	

2.5.6 Quantitative description of impacts

To allow for impacts to be described in a quantitative manner in addition to the qualitative description given above, a rating scale of between 1 and 5 was used for each of the assessment criteria. Thus, the total value of the impact is described as the function of significance, spatial and temporal scale as described below.

5

Impact Risk = (SIGNIFICANCE + Spatial + Temporal) X Probability 3

An example of how this rating scale is applied is shown in **Table 1 -7** below:

Table 1-7: Example of rating scale

Impact	Significance	Spatial scale	Temporal scale	Probability	Rating
	LOW	Local	Medium Term	Could Happen	
Impact to air	2	3	3	3	1.6

Note: The significance, spatial and temporal scales are added to give a total of 8, that is divided by 3 to give a criteria rating of 2,67. The probability (3) is divided by 5 to give a probability rating of 0,6. The criteria rating of 2,67 is then multiplied by the probability rating (0,6) to give the final rating of 1,6.

The impact risk is classified according to 5 classes as described in Table 1-8

Table 1-8: Impact risk classes

Rating	Impact class	Description - negative	Description - positive
0.1 – 1.0	1	Very low	Very low
1.1 – 2.0	2	Low	Low
2.1 - 3.0	3	Moderate	Moderate
3.1 - 4.0	4	High	High
4.1 - 5.0	5	Very high	

Therefore, with reference to the example used for air quality above, an impact rating of 1.6 will fall in the Impact Class 2, which will be considered to be a low impact.

3. HISTORY AND EVOLUTION OF THE SITE AND CONTEXT

3.1 Desktop Assessment

This application is for the proposed development of the Korakobab Hydrogen facility and the Kei Korana Ammonia facility as part of the proposed Taaibosch Puts Renewable Energy Cluster located 20km from Postmasburg in the Northern Cape. Originally a station of the London Missionary Society called Sibiling, it became a Griqua village with the name Blinkklip and was then proclaimed a town on 6 June 1892. Postmasburg achieved municipal status in 1936. Postmasburg had its own diamond rush. The first diamond was discovered in 1918 and as a result an open cast mine grew. The mine was permanently flooded in 1935 and as a result, just like Kimberley, Postmasburg could also boast its very own "Big Hole". This hole is over 45 m deep and filled with fish. Postmasburg also boasts spectacular architecture and many historical sites. An old blue dolomite stone Reformed Church was built in 1908. There is also a rather impressive gun known as "Howitzer Gun" which stands at the civic centre. It honours the men of Postmasburg who died during World War II. The proposed development is also located less than 10km from Lime Acres, home to the employees of the Finsch Diamond Mine located nearby.

In 1801, the London Missionary Society also established a station among the Griqua at *Leeuwenkuil*. The site proved too arid for cultivation and in about 1805 they moved the station to another spring further up the valley and called it *Klaarwater*. Their second choice was little better than their first, and for many years a lack of water prevented any further development. The name of the settlement was changed later to Griquatown or *Griekwastad* in Afrikaans. They lived among a mixed nomadic community of the Chaguriqua tribe and "bastaards" (people of mixed origin) from Piketberg. Their two leaders were Andries Waterboer and Adam Kok II. From 1813 to 17 July 1871, the town and its surrounding area functioned as Andries *Waterboer's Land. Griekwastad* was later the capital of British Colony Griqualand West from 1873 to 1880, with its own flag and currency, before it was annexed into the Cape Colony. The proposed Taaibosch Puts Renewable Energy Cluster is located on one of the main routes between Griekwastad and Kuruman and as such, evidence of this heritage may be impacted by the proposed development.

An archaeological assessment of the Finsch Mine was completed by Henderson in 2005 (SAHRIS ID 6780). Henderson drafted a brief history of the Finsch Mine and this is not repeated here. Suffice to note that "Recent human activity at the Finsch Mine, which would have left traces of mining and structures, therefore only dates back to 1959 on Brits. It would appear that there may be an earlier date for farming activities on Bonza". Elements of the cultural landscape that may be impacted by the proposed development include the sense of place of the historic core of Postmasburg as well as the mining and farming heritage of the area.

Due to mining activities in the area, a number of heritage impact assessments have been completed in close proximity to the development area and these are relevant here (Figure 2 and Appendix 2). The well known Taung site that preserved early hominid remains is located only some 50 kilometres to the west of the site under investigation. Wonderwerk cave near Kuruman also retains evidence of early peoples in its 6 metre midden deposit, especially in the rear portions of the cave. Towards the front rock-art from later Stone Age peoples are also preserved. Furthermore the engraving sites Wildebeestkuil, Driekopseiland and Nooitgedacht near Kimberly confirm a continued presence of Later Stone Age peoples in the general region. It is very likely that significant archaeological heritage may be impacted by the proposed development.

According to the SAHRIS Palaeosensitivity Map, the area proposed for development is predominantly underlain by sediments of moderate, very high and high palaeontological sensitivity (Figure 4.1). According to the Extract from the CGS 2822 Postmasburg Map, the development area is underlain by sediments of the Ongeluk Formation, Danielskuil Member and Kuruman Member of the Asbesberge Formation, the Lime Acres Member of the Ghaap Plateau as well as Surface Limestone Quaternary Sands.

In an assessment completed for a proposed powerline that traverses the same geological formations, Almond (2015, SAHRIS ID 344620) concluded that "On the basis of both desktop analysis and fieldwork within the broader power line study area (Almond 2013a, 2014) the palaeontological sensitivity of all power line corridors under consideration is assessed as low. This also applies to the area to the north of Lime Acres where stromatolites occur within the underlying bedrock but are rarely well-exposed at surface and are therefore unlikely to be significantly impacted by the proposed transmission lines. The Makganyene Formation outcrop area in the north-western corner of the Remainder of the Farm Nr 469, close to the R385 tar road, is of considerable scientific interest as an accessible part of the limited rock record for an Early Proterozoic (c. 2.3 billion years-old) "snowball earth" glacial event, when ice sheets may have covered much of the planet. However, fossil stromatolites do not occur within the succession here and significant palaeontological impacts are therefore not anticipated. Potential impacts on local palaeontological heritage are assessed for all power line corridor options as being of low negative significance." It is likely that similar palaeontological sensitivities exist for the proposed development area and as such, it is recommended that potential impacts to palaeontological heritage are assessed.

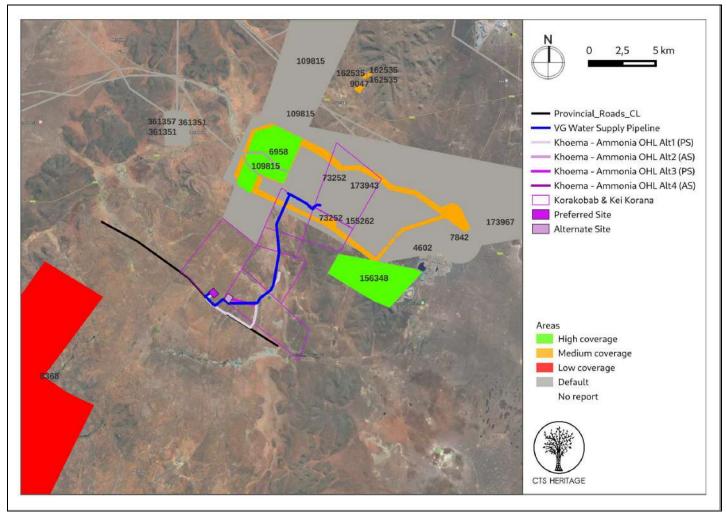


Figure 2: Spatialisation of heritage assessments conducted in proximity to the proposed development

Cedar Tower Services (Pty) Ltd t/a CTS Heritage 238 Queens Road, Simons Town Email info@ctsheritage.com Web <u>http://www.ctsheritage.com</u>

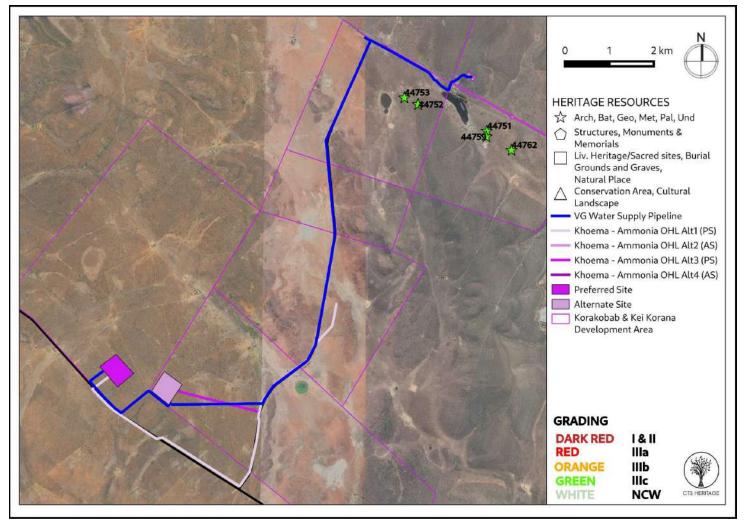


Figure 3: Spatialisation of heritage resources known in proximity to the proposed development (see Appendices for insets)

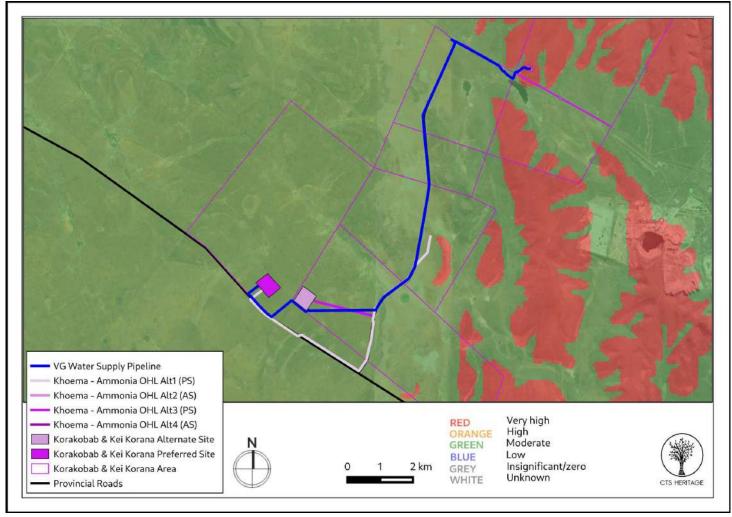


Figure 4.1: Palaeontological sensitivity of the proposed development area

Cedar Tower Services (Pty) Ltd t/a CTS Heritage 238 Queens Road, Simons Town Email info@ctsheritage.com Web <u>http://www.ctsheritage.com</u>

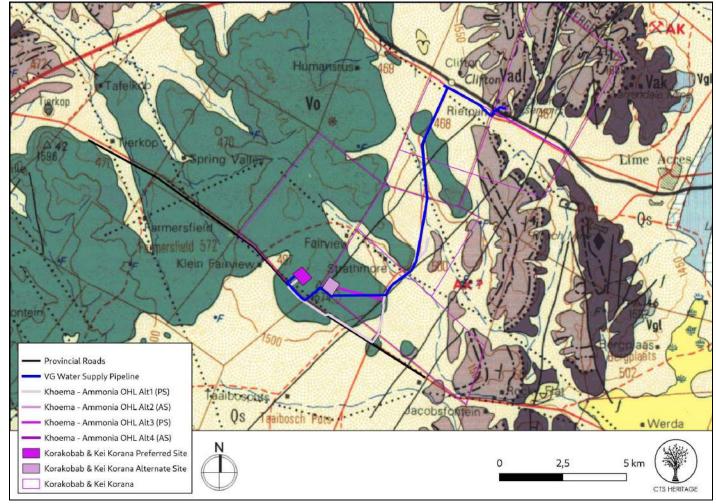


Figure 4.2. Geology Map. Extract from the CGS 2822 Postmasburg Map indicating that the development area is underlain by sediments of the Vo: Ongeluk Formation, Vad: Danielskuil Member and Vak: Kuruman Member of the Asbesberge Formation, Vgl: Lime Acres Member of the Ghaap Plateau, Ql: Surface Limestone and Qs: Quaternary Sands

Table 2: Explanation of symbols for the geological map and approximate ages

Symbol	Group/Formation	Lithology	Approximate Age	
Qs	Quaternary sands	Alluvium, sand, aeolian sand	Neogene, ca 2.5 Ma to present	
QI	Quaternary limestones	Dolerite dykes, intrusive	Tertiary-Quaternary,	
Vo	Ongeluk Fm, Postmasburg Group, Transvaal SG	Andesitic lava, amygdaloidal lava	2222 Ma	
Vad	Danielskuil Fm, Asbestos Hills Group Subgroup, Ghaap Group, Transvaal SG	Banded ironstone	2460 – 2440 Ma	
Vak	Kuruman Fm, Asbestos Hills Group Subgroup, Ghaap Group, Transvaal SG	Banded ironstone	2460 - 2440 Ma	
Vgl	Lime Acres Mb, Kogelbeen Fm, Cambell Rand Subgroup, Ghaap Group, Transvaal SG.	Dolomite, limestone	>2521 Ma	

4. IDENTIFICATION OF HERITAGE RESOURCES

4.1 Archaeology Heritage Resources

The area lies on one of the routes connecting Danielskuil and Kuruman to Griquatown further south. The owner (Mr Johan Lamprecht) at Strathmore farm pointed out at least 12 unmarked graves marked by piled stones along the edge of an historic irrigation furrow. He was informed that these were Griqua graves and a subsequent investigation at the Cape Archives supports this as the London Missionary Society was active in the area in the second half of the 19th century where a number of farming projects were undertaken. A further 10 possible unmarked graves were found by another specialist just 1.2km to the east of these graves on the same farm on the eastern side of the Griekwastad road. The original farmhouse complex, now abandoned and ruined, has two stone kraals and a series of historical engravings on the small koppie overlooking the homestead. One of the names engraved could be "Dennis Hinds" and some references were found linking the Hinds family in the Northern Cape to the LMS¹. Unfortunately no dates were made with any of the engraved names but the handwriting style and emphasis on abbreviations led us to interpret these as being at least 100 years old or more.

Other graves of significance included the Lamprechts formal graveyard with at least 7 formal, marked graves, 3 marked graves of resident farm staff, the Roberts grave at the ruined Strathmore farmstead and another two small formal graveyards at Spring Valley and Farmersfield respectively. The farms are very large in the area and are separated by large tracts of land dedicated to cattle and sheep grazing and rearing wild antelope. Most of the buildings found at each homestead were relatively modern but some historical fabric remained at Spring Valley and Strathmore.

The Stone Age archaeological record is widely dispersed across the entire study area and predominantly dates to the Middle Stone Age occupation of the area. However, sufficient numbers of observations were made of Later Stone Age material to conclude that the material clusters around the non-perennial streams criss-crossing the farms. No major rivers are found nearby and the Klein Riet River is at least 40km east. This doesn't appear to have significantly constrained the prehistoric inhabitants of the study area and it is possible that pans and other sources of water were readily used. As would be expected in this area, various grades of hornfels were used to make most of the artefacts observed as well as smaller contributions of CCS and red banded ironstone. Ubiquitous evidence of Levallois manufacture of flakes and blades were found. There is a notable difference in the type of hornfels used in LSA assemblages that could possibly mean these were introduced from elsewhere rather than being sourced locally as was the case for the MSA material. Various points, burins, awls, thumbnail

¹ See https://www.1820settlers.com/genealogy/familychart.php?personID=I55485&familyID=F20042&tree=master

scrapers and small bladelet cores were common within the LSA assemblages.

The majority of the stone age resources are of low density, and in the context of this area of the Northern Cape where much is known about similar archaeological resources, these observations have very limited scientific value and their recording as per Appendix 1 is considered sufficient. These observations have been determined to be not conservation-worthy and as such, are not discussed further here.

Additional heritage resources identified in the broader study area include farm werfs and farm houses, remnant railway infrastructure, some rock art and historical graffiti as well as a number of burial grounds and graves. The significant heritage resources identified within the study area are detailed in Table 3 below.

Obs #	Project	Description	Period	Density	Co-Ordinates		Grading	Mitigation
44.4	Constant		1.12 - 1 - 2 -		00 704745	07 740 044		No impact
114	Gorachouqua	Older Klein Fairview farmhouse	Historic	n/a	-28.391645	23.310011	IIIC	anticipated
		Possible graves near Griekwastad						
	Carriela	road on the eastern end and on the						
277	Gorachouqua Grid North	de Klerk's ground. If these are	Llistoria	~ /~	-28.395504	23.368983	IIIA	
277	Grid North	graves there are about 10 in all	Historic	n/a	-28.395504	23.308983	IIIA	No-go area
	Outside	Lamprechts family graveyard fenced off, in good state. At least 7						
053	Footprint	graves	Historic		-28.39043	23.35558	IIIA	No-go area
055	Footprint	graves Strathmore farm, Lamprechts	HISTOLIC		-20.39043	23.33336	IIIA	NO-go dred
	Outside	farmhouse complex. Some older						
054	Footprint	buildings remain but mostly modern	Historic		-28.39168	23.35673	IIIC	No-go area
034	Outside	Quartz and hornfels, banded	TIISTOLIC		-20.39100	23.33073	IIIC	NO-go ureu
059	Footprint	ironstone flakes, points	LSA	10-30	-28.38575	23.36219	IIIC	No-go area
039	Outside	inonstone nakes, points	LJA	10 50	20.30373	23.30219	inc	No go ureu
082	Footprint	Ruined farmhouse, "ou huis"	Historic		-28.3877	23.35775	IIIB	No-go area
	Outside							
083	Footprint	Stone walled kraal	Historic		-28.38608	23.36116	IIIC	No-go area
	Outside							
084	Footprint	Stone walled kraal	Historic		-28.38795	23.35951	IIIC	No-go area
	Outside							
155	Footprint	Griqua graves 12	Historic	n/a	-28.3956	23.35636	IIIA	No-go area
	Outside							
156	Footprint	Farm staff graves, 3 marked	Historic	n/a	-28.39455	23.35378	IIIA	No-go area
	Outside	Ou Huis grave, Roberts. Piet						
157	Footprint	Modise's father buried here too	Historic	n/a	-28.38684	23.35592	IIIA	No-go area
		Historical graffiti on various flat						
		rocks on top of outcrop, no dates,						
	Outside	just initials and names and some "I						
174	Footprint	love you's"	Historic	n/a	-28.384464	23.361162	IIIA	No go area

Table 3: Heritage Resources identified during the field assessment and on SAHRIS for the Korakobab and Kei Korana Facilities

		Wiidzpan Farmhouse complex with						
		small Dams, labourers cottages,						
	Outside	main house and ancillary						No impact
022	Footprint	infrastructure	Historic	n/a	-28.33971	23.403397	IIIC	anticipated
	Outside	3 MSA retouched pieces			28° 20′ 53.7″	23° 24′		No impact
44751	Footprint		MSA	Low	S	37.1988" E	IIIC	anticipated
	Outside				28° 20′	23° 23′ 40.2″		No impact
44752	Footprint	Barbed retouched MSA flake.	MSA	Low	34.1988" S	E	IIIC	anticipated
	Outside	ESA hand axe and MSA retouched	ESA and			23° 23′		No impact
44753	Footprint	flakes	MSA	Low	28° 20′ 29.4″ S	28.7988" E	IIIC	anticipated
		MSA scatter of flakes and						
	Outside	cores.			28° 20′	23° 24′		No impact
44759	Footprint		MSA	Low	57.8004" S	36.7992" E	IIIC	anticipated
	Outside	ESA Hand Axe.			28° 21′			No impact
44762	Footprint		ESA	Low	7.5996" S	23° 24′ 57.6″ E	IIIC	anticipated

4.3 Palaeontology Heritage Resources

The development area is located on non-fossiliferous lavas of the Ongeluk Formation and on moderately fossiliferous (green) Quaternary sands and aeolian sands. These materials do not preserve fossils because the form aerobic environments that not conducive to preservation. In addition, windblown (aeolian) sand cannot transport fossils that are large enough to see or to be recognisable. These sands, however, may cover palaeo-pans of palaeo-spring, such features that would be visible in the satellite imagery. No such feature is visible in the project footprint.

The two routes for the OHLs to the east are partly on rocks of the Lime Acres Member (Kogelbeen Formation, Campbell Rand Subgroup). Formations in this subgroup preserve a variety of stromatolites, laminites and microbial mats (Eriksson et al., 2006). Stromatolites are the trace fossils that were formed by colonies of green algae and blue-green algae (Cyanobacteria) that grew in warm, shallow marine settings. These algae were responsible for releasing oxygen via the photosynthetic process where atmospheric carbon dioxide and water, using energy from the sun, are converted into carbon chains and compounds that are the building blocks of all living organisms. The released carbon dioxide initially was taken up by the abundant reducing minerals to form oxides, e.g. iron oxide. Eventually free oxygen was released into the atmosphere and some was converted into ozone by the bombardment of cosmic rays. The ozone is critical for the filtering out of harmful ultraviolet rays.

Stromatolites are the layers upon layers of inorganic materials that were deposited during photosynthesis, namely calcium carbonate, magnesium carbonate, calcium sulphate and magnesium sulphate. These layers can be in the form of flat layers, domes or columns depending on the environment where they grew (Beukes, 1987). Some environments did not form stromatolites, just layers of limestone that later was converted to dolomite. The

algae that formed the stromatolites are very rarely preserved, and they are microscopic so they can only be seen from thin sections studies under a petrographic microscope.

Laminites and microbial mats are also trace fossils formed by photosynthesising microbes. They have been variously called Microbialites (sensu Burne and Moore, 1987), or Microbially induced sedimentary structures "MISS" (sensu Noffke et al., 2001) and possibly having a non-biotic origin (Davies et al., 2016). These features are very subtle and hard to recognise.

4.4 Mapping and spatialisation of heritage resources

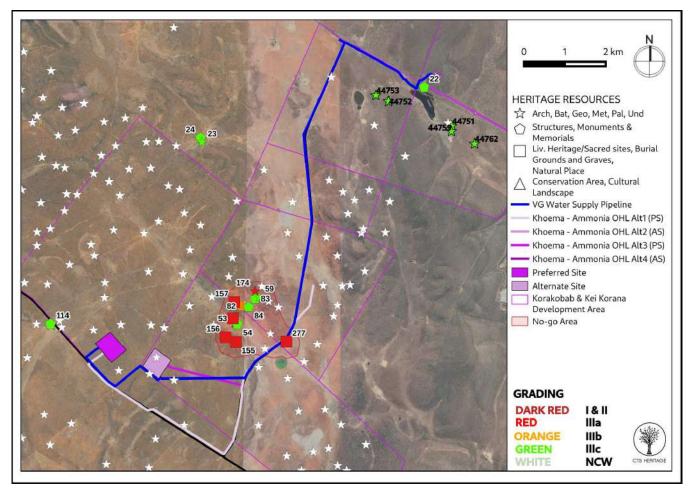


Figure 5.1: All archaeological and built environment heritage observations located within the Korakoab Project Site broader area (see Appendix 1)

Cedar Tower Services (Pty) Ltd t/a CTS Heritage 238 Queens Road, Simons Town Email info@ctsheritage.com Web <u>http://www.ctsheritage.com</u>

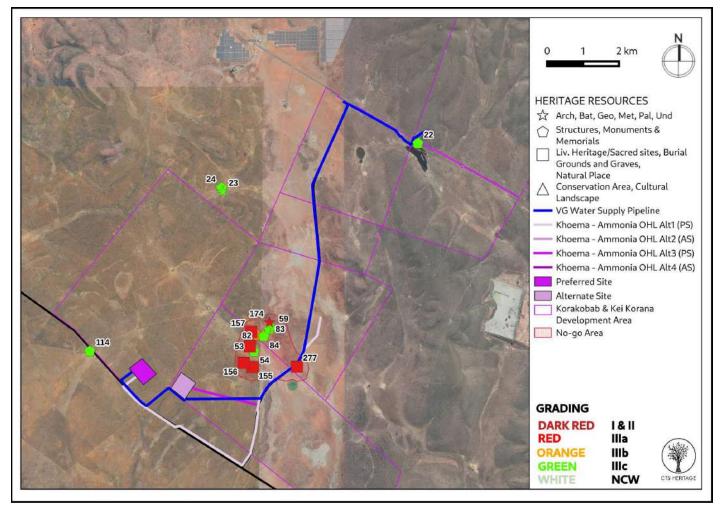


Figure 5.2: Significant archaeological and built environment heritage observations located within the Korakobab Project Site

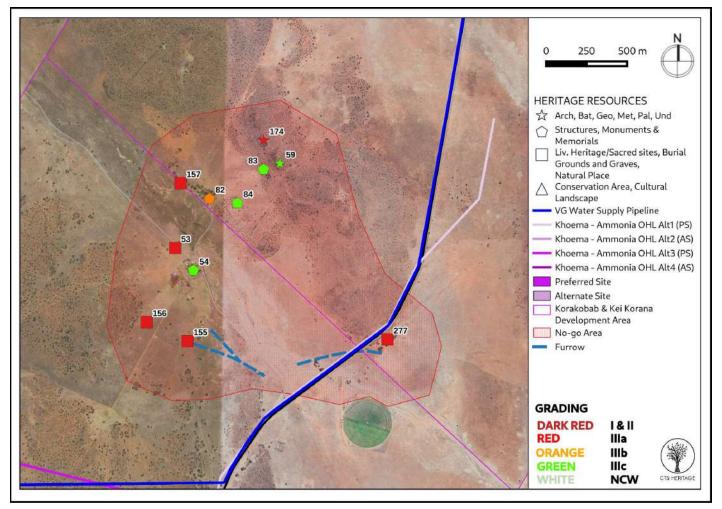


Figure 5.3: Inset A

5. ASSESSMENT OF THE IMPACT OF THE DEVELOPMENT

5.1 Assessment of impact to Heritage Resources

<u>Palaeontology</u>

Based on the nature of the project, surface activities may impact upon the fossil heritage if preserved in the powerline route or Energy Cluster footprint. The geological structures suggest that the rocks are the correct age and type to preserve fossils. The site visit and walk-through confirmed that there were NO FOSSILS in the project footprint. Furthermore, the material to be excavated for foundations is soils and sands and these do not preserve fossils. Since there is an extremely small chance that fossils from the Lime Acres Formation below ground may be disturbed a Fossil Chance Find Protocol has been added to this report. Taking account of the defined criteria, the potential impact to fossil heritage resources is extremely low.

Impact	Significance	Spatial scale	Temporal scale	Probability	Rating
Before Mitigation	MODERATE	Study area	Permanent	Could Happen	Low Negative
	3	2	5	3	2
After Mitigation	MODERATE	Study area	Permanent	Practically Impossible	Very Low Negative
	3	2	5	1	0.6

Table 4.1: Impacts of the proposed development to palaeontological heritage resources

Mitigation includes the implementation of the Fossil Chance Finds Procedure attached as Appendix 5.

Archaeology and the Built Environment

The heritage field assessment identified a number of heritage resources located within the areas proposed for development. The majority of these heritage resources were determined to be not conservation-worthy and as such, no further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered

cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. It is important that the spatial relationship of these resources is not disrupted by the proposed development.

The older Klein Fairview farmhouse is located within this development layout (Site No. 114). This site is located along an existing road however no direct impact from the proposed development is anticipated.

Grid Connections

There are a number of significant heritage resources located in close proximity to the proposed Grid Alignment options, most of which are oriented around Strathmore Farm (Site No. 54) and the ruined farm werf (Site No. 82). The identified heritage resources located in close proximity to the Strathmore Farm, the irrigation furrows and the ruined farm werf include a number of burial ground or graves (Site No. 53, 155, 156, 157 and 277), stone kraals (Site No. 83 and 84) and archaeological sites (Site No. 59 and 174). Site 277, a grave, is located less than 100m from the proposed grid connection, but is located on the far side of the road from the proposed grid alignment. The combination of these heritage resources in close proximity to each other form a unique cultural landscape that altogether have high levels of local cultural value (Grade IIIA).

The grid alignment crosses through this cultural landscape along the track of an existing road. This has the potential to disrupt the historic integrity of the landscape. However, as the proposed grid alignment follows an existing road alignment, this disruption will be kept at a minimum.

Impact	Significance	Spatial scale	Temporal scale	Probability	Rating
Before Mitigation	HIGH	Local Permanent		Very Likely	High Negative
	4	3	5	4	3.2
After Mitigation	HIGH	Local	Permanent	Unlikely	Low Negative
	4	3	5	2	1.6

Table 4: Impacts of the proposed development to archaeological and built environment heritage resources

Mitigation includes

- The grid alignment must remain along the existing road alignment as proposed to ensure no impact to Site 277

5.2 Sustainable Social and Economic Benefit

Socio-economic Benefits of the renewable energy developments include the following:

- The project assists to diversify the economy and electricity generation mix of South Africa through the addition of solar/wind energy.
- The renewable energy development will contribute to achieving goals for implementation of renewable energy, as indicated in the IRP, and supports a 'green' economy within South Africa.
- The project contributes towards the Provincial and Local goals for the development of renewable energy as outlined in the respective IDPs (to be verified with what the IDPs state).
- The project will result in important economic benefits at the local and regional scale through job creation, income, and other associated economic development. These will continue during all phases (i.e. pre-construction, construction, operation, and decommissioning) of the project.

Furthermore, the project is likely to create a maximum of 300 employment opportunities during construction (in conjunction with that of the proposed Kei Korana Ammonia facility). These employment opportunities will be temporary and will use local labour where possible. Employment opportunities generated during the construction phase will include low skilled, semi-skilled, and skilled opportunities

Based on the available information, the sustainable socio-economic benefits to be derived from the project outweigh the anticipated impacts to heritage resources on condition that the recommendations articulated below are implemented.

5.3 Proposed development alternatives

There is no preferred alternative in terms of impacts to heritage resources for this proposed development.

5.4 Cumulative Impacts

The cumulative impact of a development is the impact that development will have when its impact is added to the incremental impacts of other past, present or reasonably foreseeable future activities that will affect the same environment. It is important to note that the cumulative impact assessment for a particular project, like what is being done here, is not the same as an assessment of the impact of all surrounding projects. The cumulative assessment for this project is an assessment only of the impacts associated with this project, but seen in the context of all surrounding impacts. It is concerned with this project's contribution to the overall impact, within the context of the overall impact. But it is not simply the overall impact itself.

The most important concept related to a cumulative impact is that of an acceptable level of change to an environment. A cumulative impact only becomes relevant when the impact of the proposed development will lead directly to the sum of impacts of all developments causing an acceptable level of change to be exceeded in the surrounding area. If the impact of the development being assessed does not cause that level to be exceeded, then the cumulative impact associated with that development is not significant.

In REDZ areas, there is a reasonable expectation that the cultural landscape of an area will be changed to be dominated, or at least heavily altered, by renewable energy development. In fact, this is the intention of the REDZ areas. This proposed development is located outside of a REDZ area.

In terms of cumulative impacts to heritage resources, impacts to archaeological and palaeontological resources are sufficiently dealt with on a case by case basis. The primary concern from a cumulative impact perspective would be to the cultural landscape. The cultural landscape is defined as the interaction between people and the places that they have occupied and impacted. In some places in South Africa, the cultural landscape can be more than 1 million years old where we find evidence of Early Stone Age archaeology (up to 2 million years old), Middle Stone Age archaeology (up to 200 000 years old), Later Stone Age archaeology (up to 20 000 years old), evidence of indigenous herder populations (up to 2000 years old) as well as evidence of colonial frontier settlement (up to 300 years old) and more recent agricultural layers.

Modern interventions into such landscapes, such as renewable energy development, constitute an additional layer onto the cultural landscape which must be acceptable in REDZ areas. The primary risk in terms of negative impact to the cultural landscape resulting from renewable energy development lies in the eradication of older layers that make up the cultural landscape. There are various ways that such impact can be mitigated.

In terms of impacts to heritage resources, it is preferred that this kind of infrastructure development is concentrated in one location and is not sprawled across an otherwise rural landscape. The proposed development is therefore unlikely to result in unacceptable risk or loss, nor will the proposed development result in a complete change to the sense of place of the area or result in an unacceptable increase in impact due to its location as one of many renewable energy facilities in this area, and its proximity to the existing Lime Acres Mine. The landscape within which the proposed project areas are located, is not worthy of formal protection as a heritage resource and has the capacity to accommodate such development from a heritage perspective.

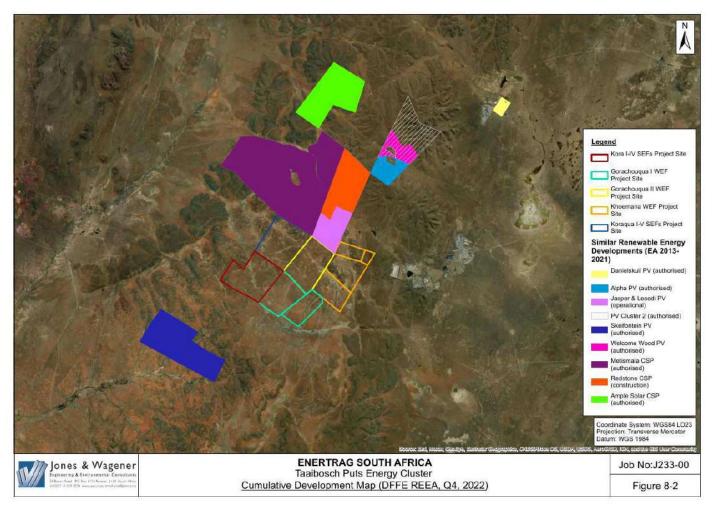


Figure 6: Authorised REF projects within 20km of the proposed development area

Cedar Tower Services (Pty) Ltd t/a CTS Heritage 238 Queens Road, Simons Town Email info@ctsheritage.com Web <u>http://www.ctsheritage.com</u>

6. RESULTS OF PUBLIC CONSULTATION

The public consultation process will be undertaken by the EAP during the EIA. No heritage-related comments have been received to-date. SAHRA is required to comment on this HIA and make recommendations prior to the granting of the Environmental Authorisation.

7. CONCLUSION

As was anticipated, the archaeological field assessment revealed a great many heritage resources evident within the broader development area - 277 in total. The vast majority of these resources, consisting of individual artefacts and low density artefact scatters ascribed to the Middle and Later Stone Age as well as rural infrastructure such as wind mills, have been determined to be not conservation-worthy. No further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. While no direct impact is anticipated, it is important that the spatial relationship of these resources is not disrupted by the proposed development. Various mitigation measures are proposed in Table 3 above and in the recommendations below in order to mitigate these impacts.

Based on the fossil record but confirmed by the site visit and walk through there are NO FOSSILS such as stromatolites in the Lime Acres Formation (Campbell Rand Group, Ghaap Plateau, Transvaal Supergroup even though fossils have been recorded from rocks of a similar age and type in South Africa. It is extremely unlikely that any fossils would be preserved in the overlying soils and sands of the Quaternary. There is a very small chance that fossils may occur in below the ground surface in the dolomites so a Fossil Chance Find Protocol should be added to the EMPr. If fossils are found by the environmental officer, or other responsible person once excavations and drilling have commenced, then they should be rescued and a palaeontologist called to assess and collect a representative sample.

8. **RECOMMENDATIONS**

There is no objection to the proposed development from a heritage perspective on condition that the following mitigation measures are implemented:

- 1. The grid alignment must remain along the existing road alignment as proposed to ensure no impact to Site 277 (Map 7.2)
- 2. Should any human remains, burials or burial grounds be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Burial Grounds and Graves Unit must be contacted regarding a way forward.
- 3. Should any archaeological resources be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Archaeology, Palaeontology and Meteorites Unit must be contacted regarding a way forward.
- 4. The attached Chance Fossil Finds Procedure must be implemented for the duration of excavation activities.

9. REFERENCES

			Heri	tage Impact Assessments
Nid	Report Type	Author/s	Date	Title
6780	AIA Phase 1	Zoe Henderson	01/09/2005	Cultural Heritage Assessment for Finsch Mine
7842	AIA Phase 1	Cobus Dreyer	19/11/2007	Archaeological and Historical Investigation of the Proposed Mining Activities at the Farm Rosslyn, Lime Acres, Northern Cape
4602	AIA Phase 1	David Morris	01/07/2008	Archaeological and Heritage Impact Assessment on Remainder of Carter Block 458, near Limeacres, Northern Cape
163992		Wouter Fourie	03/12/2013	Proposed Construction of the Limestone 1 - 132kV Power Line and the associated Switchyards on Portion 0 (remaining extent) of the Farm 267, Northern Cape Province
164009	Heritage Impact Assessment Specialist Reports	Wouter Fourie	03/12/2013	Proposed Decommissioning and Construction of the Limestone 2 - 132kV Power Line and the associated Switchyards on Portion 0 (remaining extent) of the Plaas 267 Arriesfontein, Northern Cape Province
6218	AIA Phase 1	Wouter Fourie	27/03/2012	Heritage Impact Assessment: The proposed 10mw Photovoltaic (PV) Power Plant on the Farm Arriesfontein (Farm 267) near Danielskuil, Northern Cape Province
6958	AIA Phase 1	Wouter Fourie	10/06/2011	Humansrus Solar Thermal Energy Power Plant, Postmasburg
8240	AIA Phase 1	David Morris	11/06/2010	Proposed development of PV Power Station at Welcome Wood, near Owendale, Northern Cape
8368	AIA Phase 1	Karen Van Ryneveld	29/06/2005	Cultural Heritage Site Inspection Report for the Purpose of a Prospecting Right EMP - (Portion of) Skeyfontein 536, Postmasburg District, Northern Cape, South Africa
8899	PIA Phase 1	John E Almond	04/05/2011	Recommended exemption from further palaeontological studies: Proposed Humansrus Solar Thermal Energy Power Plant development on Farm 469, near Postmasburg, Northern Cape Province
9047	PIA Phase 1	John E Almond	11/06/2010	Proposed photovoltaic power station adjacent to Welcome Wood Substation, Owendale near Postmasburg, Northern Cape Province
73252	HIA Phase 1	Wouter Fourie	13/09/2012	Heritage Impact Assessment - Proposed Construction of 132kv Power Line and Switchyard Associated with the Redstone Solar Thermal Energy Plant in the Northern Cape Province

83272	HIA Phase 1	David Morris	01/08/2012	Archaeological & Cultural Heritage Impact Assessment Phase 1: Proposed Olien Solar Project development on Portion 4 of Farm 300, Barkly West, near Limeacres, Northern Cape
83273	PIA Desktop	Jennifer Botha-Brink	26/06/2012	PALAEONTOLOGICAL IMPACT ASSESSMENT OF THE PROPOSED OLIEN SOLAR PROJECT ON FARM 300, BARKLY WEST, NORTHERN CAPE PROVINCE
109815	HIA Phase 1	Wouter Fourie	22/03/2012	132 kV Power line connection to the Humasrus Solar Thermal Energy Power plant, postmasburg.
114648	PIA Desktop	John E Almond	01/09/2012	Palaeontological specialist assessment: desktop study PROPOSED 16 MTPA EXPANSION OF TRANSNET'S EXISTING MANGANESE ORE EXPORT RAILWAY LINE & ASSOCIATED INFRASTRUCTURE BETWEEN HOTAZEL AND THE PORT OF NGQURA, NORTHERN & EASTERN CAPE. Part 1: Hotazel to Kimberley, Northern Cape
122772	HIA Phase 1	Wouter Fourie	01/09/2011	Heritage Impact Assessment for the Humansrus Solar Thermal Energy Power Plant, Postmasburg
123342	HIA Phase 1	Marko Hutten	01/04/2013	Renewable Energy Generation project on the farm Grootvlei 296, Kgatelopele Local Municipality, Siyanda District Municipality, Northern Cape Province
129751	HIA Phase 1	Elize Becker	20/02/2013	Phase 1 Heritage Impact Assessment Hotazel to Kimberley and De Aar to Port of Ngqura
155262	PIA Desktop	John E Almond	22/12/2013	Palaeontological Heritage Basic Assessment: Desktop Study - Proposed construction of a 132 kV power line and switchyard associated with the Redstone Solar Thermal Energy Plant near Postmasburg, Northern Cape Province
156348	Archaeolog ical Monitoring	Lloyd Rossouw	08/01/2014	Updated report on the Cultural Heritage Impact Assessment for Petra Diamonds Finsch Mine
162535	AIA Phase 1	David Morris	02/03/2012	Archaeological Impact Assessment Phase 1: Proposed development of a PV Power Station at Welcome Wood (extended area), near Owendale, Northern Cape
162542	PIA Desktop	John E Almond	01/02/2012	PALAEONTOLOGICAL IMPACT ASSESSMENT: DESKTOP STUDY Proposed PV power stations Welcome Wood II and III adjacent to Welcome Wood Substation, near Daniëlskuil, Northern Cape Province
173943	Heritage	Marko Hutten,	15/07/2014	Proposed Construction of two 132kV Power Lines and Switchyards to

	Impact Assessment Specialist Reports	John Almond		connect the ACWA Power SolarReserve Redstone Solar Thermal Power Plant with the Olien Substation – Option 1: ACWA Power SolarReserve Redstone Solar Thermal Power Plant to Olien Substation, in the ZF Ngcawu District Municipality – Heritage Impact Assessment
173967	Heritage Impact Assessment Specialist Reports	Marko Hutten	15/07/2014	Proposed Construction of two 132kV Power Lines and Switchyards to connect the Redstone Solar Thermal Energy Plant with the Olien Substation in the ZF Ngcawu District Municipality – Heritage Impact Assessment Option 2: Silverstreams substation to Olien Substations
34462 0	PIA Phase 1	John E Almond	09/11/2015	Palaeontological Heritage Report for the proposed 132 kV power lines between the ACWA Power SolarReserve Redstone Solar Thermal Energy Plant Site and Olien Main Transmission Substation near Lime Acres, Northern Cape Province
361351	AIA Phase 1	Karen Van Ryneveld	20/03/2016	Archaeological Impact Assessment Report
361357	PIA Phase 1	Lloyd Rossouw	03/05/2016	Palaeontological Impact Assessment

APPENDICES

APPENDIX 1 Archaeological Impact Assessment 2021

ARCHAEOLOGICAL SPECIALIST STUDY

In terms of Section 38(8) of the NHRA for a

Proposed development of the Taaibosch Puts Renewable Energy Facility Cluster and associated Electrical Grid Infrastructure near Postmasburg, Northern Cape

In Association with **JAWS**

November 2021 Updated June 2022

EXECUTIVE SUMMARY

ENERTRAG South Africa (Pty) Ltd, Reg no. 2017/143710/07 (ESA) has appointed Jones & Wagener (Pty) Ltd Engineering and Environmental Consultants (J&W) to assist with the respective permitting processes, including as relevant a Waste Management License (WML), Air Emissions License (AEL), respective applications for Environmental Authorisation (EA) and Water Use License application/s (WUL) (as required) for the proposed Taaibosch Puts Energy Cluster (collectively comprising the proposed projects). In addition, the applicant will apply as per Section 53 of the Mineral and Petroleum Resources Development Act (No 28 of 2002) for land use contrary to the objectives of the act.

As was anticipated, the archaeological field assessment revealed a great many heritage resources evident within the development area - 277 in total. The vast majority of these resources, consisting of individual artefacts and low density artefact scatters ascribed to the Middle and Later Stone Age as well as rural infrastructure such as wind mills, have been determined to be not conservation-worthy. No further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. It is important that the spatial relationship of these resources is not disrupted by the proposed development. Various mitigation measures are proposed in Table 3 above and in the below recommendations in order to mitigate these impacts.

Recommendations

There is no objection to the proposed development from an archaeological perspective on condition that the following mitigation measures are implemented:

- 1. The no go area identified in Figure 9.1 must be adhered to. No turbines or associated infrastructure is permitted within this area. This includes Khoemana Turbines 25, 29, 30, 33 and 34
- 2. A minimum no-go development area of 200m must be implemented around Sites 175, 230 and 276 to ensure the conservation of the broader context of these resources (Figure 9.2)
- 3. A minimum no-go development area of 20m must be implemented around Sites 114 and 161 to ensure that no impact to these structures takes place (Figure 9.3 and Figure 9.4)
- 4. The Gorachouqua Turbine 34 must be removed from the layout (Figure 9.3).
- 5. Should any human remains, burials or burial grounds be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Burial Grounds and Graves Unit must be contacted regarding a way forward.
- 6. Should any archaeological resources be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Archaeology, Palaeontology and Meteorites Unit must be contacted regarding a way forward.

CONTENTS

1. INTRODUCTION	3
1.1 Background Information on Project	3
1.2 Description of Property and Affected Environment	3
2. METHODOLOGY	9
2.1 Purpose of Archaeological Study	9
2.2 Summary of steps followed	9
2.3 Constraints & Limitations	9
3. HISTORY AND EVOLUTION OF THE SITE AND CONTEXT	11
4. IDENTIFICATION OF HERITAGE RESOURCES	13
4.1 Field Assessment	13
4.2 Archaeological Resources identified	22
4.3 Selected photographic record	34
5. ASSESSMENT OF THE IMPACT OF THE DEVELOPMENT	41
5.1 Assessment of impact to Archaeological Resources	41
6. CONCLUSION AND RECOMMENDATIONS	46
7. REFERENCES	51

1. INTRODUCTION

1.1 Background Information on Project

ENERTRAG South Africa (Pty) Ltd, Reg no. 2017/143710/07 (ESA) has appointed Jones & Wagener (Pty) Ltd Engineering and Environmental Consultants (J&W) to assist with the respective permitting processes, including as relevant a Waste Management License (WML), Air Emissions License (AEL), respective applications for Environmental Authorisation (EA) and Water Use License application/s (WUL) (as required) for the proposed Taaibosch Puts Energy Cluster (collectively comprising the proposed projects). In addition, the applicant will apply as per Section 53 of the Mineral and Petroleum Resources Development Act (No 28 of 2002) for land use contrary to the objectives of the act.

The proposed projects are located approximately 28 km south-west of Danielskuil and 30 km east of Postmasburg in the Tsantsabane Municipality, Northern Cape. The proposed projects collectively comprise approximately 11 110 ha and consists of the following (See attached BID doc):

- Kora (I IV) Solar PV Energy Facilities;
- Koraqua (I V) Solar PV Energy Facilities;
- Khoemana Wind Energy Facility;
- Gorachouqua (I and II) Wind Energy Facilities;
- Korakobab Green Hydrogen Facility;
- Kei Korana Green Ammonia production facility;
- Electrical Grid Infrastructure (EGI) respectively for the proposed projects.

This archaeology specialist report records the findings of the fieldwork conducted for the proposed Taaibosch Puts Energy Cluster (collectively comprising the proposed projects). Project-specific findings are recorded in the HIA drafted for each specific project.

After the initial round of fieldwork was completed for this project, the client revised the layout of the southern gridline route to accommodate PPC Lime's future mining areas. The specialists went back into the field to assess the amended gridline routing.

1.2 Description of Property and Affected Environment

The study area is split roughly in two sections with the western side dedicated to the proposed solar farms while the eastern side consists of the proposed wind farm (WEF). Two powerline routes running for about 30km each along the southern and northern ends were also assessed that connect up the electrical generation facilities to the Olien Eskom substation east of Lime Acres. The Asbestos Mountains form a low series of hills running from the southwest to the northeast between Lime Acres and the eastern end of the proposed wind farm. Three gravel roads were used to access the main farms which included the Griquatown - Lime Acres, Postmasburg - Papkuil and Postmasburg - Lime Acres routes. An existing solar farm (Lesedi Solar Park) lies just to the north of the study area and is similar in scale to the Koraqua solar farm proposed at Springfield 470 farm and the Kora solar farm proposed at Farmersfield 572 farm. The WEF lies on the farms Sunnyside (469), Strathmore (500), Fairview and Klein Fairview (497) and Taaibosch Puts (499).

Taaibosch Puts was the only property which was predominantly flat, uniform and covered in grassland. The rest of the properties held various flat grassland areas in amongst low, gentle ridges and small koppies. The powerline routes traverse similar ground before linking up with an existing 765kV powerline route along nearly flat calcareous ground extending into the Ghaap Plateau Vaalbosveld. The Olifantshoek Plains Thornveld and Kuruman Mountain Bushveld dominate the majority of the study area with rocky, bushy vegetation and thorn trees on the ridges and grassland and low shrubbery vegetation found on the plains.

All of the farms are actively used for cattle and sheep farming as well as wild game areas used to breed various antelope species. Small-scale crop agriculture takes place closer to the homesteads and is mainly used to grow feed for the cattle and sheep. Mining has had a very significant impact on the economy of the area as many people are employed in the mining towns of Lime Acres, Kathu, Postmasburg and Danielskuil. The closest mines to the study area are the Finsch diamond mine and the PPC limestone mine at Lime Acres.

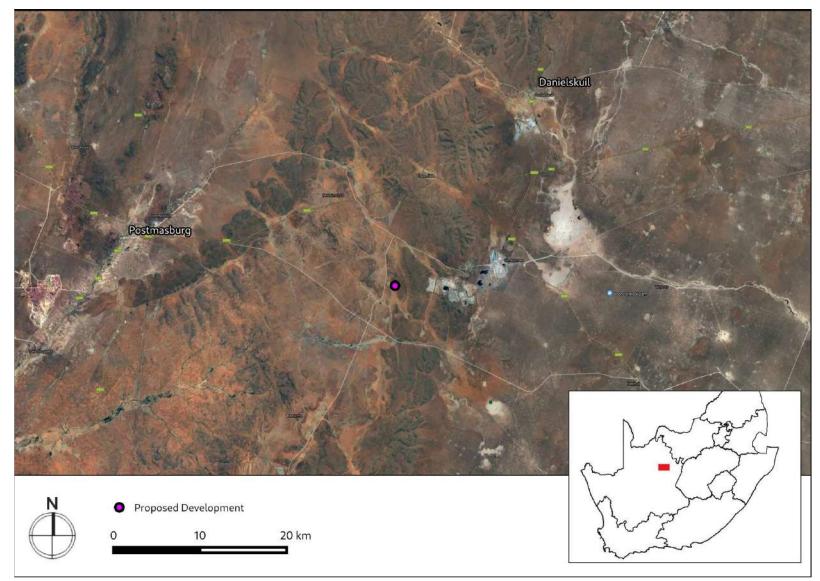


Figure 1.1: Close up satellite image indicating proposed location of development

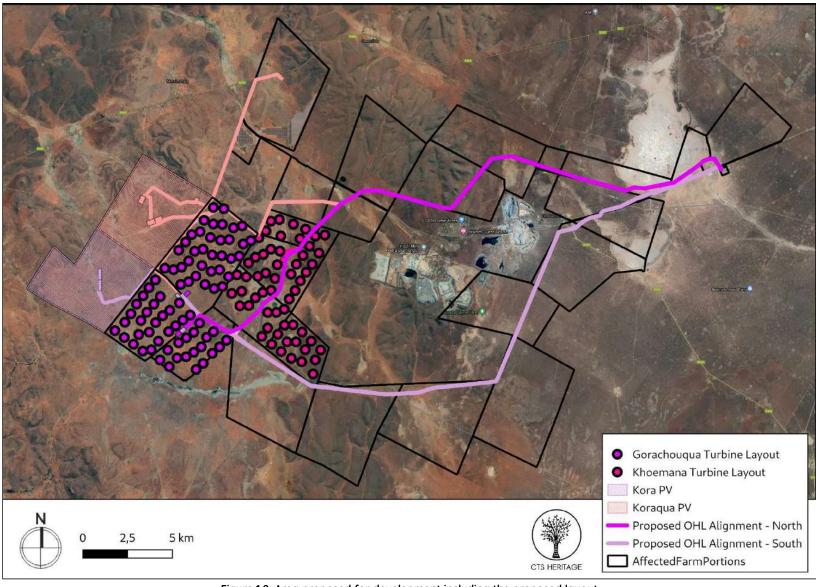


Figure 1.2: Area proposed for development including the proposed layout

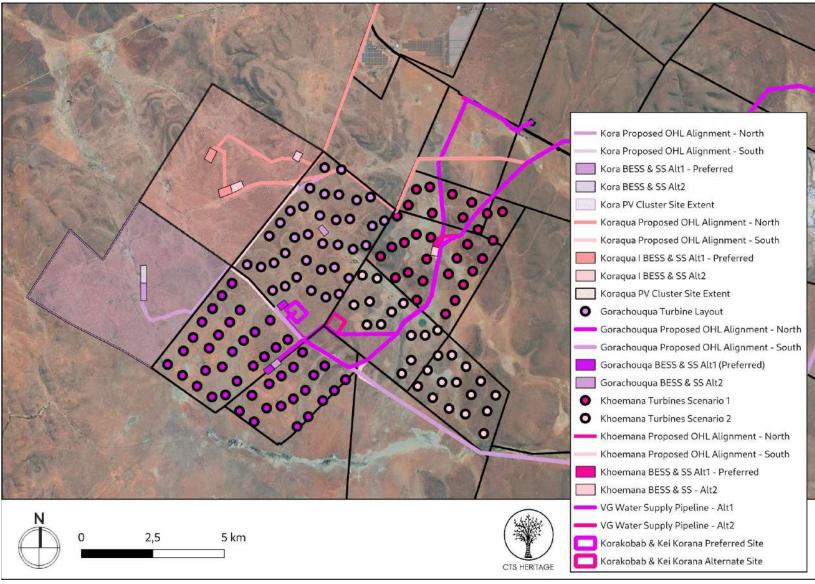


Figure 1.3: Area proposed for development including the proposed layout

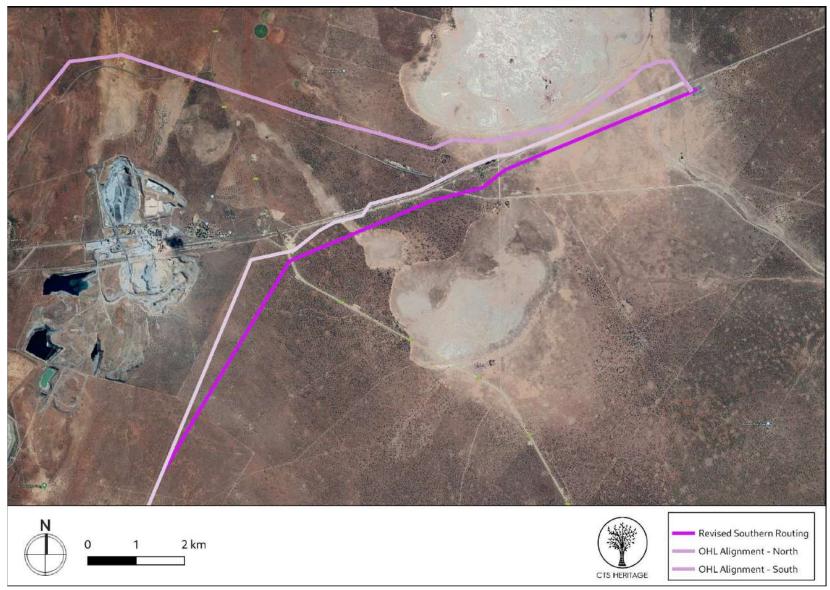


Figure 1.4: Amended southern gridline routing relative to original southern OHL alignment

2. METHODOLOGY

2.1 Purpose of Archaeological Study

The purpose of this archaeological study is to satisfy the requirements of section 38(8), and therefore section 38(3) of the National Heritage Resources Act (Act 25 of 1999) in terms of impacts to archaeological resources.

2.2 Summary of steps followed

- An archaeologist conducted a survey of the site and its environs from 10 15 November 2021 to determine what archaeological resources are likely to be impacted by the proposed development.
- A second archaeological field assessment was conducted on 4 March 2022 to cover a later amendment to the layout in terms of the southern grid alignment (Figure 1.4 and 5.3)
- The area proposed for development was assessed on foot (approx. 150km), mountain bike and 4x4 vehicle, photographs of the context and finds were taken, and tracks were recorded (at 100m intervals) using a GPS.
- The identified resources were assessed to evaluate their heritage significance in terms of the grading system outlined in section 3 of the NHRA (Act 25 of 1999).
- Alternatives and mitigation options were discussed with the Environmental Assessment Practitioner.

2.3 Constraints & Limitations

Grassland and shrubbery covered much of the study area at the time of the survey and recent good rains meant the vegetation was quite dense in places. However, small patches of exposed ground were regularly encountered and this meant that the observation of visible archaeological material was not significantly impeded overall. The ground was much rockier on the ridges but despite this archaeological material was still identified without too much trouble in these areas. The survey therefore obtained a good account of the archaeological sensitivity of the area.

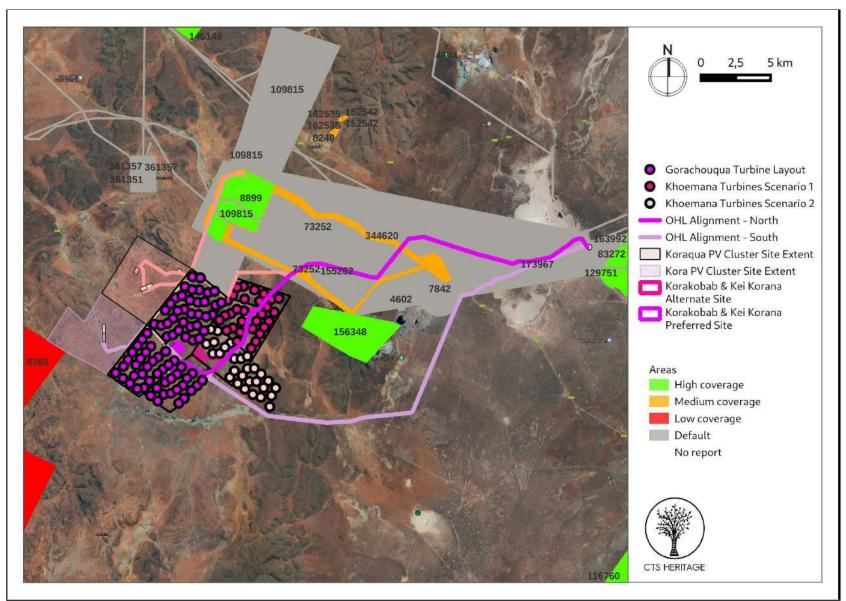


Figure 2: Close up satellite image indicating proposed location of development in relation to heritage studies previously conducted

3. HISTORY AND EVOLUTION OF THE SITE AND CONTEXT

This application is for the proposed development of the Taaibosch Puts Renewable Energy Cluster located 20km from Postmasburg in the Northern Cape. Originally a station of the London Missionary Society called Sibiling, it became a Griqua village with the name Blinkklip and was then proclaimed a town on 6 June 1892. Postmasburg achieved municipal status in 1936. Postmasburg had its own diamond rush. The first diamond was discovered in 1918 and as a result an open cast mine grew. The mine was permanently flooded in 1935 and as a result, just like Kimberley, Postmasburg could also boast its very own "Big Hole". This hole is over 45 m deep and filled with fish. Postmasburg also boasts spectacular architecture and many historical sites. An old blue dolomite stone Reformed Church was built in 1908. There is also a rather impressive gun known as "Howitzer Gun" which stands at the civic centre. It honours the men of Postmasburg who died during World War II. The proposed development is also located less than 10km from Lime Acres, home to the employees of the Finsch Diamond Mine located nearby.

In 1801, the London Missionary Society also established a station among the Griqua at *Leeuwenkuil*. The site proved too arid for cultivation and in about 1805 they moved the station to another spring further up the valley and called it *Klaarwater*. Their second choice was little better than their first, and for many years a lack of water prevented any further development. The name of the settlement was changed later to Griquatown or *Griekwastad* in Afrikaans. They lived among a mixed nomadic community of the Chaguriqua tribe and "bastaards" (people of mixed origin) from Piketberg. Their two leaders were Andries Waterboer and Adam Kok II. From 1813 to 17 July 1871, the town and its surrounding area functioned as Andries *Waterboer's Land. Griekwastad* was later the capital of British Colony Griqualand West from 1873 to 1880, with its own flag and currency, before it was annexed into the Cape Colony. The proposed Taaibosch Puts Renewable Energy Cluster is located on one of the main routes between Griekwastad and Kuruman and as such, evidence of this heritage may be impacted by the proposed development.

An archaeological assessment of the Finsch Mine was completed by Henderson in 2005 (SAHRIS ID 6780). Henderson drafted a brief history of the Finsch Mine and this is not repeated here. Suffice to note that "Recent human activity at the Finsch Mine, which would have left traces of mining and structures, therefore only dates back to 1959 on Brits. It would appear that there may be an earlier date for farming activities on Bonza". Elements of the cultural landscape that may be impacted by the proposed development include the sense of place of the historic core of Postmasburg as well as the mining and farming heritage of the area.

Due to mining activities in the area, a number of heritage impact assessments have been completed in close proximity to the development area and these are relevant here (Figure 2 and Appendix 2). The well known Taung site that preserved early hominid remains is located only some 50 kilometres to the west of the site under investigation. Wonderwerk cave near Kuruman also retain evidence of early peoples in its 6 metre midden deposit, especially in the rear portions of the cave. Towards the front rock-art from later Stone Age peoples are also preserved. Furthermore the engraving sites Wildebeestkuil, Driekopseiland and Nooitgedacht near Kimberly confirm a continued presence of Later Stone Age peoples in the general region. It is very likely that significant archaeological heritage may be impacted by the proposed development.

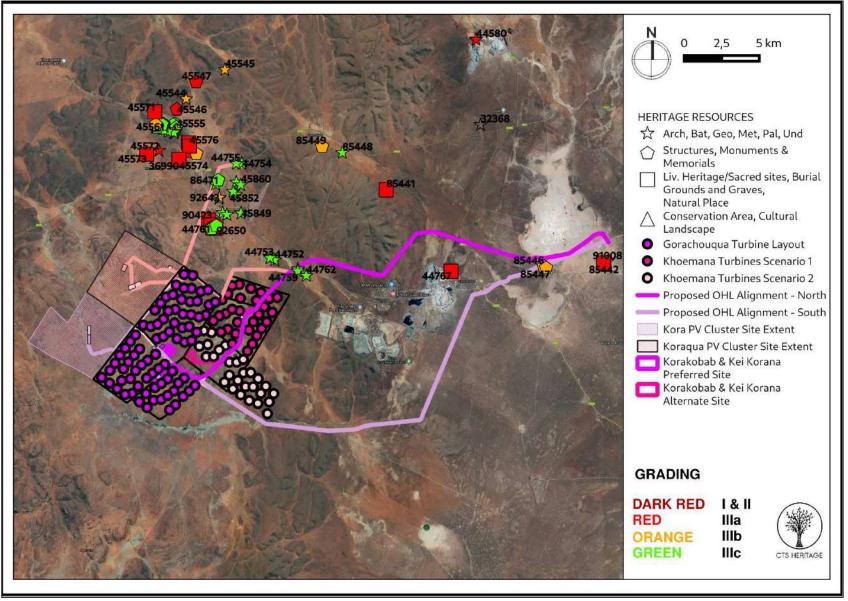


Figure 3. Heritage Resources Map. Heritage Resources previously identified in and near the study area, with SAHRIS Site IDs indicated (see Heritage Screening Assessment for insets)

4. IDENTIFICATION OF HERITAGE RESOURCES

4.1 Field Assessment

As indicated in section 3 introducing the context of the study, the area lies on one of the routes connecting Danielskuil and Kuruman to Griquatown further south. The owner (Mr Johan Lamprecht) at Strathmore farm pointed out at least 12 unmarked graves marked by piled stones along the edge of an historic irrigation furrow. He was informed that these were Griqua graves and a subsequent investigation at the Cape Archives supports this as the London Missionary Society was active in the area in the second half of the 19th century where a number of farming projects were undertaken. A further 10 possible unmarked graves were found by another specialist just 1.2km to the east of these graves on the same farm on the eastern side of the Griekwastad road. The original farmhouse complex, now abandoned and ruined, has two stone kraals and a series of historical engravings on the small koppie overlooking the homestead. One of the names engraved could be "Dennis Hinds" and some references were found linking the Hinds family in the Northern Cape to the LMS¹. Unfortunately no dates were made with any of the engraved names but the handwriting style and emphasis on abbreviations led us to interpret these as being at least 100 years old or more.

Other graves of significance included the Lamprechts formal graveyard with at least 7 formal, marked graves, 3 marked graves of resident farm staff, the Roberts grave at the ruined Strathmore farmstead and another two small formal graveyards at Spring Valley and Farmersfield respectively. The farms are very large in the area and are separated by large tracts of land dedicated to cattle and sheep grazing and rearing wild antelope. Most of the buildings found at each homestead were relatively modern but some historical fabric remained at Spring Valley along with ruins recorded at Sunnyside and Strathmore.

The Stone Age archaeological record is widely dispersed across the entire study area and predominantly dates to the Middle Stone Age occupation of the area. However, sufficient numbers of observations were made of Later Stone Age material to conclude that the material clusters around the non-perennial streams criss-crossing the farms. No major rivers are found nearby and the Klein Riet River is at least 40km east. This doesn't appear to have significantly constrained the prehistoric inhabitants of the study area and it is possible that pans and other sources of water were readily used. As would be expected in this area, various grades of hornfels were used to make most of the artefacts observed as well as smaller contributions of CCS and red banded ironstone. Ubiquitous evidence of Levallois manufacture of flakes and blades were found. There is a notable difference in the type of hornfels used in LSA assemblages that could possibly mean these were introduced from elsewhere rather than being sourced locally as was the case for the MSA material. Various points, burins, awls, thumbnail scrapers and small bladelet cores were common within the LSA assemblages.

¹ See https://www.1820settlers.com/genealogy/familychart.php?personID=I55485&familyID=F20042&tree=master

Figure 4.1: Contextual Image of development area

Figure 4.2: Contextual Image of development area indicating existing electrical infrastructure

Figure 4.3: Contextual Image of development area indicating existing electrical infrastructure

Figure 4.4: Contextual Images of Development Area

Figure 4.5: Contextual Images of Development Area

Figure 4.6: Contextual Images of Development Area

Figure 4.8: Contextual Images of Landscape

Figure 4.9: Contextual Images of Development Area

Figure 4.9: Contextual Images of Development Area

Figure 4.9: Contextual Images of Development Area

Figure 4.9: Contextual Images of Development Area

Figure 4.9: Contextual Images of Development Area

Figure 4.9: Contextual Images of Development Area

Figure 4.9: Contextual Images of Development Area indicating rail and electrical infrastructure

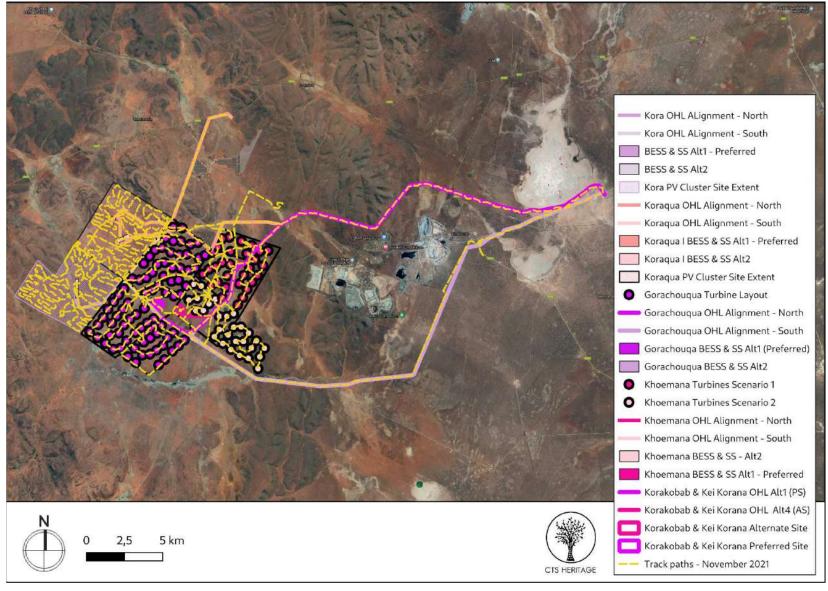


Figure 5.1: Overall track paths of foot survey

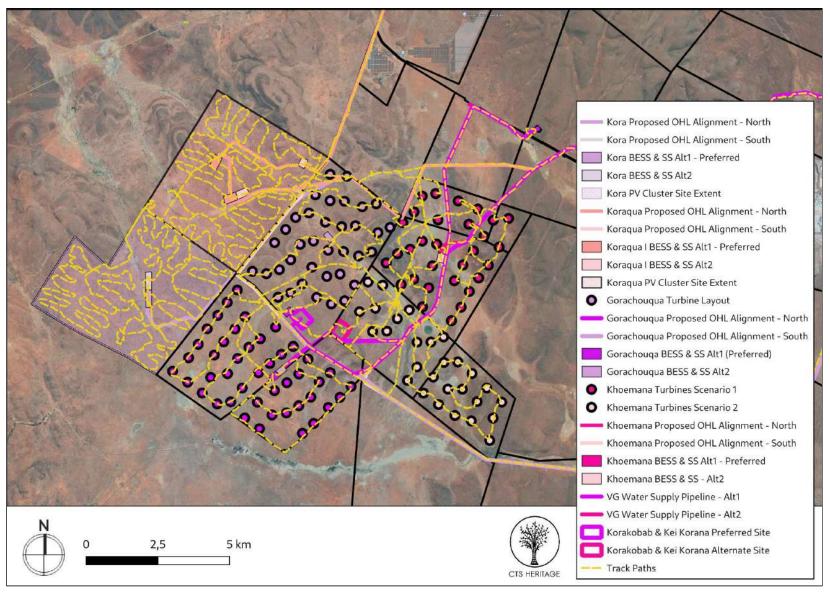


Figure 5.2: Overall track paths of foot survey

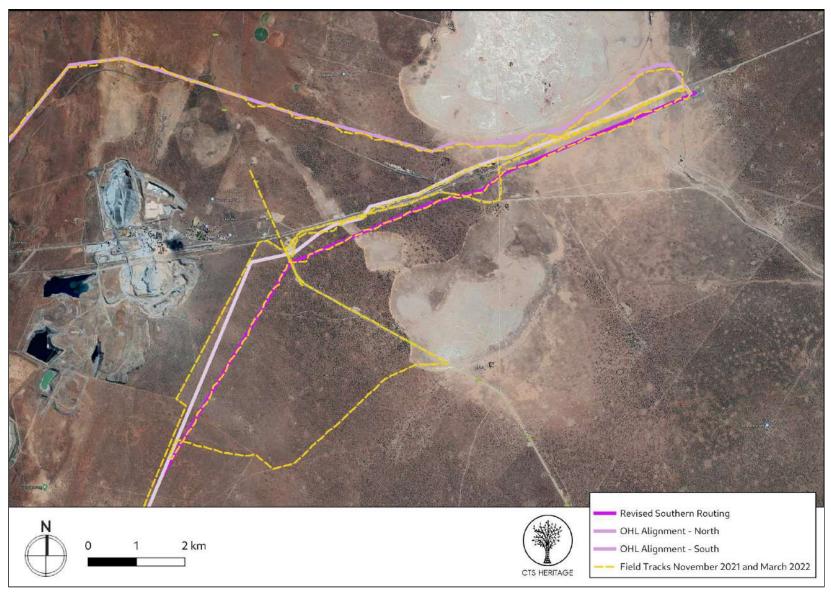


Figure 5.3: Overall track paths of foot survey in addition to tracks taken in the March 2022 assessment for the re-routed southern alignment

4.2 Archaeological Resources identified

Table 1a: Observations noted during the field assessment in November 2021

Obs #	Project	Description	Period	Density	Co-Ordinates		Grading	Mitigation
		Two hornfels flakes, dark brown and						
		black, core and debitage, no						
001	Grid	retouch	LSA	0-5	-28.358578	23.543008	NCW	NA
002	Grid	Hornfels point and chunk	MSA	0-5	-28.349328	23.56869	NCW	NA
		Series of railway staff houses						
		abandoned, derelict and being vandalised and stripped; 15 buildings						
		in total including						
003	Grid	garages/outbuildings. 1960's	Modern		-28.345561	23.579308	NCW	NA
004	Grid	Hornfels flake retouched	LSA	0-5	-28.339121	23.595396	NCW	NA
	0.10	Two ccs flakes, prominent bulbs of	20,1		201007121	2010/00/0		
005	Grid	percussion	MSA	0-5	-28.325724	23.501798	NCW	NA
		Red banded ironstone flake, edge						
006	Grid	retouch	MSA	0-5	-28.328637	23.513211	NCW	NA
007	Grid	Ccs core flake with cortex patination	MSA	0-5	-28.332679	23.527421	NCW	NA
800	Grid	Hornfels dark black core	MSA	0-5	-28.335195	23.53548	NCW	NA
		Brown hornfels core, several flake						
009	Grid	scars taken longitudinally	MSA	0-5	-28.337948	23.545206	NCW	NA
010	Grid	Hornfels flake, some retouch	MSA	0-5	-28.341632	23.560792	NCW	NA
		Early MSA dark black hornfels flake,						
011	Grid	central spine on dorsal surface	MSA	0-5	-28.342318	23.569079	NCW	NA
		Hornfels flake, early MSA, lateral						
012	Grid	retouch	MSA	0-5	-28.33071	23.487843	NCW	NA
		Hornfels core flake with two		0.5		07 (00570		
013	Grid	prominent flake scars	MSA	0-5	-28.338091	23.480572	NCW	NA
014	Grid	Ccs point	LSA	0-5	-28.347881	23.471801	NCW	NA
015	Grid	Heavily patinated banded ironstone	МСА	0-5	20 240240	27 4 4 0 1 0 4	NCM	NIA
015	Grid	point and core Brown banded ironstone early MSA	MSA	0-5	-28.348349	23.448184	NCW	NA
016	Grid	flake, edge scraper retouch	MSA	0-5	-28.345704	23.43993	NCW	NA
010	Gild	Siltstone large early MSA flake with	110/1	0.5	20.313701	23.13773	THE W	1.17.1
017	Grid	prominent bulb of percussion	MSA	0-5	-28.343221	23.424838	NCW	NA
0	0.10	Early MSA hornfels point lateral and			2010 10221	201121000		
018	Grid	end retouched	MSA	0-5	-28.347564	23.409366	NCW	NA
019	Grid	Hornfels cores	MSA	0-5	-28.354861	23.398669	NCW	NA
020	Grid	Hornfels flakes	MSA	0-5	-28.348106	23.390961	NCW	NA
021	Grid	Hornfels flaked core, possibly LSA	LSA	0-5	-28.337511	23.380222	NCW	NA
		Wiidzpan Farmhouse complex with						
		small Dams, labourers cottages,						
	Outside	main house and ancillary						
022	Footprint	infrastructure	Historic		-28.33971	23.403397	IIIC	NA
		Open site along stream bed with						
		msa and LSA material. Hornfels,						
	Quitaida	high grade, unifacially retouch,						
0.27	Outside	ccs, siltstone cores and flakes,		701	20 75176	27 7 4706		NIA
023	Footprint	banded ironstone Sunnyside old farmhouse ruin,	LSA, MSA	30+	-28.35176	23.34786	IIIC	NA
		only foundation remains, gum,						
	Outside	pepper and willow trees, near						
024	Footprint	kraal	Historic		-28.35084	23.34752	шс	NA
025	Gorachouqua	Ccs core, hornfels microlith	LSA	0-5	-28.35258	23.34146	NCW	NA
026	Gorachouqua	Ccs core	LSA	0-5	-28.35162	23.33711	NCW	NA
027	Gorachouqua	Hornfels cores	LSA	0-5	-28.35173	23.33396	NCW	NA
028	Grid	Siltstone point, weathered	MSA	0-5	-28.34424	23.33308	NCW	NA
		Hornfels core flake with lateral						
029	Grid	retouch	LSA	0-5	-28.32663	23.34084	NCW	NA

030	Grid	Blue siltstone flake, unworked	MSA	0-5	-28.312615	23.34685	NCW	NA
031	Grid	Hornfels notched flake	MSA	0-5	-28.29869	23.35222	NCW	NA
001	Grid	High grade hornfels retouched	110/1	0.5	20.27007	LOIODELL	nen	
032	Koraqua	point, retouched both sides	MSA	0-5	-28.35257	23.32629	NCW	NA
032	Roraqua	Siltstone flakes, debitage, core,	110/1	0.5	20.33237	23.32027	new	1.17.1
033	Koraqua	points	LSA	0-5	-28.35865	23.32083	NCW	NA
034	Koraqua	Ccs bladelet	LSA	0-5	-28.35693	23.31138	NCW	NA
034	Koraqua	Quartzite radial core	MSA	0-5	-28.34606	23.30665	NCW	NA
033	Koruquu		MJA	0-5	-28.34000	23.30003	INC W	INA I
036	Koragua	Quartzite core and flake prominent bulb of percussion	MSA	0-5	-28.34613	23.29254	NCW	NIA
0.00	Koraqua	High grade hornfels retouched flake	MJA	0-5	-20.34013	23.27234	INC W	NA
		5 5						
037	Karagua	worth prepared platform, edge retouched	MCA	0 5	20.76720	27 71660	NCM	NIA
	Koraqua		MSA	0-5	-28.36329	23.31669	NCW	NA
038	Koraqua	Siltstone flakes unworked	MSA	0-5	-28.36683	23.31355	NCW	NA
039	Koraqua	Siltstone core	MSA	0-5	-28.37076	23.31002	NCW	NA
		Unworked siltstone flake in amongst						
040	Koraqua	siltstone cobbles	MSA	0-5	-28.37447	23.30663	NCW	NA
041	Koraqua	Unworked siltstone flakes	MSA	0-5	-28.38179	23.30007	NCW	NA
042	Gorachouqua	Ccs core	MSA	0-5	-28.38261	23.3024	NCW	NA
043	Gorachouqua	Hornfels segment	MSA	0-5	-28.38263	23.30351	NCW	NA
044	Gorachouqua	Siltstone core	MSA	0-5	-28.38296	23.30927	NCW	NA
045	Gorachouqua	Siltstone core	MSA	0-5	-28.37862	23.3148	NCW	NA
		Modern farm water tank next to						
		older ruined tank and broken						
046	Gorachouqua	windmill. Pump now solar powered	Modern		-28.376678	23.320996	NCW	NA
047	Gorachouqua	Hornfels point and siltstone flakes	MSA	0-5	-28.37423	23.32018	NCW	NA
048	Gorachouqua	Ccs core and hornfels flake	MSA	0-5	-28.37106	23.3258	NCW	NA
049	Gorachouqua	Kraal cattle water tank etc	Modern		-28.37179	23.33341	NCW	NA
050	Gorachouqua	Hornfels microlithic flake	LSA	0-5	-28.36916	23.33703	NCW	NA
051	Gorachouqua	Fairview farmhouse complex	Modern		-28.3807	23.34314	NCW	NA
052	Khoemana	Ccs core flake and hornfels flake	MSA	0-5	-28.38569	23.35035	NCW	NA
032	Tribernana	Lamprechts family graveyard	110/1	0.5	20.30307	23.33033	new	
		fenced off, in good state. At least						
053	Khoemana	7 graves	Historic		-28.39043	23.35558	IIIA	No-go area
033	Kiloemana	Strathmore farm, Lamprechts	Thistoric		20.370+3	23.33330		
		farmhouse complex. Some older						
		buildings remain but mostly						
054	Khoomana		Historic		-28.39168	23.35673	IIIC	
054	Khoemana	modern	Historic	0.5				No-go are
055	Khoemana	Vein quartz early MSA flake	MSA	0-5	-28.39708	23.36361	NCW	NA
054		Banded ironstone and ccs core						
056	Khoemana	tlakes adde retouched on one		0 5	00 70770	077(100		l
057		flakes, edge retouched on one	MSA	0-5	-28.39379	23.36498	NCW	NA
	Khoemana	Hornfels, chert microliths	LSA	5-10	-28.38797	23.36701	NCW	NA
058	Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large)						
	Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded	LSA MSA	5-10 0-5	-28.38797 -28.38665	23.36701 23.36456	NCW NCW	NA NA
058 059		Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points	LSA	5-10	-28.38797	23.36701	NCW	NA
059	Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes,	LSA MSA LSA	5-10 0-5 10-30	-28.38797 -28.38665 -28.38575	23.36701 23.36456 23.36219	NCW NCW	NA NA
059 060	Khoemana Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core	LSA MSA LSA LSA, MSA	5-10 0-5 10-30 5-10	-28.38797 -28.38665 -28.38575 -28.38342	23.36701 23.36456 23.36219 23.36287	NCW NCW IIIC NCW	NA NA No-go are NA
059 060 061	Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith	LSA MSA LSA	5-10 0-5 10-30	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126	23.36701 23.36456 23.36219 23.36287 23.35459	NCW NCW	NA NA No-go are
059 060	Khoemana Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core	LSA MSA LSA LSA, MSA	5-10 0-5 10-30 5-10	-28.38797 -28.38665 -28.38575 -28.38342	23.36701 23.36456 23.36219 23.36287	NCW NCW IIIC NCW	NA NA No-go are NA
059 060 061	Khoemana Khoemana Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith	LSA MSA LSA, MSA LSA	5-10 0-5 10-30 5-10 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708	23.36701 23.36456 23.36219 23.36287 23.35459	NCW NCW IIIC NCW NCW	NA NA No-go are NA NA
059 060 061	Khoemana Khoemana Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core	LSA MSA LSA, MSA LSA	5-10 0-5 10-30 5-10 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126	23.36701 23.36456 23.36219 23.36287 23.35459	NCW NCW IIIC NCW NCW	NA NA No-go are NA NA
059 060 061 062	Khoemana Khoemana Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels	LSA MSA LSA, MSA LSA MSA	5-10 0-5 10-30 5-10 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708	23.36701 23.36456 23.36219 23.36287 23.35459 23.35552	NCW NCW IIIC NCW NCW NCW	NA NA No-go are NA NA NA
059 060 061 062	Khoemana Khoemana Khoemana Khoemana	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked	LSA MSA LSA, MSA LSA MSA	5-10 0-5 10-30 5-10 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708	23.36701 23.36456 23.36219 23.36287 23.35459 23.35552	NCW NCW IIIC NCW NCW NCW	NA NA No-go are NA NA NA
059 060 061 062 063	Khoemana Khoemana Khoemana Khoemana Gorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb	LSA MSA LSA, MSA LSA MSA MSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.3754	23.36701 23.36456 23.36219 23.36287 23.35459 23.35552 23.34489	NCW NCW IIIC NCW NCW NCW	NA NA-go are NA NA NA
059 060 061 062 063 064	Khoemana Khoemana Khoemana Khoemana Gorachouqua Gorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb of percussion Hornfels flakes, prepared platforms	LSA MSA LSA, MSA LSA MSA MSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.3754 -28.36999	23.36701 23.36456 23.36219 23.36287 23.35459 23.35552 23.34489 23.34755	NCW NCW IIIC NCW NCW NCW NCW	NA NA-go are NA NA NA NA
059 060 061 062 063 064 065	Khoemana Khoemana Khoemana Khoemana Gorachouqua Gorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb of percussion Hornfels flakes, prepared platforms Ccs flake, retouched and shaped for	LSA MSA LSA, MSA LSA MSA MSA MSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.3754 -28.36999 -28.36735	23.36701 23.36456 23.36219 23.36287 23.35459 23.35552 23.34489 23.34755 23.34755 23.34345	NCW NCW IIIC NCW NCW NCW NCW	NA NA-go are NA NA NA NA NA
059 060 061 062 063 064 065 066	Khoemana Khoemana Khoemana Khoemana Khoemana Khoemana Gorachouqua Gorachouqua Gorachouqua Gorachouqua Gorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb of percussion Hornfels flakes, prepared platforms Ccs flake, retouched and shaped for hafting	LSA MSA LSA, MSA LSA MSA MSA MSA LSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.3754 -28.36999 -28.36735 -28.36216	23.36701 23.36456 23.36219 23.35459 23.35552 23.34489 23.34755 23.34345 23.34231	NCW NCW IIIC NCW NCW NCW NCW NCW	NA NA-go are NA NA NA NA NA NA
059 060 061 062 063 064 065 066 067	KhoemanaKhoemanaKhoemanaKhoemanaKhoemanaGorachouquaGorachouquaGorachouquaGorachouquaGorachouquaGorachouquaGorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb of percussion Hornfels flakes, prepared platforms Ccs flake, retouched and shaped for hafting Hornfels blade point	LSA MSA LSA, MSA LSA MSA MSA MSA LSA MSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.3754 -28.36999 -28.36735 -28.36216 -28.36135	23.36701 23.36456 23.36219 23.35459 23.35552 23.34489 23.34755 23.34755 23.34345 23.34231 23.33946	NCW NCW NCW NCW NCW NCW NCW NCW	NA NA NA NA NA NA NA NA NA
059 060 061 062 063 064 065 066 067 068	Khoemana Khoemana Khoemana Khoemana Khoemana Gorachouqua Gorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb of percussion Hornfels flakes, prepared platforms Ccs flake, retouched and shaped for hafting Hornfels flakes, prepared platform	LSA MSA LSA, MSA LSA MSA MSA MSA LSA MSA MSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.37708 -28.3754 -28.36999 -28.36735 -28.36216 -28.36135 -28.36351	23.36701 23.36456 23.36219 23.35459 23.35552 23.34489 23.34755 23.34755 23.34345 23.34231 23.33946 23.32738	NCW NCW NCW NCW NCW NCW NCW NCW NCW	NA NA NA NA NA NA NA NA NA NA
059 060 061 062 063 064 065 066 066	KhoemanaKhoemanaKhoemanaKhoemanaKhoemanaGorachouquaGorachouquaGorachouquaGorachouquaGorachouquaGorachouquaGorachouqua	Hornfels, chert microliths Hornfels point and segment (Large) Quartz and hornfels, banded ironstone flakes, points Banded ironstone, hornfels flakes, very finely worked ; quartz core Red ironstone flake, microlith Siltstone core Banded ironstone flake and hornfels point, unifacially worked Early Msa siltstone flake, large bulb of percussion Hornfels flakes, prepared platforms Ccs flake, retouched and shaped for hafting Hornfels blade point	LSA MSA LSA, MSA LSA MSA MSA MSA LSA MSA	5-10 0-5 10-30 5-10 0-5 0-5 0-5 0-5 0-5 0-5	-28.38797 -28.38665 -28.38575 -28.38342 -28.38126 -28.37708 -28.3754 -28.36999 -28.36735 -28.36216 -28.36135	23.36701 23.36456 23.36219 23.35459 23.35552 23.34489 23.34755 23.34755 23.34345 23.34231 23.33946	NCW NCW NCW NCW NCW NCW NCW NCW	NA NA NA NA NA NA NA NA NA NA

071	Gorachouqua	Weathered siltstone flakes	MSA	0-5	-28.35748	23.33509	NCW	NA
072	Khoemana	Heavily weathered siltstone flake	MSA	0-5	-28.3919	23.35081	NCW	NA
073	Khoemana	Siltstone and hornfels cores	MSA	0-5	-28.3877	23.34477	NCW	NA
		Two large siltstone possible flakes,						
		may just be product of fencing						
074	Khoemana	damage	MSA	0-5	-28.3925	23.33846	NCW	NA
		Large siltstone flake, prominent bulb						
075	Gorachouqua	of percussion	MSA	0-5	-28.39193	23.33516	NCW	NA
		Hornfels flake with platform worked						
074		down into narrower section, dorsal	MCA	0.5	20,70100	07 707/0		
076	Gorachouqua	removals	MSA	0-5 0-5	-28.39182	23.32762	NCW	NA
077	Gorachouqua	Siltstone flake	MSA	0-5	-28.39298	23.3208	NCW	NA
078	Gorachouqua	Siltstone flake with prominent bulb of percussion	MSA	0-5	-28.40185	23.32711	NCW	NA
078	Gorachouqua	Fine grained hornfels retouched	IMISA	0-5	-20.40165	23.32711	INCW	INA
079	Khoemana	flake	LSA	0-5	-28.4026	23.33479	NCW	NA
080	Khoemana	Hornfels core	MSA	0-5	-28.39898	23.3365	NCW	NA
081	Khoemana	Red ironstone flake, some retouch	MSA	0-5	-28.40399	23.3409	NCW	NA
082	Khoemana	Ruined farmhouse, "ou huis"	Historic	0.5	-28.3877	23.35775	IIIB	No-go area
083	Khoemana	Stone walled kraal	Historic		-28.38608	23.36116	IIIC	No-go area
084	Khoemana	Stone walled kraal	Historic		-28.38795	23.35951	IIIC	No-go area
085	Khoemana	Unifacial point hornfels	LSA	0-5	-28.38756	23.35856	NCW	NA NA
086	Gorachouqua	Hornfels core	MSA	0-5	-28.380183	23.334538	NCW	NA
087	Gorachouqua	Modern farm dam and kraal	Modern	0.5	-28.382619	23.323649	NCW	NA
088	Gorachouqua	Modern kraal	Modern		-28.385879	23.323549	NCW	NA
089	Gorachouqua	farm dam	Modern		-28.392375	23.312853	NCW	NA
007	Gordenooquu	Hornfels flake with lateral retouch	riodeini		20.372373	23.512033	new	
090	Gorachouqua	on one side	MSA	0-5	-28.390952	23.31227	NCW	NA
091	Gorachouqua	Klein Fairview modern farmhouse	Modern		-28.391689	23.306539	NCW	NA
092	Gorachouqua	Fine grained quartzite flake	MSA	0-5	-28.389737	23.296519	NCW	NA
		Fine grained quartzite flake with						
093	Gorachouqua	central spine on dorsal	MSA	0-5	-28.39803309	23.29093546	NCW	NA
		Cream silcrete flake with other	-				-	
094	Gorachouqua	impurities colouring the material	MSA	0-5	-28.40625717	23.28382363	NCW	NA
		CCS flake use wear on lateral						
095	Gorachouqua	surface	MSA	0-5	-28.41403614	23.27601551	NCW	NA
096	Gorachouqua	CCS core flake	LSA	0-5	-28.41811748	23.28896134	NCW	NA
097	Gorachouqua	Hornfels flake	MSA	0-5	-28.41019470	23.29795640	NCW	NA
		Microlithic hornfels flake with						
098	Gorachouqua	retouch on ventral side	LSA	0-5	-28.39907132	23.30421540	NCW	NA
099	Gorachouqua	Hornfels flake edge retouched	MSA	0-5	-28.40135499	23.29659257	NCW	NA
100	Gorachouqua	Siltstone and CCS flakes, MSA	MSA	0-5	-28.42338189	23.29492422	NCW	NA
101	Gorachouqua	Hornfels flake with retouch	MSA	0-5	-28.41670395	23.30286131	NCW	NA
		Hornfels cores with blade like flake						
102	Gorachouqua	scars	MSA	0-5	-28.41151275	23.30845179	NCW	NA
103	Gorachouqua	Kraal, modern	Modern		-28.412617	23.289464	NCW	NA
104	Gorachouqua	Large early MSA siltstone flake	MSA	0-5	-28.41348613	23.31523282	NCW	NA
		Banded ironstone flake, early MSA,						
105	Gorachouqua	lateral retouch	MSA	0-5	-28.41816187	23.30995550	NCW	NA
106	Gorachouqua	Ccs point	MSA	0-5	-28.42241160	23.32400258	NCW	NA
107	Gorachouqua	Yellow hornfels core	LSA	0-5	-28.42446045	23.30894898	NCW	NA
_		Quartz core with notches on either						
108	Gorachouqua	side	MSA	0-5	-28.42720801	23.29907870	NCW	NA
109	Gorachouqua	Siltstone flake	MSA	0-5	-28.43396502	23.30976580	NCW	NA
110	Gorachouqua	Small hornfels triangular point	LSA	0-5	-28.43197166	23.32491929	NCW	NA
111	Gorachouqua	Hornfels flake	MSA	0-5	-28.42317792	23.33465571	NCW	NA
112	Gorachouqua	Large siltstone flake early MSA	MSA	0-5	-28.41685035	23.33626252	NCW	NA
113	Gorachouqua	Silstone flake core	MSA	0-5	-28.41381995	23.34344665	NCW	NA
								20m buffei
	Gorachouqua							

		Siltetopo flako waatharad aarlu						
115	Gorachouqua	Siltstone flake, weathered, early MSA	MSA	0-5	-28.36470497	23.3565771	NCW	NA
116	Khoemana	Dark black hornfels flake	MSA	0-5	-28.35788992	23.36338025	NCW	NA
117	Khoemana	High grade hornfels broken blade	MSA	0-5	-28.36494353	23.37050668	NCW	NA
117	Rhoemana	Ccs radial core on dorsal with	115A	0.5	20.30474333	23.37030000	NCVV	
118	Khoemana	bipolar reduction on ventral	MSA	0-5	-28.37167082	23.36932924	NCW	NA
110	Tribernana	Two siltstone artefacts, flake and	110/1	0.5	20.37107002	23.30732721	new	147.1
119	Khoemana	core	MSA	0-5	-28.37678871	23.37214916	NCW	NA
120	Khoemana	Quartz core and hornfels bladelet	LSA	0-5	-28.362711	23.38311	NCW	NA
120	Ribernana	Hornfels flakes, patinated and	LSA	0.5	20.302711	23.30311	INCOV	INA
121	Khoemana	weathered	MSA	0-5	-28.360145	23.379655	NCW	NA
121	Ribernana	Modern kraal, solar panels and	INGA	0.5	20.300143	23.379033	INCOV	NA NA
122	Khoemana	pump further away to west	Modern	n/a	-28.364498	23.386007	NCW	NA
122	Khoemana	Ccs core, LSA, hornfels flake, MSA	LSA+MSA	0-5	-28.362266	23.38967	NCW	NA
123		Hornfels flakes and cores	MSA	0-5		23.394798		
124	Khoemana		I¶ISA	0-5	-28.364821	25.394798	NCW	NA
105	1/h a ana ana a	Dark hornfels flakes and cores,		0.5	20 771504	27 707722	NCM	NIA
125	Khoemana	some LSA	LSA+MSA	0-5	-28.371594	23.393722	NCW	NA
126	1/h a ana ana a	Hornfels flakes showing some edge retouch but discarded		0.5	20 700070	27 700554	NCM	NIA
126	Khoemana		LSA	0-5	-28.380079	23.388556	NCW	NA
127	1/h a ana ana a	Hornfels flake weathered, siltstone	MCA	0.5	20 202075	27 70 4007	NCM	NIA
	Khoemana	core	MSA	0-5	-28.383075	23.384883	NCW	NA
128	Khoemana	Modern kraal	Modern	n/a	-28.38335	23.382923	NCW	NA
100		Quartz and dark hornfels cores,		0.5	20 207500	07 701704	NCM	NIA
129	Khoemana	hornfels flake	LSA	0-5	-28.387509	23.381724	NCW	NA
130	Khoemana	Dark hornfels flake, weathered	MSA	0-5	-28.389954	23.380802	NCW	NA
131	Khoemana	Ccs flake with parallel dorsal scars	MSA	0-5	-28.396098	23.376725	NCW	NA
470		Ccs flake, edge retouch, crater on		0.5	00 700070	07 777 407		
132	Khoemana	dorsal from flake removal	MSA	0-5	-28.399938	23.373423	NCW	NA
		Hornfels flake and ccs core flake						
		with retouched edge along lateral						
133	Khoemana	side	MSA	0-5	-28.383245	23.378173	NCW	NA
134	Khoemana	Banded ironstone point, MSA/LSA	LSA+MSA	0-5	-28.376715	23.381692	NCW	NA
		Hornflakes flakes from blade			00770504	07 770 075		
135	Khoemana	reduction	MSA	0-5	-28.372581	23.378975	NCW	NA
136	Khoemana	Hornfels segment, edge retouched	MSA	0-5	-28.371693	23.387703	NCW	NA
137	Khoemana	Siltstone early Msa flake	MSA	0-5	-28.370794	23.388205	NCW	NA
		Hornfels cores and flakes, early MSA						
138	Khoemana	biface	MSA	0-5	-28.367467	23.384353	NCW	NA
139	Khoemana	Windmill and tank	Modern	n/a	-28.401142	23.362084	NCW	NA
140	Khoemana	Hornfels core	MSA	0-5	-28.403605	23.369336	NCW	NA
		Large broken msa blade, lateral						
141	Khoemana	retouch	MSA	0-5	-28.413891	23.362006	NCW	NA
142	Khoemana	Ccs flakes, retouched	MSA	0-5	-28.420589	23.369097	NCW	NA
143	Khoemana	Patinated hornfels flake	MSA	0-5	-28.410778	23.372015	NCW	NA
		Early Msa siltstone flakes, large,						
144	Khoemana	notched	MSA	0-5	-28.423777	23.372762	NCW	NA
		Patinated hornfels flake and ccs						
145	Khoemana	point	MSA	0-5	-28.426919	23.378229	NCW	NA
		Long hornfels flake, pointed with						
146	Khoemana	curved end	MSA	0-5	-28.433338	23.387221	NCW	NA
		Large weathered siltstone flake and						
147	Khoemana	hornfels radial core	MSA	0-5	-28.424638	23.391482	NCW	NA
		Chert/ccs point and flake, edge						
148	Khoemana	retouch	MSA	0-5	-28.418097	23.38885	NCW	NA
149	Khoemana	Small ccs core	LSA	0-5	-28.423807	23.384052	NCW	NA
150	Khoemana	Red and dark blue ccs flakes, core	LSA+MSA	0-5	-28.418954	23.379532	NCW	NA
		Hornfels core and siltstone large						
	Khoemana	early MSA flake	MSA	0-5	-28.413714	23.382633	NCW	NA
151					1	1		
151		Red ccs flake with prominent bulb of						

153	Khoemana	Windmill and tank	Modern	n/a	-28.419661	23.375724	NCW	NA
154	Khoemana	Modern building,likely a hunting hide	Modern	n/a	-28.422713	23.381777	NCW	NA
155	Khoemana	Griqua graves 12	Historic	n/a	-28.3956	23.35636	IIIA	No-go area
156	Khoemana	Farm staff graves, 3 marked	Historic	n/a	-28.39455	23.35378	IIIA	No-go area
		Ou Huis grave, Roberts. Piet						
157	Khoemana	Modise's father buried here too	Historic	n/a	-28.38684	23.35592	IIIA	No-go area
		Taaibosputs farm, modern						
158	Grid	farmhouse on southern side of road	Modern	n/a	-28.434514	23.372546	NCW	NA
		Ubiquitous hornfels gravels from						
150		road, some artefactual flakes and	NACA	0.5	20 440754	07 700007		
159	Khoemana	cores	MSA	0-5	-28.440754	23.390283	NCW	NA
		Jacobsfontein, poor state						
		farmhouse est 1950s with garage. Opposite side (north) of road is a						
160	Grid	modern incomplete shed and kraals	Modern	n/a	-28.442004	23.400752	NCW	NA
100	Grid	Older cottage, clay walls exposed,	Houern	nyu	20.442004	23.400732	TAC VV	20m buffer
161	Grid	corrugated iron roof	Historic	n/a	-28.442405	23.403209	IIIC	area
		Rocky Flats, Main farmhouse tucked		, .				
162	Grid	behind trees	Modern	n/a	-28.439585	23.403717	NCW	NA
		Dark hornfels flake with edge		.,				
163	Khoemana	retouch	MSA	0-5	-28.44412985	23.44402707	NCW	NA
164	Khoemana	Triangular hornfels flake	MSA	0-5	-28.44222381	23.45773858	NCW	NA
165	Khoemana	CCS point	LSA	0-5	-28.44060263	23.47212043	NCW	NA
166	Khoemana	Weathered ccs flake	LSA	0-5	-28.4388576	23.4915764	NCW	NA
167	Khoemana	Hornfels scraper, edge retouch	MSA	0-5	-28.4317788	23.49626923	NCW	NA
168	Kora	CCS core	LSA	0-5	-28.42192371	23.5008643	NCW	NA
		CCS flakes and cores, primary						
169	Kora	discard – not much retouch	LSA	0-5	-28.40469398	23.50895285	NCW	NA
170	Kora	Hornfels flake and core	LSA	0-5	-28.4014453	23.51047102	NCW	NA
171	Kora	High grade hornfels point	LSA	0-5	-28.39108537	23.51534076	NCW	NA
172	Kora	CCS flake and core	LSA	0-5	-28.37734345	23.52073556	NCW	NA
173	Kora	Hornfels flake	MSA	0-5	-28.36457698	23.52826619	NCW	NA
		Historical graffiti on various flat						
		rocks on top of outcrop, no dates,						
		just initials and names and some "I						
174	Khoemana	love you's"	Historic	n/a	-28.384464	23.361162	IIIA	No go area
		Farm graveyard; Brits, van den						200m Buffe
175	Kora	Berg, 2 marked graves fenced off	Historic	n/a	-28.376	23.2618	IIIA	area
		Farmersfield farmhouse complex,						
176	Kora	mainly modern buildings	Modern	n/a	-28.37693	23.26088	NCW	NA
		More outbuildings related to the						
177	Kora	farm	Modern	n/a	-28.37833	23.26089	NCW	NA
178	Kora	Siltstone core, early MSA	MSA	0-5	-28.38273	23.25147	NCW	NA
170		Siltstone flake, prominent bulb of		0.5	0070004	07.04///		
179	Kora	percussion, core	MSA	0-5	-28.38024	23.24666	NCW	NA
100	IZ	Siltstone /hornfels core and struck	NACA	0.5	20.77(/7	07.04.47		
180	Kora	flake	MSA	0-5	-28.37663	23.2447	NCW	NA
181	Kora	Siltstone core	MSA	0-5	-28.37679	23.24003	NCW	NA
100	Kora	Hornfels core, scars on either side	LSA	0-5	-20 77040	23 24105	NCW	NIA
182	Kora	forming wedge			-28.37949	23.24105		NA
183	Kora	Ccs core, only partially reduced	LSA	0-5	-28.38179	23.24343	NCW	NA
184	Kora	Kraal, windmill and tank	Modern	n/a	-28.38137	23.248	NCW	NA
185 186	Kora	Quartzite flake and quartz core	LSA	0-5	-28.38234	23.23759	NCW	NA
	Kora	Ccs core	LSA	0-5	-28.38361	23.23918	NCW	NA
100		Black ccs point, edge retouched,	104		-20 20/54	27 27512	NCW	NIA.
	1/00-	dorsal scars showing reduction	LSA	0-5 n/a	-28.38656	23.23542	NCW	NA
187	Kora	المتعالية والتصابية المعام المعالية		n/a	-28.39341	23.2565	NCW	NA
187 188	Kora	Kraal, windmill and tank	Modern			27.27.244	NCV	N L A
187 188 189	Kora Kora	Siltstone cores and hammerstone	MSA	0-5	-28.38905	23.23244	NCW	NA
187 188	Kora					23.23244 23.23346 23.23776	NCW NCW NCW	NA NA NA

235							1	
	Koraqua	Quartzite flakes	MSA	0-5	-28.37326	23.28982	NCW	NA
234	Koraqua	Vein quartz flake with large dorsal scar	MSA	0-5	-28.37326	23.28982	NCW	NA
233	Koraqua	microlithic core	LSA+MSA	0-5	-28.36885	23.28443	NCW	NA
		Yellow hornfels flake and ccs					1	
232	Koraqua	Hornfels flake point reworked	LSA	0-5	-28.36703	23.27666	NCW	NA
231	Koraqua	edge retouch	MSA	0-5	-28.36179	23.26839	NCW	NA
230	Koraqua	marked with stones Ccs core and triangular flake, some	Historic	n/a	-28.35683	23.27494		area
270	Konner	graves and at least 2 other graves	Lieter'-	a la	20.75/07	07 07404		200m Buffe
		Graves, 2 young girls in formal						000
229	Kora	Siltstone cores and flakes	MSA	0-5	-28.3735	23.26762	NCW	NA
228	Kora	Siltstone cores and flakes	MSA	0-5	-28.36784	23.26686	NCW	NA
227	Kora	Kraal and tank	Modern	n/a	-28.38124	23.27254	NCW	NA
226	Kora	Windmill and tank	Modern	n/a	-28.38503	23.26609	NCW	NA
225	Kora	Hornfels blade core	LSA	0-5	-28.37303	23.2731	NCW	NA
224	Kora	Serrated ccs flake with curved point	MSA	0-5	-28.37283	23.27857	NCW	NA
223	Kora	Hornfels point	LSA	0-5	-28.3774	23.28408	NCW	NA
222	Kora	Ccs bladelet core	MSA	0-5	-28.37908	23.28955	NCW	NA
221	Kora	Ccs core flake	MSA	0-5	-28.38249	23.29518	NCW	NA
220	Kora	Hornfels core	LSA	0-5	-28.38452	23.28989	NCW	NA
219	Kora	Early Msa triangular flake, siltstone	MSA	0-5	-28.3826	23.28278	NCW	NA
218	Kora	flake	MSA	0-5	-28.37892	23.27485	NCW	NA
217	Kora	MSA Broken hornfels blade and quartzite	MSA	0-5	-28.38538	23.27661	NCW	NA
217	Kora	Weathered quartzite flake, early	MCA	0 5	20 20520	77 77641	NCW	NIA
216	Kora	flakes	MSA	0-5	-28.38869	23.28243	NCW	NA
		Brown and black hornfels cores and		a -				
215	Kora	Green chalcedony cores and flakes	LSA+MSA	0-5	-28.38975	23.28648	NCW	NA
214	Kora	Banded quartz core	LSA	0-5	-28.39023	23.29089	NCW	NA
213	Kora	patinated hornfels blade	MSA	0-5	-28.39418	23.2867	NCW	NA
		Chalcedony flake, pointed,						
212	Kora	Hornfels microlithic point	LSA	0-5	-28.39222	23.27787	NCW	NA
211	Kora	Hornfels point and flake	MSA	0-5	-28.39158	23.2724	NCW	NA
210	Kora	Fine grained quartzite flake	LSA	0-5	-28.38742	23.26223	NCW	NA
209	Kora	Green chalcedony points	LSA	0-5	-28.38357	23.26817	NCW	NA
208	Kora	platform, probably hafted	MSA	0-5	-28.38911	23.26911	NCW	NA
207	Rord	Hornfels flake with narrowed	110/1		20.37000	23.27730	- nem	
207	Kora	percussion	MSA	0-5	-28.39666	23.27758	NCW	NA
206	Kora	Hornfels point and quartz core Quartzite flake, prominent bulb of	MSA	0-5	-28.40018	23.28099	NCW	NA
205	Kora	retouch	MSA	0-5	-28.4058	23.27468	NCW	NA
205	1/	Dark hornfels point with lateral	NAC A	0 F	20.4050	27.274/0	NOUL	K I A
204	Kora	retouched edges	MSA	0-5	-28.40637	23.2661	NCW	NA
		Fine grained quartzite flakes, curved						
203	Kora	Siltstone core and flake, early MSA	MSA	0-5	-28.41205	23.27087	NCW	NA
202	Kora	Kraal and tank	Modern	n/a	-28.40199	23.2735	NCW	NA
201	Kora	quartzite core	LSA	0-5	-28.40136	23.26024	NCW	NA
200	Kora	Quartz, Silcrete, hornfels microliths	LSA	5-10	-28.39638	23.26306	NCW	NA
199	Kora	windmill	Modern	n/a	-28.39862	23.26985	NCW	NA
198	Kora	Hornfels point, retouched edges	LSA	0-5	-28.39486	23.25441	NCW	NA
197	Kora	Siltstone core and flake	MSA	0-5	-28.40179	23.25054	NCW	NA
196	Kora	Quartzsite flake	MSA	0-5	-28.39686	23.24539	NCW	NA
194	Kora Kora	Siltstone core extensively flaked	MSA	0-5 0-5	-28.39228	23.23299	NCW	NA NA
194	Kora	Broken hornfels blade with lateral retouch	MSA	0 F	-28.38738	23.25299	NCW	NIA
175	Kora	Fine grained quartzite flake	MSA	0-5	-28.38738	23.24599	NCW	NA
193				0.5	00 70770	07.04500	1.0.1	

		faceted platform			T			
		Blade point hornfels, some retouch						
237	Koraqua	on ventral surface	MSA	0-5	-28.37361	23.29855	NCW	NA
		Ccs flake showing step hinge						
238	Koraqua	terminations	MSA	0-5	-28.36879	23.29337	NCW	NA
		Long patinated hornfels core with						
239	Koraqua	flaking and recovered flake scars	MSA	0-5	-28.36505	23.29634	NCW	NA
240	Koraqua	Quartzite core	MSA	0-5	-28.36795	23.30104	NCW	NA
241	Koraqua	Hornfels core	LSA	0-5	-28.37147	23.30669	NCW	NA
242	Koraqua	Red ironstone pointed flake	MSA	0-5	-28.36508	23.3076	NCW	NA
243	Koraqua	Red ironstone core and flake blade	MSA	0-5	-28.36225	23.30289	NCW	NA
		Red ironstone and quartz mixed						
244	Koraqua	flake, early msa	MSA	0-5	-28.36041	23.29415	NCW	NA
245	Koraqua	Kraal, windmill and tank	Modern	n/a	-28.36587	23.29043	NCW	NA
246	Koraqua	Tank and kraal	Modern	n/a	-28.36321	23.29623	NCW	NA
247	Koraqua	Quartz core, very fine flake scars	LSA	0-5	-28.36314	23.31407	NCW	NA
248	Koraqua	Red banded ironstone core	MSA	0-5	-28.3574	23.31362	NCW	NA
249	Koraqua	Unworked siltstone flakes, discard	MSA	0-5	-28.35503	23.30788	NCW	NA
250	Koraqua	Curled hornfels flake with retouch	MSA	0-5	-28.3547	23.32272	NCW	NA
		Microliths, siltstone, quartz, Silcrete,						
251	Koraqua	chert	LSA	0-5	-28.34732	23.32342	NCW	NA
252	Koraqua	Hornfels flake with edge retouch	MSA	0-5	-28.34649	23.32871	NCW	NA
252	Koraqua	Hornfels adze	MSA	0-5	-28.34328	23.31838	NCW	NA
255	Koraqua	Siltstone and hornfels cores	MSA	0-5	-28.34916	23.31630	NCW	NA
255	Koraqua	Siltstone flake and core	MSA	0-5	-28.35033	23.31021	NCW	NA
255	Koraqua	Kraal, windmill and tank	Modern	n/a	-28.34748	23.30555	NCW	NA
250		Tank			-28.34381	23.29924	NCW	
	Koraqua		Modern	n/a				NA
258	Koraqua	Kraal and tanks	Modern	n/a	-28.3398	23.29255	NCW	NA
259	Koraqua	Siltstone and hornfels flakes	MSA	0-5	-28.3442	23.31298	NCW	NA
260	Koraqua	Quartz flake and core	LSA	0-5	-28.34204	23.30812	NCW	NA
		Long siltstone flake patinated with						
0.44		retouched end, similar to a large		0.5	00.77.444	07 74040		
261	Koraqua	adze	MSA	0-5	-28.33611	23.31019	NCW	NA
262	Koraqua	Siltstone core	MSA	0-5	-28.3319	23.30335	NCW	NA
263	Koraqua	Hornfels microliths	LSA	0-5	-28.32812	23.29371	NCW	NA
		Hornfels flakes, some only debitage,						
264	Koraqua	thumbnail scraper	LSA	0-5	-28.33173	23.29239	NCW	NA
		Hornfels flake with a lot of cortex						
265	Koraqua	remaining and siltstone flake	MSA	0-5	-28.33597	23.29956	NCW	NA
266	Koraqua	Siltstone chopper	MSA	0-5	-28.3402	23.30266	NCW	NA
267	Koraqua	Hornfels core and flake	LSA	0-5	-28.33596	23.28873	NCW	NA
268	Koraqua	Hornfels flake	MSA	0-5	-28.33984	23.28331	NCW	NA
269	Koraqua	Quartz, ccs and hornfels flakes	MSA	0-5	-28.3476	23.2785	NCW	NA
270	Koraqua	Siltstone flakes	MSA	0-5	-28.35044	23.28666	NCW	NA
		Hornfels flakes with longitudinal						
271	Koraqua	scars on dorsal	MSA	0-5	-28.34433	23.2891	NCW	NA
272	Koraqua	Hornfels core	MSA	0-5	-28.34994	23.29852	NCW	NA
273	Koraqua	Hornfels flakes	MSA	0-5	-28.35408	23.30197	NCW	NA
		Quartz crystal, core and hornfels			1			
274	Koraqua	flakes	LSA	0-5	-28.35377	23.29645	NCW	NA
275	Koraqua	Hornfels flakes	MSA	0-5	-28.35477	23.29095	NCW	NA
		Spring Valley farmhouse complex,						
		modern buildings on eastern end,						200m no
		some older historic buildings on						developmen
276	Koraqua	western end	Historic	n/a	-28.35844	23.27824	ШВ	buffer
	· · ·	Possible graves near Griekwastad						1
		road on the eastern end and on						
		the de Klerk's ground. If these are						1
	Khoemana	graves there are about 10 in all	Historic	n/a	-28.395504	23.368983	IIIA	No-go area

Table 1b: Observations noted during the field assessment in March 2022 for the amended southern grid alignment

Obs #	Project	Description	Period	Density	Co-Ordinates		Grading	Mitigation
		Light brown hornfels with most of						
278	Grid	the edge retouched	LSA	0 to 5	-28.34516239	23.58926686	NCW	NA
279	Grid	Hornfels debitage	LSA	0 to 5	-28.349886	23.579093	NCW	NA
280	Grid	Chert core	LSA	0 to 5	-28.35348421	23.56608137	NCW	NA
281	Grid	Fine grained hornfels point, retouch	LSA	0 to 5	-28.355791	23.559362	NCW	NA
282	Grid	Hornfels core	MSA	0 to 5	-28.35951154	23.54945785	NCW	NA
		Reddish hornfels core flake, edge						
283	Grid	retouched	MSA	0 to 5	-28.36196068	23.54219168	NCW	NA
284	Grid	Chert flake, lateral edge retouch	MSA	0 to 5	-28.36620806	23.5357312	NCW	NA
285	Grid	Chert point	MSA	0 to 5	-28.37410031	23.53031145	NCW	NA
286	Grid	Light brown hornfels core	LSA	0 to 5	-28.37894424	23.52739722	NCW	NA
287	Grid	Microlithic hornfels core and flake	LSA	0 to 5	-28.38426512	23.52375533	NCW	NA
288	Grid	Large red hornfels core	MSA	0 to 5	-28.38968236	23.52012152	NCW	NA
289	Grid	Light brown hornfels point	LSA	0 to 5	-28.39339719	23.51762844	NCW	NA
290	Grid	Hornfels flake	MSA	0 to 5	-28.39951785	23.51313933	NCW	NA

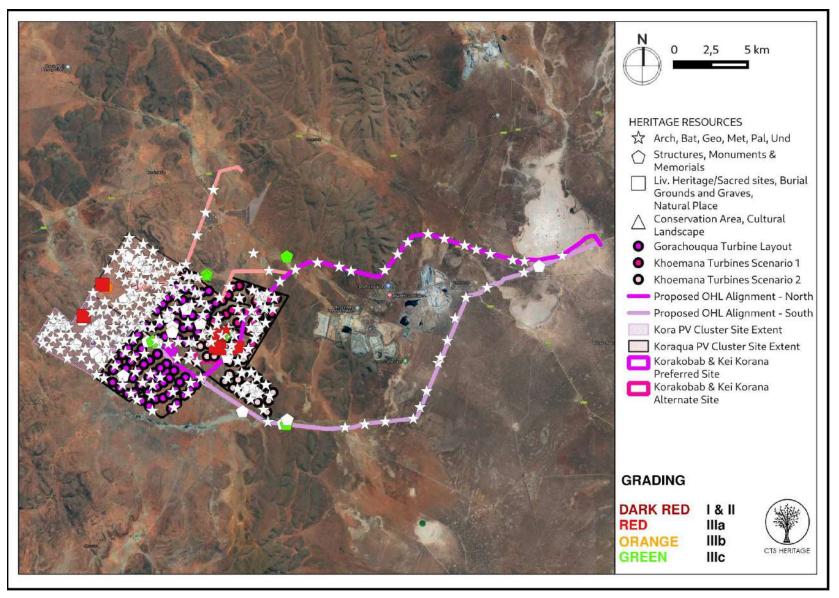


Figure 6: Map of heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint

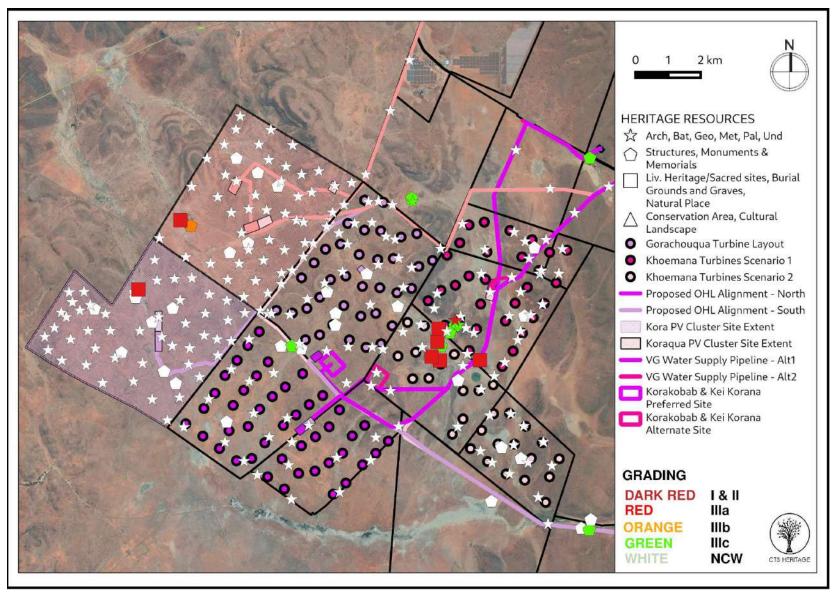


Figure 6.1: Map of heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint

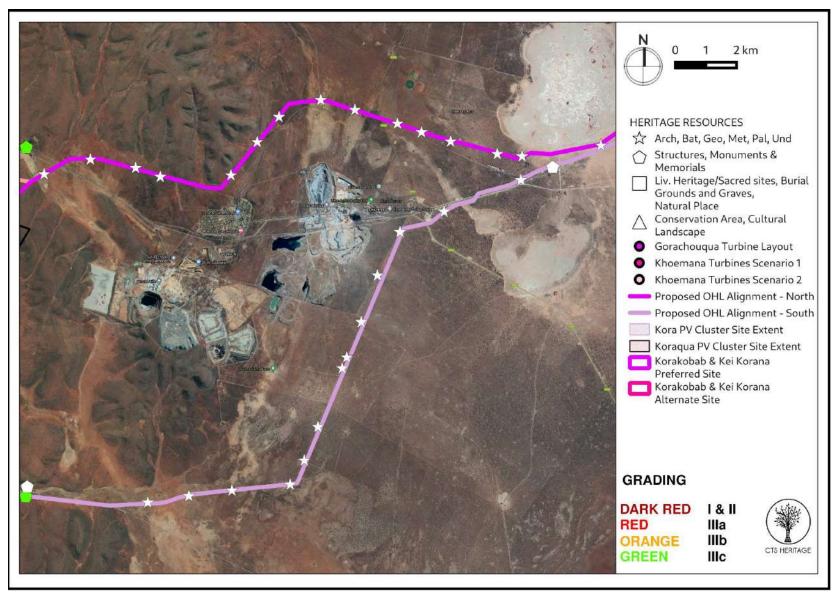


Figure 6.2: Map of heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint

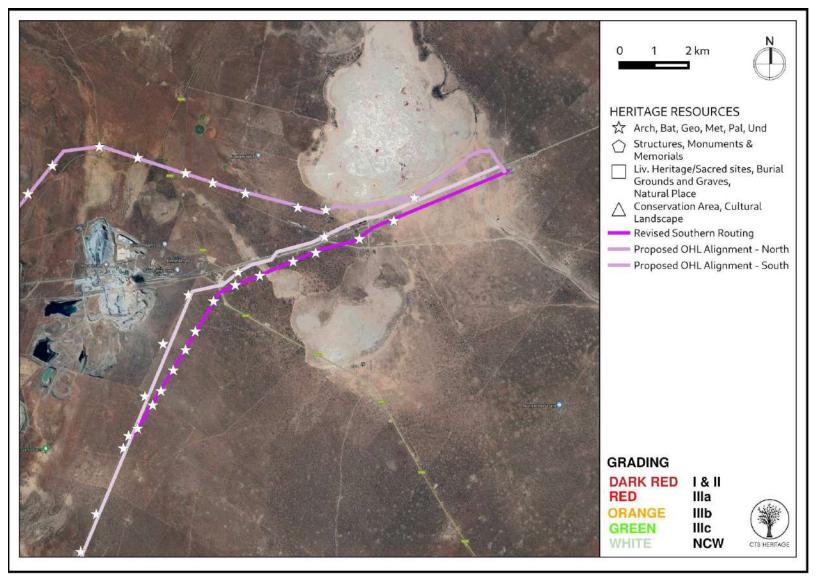


Figure 6.3: Map of heritage resources identified during the field assessment, relative to the proposed development footprint of the revised southern OHL routing. All observations made were determined to

be Not Conservation-Worthy

4.3 Selected photographic record

(a full photographic record is available upon request)

Figure 7.1: Site No. 22

Figure 7.2: Site No. 23

Figure 7.3: Site No. 24

Figure 7.4: Site No. 53

Figure 7.5 Site No. 54

Figure 7.6 Site No. 59

Figure 7.7 Site No. 82

Figure 7.8 Site No. 82

Figure 7.9 Site No. 83

Figure 7.10 Site No. 84

Figure 7.11 Site No. 114

Figure 7.12 Site No. 155

Figure 7.13 Site No. 156

Figure 7.14 Site No. 157

Figure 7.15 Site No. 161

Figure 7.16 Site No. 174

Figure 7.17 Site No. 174

Figure 7.18 Site No. 174

Figure 7.19 Site No. 174

Figure 7.20 Site No. 175

Figure 7.21 Site No. 230

Figure 7.22 Site No. 230

5. ASSESSMENT OF THE IMPACT OF THE DEVELOPMENT

5.1 Assessment of impact to Archaeological Resources

The heritage field assessment identified a number of heritage resources located within the areas proposed for development. The majority of these heritage resources were determined to be not conservation-worthy and as such, no further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. It is important that the spatial relationship of these resources is not disrupted by the proposed development.

Below, we detail the specific heritage resources identified within each proposed project associated with the Taaibosch Puts Renewable Energy Development.

Khoemana WEF

There are a number of significant heritage resources located within the footprint of the Khoemana WEF development, most of which are oriented around Strathmore Farm (Site No. 54) and the ruined farm werf (Site No. 82). The identified heritage resources located in close proximity to the Strathmore Farm, the irrigation furrows and the ruined farm werf include a number of burial ground or graves (Site No. 53, 155, 156, 157 and 277), stone kraals (Site No. 83 and 84) and archaeological sites (Site No. 59 and 174).

In the layout provided, a number of turbines are proposed to be located in very close proximity to these resources, thereby disrupting the historic integrity of the landscape. In order to conserve these resources and the unique spatial relationship that they have, a no development zone is proposed around these sites (Figure 9.1). Turbines 25, 29, 30, 33 and 34 fall within this no-development zone and as such, it is recommended that they be removed from the layout proposal as they are not supported from a heritage perspective.

Gorachouqua WEF

The older Klein Fairview farmhouse is located within this development layout (Site No. 114). This site is located along an existing road and within a proposed grid alignment. While no direct impact from the proposed development is anticipated, the nearest turbine to this heritage resource is Turbine 34 located only 450m away. It is recommended that this turbine be removed from the layout in order to conserve the context of this heritage resource.

Koraqua PV

The Springvalley Farm Complex (Site No. 276) and a burial (Site No. 230) are located within the Koraqua PV. In the layout that has been provided these sites are located within the PV area however it is recommended that no impact to

these sites is permitted. A no development buffer of 200m around each site is recommended to ensure that no impact occurs.

Kora PV

The van den Berg historic homestead (Site No. 175) is located within the area proposed for the Kora PV Facility. In the layout that has been provided this site is located within the PV area however it is recommended that no impact to this site is permitted. A no development buffer of 200m around this site is recommended to ensure that no impact occurs.

Grid Connections

An older clay cottage (Site No. 161) is located along the southern grid connection. This site is located along an existing road and within a proposed grid alignment. While no direct impact from the proposed development is anticipated, it is important that no pylons are placed within 20m of the structure and as such, a 20m no development buffer is recommended around this site.

Other heritage resources identified as part of previous HIA processes are known in close proximity to the grid alignments. These are mapped in Figure 3 and include archaeological sites 44751, 44759 and 44762 graded IIIC. These archaeological resources are located more than 100m from the proposed north grid alignment and as such, no impact is anticipated.

Structures 85446 and 85447 graded IIIB are located more than 100m from the proposed south grid alignment and as such, no impact is anticipated.

No heritage resources of significance were identified along the proposed amended southern grid routing.

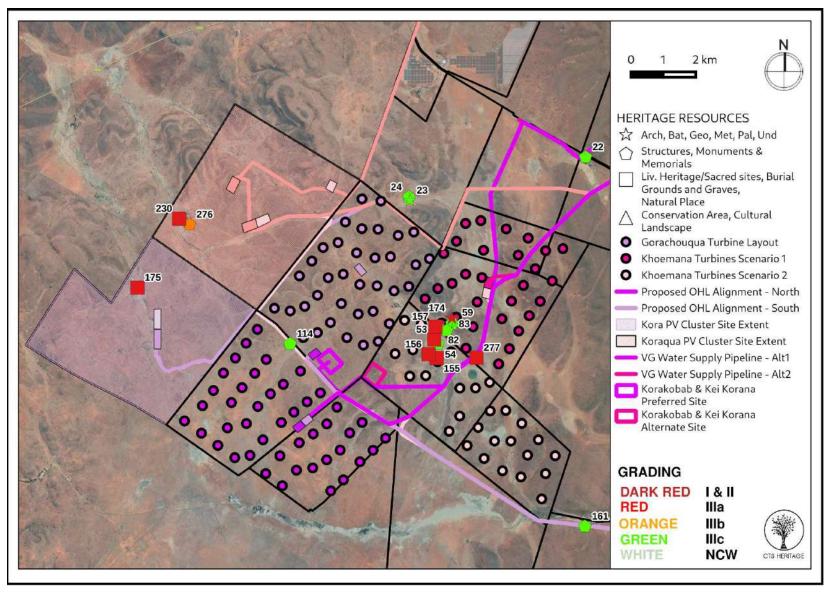


Figure 8: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint

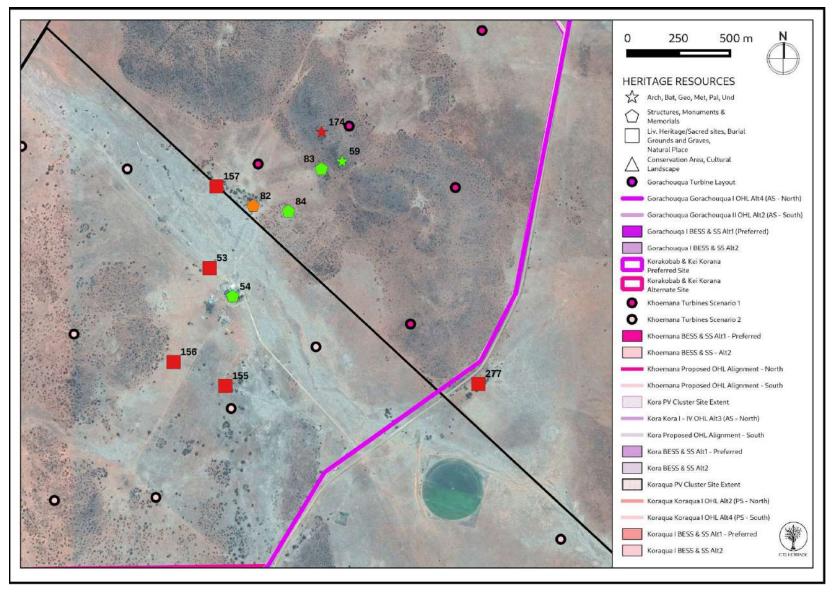


Figure 8.1: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint

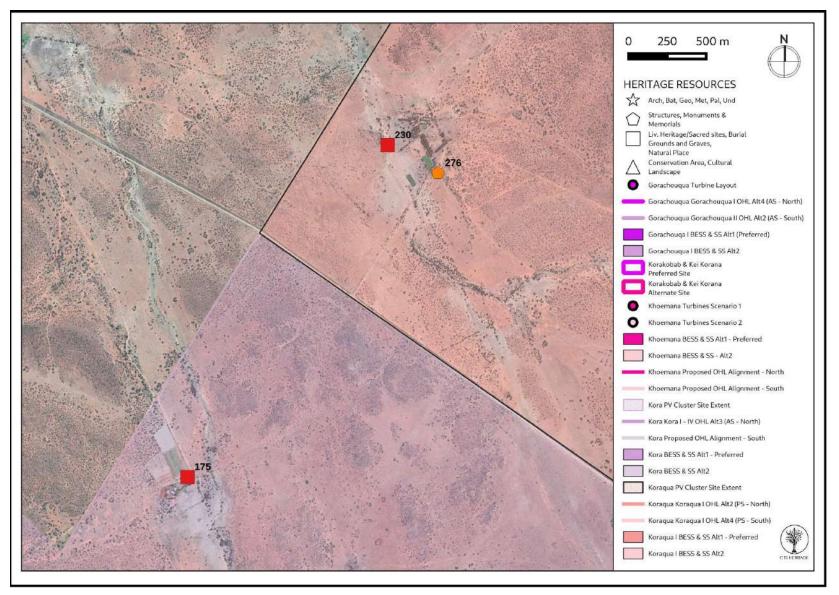


Figure 8.2: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint

6. CONCLUSION AND RECOMMENDATIONS

As was anticipated, the archaeological field assessment revealed a great many heritage resources evident within the development area - 277 in total. The vast majority of these resources, consisting of individual artefacts and low density artefact scatters ascribed to the Middle and Later Stone Age as well as rural infrastructure such as wind mills, have been determined to be not conservation-worthy. No further mitigation for impacts to these heritage observations is recommended.

A number of heritage resources of significance were, however, identified. These resources range from significant archaeological sites and scatters, to burial grounds and graves as well as historic farm werfs and infrastructure such as the irrigation furrows ascribed to the work of the London Missionary Society and the local Griekwa population. The relationship between the furrows, the farm werfs and the burials form a unique and layered cultural landscape that speaks to the unique past of this area and its Griekwa inhabitants. It is important that the spatial relationship of these resources is not disrupted by the proposed development. Various mitigation measures are proposed in Table 3 above and in the below recommendations in order to mitigate these impacts.

Recommendations

There is no objection to the proposed development from an archaeological perspective on condition that the following mitigation measures are implemented:

- 1. The no go area identified in Figure 9.1 must be adhered to. No turbines or associated infrastructure is permitted within this area. This includes Khoemana Turbines 25, 29, 30, 33 and 34
- 2. A minimum no-go development area of 200m must be implemented around Sites 175, 230 and 276 to ensure the conservation of the broader context of these resources (Figure 9.2)
- 3. A minimum no-go development area of 20m must be implemented around Sites 114 and 161 to ensure that no impact to these structures takes place (Figure 9.3 and Figure 9.4)
- 4. The Gorachouqua Turbine 34 must be removed from the layout (Figure 9.3).
- 5. Should any human remains, burials or burial grounds be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Burial Grounds and Graves Unit must be contacted regarding a way forward.
- 6. Should any archaeological resources be uncovered during construction activities, work must cease in the vicinity of the find and the SAHRA Archaeology, Palaeontology and Meteorites Unit must be contacted regarding a way forward.

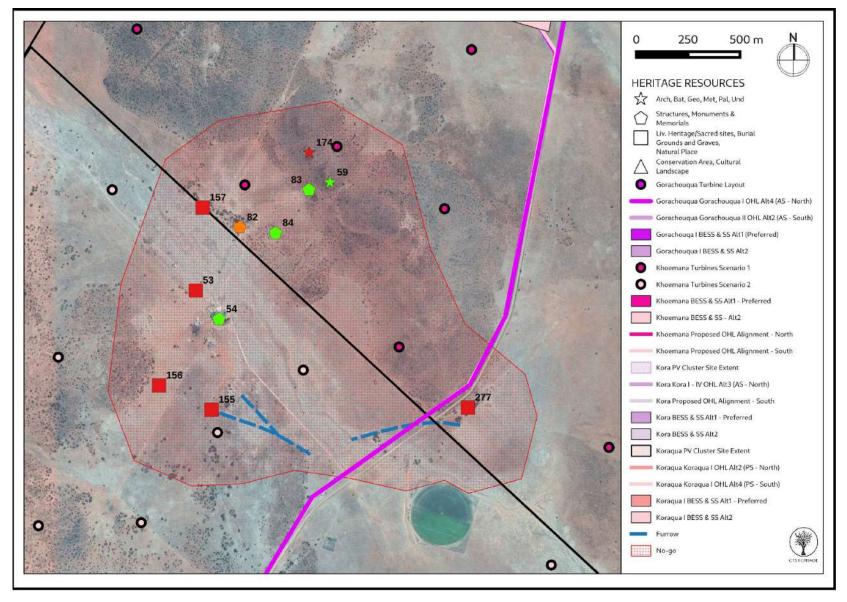


Figure 9.1: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint including recommended no-go area

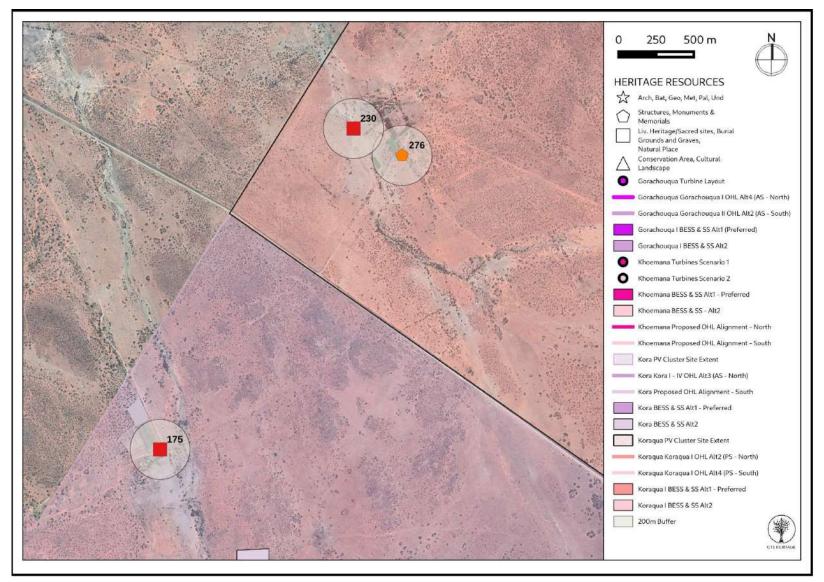


Figure 9.2: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint including recommended 200m buffers

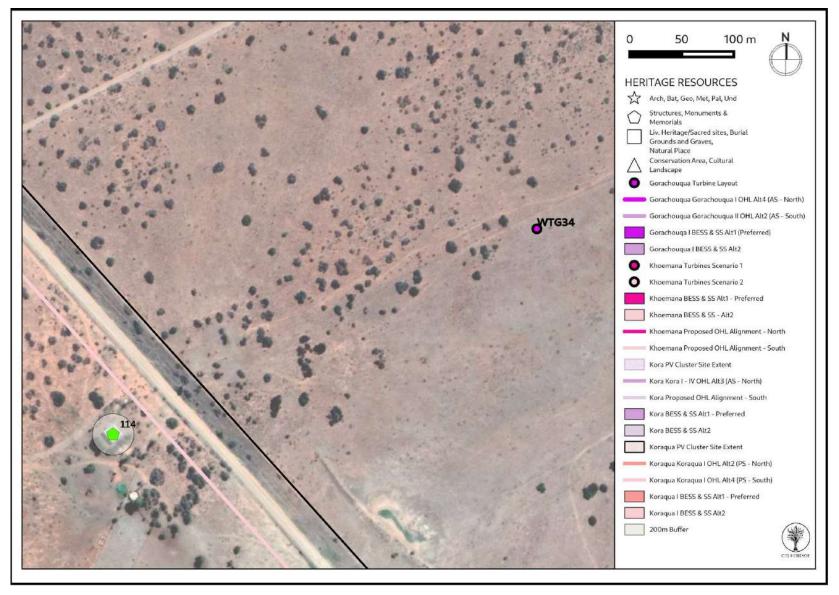


Figure 9.3: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint including recommended 20m buffers

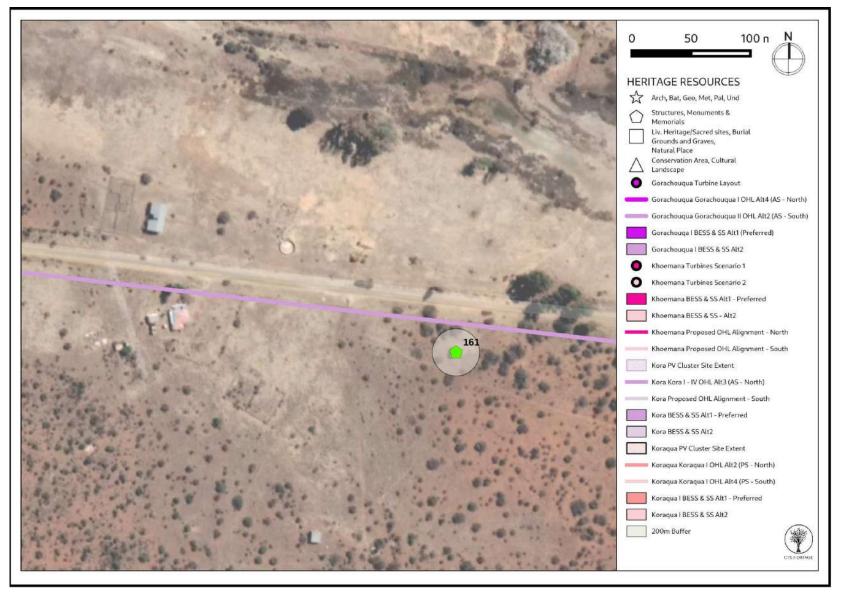


Figure 9.4: Map of significant heritage resources identified during the field assessment, and known sites, relative to the proposed development footprint including recommended 20m buffers

7. REFERENCES

	Heritage Impact Assessments								
Nid	Report Type	Author/s	Date	Title					
6780	AIA Phase 1	Zoe Henderson	01/09/2005	Cultural Heritage Assessment for Finsch Mine					
7842	AIA Phase 1	Cobus Dreyer	19/11/2007	Archaeological and Historical Investigation of the Proposed Mining Activities at the Farm Rosslyn, Lime Acres, Northern Cape					
4602	AIA Phase 1	David Morris	01/07/2008	Archaeological and Heritage Impact Assessment on Remainder of Carter Block 458, near Limeacres, Northern Cape					
163992		Wouter Fourie	03/12/2013	Proposed Construction of the Limestone 1 - 132kV Power Line and the associated Switchyards on Portion 0 (remaining extent) of the Farm 267, Northern Cape Province					
164009	Heritage Impact Assessment Specialist Reports	Wouter Fourie	03/12/2013	Proposed Decommissioning and Construction of the Limestone 2 - 132kV Power Line and the associated Switchyards on Portion 0 (remaining extent) of the Plaas 267 Arriesfontein, Northern Cape Province					
6218	AIA Phase 1	Wouter Fourie	27/03/2012	Heritage Impact Assessment: The proposed 10mw Photovoltaic (PV) Power Plant on the Farm Arriesfontein (Farm 267) near Danielskuil, Northern Cape Province					
6958	AIA Phase 1	Wouter Fourie	10/06/2011	Humansrus Solar Thermal Energy Power Plant, Postmasburg					
8240	AIA Phase 1	David Morris	11/06/2010	Proposed development of PV Power Station at Welcome Wood, near Owendale, Northern Cape					
8368	AIA Phase 1	Karen Van Ryneveld	29/06/2005	Cultural Heritage Site Inspection Report for the Purpose of a Prospecting Right EMP - (Portion of) Skeyfontein 536, Postmasburg District, Northern Cape, South Africa					
8899	PIA Phase 1	John E Almond	04/05/2011	Recommended exemption from further palaeontological studies: Proposed Humansrus Solar Thermal Energy Power Plant development on Farm 469, near Postmasburg, Northern Cape Province					
9047	PIA Phase 1	John E Almond	11/06/2010	Proposed photovoltaic power station adjacent to Welcome Wood Substation, Owendale near Postmasburg, Northern Cape Province					
73252	HIA Phase 1	Wouter Fourie	13/09/2012	Heritage Impact Assessment - Proposed Construction of 132kv Power Line and Switchyard Associated with the Redstone Solar Thermal Energy Plant in the Northern Cape Province					
83272	HIA Phase 1	David Morris	01/08/2012	Archaeological & Cultural Heritage Impact Assessment Phase 1: Proposed Olien Solar Project development on Portion 4 of Farm 300, Barkly West, near Limeacres, Northern Cape					
83273	PIA Desktop	Jennifer Botha-Brink	26/06/2012	PALAEONTOLOGICAL IMPACT ASSESSMENT OF THE PROPOSED OLIEN SOLAR PROJECT ON FARM 300, BARKLY WEST, NORTHERN CAPE PROVINCE					
109815	HIA Phase 1	Wouter Fourie	22/03/2012	132 kV Power line connection to the Humasrus Solar Thermal Energy Power plant, postmasburg.					
114648	PIA Desktop	John E Almond	01/09/2012	Palaeontological specialist assessment: desktop study PROPOSED 16 MTPA EXPANSION OF TRANSNETà€™S EXISTING MANGANESE ORE EXPORT RAILWAY LINE & ASSOCIATED INFRASTRUCTURE BETWEEN HOTAZEL AND THE PORT OF NGQURA, NORTHERN & EASTERN CAPE.					

				Part 1: Hotazel to Kimberley, Northern Cape
122772	HIA Phase 1	Wouter Fourie	01/09/2011	Heritage Impact Assessment for the Humansrus Solar Thermal Energy Power Plant, Postmasburg
123342	HIA Phase 1	Marko Hutten	01/04/2013	Renewable Energy Generation project on the farm Grootvlei 296, Kgatelopele Local Municipality, Siyanda District Municipality, Northern Cape Province
129751	HIA Phase 1	Elize Becker	20/02/2013	Phase 1 Heritage Impact Assessment Hotazel to Kimberley and De Aar to Port of Ngqura
155262	PIA Desktop	John E Almond	22/12/2013	Palaeontological Heritage Basic Assessment: Desktop Study - Proposed construction of a 132 kV power line and switchyard associated with the Redstone Solar Thermal Energy Plant near Postmasburg, Northern Cape Province
156348	Archaeologi cal Monitoring	Lloyd Rossouw	08/01/2014	Updated report on the Cultural Heritage Impact Assessment for Petra Diamonds Finsch Mine
162535	AIA Phase 1	David Morris	02/03/2012	Archaeological Impact Assessment Phase 1: Proposed development of a PV Power Station at Welcome Wood (extended area), near Owendale, Northern Cape
162542	PIA Desktop	John E Almond	01/02/2012	PALAEONTOLOGICAL IMPACT ASSESSMENT: DESKTOP STUDY Proposed PV power stations Welcome Wood II and III adjacent to Welcome Wood Substation, near DaniëIskuil, Northern Cape Province
173943	Heritage Impact Assessment Specialist Reports	Marko Hutten, John Almond	15/07/2014	Proposed Construction of two 132kV Power Lines and Switchyards to connect the ACWA Power SolarReserve Redstone Solar Thermal Power Plant with the Olien Substation – Option 1: ACWA Power SolarReserve Redstone Solar Thermal Power Plant to Olien Substation, in the ZF Ngcawu District Municipality – Heritage Impact Assessment
173967	Heritage Impact Assessment Specialist Reports	Marko Hutten	15/07/2014	Proposed Construction of two 132kV Power Lines and Switchyards to connect the Redstone Solar Thermal Energy Plant with the Olien Substation in the ZF Ngcawu District Municipality – Heritage Impact Assessment Option 2: Silverstreams substation to Olien Substations
344620	PIA Phase 1	John E Almond	09/11/2015	Palaeontological Heritage Report for the proposed 132 kV power lines between the ACWA Power SolarReserve Redstone Solar Thermal Energy Plant Site and Olien Main Transmission Substation near Lime Acres, Northern Cape Province
361351	AIA Phase 1	Karen Van Ryneveld	20/03/2016	Archaeological Impact Assessment Report
361357	PIA Phase 1	Lloyd Rossouw	03/05/2016	Palaeontological Impact Assessment

APPENDIX 2 Palaeontological Impact Assessment 2022

Palaeontological Impact Assessment for the proposed Taaibosch Puts Energy Cluster, Postmasburg, Northern Cape Province

CTS21_084

Site Visit Report (Phase 2)

For

CTS Heritage

12 March 2022

Prof Marion Bamford Palaeobotanist P Bag 652, WITS 2050 Johannesburg, South Africa Marion.bamford@wits.ac.za

Expertise of Specialist

The Palaeontologist Consultant: Prof Marion Bamford Qualifications: PhD (Wits Univ, 1990); FRSSAf, ASSAf Experience: 33 years research; 25 years PIA studies

Declaration of Independence

This report has been compiled by Professor Marion Bamford, of the University of the Witwatersrand, sub-contracted by CTS Heritage, Cape Town, South Africa. The views expressed in this report are entirely those of the author and no other interest was displayed during the decision making process for the Project.

Specialist: Prof Marion Bamford

MKBamford

Signature:

Executive Summary

A Palaeontological Impact Assessment was requested for the proposed Taaibosch Puts Energy Cluster Facility (SEFs, WEFs, Green Hydrogen Facility and Green Ammonia production facility) to the east of Postmasburg, Northern Cape Province, and overhead power lines to feed into the existing Olien substation northeast of Lime Acres.

To comply with the regulations of the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a site visit (Phase 2) Palaeontological Impact Assessment (PIA) was completed for the proposed development.

The proposed SEF and WEF sites lie on the moderately fossiliferous Quaternary sands but it is unlikely that any fossil traps such as palaeopans and paleao-springs occur in the project footprint. The proposed OHL routes to connect the Taaibosch Puts Energy Cluster facility to Olien Substation, the Northern and Southern, lie on potentially fossiliferous Campbell Rand Subgroup dolomites that could preserve trace fossils such as stromatolites. The site visit by palaeontologists on 27-28 February 2022 confirmed that there are **NO FOSSILS of any kind** along these routes. Nonetheless, a Fossil Chance Find Protocol should be added to the EMPr. Based on this information it is recommended that no further palaeontological impact assessment is required unless fossils are found by the contractor/ environmental officer/ other designated responsible person once excavations/drilling/activities for pole foundations have commenced.

The western energy cluster site can be considered as non-fossiliferous. The two eastern OHL routes have no fossils on the surface as confirmed by the site visit. The impact on the palaeontological heritage therefore is very low for the west and low for the eastern routes. As far as the palaeontology is concerned, the project should be authorised.

Table of Contents

Expe	ertise of Specialist	1
D	eclaration of Independence	1
1.	Background	4
2.	Methods and Terms of Reference	8
3.	Geology and Palaeontology	8
i.	Project location and geological context	8
ii.	Palaeontological context	11
iii	. Site visit observations	
4.	Impact assessment	18
5.	Assumptions and uncertainties	19
6.	Recommendation	20
7.	References	20
8.	Chance Find Protocol	21
9.	Appendix A – Examples of fossils	22
10.	Appendix B – Details of specialist	22
Figu	re 1: Google Earth map of the project area	
-	re 2: Google Earth Map of the project footprint	
	re 3: Geological map of the area around the west project site	
-	re 4: Geological map of the area along the OHL routes (east)	
	re 5: SAHRIS palaeosensitivity map for the site for the project	
-	 re 6-7: Site visit maps and stops/coordinates 14	
	res 8-10: Site visit photographs 	

i. Background

ENERTRAG South Africa (Pty) Ltd, Reg no. 2017/143710/07 (ESA) has appointed Jones & Wagener (Pty) Ltd Engineering and Environmental Consultants (J&W) to assist with the respective permitting processes, including as relevant a Waste Management License (WML), Air Emissions License (AEL), respective applications for Environmental Authorisation (EA) and Water Use License application/s (WUL) (as required) for the proposed Taaibosch Puts Energy Cluster (collectively comprising the proposed projects). In addition, the applicant will apply as per Section 53 of the Mineral and Petroleum Resources Development Act (No 28 of 2002) for land use contrary to the objectives of the act.

The proposed projects are located approximately 28 km south-west of Danielskuil and 30 km east of Postmasburg in the Tsantsabane Municipality, Northern Cap (Figure 1). The proposed projects collectively comprise approximately 11 110 ha and consist of the following:

- Kora (I IV) Solar PV Energy Facilities;
- Koraqua (I V) Solar PV Energy Facilities;
- Khoemana Wind Energy Facility;
- Gorachouqua (I and II) Wind Energy Facilities;
- Korakobab Green Hydrogen Facility;
- Kei Korana Green Ammonia production facility;
- Electrical Grid Infrastructure (EGI) respectively for the proposed projects.

This palaeontology specialist report records the findings of the fieldwork conducted for the proposed Taaibosch Puts Energy Cluster (collectively comprising the proposed projects) but focuses on the EGI powerline routes eastwards to the existing Eskom Olien substation. There are two routes, namely the proposed Overhead line (OHL) alignment – North and the OHL alignment – South (Figure 2). The Energy Cluster is on Quaternary sands that are moderately sensitive and do not require a site visit, while the EGI north and south OHL alignments are partly along very highly sensitive rocks of the Lime Acres Formation (Figures 3, 4)

The Taaibosch Puts Energy Cluster area is split roughly in two sections with the western side dedicated to the proposed solar farms (SEFs) while the eastern side consists of the proposed wind farm (WEFs).

Two powerline routes running for about 30km each along the southern and northern ends that connect up the electrical generation facilities to the Olien Eskom substation east of Lime Acres were assessed. The Asbestos Mountains form a low series of hills running from the southwest to the northeast between Lime Acres and the eastern end of the proposed wind farm. An existing solar farm (Lesedi Solar Park) lies just to the north of the study area and is similar in scale to the Koraqua solar farm proposed at Springfield 470 farm and the Kora solar farm proposed at Farmersfield 572 farm. The WEF lies on the farms Sunnyside (469), Strathmore (500), Fairview and Klein Fairview (497) and Taaibosch Puts (499).

Taaibosch Puts is the only property which is predominantly flat, uniform and covered in grassland. The rest of the properties have various flat grassland areas in amongst low, gentle ridges and small koppies.

The powerline routes goes along similar ground before linking up with an existing 765kV powerline route along nearly flat calcareous ground extending into the Ghaap Plateau Vaalbosveld, the Olifantshoek Plains Thornveld and Kuruman Mountain Bushveld vegetation types (Mucina and Rutherford, 2009).

A Palaeontological Impact Assessment was requested for the Taaibosch Puts Energy Cluster project. To comply with the regulations of the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a site visit and walkthrough (Phase 2) Palaeontological Impact Assessment (PIA) was completed for the proposed development, focussed on the potentially very highly fossiliferous powerline routes and is reported herein.

Relevant A specialist report prepared in terms of the Environmental Impact section in **Regulations of 2017 must contain:** report Details of the specialist who prepared the report Appendix B ai aii The expertise of that person to compile a specialist report including a Appendix B curriculum vitae b A declaration that the person is independent in a form as may be Page 1 specified by the competent authority An indication of the scope of, and the purpose for which, the report was С Section i. prepared An indication of the quality and age of the base data used for the ci specialist report: SAHRIS palaeosensitivity map accessed - date of this Yes report

A description of existing impacts on the site, cumulative impacts of the

Table 1: Specialist report requirements in terms of Appendix 6 of the EIA Regulations (amended 2017)

proposed development and levels of acceptable change

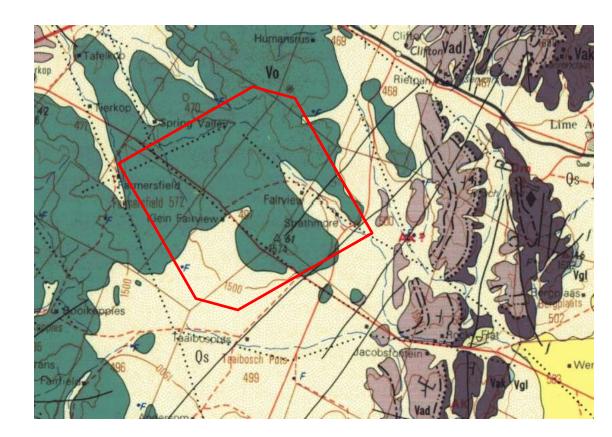
cii

Section 5

	A specialist report prepared in terms of the Environmental Impact Regulations of 2017 must contain:	Relevant section in report
d	The date and season of the site investigation and the relevance of the season to the outcome of the assessment	N/A
е	A description of the methodology adopted in preparing the report or carrying out the specialised process	Section ii.
f	The specific identified sensitivity of the site related to the activity and its associated structures and infrastructure	Section 4
g	An identification of any areas to be avoided, including buffers	N/A
h	A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	N/A
i	A description of any assumptions made and any uncertainties or gaps in knowledge;	Section viii.
j	A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives, on the environment	Section vii.
k	Any mitigation measures for inclusion in the EMPr	Section 8, Appendix A
1	Any conditions for inclusion in the environmental authorisation	N/A
m	Any monitoring requirements for inclusion in the EMPr or environmental authorisation	Section 8, Appendix A
ni	A reasoned opinion as to whether the proposed activity or portions thereof should be authorised	Section 6
nii	If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	Sections 6, 8
0	A description of any consultation process that was undertaken during the course of carrying out the study	N/A
р	A summary and copies if any comments that were received during any consultation process	N/A
q	Any other information requested by the competent authority.	N/A

Figure 1: Google Earth map of the proposed development showing the relevant land marks. The SEFs and WEFs will be to the west.

Figure 2: Google Earth map of the eastern powerline routes that fall on very highly sensitive strata showing the Northern OHL route (blue) and Southern OHL route (lilac).


ii. Methods and Terms of Reference

The Terms of Reference (ToR) for this study were to undertake a PIA and provide feasible management measures to comply with the requirements of SAHRA.

The methods employed to address the ToR included:

- 1. Consultation of geological maps, literature, palaeontological databases, published and unpublished records to determine the likelihood of fossils occurring in the affected areas. Sources included records housed at the Evolutionary Studies Institute at the University of the Witwatersrand and SAHRA databases;
- 2. Where necessary, site visits by a qualified palaeontologist to locate any fossils and assess their importance, as is the case here;
- 3. Where appropriate, collection of unique or rare fossils with the necessary permits for storage and curation at an appropriate facility (*not applicable to this assessment*); and
- 4. Determination of fossils' representivity or scientific importance to decide if the fossils can be destroyed or a representative sample collected (*not applicable to this assessment*).

iii. Geology and Palaeontology

iv. Project location and geological context

Figure 3: Geological map of the area around the western SEFs and WEFs for the Taaibosch Puts Energy cluster indicated within the yellow rectangle. Abbreviations of the rock types are explained in Table 2. Map enlarged from the Geological Survey 1: 250 000 map 2822 Postmasburg.

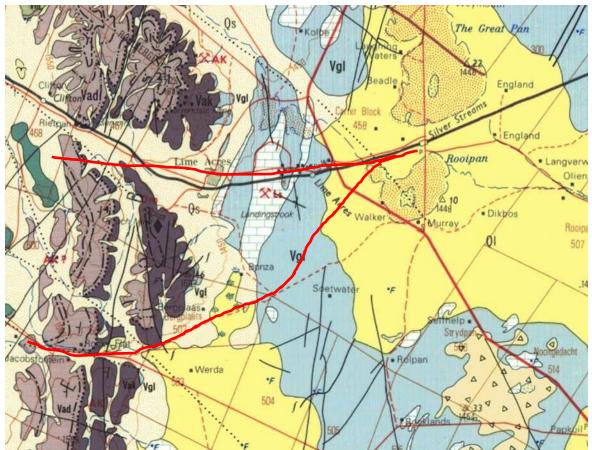


Figure 4: Geological map of the area around the eastern powerline routes the Taaibosch Puts Energy cluster indicated by the red lines. Abbreviations of the rock types are explained in Table 2. Map enlarged from the Geological Survey 1: 250 000 map 2822 Postmasburg.

Table 2: Explanation of symbols for the geological map and approximate ages (Eriksson et al., 2006. Johnson et al., 2006; Schroder et al., 2016). SG = Supergroup; Fm = Formation; Mb = Member; Ma = million years; grey shading = formations impacted by the project.

Symbo l	Group/Formation	Lithology	Approximate Age
Qs	Quaternary sands	Alluvium, sand, aeolian sand	Neogene, ca 2.5 Ma to present
Ql	Quaternary limestones	Dolerite dykes, intrusive	Tertiary-Quaternary,
Vo	Ongeluk Fm, Postmasburg Group, Transvaal SG	Andesitic lava, amygdaloidal lava	2222 Ma

Symbo l	Group/Formation	Lithology	Approximate Age
Vad	Danielskuil Fm, Asbestos Hills Group Subgroup, Ghaap Group, Transvaal SG	Banded ironstone	2460 - 2440 Ma
Vak	Kuruman Fm, Asbestos Hills Group Subgroup, Ghaap Group, Transvaal SG	Banded ironstone	2460 - 2440 Ma
Vgl	Lime Acres Mb, Kogelbeen Fm, Cambell Rand Subgroup, Ghaap Group, Transvaal SG.	Dolomite, limestone	>2521 Ma

The site lies in the Griqualand West Basin that preserves sediments of the Transvaal Supergroup. Overlying these rocks are much younger sands of the Quaternary Kalahari Group (Figures 3, 4).

The Late Archaean to early Proterozoic Transvaal Supergroup is preserved in three structural basins on the Kaapvaal Craton (Eriksson et al., 2006). In South Africa are the Transvaal and Griqualand West Basins, and the Kanye Basin is in southern Botswana. The Griqualand West Basin is divided into the Ghaap Plateau sub-basin and the Prieska sub-basin. Sediments in the lower parts of the basins are very similar but they differ somewhat higher up the sequences. Several tectonic events have greatly deformed the south western portion of the Griqualand West Basin between the two sub-basins

The Transvaal Supergroup comprises one of world's earliest carbonate platform successions (Beukes, 1987; Eriksson et al., 2006; Zeh et al., 2020). In some areas there are well preserved stromatolites that are evidence of the photosynthetic activity of blue green bacteria and green algae. These microbes formed colonies in warm, shallow seas.

The Transvaal Supergroup rocks in the Griqualand West Basin can be correlated with the rocks in the Transvaal Basin, closely according to Beukes and colleagues, or not so closely according to Moore and colleagues. Nonetheless, these rocks represent on a very large scale, a sequence of sediments filling the basins under conditions of lacustrine, fluvial, volcanic and glacial cycles in a tectonically active region. The predominantly carbonaceous sediments are evidence of the increase in the atmosphere of oxygen produced by algal colony photosysnthesis, the so-called Great Oxygen Event (ca 2.40 – 2.32 Ga) and precursor to an environment where diverse life forms could evolve. The Neoarchean-

Paleoproterozoic Transvaal Supergroup in South Africa contains the wellpreserved stromatolitic Campbellrand -Malmani carbonate platform (Griqualand West Basin – Transvaal Basin respectively), which was deposited in shallow seawater shortly before the Great Oxidation Event (GOE).

In the Griqualand West sub-basin are the basal Schmidtsdrift Subgroup, Campbell Rand Subgroup and Asbestos Hills Subgroup.

The Campbell Rand Subgroup has been divided into seven formations based on the different environmental settings that produced stromatolites, microbial mats, laminates, chert and carbonate platform.

The Monteville Formation of the Campbell Rand Subgroup in the Ghaap Plateau Sub-basin overlies the Clearwater Formation and is composed of up to 200m thickness of stromatolitic domes, then microbial laminites (laminated stromatolitic carbonate rocks)with fenestrae and carbonate argillites, all with intercalated shales and siltstones (Eriksson et al., 2006). The environment is interpreted as successive transgressiveregressive cycles superimposed on a lower-order shallowing upward cycle as the basin filled stromatolitic carbonates and shales.

Next in the sequence is the Reivilo Formation and is the most extensive component of the Campbell Rand Subgroup. It is up to 900m thick, represents a renewed transgressive phase with the upper Kamden Member BIF-like part; the rest is composed of dolomite with giant stromatolitic domes intercalated with cycles of columnar stromatolites (Eriksson et al., 2006).

The overlying Fairfield Formation represents shallow platform conditions again with the clastic laminated carbonate beds passing upward in unto columnar stromatolites and fenestrated laminates. The next two formations, the Klipfonteinheuwel and Papkuil Formations are also composed of platform carbonates with columnar stromatolites and oolitic beds.

The lower Klippan Formation has small stromatolites that pass upwards to form microbial laminates representing a transgression to deep water facies in a lagoonal setting. The overlying Kogelbeen Formation has varying dolomite, limestone and chert lithologies, then domal to columnar stromatolites, laminates and chert. The limestone-rich **Lime Acres Member** that contains economically important limestone, completes this formation,

Next are the Gamohaan and Tsineng Formations with microbial mats, laminates and chert for the top strata of the Campbell Rand Group.

The Asbestos Hills Subgroup has three formations, the lower Kliphuis formation, the **Kuruman Formation** and the **Danielskuil Formation**.

They are all banded iron formations and have vast economically important reserves,

Above the Asbestos Hills Subgroup is the Postmasburg Group. The Makganyene Formation has diamictites and shales from the moraine of glacial conditions. Disconformably overlying these are the **Ongeluk Formation** basaltic andesitic lavas. According to Cornell et al. (1996) and Schroder et al. (2016) the Ongeluk Formation is equivalent to the lavas of the Hekpoort Formation in the Transvaal Basin.

v. Palaeontological context

The palaeontological sensitivity of the area under consideration is presented in Figure 5. The western part, the SEF and WEF area are on non-fossiliferous lavas of the Ongeluk Formation and on moderately fossiliferous (green) Quaternary sands and aeolian sands. These materials do no preserve fossils because the form aerobic environments that not conducive to preservation. In addition, windblown (aeolian) sand cannot transport fossils that are large enough to see or to be recognisable. These sands, however, may cover palaeo-pans of palaeospring, such features that would be visible in the satellite imagery. No such feature is visible in the project footprint.

The two routes for the OHLs to the east are partly on rocks of the Lime Acres Member (Kogelbeen Formation, Campbell Rand Subgroup). Formations in this subgroup preserve a variety of stromatolites, laminites and microbial mats (Eriksson et al., 2006). Stromatolites are the trace fossils that were formed by colonies of green algae and blue-green algae (Cyanobacteria) that grew in warm, shallow marine settings. These algae were responsible for releasing oxygen via the photosynthetic process where atmospheric carbon dioxide and water, using energy from the sun, are converted into carbon chains and compounds that are the building blocks of all living organisms. The released carbon dioxide initially was taken up by the abundant reducing minerals to form oxides, e.g. iron oxide. Eventually free oxygen was released into the atmosphere and some was converted into ozone by the bombardment of cosmic rays. The ozone is critical for the filtering out of harmful ultraviolet rays.

Stromatolites are the layers upon layers of inorganic materials that were deposited during photosynthesis, namely calcium carbonate, magnesium carbonate, calcium sulphate and magnesium sulphate. These layers can be in the form of flat layers, domes or columns depending on the environment where they grew (Beukes, 1987). Some environments did not form stromatolites, just layers of limestone that later was converted to dolomite. The algae that formed the stromatolites are very rarely preserved, and they are microscopic so they can only be seen from thin sections studies under a petrographic microscope. Laminites and microbial mats are also trace fossils formed by photosynthesising microbes. They have been variously called Microbialites (sensu Burne and Moore, 1987), or Microbially induced sedimentary structures "MISS" (sensu Noffke et al., 2001) and possibly having a non-biotic origin (Davies et al., 2016). These features are very subtle and hard to recognise.

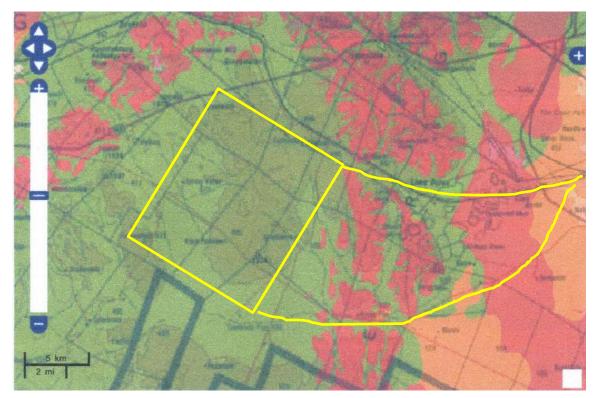


Figure 5: SAHRIS palaeosensitivity map for the site for the proposed Taaibosch Puts Energy Cluster with the SEFs and WEFs within the yellow rectangle (west) and the Northern and Southern OHL routes shown by the lines to the. Background colours indicate the following degrees of sensitivity: red = very highly sensitive; orange/yellow = high; green = moderate; blue = low; grey = insignificant/zero.

From the SAHRIS map above the eastern area is indicated as very highly sensitive (red) for the whole of the Ghaap Group although there are different facies in the different formations that make u this group. A site visit was completed on 27-28 February 2022 along the northern and southern OHL routes.

vi. Site visit observations

Table 3: Site observations, and relevant figures. GPS points in separate Exel Spreadsheet

Observations	Figures
North OHL route, west to east: the topography is flat, no	6, 8 - d
rocky outcrops and no dolomite where there could be	
stromatolites; some carbonaceous outcrops but powdery	
South OHL route west to east- same as northern route	7, 9a - d
NE route to Olien Substation – same as first part of	6, 10a - d
northern route but less dense grass cover, possibly less	
gravel than the southern route	

Figure 6: Annotated Google Earth map for the site stops and observations for the Northern OHL route (refer to Table 3 and Figures 8 and 10).

Figure 7: Annotated Google Earth map for the site stops and observations for the Southern OHL route (refer to Table 3 and Figure 9).

Figure 8: Taaibosch Puts Energy Cluster site visit photographs – **Northern OHL** alignment, from west to east. Note the generally flat topography, grasslands with some shrubs in places, sandy soil or carbonaceous soils exposed (B). No exposures of dolomite or any potential outcrops with stromatolites.

Figure 9: Taaibosch Puts Energy Cluster site visit photographs – **Southern OHL alignment** route, from west to east. Note the generally flat topography, grasslands and rare shrubs. Sols is sandy with minor gravel. No dolomite outcrops and no stromatolites.

Figure 10: Taaibosch Puts Energy Cluster site visit photographs – **northeast to Olien Substation** near the railway line. Note the generally flat topography, grasslands and patches of shrubs. Calcrete is visible in some of the roads but may have been brought in make the roads. No exposures of dolomite or any stromatolites anywhere along the route.

vii. Impact assessment

An assessment of the potential impacts to possible palaeontological resources considers the criteria encapsulated in Table :

PART A: DEFINITION AND CRITERIA		
	Η	Substantial deterioration (death, illness or injury). Recommended level will often be violated. Vigorous community action.
	Μ	Moderate/ measurable deterioration (discomfort). Recommended level will occasionally be violated. Widespread complaints.
Criteria for ranking of the SEVERITY/NAT URE of environmental	L	Minor deterioration (nuisance or minor deterioration). Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints.
impacts	L+	Minor improvement. Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints.
	M +	Moderate improvement. Will be within or better than the recommended level. No observed reaction.
	H +	Substantial improvement. Will be within or better than the recommended level. Favourable publicity.
Criteria for	L	Quickly reversible. Less than the project life. Short term
ranking the DURATION of impacts	Μ	Reversible over time. Life of the project. Medium term
Impacts	Н	Permanent. Beyond closure. Long term.
Criteria for	L	Localised - Within the site boundary.
ranking the	Μ	Fairly widespread – Beyond the site boundary. Local
SPATIAL SCALE of impacts	Η	Widespread – Far beyond site boundary. Regional/ national
PROBABILITY	Η	Definite/ Continuous
(of exposure to	Μ	Possible/ frequent
impacts)	L	Unlikely/ seldom

Table 4a: Criteria for assessing impacts

Table 4b: Impact Assessment

PART B: Assessment		
SEVERITY/	Η	-
NATURE	Μ	-

PART B: Assessment		
	L	Soils and sands do not preserve plant fossils; so far there are no records from the Lime Acres Fm of stromatolites in this region so it is very unlikely that fossils occur on the site. The impact would be very unlikely.
	L+	-
	M	-
	+	
	H +	-
	T.	-
DURATION	M	-
DURATION	H	Where manifest, the impact will be permanent.
SPATIAL SCALE	L	Since the only possible fossils within the area would be trace fossils such as stromatolites in the dolomites, the spatial scale will be localised within the site boundary.
	Μ	-
	Н	-
	Н	-
	Μ	-
PROBABILITY	L	It is extremely unlikely that any fossils would be found in the loose sand or soils that will be excavated for pole foundations. The site visit confirmed that there were no fossils . Nonetheless, a Fossil Chance Find Protocol should be added to the eventual EMPr.

Based on the nature of the project, surface activities may impact upon the fossil heritage if preserved in the powerline route or Energy Cluster footprint. The geological structures suggest that the rocks are the correct age and type to preserve fossils. The site visit and walk through confirmed that there were NO FOSSILS in the project footprint. Furthermore, the material to be excavated for foundations is soils and sands and these do not preserve fossils. Since there is an extremely small chance that fossils from the Lime Acres Formation below ground may be disturbed a Fossil Chance Find Protocol has been added to this report. Taking account of the defined criteria, the potential impact to fossil heritage resources is extremely low.

viii. Assumptions and uncertainties

Based on the geology of the area and the palaeontological record as we know it, it can be assumed that the formation and layout of the dolomites,

sandstones, shales and sands are typical for the country and only the dolomites might contain trace fossils such as stromatolites. The site visit and walk through on 27-28 February 2022 by palaeontologists Rick Tolchard and Bailey Weiss confirmed that there are NO FOSSILS along the proposed powerline routes from the northeast corner of the Taaibosch Puts Energy Cluster eastwards towards Lime Acres or along the southern route. The Energy cluster footprint is on non-fossiliferous rocks except for the northeast corner. Although this property was not accessible, from road it was possible to see that it had the same vegetation and topography as the first section of the northern powerline route, therefore it can be assumed that the geology is the same and no dolomite was visible. The sands of the Quaternary period would not preserve fossils.

ix. Recommendation

Based on the fossil record but confirmed by the site visit and walk through there are NO FOSSILS such as stromatolites in the Lime Acres Formation (Campbell Rand Group, Ghaap Plateau, Transvaal Supergroup even though fossils have been recorded from rocks of a similar age and type in South Africa. It is extremely unlikely that any fossils would be preserved in the overlying soils and sands of the Quaternary. There is a very small chance that fossils may occur in below the ground surface in the dolomites so a Fossil Chance Find Protocol should be added to the EMPr. If fossils are found by the environmental officer, or other responsible person once excavations and drilling have commenced, then they should be rescued and a palaeontologist called to assess and collect a representative sample.

x. References

Burne, R.V., Moore, L.S., 1987. Microbialites; organosedimentary deposits of benthic microbial communities Palaios 2 (3), 241-254

Davies, N.S., Liu, A.G., Gibling, L.R., Miller, R.F., 2016. Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth Science Reviews 154, 210-246.

Eriksson, P.G., Altermann, W., Hartzer, F.J., 2006. The Transvaal Supergroup and its pre-cursors. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. pp 237-260. Johnson, M.R., van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.deV., Christie, A.D.M., Roberts, D.L., Brandl, G., 2006. Sedimentary rocks of the Karoo Supergroup. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 461 – 499.

Noffke, N., Gerdes, G., Klenke, T., Krumbein,W.E., 2001. Microbially induced sedimentary structures — a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71, 649–656.

xi. Chance Find Protocol

Monitoring Programme for Palaeontology - to commence once the excavations / drilling activities begin.

- 1. The following procedure is only required if fossils are seen on the surface and when drilling/excavations commence.
- 2. When excavations begin the rocks and must be given a cursory inspection by the environmental officer or designated person. Any fossiliferous material (trace fossils, fossils of plants, insects, bone or coalified material) should be put aside in a suitably protected place. This way the project activities will not be interrupted.
- 3. Photographs of similar fossils must be provided to the developer to assist in recognizing the fossil plants, vertebrates, invertebrates or trace fossils in the shales and mudstones (for example see Figure 11). This information will be built into the EMP's training and awareness plan and procedures.
- 4. Photographs of the putative fossils can be sent to the palaeontologist for a preliminary assessment.
- 5. If there is any possible fossil material found by the developer/environmental officer then the qualified palaeontologist sub-contracted for this project, should visit the site to inspect the selected material and check the dumps where feasible.
- 6. Fossil plants or vertebrates that are considered to be of good quality or scientific interest by the palaeontologist must be removed, catalogued and housed in a suitable institution where they can be made available for further study. Before the fossils are removed from the site a SAHRA permit must be obtained.

Annual reports must be submitted to SAHRA as required by the relevant permits.

- 7. If no good fossil material is recovered then no site inspections by the palaeontologist will be necessary. A final report by the palaeontologist must be sent to SAHRA once the project has been completed and only if there are fossils.
- 8. If no fossils are found and the excavations have finished then no further monitoring is required.
- xii. Appendix A Examples of trace fossils from the Transvaal Supergoup.

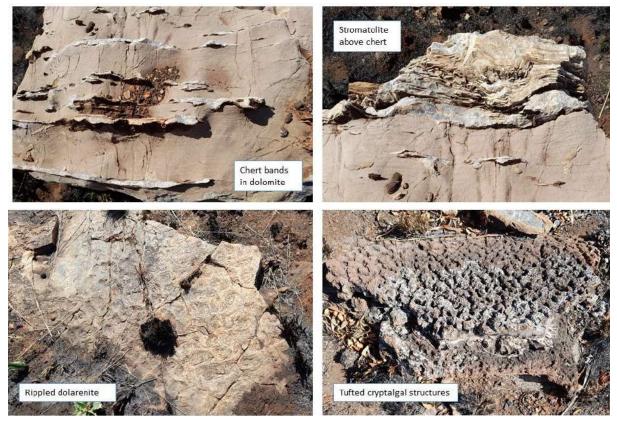


Figure 11: Photographs of different types of stromolitic structures in dolomite (from the Malmani Subgroup).

xiii. Appendix B - Details of specialists

Marion Bamford (PhD)

Short CV for PIAs - Jan 2022

I) **Personal details**

Present employment : Professor; Director of the Evolutionary Studies Institute.

Member Management Committee of the NRF/DST Centre of Excellence Palaeosciences, University of the Witwatersrand, Johannesburg, South Africa

:	+27 11 717 6690
:	+27 11 717 6694
:	082 555 6937
	: marion.bamford@wits.ac.za ;
	marionbamford12@gmail.com
	:

ii) Academic qualifications

Tertiary Education: All at the University of the Witwatersrand: 1980-1982: BSc, majors in Botany and Microbiology. Graduated April 1983.

1983: BSc Honours, Botany and Palaeobotany. Graduated April 1984. 1984-1986: MSc in Palaeobotany. Graduated with Distinction, November 1986.

1986-1989: PhD in Palaeobotany. Graduated in June 1990.

iii) Professional qualifications

Wood Anatomy Training (overseas as nothing was available in South Africa):

1994 - Service d'Anatomie des Bois, Musée Royal de l'Afrique Centrale, Tervuren, Belgium, by Roger Dechamps

1997 - Université Pierre et Marie Curie, Paris, France, by Dr Jean-Claude Koeniguer

1997 - Université Claude Bernard, Lyon, France by Prof Georges Barale, Dr Jean-Pierre Gros, and Dr Marc Philippe

iv) Membership of professional bodies/associations

Palaeontological Society of Southern Africa

Royal Society of Southern Africa - Fellow: 2006 onwards

Academy of Sciences of South Africa - Member: Oct 2014 onwards International Association of Wood Anatomists - First enrolled: January 1991

International Organization of Palaeobotany – 1993+ Botanical Society of South Africa

South African Committee on Stratigraphy – Biostratigraphy - 1997 - 2016 SASQUA (South African Society for Quaternary Research) – 1997+

PAGES - 2008 -onwards: South African representative

ROCEEH / WAVE - 2008+

INQUA - PALCOMM - 2011+onwards

vii) Supervision of Higher Degrees

All at Wits University

Degree	Graduated/	Current
	completed	
Honours	11	0
Masters	12	4
PhD	11	4
Postdoctoral fellows	12	2

viii) Undergraduate teaching

Geology II – Palaeobotany GEOL2008 – average 65 students per year Biology III – Palaeobotany APES3029 – average 25 students per year Honours – Evolution of Terrestrial Ecosystems; African Plio-Pleistocene Palaeoecology; Micropalaeontology – average 12 - 20 students per year.

ix) Editing and reviewing

Editor: Palaeontologia africana: 2003 to 2013; 2014 – Assistant editor Guest Editor: Quaternary International: 2005 volume

Member of Board of Review: Review of Palaeobotany and Palynology: 2010 –

Associate Editor: Cretaceous Research: 2018-2020

Associate Editor: Royal Society Open: 2021 -

Review of manuscripts for ISI-listed journals: 25 local and international journals

x) Palaeontological Impact Assessments

Selected from recent project only – list not complete:

- Mala Mala 2017 for Henwood
- Modimolle 2017 for Green Vision
- Klipoortjie and Finaalspan 2017 for Delta BEC
- Ledjadja borrow pits 2018 for Digby Wells
- Lungile poultry farm 2018 for CTS
- Olienhout Dam 2018 for JP Celliers
- Isondlo and Kwasobabili 2018 for GCS
- Kanakies Gypsum 2018 for Cabanga
- Nababeep Copper mine 2018
- Glencore-Mbali pipeline 2018 for Digby Wells
- Remhoogte PR 2019 for A&HAS
- Bospoort Agriculture 2019 for Kudzala
- Overlooked Quarry 2019 for Cabanga
- Richards Bay Powerline 2019 for NGT
- Eilandia dam 2019 for ACO
- Eastlands Residential 2019 for HCAC
- Fairview MR 2019 for Cabanga
- Graspan project 2019 for HCAC
- Lieliefontein N&D 2019 for Enviropro
- Skeerpoort Farm Mast 2020 for HCAC
- Vulindlela Eco village 2020 for 1World
- KwaZamakhule Township 2020 for Kudzala

- Sunset Copper 2020 for Digby Wells
- McCarthy-Salene 2020 for Prescali
- VLNR Lodge 2020 for HCAC
- Madadeni mixed use 2020 for Enviropro
- Frankfort-Windfield Eskom Powerline 2020 for 1World
- Beaufort West PV Facility 2021 for ACO Associates
- Copper Sunset MR 2021 for Digby Wells
- Sannaspos PV facility 2021 for CTS Heritage
- Smithfield-Rouxville-Zastron PL 2021 for TheroServe
- Glosam Mine 2021 for AHSA

Xi) Research Output

Publications by M K Bamford up to January 2022 peer-reviewed journals or scholarly books: over 160 articles published; 5 submitted/in press; 10 book chapters.

Scopus h-index = 30; Google Scholar h-index = 36; -i10-index = 95 Conferences: numerous presentations at local and international conferences.

Mr Frederick Tolchard Brief Curriculum Vitae - January 2022

Academic training

BA Archaeology – University of the Witwatersrand, graduated 2015 BSc (Honours) Palaeontology – University of the Witwatersrand, 2017 with distinction MSc Palaeontology – University of the Witwatersrand, 2018 – 2019. Graduated 2020 with Distinction PhD Palaeontology – Wits – 2020 - current

Field Experience

Honours Fieldtrip – Karoo biostratigraphy – April 2017 Research fieldwork – Elliot Formation with Prof Choiniere – April 2018, Nov 2018; April 2019; Sept 2021

Publications

Tolchard, F., Nesbitt, S.J., Desojo, J.B., Viglietti, P.A., Butler, R.J. and Choiniere, J.N., 2019. 'Rauisuchian' material from the lower Elliot Formation of South Africa: Implications for late Triassic biogeography and biostratigraphy. Journal of African Earth Sciences, 160, 103610.

Viglietti, P.A., McPhee, B.W., Bordy, E.M., Sciscio, L., Barrett, P.M., Benson, R.B.J., Wills, F., Tolchard, F., Choiniere, J.N., 2020. Biostratigraphy of the Scalenodontoides Assemblage Zone (Stormberg Group, Karoo Supergroup), South Africa. South African Journal of Geology 123, 239-248. Tolchard F., Kammerer C., Butler R.J., Abdala F., Hendrickx C., Benoit J., Choinière J.N. (2021.) A very large new trirachodontid from the Triassic of South Africa and its implications for Gondwanan biostratigraphy. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2021.1929265.

PIA fieldwork projects

2018 May - Williston area - SARAO project, Digby Wells 2018 September – Lichtenburg PVs – CTS Heritage 2018 November – Nomalanga farming – Digby Wells 2019 January – Thubelisha coal – Digby Wells 2019 March - Matla coal - Digby Wells 2019 March - Musina-Machado SEZ - Digby Wells 2019 June – Temo coal – Digby Wells 2019 September - Makapanstad Agripark - Plantago 2020 January - Hendrina, Kwazamakuhle - Kudzala 2020 February - Hartebeestpoort Dam - Prescali 2020 March - Twyfelaar Coal mine - Digby Wells 2020 March - Ceres Borrow Pits - ACO Associates 2020 March - Copper Sunset Sand - Digby Wells 2020 October - Belfast loop and Expansion - Nsovo 2020 October - VLNR lodge Mapungubwe - HCAC 2020 November – Delmore Park BWSS - HCAC 2020 December - Kromdraai commercial - HCAC 2021 January - Welgedacht Siding - Elemental Sustainability 2021 March - Shango Kroonstad - Digby Wells 2021 May - Copper Sunset sand mining - Digby Wells 2021 August – New Largo Pit – Golder 2021 August - Khutsong Ext 8 housing, Carletonville, for Afzelia 2021 September – Lichtenburg PV facility – CTS Heritage 2021 October - Ogies South MR - beyondgreen 2021 October - Nooitgedacht Colliery MR - Shangoni 2022 January - Sigma PVs Sasolburg - CTS Heritage

Bailey M. Weiss CV

January 2022

I am currently enrolled as an MSc student, at the University of the Free State (UFS), completing a research project entitled: *Bone microanatomy of Anomodontia (Synapsida: Therapsida) from the Karoo Basin of South Africa*. This project is supervised by Dr Jennifer Botha (National Museum, Bloemfontein) and Co-Supervised by Dr Alexandra Houssaye (Muséum national d'Histoire naturelle, Paris). I completed my BSc honours degree in which I completed a research project entitled: *Limb bone histology of theropod dinosaurs from the Early Jurassic of South Africa*. This project was supervised by Dr Jennifer Botha. I majored in Genetics and Zoology for my BSc degree. I have worked as an Osteohistology Technician at the National Museum, Bloemfontein, as well as a Laboratory Assistant at the UFS. I have been on two Palaeontological field trips one with the National Museum in the Balfour and Katberg Formations. The other with the University of the Witwatersrand in the Lower Elliot Formation of South Africa.

Qualifications

BSc – Majors: Genetics and Geology - University of the Free State – 2018 BSc Honours – Palaeontology – University of the Free State – 2019 MSc – Palaeontology – University of the Free State – registered 2020, in progress.

PIA fieldwork Experience

July 2021 – Sannaspos PV Facility, Free State for CTS Heritage October 2021 – Beatrix Mine-Theunissen Eskom powerline for 1World

References:

Dr Jennifer Botha, Head of Palaeontology, National Museum, Bloemfontein jbotha@nasmus.ac.za

Prof Jonah Choiniere, Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg Jonah.choiniere@wits.ac.za

APPENDIX 3 Visual Impact Assessment 2022

APPENDIX 4 Heritage Screening Assessment

HERITAGE SCREENER

CTS Reference Number:	CTS21_084	PARA LA CARANTA AREA
SAHRIS Reference:		Danielskuil
Client:	JAWS	The found is the second of the second s
Date:	November 2021	
Title:	Proposed development of the Korakobab Hydrogen facility and the Kei Korana Ammonia facility as part of the Taaibosch Puts Energy Cluster near Postmasburg in the Northern Cape	
CTS Heritage	RECOMMENDATION	Figure 1a. Satellite map indicating the location of the proposed development in the Northern Cape
Recommendation	Based on the available	information, it is likely that the proposed development will negatively impact on significant archaeological, ural landscape heritage resources. As such, it is recommended that an HIA is required that assesses these impacts neasures.

1. Proposed Development Summary

The Korakobab Hydrogen facility and the Kei Korana Ammonia facility are to be established for the sole purpose of developing, owning and operating a proposed 300MW electrolyser hydrogen production facility and green ammonia production facility, respectively. The project aims to produce up to 120 000 tons per annum (tpa) of green ammonia (NH3) from the synthesised 'up to 30 000 tpa' of green hydrogen and 'up to 60 000 tpa' of green oxygen, which may then either be resold to private off-takers in various forms, or for further use by the Kei Korana Ammonia facility, which will utilise the hydrogen produced by the Korakobab Hydrogen facility for the synthesis of ammonia via the Haber-Bosch process.

"Green" hydrogen and ammonia production differs from traditional production technologies in that the process relies exclusively on renewable resources (renewable energy) and for input air and water (feedstock), to produce commercially usable green hydrogen. The only solid waste stream is the production of brine from the water treatment plant. A gaseous by-product produced is oxygen generated from the electrolyses process. Traditional hydrogen and ammonia are produced through the burning of fossil fuels (coal or natural gas) to provide the required energy needed for their production. This method of production results in 'brown' hydrogen as fossil fuels are used and therefore carbon forms an integral part of such traditional hydrogen production. Due to the use of Renewable Energy sourced, which do not include carbon sources, the proposed production of ammonia is of a 'green' (zero carbon) type.

Commercially, hydrogen is used as a fuel for transport and beneficiation in hydrogen fuel cells. Alternatively, hydrogen is used for welding and in the production of other chemicals such as methanol and hydrochloric acid and also has other commercial uses like the filling of balloons. It is also a primary input to the production of ammonia which in turn is primarily used in the production of ammonium nitrate (fertiliser), used as refrigerant gas and the manufacture of plastics, explosives, textiles, pesticides and other chemicals, amongst other uses. Ammonia can also be used as a stable 'carrier' of hydrogen, allowing hydrogen to be readily stored and transported, for further use as fuel and energy source.

The production, storage and transport of hydrogen and ammonia is undergoing industry-wide in-depth research and development. As a consequence, technological solutions are constantly improving and therefore changing. The infrastructure required for the Korakobab Hydrogen facility and the Kei Korana Ammonia facility include the following:

- Water treatment unit and water reservoir.
- Ammonia processing unit and liquid ammonia
- Storage tank.
- Electrolyser unit.
- Air separation unit.
- Ammonia Processing unit.
- Liquid air energy system (LAES) for nitrogen storage.
- Hydrogen and oxygen storage tank

Associated infrastructure further include:

- Electrical infrastructure required for power supply to the facility.
- Temporary and permanent laydown areas required for temporary storage and assembly of components and materials.
- Access road/s to the site and internal roads between project components, with a width of up to 12m and 10m wide respectively.
- A temporary concrete batching plant (if necessary).
- Temporary staff accommodation.
- Fencing and lighting (including lightning protection).
- Telecommunication infrastructure.
- Stormwater channels.
- Water pipelines.
- Offices, Operational control centre, operation and maintenance area / warehouse / workshop, ablution facilities, gate house and security building

Access to the site is possible primarily via an unnamed gravel road between Danielskuil and Griekwastad. Existing roads will be used where feasible and practical.

2. Application References

Name of relevant heritage authority(s)	HWC
Name of decision making authority(s)	Northern Cape Department of Agriculture, Environmental Affairs, Rural Development and Land Reform (DAEARDLR) + Department of Water and Sanitation (DWS) and ZF Mgcawu District Municipality

3. Property Information

Latitude / Longitude	28°23'58.68"S 23°18'52.73"E
Erf number / Farm number	RE of Farm 497 OR Portion 2 of Farm 500
Local Municipality	Tsantsabane
District Municipality	ZF Mgcawu
Province	Northern Cape

Current Zoning Agriculture

4. Nature of the Proposed Development

Project Area	Approximately 27 ha
Depth of excavation (m)	Foundations - excavation about 3m
Height of development (m)	TBA

5. Category of Development

x	Triggers: Section 38(8) of the National Heritage Resources Act
	Triggers: Section 38(1) of the National Heritage Resources Act
	1. Construction of a road, wall, powerline, pipeline, canal or other similar form of linear development or barrier over 300m in length.
	2. Construction of a bridge or similar structure exceeding 50m in length.
	3. Any development or activity that will change the character of a site-
x	a) exceeding 5 000m ² in extent
	b) involving three or more existing erven or subdivisions thereof
	c) involving three or more erven or divisions thereof which have been consolidated within the past five years
	4. Rezoning of a site exceeding 10 000m ²
	5. Other (state):

6. Additional Infrastructure Required for this Development

See project description

7. Mapping (please see Appendix 3 and 4 for a full description of our methodology and map legends)

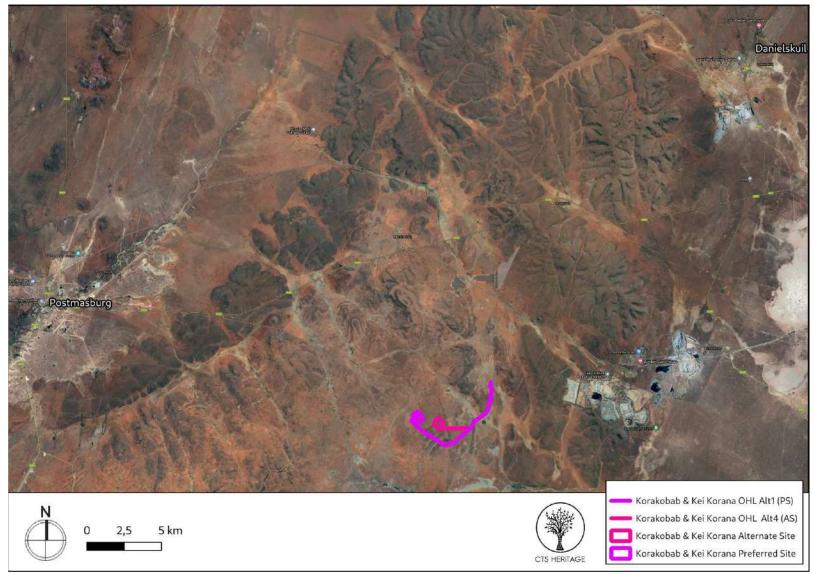


Figure 1b. Overview Map. Satellite image (2020) indicating the proposed development area

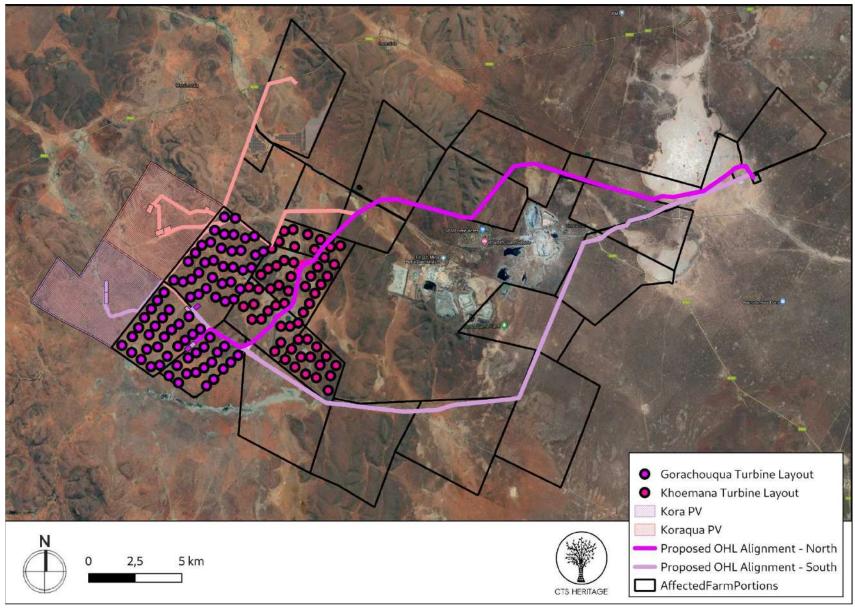


Figure 1c. Overview Map. Satellite image (2020) indicating the proposed development area for the whole Taaibosch Puts Cluster

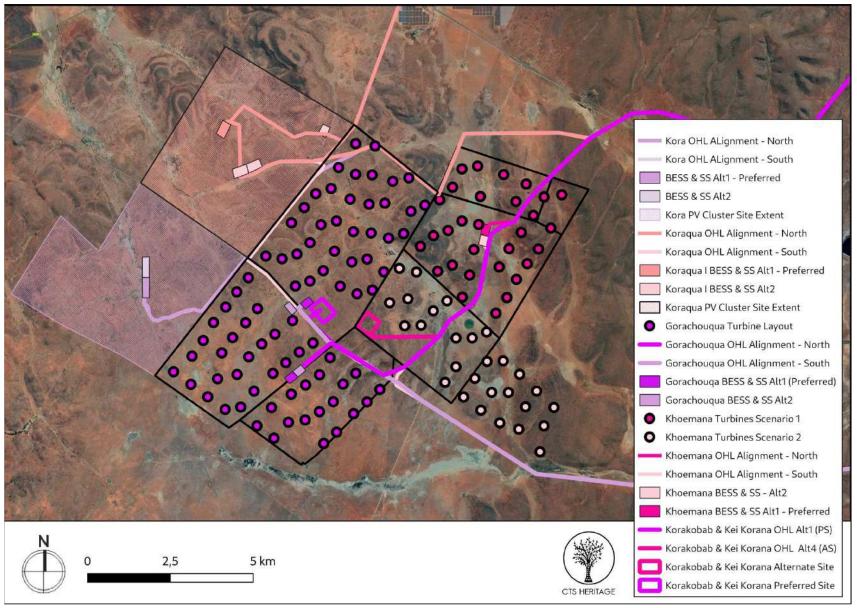


Figure 1d. Overview Map. Satellite image (2020) indicating the proposed development area for the whole Taaibosch Puts Cluster

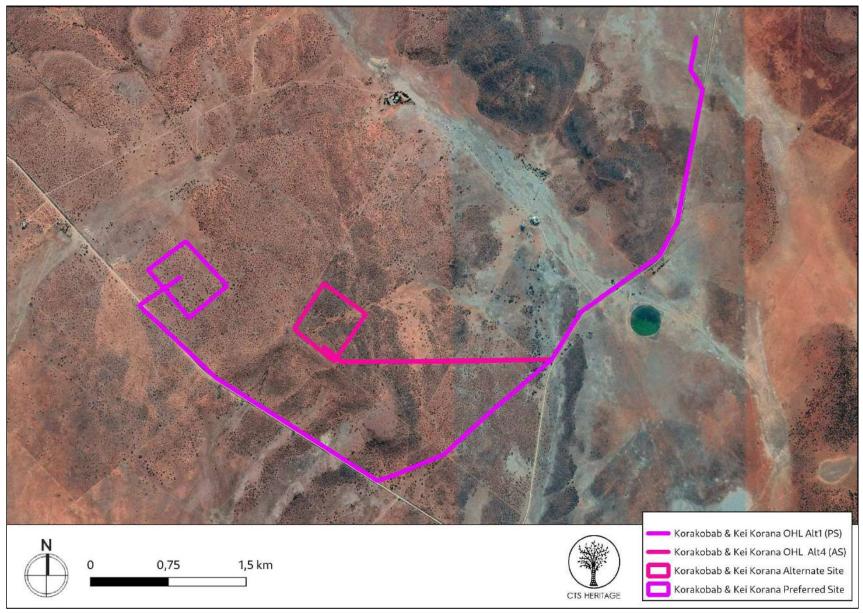


Figure 1e. Overview Map. Satellite image (2020) indicating the proposed development area

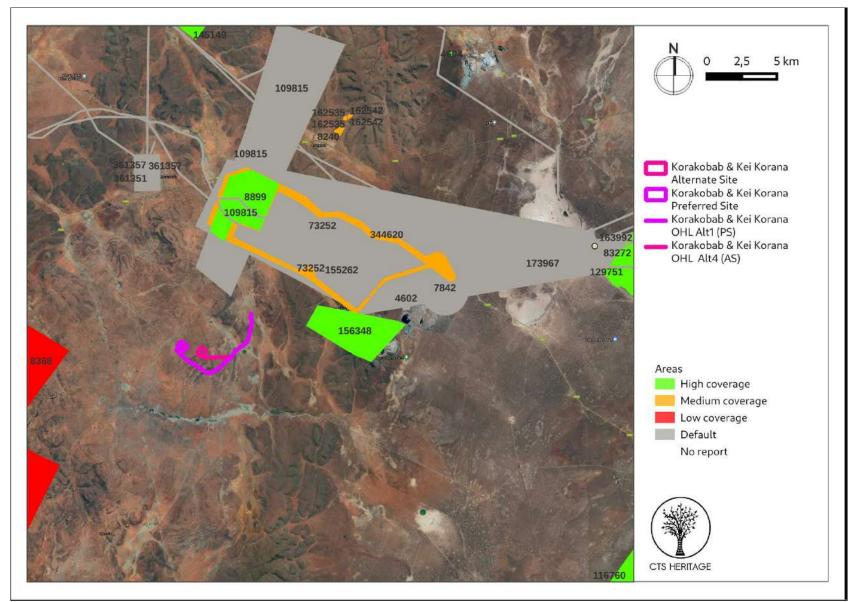


Figure 2. Previous HIAs Map. Previous Heritage Impact Assessments covering the proposed development area with SAHRIS NIDS indicated. Please see Appendix 2 for a full reference list.

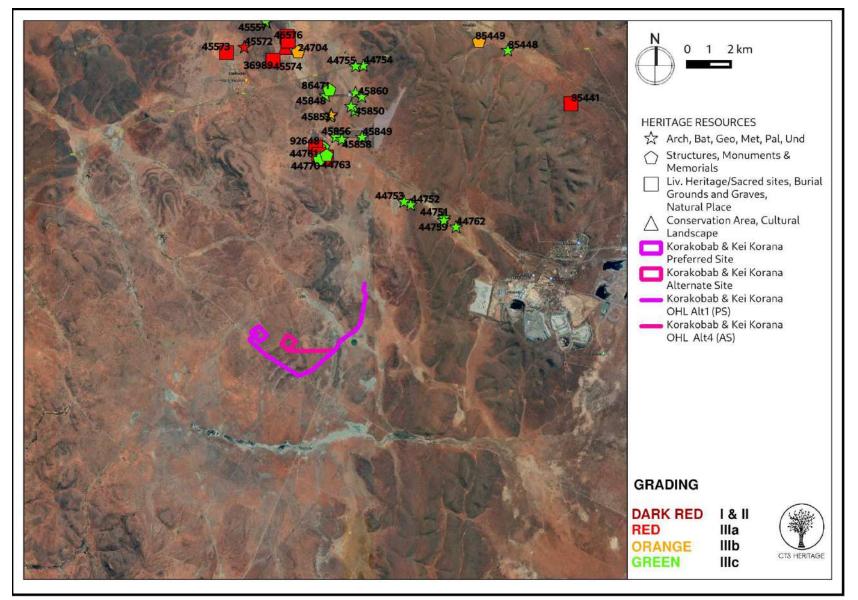


Figure 3. Heritage Resources Map. Heritage Resources previously identified within the study area, with SAHRIS Site IDs indicated in the insets below. Please See Appendix 4 for full description of heritage resource types.

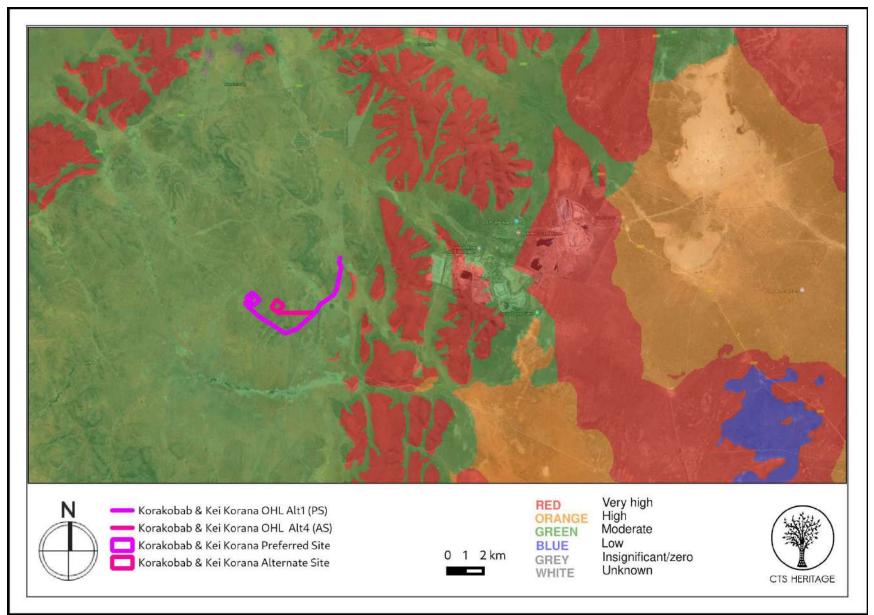


Figure 4a. Palaeosensitivity Map. Indicating fossil sensitivity underlying the study area. Please See Appendix 3 for a full guide to the legend.

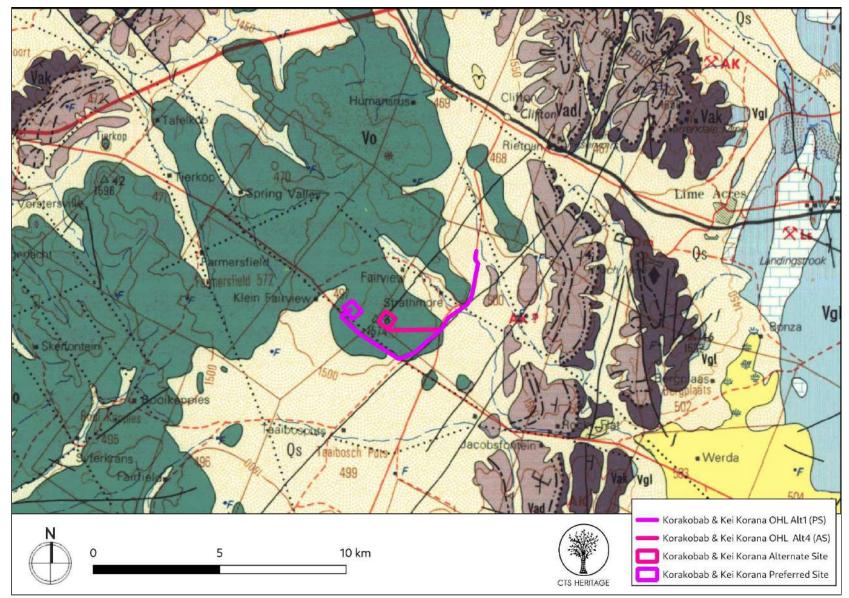


Figure 4b. Geology Map. Extract from the CGS 2822 Postmasburg Map indicating that the development area is underlain by sediments of the Vo: Ongeluk Formation, Vad: Danielskuil Member and Vak: Kuruman Member of the Asbesberge Formation, Vgl: Lime Acres Member of the Ghaap Plateau, Ql: Surface Limestone and Qs: Quaternary Sands

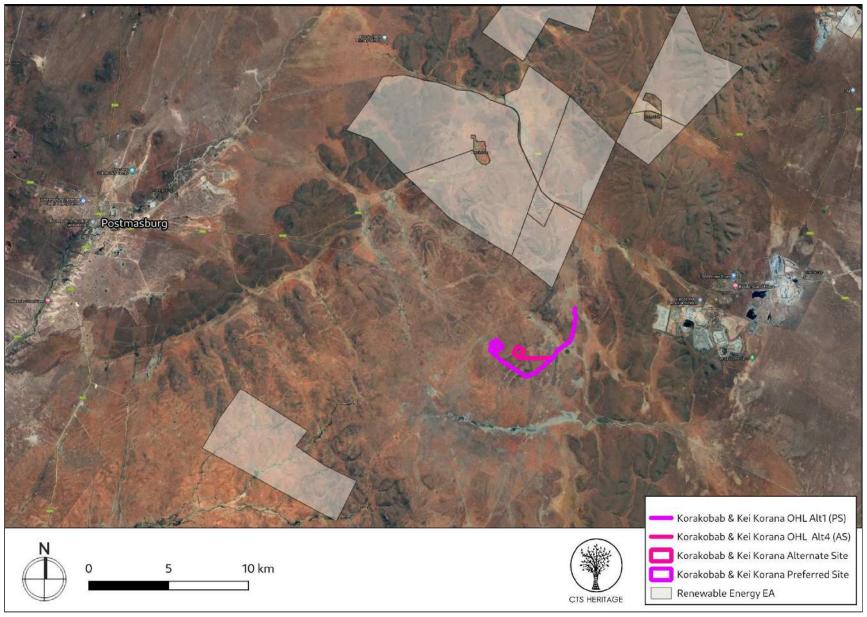


Figure 5. Cumulative Impact Map. Indicating other Renewable Energy Facilities that have been granted Environmental Authorisation (EA).

8. Heritage Assessment

This application is for the proposed development of the Korakobab Hydrogen facility and the Kei Korana Ammonia facility as part of the proposed Taaibosch Puts Renewable Energy Cluster located 20km from Postmasburg in the Northern Cape. Originally a station of the London Missionary Society called Sibiling, it became a Griqua village with the name Blinkklip and was then proclaimed a town on 6 June 1892. Postmasburg achieved municipal status in 1936. Postmasburg had its own diamond rush. The first diamond was discovered in 1918 and as a result an open cast mine grew. The mine was permanently flooded in 1935 and as a result, just like Kimberley, Postmasburg could also boast its very own "Big Hole". This hole is over 45 m deep and filled with fish. Postmasburg also boasts spectacular architecture and many historical sites. An old blue dolomite stone Reformed Church was built in 1908. There is also a rather impressive gun known as "Howitzer Gun" which stands at the civic centre. It honours the men of Postmasburg who died during World War II. The proposed development is also located less than 10km from Lime Acres, home to the employees of the Finsch Diamond Mine located nearby.

In 1801, the London Missionary Society also established a station among the Griqua at *Leeuwenkuil*. The site proved too arid for cultivation and in about 1805 they moved the station to another spring further up the valley and called it *Klaarwater*. Their second choice was little better than their first, and for many years a lack of water prevented any further development. The name of the settlement was changed later to Griquatown or *Griekwastad* in Afrikaans. They lived among a mixed nomadic community of the Chaguriqua tribe and "bastaards" (people of mixed origin) from Piketberg. Their two leaders were Andries Waterboer and Adam Kok II. From 1813 to 17 July 1871, the town and its surrounding area functioned as Andries *Waterboer's Land*. *Griekwastad* was later the capital of British Colony Griqualand West from 1873 to 1880, with its own flag and currency, before it was annexed into the Cape Colony. The proposed Taaibosch Puts Renewable Energy Cluster is located on one of the main routes between Griekwastad and Kuruman and as such, evidence of this heritage may be impacted by the proposed development.

An archaeological assessment of the Finsch Mine was completed by Henderson in 2005 (SAHRIS ID 6780). Henderson drafted a brief history of the Finsch Mine and this is not repeated here. Suffice to note that "Recent human activity at the Finsch Mine, which would have left traces of mining and structures, therefore only dates back to 1959 on Brits. It would appear that there may be an earlier date for farming activities on Bonza". Elements of the cultural landscape that may be impacted by the proposed development include the sense of place of the historic core of Postmasburg as well as the mining and farming heritage of the area.

Due to mining activities in the area, a number of heritage impact assessments have been completed in close proximity to the development area and these are relevant here (Figure 2 and Appendix 2). The well known Taung site that preserved early hominid remains is located only some 50 kilometres to the west of the site under investigation. Wonderwerk cave near Kuruman also retain evidence of early peoples in its 6 meter midden deposit, especially in the rear portions of the cave. Towards the front rock-art from later Stone Age peoples are also preserved. Furthermore the engraving sites Wildebeestkuil, Driekopseiland and Nooitgedacht near Kimberly confirm a continued presence of Later Stone Age peoples in the general region. It is very likely that significant archaeological heritage may be impacted by the proposed development.

According to the SAHRIS Palaeosensitivity Map, the area proposed for development is predominantly underlain by sediments of moderate palaeontological sensitivity (Figure 4a). According to the Extract from the CGS 2822 Postmasburg Map, the development area is underlain by sediments of the Ongeluk Formation, Danielskuil Member and Kuruman Member of the Asbesberge Formation, the Lime Acres Member of the Ghaap Plateau as well as Surface Limestone Quaternary Sands.

In an assessment completed for a proposed powerline that traverses the same geological formations, Almond (2015, SAHRIS ID 344620) concluded that "On the basis of both desktop analysis and fieldwork within the broader power line study area (Almond 2013a, 2014) the palaeontological sensitivity of all power line corridors under consideration is assessed as low. This also applies to the area to the north of Lime Acres where stromatolites occur within the underlying bedrock but are rarely well-exposed at surface and are therefore unlikely to be significantly impacted by the proposed transmission lines. The Makganyene Formation outcrop area in the north-western corner of the Remainder of the Farm Nr 469, close to the R385 tar road, is of considerable scientific interest as an accessible part of the limited rock record for an Early Proterozoic (c. 2.3 billion years-old) "snowball earth" glacial event, when ice sheets may have covered much of the planet. However, fossil stromatolites do not occur within the succession here and significant palaeontological impacts are therefore not

anticipated. Potential impacts on local palaeontological heritage are assessed for all power line corridor options as being of low negative significance." It is likely that similar palaeontological sensitivities exist for the proposed development area and as such, it is recommended that potential impacts to palaeontological heritage are assessed.

RECOMMENDATION

Based on the available information, it is likely that the proposed development will negatively impact on significant archaeological, palaeontological and cultural landscape heritage resources. As such, it is recommended that an HIA is required that assesses these impacts and proposes mitigation measures.

APPENDIX 1

List of heritage resources within close proximity to the development area

Site ID	Site no	Full Site Name	Site Type	Grading		
86471	GROE001	Groenwater 001	Groenwater 001 Structures			
95513	PGS06	PGS06 - Humansrus, Daniëlskuil	Deposit			
45544	GRNWTR01	Groenwater 453-01	Artefacts	Grade IIIb		
45545	GRNWTR02	Groenwater 453-02	Artefacts	Grade IIIb		
45546	GRNWTR03	Groenwater 453-03	Structures	Grade IIIa		
45547	GRNWTR04	Groenwater 453-04	Building	Grade IIIa		
45548	GRNWTR05	Groenwater 453-05	Artefacts	Grade IIIc		
45549	GRNWTR06	Groenwater 453-06	Artefacts	Grade IIIc		
45550	GRNWTR07	Groenwater 453-07	Artefacts	Grade IIIc		
45551	GRNWTR08	Groenwater 453-08	Artefacts	Grade IIIb		
45552	GRNWTR09	Groenwater 453-09	Structures	Grade IIIc		
45553	GRNWTR10	Groenwater 453-10	Structures	Grade IIIc		
45554	GRNWTR11	Groenwater 453-11	Structures	Grade IIIc		
45555	GRNWTR12	Groenwater 453-12	Stone walling	Grade IIIb		
45556	GRNWTR13	Groenwater 453-13	Stone walling	Grade IIIc		
45557	GRNWTR14	Groenwater 453-14	Groenwater 453-14 Stone walling			
45558	GRNWTR15	Groenwater 453-15	Stone walling	Grade IIIc		

45559	GRNWTR16	Groenwater 453-16	Archaeological	Grade IIIc
45560	GRNWTR17	Groenwater 453-17	Structures	Grade IIIc
45561	GRNWTR18	Groenwater 453-18	Stone walling	Grade IIIb
45562	GRNWTR19	Groenwater 453-19	Structures	Grade IIIb
45563	GRNWTR20	Groenwater 453-20	Structures	Grade IIIb
45564	GRNWTR21	Groenwater 453-21	Structures	Grade IIIc
45565	GRNWTR22	Groenwater 453-22	Structures	Grade IIIc
45566	GRNWTR23	Groenwater 453-23	Structures	Grade IIIc
45567	GRNWTR24	Groenwater 453-24	Structures	Grade IIIc
45568	GRNWTR25	Groenwater 453-25	Structures	Grade IIIb
45569	GRNWTR26	Groenwater 453-26	Structures	Grade IIIb
45571	GRNWTR27	Groenwater 453-27	Burial Grounds & Graves	Grade IIIa
45572	GRNWTR28	Groenwater 453-28	Archaeological	Grade IIIa
45573	GRNWTR29	Groenwater 453-29	Burial Grounds & Graves	Grade IIIa
45574	GRNWTR30	Groenwater 453-30	Burial Grounds & Graves	Grade IIIa
45575	GRNWTR31	Groenwater 453-31	Burial Grounds & Graves	Grade Illa
45576	GRNWTR32	Groenwater 453-32	Burial Grounds & Graves	Grade IIIa
36990	HOT029	Hotazel 029	Burial Grounds & Graves, Stone walling	Grade IIIa
36991	HOT030	Hotazel 030	Cultural Landscape	Grade IIIa

24704	Ngqura Manganese Railway	Groenwater crossing station	Building	Grade IIIb
45847	HUMA001	Humansrus 001	Artefacts	Grade IIIc
45848	HUMA002	Humansrus 002	Artefacts	Grade IIIc
45849	HUMA003	Humansrus 003	Artefacts	Grade IIIc
45850	HUMA004	Humansrus 004	Artefacts	Grade IIIc
45852	HUMA005	Humansrus 005	Artefacts	Grade IIIc
45853	HUMA006	Humansrus 006	Artefacts	Grade IIIc
45856	HUMA008	Humansrus 008	Artefacts	Grade IIIc
45858	HUMA009	Humansrus 009	Artefacts	Grade IIIc
45860	HUMA010	Humansrus 010	Artefacts	Grade IIIc
85440	RSTP002	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 002	Burial Grounds & Graves	Grade IIIa
85441	RSTP003	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 003	Burial Grounds & Graves	Grade IIIa
85442	RSTP004	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 004	Burial Grounds & Graves	Grade IIIa
85443	RSTP005	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 005	Building	Grade IIIb
85445	RSTP007	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 007	Structures	Grade IIIc
85446	RSTP008	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 008	Transport infrastructure	Grade IIIb

85447	RSTP009	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 009	Building	Grade IIIb
85448	RSTP010	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 010	Stone walling	Grade IIIc
85449	RSTP011	Redstone Solar Thermal Power Project to Olien MTS Heritage Report 011	Structures	Grade IIIb
44751	HUM01	Humansrus 01	Artefacts	Grade IIIc
44752	HUM02	Humansrus 02	Artefacts	Grade IIIc
44753	HUM03	Humansrus 03	Artefacts	Grade IIIc
44754	HUM04	Humansrus 04	Artefacts	Grade IIIc
44755	HUM05	Humansrus 05	Artefacts	Grade IIIc
44759	HUM06	Humansrus 06	Artefacts	Grade IIIc
44761	HUM07	Humansrus 07	Artefacts	Grade IIIc
44762	HUM08	Humansrus 08	Artefacts	Grade IIIc
44763	HUM09	Humansrus 09	Burial Grounds & Graves	Grade IIIa
44764	HUM10	Humansrus 10	Burial Grounds & Graves	Grade IIIa
44765	HUM11	Humansrus 11	Burial Grounds & Graves	Grade IIIa
44766	HUM12	Humansrus 12	Burial Grounds & Graves	Grade IIIa
44767	HUM13	Humansrus 13	Burial Grounds & Graves	Grade IIIa
44769	HUM15	Humansrus 15	Structures	Grade IIIc
44770	HUM16	Humansrus 16	Structures	Grade IIIc

44771	HUM17	Humansrus 17	Structures	Grade IIIc
36989	HOT028	Hotazel 028	Burial Grounds & Graves	Grade IIIa
36987	HOT026	Hotazel 026	Burial Grounds & Graves	Grade IIIa
36988	HOT027	Hotazel 027	Burial Grounds & Graves	Grade IIIa
92643	HUMA016	Humansrus 016	Artefacts	Grade IIIb
92644	HUMA017	Humansrus 017	Burial Grounds & Graves	Grade IIIa
92645	HUMA018	Humansrus 018	Burial Grounds & Graves	Grade IIIa
92646	HUMA019	Humansrus 019	Burial Grounds & Graves	Grade IIIa
92647	HUMA020	Humansrus 020	Structures	Grade IIIc
92648	HUMA021	Humansrus 021	Burial Grounds & Graves	Grade IIIa
92649	HUMA022	Humansrus 022	Structures	Grade IIIc
92650	HUMA023	Humansrus 023	Structures	Grade IIIc
90422	HUMA011	Humansrus 011	Structures	Grade IIIc
90423	HUMA012	Humansrus 012	Structures	Grade IIIb
90424	HUMA013	Humansrus 013	Structures	Grade IIIc
90425	HUMA014	Humansrus 014	Structures	Grade IIIb
90426	HUMA015	Humansrus 015	Archaeological	Grade IIIc
91007	OL1002	Olien SEF002	Artefacts	Grade IIIc
91008	OL1003	Olien SEF003	Stone walling	Grade IIIc
91009	OL1004	Olien SEF004	Burial Grounds & Graves	Grade IIIa

APPENDIX 2

Reference List with relevant AIAs and PIAs

	Heritage Impact Assessments						
Nid	Report Type	Author/s	Date	Title			
6780	AIA Phase 1	Zoe Henderson	01/09/2005	Cultural Heritage Assessment for Finsch Mine			
7842	AIA Phase 1	Cobus Dreyer	19/11/2007	Archaeological and Historical Investigation of the Proposed Mining Activities at the Farm Rosslyn, Lime Acres, Northern Cape			
4602	AIA Phase 1	David Morris	01/07/2008	Archaeological and Heritage Impact Assessment on Remainder of Carter Block 458, near Limeacres, Northern Cape			
163992		Wouter Fourie	03/12/2013	Proposed Construction of the Limestone 1 - 132kV Power Line and the associated Switchyards on Portion 0 (remaining extent) of the Farm 267, Northern Cape Province			
164009	Heritage Impact Assessment Specialist Reports	Wouter Fourie	03/12/2013	Proposed Decommissioning and Construction of the Limestone 2 - 132kV Power Line and the associated Switchyards on Portion 0 (remaining extent) of the Plaas 267 Arriesfontein, Northern Cape Province			
6218	AIA Phase 1	Wouter Fourie	27/03/2012	Heritage Impact Assessment: The proposed 10mw Photovoltaic (PV) Power Plant on the Farm Arriesfontein (Farm 267) near Danielskuil, Northern Cape Province			
6958	AIA Phase 1	Wouter Fourie	10/06/2011	Humansrus Solar Thermal Energy Power Plant, Postmasburg			
8240	AIA Phase 1	David Morris	11/06/2010	Proposed development of PV Power Station at Welcome Wood, near Owendale, Northern Cape			
8368	AIA Phase 1	Karen Van Ryneveld	29/06/2005	Cultural Heritage Site Inspection Report for the Purpose of a Prospecting Right EMP - (Portion of) Skeyfontein 536, Postmasburg District, Northern Cape, South Africa			
8899	PIA Phase 1	John E Almond	04/05/2011	Recommended exemption from further palaeontological studies: Proposed Humansrus Solar Thermal Energy Power Plant development on Farm 469, near Postmasburg, Northern Cape Province			

9047	PIA Phase 1	John E Almond	11/06/2010	Proposed photovoltaic power station adjacent to Welcome Wood Substation, Owendale near Postmasburg, Northern Cape Province
73252	HIA Phase 1	Wouter Fourie	13/09/2012	Heritage Impact Assessment - Proposed Construction of 132kv Power Line and Switchyard Associated with the Redstone Solar Thermal Energy Plant in the Northern Cape Province
83272	HIA Phase 1	David Morris	01/08/2012	Archaeological & Cultural Heritage Impact Assessment Phase 1: Proposed Olien Solar Project development on Portion 4 of Farm 300, Barkly West, near Limeacres, Northern Cape
83273	PIA Desktop	Jennifer Botha-Brink	26/06/2012	PALAEONTOLOGICAL IMPACT ASSESSMENT OF THE PROPOSED OLIEN SOLAR PROJECT ON FARM 300, BARKLY WEST, NORTHERN CAPE PROVINCE
109815	HIA Phase 1	Wouter Fourie	22/03/2012	132 kV Power line connection to the Humasrus Solar Thermal Energy Power plant, postmasburg.
114648	PIA Desktop	John E Almond	01/09/2012	Palaeontological specialist assessment: desktop study PROPOSED 16 MTPA EXPANSION OF TRANSNET'S EXISTING MANGANESE ORE EXPORT RAILWAY LINE & ASSOCIATED INFRASTRUCTURE BETWEEN HOTAZEL AND THE PORT OF NGQURA, NORTHERN & EASTERN CAPE. Part 1: Hotazel to Kimberley, Northern Cape
122772	HIA Phase 1	Wouter Fourie	01/09/2011	Heritage Impact Assessment for the Humansrus Solar Thermal Energy Power Plant, Postmasburg
123342	HIA Phase 1	Marko Hutten	01/04/2013	Renewable Energy Generation project on the farm Grootvlei 296, Kgatelopele Local Municipality, Siyanda District Municipality, Northern Cape Province
129751	HIA Phase 1	Elize Becker	20/02/2013	Phase 1 Heritage Impact Assessment Hotazel to Kimberley and De Aar to Port of Ngqura
155262	PIA Desktop	John E Almond	22/12/2013	Palaeontological Heritage Basic Assessment: Desktop Study - Proposed construction of a 132 kV power line and switchyard associated with the Redstone Solar Thermal Energy Plant near Postmasburg, Northern Cape Province
156348	Archaeological Monitoring	Lloyd Rossouw	08/01/2014	Updated report on the Cultural Heritage Impact Assessment for Petra Diamonds Finsch Mine
162535	AIA Phase 1	David Morris	02/03/2012	Archaeological Impact Assessment Phase 1: Proposed development of a PV Power Station at Welcome Wood (extended area), near Owendale, Northern Cape

162542	PIA Desktop	John E Almond	01/02/2012	PALAEONTOLOGICAL IMPACT ASSESSMENT: DESKTOP STUDY Proposed PV power stations Welcome Wood II and III adjacent to Welcome Wood Substation, near DaniëIskuil, Northern Cape Province
173943	Heritage Impact Assessment Specialist Reports	Marko Hutten, John Almond	15/07/2014	Proposed Construction of two 132kV Power Lines and Switchyards to connect the ACWA Power SolarReserve Redstone Solar Thermal Power Plant with the Olien Substation – Option 1: ACWA Power SolarReserve Redstone Solar Thermal Power Plant to Olien Substation, in the ZF Ngcawu District Municipality – Heritage Impact Assessment
173967	Heritage Impact Assessment Specialist Reports	Marko Hutten	15/07/2014	Proposed Construction of two 132kV Power Lines and Switchyards to connect the Redstone Solar Thermal Energy Plant with the Olien Substation in the ZF Ngcawu District Municipality – Heritage Impact Assessment Option 2: Silverstreams substation to Olien Substations
344620	PIA Phase 1	John E Almond	09/11/2015	Palaeontological Heritage Report for the proposed 132 kV power lines between the ACWA Power SolarReserve Redstone Solar Thermal Energy Plant Site and Olien Main Transmission Substation near Lime Acres, Northern Cape Province
361351	AIA Phase 1	Karen Van Ryneveld	20/03/2016	Archaeological Impact Assessment Report
361357	PIA Phase 1	Lloyd Rossouw	03/05/2016	Palaeontological Impact Assessment

APPENDIX 3 - Keys/Guides

Key/Guide to Acronyms

AIA	Archaeological Impact Assessment						
DARD	Department of Agriculture and Rural Development (KwaZulu-Natal)						
DEA	Department of Environmental Affairs (National)						
DEADP	Department of Environmental Affairs and Development Planning (Western Cape)						
DEDEAT	Department of Economic Development, Environmental Affairs and Tourism (Eastern Cape)						
DEDECT	Department of Economic Development, Environment, Conservation and Tourism (North West)						
DEDT	Department of Economic Development and Tourism (Mpumalanga)						
DEDTEA	Department of economic Development, Tourism and Environmental Affairs (Free State)						
DENC	Department of Environment and Nature Conservation (Northern Cape)						
DMR	Department of Mineral Resources (National)						
GDARD	Gauteng Department of Agriculture and Rural Development (Gauteng)						
HIA	Heritage Impact Assessment						
LEDET	Department of Economic Development, Environment and Tourism (Limpopo)						
MPRDA	Mineral and Petroleum Resources Development Act, no 28 of 2002						
NEMA	National Environmental Management Act, no 107 of 1998						
NHRA	National Heritage Resources Act, no 25 of 1999						
PIA	Palaeontological Impact Assessment						
SAHRA	South African Heritage Resources Agency						
SAHRIS	South African Heritage Resources Information System						
VIA	Visual Impact Assessment						

Full guide to Palaeosensitivity Map legend

RED:	VERY HIGH - field assessment and protocol for finds is required			
ORANGE/YELLOW:	HIGH - desktop study is required and based on the outcome of the desktop study, a field assessment is likely			
GREEN:	MODERATE - desktop study is required			
BLUE/PURPLE:	LOW - no palaeontological studies are required however a protocol for chance finds is required			
GREY:	INSIGNIFICANT/ZERO - no palaeontological studies are required			
WHITE/CLEAR:	UNKNOWN - these areas will require a minimum of a desktop study.			

APPENDIX 4 - Methodology

The Heritage Screener summarises the heritage impact assessments and studies previously undertaken within the area of the proposed development and its surroundings. Heritage resources identified in these reports are assessed by our team during the screening process.

The heritage resources will be described both in terms of **type**:

- Group 1: Archaeological, Underwater, Palaeontological and Geological sites, Meteorites, and Battlefields
- Group 2: Structures, Monuments and Memorials
- Group 3: Burial Grounds and Graves, Living Heritage, Sacred and Natural sites
- Group 4: Cultural Landscapes, Conservation Areas and Scenic routes

and **significance** (Grade I, II, IIIa, b or c, ungraded), as determined by the author of the original heritage impact assessment report or by formal grading and/or protection by the heritage authorities.

Sites identified and mapped during research projects will also be considered.

DETERMINATION OF THE EXTENT OF THE INCLUSION ZONE TO BE TAKEN INTO CONSIDERATION

The extent of the inclusion zone to be considered for the Heritage Screener will be determined by CTS based on:

- the size of the development,
- the number and outcome of previous surveys existing in the area
- the potential cumulative impact of the application.

The inclusion zone will be considered as the region within a maximum distance of 50 km from the boundary of the proposed development.

DETERMINATION OF THE PALAEONTOLOGICAL SENSITIVITY

The possible impact of the proposed development on palaeontological resources is gauged by:

- reviewing the fossil sensitivity maps available on the South African Heritage Resources Information System (SAHRIS)
- considering the nature of the proposed development
- when available, taking information provided by the applicant related to the geological background of the area into account

DETERMINATION OF THE COVERAGE RATING ASCRIBED TO A REPORT POLYGON

Each report assessed for the compilation of the Heritage Screener is colour-coded according to the level of coverage accomplished. The extent of the surveyed coverage is labeled in three categories, namely low, medium and high. In most instances the extent of the map corresponds to the extent of the development for which the specific report was undertaken.

Low coverage will be used for:

- desktop studies where no field assessment of the area was undertaken;
- reports where the sites are listed and described but no GPS coordinates were provided.
- older reports with GPS coordinates with low accuracy ratings;
- reports where the entire property was mapped, but only a small/limited area was surveyed.
- uploads on the National Inventory which are not properly mapped.

Medium coverage will be used for

• reports for which a field survey was undertaken but the area was not extensively covered. This may apply to instances where some impediments did not allow for full coverage such as thick vegetation, etc.

• reports for which the entire property was mapped, but only a specific area was surveyed thoroughly. This is differentiated from low ratings listed above when these surveys cover up to around 50% of the property.

High coverage will be used for

• reports where the area highlighted in the map was extensively surveyed as shown by the GPS track coordinates. This category will also apply to permit reports.

RECOMMENDATION GUIDE

The Heritage Screener includes a set of recommendations to the applicant based on whether an impact on heritage resources is anticipated. One of three possible recommendations is formulated:

(1) The heritage resources in the area proposed for development are sufficiently recorded - The surveys undertaken in the area adequately captured the heritage resources. There are no known sites which require mitigation or management plans. No further heritage work is recommended for the proposed development.

This recommendation is made when:

- enough work has been undertaken in the area
- it is the professional opinion of CTS that the area has already been assessed adequately from a heritage perspective for the type of development proposed

(2) The heritage resources and the area proposed for development are only partially recorded - The surveys undertaken in the area have not adequately captured the heritage resources and/or there are sites which require mitigation or management plans. Further specific heritage work is recommended for the proposed development.

This recommendation is made in instances in which there are already some studies undertaken in the area and/or in the adjacent area for the proposed development. Further studies in a limited HIA may include:

• improvement on some components of the heritage assessments already undertaken, for instance with a renewed field survey and/or with a specific specialist for the type of heritage resources expected in the area

• compilation of a report for a component of a heritage impact assessment not already undertaken in the area

• undertaking mitigation measures requested in previous assessments/records of decision.

(3) The heritage resources within the area proposed for the development have not been adequately surveyed yet - Few or no surveys have been undertaken in the area proposed for development. A full Heritage Impact Assessment with a detailed field component is recommended for the proposed development.

Note:

The responsibility for generating a response detailing the requirements for the development lies with the heritage authority. However, since the methodology utilised for the compilation of the Heritage Screeners is thorough and consistent, contradictory outcomes to the recommendations made by CTS should rarely occur. Should a discrepancy arise, CTS will immediately take up the matter with the heritage authority to clarify the dispute.

APPENDIX 5 - Summary of Specialist Expertise

Jenna Lavin, an archaeologist with an MSc in Archaeology and Palaeoenvironments, and currently completing an MPhil in Conservation Management , heads up the heritage division of the organisation, and has a wealth of experience in the heritage management sector. Jenna's previous position as the Assistant Director for Policy, Research and Planning at Heritage Western Cape has provided her with an in-depth understanding of national and international heritage legislation. Her 8 years of experience at various heritage authorities in South Africa means that she has dealt extensively with permitting, policy formulation, compliance and heritage management at national and provincial level and has also been heavily involved in rolling out training on SAHRIS to the Provincial Heritage Resources Authorities and local authorities.

Jenna is on the Executive Committee of the Association of Professional Heritage Practitioners (APHP), and is also an active member of the International Committee on Monuments and Sites (ICOMOS) as well as the International Committee on Archaeological Heritage Management (ICAHM). In addition, Jenna has been a member of the Association of Southern African Professional Archaeologists (ASAPA) since 2009. Recently, Jenna has been responsible for conducting training in how to write Wikipedia articles for the Africa Centre's WikiAfrica project.

Since 2016, Jenna has drafted over 50 Heritage Impact Assessments throughout South Africa.

APPENDIX 5 Chance Fossil Finds Procedure

CHANCE FINDS OF PALAEONTOLOGICAL MATERIAL

(Adopted from the HWC Chance Fossils Finds Procedure: June 2016)

Introduction

This document is aimed to inform workmen and foremen working on a construction and/or mining site. It describes the procedure to follow in instances of accidental discovery of palaeontological material (please see attached poster with descriptions of palaeontological material) during construction/mining activities. This protocol does not apply to resources already identified under an assessment undertaken under s. 38 of the National Heritage Resources Act (no 25 of 1999).

Fossils are rare and irreplaceable. Fossils tell us about the environmental conditions that existed in a specific geographical area millions of years ago. As heritage resources that inform us of the history of a place, fossils are public property that the State is required to manage and conserve on behalf of all the citizens of South Africa. Fossils are therefore protected by the National Heritage Resources Act and are the property of the State. Ideally, a qualified person should be responsible for the recovery of fossils noticed during construction/mining to ensure that all relevant contextual information is recorded.

Heritage Authorities often rely on workmen and foremen to report finds, and thereby contribute to our knowledge of South Africa's past and contribute to its conservation for future generations.

Training

Workmen and foremen need to be trained in the procedure to follow in instances of accidental discovery of fossil material, in a similar way to the Health and Safety protocol. A brief introduction to the process to follow in the event of possible accidental discovery of fossils should be conducted by the designated Environmental Control Officer (ECO) for the project, or the foreman or site agent in the absence of the ECO It is recommended that copies of the attached poster and procedure are printed out and displayed at the site office so that workmen may familiarise themselves with them and are thereby prepared in the event that accidental discovery of fossil material takes place.

Actions to be taken

One person in the staff must be identified and appointed as responsible for the implementation of the attached protocol in instances of accidental fossil discovery and must report to the ECO or site agent. If the ECO or site agent is not present on site, then the responsible person on site should follow the protocol correctly in order to not jeopardize the conservation and well-being of the fossil material.

Once a workman notices possible fossil material, he/she should report this to the ECO or site agent.Procedure to follow if it is likely that the material identified is a fossil:

- The ECO or site agent must ensure that all work ceases immediately in the vicinity of the area where the fossil or fossils have been found;
- The ECO or site agent must inform SAHRA of the find immediately. This information must include photographs of the findings and GPS co-ordinates;
- The ECO or site agent must compile a Preliminary Report and fill in the attached Fossil Discoveries: Preliminary Record Form within 24 hours without removing the fossil from its original position. The Preliminary Report records basic information about the find including:
 - The date
 - A description of the discovery
 - A description of the fossil and its context (e.g. position and depth of find)
 - Where and how the find has been stored
 - Photographs to accompany the preliminary report (the more the better):
 - A scale must be used
 - Photos of location from several angles
 - Photos of vertical section should be provided
 - Digital images of hole showing vertical section (side);
 - Digital images of fossil or fossils.

Upon receipt of this Preliminary Report, SAHRA will inform the ECO or site agent whether or not a rescue excavation or rescue collection by a palaeontologist is necessary.

- Exposed finds must be stabilised where they are unstable and the site capped, e.g. with a plastic sheet or sand bags. This protection should allow for the later excavation of the finds with due scientific care and diligence. SAHRA can advise on the most appropriate method for stabilisation.
- If the find cannot be stabilised, the fossil may be collect with extreme care by the ECO or the site agent and put aside and protected until SAHRA advises on further action. Finds collected in this way must be safely and securely stored in tissue paper and an appropriate box. Care must be taken to remove the all fossil material and any breakage of fossil material must be avoided at all costs.

No work may continue in the vicinity of the find until SAHRA has indicated, in writing, that it is appropriate to proceed.

FOSSIL DISC	OVERIES: PRELIMINARY RECO	
Name of project:		
Name of fossil location:		
Date of discovery:		
Description of situation in which the fossil was found:		
Description of context in which the fossil was found:		
Description and condition of fossil identified:		
GPS coordinates:	Lat:	Long:
If no co-ordinates available then please describe the location:		
Time of discovery:		
Depth of find in hole		
Photographs (tick as appropriate and indicate number of the photograph)	Digital image of vertical section (side)	
	Fossil from different angles	
	Wider context of the find	
Temporary storage (where it is located and how it is conserved)		
Person identifying the fossil Name:		
Contact:		
Recorder Name:		
Contact:		
Photographer Name:		
Contact:		

APPENDIX 6 Detailed Project Description