PALAEONTOLOGICAL SPECIALIST ASSESSMENT: DESKTOP STUDY # Proposed Plan 8 wind energy facility near Copperton, Northern Cape Province John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA naturaviva@universe.co.za August 2011 ## 1. EXECUTIVE SUMMARY The 200 MW phased wind energy facility proposed by the company Plan 8 (Pty) Ltd near Copperton involves erecting up to 90 wind turbines on Portions 4 and 7 of Farm Nelspoortje ("Struisbult") some 50 km southwest of Prieska, Northern Cape Province. The study area is largely covered by aeolian sands of the Kalahari Group (Quaternary to Recent Gordonia Formation). Permocarboniferous glacially-related rocks of the Dwyka Group (Mbizane Formation) may be present locally in the subsurface. Several rocky inliers of metamorphic rocks assigned to the Proterozoic (Late Precambrian) Uitdraai Formation (Brulpan Group) and the Archaean (Early Precambrian) Spioenkop Formation (Marydale Group) also crop out in the area. The palaeontological sensitivity of all these rock units ranges from zero to low. Impacts on fossil heritage are only likely during the construction phase, if at all. Their scale would be local and their magnitude would be low. The impact significance of the proposed wind energy development as far as fossil heritage is concerned is therefore considered to be LOW and further specialist palaeontological studies or mitigation of this project are not considered necessary. Should substantial fossil remains be exposed during construction, however, these should be safeguarded by the ECO, preferably *in situ*, and SAHRA should be notified by the ECO so that appropriate mitigation can be undertaken. ## 2. INTRODUCTION & BRIEF The company Plan 8 (Pty) Ltd are planning to develop a phased wind energy facility of approximately 200 MW capacity on Nelspoortje Farm (Farm 103, Portions 4 and 7) near Copperton, Northern Cape Province (Figs. 1, 2). The study area of *c.* 3000 hectares lies about 5 km east of Copperton and 50 km southwest of the town of Prieska. The dust road between Prieska and Vanwyksvlei as well as the Copperton – Prieska railway lie just to the south. The Copperton wind energy facility (DEA REF. NO. 12/12/20/2099) would be built over several years in three phases of approximately 20 (Phase 1), 20 (Phase 2) and 50 (Phase 3) wind turbines. Each turbine would be mounted on reinforced concrete foundations (approximately 20 m x 20 m) and be associated with a hard standing area (c. 20 m x 6 m). Other key components of the facility include internal gravel roads and a possible 6.5 km 132 kV transmission line to the Cuprum electricity substation at Copperton mine (Alternatively, only an existing 2 km connection to the transmission network adjacent to the farm would be utilised; see Fig. 1). Aurecon South Africa (Pty) Ltd has been appointed to undertake the requisite environmental process as required in terms of the National Environmental Management Act (No. 107 of 1998), as amended, on behalf of Plan 8. A desktop palaeontological assessment for the project has been commissioned by Aurecon in accordance with the requirements of the National Heritage Resources Act, 1999. The terms of reference for this study as defined by Aurecon are to undertake a desktop Paleontological Impact assessment of the site in accordance with the requirements of Section 38(3) of the NHRA which would include: - Conducting a detailed desk-top level investigation to identify all palaeontology in the proposed development areas; - Assessing the potential impacts of the proposed project and alternatives, including: - o Assess the sensitivity and significance of palaeontology at the site: - Evaluation of the potential impacts of construction, operation and maintenance of the proposed development on palaeontological resources, in terms of the scale of impact (local, regional, national), magnitude of impact (low, medium or high) and the duration of the impact (construction, up to 10 years after construction (medium term), more than 10 years after construction (long term); and - Recommendation of mitigation measures to ameliorate any negative impacts on areas of paleontological importance. This report is largely based on several previous palaeontological desktop studies by the author in the Copperton area, notably Almond (2010). Fig. 1. Google Earth® satellite image of the study region showing the location (green polygon) of the proposed Plan 8 wind energy facility some 50 km southwest of the town of Prieska on the River Orange (top right). A 132 kV electricity connection already exists on site (right hand green marker), but a 6.5 km transmission line to the Cuprum Substation at Copperton is also under consideration (blue line). Fig. 2. Outline of the study area (black polygon) for the proposed Plan 8 wind energy facility on Nelspoortje Farm No 103, Portions 4 and 7, some 5km northeast of Copperton, Northern Cape (Map kindly provided by Aurecon). ## 3. GEOLOGICAL BACKGROUND Satellite images of the Copperton study area (Fig. 1) show that the Plan 8 wind farm study area largely comprises fairly flat-lying, arid, sandy terrain lying at c. 1100 m amsl with several low koppies and rocky ridges. This region forms part of the low-relief Kaiingveld of eastern Bushmanland. Drainage is limited to small, intermittently active streams and pans. There is a net flow towards the west into old Tertiary drainage systems rather than the Orange River to the north. Vegetation cover is very low. The geology of the study area around Copperton is shown on the 1: 250 000 geology map 2922 Prieska (Council for Geoscience, Pretoria; Fig. 3 herein). The explanation for the Prieska geological map has not yet been published; however, several of the rock units are treated in detail in the explanation for the Britstown sheet to the south (Prinsloo, 1989). # 3.1. Late Caenozoic superficial sediments The site of the proposed wind energy facility is largely underlain near-surface by unconsolidated aeolian (*i.e.* wind-blown) sands of the Quaternary **Gordonia Formation** (**Kalahari Group**) (**Qg** in Fig. 3) whose thickness in the study region is uncertain. The geology of the Late Cretaceous to Recent Kalahari Group is reviewed by Thomas (1981), Dingle *et al.* (1983), Thomas & Shaw 1991, Haddon (2000) and Partridge *et al.* (2006). The Gordonia dune sands are considered to range in age from the Late Pliocene / Early Pleistocene, dated in part from enclosed Middle to Late Stone Age stone tools (Dingle *et al.*, 1983, p. 291). Note that the recent extension of the Pliocene - Pleistocene boundary from 1.8Ma back to 2.588 Ma would place the Gordonia Formation entirely within the Pleistocene Epoch. A number of older Kalahari formations underlie the young wind-blown surface sands in the main Kalahari depository to the north of the study area (Fig. 4). However, at the latitude of Copperton (c. 30°S) Gordonia Formation sands less than 30m thick are likely to be the main or perhaps only Kalahari sediments present (cf isopach map of the Kalahari Group, fig. 6 in Partridge et al., 2006). These unconsolidated sands might be locally underlain by thin surface gravels equivalent to the Obobogorop Formation, formed from down-wasted (residual) or water-transported clasts weathered out of the Dwyka tillites, as well as by calcretes of Pleistocene age or younger (cf Mokalanen Formation, Fig. 4). Other unconsolidated superficial sediments of probable Quaternary to Recent age within the study area include sandy to gravelly stream alluvium as well as localized, fineer-grained pan deposits (e.g. Modderpan). Fig. 3. Extract from 1: 250 000 geology map 2922 Prieska (Council for Geoscience, Pretoria) showing approximate outline of the proposed Plan 8 wind energy facility near Copperton (black polygon). The main geological units mapped within the Copperton region are: 1. Precambrian basement rocks (igneous / metamorphic): Reddish-brown with dots (Mu) = Uitdraai Formation (Brulpan Group) Purple (Ms) = Spioenkop Formation (Marydale Group) Dark blue (Mv) = Vogelstruisbult Formation (Jacobsmyn Pan Group) 2. Karoo Supergroup sediments: **Grey (C-Pd) = Mbizane Formation (Dwyka Group)** 3. Late Caenozoic (Quaternary to Recent) superficial deposits: Pale yellow (Qg) = Gordonia Formation (Kalahari Group) Fig. 4. Stratigraphy of the Kalahari Group (From Partridge et al., 2006). Aeolian sands of the Gordonia Formation are represented in the study area. ## 3.2. Permocarboniferous Dwyka Group Permocarboniferous glacial sediments of **Dwyka Group** (**C-Pd**, **Karoo Supergroup**) probably underlie the thin, superficial cover of Gordonia sands in parts of the study area. Dwyka rocks may therefore be intersected by deeper excavations during development. The geology of the Dwyka Group has been summarized by Visser (1989), Visser *et al.* (1990) and Johnson *et al.* (2006), among others. The Dwyka Group along the north-western margin of the Main Karoo Basin in particular has been reviewed by Visser (1985). In Dwyka times the Prieska – Copperton area lay within a basement high region between the Sout River Valley in the west and the Prieska Basin in the east. This area is referred to as the Kaiing Hills or Kaiing Veld Region by Visser and is characterized by a relatively thin Dwyka succession (normally < 50m). This mainly comprises massive clast-rich diamictites and clast–poor argillaceous diamictites ("boulder shale") overlain by a thin zone of laminated dropstone argillite with outsized clasts composed mainly of quartzite and gneiss (Visser 1985). Note the presence of an isolated peak (monadnock) of Proterozoic basement rocks to the southeast of Copperton (*ibid*.). Ice transport directions initially towards the south and later towards the southwest are reconstructed by Visser (1985, his fig. 17). More detailed observations by Prinsloo (1989) on the Dwyka beds on the northern edge of the Britstown 1: 250 000 sheet are relevant to the Copperton area just to the north. Good surface outcrops of the Dwyka beds are rare here due to extensive cover by thin surface gravels. Massive tillites at the base of the Dwyka succession were deposited by dry-based ice sheets in deeper basement valleys. Later climatic amelioration led to melting, marine transgression and the retreat of the icesheets onto the continental highlands in the north. The valleys were then occupied by marine inlets within which drifting glaciers deposited dropstones onto the muddy sea bed ("boulder shales"). The upper Dwyka beds are typically heterolithic, with shales, siltstones and fine-grained sandstones of deltaic and / or turbiditic origin. These upper successions are typically upwardscoarsening and show extensive soft-sediment deformation (loading and slumping). Varved (rhythmically laminated) mudrocks with gritty to fine gravely dropstones indicate the onset of highly seasonal climates, with warmer intervals leading occasionally even to limestone precipitation. According to maps in Visser *et al.* (1990) and Von Brunn and Visser (1999) the Dwyka rocks in the Prieska-Copperton area close to the northern edge of the Main Karoo Basin belong to the **Mbizane Formation**. This is equivalent to the Northern (valley and inlet) Facies of Visser *et al.* (1990). The Mbizane Formation, up to 190m thick, is recognized across the entire northern margin of the Main Karoo Basin where it may variously form the whole or (as here) only the *upper* part of the Dwyka succession. It is characterized by its extremely heterolithic nature, with marked vertical and horizontal facies variation (Von Brunn & Visser 1999). The proportion of diamictite and mudrock is often low, the former often confined to basement depressions. Orange-tinted sandstones (often structureless or displaying extensive soft-sediment deformation, amalgamation and mass flow processes) may dominate the succession. The Mbizane-type heterolithic successions characterize the thicker Dwyka of the ancient palaeovalleys cutting back into the northern basement rocks. #### 3.3. Precambrian basement rocks Numerous small inliers of ancient **Precambrian basement rocks** emerge through the cover of Kalahari sands in the Copperton area. Those to the southwest of the NW-SE fault line running past Copperton, west of the Plan 8 study area, are assigned to the Vogelstruisbult Formation of the Jacobsmyn Pan Group (Mv). This group of basement rocks mainly consists of high grade metamorphic rocks (banded pelitic gneiss, migmatites) that are unfossiliferous (Slabbert et al., 1999, Cornell et al., 2006). They are of undetermined Mokolian age, i.e. mid-Proterozoic (between 1000 to 2050 Ma = million years old). An isolated remnant of Mokolian basement rocks was protected from pre-Dwyka erosion to the southeast of Copperton (Visser 1985). Metasedimentary basement rocks to the northeast of the fault line, within the Plan 8 study area, are assigned to the Spicenkop Formation of the Marydale Group (Ms) and the Uitdraai Formation of the Brulpan Group (Mu). They consist mainly of metamorphosed sediments (quartzites, schists) with some metamorphosed igneous rocks as well (e.g. amphibolites). The former form part of a 2-8km thick Archaean (Early Precambrian) greenstone belt (ancient oceanic crust) along the southwest margin of the ancient Kaapvaal continent and are over 2.5 billion years old, while the latter form part of the circa one billion year old Namagua-Natal Province (Prinsloo 1989, Potgieter & Botha 1982, Brandl et al., 2006, Cornell et al. 2006). ## 4. PALAEONTOLOGICAL HERITAGE The fossil heritage recorded within each of the three rock units mapped at surface within the study area, as well as the Dwyka Group sediments that probably lie at shallow depths beneath the Kalahari sands here, is outlined here in order of increasing geological age (See also summary of fossil heritage in Table 1 below). ## 4.1. Fossils in the superficial sediments The fossil record of the Kalahari Group is generally sparse and low in diversity. The Gordonia Formation dune sands were mainly active during cold, drier intervals of the Pleistocene Epoch that were inimical to most forms of life, apart from hardy, desert-adapted species. Porous dune sands are not generally conducive to fossil preservation. However, mummification of soft tissues may play a role here and migrating lime-rich groundwaters derived from the underlying Dwyka Group may lead to the rapid calcretisation of organic structures such as burrows and root casts. Occasional terrestrial fossil remains that might be expected within this unit include calcretized rhizoliths (root casts) and termitaria (e... Hodotermes, the harvester termite), ostrich egg shells (Struthio) and shells of land snails (e.g. Trigonephrus) (Almond 2008, Almond & Pether 2008). Other fossil groups such as freshwater bivalves and gastropods (e.g. Corbula, Unio) and snails, ostracods (seed shrimps), charophytes (stonework algae), diatoms (microscopic algae within siliceous shells) and stromatolites (laminated microbial limestones) are associated with local watercourses and pans. Microfossils such as diatoms may be blown by wind into nearby dune sands (Du Toit 1954, Dingle et al., 1983). These Kalahari fossils (or subfossils) can be expected to occur sporadically but widely, and the overall palaeontological sensitivity of the Gordonia Formation is therefore considered to be low (ibid.). Underlying calcretes might also contain trace fossils such as rhizoliths, termite and other insect burrows, or even mammalian trackways. Mammalian bones, teeth and horn cores (also tortoise remains, and fish, amphibian or even crocodiles in wetter depositional settings) may be expected occasionally expected within Kalahari Group sediments. However, no fossil records of Pleistocene mammals are listed in the study region in the review by Klein (1984). The other "drift deposits" of the Karoo and Bushmanland regions of South Africa, including alluvium and pan deposits, have been comparatively neglected in palaeontological terms. However, they may occasionally contain important fossil biotas, notably the bones, teeth and horn cores of mammals as well as remains of reptiles like tortoises. Good examples are the Pleistocene mammal faunas at Florisbad, Cornelia and Erfkroon in the Free State and elsewhere (Wells & Cooke 1942, Cooke 1974, Skead 1980, Klein 1984, Brink, J.S. 1987, Bousman *et al.* 1988, Bender & Brink 1992, Brink *et al.* 1995, MacRae 1999, Meadows & Watkeys 1999, Churchill *et al.* 2000 Partridge & Scott 2000). Other late Caenozoic fossil biotas from these superficial deposits include non-marine molluscs (bivalves, gastropods), ostrich egg shells, trace fossils (*e.g.* calcretised termitaria, coprolites), and plant remains such as peats or palynomorphs (pollens, spores) in organic-rich alluvial horizons (Scott 2000) and siliceous diatoms in pan sediments. In Quaternary deposits, fossil remains may be associated with human artefacts such as stone tools and are also of archaeological interest (*e.g.* Smith 1999 and refs. therein). Stone artefacts of Pleistocene and younger age may additionally prove useful in constraining the age of superficial deposits such as gravelly alluvium and pedocretes within which they are occasionally embedded. #### 4.2. Fossils in the Dwyka Group The generally poor fossil record of the Dwyka Group (McLachlan & Anderson 1973, Anderson & McLachlan 1976, Visser 1989, Visser et al., 1990, Visser 2003, Almond & Pether 2008) is hardly surprising given the glacial climates that prevailed during much of the Late Carboniferous to Permian Periods in southern Africa. However, most Dwyka sediments were deposited during periods of glacial retreat associated with climatic amelioration. Sparse, low diversity fossil biotas from the Mbizane Formation in particular mainly consist of arthropod trackways associated with dropstone laminites and sporadic vascular plant remains, while palynomorphs (organic-walled microfossils) are also likely to be present within finer-grained mudrock facies. Glacial diamictites (tillites or "boulder mudstones") are normally unfossiliferous but do occasionally contain fragmentary transported plant material as well as palynomorphs in the fine-grained matrix. There are interesting records of limestone glacial erratics from tillites along the southern margins of the Great Karoo (Elandsvlei Formation) that contain Cambrian eodiscid trilobites as well as archaeocyathid sponges. Such derived fossils provide important data for reconstructing the movement of Gondwana ice sheets (Cooper & Oosthuizen 1974, Stone & Thompson 2005). A limited range of marine fossils are associated with the later phases of several of the four main Dwyka deglaciation cycles (DSI to DSIV), especially in the Kalahari Basin of southern Namibia but also in some cases within the Main Karoo Basin in South Africa (Oelofsen 1986, Visser 1989, 1997, Visser et al. 1997, Bangert et al. 1999, Stollhofen et al. 2000, Almond 2008). These deglaciation sequences are estimated to have lasted five to seven million years on average (Bangert et al. 1999). A range of stenohaline (i.e. exclusively salt water) invertebrate fossils indicates that fully marine salinities prevailed at the end of each sequence, at least in the western outcrop area (Namibia, Northern Cape). These invertebrates include echinoderms (starfish, crinoids, echinoids), cephalopods (nautiloids, goniatites), articulate brachiopods, bryozoans, foraminiferans, and conulariids, among others. Primitive bony fish (palaeoniscoids), spiral "coprolites" attributable to sharks or eurypterids, as well as wood and trace fossils are also recorded from mudrock facies at the tops of DSII (Ganikobis Shale Member), DS III (Hardap Member) and DSIV (Nossob Shale Member, as well as base of the Prince Albert Formation (Ecca Group) in southern Namibia and, in the last case at least, in the Northern Cape near Douglas (McLachlan and Anderson 1973, Veevers et al. 1994, Grill 1997, Bangert et al. 1999, Pickford & Senut 2002, Evans 2005). The Ganikobis (DSII) fauna has been radiometrically dated to c. 300 Ma, or end-Carboniferous (Gzhelian), while the Hardap fauna (DSIII) is correlated with the Eurydesma transgression of earliest Permian age (Asselian) that can be widely picked up across Gondwana (Dickens 1961, 1984, Bangert et al. 1999, Stollhofen et al. 2000). The distinctive thickshelled bivalve Eurydesma, well known from the Dwyka of southern Namibia, has not yet been recorded from the main Karoo Basin, however (McLachlan and Anderson 1973). The upper part of DSIV, just above the Dwyka / Ecca boundary in the western Karoo Basin (i.e. situated within the basal Prince Albert Formation), has been radiometrically dated to 290-288 Ma (Stollhofen et al. 2000). Low diversity ichnoassemblages dominated by non-marine arthropod trackways are widely associated with cold water periglacial mudrocks, including dropstone laminites, within the Mbizane Formation in the Main Karoo Basin (Von Brunn & Visser, 1999, Savage 1970, 1971, Anderson 1974, 1975, 1976, 1981, Almond 2008, 2009). They are assigned to the non-marine / lacustrine Mermia ichnofacies that has been extensively recorded from post-glacial epicontinental seas and large lakes of Permian age across southern Gondwana (Buatois & Mangano 1995, 2004). These Dwyka ichnoassemblages include the arthropod trackways Maculichna, Umfolozia and Isopodichnus, the possible crustacean resting trace Gluckstadtella, sinuous fish-fin traces (Undichna) as well as various unnamed horizontal burrows. The association of these interglacial or post-glacial ichnoassemblages with rhythmites (interpreted as varvites generated by seasonal ice melt), the absence of stenohaline marine invertebrate remains, and their low diversity suggest a restricted, fresh- or brackish water environment. Herbert and Compton (2007) also inferred a freshwater depositional environment for the Dwyka / Ecca contact beds in the SW Cape based on geochemical analyses of calcareous and phosphatic diagenetic nodules within the upper Elandsvlei and Prince Albert Formations respectively. Well-developed U-shaped burrows of the ichnogenus Rhizocorallium are recorded from sandstones interbedded with varved mudrocks within the upper Dwyka Group (Mbizane facies) on the Britstown sheet (Prinsloo 1989). Similar Rhizocorallium traces also described from the Dwyka Group of Namibia (e.g., the Hardap Shale References to occurrences of the complex helical spreiten burrow Member, Miller 2008). Zoophycos in the Dwyka of the Britstown sheet and elsewhere (e.g. Prinsloo 1989) are probably in error, since in Palaeozoic times this was predominantly a shallow marine to estuarine ichnogenus (Seilacher 2007). Scattered records of fossil vascular plants within the Dwyka Group of the Main Karoo Basin record the early phase of the colonisation of SW Gondwana by members of the *Glossopteris* Flora in the Late Carboniferous (Plumstead 1969, Anderson & McLachlan 1976, Anderson & Anderson 1985 and earlier refs. therein). These records include fragmentary carbonized stems and leaves of the seed ferns *Glossopteris / Gamgamopteris* and several gymnospermous genera (*e.g. Noeggerathiopsis, Ginkgophyllum*) that are even found within glacial tillites. More "primitive" plant taxa include lycopods (club mosses) and true mosses such as *Dwykea*. It should be noted that the depositional setting (*e.g.* fluvial *versus* glacial) and stratigraphic position of some of these records are contested (cf Anderson & McLachlan 1976). Petrified woods with well-developed seasonal growth rings are recorded from the upper Dwyka Group (Mbizane Formation) of the northern Karoo Basin (*e.g.* Prinsloo 1989) as well as from the latest Carboniferous of southern Namibia. The more abundant Namibian material (*e.g.Megaporoxylon*) has recently received systematic attention (Bangert & Bamford 2001, Bamford 2000, 2004) and is clearly gymnospermous (pycnoxylic, *i.e.* dense woods with narrow rays) but most cannot be assigned to any particular gymnosperm order. Borehole cores through Dwyka mudrocks have yielded moderately diverse palynomorph assemblages (organic-walled spores, acanthomorph acritarchs) as well as plant cuticles. These mudrocks are interbedded with diamictites in the southern Karoo as well as within Dwyka valley infills along the northern margin of the Main Karoo Basin (McLachlan & Anderson 1973, Anderson 1977, Stapleton 1977, Visser 1989, Anderson & Anderson 1985). Thirty one Dwyka palynomorph species are mentioned by the last authors, for example. Anderson's (1977) Late Carboniferous to Early Permian Biozone 1 based on Dwyka palynomorph assemblages is characterized by abundant *Microbaculispora*, monosaccate pollens (e.g. Vestigisporites) and nontaeniate bisaccate pollens (e.g. Pityosporites) (Stephenson 2008). Prinsloo (1989) mentions stromatolitic limestone lenses within the uppermost Dwyka Group in the Britstown sheet area. These may be comparable to interglacial microbial mats and mounds described from the Ganikobis Shale Member (DSII) of southern Namibia by Grill (1997) and Bangert et al. (2000). Although a wide range of fossils are now known from the Dwyka Group, most sediments assigned to this succession are unfossiliferous (with the possible exception of microfossils). The overall palaeontological sensitivity of the Dwyka Group is therefore rated as low (Almond & Pether 2008). Any interglacial mudrocks and heterolithic successions (*i.e.* interbedded sandstones and mudrocks) are worth investigating for fossils, however. Since the Prieska-Copperton area lay on a basement high in Dwyka times (Fig. 4), interglacial mudrocks are unlikely to be well represented here. Late-glacial or post-glacial mudrocks, such as those containing a fairly rich shelly fossil record at Douglas in the Northern Cape (McLachlan & Anderson 1973) have been lost to erosion in the Prieska region. #### 4.3. Fossils in the Precambrian basement rocks Although they may originally have contained microfossils (e.g. ancient bacteria) all these ancient basement metasedimentary rocks have been too intensely metamorphosed to contain fossils. ## 5. CONCLUSIONS & RECOMMENDATIONS Palaeontological impacts and mitigation generally concern the construction phase rather than the operational phase of a development, unless this development involves ongoing excavation of bedrock (e.g. mining). The inferred palaeontological sensitivity of all the rock units represented in the Plan 8 study area near Copperton is zero to low (Table 1; *cf* also Almond & Pether 2008). Impacts on fossil heritage are only likely during the construction phase, if at all. The scale of these impacts would be local and their magnitude low. The impact significance of the proposed wind energy development as far as fossil heritage is concerned is therefore considered to be LOW. Given the zero to low palaeontological sensitivity of rocks in the region, the comparatively small footprint of the development and the shallow excavations envisaged, no further palaeontological mitigation is recommended for this development. There is no preference on palaeontological grounds for either of the two transmission line alternatives. Should substantial fossil remains be exposed during construction, however, these should be safeguarded by the ECO, preferably *in situ*, and SAHRA should be notified by the ECO so that appropriate mitigation (e.g. recording, sampling or collection) can be undertaken. ## 6. ACKNOWLEDGEMENTS Ms Louise Corbett of Environmental Services, Aurecon, Cape Town, is thanked for commissioning this study and for kindly providing all the necessary background information. | TABLE 1: FOSSIL HERITAGE IN THE COPPERTON AREA | | | | | |------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------| | GEOLOGICAL
UNIT | ROCK TYPES & AGE | FOSSIL
HERITAGE | PALAEONT-
OLOGICAL
SENSITIVITY | RECOMMENDED
MITIGATION | | Gordonia
Formation
KALAHARI
GROUP | mainly aeolian sands plus minor fluvial gravels, freshwater pan deposits PLEISTOCENE | calcretised rhizoliths & termitaria, ostrich egg shells, land snail shells, rare mammalian and reptile(e.g. tortoise) bones, teeth freshwater units associated with diatoms, molluscs, stromatolites etc | LOW | none
recommended
any substantial
fossil finds to be
reported by ECO to
SAHRA | | Mbizane
Formation
DWYKA
GROUP | tillites, interglacial
mudrocks, deltaic &
turbiditic
sandstones, minor
thin limestones
LATE
CARBONIFER-
OUS – EARLY
PERMIAN | sparse petrified wood & other plant remains, palynomorphs, trace fossils (e.g. arthropod trackways, fish trails, U-burrows) possible stromatolites in limestones | LOW | none
recommended
any substantial
fossil finds to be
reported by ECO to
SAHRA | | Uitdraai
Formation
BRULPAN
GROUP | metamorphic rocks (e.g.quartzites, schists) MID PROTEROZOIC = LATE PRECAMBRIAN | none | ZERO | none
recommended | | Spioenkop
Formation
MARYDALE
GROUP | metamorphic rocks (e.g. quartzites, schists, amphibolites) ARCHEAN = EARLY PRECAMBRIAN | none | ZERO | none
recommended | ## 7. REFERENCES ALMOND, J.E. 2008. Fossil record of the Loeriesfontein sheet area (1: 250 000 geological sheet 3018). Unpublished report for the Council for Geoscience, Pretoria, 32 pp. ALMOND, J.E. 2009. Contributions to the palaeontology and stratigraphy of the Alexander Bay sheet area (1: 250 000 geological sheet 2816), 117 pp. Unpublished technical report prepared for the Council for Geoscience by Natura Viva cc, Cape Town. ALMOND, J.E. 2010. Proposed 100 MW concentrating solar power (CSP) generation facility: Copperton, Northern Cape Province. Palaeontological impact assessment: desktop study, 17 pp. Natura Viva cc, Cape Town. ALMOND, J.E. & PETHER, J. 2008. Palaeontological heritage of the Northern Cape. Interim SAHRA technical report, 124 pp. Natura Viva cc., Cape Town. ANDERSON, A.M. 1974. Arthropod trackways and other trace fossils from the Early Permian lower Karoo Beds of South Africa. Unpublished PhD thesis, University of Witwatersrand, Johannesburg, 172 pp. ANDERSON, A.M. 1975. Turbidites and arthropod trackways in the Dwyka glacial deposits (Early Permian) of southern Africa. Transactions of the Geological Society of South Africa 78: 265-273. ANDERSON, A.M. 1976. Fish trails from the Early Permian of South Africa. Palaeontology 19: 397-409, pl. 54. ANDERSON, A.M. 1981. The *Umfolozia* arthropod trackways in the Permian Dwyka and Ecca Groups of South Africa. Journal of Paleontology 55: 84-108, pls. 1-4. ANDERSON, A.M. & MCLACHLAN, I.R. 1976. The plant record in the Dwyka and Ecca Series (Permian) of the south-western half of the Great Karoo Basin, South Africa. Palaeontologia africana 19: 31-42. ANDERSON, J.M. 1977. The biostratigraphy of the Permian and the Triassic. Part 3: A review of Gondwana Permian palynology with particular reference to the northern Karoo Basin, South Africa. Memoirs of the Botanical Survey of South Africa 45, 14-36. ANDERSON, J.M. & ANDERSON, H.M. 1985. Palaeoflora of southern Africa. Prodromus of South African megafloras, Devonian to Lower Cretaceous, 423 pp, 226 pls. Botanical Research Institute, Pretoria & Balkema, Rotterdam. BAMFORD, M.K. 2000. Fossil woods of Karoo age deposits in South Africa and Namibia as an aid to biostratigraphical correlation. Journal of African Earth Sciences 31, 119-132. BAMFORD, M.K. 2004. Diversity of woody vegetation of Gondwanan South Africa. Gondwana Research 7, 153-164. BANGERT, B., STOLLHOFEN, H., LORENTZ, V. & ARMSTRONG, R. 1999. The geochronology and significance of ash-fall tuffs in the glacigenic Carboniferous – Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences 29: 33-49. BANGERT, B., STOLHOFEN, H., GEIGER, M. & LORENZ, V. 2000. Fossil record and high resolution tephrostratigraphy of Carboniferous glaciomarine mudstones, Dwyka Group, southern Namibia. Communications of the Geological Survey of Namibia 12, 235-245. BANGERT, B. & BAMFORD, M. 2001. Carboniferous pycnoxylic woods from the Dwyka Group of southern Namibia. Palaeontologia africana 37, 13-23. BENDER, P.A. & BRINK, J.S. 1992. A preliminary report on new large mammal fossil finds from the Cornelia-Uitzoek site. South African Journal of Science 88: 512-515. BOUSMAN, C.B. *et al.* 1988. Palaeoenvironmental implications of Late Pleistocene and Holocene valley fills in Blydefontein Basin, Noupoort, C.P., South Africa. Palaeoecology of Africa 19: 43-67. BRANDL, G., CLOETE, M. & ANHAEUSSER, C.R. 2006. Archaean greenstone belts. Pp. 9-56 in Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 461-499. Geological Society of South Africa, Marshalltown. BRINK, J.S. 1987. The archaeozoology of Florisbad, Orange Free State. Memoirs van die Nasionale Museum 24, 151 pp. BRINK, J.S. *et al.* 1995. A new find of *Megalotragus priscus* (Alcephalini, Bovidae) from the Central Karoo, South Africa. Palaeontologia africana 32: 17-22. BUATOIS, L. & MANGANO, M.G. 1995. The paleoenvironmental and paleoecological significance of the lacustrine *Mermia* ichnofacies: an archetypal subaqueous nonmarine trace fossil assemblage. Ichnos 4: 151-161. BUATOIS, L. & MANGANO, M.G. 2004. Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. In: McIlroy, D. (Ed.) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society, London, Special Publications 228, pp 311-333. CHURCHILL, S.E. *et al.* 2000. Erfkroon: a new Florisian fossil locality from fluvial contexts in the western Free State, South Africa. South African Journal of Science 96: 161-163. COOKE, H.B.S. 1974. The fossil mammals of Cornelia, O.F.S., South Africa. In: Butzer, K.W., Clark, J.D. & Cooke, H.B.S. (Eds.) The geology, archaeology and fossil mammals of the Cornelia Beds, O.F.S. Memoirs of the National Museum, Bloemfontein 9: 63-84. COOPER, M.R. & OOSTHUIZEN, R. 1974. Archaeocyathid-bearing erratics from Dwyka Subgroup (Permo-Carboniferous) of South Africa, and their importance to continental drift. Nature 247, 396-398. CORNELL, D.H., THOMAS, R.J., MOEN, H.F.G., REID, D.L., MOORE, J.M. & GIBSON, R.L. 2006. The Namaqua-Natal Province. *In*: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 461-499. Geological Society of South Africa, Marshalltown. DICKENS, J.M. 1961. *Eurydesma* and *Peruvispira* from the Dwyka Beds of South Africa. Palaeontology 4: 138-148, pl. 18. DICKENS, J.M. 1984. Late Palaeozoic glaciation. BMR Journal of Australian Geology and Geophysics 9: 163-169. DINGLE, R.V., SIESSER, W.G. & NEWTON, A.R. 1983. Mesozoic and Tertiary geology of southern Africa. viii + 375 pp. Balkema, Rotterdam. DU TOIT, A. 1954. The geology of South Africa. xii + 611pp, 41 pls. Oliver & Boyd, Edinburgh. EVANS, F.J.E. 2005. Taxonomy, palaeoecology and palaeobiogeography of some Palaeozoic fish of southern Gondwana. Unpublished PhD thesis, University of Stellenbosch, 628 pp. GRILL, H. 1997. The Permo-Carboniferous glacial to marine Karoo record in southern Namibia: sedimentary facies and sequence stratigraphy. Beringeria 19: 3-98, 1 pl. HADDON, I.G. 2000. Kalahari Group sediments. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp. 173-181. Oxford University Press, Oxford. HERBERT, C.T. & COMPTON, J.S. 2007. Depositional environments of the lower Permian Dwyka diamictite and Prince Albert shale inferred from the geochemistry of early diagenetic concretions, southwest Karoo Basin, South Africa. Sedimentary Geology 194: 263-277. JOHNSON, M.R., VAN VUUREN, C.J., VISSER, J.N.J., COLE, D.I., De V. WICKENS, H., CHRISTIE, A.D.M., ROBERTS, D.L. & BRANDL, G. 2006. Sedimentary rocks of the Karoo Supergroup. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 461-499. Geological Society of South Africa, Marshalltown. KLEIN, R.G. 1984. Palaeoenvironmental implications of Quaternary large mammals in the Fynbos region. In: Deacon, H.J., Hendey, Q.B., Lambrechts, J.J.N. (Eds.) Fynbos palaeoecology: a preliminary synthesis. South African National Scientific Programmes Report No. 10, pp. 116-133. MACRAE, C. 1999. Life etched in stone. Fossils of South Africa. 305 pp. The Geological Society of South Africa, Johannesburg. MEADOWS, M.E. & WATKEYS, M.K. 1999. Palaeoenvironments. In: Dean, W.R.J. & Milton, S.J. (Eds.) The karoo. Ecological patterns and processes, pp. 27-41. Cambridge University Press, Cambridge. McLACHLAN, I.R. & ANDERSON, A. 1973. A review of the evidence for marine conditions in southern Africa during Dwyka times. Palaeontologia africana 15: 37-64. MILLER, R.M. 2008. Karoo Supergroup, pp. 16-1 to 16-115 *in* Miller, R.G. The geology of Namibia. Volume 3. Upper Palaeozoic to Cenozoic. Geological Survey, Namibia. OELOFSEN, B.W. 1986. A fossil shark neurocranium from the Permo-Carboniferous (lowermost Ecca Formation) of South Africa. In: Uyeno, T, Arai, R., Taniuchi, T & Matsuura, K. (Eds.) Indo-Pacific fish biology. Proceedings of the Second International Conference on Indo-Pacific Fishes. Ichthyological Society of Japan, Tokyo, pp 107-124. PARTRIDGE, T.C. & SCOTT, L. 2000. Lakes and Pans. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp.145-161. Oxford University Press, Oxford. PARTRIDGE, T.C., BOTHA, G.A. & HADDON, I.G. 2006. Cenozoic deposits of the interior. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 585-604. Geological Society of South Africa, Marshalltown. PICKFORD, M. & SENUT, B. 2002. The fossil record of Namibia. 39 pp. The Geological Survey of Namibia. PLUMSTEAD, E.P. 1969. Three thousand million years of plant life in Africa. Alex Du Toit Memorial Lectures No. 11. Transactions of the Geological Society of South Africa, Annexure to Volume 72, 72pp. 25 pls. POTGIETER, G.J.A. & BOTHA, B.J.V. 1982. Die stratigraphie van die Groep Marydale wes van Prieska. Annals of the Geological Survey of South Africa 16, 25-39. PRINSLOO, M.C. 1989. Die geologie van die gebied Britstown. Explanation to 1: 250000 geology Sheet 3022 Britstown, 40 pp. Council for Geoscience, Pretoria. SAVAGE, N.M. 1970. A preliminary note on arthropod trace fossils from the Dwyka Series in Natal. IUGS Second Gondwana Symposium, South Africa, 1970, Proceedings and Papers, pp 627-635, pls. 1-5. SAVAGE, N.M. 1971. A varvite ichnocoenosis from the Dwyka Series of Natal. Lethaia 4: 217-233. SCOTT, L. 2000. Pollen. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp.339-35. Oxford University Press, Oxford. SEILACHER, A. 2007. Trace fossil analysis, xiii + 226pp. Springer Verlag, Berlin. SKEAD, C.J. 1980. Historical mammal incidence in the Cape Province. Volume 1: The Western and Northern Cape, 903pp. Department of Nature and Environmental Conservation, Cape Town. SLABBERT, M.J., MOEN, H.F.G. & BOELEMA, R. 1999. Die geologie van die gebied Kenhardt. Explanation to 1: 250 000 geology Sheet 2920 Kenhardt, 123 pp. Council for Geoscience, Pretoria. SMITH, A.B. 1999. Hunters and herders in the Karoo landscape. Chapter 15 in Dean, W.R.J. & Milton, S.J. (Eds.) The Karoo; ecological patterns and processes, pp. 243-256. Cambridge University Press, Cambridge. STAPLETON, R.P. Carboniferous unconformity in southern Africa. Nature 268, 222-223. STEPHENSON, M.H. 2008. A review of the palynostratigraphy of Gondwanan Late Carboniferous to Early Permian glacigene successions. In: Fielding, C.R., Frank, T.D. & Isbell, J.L. (eds). Resolving the Late Paleozoic Ice Age in time and space. Geological Society of America Special Paper 441, 317-330. STOLLHOFEN, H., STANISTREET, I.G., BANGERT, B. & GRILL, H. 2000. Tuffs, tectonism and glacially-related sea-level changes, Carboniferous-Permian, southern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology 161: 127-150. STONE, P. & THOMSON, M.R.A. 2005. Archaeocyathan limestone blocks of likely Antarctic origin in Gondwanan tillite from the Falkland Islands. Geological Society, London, Special Publications 246, 347-357. THOMAS, M.J. 1981. The geology of the Kalahari in the Northern Cape Province (Areas 2620 and 2720). Unpublished MSc thesis, University of the Orange Free State, Bloemfontein, 138 pp. THOMAS, R.J., THOMAS, M.A. & MALHERBE, S.J. 1988. The geology of the Nossob and Twee Rivieren areas. Explanation for 1: 250 000 geology sheets 2520-2620. 17pp. Council for Geoscience, Pretoria. VEEVERS, J.J., COLE, D.I. & COWAN, E.J. 1994. Southern Africa: Karoo Basin and Cape Fold Belt. Geological Society of America, Memoir 184: 223-279. VISSER, J.N.J. 1985. The Dwyka Formation along the north-western margin of the Karoo Basin in the Cape Province, South Africa. Transactions of the Geological Society of South Africa 88, 37-48. VISSER, J.N.J. 1989. The Permo-Carboniferous Dwyka Formation of southern Africa: deposition by a predominantly subpolar marine ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 70, 377-391. VISSER, J.N.J. 1997. Deglaciation sequences in the Permo-Carboniferous Karoo and Kalahari Basins of southern Africa: a tool in the analysis of cyclic glaciomarine basin fills. Sedimentology 44: 507-521. VISSER, J.N.J. 2003. Lithostratigraphy of the Elandsvlei Formation (Dwyka Group). South African Committee for Stratigraphy, Lithostratigraphic Series No. 39, 11 pp. Council for Geoscience, Pretoria. VISSER, J.N.J., VAN NIEKERK, B.N. & VAN DER MERWE, S.W. 1997. Sediment transport of the Late Palaeozoic glacial Dwyka Group in the southwestern Karoo Basin. South African Journal of Geology 100: 223-236. VISSER, J.N.J., VON BRUNN, V. & JOHNSON, M.R. 1990. Dwyka Group. Catalogue of South African Lithostratigraphic Units 2, 15-17. Council for Geoscience, Pretoria. VON BRUNN, V. & VISSER, J.N.J. 1999. Lithostratigraphy of the Mbizane Formation (Dwyka group). South African Committee for Stratigraphy, Lithostratigraphic Series No. 32, 10 pp. Council for Geoscience, Pretoria. WELLS, L.H. & COOKE, H.B.S. 1942. The associated fauna and culture of Vlakkraal thermal springs, O.F.S.; III, the faunal remains. Transactions of the Royal Society of South Africa 29: 214-232. ## **QUALIFICATIONS & EXPERIENCE OF THE AUTHOR** Dr John Almond has an Honours Degree in Natural Sciences (Zoology) as well as a PhD in Palaeontology from the University of Cambridge, UK. He has been awarded post-doctoral research fellowships at Cambridge University and in Germany, and has carried out palaeontological research in Europe, North America, the Middle East as well as North and South Africa. For eight years he was a scientific officer (palaeontologist) for the Geological Survey / Council for Geoscience in the RSA. His current palaeontological research focuses on fossil record of the Precambrian - Cambrian boundary and the Cape Supergroup of South Africa. He has recently written palaeontological reviews for several 1: 250 000 geological maps published by the Council for Geoscience and has contributed educational material on fossils and evolution for new school textbooks in the RSA. Since 2002 Dr Almond has also carried out palaeontological impact assessments for developments and conservation areas in the Western, Eastern and Northern Cape under the aegis of his Cape Town-based company *Natura Viva* cc. He is a long-standing member of the Archaeology, Palaeontology and Meteorites Committee for Heritage Western Cape (HWC) and an advisor on palaeontological conservation and management issues for the Palaeontological Society of South Africa (PSSA), HWC and SAHRA. He is currently compiling technical reports on the provincial palaeontological heritage of Western, Northern and Eastern Cape for SAHRA and HWC. Dr Almond is an accredited member of PSSA and APHP (Association of Professional Heritage Practitioners – Western Cape). ## **Declaration of Independence** I, John E. Almond, declare that I am an independent consultant and have no business, financial, personal or other interest in the proposed alternative energy project, application or appeal in respect of which I was appointed other than fair remuneration for work performed in connection with the activity, application or appeal. There are no circumstances that compromise the objectivity of my performing such work. Dr John E. Almond Palaeontologist The E. Almord Natura Viva cc