
'992 xog 'O'd 'masnW ןruoupen

LOIZLLIG SNAYVTI

Appendix 2: photographs of the site and material
References
Appendix 1: terminology used

Recommendations Acknowledgements
 Summary

Other open-air Middle Stone Age sites in Southern Africa
Other Middle Stone Age sites in the Eastern Free State
Affinities of the material
The lithic material from the site and the surrounding area
The geology and sedimentology
The site
Introduction
SLNTJNOO
ふ
ㄴ
 $\bar{\circ}$ \circ ∞ ω N
N
Zoë Henderson
B. A. (Hons) M.A. (Stell.)
M. Phil. PhD (Cantab)
Contact details:
Head: Depts Archaeology and Anthropology
National Museum
P.O. Box 266
Bloemfontein
9300
South Africa
Tel: 051 - 4479609
Fax: 051 - 4476273
e-mail zoelh@nasmus.co za
Qualifications and contact details of the archaeologist
the base of the donga. small stream trickles through the donga into the Little Caledon, creating a marshy area in the eastern side of the donga, near its termination at the Little Caledon River (Fig. 2). A large donga which runs away from the river in a southerly direction. The site is located in Sunnyside (Fig, 1). Near the base of the bend on the eastern side of the river there is
The Little Caledon River makes a large horse-shoe bend in the middle of the farm

THE SETTING

Certain recommendations will then be made based on the assessment of the above
criteria. A report on the excavations at the site by Prof. Kent will be included as
Annexure 1. - the site in its context of other open-air MSA sites - the site in the context of other Middle Stone Age (MSA) sites in the vicinity - affinities of the material from the site

- the condition of the site - extent of the site

This report therefore deals with the following aspects

 destruction, should this take place Heritage Resources Agency (SAHRA) who would have to issue the permit for its and affinities of the site so that a decision can be taken on it by the South African archaeological assessment undertaken by the author is to establish the extent, condition this archaeological site (named Bethal) for the past three years. The purpose of the $\left.290^{\prime \prime} \mathrm{E}\right)$ located there. Prof. Susan Kent of Old Dominion University, USA, has excavated Free State. The new owner of the farm, Mr R. Hudson, wishes to develop a trout dam on

 eroded to form the donga, cover the landscape between the sandstone outcrops. The stone

 which was her intention This is an important consideration if one is to undertake a spatial analysis of the material Her main concern was to determine whether the artefacts from the site were in situ or not

xอOtolnamiags anv xэotogo ghl
also yielded a few artefacts at the same level. (S. Kent pers. comm.). A stratigraphic pit about 20 m to the east of the excavated area has the excavations the artefacts were most dense between 2.05 and 2.50 m below the surface
The artefacts seem to be eroding out from between 1.5 m and 2.5 m below the surface. In the donga and one smaller testpit near the bottom of the slope back from the edge of the donga in the central section of the occurrence, in the edge of
 east side of the donga. There are numerous artefacts scattered on the sides and floor of Fig. 2). The densest collection comes from an area about 40 metres in length along the
Artefacts are randomly eroding out of the sides of the donga (indicated by numbers on
THE SITE
between $-5^{\circ} \mathrm{C}$ and $36^{\circ} \mathrm{C}$ mm falling per year. The average temperature is $16^{\circ} \mathrm{C}$, with the variation ranging grassland is subject to severe frosts. The area is a summer rainfall region, with about 900 slopes of the Drakensberg, at altitudes greater than $1750 \mathrm{m"}$ (ibid;44). The mountain grassland". This is vegetation associated with the "rocky slopes and ravines of the lower
Low and Rebelo (1986) classify the vegetation of the area as "wet, cold Highveld
3
is presented in Table 1. The lithics examined had either eroded out of the side of the on the plan (see numbers indicated on Fig. 2). The material discovered at the occurrences at the edge of the property was searched for lithic material. All occurrences were plotted

vayb oniannozyns anv alis ahl noys tvtaglvi jihlif ahl
due to transport by water, and therefore they conclude that the artefacts are in situ.

has been from afar those minerals present, have a rounded appearance, which usually indicates that transport

 to angular which would indicate that transport had taken place over a small distance. The

 has not been reworked by fluvial activity (ibid:11) fluvial clasts were found amongst the artefacts to indicate a fluvial deposit (ibid). The site However, the flow regime was not high enough to transport the larger flakes. No other have removed some of the smaller chips, which are the debris from artefact manufacture.
 indicating a possible palaeosol. This palaeosol would have developed when the horizon silty clay. It contained small calcareous-rich concretions, which are interpreted as Fouche (2000:3) interprets the horizon from which the artefacts come as being a dark layer above a hard, orangy layer
From personal observation the artefacts seem to come principally from a yellowish-grey
the Drakensberg Formation basalt in the region, while the quartzite occurs within a short
bladelets. The knife comes from the northern end of the donga cores, eleven flake-blades, including the classic Middle Stone Age flake-blade, and ten triangular flakes are therefore directly related to the site, as are the three possible bladelet have eroded out of the donga edge where the main concentration occurs. All three
Occurrences I to 15,25 to 26 , and 29 to 37 are directly related to the site in that they
The formal tool component (the knife and the scraper) make up 0.6% of the collection.
 Age sequence. The three triangular flakes and the knife from Bethal are also significant form about 36% of the combined flake-blade and bladelet category in the Middle Stone
 depositional disturbance at the site. so one must infer that it is either a sampling problem or that there has been posttrimming and platform rejuvenation flakes, and chunks are represented in the collection, depositional forces. The first explanation appears to be not the case here, as cores, core had not taken place on-site or the chips have been removed from the horizon by postunderrepresented in the archaeological horizon for one of two reasons. Either knapping absent, which could be due to the nature of the samples, or to the fact that they are knapping had taken place on site. Chips, the best indicator of on-site knapping are almost present (60.5%). The second highest category is chunks, which one would expect if
As expected from an unselected collection, irregular flakes represent most of the artefacts as possible artefacts were examined, and no selection was made to make the sample as representative әq!s!^ IIV uo!̣əaן extensive, but can give some indications of what is present and the affinities of the donga, or were still lodged in the side of the donga. The collection is therefore not very

facetted butts are an indication of prepared butts． is drawn between the Middle Stone Age site of Florisbad and Bethal．Dihedral and blades，bladelets and triangular flakes are compared in Tables 3 and 4，and a comparison
 Prepared butts（also referred to as platforms）are used to distinguish Middle Stone Age The nature of the butts of the flakes is also an indication of the affinities of the collection

001	6Sて	001	L68¢	TV LOL
LLO	$乙$	$1 \varepsilon 0$	21	sjool 2yekt
ヤLで	$\varepsilon ¢$	ヤ0 £	805	＊＊sayed padeys
1L¢9	¢91	689 2	8t01	saye【f de｜noิอ．」！
LL＇で	65	9L．6S	6 を¢て	
${ }^{\text {2ธิะไuวつ」2．}}$ d				

Table 2．A comparison between the artefact percentages from Florisbad（Henderson irregular flakes at Bethal． flakes at Bethal is about half of that at Florisbad，whereas there is a higher percentage of
 respectively，shaped flakes 32.4% and 16.5% and flake tools 0.8% and 1% ．Flake tools
 for other Middle Stone Age assemblages．If macrodebitage is left out of the equation，the assemblage is largely intact（Henderson 2001a）．It can therefore be used as a comparison nearly 60% of the assemblage（Table 2），and it is one of the indications that the Florisbad Florisbad is an in situ butchery site where knapping took place．Macrodebitage represents
 shapes have been copied（Schick 1986）．The proportions of macrodebitage generated underrepresented．Knapping experiments have been undertaken where various tool

A comparison of the percentages with those from the open－air Middle Stone Age site of

[^0]| $\begin{aligned} & -1 \\ & 0 \\ & -1 \\ & i \end{aligned}$ | | | $\begin{aligned} & \frac{\pi}{3} \\ & \vdots \\ & 8 \\ & i n \end{aligned}$ | | $\begin{aligned} & \frac{\infty}{\omega} \\ & \frac{2}{\infty} \\ & \frac{0}{0} \\ & \frac{0}{i} \end{aligned}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | \bigcirc | - | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \rightarrow | |
| $\stackrel{N}{\sim}$ | | $\stackrel{N}{\square}$ | | | | | 0° | |
| 二 | ω | \bigcirc | - | - | a | ∞ | \rightarrow | $\frac{0}{2}$ |
| $\left\|\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ \infty \end{array}\right\|$ | - | $\omega \underset{\sim}{f}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \omega \end{array}\right\|$ | $\begin{gathered} 0 \\ w_{1} \end{gathered}$ | $\begin{aligned} & w \\ & i v \end{aligned}$ | $\underset{\substack{n \\ i}}{ }$ | \circ° | |
| A | - | ω | - | N | N | - | \rightarrow | |
| $\left\|\begin{array}{cc} 0 & 1 \\ 1 & 10 \\ 0 \end{array}\right\|$ | $\begin{aligned} & 0 \\ & y_{1} \end{aligned}$ | - | | $\stackrel{-}{2}$ | $\stackrel{-}{2}$ | $\frac{N}{\omega}$ | 0° | |
| ค | \bigcirc | A | \bigcirc | \bigcirc | - | - | \rightarrow | |
| $\stackrel{N}{\sim}$ | | $\stackrel{N}{\omega}$ | | | | | 0° | |
| U | \bigcirc | N | \bigcirc | \bigcirc | N | - | | |
| $\left\|\begin{array}{ll} \checkmark & \\ & \omega \\ & \omega \end{array}\right\|$ | | $a=$ | | | | is | | |

[^1]units, the Howieson's Poort levels (Wadley \& Harper 1989) occur mostly in the basal and upper Middle Stone Age units and are rare in the central Knives occur in the Middle Stone Age levels at Rose Cottage Cave near Ladybrand. They 1. Knives:
collections at sites in the Eastern Free State. These are knives and bladelets.
Two other categories of artefacts present at Bethal also occur in Middle Stone Age
24.58% for Bethal and 27.06% for Florisbad. particularly if the total of the two categories is taken together. This gives figures of collection compare favourably with those of the Florisbad Middle Stone Age Horizon,
 3. Prepared butts:
has a plain butt, and is of quartzite parallel-sided Middle Stone Age flake-blade, with dimensions of 119 mm by 39.5 mm . It These are present in the Bethal sample. One, in particular, from occurrence 34 is a classic 2. Flake-blades: 1928, 1929, Volman 1984)

The presence of triangular flakes is a characteristic of the Middle Stone Age (Goodwin

The designation of the material is Middle Stone Age for the following reasons
TVINJLVW JHL IO STUINIAV \qquad Quartz: 0.3\% Quartzite: 37.8\% Cryptocrystalline: 61.7% Raw material percentages of the artefacts presented in Table 1 are as follows

Raw material
 (Wadley 1996)

 been extensively excavated, most recently by Lyn Wadley (1997). The sequence at Rose
 (Volman 1984), of which there are none at Twin Caves. this designation. The most common retouched tools of the MSA 1 are denticulates has tentatively assigned the assemblage to the MSA 1, although there are problems with dihedral butts). Raw material comprises 59\% opaline (cryptocrystalline). Harper (1997b)

 Rose Cottage Cave project. Four 1 metre ${ }^{2}$ squares were excavated in the northern cave,

GLVLS 3Gyd ny Stone Age horizon (Henderson 2001a) cores from the sample, all cryptocrystalline. Bladelets also occur in the Florisbad Middle

 Bladelets also occur throughout the Rose Cottage Middle Stone Age sequence (Harper

 however, few of them have the quality of data necessary for a spatial analysis of the site.

Several open-air Middle Stone Age sites have been excavated in southern Africa,
VDI甘IV NとGHLOOS NI SJLIS ЗDV JNOLS GTGOIN \&IV-NJdO צGHLO

> the appropriate designation
of the whole excavated collection may well bring the subtleties to light necessary to make
Howieson's Poort. It must either pre-date or post-date the Howieson's Poort. An analysis but the absence of backed tools seems to indicate that it does not belong to the It is not possible to assign a position to the Bethal sample in the Rose Cottage sequence,

Denticulates are "almost entirely" restricted to the pre-Howieson's Poort levels (ibid:31). relatively high proportion of irregular flake-blades, and many points and knives. particularly side scrapers in the Late Middle Stone Age assemblages. There is also a characterise the Howieson's Poort. The post-Howieson's Poort is dominated by scrapers, by knives as the dominant class. Backed tools and a wide range of tool classes sided flake-blades dominate the assemblage (Wadley \& Harper 1989). This is followed

In the pre-Howieson's Poort levels at Rose Cottage points, large flakes and large parallelpercentages during the Howieson's Poort (ibid). Backed tools are almost exclusively made on cryptocrystallines, which is why it has high
 Cryptocrystalline (opalines) is the most common raw material in the Rose Cottage BP (Clark 1999). (Deacon \& Deacon 1999). The final Middle Stone Age at Rose Cottage is dated to 28000
 Howieson's Poort industry is thought to center around 70000 years ago, based on its

11

 Hills. Ethnographic research indicates that present-day hunters hunt at the pan (Crowell Ngamiland in Botswana, close to the Namibian/Botswanan border, north of the Aha Stone Age and a Later Stone Age component to the site. $\neq \mathrm{Gi}$ pan is situated in north-west Brookes and John Yellen (Brookes \& Yellen 1977). The excavations revealed a Middle

artefacts are made of quartz, with quartzite and diabase also being utilised (Mason 1958). the horizon indicates that humans were not the dominant players at the site. Most of these by humans (4 or 0.06%). This together with the small number of stone artefacts found in non-human marks on the bone (233 or 3.6%) are higher than those unquestionably made human and carnivore damage marks were identified on the bones (Brown 1988). The excavation only. It therefore is only a sample of the spatial patterning at the site. Both The published plan (Mason 1988) of the excavated material relates to the 1966 brown sand in which were the artefacts and faunal remains. the sides of a water pit. Mason used dynamite to remove the calcrete onto the underlying floor was sealed by over a metre of calcrete and clay deposits, and was first exposed in

 Kalkbank is located in the drainage area of the Hout River, about 60 km north-west of
data is not as good, or is not available, are the sites of Kalkbank, $\neq \mathrm{Gi}$ and Zeekoegat 27.
Other Middle Stone Age sites for which plans are available, but for which the quality of processed meat and marrow in one portion of the site, seems to have acted as a focus for the consumption of the various antelope carcasses, such as blesbok, took place at the site. The hearth, uncovered represented at the site are restricted. Knapping and the processing of Hippopotamus and dimension. It is a special activity location, and the range of artefacts and activities 200 lb). Bone is also preserved at this site, which gives the spatial analysis an added reconstruction of the activities of the Middle Stone Age people at the site (Henderson
27 site, as the artefacts were not numbered during curation.

Kalkbank and $=$ Gi were special purpose sites like Florisbad, whereas Zeekoegat 27 could
 circular arrangement of cobbles represents the outline of a windbreak, and that the
and dental fragments was found at the site. It is suggested that the $\pm 10 \mathrm{~m}$ diameter post-Howieson's Poort affinities (ibid) so is late MSA. A 'very small sample' of bone flakes, and have been interpreted as flaking foci (Sampson 1974). The assemblage has

 pəjeas e u! uəə (Sampson 1968) situated near a tributary of the Orange River. Dolerite and sandstone Another open-air site for which spatial patterning is available is the site of Zeekoegat 27 125000 years ago (ibid). published. The horizon is thought to have developed during the last interglacial, some level (Brooks \& Yellen 1977). The spatial distributions have, however, not been dimensionally, and untrimmed flakes and debitage were recorded to square and ten cm locations of all faunal remains, cores and retouched lithics were plotted threeThe MSA floor was covered by a calcrete layer, and was thus well-preserved. The the edge of the pan as well. MSA level has been interpreted as representing MSA hunting by ambush techniques at As the location of the site is in the same place as LSA and present-day ambush sites, the similarity in prey acquisition species between the present and the LSA and MSA units ambushed when they came to drink or came to the salt-licks. Excavations revealed a
2. There is already a Later Stone Age site with the name of Bethal in the National
Museum, Department of Archaeology, records. 000 maps the farm is indicated as Sunnyside. discovery Sunnyside was owned by the owner of Bethal, the adjacent farm). On the 1:50

is to be destroyed further investigation. I would therefore recommend that more work is done at the site if it
The site is extensive enough, and appears to be consistently Middle Stone Age, to warrant

RECOMMENDATIONS

currently being worked on

For a detailed spatial analysis of the site a wider area will need to be opened up than is

> concentration.

> Bethal has a rich concentration of artefacts over at least 40 m in a north-south direction. It
that occurred, particularly at the Florisbad site.
> \neq Gi. Bone is preserved at these sites, and it has been possible to reconstruct the activities excavated in the detail required for spatial analysis, apart from the sites of Florisbad and Middle Stone Age affinities. Few, if any, open-air Middle Stone Age sites have been It would appear from the small sample of artefacts analysed from Bethal that the site has
Rob Hudson is thanked for an agreeable stay at Sunnyside whilst conducting the survey
Prof Lyn Wadley from the University of the Witwatersrand kindly assisted with the
identification of the knife. Prof Susan Kent allowed me access to her geological reports
and provided additional information about the archaeological excavations at the site.
Sharon Holt aided in the drawing of the figures.
SLNJWGЭवGTMONYOV
15

Figure 1. Map of the area indicating Sunnyside farm, the Little Caledon and the donga

Goodwin, A.J.H. 1929. The Middle Stone Age. Annals of the South African Museum
 Free State Clarens Region - South Africa. Unpublished report, Dept. of Geology, University of the
Fouche, P. 2000. Geological report on the artifacts found on the farm Bethal in the
secrets of the Stone Age. Cape Town: David Philip.
Deacon, H.J. \& Deacon, J. 1999. Human beginnings in South Africa: uncovering the
modern behaviour in an MSA context. African Archaeological Review 16:93-119.
Clark, A.M.B. 1999. Late Pleistocene technology at Rose Cottage Cave: a search for
industry in the Basutolian Ecozone. South African Journal of Science 93:449-458.
Clark, A.M.B. 1997. The final Middle Stone Age at Rose Cottage Cave: a distinct
Occasional Paper no. 21 Hearths, Makapansgat, Transvaal :658-663. Wits Archaeological Research Unit,
Brown, A.J.V. 1988a. The faunal remains from Kalkbank. In. Mason, R.J. Cave of
report on the first two field seasons. Botswana Notes and Records 9:21-30
Brooks, A.S. \& Yellen, J.E. 1977. Archaeological investigations at (Gi: a preliminary
8

Research Unit, Occasional Paper no. 21.
Mason, R.J. 1988. Cave of Hearths, Makapansgat, Transvaal. Wits Archaeological

> South African Archacological Bulletin 51:85-93.
Makapansgat Australopithecine locality, Central Transvaal. Part 1: the Kalkbank site. The
Mason, R.J. 1958. Bone tools at the Kalkbank Middle Stone Age site and the
Swaziland. Pretoria: Dept. Environmental Affairs and Tourism
Low, A.B. \& Rebelo, A.G. (eds) 1996. Vegetation of South Africa, Lesotho and
Pennsylvania
Kuman, K. 1989. Florisbad and (Gi: the contribution of open-air sites to study of the
Middle Stone Age in South Africa. Unpublished PhD dissertation, University of
CREP.
Inizan, M.-L., Roche, H. \& Tixier, J. 1992. Technology of knapped stone. Meudon:
Henderson, Z.L. 20016 . The integrity of the Middle Stone Age Horizon at Florisbad
South Africa. Navorsinge van die Nasionale Museum 17:25-52. dissertation, University of Cambridge.
Henderson, Z.L. 200 la. Spatial patterning at southern African Middle Pleistocene open-
air sites: Florisbad, Duinefontein $2 / 2$ and Mwanganda's Village, Unpublished PhD
Free State. Southern African Field Archaeology 5:96-98.
Harper, P.T.N. 1997b. Twin Caves: an early Middle Stone Age site near Clarens, Eastern
for continuity and discontinuity. South African Journal of Science 93:470-475.
Harper, P. T.N. 1997a. The Middle Stone Age sequences at Rose Cottage Cave: a search
> collection. South African Archaeological Bulletin 44:23-32.
> Wadley, L. \& Harper, P. 1989. Rose Cottage Cave revisited: Malan’s Middle Stone Age

Stt-6Et: E6 aurlos fo pulinof
 Wadley, L. 1997. Rose Cottage Cave: archaeological work 1987 to 1997. South African

and spatial analysis. South African Archaeological Bulletin 51:64-74.

220 African prehistory and palaeoenvironments. Rotterdam \& Boston: A. A. Balkema : 169-
Volman, T.P., 1984. Early Prehistory of southern Africa. In: Kleín, R. G. (ed.) Southern
South African Archaeological Bulletin 43:15-26 Stone Age assemblages antecedent to the Howieson's Poort at Klasies River main site
Thackeray, A.I. \& Kelly, A. 1988. A technological and typological analysis of Middle State
in the Clarens district, South Africa. Unpublished Honours Project, University of the Free Scholtz, N. 2001. The geological development of an area next to the Little Caledon River,
transformation of archaeological occurrences. Oxford: BAR International Series no. 319 Schick, K.D. 1986. Stone Age sites in the making: experiments in the formation and Academic Press
Sampson, C.G. 1974. The Stone Age archaeology of Southern Africa. New York:
Triangular Flakes: (illustrated Kuman 1989:125)

Knives: have a straight cutting edge, with an angle of less than 40 degrees (Clark
Flake-blades: Flakes more than twice as long as they are wide (Thackeray \& Kelly 1988)

Facetted butt: more than two facets on the butt (Thackeray \& Kelly 1988)
Dihedral butts: two flakes have been removed to shape the butt (Inizan et al 1992).

Chips: flakes less than 10 mm . 1997a:473, 1997b:96).
 (6861)

The terminology used to describe the artefacts under discussion is based on work by
APPENDIX 1: TERMINOLOGY USED

TVİgleve anv 3llis 3hl so Shdvyoolohd iz xianaddy
22

sat!S лaŋə skills that characterize modern humans.
crucial clue to understanding the development of intellectual modernity and basic social organizational

' Eu (

rather than a special purpose site, that has retained its spatial integrity. Most known Stone Age open-air

CALEDON RIVER: BETHAL

however, they are special purpose kill and/or butchering sites. Such sites are important to our

but requires more excavations at the site and the collection of dates from various depths of the site

to know if its dissimilar artifact inventory compared to those assemblages from Lesotho and Rose Cottage
Bethal all strongly suggest that the site is a multipurpose habitation camp. More work is required at Bethal

Multipurpose Habitation / Special Purpose Sites archaeology of South Africa

site, South African archaeologists will have to modify their current excavation strategy of only

 near Ladybrand. It displays a very different artifact inventory. Moreover, the spatial patterning differs

artifacts termed the Howiesons Poort has been uncovered at Rose Cottage Shelter, where the horizon

uoz!」oH a6 \forall euols elpp!w mon $\forall-$ słכe!! $\forall \forall$
However, in 2002, a second occupation level was detected but we did not have time to investigate

minerals. The sterile silt continued to around 180 cm below the round surface. Just below was a clayey

 àınos al
again showing that the site is in situ. The surrounding sandstone from the Elloit Formation was the
rounded in shape. Because of the sub-angular grains, transport distance was probably relatively small,

Below the organic top soil level is very fine orangey-red sterile silt that probably was aeolian (wind) cm in depth and formed a protective cap that probably accounts for some of the preservation of the site.

人6оןоәэ
Shelter that has been more thoroughly investigated.
Middle Stone Age sites the result of the small portion of the site excavated compared to Rose Cottage

behavior cannot be determined from a site with restricted behaviors, like a kill site. Therefore it is

suoisn|juoう
the shatter, raw material quality, and its distribution at the site

 usual selection of raw material for quality pieces that can be made into tools did not occur to the same

都 confines of space and the conflation of activities resulting in artifact palimpsests that are not present at

South African Middle Stone Age artifact typology
has been excavated. Further excavation is required to place the Bethal artifacts within the established
and other artifacts associated with the Howiesons Poort simply reflect the small portion of the site that
uncovered at Bethal and crescents or segments are absent. It is possible that the paucity of backed tools

chalcedonies predominate the artifact assemblage (as can be seen in the following tables), but artifacts
questions crucial to understanding the prehistory of South Africa necessitate further excavations at
 we need to determine what this new artifact horizon might mean in terms of it being a temporally distinct
Bethal in order to ascertain if Bethal represents a new, unreported artifact horizon. If a new horizon, then

which so far, is unique. The assemblages that most closely resemble the Bethal artifacts include backed
 sease Kł!

[^2] later inhabitants at Bethal layer above it or if this is a short-term special purpose site and if it was occupied by similar peoples as the

 the confines of a rockshelter. habitation sites. Bethal allows us to explore activity area patterning during the Middle Stone Age without
Total time excavating the site thus far（and including 2002）： 19 weeks
Current excavation permit：Valid until 1 November 2004

บопеeo．		
	zı Kinr ：Kep L	6661
！！un $\omega て \times 乙$ әио реңелеэхヨ		0002

[^3]Table 1．Table of investigations at Bethal 1 by year．

－	（\％で0）I	（\％10）I	
－	$\left(\% 9^{\prime} \mathrm{I}\right) \mathrm{L}$	（\％\％）乙	
$\left(\% 0^{\prime} 1\right) 1$	（\％S0）乙	$(\%$ て＇I） 6	yunบo［рэ！มоว
（\％0＇1）I	（\％S0）乙	－	2yey rejnôueul
－	（\％60）\downarrow	（\％$\%$ ）I	
$(\%$ ¢¢ ）$七 乙$	（\％0＇11） $8 t$	（\％よを）$\varsigma 乙$	л21eपS
－	（\％で0）I	（\％SO）\dagger	
$\left(\% 0^{\prime} 1\right)$｜	（\％で1）¢	（\％0）I	шнодлеן［елрәц！р／м ауец дочм
（\％0て）	（\％8て）て1	（\％t1） 01	2103
－	（\％\％）乙	（\％¢0）乙	
－	（\％ナ1） 9	$(\% 01) L$	әธิчикр әธิрә／м әуए
（\％0＇I）I	－	（\％LO）ς	
－	（\％で0）I	－	
（\％0て）乙	$(\% 60) \downarrow$	$\left(\% 0^{\circ}\right.$ 乙）乌I	јәрреІg
－	（\％で0）৷	（\％ 0 ）I	
－－	－	（\％10）I	
－	$(\% 60) t$	（\％ナ0）ε	
（\％Lで）¢1	$\left(\% 9^{\circ} \mathrm{L}\right) \varepsilon \varepsilon$	（\％S＇t ）$\varepsilon \mathcal{L}$	
（\％6て） \mathcal{L}	$(\% 0 \mathcal{\varepsilon}) \in I$	（\％80） 9	วธิธшะр วธิคว／м yunчว
$(\% ¢ \subseteq 乙) \downarrow$ ¢	$(\% 00 \downarrow) \downarrow$ LI	（\％LOt）66Z	yuny．
（\％8L） 8	（\％09）97	（\％「 ¢ ）$£ \tau$	
－	（\％で0）I	（\％£ 0 ）τ	
（\％01）I	（\％より） 9	（\％LO）ς	Su！ssium xoıd／m axenj fers！a
$\left(\% 0^{\prime} 1\right)$ I		（\％1t ） 0ε	Bu！ssim［e］s！p／m ayelf je！ned xodd
－	（\％Iて） 6	（\％IO）I	
$(\% L て 1) ¢ 1$	（\％9t）OZ	$(\%+9 z)+61$	
（\％I9） 9	（\％ガロ） 61	（\％L＇9） $6 t$	2Y区⿺ गочM
300INSII $!$ U	396NIII 1 ！${ }^{\text {a }}$	396N60I $1!\mathrm{U}_{\Omega}$	30vLIgGa

Flake blade	$4(0.6 \%)$	-	-
Blade w/edge damage	$1(0.1 \%)$	-	-
Core w/edge damage	$1(0.1 \%)$	-	-
Shatter w/edge damage	$1(0.1 \%)$	-	-
Dihedral platform flake w/edge damage	-	$4(0.9 \%)$	$1(1.0 \%)$
Whole blade $(>2.5 \mathrm{~cm})$	-	$2(0.5 \%)$	-
Side struck flake w/dihedral platform	-	$2(0.5 \%)$	-
Flake w/multi-facetted platform and edge damage	-	$1(0.2 \%)$	-
Bladelet core	-	$1(0.2 \%)$	-
Cortical flake w/edge damage	-	$1(0.2 \%)$	-
Cortical flake w/multi-facetted platform	-	$2(0.5 \%)$	-
TOTAL	736	435	102

		\downarrow	
		\downarrow	әреן日 ауе⿺𠃊 paz！！！？
		\downarrow	әреןg paz！！！？
	\downarrow		
		1	
	\downarrow	1	
	ε		बYEI POLTON
		1	पวฺО प7！M Yunuว
		\mathcal{L}	
		乙	uлодऐリ
		1	aдoう paz！！！？
ε	ε	乙	yunuว paz！！！
\downarrow	L	6	ауе¢」 paz！！！？
			บวnopay 47！M ajoう
	ε	1	पวnotay पt！M әxㅣ．
		$乙$	पכnopay 41！M y
	\downarrow	\downarrow	อjejno！fuad
	1		
	1		पวృon पұ！M joderos ap！S
	\downarrow		ıadeıos pug
	6	1	」edejos op！s
300LNSIL サ！	ヨ96Nレレレ ！！${ }^{\text {a }}$	ヨ96N601 ท！uก	ヨd人17001

preliminary field identifications and are not included here）．

Unit 115 N 100 E One chunk was from carnelian
One piece of shatter was from fossilized wood

I		（\％1＇0）I	วยеมш๐¢ธินоว
1		（\％1＇0）I	
1		（\％10）I	poom paz！！！ssod
1			
I	（\％で0）I	（\％10）I	uв！！əueว
	（\％ $\mathrm{S}^{\circ} \mathrm{O}$ ） z		ррэјsu＿\％
11	（\％I＇9I）OL	（\％8＇11） $\mathrm{L8}$	ขฺzนยกั
6	（\％801） Lt	（\％L＇UI） 98	zนenठ
\dagger	（\％で0）I	（\％\＆์0）乙	วฺฺоㅣㅣ
$0 t$	（\％8ヶ） 12	$\left(\% 8 \varepsilon^{\prime}\right.$ ） $8 乙$	ว1อริจ
¢I	（\％$\%$ ¢ 6 ）$\subseteq 8$	（\％9 ¢ ¢ 001	киорәगреч
61	（\％\％St ） 861	（\％615）z8£	นәบว
1	（\％\＆$\%$ ） 01	（\％\＆゙9）9t	имоихил
G00INSII	396NLII ${ }^{\text {Hu® }}$	396N60I 1 ！${ }_{\Omega}$	TVİGLVE MVY

Table 3. Informal tools by raw material and by excavation unit at Bethal.
UNIT 109N96E
RAW MATERIAL TYPE

INFORMAL TOOLS	Chert (1)	Chalcedony (2)	Quartz (6)	Quartzite (7)	Hornsfeld (8)	Dolorite (13)	Unknown (0)	TOTAL
Chunk w/Retouch	1					1		2
Flake w/Retouch			1					1
Core w/Retouch								---
Utilized Flake	3	3		2			I	9
Utilized Chunk	1	1						2
Utilized Core							1	1
Notched Flake w/Dihedral Platform							1	1
Utilized Flake w/Dihedral Platform		1			1			2
Chunk w/Notch	1							1
Utilized Flake w/Natural Backing								-
Notched Flake								-
Notched Flake w/Edge Damage	1							1
Notched Bladelet								-
Notched Flake w/Utilization	1							1
Bladelet w/Utilization							I	1
Utilized Blade	1							1

Utlized Flake Blade	1							1
Notched Flake Blade		1						1
TOTAL								25

UNIT 111 N96E
RAW MATERIAL TYPE

INFORMAL TOOLS	Chert (1)	Chalcedony (2)	Quartz (6)	Quartzite (7)	Hornsfeld (8)	Dolorite (13)	Unknown (0)	TOTAL
Chunk w/Retouch								-
Flake w/Retouch	2	1						3
Core w/Retouch								-
Utilized Flake	3				2		1	6
Utilized Chunk	3							3
Utilized Core								-
Notched Flake w/Dihedral Platform								-
Utilized Flake w/Dihedral Platform								-
Chunk w/Notch								-
Utilized Flake w/Natural Backing	1							1
Notched Flake	1	1		1				3
Notched Flake w/Edge Damage	1							1
Notched Bladelet								-
Notched Flake w/Utilization								-

b	I	I	I	1	TVIOL
\mathcal{E}		1	1	I	צиичว рaz!!
I	I				วยฺทэฺนว์
TVIOI.	ข1!z!.140	21.180\%	0168 V	1.12 y	STOOL TVWYOANI

G00INSII I! U_{Ω}

81								TVLOL
-								
-								
-								әрегя раз!!!!
1							1	иопвз!!

τ							TVLOL
I		I					
－							raderss pug
I						I	raderas apis
TVLOL	（0） ияsouyu！	$\begin{gathered} (L) \\ \text { ay!z, ien } \end{gathered}$	（t）ouols pues		$\begin{gathered} \text { (z) } \\ \text { Aиорээяч, } \end{gathered}$	（I） 1.104	STOOL TVWYOH

GdALL TVIUGLVW MVY
396 N60I LINの

£I	I	－	8	I	乙	I	TVLOL
I	I						
I					1		$\begin{aligned} & \text { (ио!цz!!!n/я әрегq } \\ & \text {-әучц рәуэєq) ә!ия } \end{aligned}$
1						1	4010 N y！is rodenos op！S
1					1		raderas pus
6			8	I			rodurss op！S
IVLOL	（0） нмоиуй	$\begin{gathered} (L) \\ \text { a!zıivno } \end{gathered}$	（t）atiols purs	$\begin{gathered} (\varepsilon) \\ \text { गॄธิV } \end{gathered}$	$\begin{gathered} (z) \\ \text { রиораэрчך } \end{gathered}$	（I） 1.1240	SIOOL TVWYOS

马dAL TVIZGLVW AVY
396NIII LINA

002129030 6z 2נEQ
LSIJOTOJVHJyV
This permit 15 valid until 1 Novernoer 2004

 excalauon to the satisfaction of $\$$ AMRA and the landowner．

 If a published report has not appeared whthin three years of the lapsing of this permut the report required
in lirms of the permit will be made available to researchers on request

 All material collected and excavated will be curated by the National Museum
Adequate recording merhods as specified in the Regulations and Guidelines pertaning to the Nal：onal
Hentage Resources Act must be used．Note that the posituon of all excavauons musi be marked on a plan in the Bethehem District，Free State Province at Bethel，at approximately $2832591 \mathrm{~S}, 28.27 .163 \mathrm{E}$ tor the excavation of the sire Bethal，
$\stackrel{Q}{-0}$

Issued under Section 12（4）of the National Monuments Act．Act No 28 of 1969 as amended
己1/00E/C/6

15／E00／LO／10／08 ON

娄

LIWYヨd

[^0]: Table 4. Florisbad: Details of butts of all flakes: the percentages are calculated from the
 total number $(\mathrm{f}=1271)$ (Henderson 2001a).

[^1]: Table 3. Bethal: Comparison of the butts of all flakes: the percentages are calculated from
 the total number $(f=187$, all flakes with butt missing excluded)

[^2]:

[^3]: | NO |
 | :--- |
 | O |
 | 1 |

