

PALAEONTOLOGICAL DESKTOP ASSESSMENT FOR THE PROPOSED FARM 431 MINING RIGHT APPLICATION (MRA), NEAR POSTMASBURG, ZF MGCAWU DISTRICT MUNICIPALITY, IN THE NORTHERN CAPE PROVINCE.

Compiled for:

LW Consultants

PO Box 3226 19 Park Road Belgravia Kimberley 8300

Prepared by

Banzai Environmental

February 2022

Declaration of Independence

I, Elize Butler, declare that -

General declaration:

- I act as the independent palaeontological specialist in this application
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favorable to the applicant
- I declare that there are no circumstances that may compromise my objectivity in performing such work.
- I have expertise in conducting palaeontological impact assessments, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity.
- I will comply with the Act, Regulations, and all other applicable legislation.
- I will take into account, to the extent possible, the matters listed in section 38 of the NHRA when preparing the application and any report relating to the application.
- I have no, and will not engage in, conflicting interests in the undertaking of the activity.
- I undertake to disclose to the applicant and the competent authority all material
 information in my possession that reasonably has or may have the potential of
 influencing any decision to be taken with respect to the application by the
 competent authority; and the objectivity of any report, plan, or document to be
 prepared by myself for submission to the competent authority.
- I will ensure that information containing all relevant facts in respect of the application is distributed or made available to interested and affected parties and the public and that participation by interested and affected parties is facilitated in such a manner that all interested and affected parties will be provided with a reasonable opportunity to participate and to provide comments on documents that are produced to support the application.
- I will provide the competent authority with access to all information at my disposal regarding the application, whether such information is favorable to the applicant or not
- All the particulars furnished by me in this form are true and correct.
- I will perform all other obligations as expected a palaeontological specialist in terms
 of the Act and the constitutions of my affiliated professional bodies; and
- I realize that a false declaration is an offense in terms of regulation 71 of the Regulations and is punishable in terms of section 24F of the NEMA.

Disclosure of Vested Interest

I do not have and will not have any vested interest (either business, financial, personal, or other) in the proposed activity proceeding other than remuneration for work performed in terms of the Regulations.

PALAEONTOLOGICAL CONSULTANT:

CONTACT PERSON:

Banzai Environmental (Pty) Ltd

Elize Butler

Tel: +27 844478759

Email: info@banzai-group.com

SIGNATURE:

This PIA report has been compiled considering the National Environmental Management Act 1998 (NEMA) and Environmental Impact Regulations 2014 as amended, requirements for specialist reports, Appendix 6, as indicated in the table below.

Table 1 - NEMA Table

Requirements of Appendix 6 - GN R326	Relevant section in	Comment where
EIA Regulations of 7 April 2017	report	not applicable.
	Page ii and Section 2 of	-
	Report – Contact details	
1.(1) (a) (i) Details of the specialist who	and company and	
prepared the report	Appendix A	
(ii) The expertise of that person to compile a specialist report including a	Section 2 – refer to Appendix A	-
curriculum vitae	Appendix A	
(b) A declaration that the person is		-
independent in a form as may be	Page ii of the report	
specified by the competent authority		
(c) An indication of the scope of, and the		-
purpose for which, the report was	Section 4 – Objective	
prepared		
(cA) An indication of the quality and age	Section 5 - Geological	-
of base data used for the specialist	and Palaeontological	
report	history	
(cB) a description of existing impacts on		-
the site, cumulative impacts of the	Section 9	
proposed development and levels of	Section 9	
acceptable change;		
(d) The duration, date and season of the		Desktop
site investigation and the relevance of		Assessment
the season to the outcome of the		
assessment		
(e) a description of the methodology		-
adopted in preparing the report or		
carrying out the specialised process		
inclusive of equipment and modelling	Section 7 Approach and	
used	Methodology	
(f) details of an assessment of the		
specific identified sensitivity of the		
site related to the proposed activity or		
activities and its associated		
structures and infrastructure,	Section 1 and 10	

Requirements of Appendix 6 - GN R326	Relevant section in	Comment where
EIA Regulations of 7 April 2017	report	not applicable.
inclusive of a site plan identifying site		
alternative;		
		No buffers or
(g) An identification of any areas to be		areas of sensitivity
avoided, including buffers	Section 5	identified
(h) A map superimposing the activity		
including the associated structures		
and infrastructure on the		
environmental sensitivities of the site	Section 5 – Geological	
including areas to be avoided,	and Palaeontological	
including buffers;	history	
(i) A description of any assumptions	Section 7.1 –	-
made and any uncertainties or gaps	Assumptions and	
in knowledge;	Limitation	
(j) A description of the findings and		
potential implications of such findings		
on the impact of the proposed activity,	Section 1 and 10	
including identified alternatives, on		
the environment		
(k) Any mitigation measures for inclusion	Section 11	
in the EMPr	Coolien 11	
(I) Any conditions for inclusion in the		
environmental authorisation	Section 11	
(m) Any monitoring requirements for		
inclusion in the EMPr or		
environmental authorisation	Section 1 and 10	
(n)(i) A reasoned opinion as to whether	Section 1 and 10	
the proposed activity, activities or		
portions thereof should be authorised		
and		
(n)(iA) A reasoned opinion regarding		
the acceptability of the proposed		
activity or activities; and		
(n)(ii) If the opinion is that the proposed		-
activity, activities, or portions		
thereof should be authorised, any	Section 1 and 10	
avoidance, management and		
mitigation measures that should		

Requirements of Appendix 6 - GN R326	Relevant section in	Comment where
EIA Regulations of 7 April 2017	report	not applicable.
be included in the EMPr, and		
where applicable, the closure plan		
(o) A description of any consultation		
process that was undertaken during		
the course of carrying out the study	N/A	
(p) A summary and copies if any		
comments that were received during		
any consultation process	N/A	
(q) Any other information requested by the		
competent authority.	N/A	Not applicable.
(2) Where a government notice by the		
Minister provides for any protocol or		
minimum information requirement to be	Section 3 compliance	
applied to a specialist report, the	with SAHRA guidelines	
requirements as indicated in such notice will		
apply.		

EXECUTIVE SUMMARY

Banzai Environmental was appointed by LW Consultants to conduct the Palaeontological Desktop Assessment (PDA) assessing the proposed Farm 431 Mining Right Application (MRA), near Postmasburg, ZF Mgcawu District Municipality, in the Northern Cape Province. In accordance with the National Environmental Management Act 107 of 1998 (NEMA) and to comply with the National Heritage Resources Act (No 25 of 1999, section 38) (NHRA), this PDA is necessary to confirm if fossil material could potentially be present in the planned development area, to evaluate the potential impact of the proposed development on the Palaeontological Heritage and to mitigate possible damage to fossil resources.

The proposed Farm 431 MRA (manganese and iron ore) near Postmasburg in the Northern Cape is mantled by Tertiary to Quaternary superficial deposits as well as the Makganyene Formation of the Postmasburg Group (Transvaal Supergroup). The most south-eastern corner of the proposed development is underlain by Quaternary rubble. According to the PalaeoMap on the South African Heritage Resources Information System (SAHRIS) database, the Palaeontological Sensitivity of the Tertiary to Quaternary superficial deposits and that of the Makganyene Formation (Postmasburg Group, Transvaal Supergroup) is Moderate, while that of the Quaternary rubble is Low (Almond and Pether 2008, SAHRIS website). A Low Palaeontological Significance has been allocated to the proposed Mining application. It is therefore considered that the proposed development is believed to be appropriate and will not lead to detrimental impacts on the palaeontological reserves of the area.

If Palaeontological Heritage is uncovered during surface clearing and excavations the **Chance find Protocol** attached should be implemented immediately. Fossil discoveries ought to be protected and the ECO/site manager must report to South African Heritage Resources Agency (SAHRA) (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Tel: 021 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za) so that mitigation (recording and collection) can be carried out.

Before any fossil material can be collected from the development site the specialist involved would need to apply for a collection permit from SAHRA. Fossil material must be housed in an official collection (museum or university), while all reports and fieldwork should meet the minimum standards for palaeontological impact studies proposed by SAHRA (2012).

These recommendations should be incorporated into the Environmental Management Plan for the proposed development.

.

TABLE OF CONTENT

1	INTRODUCTION1
2	QUALIFICATIONS AND EXPERIENCE OF THE AUTHOR1
3	LEGISLATION1
3.1	National Heritage Resources Act (25 of 1999)
4	OBJECTIVE5
5	GEOLOGICAL AND PALAEONTOLOGICAL HISTORY6
6	GEOGRAPHICAL LOCATION OF THE SITE16
7	METHODS
7.1	Assumptions and Limitations 16
8	ADDITIONAL INFORMATION CONSULTED17
9	IMPACT ASSESSMENT METHODOLOGY
9.1	Impact Rating System 17
	9.1.1 Summary of Impacts 20
10	FINDINGS AND RECOMMENDATIONS
11	CHANCE FINDS PROTOCOL21
11.1	Legislation 21
11.2	Background 22
11.3	Introduction 22
11.4	Chance Find Procedure 22
12	REFERENCES
List	of Figures
_	re 1: Google Earth Image (2022) indicating the locality of the proposed Prospecting Right
	ication near Postmasburg in the Northern Cape
Figu	re 2: Locality of the proposed Prospecting Right Application4
Figu	re 3: Extract of the 1:250 000 Postmasburg 2822 (1977) Geological map (Council of
Geo	science, Pretoria) indicating the proposed development
Figu	re 4: Updated Regional Geology of the Maremane Dome in the Northern Cape (from Smith
	eukes 2016). The approximate location of the proposed development is indicated by the
•	w rectangle11
_	re 5: Stratigraphy of the iron formations in the Sishen-Postmasburg area (Schalkwyk
2005	5)

Figure 6:General stratigraphy of the Late Cretaceous to Recent Kalahari Group (Taken from
Partridge et al. 2006)
Figure 7:Surface Geology indicated by Shape files (Council of Geoscience, Pretoria) of the
proposed Farm 431 Prospecting project14
Figure 8: Extract of the 1 in 250 000 SAHRIS PalaeoMap map (Council of Geosciences)
indicating the proposed development in blue
List of Tables
Table 1 - NEMA Tableiv
Table 2: SAHRIS Palaeosensitivity ratings table. The relevant sensitivity is highlighted 15
Table 3:The rating system

Appendix A: CV

1 INTRODUCTION

MR Tshenolo Iron Ore Investments plans to apply for a manganese and iron ore Prospecting Right Application for Farm 431 south-west of Postmasburg, Mgcawu District Municipality, in the Northern Cape Province (**Figure1-2**). The proposed development is 1558 ha in extent.

2 QUALIFICATIONS AND EXPERIENCE OF THE AUTHOR

This present study has been conducted by Mrs Elize Butler. She has conducted approximately 300 PIAs for developments in the Free State, KwaZulu-Natal, Eastern, Central, and Northern Cape, Northwest, Gauteng, Limpopo, and Mpumalanga Provinces. She has an MSc (*cum laude*) in Zoology (specializing in Palaeontology) from the University of the Free State, South Africa and has been working in Palaeontology for more than twenty-five years. She has experience in locating, collecting, and curating fossils. She has been a member of the Palaeontological Society of South Africa (PSSA) since 2006 and has been conducting PIAs since 2014.

3 LEGISLATION

3.1 National Heritage Resources Act (25 of 1999)

Cultural Heritage in South Africa, includes all heritage resources, is protected by the National Heritage Resources Act (Act 25 of 1999) (NHRA). Heritage resources as defined in Section 3 of the Act include "all objects recovered from the soil or waters of South Africa, including archaeological and palaeontological objects and material, meteorites and rare geological specimens".

The identification, evaluation and assessment of any cultural heritage site, artefact or finds in the South African context is required and governed by the following legislation:

- National Environmental Management Act (NEMA) Act 107 of 1998
- National Heritage Resources Act (NHRA) Act 25 of 1999
- Notice 648 of the Government Gazette 45421- general requirements for undertaking an initial site sensitivity verification where no specific assessment protocol has been identified.

The next section in each Act is directly applicable to the identification, assessment, and evaluation of cultural heritage resources.

GNR 982 (Government Gazette 38282, 14 December 2014) promulgated under the National Environmental Management Act (NEMA) Act 107 of 1998

- Basic Assessment Report (BAR) Regulations 19 and 23
- Environmental Impacts Assessment (EIA) Regulation 23

- Environmental Scoping Report (ESR) Regulation 21
- Environmental Management Programme (EMPr) Regulations 19 and 23

National Heritage Resources Act (NHRA) Act 25 of 1999

- Protection of Heritage Resources Sections 34 to 36
- Heritage Resources Management Section 38

The NEMA (No 107 of 1998) states that an integrated EMP should (23:2 (b)) "...identify, predict and evaluate the actual and potential impact on the environment, socio-economic conditions and cultural heritage".

In agreement with legislative requirements, EIA rating standards as well as SAHRA policies the following comprehensive and legally compatible PIA report have been compiled.

Palaeontological heritage is exceptional and non-renewable and is protected by the NHRA. Palaeontological resources and may not be unearthed, broken moved, or destroyed by any development without prior assessment and without a permit from the relevant heritage resources authority as per section 35 of the NHRA.

This Palaeontological Impact assessment forms part of the Heritage Impact Assessment (HIA) and adhere to the conditions of the Act. According to **Section 38 (1)**, an HIA is required to assess any potential impacts to palaeontological heritage within the development footprint where:

- the construction of a road, wall, power line, pipeline, canal or other similar form of linear development or barrier exceeding 300 m in length.
- the construction of a bridge or similar structure exceeding 50 m in length.
- any development or other activity which will change the character of a site—
- Exceeding 5 000 m² in extent; or
- involving three or more existing erven or subdivisions thereof; or
- involving three or more erven or divisions thereof which have been consolidated within the past five years; or
- the costs of which will exceed a sum set in terms of regulations by SAHRA or a provincial heritage resources authority
- the re-zoning of a site exceeding 10 000 m² in extent.
- or any other category of development provided for in regulations by SAHRA or a Provincial heritage resources authority.

.

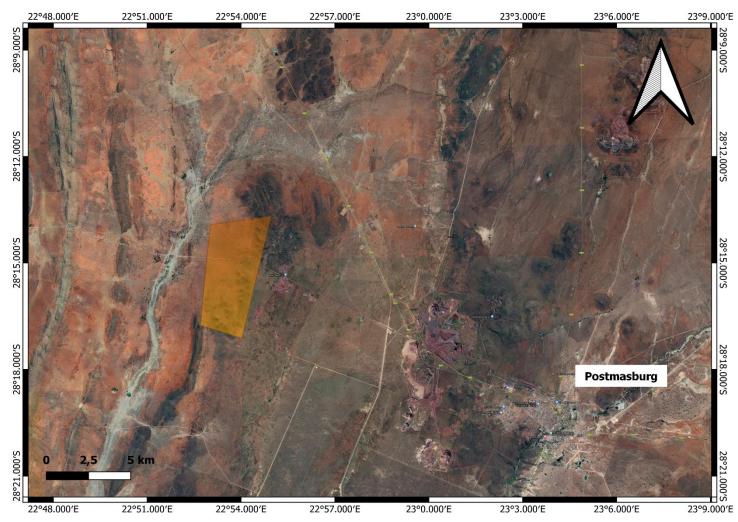


Figure 1: Google Earth Image (2022) indicating the locality of the proposed Prospecting Right Application near Postmasburg in the Northern Cape.

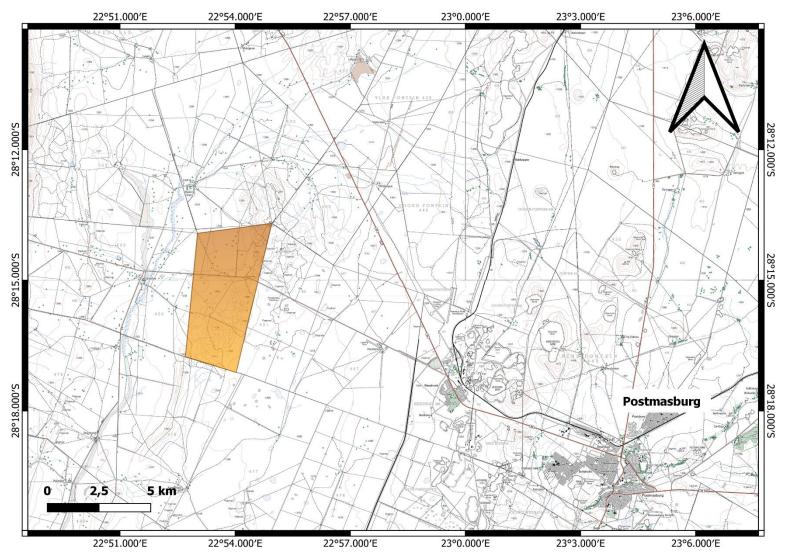


Figure 2: Locality of the proposed Prospecting Right Application.

4 OBJECTIVE

The aim of a PIA is to decrease the effect of the development on potential fossils at the development site.

According to the "SAHRA Archaeology, Palaeontology and Meteorites (APM) Guidelines: Minimum Standards for the Archaeological and Palaeontological Components of Impact Assessment Reports" the purpose of the PIA is: 1) to identify the palaeontological importance of the rock formations in the footprint; 2) to evaluate the palaeontological magnitude of the formations; 3) to clarify the **impact** on fossil heritage, and 4) to suggest how the developer might protect and lessen possible damage to fossil heritage.

The palaeontological status of each rock section is calculated as well as the possible impact of the development on fossil heritage by a) the palaeontological importance of the rocks, b) the type of development and c) the quantity of bedrock removed.

When the development footprint has a moderate to high palaeontological sensitivity a field-based assessment is necessary. The desktop and the field survey of the exposed rock determine the impact significance of the planned development and recommendations for further studies or mitigation are made. Destructive impacts on palaeontological heritage usually only occur during the construction phase while the excavations will change the current topography and destruct or permanently seal-in fossils at or below the ground surface. Fossil Heritage will then no longer be accessible for scientific research.

Mitigation usually precede construction or may occur during construction when potentially fossiliferous bedrock is exposed. Mitigation comprises the collection and recording of fossils. Preceding excavation of any fossils a permit from SAHRA must be obtained and the material will have to be housed in a permitted institution. When mitigation is applied correctly, a positive impact as possible because our knowledge of local palaeontological heritage may be increased. The terms of reference of a PIA are as follows:

General Requirements:

- Adherence to the content requirements for specialist reports in accordance with Appendix
 6 of the EIA Regulations 2014, as amended.
- Adherence to all applicable best practice recommendations, appropriate legislation and authority requirements.
- Submit a comprehensive overview of all appropriate legislation, guidelines.
- Description of the proposed project and provide information regarding the developer and consultant who commissioned the study.

- Description and location of the proposed development and provide geological and topographical maps.
- Provide Palaeontological and geological history of the affected area.
- Identification sensitive areas to be avoided (providing shapefiles/kml's) in the proposed development.
- Evaluation of the significance of the planned development during the Pre-construction, Construction, Operation, Decommissioning Phases and Cumulative impacts. Potential impacts should be rated in terms of the direct, indirect and cumulative:
 - a. **Direct impacts** are impacts that are caused directly by the activity and generally occur at the same time and at the place of the activity.
 - Indirect impacts of an activity are indirect or induced changes that may occur as a result of the activity.
 - c. Cumulative impacts result from the incremental impact of the proposed activity on a common resource when added to the impacts of other past, present or reasonably foreseeable future activities.
- Fair assessment of alternatives (infrastructure alternatives have been provided):
- Recommend mitigation measures to minimise the impact of the proposed development;
 and
- Implications of specialist findings for the proposed development (such as permits, licenses etc).

5 GEOLOGICAL AND PALAEONTOLOGICAL HISTORY

The proposed mining development, located north-west of Postmasburg in the Northern Cape, is depicted on the 1: 250 000 Postmasburg 2428 (1977) Geological Map (Council for Geosciences, Pretoria) (**Figure 3**). According to this map the proposed development is mostly underlain by Tertiary to Quaternary superficial deposits (Yellow dots, Qs, windblown sands) as well as the Makganyene Formation (light green with dots, Vm) of the Postmasburg Group (Transvaal Supergroup). The most south-eastern corner of the proposed development is underlain by Quaternary rubble (yellow with scattered triangles). According to the PalaeoMap on the South African Heritage Resources Information System (SAHRIS) database, the Palaeontological Sensitivity of the Tertiary to Quaternary superficial deposits is Moderate, that of the Quaternary rubble is Low and that of the Makganyene Formation (Postmasburg Group, Transvaal Supergroup) is Moderate (Almond and Pether 2008, SAHRIS website).

Recently, revisions to the stratigraphic subdivision and alignments of the Precambruim rocks present in the Postmasburg and Kathu area has been completed. Eriksson *et al.* (2006) conducted stratigraphic studies on the Transvaal Supergroup while Moen (2006) conducted the study for the Olifantshoek Supergroup. Simplified regional geological maps based on Cairncross and Beukes

(2013) and Smith and Beukes (2016) were published. The geological map (**Figure 4**) indicates that the proposed development is located west of the Maremane Dome (a major N-S trending anticline within the Early Proterozoic bedrocks of the Ghaap Group, Transvaal Supergroup. The Maremane Dome comprises of carbonate rocks of the Ghaap Group, Transvaal Supergroup overlain by the Kalahari Group.

In the past the shallow marine carbonates of the Campbell Rand Subgroup (Ghaap Group) were included in the Ghaapplato Formation. It is about 2.6 to 2.5 Ga (billion years old) and was deposited on the shallow submerged shelf of the Kaapvaal Craton. This carbonate platform is very thick (about 1.6 -2.5 km) and comprise of cherts with minor tuffs and siliciclastic rocks as well as dolostones and dolomitic limestones.

Sea level changes were caused by changing depositional cycles in shallow water facies. Stromatolitic limestones and dolostones, oolites, minor tuffs as well as laminated calcilutites, cherts, with subordinate siliclastics (shales, siltstones) are present in this area (Beukes 1980, Beukes 1986, Sumner 2002, Eriksson *et al.* 2006, Sumner & Beukes 2006).

West of the Maremane Dome, a major unconformity exists at the base of the Palaeoproterozoic Elim Group (basal Keis Supergroup) (**Figure 5**), This unconformity (about 2.2-2.0 Ga) cuts the folded Ghaap Group succession and is associated with the development of manganese and iron ores in Griqualand West. High grade manganese and iron ores are present in the extensively modified Precambruim sediments of the Ghaap and Elim Group (Manganore or Gamagara Formations). These ores are associated with the basal Gamagara Formation of the Elim Group as well as the palaeokarst-related Manganore Formation. This formation overlies the carbonates of the Campbell Rand Subgroup of the Maremane Dome (Van Niekerk 2006, Da Silva 2011, Cairncross & Beukes 2013, Smith & Beukes 2016). In the past the Elim Group was included in the Olifantshoek Group.

In the greater Kathu region, the Postmasburg Group is represented by the unfossiliferous volcanic Ongeluk Formation as well as the Makganyene Formation. The basaltic to andesitic lavas/magma of the Ongeluk Formation (dated to 2.2 Ga) crops out near the proposed development. The Makganyene Formation near Postmasburg, comprise of diamictites that is about 500m thick. Various authors are of the opinion that these diamictites indicate a 250-million-year glacial episode (Palaeoproterozoic age) (Evans et al. 1997; Polteau et al. 2006). This event was most probably triggered by oxygenic cyanobacterial photosynthesis (Kopp et al. 2005; Coetzee et al. 2006). The Makganyene Formation includes sandstones, shales, large coarsely bedded diamictites, BIF and manganese-rich carbonates with stromatolitic reefs. However, Almond (2017) did not uncover fossil reefs from the shallow platform facies of the Makganyene Formation in the Griqualand Basin (Ghaap Plateau Sub-basin).

In this area Precambrian rocks are mantled by the late Cretaceous to Late Caenozoic aeolian sands, clays, calcretes, and gravels of the Kalahari Group [approximately Ca 65 – 2.5 million years old (Ma)]. Studies north west of the proposed development site has shown that the Kalahari Group sediments that overlies the Precambrian rocks are about 80 m thick (Haddon, 2005). The earliest Kalahari beds are assigned to the Wessels Formation (basal gravels) and Budin Formation (calcareous clays) and is probably Late Cretaceous in age (Partridge et al. 2006). The top 15 m of the Kalahari sediments consist of clays, calcretised siltstones, and pebbly horizons with the occurrence of solution hollows along joint surfaces (10 m from the surface) (**Figure 6**). Calcretised silcretes with *in situ* brecciation are present close to the surface. Thick pedogenic calcretes (Plio-Pleistocene Mokalanen Formation) are mapped along the Ga-Mogara drainage line and underlies the Kalahari sands in this region. These deposits indicate the seasonally arid climates over the last five million years (Truter et al. 1938; Boardman and Visser 1958). Surface limestones may be up to 20 m thick and are locally conglomeratic with clasts of reworked calcrete and foreign pebbles.

Pleistocene Kalahari sands (Gordonia Formation) has been described to mantle thick calcretes and downwasted surface gravels (Almond 2013). He described a range of calcrete types namely gravelly, brecciated, silicified, honeycomb and karstified facies, the latter with an associated sandor gravel-infilled solution hollows

Older terrace gravels are described from the banks of the Ga-Mogara drainage line. Unconsolidated, reddish-brown aeolian sands of the Quaternary Gordonia Formation are present. These sands are Late Pliocene / Early Pleistocene to Recent in age due to the Middle to Later Stone Age stone tools (Dingle *et al.*, 1983, p. 291) found in them. Recent studies have dated the Pliocene - Pleistocene boundary from 1.8Ma back to 2.588 Ma and placed the Gordonia Formation almost completely within the Pleistocene Epoch.

Small patches of Late Tertiary to Quaternary calcretes or pedogenic limestones (QI) are present in the development. The calcretes may be correlated with the Pleistocene or Late Pliocene Mokalanen Formation of the Kalahari Group, or even younger (Partridge et al. 2006, Moen 2007). These horizons include layered to structureless and nodular calcretes covering basement rocks that are generally less than 3 m thick and partly covered by wind-blown sands.

Quaternary fossil assemblages are generally rare and low in diversity and occur over a wide-ranging geographic area. These fossil assemblages resemble modern animals and may comprise of mammalian teeth, bones and horn corns, reptile skeletons and fragments of ostrich eggs. Microfossils, non-marine mollusc shells are also known from Quaternary deposits. Plant material such as foliage, wood, pollens, and peats are recovered as well as trace fossils like vertebrate tracks, burrows, termitaria (termite heaps/ mounds) and rhizoliths (root casts).

The proposed development is however mantled by windblown sands and the chance of finding fossils is these sands is low.

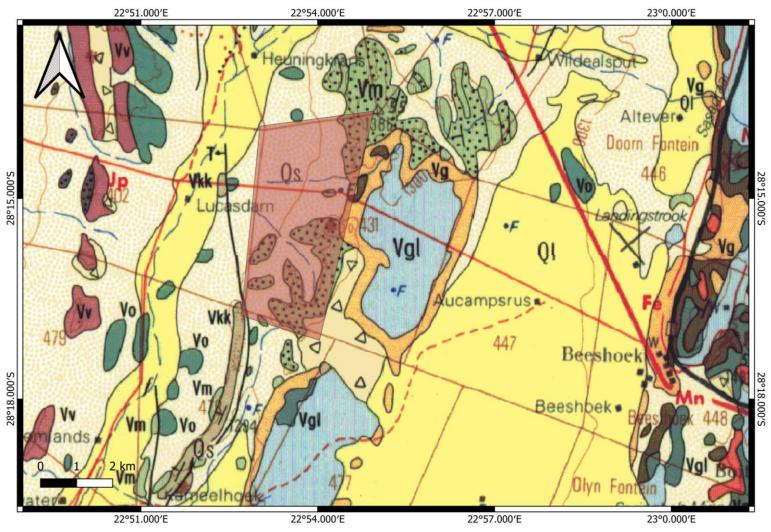
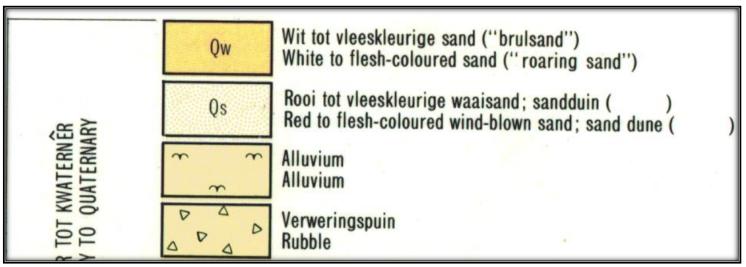
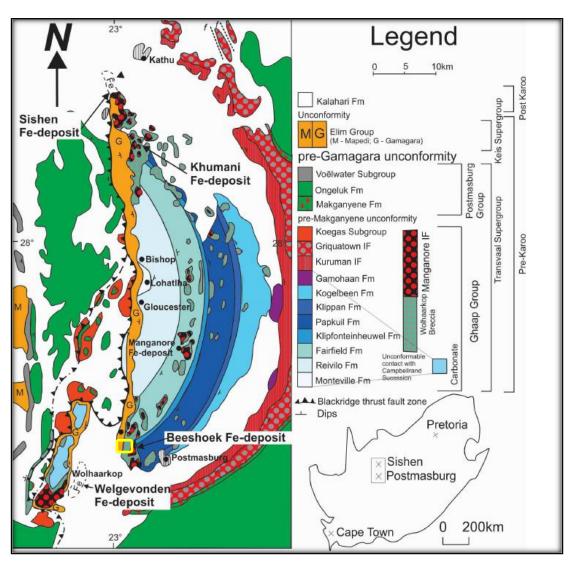




Figure 3: Extract of the 1:250 000 Postmasburg 2822 (1977) Geological map (Council of Geoscience, Pretoria) indicating the proposed development.

Legend to Map and short explanation (Modified from the 1:250 000 Kuruman 2724 (1979) Geological Map (Council for Geosciences, Pretoria).

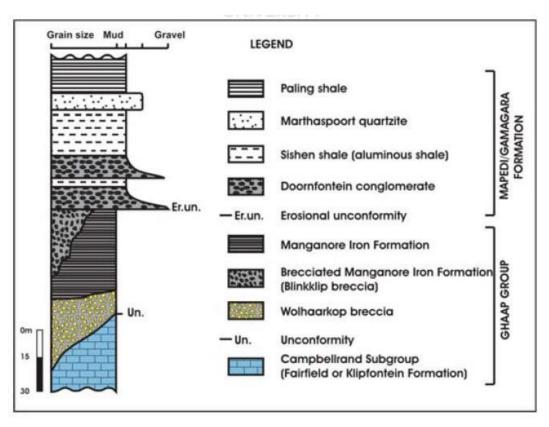
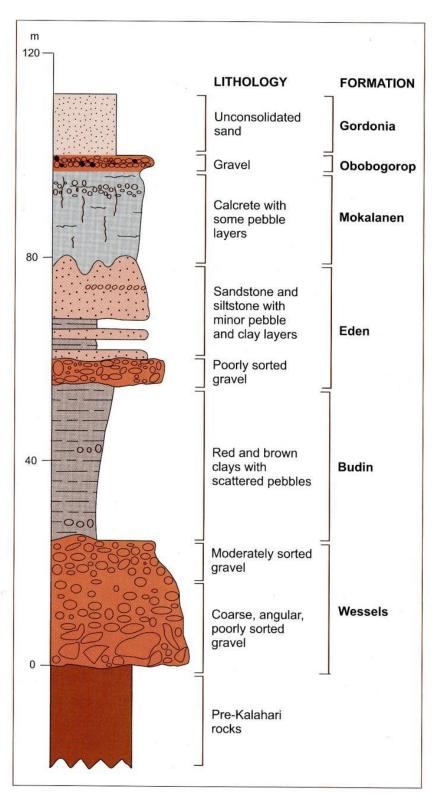


Figure 4: Updated Regional Geology of the Maremane Dome in the Northern Cape (from Smith & Beukes 2016). The approximate location of the proposed development is indicated by the yellow rectangle.


The mining application is located on the western flanks of the Maremane dome. The manganese and iron ores are assigned to the Gamagara Formation. The Makganyene Formation outcrop is indicated in red with green spots (differing from the legend).

The Ongeluk lava outcrop area as well as the Makganyene Formation diamictites forms part of the Postmasburg Group. The basal Elim Group contains the Gamagara Formation. Iron / manganese ores on the western borders of the Maremane Dome.

Figure 5: Stratigraphy of the iron formations in the Sishen-Postmasburg area (Schalkwyk 2005).

The base of the Elim Group (Kheis Supergroup) is formed by the Gamagara Formation and the ferruginous Doornfontein conglomerates at its base. The Manganore Formation in underlain by the Wolhaarkop Breccia that forms part of a complex, supergene-enriched, lateritic weathering profile below the 2.2-2.0 Ga pre-Gamagara Unconformity associated with the collapse of the Asbestos Hills Subgroup BIF into karstic solution hollows on the Maremane Dome.

Figure 6:General stratigraphy of the Late Cretaceous to Recent Kalahari Group (Taken from Partridge et al. 2006).



Figure 7:Surface Geology indicated by Shape files (Council of Geoscience, Pretoria) of the proposed Farm 431 Prospecting project.

The map in Figure 7 was drawn by Shape files supplied by the Council of Geoscience, Pretoria. This map indicates that the proposed mining application is largely underlain by the Makganyene Formation with the north- eastern portion underlain by the Gamagara Formation, Postmasburg Group, Transvaal Supergroup.

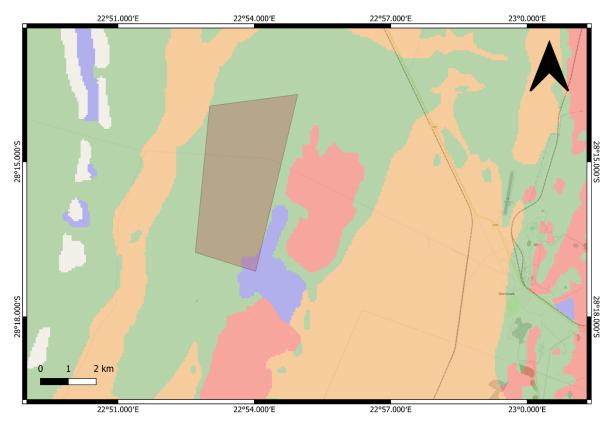


Figure 8: Extract of the 1 in 250 000 SAHRIS PalaeoMap map (Council of Geosciences) indicating the proposed development in blue.

Table 2: SAHRIS Palaeosensitivity ratings table. The relevant sensitivity is highlighted.

Colour	Sensitivity	Required Action
RED	VERY HIGH	field assessment and protocol for finds is
		required
ORANGE/YELLOW	HIGH	desktop study is required and based on
		the outcome of the desktop study; a
		field assessment is likely
GREEN	MODERATE	desktop study is required
BLUE	LOW	no palaeontological studies are required
		however a protocol for finds is required
GREY	INSIGNIFICANT/ZERO	no palaeontological studies are required
WHITE/CLEAR	UNKNOWN	these areas will require a minimum of a
		desktop study. As more information comes
		to light, SAHRA will continue to populate
		the map.

According to the SAHRIS Palaeosensitivity map (**Figure 8**) the proposed development is underlain by sediments with a High (Orange) Palaeontological Significance (**Figure 8**).

The colors on the PalaeoMap indicate the following degrees of sensitivity: red = very highly sensitive; orange/yellow = high; green = moderate; blue = low; grey = insignificant/zero

6 GEOGRAPHICAL LOCATION OF THE SITE

The proposed study area is about 18 km north-west of Postmasburg, ZF Mgcawu District Municipality, in the Northern Cape Province

The approximate middle coordinates of the development is -28.253811° 22.894226°°

	Longitude	Latitude
	-28.231832°	22.884650°
GPS Coordinates	-28.228669°	22.916257°
	-28.279602°	22.878392°
	-28.285078°	-28.285078°

7 METHODS

The aim of a desktop study is to evaluate the risk to palaeontological heritage in the proposed development. This includes all trace fossils and fossils. All available information is consulted to compile a desktop study and includes PIA reports in the same area, aerial photos, and Google Earth images, topographical as well as geological maps.

7.1 Assumptions and Limitations

When conducting a PIA, several factors can affect the accuracy of the assessment. The focal point of geological maps is the geology of the area, and the sheet explanations were not meant to focus on palaeontological heritage. Many, inaccessible regions of South Africa have not been reviewed by palaeontologists and data is based on aerial photographs. Locality and geological information of museums and universities databases have not been kept up to date or data collected in the past have not always been accurately documented.

Comparable Assemblage Zones in other areas is used to provide information on the existence of fossils in an area that was not yet been documented. When similar Assemblage Zones and geological formations for Desktop studies is used it is assumed that exposed fossil heritage is present within the footprint.

8 ADDITIONAL INFORMATION CONSULTED

In compiling this report the following sources were consulted:

- Geological map 1:100 000, Geology of the Republic of South Africa (Visser 1984).
- 1: 250 000 000 Postmasburg 2824 (1977) Geological Map (Council for Geosciences, Pretoria).
- A Google Earth map with polygons of the proposed development was obtained from LW Consultants.
- PIAs in close proximity of the proposed development (See references)

9 IMPACT ASSESSMENT METHODOLOGY

9.1 Impact Rating System

Impact assessment must take account of the nature, scale, and duration of impacts on the environment whether such impacts are positive or negative. Each impact is also assessed according to the following project phases:

- Construction
- Operation
- Decommissioning

Where necessary, the proposal for mitigation or optimisation of an impact should be detailed. A brief discussion of the impact and the rationale behind the assessment of its significance should also be included. The rating system is applied to the potential impacts on the receiving environment and includes an objective evaluation of the mitigation of the impact. In assessing the significance of each impact, the following criteria is used:

Table 3: The rating system

NATURE

Include a brief description of the impact of environmental parameter being assessed in the context of the project. This criterion includes a brief written statement of the environmental aspect being impacted upon by a particular action or activity.

GEOGI	GEOGRAPHICAL EXTENT		
This is	This is defined as the area over which the impact will be experienced.		
1	Site	The impact will only affect the site.	
2	Local/district	Will affect the local area or district.	
3	Province/region	Will affect the entire province or region.	
4	International and National	Will affect the entire country.	

PROBA	PROBABILITY			
This de	This describes the chance of occurrence of an impact.			
1	Unlikely	The chance of the impact occurring is extremely low		
		(Less than a 25% chance of occurrence).		
2	Possible	The impact may occur (Between a 25% to 50% chance		
		of occurrence).		
3	Probable	The impact will likely occur (Between a 50% to 75%		
		chance of occurrence).		
4	Definite	Impact will certainly occur (Greater than a 75% chance of		
		occurrence).		
DURAT	TION			
This de	scribes the duration of the impacts	s. Duration indicates the lifetime of the impact as a result		
of the p	roposed activity.			
1	Short term	The impact will either disappear with mitigation or will be		
		mitigated through natural processes in a span shorter		
		than the construction phase $(0 - 1 \text{ years})$, or the impact		
		will last for the period of a relatively short construction		
		period and a limited recovery time after construction,		
		thereafter it will be entirely negated (0 – 2 years).		
2	Medium term	The impact will continue or last for some time after the		
		construction phase but will be mitigated by direct human		
		action or by natural processes thereafter (2 – 10 years).		
3	Long term	The impact and its effects will continue or last for the		
		entire operational life of the development but will be		
		mitigated by direct human action or by natural processes		
		thereafter (10 – 30 years).		
4	Permanent	The only class of impact that will be non-transitory.		
		Mitigation either by man or natural process will not occur		
		in such a way or such a time span that the impact can be		
		considered indefinite.		
INTENS	SITY/ MAGNITUDE			
Describ	es the severity of an impact.			
1	Low	Impact affects the quality, use and integrity of the		
		system/component in a way that is barely perceptible.		
2	Medium	Impact alters the quality, use and integrity of the		
		system/component but system/component still continues		
		to function in a moderately modified way and maintains		
		general integrity (some impact on integrity).		

	Litale	Learner officials the continued viability of the contained	
3	High	Impact affects the continued viability of the system/	
		component, and the quality, use, integrity and	
		functionality of the system or component is severely	
		impaired and may temporarily cease. High costs of	
		rehabilitation and remediation.	
4	Very high	Impact affects the continued viability of the	
		system/component, and the quality, use, integrity and	
		functionality of the system or component permanently	
		ceases and is irreversibly impaired. Rehabilitation and	
		remediation often impossible. If possible rehabilitation	
		and remediation often unfeasible due to extremely high	
		costs of rehabilitation and remediation.	
REVER	SIBILITY		
This des	scribes the degree to which an imp	pact can be successfully reversed upon completion of the	
propose	ed activity.		
1	Completely reversible	The impact is reversible with implementation of minor	
		mitigation measures.	
2	Partly reversible	The impact is partly reversible but more intense mitigation	
		measures are required.	
3	Barely reversible	The impact is unlikely to be reversed even with intense	
		mitigation measures.	
4	Irreversible	The impact is irreversible, and no mitigation measures	
		exist.	
IRREPL	ACEABLE LOSS OF RESOURC	ES	
This des	scribes the degree to which resou	rces will be irreplaceably lost as a result of a proposed	
activity.	· ·		
1	No loss of resource	The impact will not result in the loss of any resources.	
2	Marginal loss of resource	The impact will result in marginal loss of resources.	
3	Significant loss of resources	The impact will result in significant loss of resources.	
4	Complete loss of resources	The impact is result in a complete loss of all resources.	
	•	The impact is result in a complete loss of all resources.	
	CUMULATIVE EFFECT This describes the consulative effect of the imprects A consulative imprect is an effect which is itself.		
	This describes the cumulative effect of the impacts. A cumulative impact is an effect which in itself		
may not be significant but may become significant if added to other existing or potential impacts emanating from other similar or diverse activities as a result of the project activity in question.			
1	Negligible cumulative impact	The impact would result in negligible to no cumulative	
0		effects.	
2	Low cumulative impact	The impact would result in insignificant cumulative	
		effects.	
3	Medium cumulative impact	The impact would result in minor cumulative effects.	
Palaeonto	ological Desktop Assessment for a propos	sed Vinci Prospecting Right Application near Postmasburg in the	
N I = 14 I= = 1115	Cape Province		

4	High cumulative impact	The impact would result in significant cumulative effects
---	------------------------	---

SIGNIFICANCE

Significance is determined through a synthesis of impact characteristics. Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. The calculation of the significance of an impact uses the following formula:

(Extent + probability + reversibility + irreplaceability + duration + cumulative effect) x magnitude/intensity.

The summation of the different criteria will produce a non-weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

Points	Impact significance rating	Description
6 to 28	Negative low impact	The anticipated impact will have negligible negative
		effects and will require little to no mitigation.
6 to 28	Positive low impact	The anticipated impact will have minor positive effects.
29 to 50	Negative medium impact	The anticipated impact will have moderate negative
		effects and will require moderate mitigation measures.
29 to 50	Positive medium impact	The anticipated impact will have moderate positive
		effects.
51 to 73	Negative high impact	The anticipated impact will have significant effects and
		will require significant mitigation measures to achieve an
		acceptable level of impact.
51 to 73	Positive high impact	The anticipated impact will have significant positive
		effects.
74 to 96	Negative very high impact	The anticipated impact will have highly significant effects
		and are unlikely to be able to be mitigated adequately.
		These impacts could be considered "fatal flaws".
74 to 96	Positive very high impact	The anticipated impact will have highly significant positive

9.1.1 Summary of Impacts

Only the site will be affected (1). It is that the impact will occur (1). The expected duration of the impact is assessed as potentially permanent to long term (4). The impact on fossil heritage will be irreversible (4) and a complete loss of fossil heritage will take place (4). The cumulative effect of the impact will be low (2). The magnitude of the impact happening will be low (1)

The Impact significance will therefore be a negative low Impact.

10 FINDINGS AND RECOMMENDATIONS

The proposed Farm 431 MRA (manganese and iron ore) near Postmasburg in the Northern Cape is mantled by Tertiary to Quaternary superficial deposits as well as the Makganyene Formation of the Postmasburg Group (Transvaal Supergroup). The most south-eastern corner of the proposed development is underlain by Quaternary rubble. According to the PalaeoMap on the South African Heritage Resources Information System (SAHRIS) database, the Palaeontological Sensitivity of the Tertiary to Quaternary superficial deposits and that of the Makganyene Formation (Postmasburg Group, Transvaal Supergroup) is Moderate, while that of the Quaternary rubble is Low (Almond and Pether 2008, SAHRIS website). A Low Palaeontological Significance has been allocated to the proposed Mining application. It is therefore considered that the proposed development is believed to be appropriate and will not lead to detrimental impacts on the palaeontological reserves of the area.

If Palaeontological Heritage is uncovered during surface clearing and excavations the **Chance find Protocol** attached should be implemented immediately. Fossil discoveries ought to be protected and the ECO/site manager must report to South African Heritage Resources Agency (SAHRA) (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Tel: 021 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za) so that mitigation (recording and collection) can be carried out.

Before any fossil material can be collected from the development site the specialist involved would need to apply for a collection permit from SAHRA. Fossil material must be housed in an official collection (museum or university), while all reports and fieldwork should meet the minimum standards for palaeontological impact studies proposed by SAHRA (2012).

These recommendations should be incorporated into the Environmental Management Plan for the proposed development.

11 CHANCE FINDS PROTOCOL

A following procedure will only be followed if fossils are uncovered during excavation.

11.1 Legislation

Cultural Heritage in South Africa (includes all heritage resources) is protected by the **National Heritage Resources Act (Act 25 of 1999) (NHRA).** According to Section 3 of the Act, all Heritage resources include "all objects recovered from the soil or waters of South Africa,

including archaeological and palaeontological objects and material, meteorites and rare geological specimens".

Palaeontological heritage is unique and non-renewable and is protected by the NHRA and are the property of the State. It is thus the responsibility of the State to manage and conserve fossils on behalf of the citizens of South Africa. Palaeontological resources may not be excavated, broken, moved, or destroyed by any development without prior assessment and without a permit from the relevant heritage resources authority as per section 35 of the NHRA.

11.2 Background

A fossil is the naturally preserved remains (or traces) of plants or animals embedded in rock. These plants and animals lived in the geologic past millions of years ago. Fossils are extremely rare and irreplaceable. By studying fossils, it is possible to determine the environmental conditions that existed in a specific geographical area millions of years ago.

11.3 Introduction

This informational document is intended for workmen and foremen on construction sites. It describes the actions to be taken when mining or construction activities accidentally uncovers fossil material.

It is the responsibility of the Environmental Site Officer (ESO) or site manager of the project to train the workmen and foremen in the procedure to follow when a fossil is accidentally uncovered. In the absence of the ESO, a member of the staff must be appointed to be responsible for the proper implementation of the chance find protocol as not to compromise the conservation of fossil material.

11.4 Chance Find Procedure

- If a chance find is made the person responsible for the find must immediately stop
 working and all work that could impact that finding must cease in the immediate vicinity
 of the find.
- The person who made the find must immediately **report** the find to his/her direct supervisor which in turn must report the find to his/her manager and the ESO or site manager. The ESO or site manager must report the find to the relevant Heritage Agency (South African Heritage Research Agency, SAHRA). (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Tel: 021 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za). The information to

the Heritage Agency must include photographs of the find, from various angles, as well as the GPS coordinates.

- A preliminary report must be submitted to the Heritage Agency within 24 hours of the find and must include the following: 1) date of the find; 2) a description of the discovery and a 3) description of the fossil and its context (depth and position of the fossil), GPS co-ordinates.
- Photographs (the more the better) of the discovery must be of high quality, in focus, accompanied by a scale. It is also important to have photographs of the vertical section (side) where the fossil was found.

Upon receipt of the preliminary report, the Heritage Agency will inform the ESO (or site manager) whether a rescue excavation or rescue collection by a palaeontologist is necessary.

- The site must be secured to protect it from any further damage. No attempt should be
 made to remove material from their environment. The exposed finds must be stabilized
 and covered by a plastic sheet or sand bags. The Heritage agency will also be able to
 advise on the most suitable method of protection of the find.
- In the event that the fossil cannot be stabilized the fossil may be collected with extreme
 care by the ESO (site manager). Fossils finds must be stored in tissue paper and in an
 appropriate box while due care must be taken to remove all fossil material from the
 rescue site.
- Once Heritage Agency has issued the written authorization, the developer may continue with the development on the affected area.

12 REFERENCES

ALMOND, J.E. & PETHER, J. 2008. Palaeontological heritage of the Northern Cape. Interim SAHRA technical report, 124 pp. Natura Viva cc., Cape Town.

ALMOND, J., PETHER, J, and GROENEWALD, G. 2013. South African National Fossil Sensitivity Map. SAHRA and Council for Geosciences.

ALMOND, J.E. 2010a. Prospecting application for iron ore and manganese between Sishen and Postmasburg, Northern Cape Province: farms Jenkins 562, Marokwa 672, Thaakwaneng 675, Driehoekspan 435, Doringpan 445 and Macarthy 559.

ALMOND, J.E. 2010b. Proposed voltaic power station adjacent to Welcome Wood Substation, Owendale near Postmasburg, Northern Cape Province. Palaeontological impact assessment: desktop study, 12 pp. Natura Viva cc, Cape Town.

ALMOND, J.E. 2012a. Proposed PV power stations Welcome Wood II and III adjacent to Welcome Wood Substation, near Daniëlskuil, Northern Cape Province. Palaeontological impact assessment: desktop study, 14 pp.

ALMOND, J.E. 2012b. Proposed Metsimatala Photovoltaic Power and Concentrated Solar Power Facilities on Farm Groenwater, Francis Baard District Municipality near Postmasburg, Northern Cape. Palaeontological assessment: combined desktop study & field assessment, 26 pp. Natura Viva cc, Cape Town.

ALMOND, J.E. 2013. Proposed 16 MTPA expansion of Transnet's existing manganese ore export railway line & associated infrastructure between Hotazel and the Port of Ngqura, Northern & Eastern Cape. Part 1: Hotazel to Kimberley, Northern Cape. Palaeontological specialist assessment: combined desktop and field-based study, 85 pp. Natura Viva cc, Cape Town.

ALMOND, J.E. 2014. Proposed mineral prospecting on the farms Achambachs Puts 56, Plaas 53, Plaas 566 and Plaas 567 near Griekwastad, Siyancuma Local Municipality, Hay Magisterial District, Northern Cape. Palaeontological heritage basic assessment: desktop study, 24 pp. Natura Viva cc, Cape Town.

ALMOND, J.E. 2017. Proposed Mining Right Application for the Farm Magoloring 668 (Japies Rus) near Postmasburg, ZF Mgcawu District, Tsantsabane Municipality, Northern Cape. Palaeontological heritage report: combined desktop & field study, 41 pp. Natura Viva cc, Cape Town.

ALMOND, J.E. 2019a. Proposed mineral prospecting on the Remaining Extent and Portion 1 of the Farm Demaneng 546, Gamagara Local Municipality, Kuruman Magisterial District, Northern Cape Province. Palaeontological heritage report: desktop study, 30 pp. Natura Viva cc. Cape Town.

ALMOND, J.E. 2019b. Proposed mineral prospecting on the farms Spitz Kop 168, Bingap 184 and Cairnpoint 195 near Groblershoop, Hay Magisterial District, Northern Cape Province. Palaeontological heritage report: desktop study, 28 pp. Natura Viva cc, Cape Town.

ALTERMANN, J. & HERBIG 1991. Tidal flats deposits of the Lower Proterozoic Campbell Group along the southwestern margin of the Kaapvaal Craton, Northern Cape province, South Africa. Journal of African Earth Science 13: 415-435.

ALTERMANN, W. & SCHOPF, J.W. 1995. Microfossils from the Neoarchaean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Research 75, 65-90.

ALTERMANN, W. & WOTHERSPOON, J. McD. 1995. The carbonates of the Transvaal and Griqualand West sequences of the Kaapvaal craton, with special reference to the Limje Acres limestone deposit. Mineralium Deposita 30, 124-134.

ANDERSEN, D.T., SUMNER, D.Y., HAWES, I., WEBSTER-BRWON, J. & MCKAY, C.P. 2011. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280-293.

BEAUMONT, P.B., VAN ZINDEREN BAKKER, E.M. & VOGEL, J.C. 1984. Environmental changes since 32, 000 BP at Kathu Pan, Northern Cape. In: Vogel, J.C. (Ed.) Late Cenozoic paleoclimates of the southern hemisphere, pp. 329-338. Balkema, Rotterdam.

BEUKES, N.J. & KLEIN, C. 1990. Geochemistry and sedimentology of facies transition from the microbanded to granular iron-formation in the Early Proterozoic Transvaal Supergroup, South Africa. Precambrian Research 47, 99-139.

BEUKES, N.J. 1983. Palaeoenvironmental setting of iron formations in the depositional basin of the Transvaal Supergroup, South Africa. In: Trendall, A.F. & Morris, R.C. (Eds.) Iron-formation: facts and problems, 131-210. Elsevier, Amsterdam.

BEUKES, N.J. 1986. The Transvaal Sequence in Griqualand West. In: Anhaeusser, C.R. & Maske, S. (Eds.) Mineral deposits of Southern Africa, Volume 1, pp. 819-828. Geological Society of South Africa.

BUCK, S.G., 1980. Stromatolite and ooid deposits within fluvial and lacustrine sediments of the Precambruim Ventersdorp Supergroup of South Africa. Precambruim Res., 12:311-330.

CAIRNCROSS, B. & BEUKES, N.J. 2013. The Kalahari Manganese Field. The adventure continues. 384 pp. Struik Nature, Cape Town.

COETZEE, L.L., BEUKES, N.J. & GUTZMER, J. 2006. Links of organic carbon cycling and burial to depositional depth gradients and establishment of a snowball Earth at 2.3 Ga. Evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. South African Journal of geology 109, 109-122.

DA SILVA, R. 2011. Distribution and geochronology of unconformity-bound sequences in the Palaeoproterozoic Elim-Olifantshoek Red Beds: implications for timing of formation of Sishen-type iron ore and heavy carbonate carbon isotope excursion. Unpublished MSc thesis, vii + 103 pp, University of Johannesburg.

DE WIT, M.C.J., MARSHALL, T.R. & PARTRIDGE, T.C. 2000. Fluvial deposits and drainage evolution. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp.55-72. Oxford University Press, Oxford.

DINGLE, R.V., SIESSER, W.G. & NEWTON, A.R. 1983. Mesozoic and Tertiary geology of southern Africa. viii + 375 pp. Balkema, Rotterdam. John E. Almond (2020) 22 Natura Viva cc DU TOIT, A. 1954. The geology of South Africa. xii + 611pp, 41 pls. Oliver & Boyd, Edinburgh.

DU TOIT, A. 1954. The geology of South Africa. xii + 611pp, 41 pls. Oliver & Boyd, Edinburgh.

ERIKSSON, P.G. & ALTERMANN, W. 1998. An overview of the geology of the Transvaal Supergroup dolomites (South Africa). Environmental Geology 36, 179-188.

ERIKSSON, P.G. & TRUSWELL, J.F. 1974. Tidal flat associations from a Lower Proterozoic carbonate sequence in South Africa. Sedimentology 21: 293-309.

ERIKSSON, P.G., ALTERMANN, W. & HARTZER, F.J. 2006. The Transvaal Supergroup and its precursors. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 237-260. Geological Society of South Africa, Marshalltown.

EVANS, D.A., BEUKES, N.J. & KITSCHVINK, J.L. 1997. Low-latitude glaciation in the Palaeoproterozoic Era. Nature 386, 262-266.

GAIGHER, S. 2017. Heritage Impact Assessment for the Mining Right Application by Japies Rus Minerale (Pty) Ltd on Portion 1 of the Farm Magoloring 668 and Portion 6 (a Portion of Portion 2) of the Farm Magoloring 668, near Postmasburg in the Northern Cape Province, 83 pp. G&A Heritage

GRESSE, P. G., 2003. Journal of The South African Institute of Mining and Metallurgy: 535-538

HADDON, I.G. 2000. Kalahari Group sediments. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp. 173-181. Oxford University Press, Oxford.

JOOSTE, T. 2019. Environmental Impact Assessment Report and Environmental Management Programme Report K2019315211 (South Africa) (Pty) Ltd, 118 pp. M and S Consulting (Pty) Ltd, Kimberley.

- KENT, L.E. 1980. Part 1: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda. SACS, Council for Geosciences, pp. 535-574.
- KLEIN, C. & BEUKES, N.J. 1989. Geochemistry and sedimentology of a facies transition from limestone to iron formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Economic Geology 84, 1733-1774.
- KLEIN, C., BEUKES, N.J. & SCHOPF, J.W. 1987. Filamentous microfossils in the early Proterozoic Transvaal Supergroup: their morphology, significance, and palaeoenvironmental setting. Precambrian Research 36, 81-94.
- KLEIN, R.G. 1984. The large mammals of southern Africa: Late Pliocene to Recent. In: Klein, R.G. (Ed.) Southern African prehistory and paleoenvironments, pp 107-146. Balkema, Rotterdam.
- KOPP, R.E., KIRSCHVINK, J.L., HILBURN, I.A. & NASH, C.Z. 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences 102, 11 131-11 136.
- MACRAE, C. 1999. Life etched in stone. Fossils of South Africa. 305 pp. The Geological Society of South Africa, Johannesburg.
- MCCARTHY, T. & RUBIDGE, B. 2005. The story of Earth and life: a southern African perspective on a 4.6-billion-year journey. 334pp. Struik, Cape Town.
- MOEN, H.F.G. 2006. The Olifantshoek Supergroup. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 319-324. Geological Society of South Africa, Marshalltown.
- MOORE, J.M., POLTEAU, S., ARMSTRONG, R.A., CORFU, F. & TSIKOS, H. 2012. The age and correlation of the Postmasburg Group, southern Africa: constraints from detrital zircons. Journal of African Earth Sciences 64, 9-19.
- MOORE, J.M., TSIKOS, H. & POLTEAU, S. 2001. Deconstructing the Transvaal Supergroup, South Africa: implications for Palaeoproterozoic palaeoclimate models. African Earth Sciences 33, 437-444.
- PARTRIDGE, T.C. & SCOTT, L. 2000. Lakes and pans. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp.145 161. Oxford University Press, Oxford.
- PARTRIDGE, T.C., BOTHA, G.A. & HADDON, I.G. 2006. Cenozoic deposits of the interior. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 585-604. Geological Society of South Africa, Marshalltown.
- PARTRIDGE, T.C., DOLLAR, E.S.J., MOOLMAN, J. & DOLLAR, L.H. 2010. The geomorphic provinces of South Africa, Lesotho and Swaziland: a physiographic subdivision for earth and environmental scientists. Transactions of the Royal Society of South Africa 65, 1-47.
- PLUMSTEAD, E.P. 1969. Three thousand million years of plant life in Africa. Alex Du Toit Memorial Lectures No. 11. Transactions of the Geological Society of South Africa, Annexure to Volume 72, 72pp. 25 pls.
- POLTEAU, S. 2000. Stratigraphy and geochemistry of the Makganyene Formation, Transvaal Supergroup, South Africa. Unpublished MSc thesis, Rhodes University, Grahamstown, 146 pp.
- POLTEAU, S. 2005. The Early Proterozoic Makganyene glacial event in South Africa: its implication in sequence stratigraphy interpretation, paleoenvironmental conditions, and iron and manganese ore deposition. Unpublished PhD thesis, Rhodes University, Grahamstown, South Africa, 215 pp.
- POLTEAU, S., MOORE, J.M. & TSIKOS, H. 2006. The geology and geochemistry of the Palaeoproterozoic Makganyene diamictite. Precambrian Research 148, 257-274.
- SAHRA 2013. Minimum standards: palaeontological component of heritage impact assessment reports, 15 pp. South African Heritage Resources Agency, Cape Town.
- SCHALKWYK, G.A.C. 2005. Genesis and characteristics of the Wolhaarkop Breccia and associated Manganore Iron Formation. Unpublished MSc thesis, iii + 97 pp, University of Johannesburg.

SCHOPF, J.W. 2006. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society of London B 361, 869-885.

SCHRÖDER, S., BEDORF, D, BEUKES, N.J. & GUTZMER, J. 2011. From BIF to red beds: sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sedimentary Geology 236, 25-44.

SCOTT, L. 2000. Pollen. In: Partridge, T.C. & Maud, R.R. (Eds.) The Cenozoic of southern Africa, pp.339-35. Oxford University Press, Oxford.

SMITH, A.J.B. & BEUKES, N.J. 2016. Palaeoproterozoic banded iron formation – hosted highgrade hematite iron ore deposits of the Transvaal Supergroup, South Africa. Episodes 39, 269-284.

SMITH, A.J.B. & BEUKES, N.J. 2016. Palaeoproterozoic banded iron formation – hosted high-grade hematite iron ore deposits of the Transvaal Supergroup, South Africa. Episodes 39, 269-284.

TANKARD, A.J., JACKSON, M.P.A., ERIKSSON, K.A., HOBDAY, D.K., HUNTER, D.R. & MINTER, W.E.L. 1982. Crustal evolution of southern Africa – 3.8 billion years of earth history, xv + 523pp. Springer Verlag, New York.

THOMAS, D.S.G. & SHAW, P.A. 1991. The Kalahari environment, 284 pp. Cambridge University Press.

THOMAS, M.J. 1981. The geology of the Kalahari in the Northern Cape Province (Areas 2620 and 2720). Unpublished MSc thesis, University of the Orange Free State, Bloemfontein, 138 pp.

VAN DER WESTHUIZEN, W.A., DE BRUIYN, H. & MEINTJES, P.G. 2006. The Ventersdorp Supergroup. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa, pp. 187-208. Geological Society of South Africa, Marshalltown.

VAN NIEKERK, H.S. 2006. The origin of the Kheis Terrane and its relationship with the Archaean Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. Unpublished PhD thesis, University of Johannesburg.

VAN SCHALKWYK, J.F. & BEUKES, N.J. 1986. The Sishen iron ore deposit, Griqualand West. Pp. 931-956 in Anhaeusser, C.R. & Make, S. (Eds.) Mineral deposits of Southern Africa, Vol. 1. Geological Society of South Africa, Johannesburg.

VISSER, D.J.L. (ed) 1984. Geological Map of South Africa 1:100 000. South African Committee for Stratigraphy, Council for Geoscience, Pretoria.

VISSER, D.J.L. (ed) 1989. *Toeligting: Geologiese kaart (1:100 000)*. *Die Geologie van die Republieke van Suid Afrika, Transkei, Bophuthatswana, Venda, Ciskei en die Koningkryke van Lesotho en Swaziland*. South African Committee for Stratigraphy. Council for Geoscience, Pretoria, Pp 494. WELLS, L.H. 1964. The Vaal River "Younger Gravels" faunal assemblage: a revised list. South African Journal of Science 60, 92-94.

ELIZE BUTLER

PROFESSION: Palaeontologist

YEARS' EXPERIENCE: 29 years in Palaeontology

EDUCATION: B.Sc. Botany and Zoology, 1988

University of the Orange Free State

B.Sc. (Hons) Zoology, 1991

University of the Orange Free State

Management Course, 1991

University of the Orange Free State

M. Sc. Cum laude (Zoology), 2009

University of the Free State

Dissertation title: The postcranial skeleton of the Early Triassic non-mammalian Cynodont *Galesaurus planiceps*: implications for biology and lifestyle

Registered as a PhD fellow at the Zoology Department of the UFS

2013 to current

Dissertation title: A new gorgonopsian from the uppermost Daptocephalus Assemblage Zone, in the Karoo Basin of South Africa

MEMBERSHIP

Palaeontological Society of South Africa (PSSA) 2006-currently

EMPLOYMENT HISTORY

Part-time Laboratory assistant Department of Zoology & Entomology

University of the Free State Zoology 1989-

1992

Part-time laboratory assistant Department of Virology

University of the Free State Zoology 1992

Research Assistant National Museum, Bloemfontein 1993 –

1997

Principal Research Assistant National Museum, Bloemfontein

and Collection Manager 1998–currently

TECHNICAL REPORTS

Butler, E. 2014. Palaeontological Impact Assessment of the proposed development of private dwellings on portion 5 of farm 304 Matjesfontein Keurboomstrand, Knysna District, Western Cape Province. Bloemfontein.

Butler, E. 2014. Palaeontological Impact Assessment for the proposed upgrade of existing water supply infrastructure at Noupoort, Northern Cape Province. 2014. Bloemfontein.

Butler, E. 2015. Palaeontological impact assessment of the proposed consolidation, re-division, and development of 250 serviced erven in Nieu-Bethesda, Camdeboo local municipality, Eastern Cape. Bloemfontein.

Butler, E. 2015. Palaeontological impact assessment of the proposed mixed land developments at Rooikraal 454, Vrede, Free State. Bloemfontein.

- **Butler, E. 2015.** Palaeontological exemption report of the proposed truck stop development at Palmiet 585, Vrede, Free State. Bloemfontein.
- **Butler, E. 2015.** Palaeontological impact assessment of the proposed Orange Grove 3500 residential development, Buffalo City Metropolitan Municipality East London, Eastern Cape. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Gonubie residential development, Buffalo City Metropolitan Municipality East London, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Ficksburg raw water pipeline. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Heritage Impact Assessment report on the establishment of the 65 mw Majuba Solar Photovoltaic facility and associated infrastructure on portion 1, 2 and 6 of the farm Witkoppies 81 HS, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed township establishment on the remainder of portion 6 and 7 of the farm Sunnyside 2620, Bloemfontein, Mangaung metropolitan municipality, Free State, Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Woodhouse 1 photovoltaic solar energy facilities and associated infrastructure on the farm Woodhouse729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Woodhouse 2 photovoltaic solar energy facilities and associated infrastructure on the farm Woodhouse 729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2015.**Palaeontological Impact Assessment of the proposed Orkney solar energy farm and associated infrastructure on the remaining extent of Portions 7 and 21 of the farm Wolvehuis 114, near Orkney, North West Province. Bloemfontein.
- **Butler, E. 2015.** Palaeontological Impact Assessment of the proposed Spectra foods broiler houses and abattoir on the farm Maiden Manor 170 and Ashby Manor 171, Lukhanji Municipality, Queenstown, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed construction of the 150 MW Noupoort concentrated solar power facility and associated infrastructure on portion 1 and 4 of the farm Carolus Poort 167 and the remainder of Farm 207, near Noupoort, Northern Cape. Prepared for Savannah Environmental. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Woodhouse 1 Photovoltaic Solar Energy facility and associated infrastructure on the farm Woodhouse 729, near Vryburg, North West Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Woodhouse 2 Photovoltaic Solar Energy facility and associated infrastructure on the farm Woodhouse 729, near Vryburg. North West Province. Bloemfontein.
- **Butler, E. 2016.** Proposed 132kV overhead power line and switchyard station for the authorised Solis Power 1 CSP project near Upington, Northern Cape. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Senqu Pedestrian Bridges in Ward 5 of Senqu Local Municipality, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Recommendation from further Palaeontological Studies: Proposed Construction of the Modderfontein Filling Station on Erf 28 Portion 30, Founders Hill, City of Johannesburg, Gauteng Province. Bloemfontein.
- **Butler, E. 2016.** Recommendation from further Palaeontological Studies: Proposed Construction of the Modikwa Filling Station on a Portion of Portion 2 of Mooihoek 255 Kt, Greater Tubatse Local Municipality, Limpopo Province. Bloemfontein.

- **Butler, E. 2016.** Recommendation from further Palaeontological Studies: Proposed Construction of the Heidedal filling station on Erf 16603, Heidedal Extension 24, Mangaung Local Municipality, Bloemfontein, Free State Province. Bloemfontein.
- **Butler, E. 2016.** Recommended Exemption from further Palaeontological studies: Proposed Construction of the Gunstfontein Switching Station, 132kv Overhead Power Line (Single or Double Circuit) and ancillary infrastructure for the Gunstfontein Wind Farm Near Sutherland, Northern Cape Province. Savannah South Africa. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed Galla Hills Quarry on the remainder of the farm Roode Krantz 203, in the Lukhanji Municipality, division of Queenstown, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Chris Hani District Municipality Cluster 9 water backlog project phases 3a and 3b: Palaeontology inspection at Tsomo WTW. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed construction of the 150 MW Noupoort concentrated solar power facility and associated infrastructure on portion 1 and 4 of the farm Carolus Poort 167 and the remainder of Farm 207, near Noupoort, Northern Cape. Savannah South Africa. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed upgrading of the main road MR450 (R335) from Motherwell to Addo within the Nelson Mandela Bay Municipality and Sunday's River valley Local Municipality, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment construction of the proposed Metals Industrial Cluster and associated infrastructure near Kuruman, Northern Cape Province. Savannah South Africa. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment for the proposed construction of up to a 132kv power line and associated infrastructure for the proposed Kalkaar Solar Thermal Power Plant near Kimberley, Free State and Northern Cape Provinces. PGS Heritage. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment of the proposed development of two burrow pits (DR02625 and DR02614) in the Enoch Mgijima Municipality, Chris Hani District, Eastern Cape.
- **Butler, E. 2016.** Ezibeleni waste Buy-Back Centre (near Queenstown), Enoch Mgijima Local Municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment for the proposed construction of two 5 Mw Solar Photovoltaic Power Plants on Farm Wildebeestkuil 59 and Farm Leeuwbosch 44, Leeudoringstad, North West Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological Impact Assessment for the proposed development of four Leeuwberg Wind farms and basic assessments for the associated grid connection near Loeriesfontein, Northern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological impact assessment for the proposed Aggeneys south prospecting right project, Northern Cape Province. Bloemfontein.
- **Butler, E. 2016.** Palaeontological impact assessment of the proposed Motuoane Ladysmith Exploration right application, KwaZulu Natal. Bloemfontein.
- **Butler, E. 2016.** Palaeontological impact assessment for the proposed construction of two 5 MW solar photovoltaic power plants on farm Wildebeestkuil 59 and farm Leeuwbosch 44, Leeudoringstad, North West Province. Bloemfontein.
- **Butler, E. 2016**: Palaeontological desktop assessment of the establishment of the proposed residential and mixed-use development on the remainder of portion 7 and portion 898 of the farm Knopjeslaagte 385 Ir, located near Centurion within the Tshwane Metropolitan Municipality of Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological impact assessment for the proposed development of a new cemetery, near Kathu, Gamagara local municipality and John Taolo Gaetsewe district municipality, Northern Cape. Bloemfontein.

- **Butler, E. 2017.** Palaeontological Impact Assessment of The Proposed Development of The New Open Cast Mining Operations on The Remaining Portions Of 6, 7, 8 And 10 Of the Farm Kwaggafontein 8 In the Carolina Magisterial District, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the Proposed Development of a Wastewater Treatment Works at Lanseria, Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Scoping Report for the Proposed Construction of a Warehouse and Associated Infrastructure at Perseverance in Port Elizabeth, Eastern Cape Province.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the Proposed Establishment of a Diesel Farm and a Haul Road for the Tshipi Borwa mine Near Hotazel, In the John Taolo Gaetsewe District Municipality in the Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the Proposed Changes to Operations at the UMK Mine near Hotazel, In the John Taolo Gaetsewe District Municipality in the Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment for the Development of the Proposed Ventersburg Project-An Underground Mining Operation near Ventersburg and Henneman, Free State Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological desktop assessment of the proposed development of a 3000 MW combined cycle gas turbine (CCGT) in Richards Bay, Kwazulu-Natal. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment for the Development of the Proposed Revalidation of the lapsed General Plans for Elliotdale, Mbhashe Local Municipality. Bloemfontein.
- **Butler, E. 2017.** Palaeontological assessment of the proposed development of a 3000 MW Combined Cycle Gas Turbine (CCGT) in Richards Bay, Kwazulu-Natal. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed development of the new open cast mining operations on the remaining portions of 6, 7, 8 and 10 of the farm Kwaggafontein 8 10 in the Albert Luthuli Local Municipality, Gert Sibande District Municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed mining of the farm Zandvoort 10 in the Albert Luthuli Local Municipality, Gert Sibande District Municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed Lanseria outfall sewer pipeline in Johannesburg, Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of open pit mining at Pit 36W (New Pit) and 62E (Dishaba) Amandelbult Mine Complex, Thabazimbi, Limpopo Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological impact assessment of the proposed development of the sport precinct and associated infrastructure at Merrifield Preparatory school and college, Amathole Municipality, East London. PGS Heritage. Bloemfontein.
- **Butler, E. 2017.** Palaeontological impact assessment of the proposed construction of the Lehae training and fire station, Lenasia, Gauteng Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of the new open cast mining operations of the Impunzi mine in the Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the construction of the proposed Viljoenskroon Munic 132 KV line, Vierfontein substation and related projects. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed rehabilitation of 5 ownerless asbestos mines. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of the Lephalale coal and power project, Lephalale, Limpopo Province, Republic of South Africa. Bloemfontein.

- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of a 132KV powerline from the Tweespruit distribution substation (in the Mantsopa local municipality) to the Driedorp rural substation (within the Naledi local municipality), Free State province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of the new coal-fired power plant and associated infrastructure near Makhado, Limpopo Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of a Photovoltaic Solar Power station near Collett substation, Middelburg, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment for the proposed township establishment of 2000 residential sites with supporting amenities on a portion of farm 826 in Botshabelo West, Mangaung Metro, Free State Province. Bloemfontein.
- **Butler**, **E. 2017.** Palaeontological Desktop Assessment for the proposed prospecting right project without bulk sampling, in the Koa Valley, Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed Aroams prospecting right project, without bulk sampling, near Aggeneys, Northern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed Belvior aggregate quarry II on portion 7 of the farm Maidenhead 169, Enoch Mgijima Municipality, division of Queenstown, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** PIA site visit and report of the proposed Galla Hills Quarry on the remainder of the farm Roode Krantz 203, in the Lukhanji Municipality, division of Queenstown, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of Tina Falls Hydropower and associated power lines near Cumbu, Mthlontlo Local Municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed construction of the Mangaung Gariep Water Augmentation Project. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed Belvoir aggregate quarry II on portion 7 of the farm Maidenhead 169, Enoch Mgijima Municipality, division of Queenstown, Eastern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed construction of the Melkspruit-Rouxville 132KV Power line. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed development of a railway siding on a Portion of portion 41 of the farm Rustfontein 109 is, Govan Mbeki local municipality, Gert Sibande district municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed consolidation of the proposed Ilima Colliery in the Albert Luthuli local municipality, Gert Sibande District Municipality, Mpumalanga Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed extension of the Kareerand Tailings Storage Facility, associated borrow pits as well as a storm water drainage channel in the Vaal River near Stilfontein, North West Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed construction of a filling station and associated facilities on the Erf 6279, district municipality of John Taolo Gaetsewe District, Ga-Segonyana Local Municipality Northern Cape. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed of the Lephalale Coal and Power Project, Lephalale, Limpopo Province, Republic of South Africa. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment of the proposed Overvaal Trust PV Facility, Buffelspoort, North West Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed development of the H₂ Energy Power Station and associated infrastructure on Portions 21; 22 And 23 of the farm

- Hartebeestspruit in the Thembisile Hani Local Municipality, Nkangala District near Kwamhlanga, Mpumalanga Province. Bloemfontein.
- **Butler**, **E. 2017.** Palaeontological Impact Assessment of the proposed upgrade of the Sandriver Canal and Klippan Pump station in Welkom, Free State Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed upgrade of the 132kv and 11kv power line into a dual circuit above ground power line feeding into the Urania substation in Welkom, Free State Province. Bloemfontein.
- **Butler**, **E. 2017.** Palaeontological Desktop Assessment of the proposed Swaziland-Mozambique border patrol road and Mozambique barrier structure. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Impact Assessment of the proposed diamonds alluvial & diamonds general prospecting right application near Christiana on the remaining extent of portion 1 of the farm Kaffraria 314, registration division HO, North West Province. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed development of Wastewater Treatment Works on Hartebeesfontein, near Panbult, Mpumalanga. Bloemfontein.
- **Butler, E. 2017.** Palaeontological Desktop Assessment for the proposed development of Wastewater Treatment Works on Rustplaas near Piet Retief, Mpumalanga. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment for the Proposed Landfill Site in Luckhoff, Letsemeng Local Municipality, Xhariep District, Free State. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment of the proposed development of the new Mutsho coal-fired power plant and associated infrastructure near Makhado, Limpopo Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Impact Assessment of the authorisation and amendment processes for Manangu mine near Delmas, Victor Khanye local municipality, Mpumalanga. Bloemfontein.
- **Butler**, **E. 2018.** Palaeontological Desktop Assessment for the proposed Mashishing township establishment in Mashishing (Lydenburg), Mpumalanga Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment for the Proposed Mlonzi Estate Development near Lusikisiki, Ngquza Hill Local Municipality, Eastern Cape. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Phase 1 Assessment of the proposed Swaziland-Mozambique border patrol road and Mozambique barrier structure. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Desktop Assessment for the proposed electricity expansion project and Sekgame Switching Station at the Sishen Mine, Northern Cape Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological field assessment of the proposed construction of the Zonnebloem Switching Station (132/22kV) and two loop-in loop-out power lines (132kV) in the Mpumalanga Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological Field Assessment for the proposed re-alignment and decommissioning of the Firham-Platrand 88kv Powerline, near Standerton, Lekwa Local Municipality, Mpumalanga province. Bloemfontein.
- **Butler**, **E. 2018.** Palaeontological Desktop Assessment of the proposed Villa Rosa development In the Buffalo City Metropolitan Municipality, East London. Bloemfontein.
- **Butler, E. 2018.** Palaeontological field Assessment of the proposed Villa Rosa development In the Buffalo City Metropolitan Municipality, East London. Bloemfontein.
- **Butler, E. 2018.** Palaeontological desktop assessment of the proposed Mookodi Mahikeng 400kV line, North West Province. Bloemfontein.
- **Butler**, **E. 2018.** Palaeontological Desktop Assessment for the proposed Thornhill Housing Project, Ndlambe Municipality, Port Alfred, Eastern Cape Province. Bloemfontein.
- **Butler, E. 2018.** Palaeontological desktop assessment of the proposed housing development on portion 237 of farm Hartebeestpoort 328. Bloemfontein.

Butler, E. 2018. Palaeontological desktop assessment of the proposed New Age Chicken layer facility located on holding 75 Endicott near Springs in Gauteng. Bloemfontein.

Butler, E. 2018 Palaeontological Desktop Assessment for the development of the proposed Leslie 1 Mining Project near Leandra, Mpumalanga Province. Bloemfontein.

Butler, E. 2018. Palaeontological field assessment of the proposed development of the Wildealskloof mixed use development near Bloemfontein, Free State Province. Bloemfontein.

Butler, E. 2018. Palaeontological Field Assessment of the proposed Megamor Extension, East London. Bloemfontein

Butler, E. 2018. Palaeontological Impact Assessment of the proposed diamonds Alluvial & Diamonds General Prospecting Right Application near Christiana on the Remaining Extent of Portion 1 of the Farm Kaffraria 314, Registration Division HO, North West Province. Bloemfontein.

Butler, E. 2018. Palaeontological Impact Assessment of the proposed construction of a new 11kV (1.3km) Power Line to supply electricity to a cell tower on farm 215 near Delportshoop in the Northern Cape. Bloemfontein.

Butler, E. 2018. Palaeontological Field Assessment of the proposed construction of a new 22 kV single wood pole structure power line to the proposed MTN tower, near Britstown, Northern Cape Province. Bloemfontein.

Butler, **E. 2018.** Palaeontological Exemption Letter for the proposed reclamation and reprocessing of the City Deep Dumps in Johannesburg, Gauteng Province. Bloemfontein.

Butler, E. 2018. Palaeontological Exemption letter for the proposed reclamation and reprocessing of the City Deep Dumps and Rooikraal Tailings Facility in Johannesburg, Gauteng Province. Bloemfontein.

Butler, E. 2018. Proposed Kalabasfontein Mine Extension project, near Bethal, Govan Mbeki District Municipality, Mpumalanga. Bloemfontein.

Butler, E. 2018. Palaeontological Desktop Assessment for the development of the proposed Leslie 1 Mining Project near Leandra, Mpumalanga Province. Bloemfontein.

Butler, E. 2018. Palaeontological Desktop Assessment of the proposed Mookodi – Mahikeng 400kV Line, North West Province. Bloemfontein.

Butler, E. 2018. Environmental Impact Assessment (EIA) for the Proposed 325mw Rondekop Wind Energy Facility between Matjiesfontein and Sutherland in the Northern Cape Province.

Butler, E. 2018. Palaeontological Impact Assessment of the proposed construction of the Tooverberg Wind Energy Facility, and associated grid connection near Touws River in the Western Cape Province. Bloemfontein.

Butler, E. 2018. Palaeontological impact assessment of the proposed Kalabasfontein Mining Right Application, near Bethal, Mpumalanga.

Butler, **E.**, 2019. Palaeontological Desktop Assessment of the proposed Westrand Strengthening Project Phase II.

Butler, E., 2019. Palaeontological Field Assessment for the proposed Sirius 3 Photovoltaic Solar Energy Facility near Upington, Northern Cape Province

Butler, **E.**, 2019. Palaeontological Field Assessment for the proposed Sirius 4 Photovoltaic Solar Energy Facility near Upington, Northern Cape Province

Butler, E., 2019. Palaeontological Field Assessment for Heuningspruit PV 1 Solar Energy Facility near Koppies, Ngwathe Local Municipality, Free State Province.

Butler, E., 2019. Palaeontological Field Assessment for the Moeding Solar Grid Connection, North West Province.

Butler, E., 2019. Recommended Exemption from further Palaeontological studies for the Proposed Agricultural Development on Farms 1763, 2372 And 2363, Kakamas South Settlement, Kai! Garib Municipality, Mgcawu District Municipality, Northern Cape Province.

- **Butler, E., 2019.** Recommended Exemption from further Palaeontological studies: of Proposed Agricultural Development, Plot 1178, Kakamas South Settlement, Kai! Garib Municipality
- **Butler, E., 2019.** Palaeontological Desktop Assessment for the Proposed Waste Rock Dump Project at Tshipi Borwa Mine, near Hotazel, Northern Cape Province:
- **Butler, E., 2019**. Palaeontological Exemption Letter for the proposed DMS Upgrade Project at the Sishen Mine, Gamagara Local Municipality, Northern Cape Province
- **Butler, E., 2019.** Palaeontological Desktop Assessment of the proposed Integrated Environmental Authorisation process for the proposed Der Brochen Amendment project, near Groblershoop, Limpopo
- Butler, E., **2019.** Palaeontological Desktop Assessment of the proposed updated Environmental Management Programme (EMPr) for the Assmang (Pty) Ltd Black Rock Mining Operations, Hotazel, Northern Cape
- **Butler, E., 2019**. Palaeontological Desktop Assessment of the proposed Kriel Power Station Lime Plant Upgrade, Mpumalanga Province
- **Butler, E., 2019**. Palaeontological Impact Assessment for the proposed Kangala Extension Project Near Delmas, Mpumalanga Province.
- **Butler, E., 2019**. Palaeontological Desktop Assessment for the proposed construction of an iron/steel smelter at the Botshabelo Industrial area within the Mangaung Metropolitan Municipality, Free State Province.
- **Butler, E., 2019**. Recommended Exemption from further Palaeontological studies for the proposed agricultural development on farms 1763, 2372 and 2363, Kakamas South settlement, Kai! Garib Municipality, Mgcawu District Municipality, Northern Cape Province.
- **Butler, E., 2019.** Recommended Exemption from further Palaeontological Studies for Proposed formalisation of Gamakor and Noodkamp low-cost Housing Development, Keimoes, Gordonia Rd, Kai !Garib Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province.
- **Butler, E., 2019.** Recommended Exemption from further Palaeontological Studies for proposed formalisation of Blaauwskop Low-Cost Housing Development, Kenhardt Road, Kai !Garib Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province.
- **Butler, E., 2019**. Palaeontological Desktop Assessment of the proposed mining permit application for the removal of diamonds alluvial and diamonds kimberlite near Windsorton on a certain portion of Farm Zoelen's Laagte 158, Registration Division: Barkly Wes, Northern Cape Province.
- **Butler, E., 2019**. Palaeontological Desktop Assessment of the proposed Vedanta Housing Development, Pella Mission 39, Khâi-Ma Local Municipality, Namakwa District Municipality, Northern Cape.
- **Butler, E., 2019**. Palaeontological Desktop Assessment for The Proposed 920 KWP Groenheuwel Solar Plant Near Augrabies, Northern Cape Province
- **Butler, E., 2019.** Palaeontological Desktop Assessment for the establishment of a Super Fines Storage Facility at Amandelbult Mine, Near Thabazimbi, Limpopo Province
- **Butler, E., 2019.** Palaeontological Impact Assessment for the proposed Sace Lifex Project, Near Emalahleni, Mpumalanga Province
- **Butler, E., 2019.** Palaeontological Desktop Assessment for the proposed Rehau Fort Jackson Warehouse Extension, East London
- **Butler, E., 2019.** Palaeontological Desktop Assessment for the proposed Environmental Authorisation Amendment for moving 3 Km of the Merensky-Kameni 132KV Powerline
- **Butler, E., 2019.** Palaeontological Impact Assessment for the proposed Umsobomvu Solar PV Energy Facilities, Northern and Eastern Cape
- **Butler, E., 2019.** Palaeontological Desktop Assessment for six proposed Black Mountain Mining Prospecting Right Applications, without Bulk Sampling, in the Northern Cape.

Butler, E., 2019. Palaeontological field Assessment of the Filling Station (Rietvlei Extension 6) on the Remaining Portion of Portion 1 of the Farm Witkoppies 393JR east of the Rietvleidam Nature Reserve, City of Tshwane, Gauteng

Butler, E., 2019. Palaeontological Desktop Assessment of The Proposed Upgrade of The Vaal Gamagara Regional Water Supply Scheme: Phase 2 And Groundwater Abstraction

Butler, E., 2019. Palaeontological Desktop Assessment of The Expansion of The Jan Kempdorp Cemetery on Portion 43 Of Farm Guldenskat 36-Hn, Northern Cape Province

Butler, E., 2019. Palaeontological Desktop Assessment of the Proposed Residential Development on Portion 42 Of Farm Geldunskat No 36 In Jan Kempdorp, Phokwane Local Municipality, Northern Cape Province

Butler, E., 2019. Palaeontological Impact Assessment of the proposed new Township Development, Lethabo Park, on Remainder of Farm Roodepan No 70, Erf 17725 And Erf 15089, Roodepan Kimberley, Sol Plaatjies Local Municipality, Frances Baard District Municipality, Northern Cape

Butler, E., 2019. Palaeontological Protocol for Finds for the proposed 16m WH Battery Storage System in Steinkopf, Northern Cape Province

Butler, E., 2019. Palaeontological Exemption Letter of the proposed 4.5WH Battery Storage System near Midway-Pofadder, Northern Cape Province

Butler, E., 2019. Palaeontological Exemption Letter of the proposed 2.5ml Process Water Reservoir at Gloria Mine, Black Rock, Hotazel, Northern Cape

Butler, E., 2019. Palaeontological Desktop Assessment for the Establishment of a Super Fines Storage Facility at Gloria Mine, Black Rock Mine Operations, Hotazel, Northern Cape:

Butler, E., 2019. Palaeontological Desktop Assessment for the Proposed New Railway Bridge, and Rail Line Between Hotazel and the Gloria Mine, Northern Cape Province

Butler, E., 2019. Palaeontological Exemption Letter of The Proposed Mixed Use Commercial Development on Portion 17 of Farm Boegoeberg Settlement Number 48, !Kheis Local Municipality in The Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment of the Proposed Diamond Mining Permit Application Near Kimberley, Sol Plaatjies Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment of the Proposed Diamonds (Alluvial, General & In Kimberlite) Prospecting Right Application near Postmasburg, Registration Division; Hay, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment of the proposed diamonds (alluvial, general & in kimberlite) prospecting right application near Kimberley, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Phase 1 Impact Assessment of the proposed upgrade of the Vaal Gamagara regional water supply scheme: Phase 2 and groundwater abstraction. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment of the proposed seepage interception drains at Duvha Power Station, Emalahleni Municipality, Mpumalanga Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment letter for the Proposed PV Solar Facility at the Heineken Sedibeng Brewery, near Vereeniging, Gauteng. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Phase 1 Assessment letter for the Proposed PV Solar Facility at the Heineken Sedibeng Brewery, near Vereeniging, Gauteng. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological field Assessment for the Proposed Upgrade of the Kolomela Mining Operations, Tsantsabane Local Municipality, Siyanda District Municipality, Northern Cape Province, Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment of the proposed feldspar prospecting rights and mining application on portion 4 and 5 of the farm Rozynen 104, Kakamas South, Kai! Garib Municipality, Zf Mgcawu District Municipality, Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Phase 1 Field Assessment of the proposed Summerpride Residential Development and Associated Infrastructure on Erf 107, Buffalo City Municipality, East London. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Impact Assessment for the proposed re-commission of the Old Balgay Colliery near Dundee, KwaZulu Natal.

Butler, E., 2019. Palaeontological Phase 1 Impact Assessment for the Proposed Re-Commission of the Old Balgay Colliery near Dundee, KwaZulu Natal. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment for the Proposed Environmental Authorisation and Amendment Processes for Elandsfontein Colliery. Banzai Environmental (Pty) Ltd. Bloemfontein.

Butler, E., 2019. Palaeontological Impact Assessment and Protocol for Finds of a Proposed New Quarry on Portion 9 (of 6) of the farm Mimosa Glen 885, Bloemfontein, Free State Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Impact Assessment and Protocol for Finds of a proposed development on Portion 9 and 10 of the Farm Mimosa Glen 885, Bloemfontein, Free State Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Exemption Letter for the proposed residential development on the Remainder of Portion 1 of the Farm Strathearn 2154 in the Magisterial District of Bloemfontein, Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Field Assessment for the Proposed Nigel Gas Transmission Pipeline Project in the Nigel Area of the Ekurhuleni Metropolitan Municipality, Gauteng Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment for five Proposed Black Mountain Mining Prospecting Right Applications, Without Bulk Sampling, in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E. 2019. Palaeontological Desktop Assessment for the Proposed Environmental Authorisation and an Integrated Water Use Licence Application for the Reclamation of the Marievale Tailings Storage Facilities, Ekurhuleni Metropolitan Municipality - Gauteng Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Impact Assessment for the Proposed Sace Lifex Project, near Emalahleni, Mpumalanga Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment for the proposed Golfview Colliery near Ermelo, Msukaligwa Local Municipality, Mpumalanga Province

Butler, E., 2019. Palaeontological Desktop Assessment for the Proposed Kangra Maquasa Block C Mining development near Piet Retief, in the Mkhondo Local Municipality within the Gert Sibande District Municipality. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Desktop Assessment for the Proposed Amendment of the Kusipongo Underground and Opencast Coal Mine in Support of an Environmental Authorization and Waste Management License Application. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2019. Palaeontological Exemption Letter of the Proposed Mamatwan Mine Section 24g Rectification Application, near Hotazel, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Field Assessment for the Proposed Environmental Authorisation and Amendment Processes for Elandsfontein Colliery. Banzai Environmental (Pty) Ltd. Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Extension of the South African Nuclear Energy Corporation (Necsa) Pipe Storage Facility, Madibeng Local Municipality, North West Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Field Assessment for the Proposed Piggery on Portion 46 of the Farm Brakkefontien 416, Within the Nelson Mandela Bay Municipality, Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological field Assessment for the proposed Rietfontein Housing Project as part of the Rapid Land Release Programme, Gauteng Province Department of Human Settlements, City of Johannesburg Metropolitan Municipality. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Choje Wind Farm between Grahamstown and Somerset East, Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment of the Proposed Prospecting Right Application for the Prospecting of Diamonds (Alluvial, General & In Kimberlite), Combined with A Waste License Application, Registration Division: Gordonia and Kenhardt, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Impact Assessment for the Proposed Clayville Truck Yard, Ablution Blocks and Wash Bay to be Situated on Portion 55 And 56 Of Erf 1015, Clayville X11, Ekurhuleni Metropolitan Municipality, Gauteng Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Hartebeesthoek Residential Development. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Mooiplaats Educational Facility, Gauteng Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Impact Assessment for the Proposed Monument Park Student Housing Establishment. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Field Assessment for the Proposed Standerton X10 Residential and Mixed-Use Developments, Lekwa Local Municipality Standerton, Mpumalanga Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Field Assessment for the Rezoning and Subdivision of Portion 6 Of Farm 743, East London. Banzai Environmental (Pty) Ltd, Bloemfontein. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Field Assessment for the Proposed Matla Power Station Reverse Osmosis Plant, Mpumalanga Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment of the Proposed Prospecting Right Application Without Bulk Sampling for the Prospecting of Diamonds Alluvial near Bloemhof on Portion 3 (Portion 1) of the Farm Boschpan 339, the Remaining Extent of Portion 8 (Portion 1), Portion 9 (Portion 1) and Portion 10 (Portion 1) and Portion 17 (Portion 1) of the Farm Panfontein 270, Registration Division: Ho, North West Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment of the Proposed Prospecting Right Application Combined with a Waste Licence Application for the Prospecting of Diamonds Alluvial, Diamonds General and Diamonds near Wolmaransstad on the Remaining Extent, Portion 7 and Portion 8 Of Farm Rooibult 152, Registration Division: HO, North West Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment of the Proposed Prospecting Right Application With Bulk Sampling combined with a Waste Licence Application for the Prospecting

of Diamonds Alluvial (Da), Diamonds General (D), Diamonds (Dia) and Diamonds In Kimberlite (Dk) near Prieska On Portion 7, a certain Portion of the Remaining Extent of Portion 9 (Wouter), Portion 11 (De Hoek), Portion 14 (Stofdraai) (Portion of Portion 4), the Remaining Extent of Portion 16 (Portion Of Portion 9) (Wouter) and the Remaining Extent of Portion 18 (Portion of Portion 10) of the Farm Lanyon Vale 376, Registration Division: Hay, Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment of the Proposed Prospecting Right Area and Mining Permit Area near Ritchie on the Remaining Extent of Portion 3 (Anna's Hoop) of the Farm Zandheuvel 144, Registration Division: Kimberley, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment of the Proposed Okapi Diamonds (Pty) Ltd Mining Right of Diamonds Alluvial (Da) & Diamonds General (D) Combined with a Waste Licence Application on the Remaining Extent of Portion 9 (Wouter) of the Farm Lanyon Vale 376; Registration Division: Hay; Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Field Assessment of the Proposed Prospecting Right Application for the Prospecting of Diamonds (Alluvial & General) between Douglas and Prieska on Portion 12, Remaining Extent of Portion 29 (Portion of Portion 13) and Portion 31 (Portion of Portion 29) on the Farm Reads Drift 74, Registration Division; Herbert, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Mining Permit Application Combined with a Waste License Application for the Mining of Diamonds (Alluvial) Near Schweitzer-Reneke on a certain Portion of Portion 12 (Ptn of Ptn 7) of the Farm Doornhoek 165, Registration Division: HO, North West Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for Black Mountain Koa South Prospecting Right Application, Without Bulk Sampling, in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Impact Assessment of the Proposed AA Bakery Expansion, Sedibeng District Municipality, Gauteng. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Boegoeberg Township Expansion,! Kheis Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Gariep Township Expansion, !Kheis Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Groblershoop Township Expansion, !Kheis Local Municipality, Zf Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Grootdrink Township Expansion, !Kheis Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Exemption Letter for the Proposed Opwag Township Expansion,! Kheis Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Exemption Letter for the Proposed Topline Township Expansion, !Kheis Local Municipality, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment for the Proposed Wegdraai Township Expansion, !Kheis Local Municipality, Zf Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological field Assessment for the Proposed Establishment of an Emulsion Plant on Erf 1559, Hardustria, Harrismith, Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler. 2020. Part 2 Environmental Authorisation (EA) Amendment Process for the Kudusberg Wind Energy Facility (WEF) near Sutherland, Western and Northern Cape Provinces- Palaeontological Impact Assessment. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Desktop Assessment Proposed for the Construction and Operation of the Battery Energy Storage System (BESS) and Associated Infrastructure and inclusion of Additional Listed Activities for the Authorised Droogfontein 3 Solar Photovoltaic (PV) Energy Facility Located near Kimberley in the Sol Plaatje Local Municipality, Francis Baard District Municipality, in the Northern Cape Province of South Africa. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2020. Palaeontological Impact Assessment for the Proposed Development of a Cluster of Renewable Energy Facilities between Somerset East and Grahamstown in the Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Desktop Assessment for the Proposed Amaoti Secondary School, Pinetown, eThekwini Metropolitan Municipality KwaZulu Natal. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Impact Assessment for the Proposed an Inland Diesel Depot, Transportation Pipeline and Associated Infrastructure on Portion 5 of the Farm Franshoek No. 1861, Swinburne, Free State Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Impact Assessment for the proposed erosion control gabion installation at Alpine Heath Resort on the farm Akkerman No 5679 in the Bergville district Kwazulu-Natal. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Impact Assessment for the proposed Doornkloof Residential development on portion 712 of the farm Doornkloof 391 Jr, City of Tshwane Metropolitan Municipality in Gauteng, South Africa. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Desktop Assessment for the Proposed Expansion of the Square *Kilometre* Array (SKA) Meerkat Project, on the Farms Mey's Dam RE/68, Brak Puts RE /66, Swartfontein RE /496 & Swartfontein 2/496, in the Kareeberg Local Municipality, Pixley Ka Seme District Municipality, and the Farms Los Berg 1/73 & Groot Paardekloof RE /74, in the Karoo Hoogland Local Municipality, Namakwa District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Desktop Assessment for De Beers Consolidated Mines: Proposed Drilling on Portion 6 of Scholtzfontein 165 and Farm Arnotsdale 175, Herbert District in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Desktop Assessment for De Beers Consolidated Mines: Proposed Drilling on the Remaining Extent of Biessie Laagte 96, and Portion 2 and 6 of Aasvogel Pan 141, Near Hopetown in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Desktop Assessment for De Beers Consolidated Mines: Proposed Drilling in the North West Province: on Portions 7 (RE) (of Portion 3), 11, 12 (of Portion 3), 34 (of Portion 30), 35 (of Portion 7) of the Farm Holfontein 147 IO and Portions 1, 2 and the RE) of the Farm Kareeboschbult 76 Ip and Portions 1, 2, 4, 5, 6, (of Portion 3), 7 (of Portion 3), 13, 14, and the Re of the farm Oppaslaagte 100IP and portions 25 (of Portion 24) and 30 of the farm Slypsteen 102 IP. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Desktop Assessment for the Proposed Expansion of the Cavalier Abattoir on farm Oog Van Boekenhoutskloof of Tweefontein 288 JR, near Cullinan, City of Tshwane Metropolitan Municipality, Gauteng. Banzai Environmental (Pty) Ltd, Bloemfontein.

Butler, E., 2021. Palaeontological Impact Assessment for the Proposed Doornkloof Residential Development on Portion 712 of the Farm Doornkloof 391 JR, City of Tshwane Metropolitan Municipality in Gauteng, South Africa. Banzai Environmental (Pty) Ltd, Bloemfontein.

- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed High Density Social Housing Development on part of the Remainder of Portion 171 and part of Portion 306 of the farm Derdepoort 326 JR, City of Tshwane. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Red Rock Mountain Farm activities on Portions 2, 3 and 11 of the Farm Buffelskloof 22, near Calitzdorp in the Western Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Mixed-use Development on a Part of Remainder of Portion 171 and Portion 306 of the farm Derdepoort 326 JR, City of Tshwane. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the Proposed Realignment of the D 2809 Provincial Road as well as the Mining Right Application for the Glisa and Paardeplaats Sections of the NBC Colliery (NBC) near Belfast (eMakhazeni), eMakhazeni Local Municipality, Nkangala District Municipality, Mpumalanga Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed construction of Whittlesea Cemetery within Enoch Mgijima Local Municipality area, Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the establishment of a mixed-use development on Portion 0 the of Erf 700, Despatch, Nelson Mandela Bay Municipality, Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed East Orchards Poultry Farm, Delmas/Botleng Transitional Local Council, Mpumalanga. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the proposed East Orchards Poultry Farm, Delmas/Botleng Transitional Local Council, Mpumalanga. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment to assess the proposed Gariep Road upgrade near Groblershoop, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021. Palaeontological Impact Assessment** for the Ngwedi Solar Plant which forms part of the authorised Paleso Solar Powerplant near Viljoenskroon in the Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the Noko Solar Power Plant and power line which forms part of the authorised Paleso Solar Powerplant near Orkney in the North West. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler**, **E.**, **2021**. Palaeontological Impact Assessment for the Proposed Power Line as part of the Paleso Solar Power Plant near Viljoenskroon in the Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the Thakadu Solar Plant which forms part of the authorised Paleso Solar Powerplant near Viljoenskroon in the Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2020.** Palaeontological Desktop Assessment for the proposed Farming Expansions on Portions 50 of the Farm Rooipoort 555 JR, Portion 34 of the Farm Rooipoort 555 JR, Portions 20 and 49 of the Farm Rooipoort 555 JR and Portion 0(RE) of the Farm Oudou Boerdery 626 JR, Tshwane Metropolitan Municipality, Gauteng Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2020.** Palaeontological Desktop Assessment for the proposed Saselamani CBD on the Remainder of Tshikundu's Location 262 MT, and the Remainder of Portion 1 of Tshikundu's Location 262 MT, Collins Chabane Local Municipality, Limpopo Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

- **Butler, E., 2021.** Palaeontological Impact Assessment for the proposed expansions of the existing Molare Piggery infrastructure and related activities on Portion 0(Re) of the farm Arendsfontein 464 JS, Portion 0(Re) of the farm Wanhoop 443 JS, Portion 0(Re) of the farm Eikeboom 476 JS and Portions 2 & 7 of the farm Klipbank 467 JS within the jurisdiction of the Steve Tshwete Local Municipality, Mpumalanga Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Nchwaning Rail Balloon Turn Outs at Black Rock Mine Operations (BRMO) near Hotazel in the John Taolo Gaetsewe District Municipality in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Black Rock Mining Operations (BRMO) new rail loop and stacker reclaimer Project at Gloria Mine near Hotazel in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2020.** Palaeontological Desktop Assessment for the proposed Nchwaning Rail Balloon Turn Outs at Black Rock Mine Operations (BRMO) near Hotazel in the John Taolo Gaetsewe District Municipality in the Northern Cape.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the proposed utilization of one Borrow Pit for the planned Clarkebury DR08034 Road Upgrade, Engcobo Local Municipality, Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Kappies Kareeboom Prospecting Project on Portion 1 and the Remainder of the farm Kappies Kareeboom 540, the Remainder of Farm 544, Portion 5 of farm 534 and Portion 1 of the farm Putsfontein 616, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Kameel Fontein Prospecting Project on the Remainder of the farm Kameel Fontein 490, a portion of the farm Strydfontein 614 and the farm Soetfontein 606, ZF Mgcawu District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Lewis Prospecting Project on Portions of the Farms Lewis 535, Spence 537, Wright 538, Symthe 566, Bredenkamp 567, Brooks 568, Beaumont 569 and Murray 570, John Taolo Gaetsewe District Municipality in the Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the Construction of the Ganspan Pering 132kV Powerline, Phokwane Local Municipality, Frances Baard District Municipality in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the Longlands Prospecting Project on a Portion of the farm Longlands 350, Frances Baard District Municipality, Northern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the proposed development of 177 new units in the northern section of Mpongo Park in the Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Qhumanco Irrigation Project, Chris Hani District Municipality Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Raphuti Settlement Project on Portions of the Farm Weikrans 539KQ in the Waterberg District Municipality of the Limpopo Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the Senqu Rural Project, Joe Gqabi District Municipality, Senqu Local Municipality, in the Eastern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the proposed new Township development on portion of the farm Klipfontein 716 and farm Ceres 626 in Bloemfontein, Mangaung Metropolitan Municipality, Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.

- **Butler, E., 2021.** Palaeontological Desktop Assessment for the ECDOT Borrow Pits and WULA near Sterkspruit, Joe Gqabi District Municipality in the Eastern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed SANRAL Stone Crescent Embankment Stabilisation Works along the N2 on the farm Zyfer Fonteyn 253 (Portion 0, 11 and 12RE) and Palmiet Rivier 305 (Portion 34, 36) near Grahamstown in the Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the Klein Rooipoort Trust Citrus Development, in the Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler**, **E.**, **2021.** Palaeontological Impact Assessment for the proposed Victoria West water augmentation project in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Campbell Sewer, Internal Reticulation, Outfall Sewer Line and Oxidation Ponds, located on ERF 1, Siyancuma Local Municipality in the Northern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed Development and Upgrades within the Great Fish River Nature Reserve, Eastern Cape Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for proposed Parsons Power Park a portion of Erf 1. within the Nelson Mandela Bay Municipality in the Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the proposed expansion of the farming operations on part of portions 7 and 8 of farm Boerboonkraal 353 in the Greater Tubatse Local Municipality of Sekhukhune District, Limpopo Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment to assess the proposed low-level pedestrian bridge, in Heilbron, Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment to assess the proposed township developments in Hertzogville, Malebogo, in Heilbron, Free State. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment for the proposed construction of Malangazana Bridge on Farm No.64 Nkwenkwana, Engcobo Local Municipality, Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment to assess the proposed Construction of Middelburg Integrated Transport Control Centre on Portion 14 of Farm 81 Division of Middelburg, Chris Hani District Municipality in the Eastern Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment for the Witteberge Sand Mine on the remainder of farm Elandskrag Plaas 269 located in the Magisterial District of Laingsburg and Central Karoo District Municipality in the Western Cape. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Impact Assessment (PIA) to assess the proposed Agrizone 2, Dube Trade Port in KwaZulu Natal Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2021.** Palaeontological Desktop Assessment assessing the proposed Prospecting Right application without bulk sampling for the prospecting of Chrome ore and platinum group metals on the Remaining Extent of the farm Doornspruit 106, Registration Division: HO; North West Province. Banzai Environmental (Pty) Ltd, Bloemfontein.
- **Butler, E., 2022.** Palaeontological Desktop Assessment for the proposed Ennerdale Extension 2 Township Establishment on the Undeveloped Part of Portion 134 of the Farm Roodepoort 302IQ, City of Johannesburg Metropolitan Municipality, Gauteng Province. Banzai Environmental (Pty) Ltd, Bloemfontein.

