Palaeontological Impact Assessment for the proposed Annandale Residential Development, Balgowan, KwaZulu Natal Province **Desktop Study (Phase 1)** For **JLB Consulting** **26 February 2022** **Prof Marion Bamford** Palaeobotanist P Bag 652, WITS 2050 Johannesburg, South Africa Marion.bamford@wits.ac.za # **Expertise of Specialist** The Palaeontologist Consultant: Prof Marion Bamford Qualifications: PhD (Wits Univ, 1990); FRSSAf, mASSAf Experience: 33 years research and lecturing in Palaeontology 25 years PIA studies and over 300 projects completed ## **Declaration of Independence** This report has been compiled by Professor Marion Bamford, of the University of the Witwatersrand, sub-contracted by JLB Consulting, Durban, South Africa. The views expressed in this report are entirely those of the author and no other interest was displayed during the decision making process for the Project. Specialist: Prof Marion Bamford MKBamfurk Signature: #### **Executive Summary** A Palaeontological Impact Assessment was requested for the proposed development of Residential Infrastructure on the Remainder of Portion 7 of the Farm Wilde Als Spruit No. 1085 for the Proposed Annandale Residential Development, uMngeni Local Municipality, uMgungundlovu District. To comply with the regulations of the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a desktop Palaeontological Impact Assessment (PIA) was completed for the proposed development. The proposed site lies on the potentially fossiliferous Volksrust Formation (Beaufort Group, Karoo Supergroup) that has yielded one fine example of a marine bivalve. Nonetheless, a Fossil Chance Find Protocol should be added to the EMPr. Based on this information it is recommended that no further palaeontological impact assessment is required unless fossils are found by the developer/ environmental officer/ other designated responsible person once excavations/drilling activities have commenced. As far as the palaeontology is concerned, the project should be authorised. # **Table of Contents** | | Expertise of Specialist | 1 | |------|---|----| | | Declaration of Independence | 1 | | 1. | Background | 4 | | 2. | Methods and Terms of Reference | 7 | | 3. | Geology and Palaeontology | 7 | | i. | Project location and geological context | 7 | | ii. | i. Palaeontological context | 9 | | 4. | Impact assessment | 10 | | 5. | Assumptions and uncertainties | 11 | | 6. | Recommendation | 11 | | 7. | References | 12 | | 8. | Chance Find Protocol | 13 | | 9. | Appendix A – Examples of fossils from the | 14 | | 10. | Appendix B – Details of specialist | 15 | | | | | | Figu | ure 1: Google Earth map of the general area to show the relative land marks | 6 | | Figu | ure 2: Google Earth Map of the proposed development | 6 | | Figu | ure 3: Geological map of the area around the project site | 7 | | Figu | ure 4. SAHRIS nalaeosensitivity man for the site | 9 | ## 1. Background Collins Residential (Pty) Ltd proposes to construct a new residential development on the Remainder of Portion 7 Wilde Als Spruit Farm No. 1085 in Balgowan (centre of site: 29°23′52.65″S; 31°03′18.64″E). The property is located within Ward 3 of the uMngeni Local Municipality, uMgungundlovu District. The property is 14.03 hectares in extent and currently zoned as "Agricultural". The proposed "Annandale Residential Development" is comprised of 35 large free-standing residential erven, 20 smaller residential erven and 7 semi-detached cottages. A new road network is proposed on the site to service the individual houses. The total development footprint is approximately 7.25 hectares. The existing farmhouse on the property, which is of heritage value, will be retained as a Club House. Due to the rural location of the study area, there are no municipal water or sewerage reticulation networks to which the development can connect. Potable water will therefore be supplied using a borehole on site and a package plant established to treat sewage (throughput capacity <2 000m³ / day). Treated wastewater will be used for irrigation of the gardens and the overflow discharged into the watercourse. A Palaeontological Impact Assessment was requested for the Annandale Residential project. To comply with the regulations of the South African Heritage Resources Agency (SAHRA) in terms of Section 38(8) of the National Heritage Resources Act, 1999 (Act No. 25 of 1999) (NHRA), a desktop Palaeontological Impact Assessment (PIA) was completed for the proposed development and is reported herein. Table 1: National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA) and Environmental Impact Assessment (EIA) Regulations, 2014 (as amended) - Requirements for Specialist Reports (Appendix 6). | | A specialist report prepared in terms of the Environmental Impact Regulations of 2017 must contain: | Relevant
section in
report | |-----|--|----------------------------------| | ai | Details of the specialist who prepared the report, | Appendix B | | aii | The expertise of that person to compile a specialist report including a curriculum vitae | Appendix B | | b | A declaration that the person is independent in a form as may be specified by the competent authority | Page 1 | | С | An indication of the scope of, and the purpose for which, the report was prepared | Section 1 | | ci | An indication of the quality and age of the base data used for the specialist report:
SAHRIS palaeosensitivity map accessed – date of this report | Yes | | cii | A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change | Section 5 | | d | The date and season of the site investigation and the relevance of the season to the outcome of the assessment | N/A | | | A specialist report prepared in terms of the Environmental Impact Regulations of 2017 must contain: | Relevant
section in
report | |-----|--|----------------------------------| | е | A description of the methodology adopted in preparing the report or carrying out the specialised process | Section 2 | | f | The specific identified sensitivity of the site related to the activity and its associated structures and infrastructure | Section 4 | | g | An identification of any areas to be avoided, including buffers | N/A | | h | A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers; | | | i | A description of any assumptions made and any uncertainties or gaps in knowledge; | Section 5 | | j | A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives, on the environment | Section 4 | | k | Any mitigation measures for inclusion in the EMPr | Section 8,
Appendix A | | 1 | Any conditions for inclusion in the environmental authorisation | N/A | | m | Any monitoring requirements for inclusion in the EMPr or environmental authorisation | Section 8,
Appendix A | | ni | A reasoned opinion as to whether the proposed activity or portions thereof should be authorised | Section 6 | | nii | If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan | | | 0 | A description of any consultation process that was undertaken during the course of carrying out the study | N/A | | р | A summary and copies of any comments that were received during any consultation process | N/A | | q | Any other information requested by the competent authority. | N/A | | 2 | Where a government notice gazetted by the Minister provides for any protocol or minimum information requirement to be applied to a specialist report, the requirements as indicated in such notice will apply. | N/A | Figure 1: Google Earth map of the general area to show the relative land marks. The Annandale Residential project is shown by the red outline. Figure 2: Google Earth Map of the proposed Annadale Residential development near Balgowan indicated by the red outline. #### 2. Methods and Terms of Reference The Terms of Reference (ToR) for this study were to undertake a PIA and provide feasible management measures to comply with the requirements of SAHRA. The methods employed to address the ToR included: - 1. Consultation of geological maps, literature, palaeontological databases, published and unpublished records to determine the likelihood of fossils occurring in the affected areas. Sources included records housed at the Evolutionary Studies Institute at the University of the Witwatersrand and SAHRA databases; - 2. Where necessary, site visits by a qualified palaeontologist to locate any fossils and assess their importance (*not applicable to this assessment*); - 3. Where appropriate, collection of unique or rare fossils with the necessary permits for storage and curation at an appropriate facility (*not applicable to this assessment*); and - 4. Determination of fossils' representivity or scientific importance to decide if the fossils can be destroyed or a representative sample collected (*not applicable to this assessment*). ## 3. Geology and Palaeontology #### i. Project location and geological context Figure 3: Geological map of the area around Balgowan. The location of the proposed project is indicated within the yellow rectangle. Abbreviations of the rock types are explained in Table 2. Map enlarged from the Geological Survey 1: 250 000 map 2930 Durban. Table 2: Explanation of symbols for the geological map and approximate ages (Eriksson et al., 2006. Johnson et al., 2006; McCarthy et al., 2006; Robb et al., 2006; van der Westhuizen et al., 2006). SG = Supergroup; Fm = Formation; Ma = million years; grey shading = formations impacted by the project. | Symbol | Group/Formation | Lithology | Approximate Age | |--------|---------------------------------------|---------------------------|--------------------------| | Q | Quaternary | Alluvium, sand, calcrete | Neogene, ca 2.5 Ma to | | Q | Quaternary | | present | | Jd | Jurassic dykes | Dolerite dykes, intrusive | Jurassic, approx. 180 Ma | | | Estcourt Fm (now | Dark grey shale (often | | | Pe | Normandien Fm), | carbonaceous), siltstone, | Late Permian, Lower | | Pe | Beaufort Group, Karoo | med to coarse-grained | Beaufort | | | SG | sandstone | | | | Volksrust Fm, Ecca
Group, Karoo SG | Dark blue-grey shales, | | | Pvo | | subordinate thin | Late Permian, Upper Ecca | | | | sandstone | | The project lies in the south-eastern part of the Karoo Basin that contains sediments of the Karoo Supergroup. The Karoo Supergroup rocks cover a very large proportion of South Africa and extend from the northeast (east of Pretoria) to the southwest and across to almost the KwaZulu Natal south coast. It is bounded along the southern margin by the Cape Fold Belt and along the northern margin by the much older Transvaal Supergroup rocks. Representing some 120 million years (300 – 183Ma), the Karoo Supergroup rocks have preserved a diversity of fossil plants, insects, vertebrates and invertebrates. The oldest rocks in the Karoo Sequence are exposed around the outer part of the ancient Karoo Basin, and are known as the Dwyka Group (Johnson et al., 2006). Overlying the Dwyka Group rocks are rocks of the Ecca Group that are Early Permian in age. There are eleven formations recognised in this group but they do not all extend throughout the Karoo Basin. In the Free State and KwaZulu Natal, from the base upwards are the Pietermaritzburg Formation, Vryheid Formation and the **Volksrust Formation**. All of these sediments have varying proportions of sandstones, mudstones, shales and siltstones and represent shallow to deep water settings, deltas, rivers, streams and overbank depositional environments. Overlying the Ecca Group are the rocks of the Beaufort Group that has been divided into the lower Adelaide Subgroup for the Upper Permian strata, and the Tarkastad Subgroup for the Early to Middle Triassic strata. As with the older Karoo sediments, the formations vary across the Karoo Basin. Te Adelaide Subgroup in the Free State and KwaZulu Natal. comprises part of the Volksrust Formation that unconformably underlies the Normandien Formation. Previously known as the Estcourt Formation, the **Normandien Formation** has been divided into the Frankfort, Rooinekke, Schoondraai and Harrismith Members. Large exposures of Jurassic dolerite dykes occur throughout the area. These intruded through the Karoo sediments around 183 million years ago at about the same time as the Drakensberg basaltic eruption. #### ii. Palaeontological context The palaeontological sensitivity of the area under consideration is presented in Figure 4. The site for development is in the Volksrust Formation. The Normandien Formation has a rich *Glossopteris* flora but the site is not in this lithology although parts of them are contemporaneous. Figure 4: SAHRIS palaeosensitivity map for the site for the proposed Annandale Residential project shown within the yellow rectangle. Background colours indicate the following degrees of sensitivity: red = very highly sensitive; orange/yellow = high; green = moderate; blue = low; grey = insignificant/zero. The Volksrust Formation is the upper part of the Ecca Group and is predominantly argillaceous and the grey to black silty shale with thin, usually with bioturbated siltstone or sandstone lenses and beds that occur mostly in the upper and lower boundaries. The very thick and fine-grained sediments represent an open shelf environment where muds were deposited from suspension with (Johnson et al., 2006) in a deepwater environment. It is not known if this was an inland sea or open marine setting but the discovery of the marine bivalve, *Megadesmus*, (albeit one instance) about 25km west southwest of Newcastle in Volksrust Formation shales, points to a marine influence for at least part of the sequence (Cairncross et al., 2005). # 4. Impact assessment An assessment of the potential impacts to possible palaeontological resources considers the criteria encapsulated in Table 3: Table 3a: Criteria for assessing impacts | PART A: DEFINITION AND CRITERIA | | | | | |--|----|---|--|--| | | Н | Substantial deterioration (death, illness or injury). Recommended level will often be violated. Vigorous community action. | | | | | M | Moderate/ measurable deterioration (discomfort). Recommended level will occasionally be violated. Widespread complaints. | | | | Criteria for ranking of the SEVERITY/NATURE of environmental | L | Minor deterioration (nuisance or minor deterioration). Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints. | | | | impacts | L+ | Minor improvement. Change not measurable/ will remain in the current range. Recommended level will never be violated. Sporadic complaints. | | | | | M+ | Moderate improvement. Will be within or better than the recommended level. No observed reaction. | | | | | Н+ | Substantial improvement. Will be within or better than the recommended level. Favourable publicity. | | | | Criteria for ranking | L | Quickly reversible. Less than the project life. Short term | | | | the DURATION of | M | Reversible over time. Life of the project. Medium term | | | | impacts | Н | Permanent. Beyond closure. Long term. | | | | Criteria for ranking | L | Localised - Within the site boundary. | | | | the SPATIAL SCALE | M | Fairly widespread – Beyond the site boundary. Local | | | | of impacts | Н | Widespread – Far beyond site boundary. Regional/ national | | | | PROBABILITY | Н | Definite/ Continuous | | | | (of exposure to | M | Possible/ frequent | | | | impacts) | L | Unlikely/ seldom | | | | | | | | | **Table 3b: Impact Assessment** | PART B: Assessment | | | | |--------------------|----|---|--| | | Н | - | | | SEVERITY/NATURE | M | Deepwater shales do not preserve terrestrial fossils; so far there are no records from the Volksrust Fm of plant or animal fossils in this region so it is very unlikely that fossils occur on the site. One marine fossil has been found. The impact would be negligible | | | , | L | | | | | L+ | - | | | | M+ | - | | | | H+ | - | | | | L | - | | | DURATION | M | - | | | | Н | Where manifest, the impact will be permanent. | | | PART B: Assessment | | | |--------------------|---|---| | SPATIAL SCALE | L | Since the only possible fossils within the area would be fossil bivalves in the marine shales, the spatial scale will be localised within the site boundary. | | | M | - | | | Н | - | | | Н | - | | | M | - | | PROBABILITY | L | It is extremely unlikely that any fossils would be found in the loose soils and sands that cover the area or in the deepwater shales that will be excavated. Nonetheless, a Fossil Chance Find Protocol should be added to the eventual EMPr. | Based on the nature of the project, surface activities may impact upon the fossil heritage if preserved in the development footprint. The geological structures suggest that the rocks are the correct age but are deepwater shales so unlikely to preserve terrestrial fossils. Furthermore, the material to be excavated for foundations are soils and this does not preserve fossils. Since there is an extremely small chance that fossils below ground of the Volksrust Formation may be disturbed, a Fossil Chance Find Protocol has been added to this report. Taking account of the defined criteria, the potential impact to fossil heritage resources is low. ## 5. Assumptions and uncertainties Based on the geology of the area and the palaeontological record as we know it, it can be assumed that the formation and layout of the dolomites, sandstones, shales and sands are typical for the country and might contain fossil plant, insect, invertebrate and vertebrate material. The sands and soils of the Quaternary period would not preserve fossils. #### 6. Recommendation Based on experience and the lack of any previously recorded fossils from the area, it is extremely unlikely that any fossils would be preserved in the Volksrust Formation deepwater shales of the Quaternary. There is a very small chance that fossils may occur below ground in the shales of the late Permian Volksrust Formation so a Fossil Chance Find Protocol should be added to the EMPr. If fossils are found by the contractor, environmental officer, or other responsible person once excavations for foundations and amenities have commenced then they should be rescued and a palaeontologist called to assess and collect a representative sample. The impact on the palaeontological heritage would be low so the project should be authorised. #### 7. References Anderson, J.M., Anderson, H.M., 1985. Palaeoflora of Southern Africa: Prodromus of South African megafloras, Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam. 423 pp. Cairncross, B., Beukes, N.J., Coetzee, L.L., Rehfeld, U., 2005. The Bivalve Megadesmus from the Permian Volksrust Shale Formation (Karoo Supergroup), northeastern Karoo Basin, South Africa: implications for late Permian Basin development. South African Journal of Geology 108, 547-556. Johnson, M.R., van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.deV., Christie, A.D.M., Roberts, D.L., Brandl, G., 2006. Sedimentary rocks of the Karoo Supergroup. In: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J., (Eds). The Geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria. Pp 461 – 499. Plumstead, E.P., 1969. Three thousand million years of plant life in Africa. Geological Society of southern Africa, Annexure to Volume LXXII. 72pp + 25 plates. #### 8. Chance Find Protocol Monitoring Programme for Palaeontology – to commence once the excavations / drilling activities begin. - 1. The following procedure is only required if fossils are seen on the surface and when drilling/excavations commence. - 2. When excavations begin the rocks and must be given a cursory inspection by the environmental officer or designated person. Any fossiliferous material (shells, bivalves, plants, insects, bone, coal) should be put aside in a suitably protected place. This way the project activities will not be interrupted. - 3. Photographs of similar fossils must be provided to the developer to assist in recognizing the fossil plants, vertebrates, invertebrates or trace fossils in the shales and mudstones (for example see Figure 5). This information will be built into the EMP's training and awareness plan and procedures. - 4. Photographs of the putative fossils can be sent to the palaeontologist for a preliminary assessment. - 5. If there is any possible fossil material found by the developer/environmental officer then the qualified palaeontologist sub-contracted for this project, should visit the site to inspect the selected material and check the dumps where feasible. - 6. Fossil plants or vertebrates that are considered to be of good quality or scientific interest by the palaeontologist must be removed, catalogued and housed in a suitable institution where they can be made available for further study. Before the fossils are removed from the site a SAHRA permit must be obtained. Annual reports must be submitted to SAHRA as required by the relevant permits. - 7. If no good fossil material is recovered then no site inspections by the palaeontologist will be necessary. A final report by the palaeontologist must be sent to SAHRA once the project has been completed and only if there are fossils. - 8. If no fossils are found and the excavations have finished then no further monitoring is required. # 9. Appendix A – Examples of fossils from the Volksrust Formation B. CAIRNCROSS, N.J. BEUKES, L.L. COETZEE AND U. REHFELD Figure 11. (B). Close-up of the anterior, dorsal section of the bivalve. Figure 5: Photographs of the bivalve *Megadesmus* (Cairncross et al., 2005). # 10. Appendix B – Details of specialist # Curriculum vitae (short) - Marion Bamford PhD January 2022 #### I) Personal details Surname : **Bamford** First names : **Marion Kathleen** Present employment: Professor; Director of the Evolutionary Studies Institute. Member Management Committee of the NRF/DST Centre of Excellence Palaeosciences, University of the Witwatersrand, Johannesburg, South Africa Telephone : +27 11 717 6690 Fax : +27 11 717 6694 Cell : 082 555 6937 E-mail : <u>marion.bamford@wits.ac.za</u>; marionbamford12@gmail.com #### ii) Academic qualifications Tertiary Education: All at the University of the Witwatersrand: 1980-1982: BSc, majors in Botany and Microbiology. Graduated April 1983. 1983: BSc Honours, Botany and Palaeobotany. Graduated April 1984. 1984-1986: MSc in Palaeobotany. Graduated with Distinction, November 1986. 1986-1989: PhD in Palaeobotany. Graduated in June 1990. NRF Rating: C-2 (1999-2004); B-3 (2005-2015); B-2 (2016-2020); B-1 (2021-2026) #### iii) Professional qualifications *Wood Anatomy Training (overseas as nothing was available in South Africa):* 1994 - Service d'Anatomie des Bois, Musée Royal de l'Afrique Centrale, Tervuren, Belgium, by Roger Dechamps 1997 - Université Pierre et Marie Curie, Paris, France, by Dr Jean-Claude Koeniguer 1997 - Université Claude Bernard, Lyon, France by Prof Georges Barale, Dr Jean-Pierre Gros, and Dr Marc Philippe #### iv) Membership of professional bodies/associations Palaeontological Society of Southern Africa Royal Society of Southern Africa - Fellow: 2006 onwards Academy of Sciences of South Africa - Member: Oct 2014 onwards International Association of Wood Anatomists - First enrolled: January 1991 International Organization of Palaeobotany - 1993+ **Botanical Society of South Africa** South African Committee on Stratigraphy - Biostratigraphy - 1997 - 2016 SASQUA (South African Society for Quaternary Research) – 1997+ PAGES - 2008 –onwards: South African representative ROCEEH / WAVE – 2008+ INQUA – PALCOMM – 2011+onwards #### vii) Supervision of Higher Degrees All at Wits University | Degree | Graduated/completed | Current | | | |----------------------|---------------------|---------|--|--| | Honours | 13 | 0 | | | | Masters | 11 | 3 | | | | PhD | 11 | 6 | | | | Postdoctoral fellows | 15 | 1 | | | #### viii) Undergraduate teaching Geology II – Palaeobotany GEOL2008 – average 65 students per year Biology III – Palaeobotany APES3029 – average 45 students per year Honours – Evolution of Terrestrial Ecosystems; African Plio-Pleistocene Palaeoecology; Micropalaeontology – average 12-20 students per year. #### ix) Editing and reviewing Editor: Palaeontologia africana: 2003 to 2013; 2014 - Assistant editor Guest Editor: Quaternary International: 2005 volume Member of Board of Review: Review of Palaeobotany and Palynology: 2010 - Associate Editor Open Science UK: 2021 - Review of manuscripts for ISI-listed journals: 30 local and international journals Reviewing of funding applications for NRF, PAST, NWO, SIDA, National Geographic, Leakey Foundation # x) Palaeontological Impact Assessments Selected from the past five years only – list not complete: - Mala Mala 2017 for Henwood - Modimolle 2017 for Green Vision - Klipoortjie and Finaalspan 2017 for Delta BEC - Ledjadja borrow pits 2018 for Digby Wells - Lungile poultry farm 2018 for CTS - Olienhout Dam 2018 for IP Celliers - Isondlo and Kwasobabili 2018 for GCS - Kanakies Gypsum 2018 for Cabanga - Nababeep Copper mine 2018 - Glencore-Mbali pipeline 2018 for Digby Wells - Remhoogte PR 2019 for A&HAS - Bospoort Agriculture 2019 for Kudzala - Overlooked Quarry 2019 for Cabanga - Richards Bay Powerline 2019 for NGT - Eilandia dam 2019 for ACO - Eastlands Residential 2019 for HCAC - Fairview MR 2019 for Cabanga - Graspan project 2019 for HCAC - Lieliefontein N&D 2019 for EnviroPro - Skeerpoort Farm Mast 2020 for HCAC - Vulindlela Eco village 2020 for 1World - KwaZamakhule Township 2020 for Kudzala - Sunset Copper 2020 for Digby Wells - McCarthy-Salene 2020 for Prescali - VLNR Lodge 2020 for HCAC - Madadeni mixed use 2020 for EnviroPro - Frankfort-Windfield Eskom Powerline 2020 for 1World - Beaufort West PV Facility 2021 for ACO Associates - Copper Sunset MR 2021 for Digby Wells - Sannaspos PV facility 2021 for CTS Heritage - Smithfield-Rouxville-Zastron PL 2021 for TheroServe #### xi) Research Output Publications by M K Bamford up to January 2022 peer-reviewed journals or scholarly books: over 160 articles published; 5 submitted/in press; 10 book chapters. Scopus h-index = 30; Google scholar h-index = 35; -i10-index = 92 Conferences: numerous presentations at local and international conferences.