9/2/161/3012 9/2/161/3012

Report on VP dates: Karim Sadr

Page |

7/22/04

Report to the South African Heritage Resource Agency

Dating of 100 shell samples from 63 sites on the Vredenburg Peninsula

Permit nos. 80/02/04/004/51-80/02/04/066/51

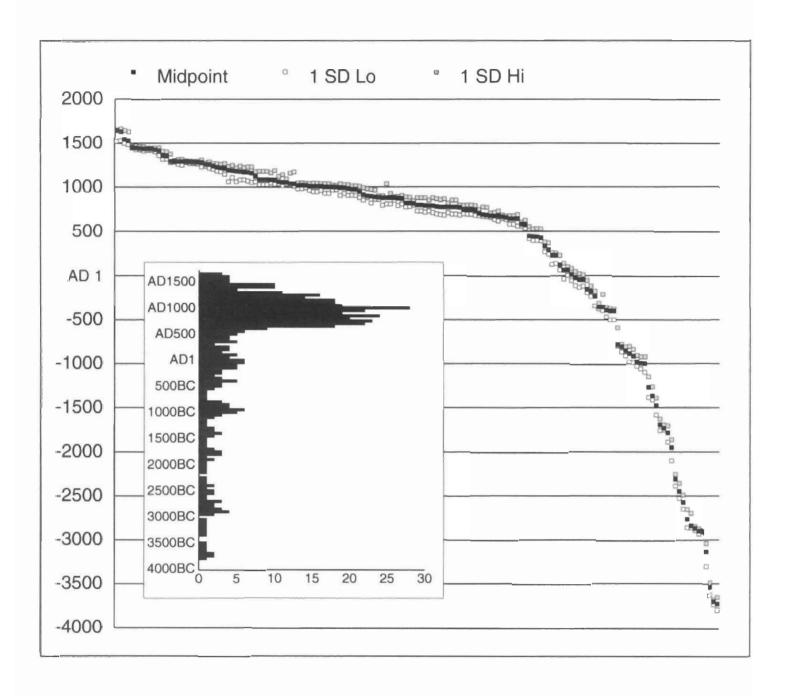
Karim Sadr School of Geography, Archaeology and Environmental Studies Wits University Private bag 3 Wits 2050

22 July 2004

During January 2003, 63 archaeological sites on the Vredenburg Peninsula (VP) of the Western Cape province were visited, and 100 shell samples were collected from the surfaces of these sites. The aim was to date these and to obtain an age estimate for the terminal occupation at these sites. The sites had been discovered in a survey carried out in 1992 by myself and others then attached to the Archaeology Department at UCT. At the time, using the technique of seriation, we had proposed a five-phase sequence of occupation on the VP (Sadr et al., 1992). We wished to test our seriated sequence with absolute dates.

The collected shell samples were sent to the Quaternary Dating Research Unit (QUADRU) of the CSIR in Pretoria. Of the 100 samples submitted, 97 have been fully processed by the laboratory, and the results are attached. The remaining three results will become known shortly. On the table, the calibrated dates expressed as negative numbers represent dates BC.

The dates that have been generated now require to be carefully examined, and this analysis will continue for some time. For one thing, it is obvious that the seriated sequence we had obtained in 1992 needs to be revised. The last column of the attached table, which contains a series of numbers from 1-5, represents the phases to which we had assigned the sites by the technique of seriation (Sadr et al., 1992). If the seriated sequence were correct, we should see the five's clustered at the bottom of the table and the one's at the top. In fact, we find the phase numbers are somewhat jumbled, but not completely un-patterned. For example, the majority of the five's do in fact show up at the bottom of the table suggesting that we had picked on some time-sensitive traits in the seriation. Other seriated phases, however, are more problematic. In examining why the seriated phases do not match the dates, a number of factors have to be taken into account. These include the effect of rodent disturbance on multi-component sites, whereby deeper shell may have been brought to the surface and dated. Other factors to examine are the


variables used in the seriation, and the extent to which these may or may not have been adequately diagnostic. Time and in-depth examinations will tell.

For the time being, adding the new dates to the corpus of dates already available from the VP allows us to see an interesting pattern, shown here in the attached figure. Assuming that the numbers of dates from any one period represents a proxy for population size in that period (e.g., Deacon 1984; Vogel & Fuls 1999) it is evident the VP experienced a major and very rapid population increase in the second half of the first millennium AD. This correlates with the period when sheep-rich sites are found in this landscape (Sadr et al., 2003). However, it does not correlate with the earliest appearance of livestock here. Whatever the meaning of the population peak, it clearly represents a major event in the history of this area and one that requires to be studied further.

Works cited

- Deacon, Janette 1984. Later Stone Age people and their descendants in southern Africa. In Southern African prehistory and palaeoenvironments, edited by R.G. Klein, pp. 221-329. Rotterdam and Boston: A.A.Balkema.
- Sadr, Karim, John Gribble & Gail Euston-Brown 1992. The Vredenburg peninsula survey, 1991 / 1992 season. In Guide to the archaeological sites in the southwestern Cape, compiled by A.B. Smith & B. Mütti, pp. 41-43. Cape Town: University of Cape Town.
- Sadr, K., A.B. Smith, I. Plug, J. Orton & B. Mütti 2003. Herders and foragers on Kasteelberg. South African Archaeological Bulletin.
- Vogel, John & Annemarie Fuls 1999. The spatial distribution of radiocarbon dates fro the Iron Age in southern Africa. The South African Archaeological Bulletin 54:97-101.

No. Pta-	Sample	813C	yrs BP	SD	From	Calibrated Midpoint	To	Group
9144	KBE-2	-0.5	MODERN					3
9145	DKE 2-2 SKK1-N	0.1	MODERN 860	60	1529	1634	1670	2
8962	KBH	0.1	900	50	1499	1547	1648	3
9065	KBK	0.2	920	60	1485	1529	1634	4
9083	DKE3	1.4	1035	20	1443	1453	1464	2
9106	KFS4	0.2	1050	40	1426	1446	1467	1
8957 9006	KBV	-0.2	1070	45 45	1412	1436	1458	-2-
8952	KFS5 RND2	0.4	1090 1110	60	1359	1415	1446	3
9001	CCL1-1	0.5	1170	50	1316	1359	1410	2
9064	HLB3-1	-1.1	1270	50	1259	1292	1315	2
9090	KFS2-1	0.3	1270	50	1248	1292	1319	3
9045	KFS10	-0.5	1290	60	1230	1282	1310	3
9017 8942	KFS 11 KBB1	0.6	1320 1320	20 45	1239 1216	1259 1258	1276	2
9062	KBG1	0.4	1370	50	1145	1213	1268	1 2
9116	KBT-1	-0.4	1390	60	1108	1189	1248	1
9026	PTN3-1	-0.2	1400	60	1082	1179	1239	2
9054	SKK1-S	0.8	1410	60	1070	1170	1230	3
8979 9141	KFS7 KBA W-2	0.1	1410	50 70	1085	1170	t221 1230	3
9190	RND 1-2	-0.5	1420	50	1070	1160	1213	3
9046	RND1-1	1.4	1440	40	1061	1122	1179	3
8950	KBS	-0.7	1460	45	1046	1085	1164	1
9132	KFS 2-2	0.1	1460	70	1032	1082	1189	3
9109	SKRC3	0.2	1480	40	1037	1061	1122	- F
8958 9012	RND3N KBBN1	-0.4	1490 1490	60 35	1019	1056 1054	1143	1 1
9197	PTN 3-2	0.7	1500	70	1007	1048	1145	2
9206	DKE 4-2	0.7	1540	70	972	1026	1070	2
9072	DKE4-1	0.7	1550	50	961	1020	1048	2
9172	RND 3S 2	0.3	1550	80	948	1020	1070	1
8983 8965	LITK4-1 KBDe1	-0.2	1580 1580	35 60	966 928	999 999	1022	3
8963	KBAw1	0.1	1580	60	928	999	1037	1
9146	CCL 1	-1.3	1590	50	928	990	1026	2
9143	KBA-2	-1.1	1590	70	904	990	1037	3
9039	KFS12	0.4	1600	60	904	981	1026	3
9115 9027	RND3S-1 KBW	-0.4	1610 1630	50 60	904 879	972 948	1014	1
9171	KBBn 2	0.1	1650	80	819	913	1007	1
9020	KBA1	-0.1	1670	60	819	895	972	3
9168	KBT 2	-0.8	1680	70	798	888	972	1
9076	KBD1	-0.3	1730	50	774	819	888	3
9088	KBN	0.1	1730	45	778	819	884	4
9029 9066	KBP1 KBO1	0 1 -0 1	1750 1750	60 60	729 729	798 798	879 879	3
9135	KBG-2	-0.1	1760	70	711	789	879	4
9134	KBD-2	-0.8	1780	70	695	774	852	3
9138	UTK 4-2	-0.1	1780	70	695	774	852	3
9174	KBJ 2	0	1790	80	683	763	852	4
9074	KBL KBE-1	-0 1 0 2	1800	50 50	695 695	744	798 798	3
9074	DKE1-1	2	1890	60	633	672	711	2
9137	KBDe-2	1	1890	80	615	672	729	3
9061	GPN1-1	0.5	1940	60	581	642	677	2
9140	KBP-2	-0.2	1940	80	559	642	689	1
8948 9207	KBU DKE 1-2	-0.3 0.1	2110 2140	60 80	393	445 422	529 513	2
9002	RHW 2	0.5	2220	35	268	332	376	4
9130	SWR1-2	-11	2450	80	-34	63	139	4
8940	KBQ1	0	2540	50	-116	-44	12	4
9117	PTN5	0	2450	80	-34	-63	139	3
9176	KBB 2	0.2	2590	70	-190	-114	-23	2
9068 9093	DKE2-1 SKK5	0.5	2640 2690	50 50	-230 -338	-174 -230	-114	2
9024	KFS1	0	2760	45	-375	-351	-310	4
9118	PTN 4	0.9	2760	80	-393	-351	-209	3
9186	HLB 3-2	-0.4	2820	90	-500	-383	-331	2
9110	SWR1-1	0.3	2830	60	-466	-388	-356	- 3
9057 9209	KBM1 GPN 1-2	03	2850 2880	60 80	-500 -582	-398 -430	-367 -373	2
9208	TTB 1-2	0.7	3090	80	-812	-771	726	2
9086	SNF1-1	0.3	3160	60	-866	-806	-777	4
8967	DKR1-1	-0.7	3210	50	-909	-849	-808	4
9127	5WR3 ??	1.1	3230	80	-979	-882	-801	1
9101 9148	KZB4 TTB 5-2	0.2	3330 3700	60 90	1096	-999 -1470	-917 -1385	4
9146	HLB 1-2	0.5	3710	90	1594	1487	-1392	2
9193	SWT 5-2	0.8	3760	80	1638	1522	-1440	5
9091	KZ83	0.6	3920	25	-1752	-1732	-1695	4
8961	TT85-1	1	3970	70	1888	1784	-1705	5
9129 9114	DKR1-2 KBX	-0.4	4090 4340	90 45	2100	-1950 -2310	-1859 -2253	4
8970	WTK1	0.1	4440	70	2529	-2448	-2253	4
9011	KBJ 1	1.5	4670	60	2858	-2765	-2656	4
9111	TTB1-1	1.4	4690	50	-2862	-2839	-2698	2
9008	HLB 1-1	0.7	4750	50	2891	2867	-2845	2
9049	TT87-1	26	4810	50	-2931	2897	-2871 -3041	5
9147	SWT 3-2 SWT 3-1	1.6	4990 5290	70 70	-3302 -3625	-3134 -3538	-3041 -3486	5
9004	SWT 5-1	0.9	5460	25	-3737	3703	-3683	5
9112	SWT4-1	0.3	5480	70	3794	-3728	-3655	5
9198	SWT 4-2	-0.2	5580	100	-3954	-3830	-3728	5
9178	SNF 1-2	0.3 -1.6	6270	100	4714	-4586	-4466	-4
2000			8190	80	6574	6472	-6416	5

The distribution of recently obtained and older published radiocarbon dates in the Vredenburg Peninusla